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Abstract

Income mobility is usually approached by the father-son earnings elasticity.
This measure misses an important point: the intergenerational income process
is not an AR(1) and the full dynamics is not captured by its first moment.
The intuition is that sons of successful families preserve the high prospects for
their descendants even when their own earnings are not very high. Part of the
father-son income mobility is not accompanied by long-run income mobility
for dynasties. In this note, I discuss the theoretical relevance of this intuition.
I also propose an empirical application based on PSID (contemporary US) and
transitions of 4-digit occupations from fathers to sons: the implied earnings
process is more persistent than an AR(1).

JEL: J24, J31.

Keywords: Income mobility, transitory shocks, dynasties.

Income mobility is often supposed to capture fairness in society. Consequently,
a lot of attention has been devoted to the estimation of income mobility in devel-
oped economies over the past 30 years (see Becker and Tomes (1986), Solon (1992),
Zimmerman (1992), Björklund and Jäntti (1997), Dearden et al. (1997), Haider and
Solon (2006), Mazumder (2005), Lee and Solon (2009) or Mayer and Lopoo (2005)).
Because of data limitation, the intergenerational income process is typically sum-
marized by one, supposedly sufficient, statistics: the elasticity of sons’ income with
respect to their father’s. However, when earnings of a dynasty do not follow an
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AR(1), this moment is not sufficient to infer its full dynamics. In this paper, I argue
that the process is very likely to be more persistent than an AR(1) in any society.
The idea is that income does not capture the full perspectives of a dynasty and
sons of a richer-than-average dynasty may have average-income jobs (think about
university professors) even though the perspectives of their children remain above
average.

The first objective of this note is to determine under what theoretical conditions
the AR(1) process is a good approximation of the real intergenerational process.
The second objective is to measure the difference between (i) the AR(1) implied by
the use of the son-father income elasticity and (ii) the real dynamics of earnings, i.e.
the correlations of current income with any future generation. To this purpose, the
theoretical section describes an accounting framework where dynasties moves across
careers rather than across income levels. Think about career as a general label that
encompasses the relevant information on the future perspectives of a dynasty in the
current period (occupation, education, income, location...). The career generaliza-
tion relaxes the usual assumption that current income embeds all the information on
future expected income flows. For instance, individuals in different careers but with
the same earnings may have different long-run perspectives. I define in this context
an equivalent of AR(1) processes, i.e. a set of transition matrices between careers
that would generate exponentially decreasing intergenerational correlations. I then
focus on societies in which convergence will be slower. When blocks of careers can
be defined such that there is low porosity across blocks and high mobility within
each block, I show that the intergenerational earnings process is more persistent
than AR(1) processes.

In a second part, I provide a simple empirical illustration in the contemporary
United States where careers are approached by the 4-digit occupation of the head of
households. The results of this exercise point to a far more rigid society than sug-
gested by the father-son income mobility only. After 5 generations, the correlation
is higher than what an AR(1) would give after 3 generations.

The contribution of this note is (i) to describe an approach that allows to infer
the higher moments of the intergenerational earnings process from the observation of
father-son pairs only, (ii) to estimate these moments, using disregarded information
(4-digit occupations) in PSID. The results indicate that occupations at a high level
of disaggregation1 embed more information on the dynasty perspectives than just
income. We can think that it is a better predictor of cognitive skills, education
or preferences/culture. Nonetheless, the majority of papers in economics using an

1The analysis that I perform here uses more than 500 categories.
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occupational approach do so because of data limitation (see the historical studies
of Ferrie (2005), Long and Ferrie (2005), Clark (2012) on income mobility before
the 20th century) and construct occupational transition matrices with less than 10
categories.

The analysis developed here is new, but the intuition that the earning process
could not be summarized in its first moment is evoked in two recent theoretical con-
tributions (Solon (2013) and Stuhler (2012)). As regards the empirical estimation
of the intergenerational income process, the economic literature has essentially tried
to improve on the seminal paper of Becker and Tomes (1986), where the correlation
between father and son’s income is estimated to be low.2 Solon (1992), Zimmer-
man (1992), Björklund and Jäntti (1997), and Dearden et al. (1997) have proposed
methods to alleviate reporting biases and measurement errors. Some temporary
shocks may move the reported contemporary income away from the permanent level
of earnings. Haider and Solon (2006) and Mazumder (2005) have reconstituted life-
course earnings, which naturally led to an upward revision of the intergenerational
income elasticity. A second strand of the economic literature has decomposed the
intergenerational correlations into cultural, genetic and bequest components, show-
ing in particular the importance of human capital transmission.3 Bowles and Gintis
(2002) provides a good overview of these issues.

Section I. presents an illustrative example that helps to understand the argument.
Section II. describes the accounting framework and the theoretical conditions under
which the AR(1) approximation is reasonable. Section III. provides an empirical
application to the United States and infers the higher moments of social mobility,
i.e. the correlations of current income with any future generation. Finally, section
IV. discusses some robustness checks and concludes.

I. A simple example

Consider in this section a simplistic society evenly divided between 4 time-unvarying
careers: 1. bankers earning $60000/year, 2. anthropologists: $40000/year, 3.
plumbers: $40000/year, 4. truck drivers: $20000/year.

Suppose that dynasties move across careers in the following way: the sons of
bankers and anthropologists become bankers with probability 1/2 and anthropolo-
gists with probability 1/2. Symmetrically, the sons of plumbers and truck drivers
become plumbers with probability 1/2 and truck drivers with probability 1/2. Σ,

2In this paper, there is an estimation of the grand-father/grand-son elasticity.
3See Lefgren et al. (2012) or Dahl and Lochner (2012) for recent contributions.
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the transition matrix associated to this society, is shown below.

Σ =




1/2 1/2 0 0

1/2 1/2 0 0

0 0 1/2 1/2

0 0 1/2 1/2

The transition matrix between generation n and generation 0 is Σn but, in this
example, ∀n,Σn = Σ. For any initial career, the expectations of generation n are
exactly the same as the prospects of sons: they both have a probability 1/2 to
be in one of the two careers of the same block. The two blocks (top left: banker
and anthropologist, bottom right: plumber and truck driver) remain completely
hermetic.

In this society, the correlation between the earnings of sons and fathers can
be easily computed: it is .5. However, since temporary shocks on income are not
accompanied by long-term shocks on the dynasty perspectives, the father-son income
elasticity of .5 does not translate into a rapid convergence to the mean on the long
term. In fact, the correlation between earnings of the current generation and any
future generation n is ρn = .5.4 The social mobility is quite normal if you consider
the father-son elasticity ρ1, but there is never any kind of convergence. Figure
I. displays the true intergenerational elasticities against the process implied by an
AR(1).

ρn

ρn1
n

1

This example gives the intuition of what will be developed in the theoretical
part: societies exhibiting hermetic blocks within which there is some mobility do
not absorb exponentially an initial shock.

4In this example, intergenerational earnings do not follow a Markov process in income because
two individuals with the same current earnings (anthropologists and plumbers) have very different
ancestors and descendants.
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II. The accounting framework

A. Environment

Consider a society populated by a mass 1 of dynasties. Each dynasty has only 1
representant at each period giving birth to only 1 offspring. During each period,
the representants of dynasties embrace one of the I available careers. Careers are
labels that contain all the relevant information in the current period on the future
perspectives of a dynasty: education, cognitive skills, preferences and the current
income. A career perfectly characterizes the future expected income flows (including
the current one). In practice, one would think of a career as “financial analyst with
a PhD in economics from Princeton, working in Manhattan”. Denote yi the income
over the life course earned by an individual in career i and assume that it is fixed
across generations. Denote ni the mass of workers in the career i.

Assumption 1. Assume that the stochastic process composed of the random vari-
ables C0, . . . , Cn, . . . standing for the careers of links 0, . . . , n, . . . is a time-homogeneous
Markov stochastic process, i.e.

P (Cn+1 = cn+1|Cn = cn, . . . , C0 = c0) = P (Cn+1 = cn+1|Cn = cn)

As already discussed, this assumption is weaker than the usual assumption stat-
ing that current income embeds all the information on future expected income flows.
Any career Markov process can be summarized with a transition matrix Σ, which
will be the central object of the analysis.

Σ =


σ1,1 · · · σ1,I

... . . . ...
σI,1 · · · σI,I


where

σi,j = P (Cn+1 = j|Cn = i)

To finish with notations, denote

Y =


y1

...
yI

 , N =


n1

...
nI


the vector of earnings over the I possible careers and the initial allocation of workers.
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Earnings are normalized around the mean: N ′Y = 0. Suppose that the economy is
stationary: the proportion of individuals in each career is constant over generations
ΣN = N . Finally, assume without loss of generality5 that ni = 1

I
,∀i.

The measures of intergenerational mobility in this framework are the correlations
between the earnings of generation n and generation 0 conditional on the observation
of the career of generation 0.

ρn =
Y
′
ΣnY

Y ′Y

In the series of measures (ρn)n>0, ρ1 is the classic father-son measure of inter-
generational mobility. A notable difference implied by this framework is that the
correlation between a grandfather’s earnings and his grandson’s would not be in-
ferred through ρ1 × ρ1, but instead computed as ρ2 6= ρ2

1.
To understand why ρn is generally different than ρn1 , it is useful to compute the

repeated 0-1 mobility ρn1 .

ρn1 =
Y
′
(ΣZ)n−1ΣY

Y ′Y

where Z = Y Y
′
/Y

′
Y is the I×I cross-covariance matrix of vector Y . The transition

matrix associated to ρn1 is (ΣZ)n−1Σ while the transition matrix associated to ρn is
Σn. These two matrices are not necessarily equal and the rest of the analysis will
consist in determining when they differ.

B. The AR(1) equivalent

In this discrete framework, the equivalent of AR(1) processes are processes for which
the transition matrix Σ commute with Z. The real 0-n mobility and the repeated
0-1 mobility then coincide.

Lemma 1. Under the assumption (H) that Σ and Z commute, ρn = ρn1 . In addition,
(H) is equivalent to the assumption that y follows a discrete equivalent of an AR(1),
i.e. there exists ρ such that

∃ρ,∀i,
I∑

k=1

ykσk,i =
I∑

k=1

yiσi,k = ρyi (C)

And such a ρ naturally coincides with the father-son elasticty captured with careers,
i.e. ρ = ρ1.

Proof. See the appendix.
5As there is a finite number of careers, it is always possible to redefine subcareers out of a single

career such that each sub-career has the same weight in the population.
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Condition (C) can be thought as a characterization of AR(1) processes in this
discrete case. This equivalence is not a formal equivalence because errors are not
discrete equivalent of white noise, they can follow here a more general distribution.
However, condition (C) implies:

• that the excess wage yn+1 of generation n+ 1 conditional on the excess wages
yn of generation n is equal to ρyn. Overall, the whole information on the future
of a dynasty is enclosed in current earnings.

• that the excess wage yn−1 of generation n−1 conditional on the observation of
excess wages yn of generation n is equal to ρyn. This second condition means
that ρ also represents the contribution of past generations shocks (enclosed in
yn−1) to a current excess wage relatively to the contemporary shock.

C. A block-diagonal approach

We have identified a sufficient condition (condition (C)) for the intergenerational
elasticities to decrease exponentially and a set of processes for which the AR(1) ap-
proximation works. I cannot provide a simple necessary condition on the structure
of the matrix but it is possible to exhibit structures for which the AR(1) approxima-
tion fails. To do so, the initial intuition with the banker/plumber example proves
useful. In this example, persistence arises from the fact that there exist blocks in
the transition matrix. These blocks differ by their long-term prospects (the aver-
age income in the subset of careers represented by the submatrices) but there is
some within-block mobility. The rest of the theoretical analysis will generalize the
example and focus on block-diagonal matrices.

Consider the set of processes for which there exists a permutation φ such that
the transition matrix associated with the re-ordered careers

(
Cφ(i)

)
i
is block diago-

nal. In the appendix, I relax this assumption and extend the analysis to the wider
set for which there are small transitions between blocks. The outline of the anal-
ysis will be as follows: for the set of block-diagonal matrices, the intergenerational
elasticities can be derived as a function of within-block intergenerational elasticities
and a between-block term (see proposition 1 below). It is then possible to deduce
that the real process is always more persistent than an AR(1) process with the same
father-son income elasticity (corollary to proposition 1).
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Consider

Σ =


Σ1 0 . . . 0 0

0
. . . 0

0 0 . . . 0 ΣK

the block-diagonal matrix where each block Σk is a square matrix of size Ik. Denote
Yk the subvector of Y associated with the careers in the block Σk. ȳ = 0 (by
assumption, we normalize income over its national mean) and ȳk are the average
national excess income and the average excess income in careers Yk. Define Vk the
within-Σk income variance and 1i the vector composed of 1 and of size i. For each
block matrix, we can define the within-Σk 0-n intergenerational elasticity:

ρn,k =
[Yk − ȳk1Ik ]

′
Σn
k [Yk − ȳk1Ik ]

[Yk − ȳk1Ik ]
′
[Yk − ȳk1Ik ]

Proposition 1. The intergenerational elasticities ρ1, . . . , ρn, . . . can be written as
follows:

∀n, ρn =
ρ̄n + µ

1 + µ

where µ =
∑K

k=1 Ik(ȳk−ȳ)2∑K
k=1 Vk

is the ratio of between-block and within-block variances and

ρ̄n =
∑K

k=1 ρn,kVk∑K
k=1 Vk

is the weighted average of 0-n intergenerational elasticities within
each block.

Proof. See the appendix.

The proposition states that ρn is not the simple average of within-block corre-
lation ρ̄n. The expression includes a term µ that accounts for the differences in
long-term perspectives between blocks. This term makes the intergenerational in-
come transmission more persistent than an AR(1) process with the same father-son
income elasticity ρ1.

Corollary 1. Under the assumption that processes within each block are AR(1) pro-
cesses of parameter r ≥ 0, ρ̄n = rn , the intergenerational elasticities ρ1, . . . , ρn, . . .

verify the following properties:

∀n ≥ 1, ρn ≥ ρn1

∀n > 2, (ρn = ρn1 )⇔ (µ = 0 or r = 1)
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Finally,
ε > 0, r < 1⇒ limn→∞ρn =

µ

1 + µ
> 0

Proof. See the appendix.

The only cases in which the process is at least as persistent as an AR(1) are
corner cases in which either there are no average differences between blocks (the
long-term perspectives of all blocks are the same), or the society is completely rigid.
Otherwise, the process will be more persistent and there will never be full mean-
reversion. When you allow for small transitions between blocks,6 the process is still
more persistent than an AR(1) but ends up reverting to the mean. In the empir-
ical application, I will first describe some elements that indicate a block-diagonal
structure of transition matrices. Second, I will estimate the moments of the inter-
generational income process implied by the transition matrix and show that it is not
geometrically decreasing.

III. An empirical application

The first step of the empirical application is to define the empirical equivalent of a
career. For simplicity, I will capture it by the main 4-digit occupation of the head
of the household. Education would be a good candidate but the categories reported
in surveys are too rough to capture elements that are missed by the observation of
income.

I associate to each 4-digit occupation (more than 500 in-sample) precise transition
probabilities as well as earnings and their weight in the population. The first part of
this section describes the data collection and the construction of a career-transition
matrix. I provide an attempt to identify blocks in the diagonal of the transition
matrix. The second part presents the counterfactual income correlations between
generations using the information contained in the transition matrix.

A. Data sources and construction

In line with other studies (see Lee and Solon (2009) and Mayer and Lopoo (2005)
in particular), I use the PSID, a nationally representative study of 5,000 families
(initially households) in the United States and the new households formed by the
descendants of the initial head. As the study is a pretty long panel, it is possible to

6See the extension in the appendix.
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compare sons and fathers at a working age and to smooth income over the different
waves. Accordingly, I create two separate datasets that are ultimately merged.

First, I create a son dataset consisting in the households headed by children of
the initial households (interviewed in 1968-1970). To this purpose, I merge the latest
waves of PSID, i.e. 2003, 2005, 2007, 2009. Households are followed and interviewed
every 2 years, giving not only a very large set of information on the composition of
the household, its wealth, the earnings from the previous year but also the current
4-digit occupation of working members. Crucially, the 4-digit occupation of fathers
and mothers is reported7. As regards the father occupation, I aggregate reports
over the different waves and keep the most frequently reported 4-digit occupation
for the father. I double check that their brothers and sisters, if any of them forms
another household, report the same occupation for their parents. As regards the son’s
occupation, for each wave, the current (main) job is documented. I create a wave-
specific transition matrix using each wave-specific occupation and the smoothed
father occupation. I then average the 4 wave-specific transition matrices, which
creates the transition matrix Σ̂ from the father’s career to the potential states for
the sons over the four waves. In parallel, I create the wealth, capital earnings, labor
income for the son household and its members over the period 2003-2009.

To complement this data and perform some robustness checks, I also recreate a
father dataset from the initial surveys of the father households in 1968, 1969, 1970.
At this time, occupations are documented at the 1-digit level but income, household
wealth are well reported. Accordingly, the father dataset allows me to recreate
earnings and wealth but does not improve on the measure of father’s occupation (it
only allows to check the quality of sons’ report).

I restrict the sample to working-age heads, i.e. between 25 and 60, and drop
the households in which the labor income is smaller than half of the total income
of the household (to get rid of rentiers essentially). In the end, the final dataset is
composed of around 4000 father-son pairs.

In order to associate earnings and a population weight to each occupation, I will
construct two sets of measures, (I) an in-sample set, with the weights and average
earnings of respondents in the PSID, (II) an out-of-sample set with the weights and
earnings computed nationally (in 2007) by the Bureau of Labor Statistics. Wages
for each occupation8 are given (average, 10-, 25-, 50-, 75-, 90-percentile) together
with the education requirements and the average education of the holders of this
job. Occupations are there also decomposed at the finest level (4-digit).

7The question specifies that it should be the main occupation of their father/mother; how
respondents exactly interpret this term main is unclear.

8In the appendix, I detail the translation from the PSID code to the BLS code.
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Before estimating the counterfactual measures of mobility, I provide a back-of-
the-envelope procedure in order to visualize blocks in the transition matrix Σ̂. The
idea is to transform the occupational transition matrix through a permutation of the
labels of occupations. To to this, I rely on the sparse reverse Cuthill-McKee algo-
rithm that reorders sparse matrices around the diagonal and exploit the observation
that a block diagonal matrix is a matrix which remains close to the diagonal even
when put to the square, cube... Consequently, I create Σ̂2, . . . , Σ̂n and let the sparse
reordering algorithm extract the permutation of labels that ensure that the matrix

I + Σ̂ + . . .+ Σ̂n + . . . =
(
I − Σ̂

)−1

is close to the diagonal. I then relabel the occu-
pations thanks to the permutation and display the resulting matrix in figure 3. The
transition matrix does not exhibit very salient blocks, a dynasty with any occupa-
tion has a small but positive probability of accessing any other occupation. However,
a block can be identified in the top left corner. This block is uniquely composed
of high-skill occupations, among which there is high porosity. Despite similar and
very high educational requirements (these occupations require on average 17 years
of studies), there is some variability in the wage of these high-skill occupations: the
average annual earnings are around $63, 000, with a very high standard deviation of
$25, 000. Consequently, fathers in some well-paid occupations (surgeons) are very
likely to have sons in average-salary occupations (teachers), without reneging on
the long-term perspectives of the dynasty. This high-skill block remains quite dif-
ferent from the rest of occupations: the two following blocks are both composed
of relatively low-skill occupations (wages around $35, 000, less than 13 years of ed-
ucation). The rest of the matrix is composed of medium-skill occupations (wages
around $39, 000, above 15 years of education) and does not exhibit salient blocks.
There may be a higher mobility in these medium-skill careers.

B. Counterfactual measures of mobility

Having created the matrices Σ̂, N and Y from the PSID subsample and the BLS
statistics, it is possible to compute the series of measures (ρn)n>0. As only the transi-
tion from fathers to sons is observed, those measures are counterfactual correlations.
It corresponds to the creation of a virtual dynasty based on the father-son transition
matrix and these statistics are the correlations between the earnings of those virtual
dynasty members.

Before presenting the results of the counterfactual mobilities between generation
n and generation 0, I present some results on real correlations, i.e. correlations
between the declared income of fathers between 1968 and 1970 and the sons in the
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waves 2003, 2005, 2007 and 2009. Table 1 gives the results on different subsamples
and with different controls (many controls can be added without changing the results,
I only include here the age of the fathers in 1968 and the age of the sons in 2003
and state fixed-effects). Remark that those estimates are around .3 which is low
compared to the literature. The reason is that only the labor income of the head is
considered excluding the spouse labor earnings and capital gains.

Estimates of the same father-son correlation can also be produced from (i) the
estimated occupational transition matrix Σ̂, (ii) the weights N and the earnings Y
(in the tables here, earnings will be out-of-sample earnings, i.e. the BLS average
wage) associated with each occupation. Table 2 provides these results with 4 dif-
ferent specifications, with PSID weights or the national weights, and a transition
matrix computed with 3- or 4-digit occupations. The first two columns display the
specifications that are the closest from the direct income correlations. The father-son
income correlations generated by this indirect procedure are a bit lower than when
directly computed: .25 and .23 against .3. An explanation is that an above-average
father in his own occupation may produce an above-average son in his own occupa-
tion. Fathers and sons both working in New York may earn more than the national
average of their occupations. Giving to fathers and sons the average national wage
instead of their real earnings biases downward the elasticity by neglecting those
within-occupation persistence. The addition of state fixed-effects in table 1 seems to
bridge the gap between the two estimates. In conclusion, the father-son correlation
implied by the transition between occupations is very close to the actual father-son
income correlation.

Table 2 also presents the inferred elasticities at a higher order, i.e. the inferred
generation n/generation 0 income correlation implied by the transition matrix Σ̂.
Both coefficients and standard errors correspond to the outcomes of a regression of
the average wage in the potential occupations of a virtual generation n with the
average wage of the occupation of generation 0. Focusing on the first two columns
(with the same weights as in PSID), the grandfather-grandson income elasticity ρ2

is around .10, the next moment ρ3 is between .035 and .06, the following one ρ4

between .02 and .04. Those numbers need to be compared to the geometrically
decreasing moments implied by ρ1 = .25, ρ2 = (.25)2 = .0625, ρ3 = (.25)3 = .0156,
ρ4 = (.25)4 = .004.

The analysis indicates higher correlations than what would predict an AR(1) pro-
cess. A way to visualize the amplitude of the persistence of the income transmission
process is to represent it graphically. Figure 1 shows the differences between the true
(red) elasticity between the n-th generation and the 0 and the elasticity computed
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repeatedly (blue) computed with 4-digit occupation and the PSID weights. The
computed correlations are further and further from what would be implied by an
AR(1) process. In particular, while an AR(1) with ρ ≈ .25 shows full mean reversion
after 4 periods, it is not the case with our implied correlations. There seems to be
a slowdown of convergence to the mean, in line with the theoretical results in the
case of quasi-block-diagonal transition matrices.

IV. Discussion

A. Robustness checks

Some issues arise with the analysis presented above. I discuss them below (all the
results that are mentioned can be provided upon request).

The first issue concerns the choice of 4-digit occupation as careers. An analysis
based on education may also deliver the same insights. Two stumbling blocks prevent
me from providing education-based estimates. There are no survey data giving a
sufficiently precise label for the degree of a father and his son. In parallel, the average
wage corresponding to such a label would be very hard to compute. In short, an
analysis based on education would have few bins and noisy earnings associated to
each bin.

The second issue relates to the choice of a wage for each occupation. First,
the relative wage of an occupation may have evolved during the past 40 years.
Second, there is some heterogeneity in the earnings of individuals within the same
occupation. Regarding the first point, I cannot go back as far as in 1968, but
attributing to the fathers the average wage of their occupation in 1990 rather than
the average wage today does not change the results. The reason is that the time
variations are small compared to the between-occupation heterogeneity in wages. As
regards the second point, it is also possible to draw wages from the distribution of
earnings in the population and attribute it to fathers and sons (independent draws).
Given the number of observations and the high variation between-occupation, doing
so provides similar results than when giving directly the average wages. It could be
argued however that father’s and son’s idiosyncratic shocks are correlated. In other
words, high-performing fathers in their own occupation may have high-performing
sons in theirs. As long as the shocks are expected to be positively correlated, the
present study gives a lower bound of the persistence of the earnings process. Any
within-job persistence (through skills, preferences, location, work ethics...) would
add to the estimated persistence.
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The third issue is that most of the estimates in the literature include capital
earnings in addition to labor earnings. Accordingly, the estimates produced here
are consistently lower than the benchmark in the literature. The present paper does
not have much to say about capital transmission. It could be noted however that
a similar intuition as the one developed in this paper could be applied to capital
earnings. If returns to capital are very volatile, the capital earnings would fluctuate
a lot across generations even for a constant dynastic wealth and the intergenerational
earnings process would be more persistent than an AR(1).

Finally, a fourth issue may be the sample selection. The intergenerational process
is estimated on fathers and sons at a working age, excluding rentiers or individuals
marrying wives with high earnings. Upon request, I can provide the results when
including single daughters, rentiers, or retired individuals/students. The results are
very close to the ones presented here. On the same note, the separate estimates using
any single wave for the sons (2003, 2005, 2007 or 2009) gives the same patterns and
very close numbers.

B. Concluding remarks

The present study points to the estimation of social mobility as being a more com-
plicated exercise than the estimation of the correlation between two consecutive
generations. I propose a simple methodology to approach the higher moments with-
out observing them directly. The idea is to rely on some information that embeds
more of the perspectives of a dynasty than income only. I use here occupations at
a 4-digit level, but precise indicators of education, preferences and cognitive skills
would be good candidates.

The results indicate that, in the contemporary US, the process is more persistent
than an AR(1). Some short-term mobility does not affect the long-term perspectives
of dynasties. There are no obvious reasons why this general insight would not hold
in different countries. I would expect the effect to be even more salient in societies
where many talented agents accept to work in average-salary jobs. In France, the
most successful students in a cohort often end up with high-level administrative jobs
or in academia.

Finally, the argument that the observation of income is not sufficient to infer
social mobility is often advanced in social sciences. In sociology, the estimation
of social mobility has consisted in the creation of categories (social classes) and
the construction of a transition matrix between these classes. The usual criticisms
are that categorization is somewhat arbitrary and the estimates cannot directly be
converted into a tax policy. For those reasons, this approach has generally been
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disregarded by economists. I find here some support for approaches not centered
on income: the observation of other factors helps us to refine the estimation of the
intergenerational income process.
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A Tables and figures

Table 1: Intergenerational earnings correlations

SPECIFICATION OLS
ρ1 0.31523 0.30558 0.32451 0.26523 0.25713 0.27305

(0.01592) (0.01589) (0.01704) (0.01746) (0.01742) (0.01864)

Sample Male Male Male 25-60 Male Male Male 25-60
Controls - Age Age - Age Age
Fixed effects - - - State State State
Observations (pairs) 4,091 4,091 3,720 4,091 4,091 3,720

The standard errors for the OLS (between parentheses) are robust.

Table 2: Dynastic earnings correlations

SPECIFICATION Indirect estimation through the occupational matrix
ρ1 0.25173 0.23779 0.14895 0.19648

(0.01264) (0.01288) (0.01438) (0.01358)

ρ2 0.08660 0.10324 0.05681 0.066584
(0.01543) (0.01515) (0.01594) (0.01577)

ρ3 0.03424 0.05858 0.02713 0.02875
(0.01632) (0.01591) (0.01644) (0.01641)

ρ4 0.01843 0.03852 0.01572 0.01511
(0.01659) (0.01625) (0.01663) (0.01664)

ρ5 0.01384 0.02707 0.01283 0.00951
(0.01666) (0.01644) ( 0.01668) (0.01674)

Sample All 30-60
Occupations 4-digit 3-digit 4-digit 3-digit
Weights PSID PSID National National
Observations (pairs) 3,500 3,500 3,500 3,500
See the appendix for the computational details. The standard errors between parentheses are
computed as if it was an OLS regression of the national average wage of the son’s occupation
against the national average wage of the father’s occupation. Standard errors between brackets are
computed with Monte-Carlo draws of the occupational matrix.
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Figure 1: Dynastic earnings correlations - 4-digit computation, ρ1 = .25
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benchmark.

Figure 2: Dynastic earnings correlations - 3-digit computation, ρ1 = .23
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benchmark.
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Figure 3: Re-ordered transition matrix for 3-digit occupations
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B Appendix

A. Violation of the AR(1) hypothesis - continuous case

In line with the empirical strategy, I use a discrete approach in the theoretical frame-
work but the argument can be made in a continuous framework (see Solon (2013)
and Stuhler (2012) for a more developed analysis). Denote yn the earnings of the
link n of a certain dynasty, and Xn a vector of k underlying processes transmitting
from one period to the other. Assume that Xn follow an AR(1) process:

Xn+1 = Xnβ + εn

where β = diag(β1, . . . , βk). Finally, suppose that

yn = Xnα + νn

Under those assumptions, the correlation between yn and yn+m is:

ρym =
α
′
βmV ar(Xn)α

α′βV ar(Xn)α + V ar(νn)

The empirical computation of ρy1 cannot allow us to distinguish what comes from
Xn and from νn. Accordingly, computing ρy1 is not sufficient to infer the next corre-
lations. The distance between an AR(1) process and the process deduced from this
approach depends on the weight of father-son income mobility νn that is independent
of the future perspectives of dynasties.

Remark that the previous model could also encompass the case in which the
vector (yn, Xn) follows an AR(1) process and the conclusion would be the same.

B. Proofs

Proof. Lemma 1. Assume that Z and Σ commute (H), ρn1 = Y
′
ΣnZn−1Y
Y ′Y

.
Remark that Zn−1Y = Y brings ρn = ρn1 .
In addition, (H) implies that the elements of matrices ZΣ and ΣZ are equal:

∀i, j, yi
I∑

k=1

ykσk,j = yj

I∑
k=1

ykσi,k
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This implies immediately that

∀i, j, yi∑I
k=1 ykσi,k

=
yj∑I

k=1 ykσk,j

Denote ρ the value of these fractions (constant over i and j)

∀i,
I∑

k=1

ykσk,i =
I∑

k=1

yiσi,k = ρyi

Proof. Proposition 1.
The proof of this proposition is straightforward. Consider n given, the correlation

can be written as follows:

ρn =

∑K
k=1(Yk − ȳ1Ik)

′
Σk(Yk − ȳ1Ik)∑K

k=1(Yk − ȳ1Ik)′(Yk − ȳ1Ik)

Introducing ȳk in the previous equation to make ρn,k appear:

ρn =

∑K
k=1(Yk − ȳk1Ik + (ȳk − ȳ)1Ik)

′
Σk(Yk − ȳk1Ik + (ȳk − ȳ)1Ik)∑K

k=1(Yk − ȳk1Ik + (ȳk − ȳ)1Ik)′(Yk − ȳk1Ik + (ȳk − ȳ)1Ik)

Developing the expression, all the cross terms
∑K

k=1(Yk − ȳk1Ik)
′
Σk1Ik(ȳk − ȳ)) dis-

appear (because Y ′kΣk1Ik = ȳk), which brings:

ρn =

∑K
k=1(Yk − ȳk1Ik)

′
Σk(Yk − ȳk1Ik) +

∑K
k=1(ȳk − ȳ)21

′
Ik

Σk1Ik∑K
k=1(Yk − ȳk1Ik)′(Yk − ȳk1Ik) +

∑K
k=1(ȳk − ȳ)21

′
Ik

1Ik

Since 1
′
Ik

1Ik = 1
′
Ik

Σk1Ik = Ik,

ρn =

∑K
k=1(Yk − ȳk1Ik)

′
Σk(Yk − ȳk1Ik) +

∑K
k=1(ȳk − ȳ)2Ik∑K

k=1(Yk − ȳk1Ik)′(Yk − ȳk1Ik) +
∑K

k=1(ȳk − ȳ)2Ik

Let us define

ρ̄n =

∑K
k=1 ρn,kVk∑K
k=1 Vk

Then, dividing by
∑K

k=1 Vk =
∑K

k=1(Yk − ȳk1Ik)
′
(Yk − ȳk1Ik), and denoting µ =∑K

k=1 Ik(ȳk−ȳ)2∑K
k=1 Vk

,

ρn =
ρ̄n + µ

1 + µ
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Proof. Corollary 1.
The assumption that each block is an AR(1) process of parameter r implies that

ρ̄n = rn. Once replaced in the formula found in the previous proposition,

∀n, ρn =
rn + µ

1 + µ

Consider n > 0 and µ given. Define f(.):

∀r, f(r) = ρn − ρn1 =
(rn + µ)(1 + µ)n−1 − (r + µ)n

(1 + µ)n

f is a function defined on [0, 1] verifying the following properties: f(0) = µ(1+µ)n−1−µn
(1+µ)n

≥
0, f(1) = 0 and f is decreasing in the segment[0, 1]. The last point comes from the
fact that f is differentiable and the derivative verifies:

∀r, f ′(r) =
nrn−1(1 + µ)n−1 − n(r + µ)n−1

(1 + µ)n
= n

(r + rµ)n−1 − (r + µ)n−1

(1 + µ)n
≤ 0

Consequently, ∀r, f(r) ≥ 0. If µ > 0, then f is strictly decreasing, otherwise f = 0.
This gives us the condition under which the quantities ρn and ρn1 coincides.

(f(r) = 0)⇔ (µ = 0 or r = 1)

Finally, the result at the limit is obvious.

C. Extension of the block diagonal analysis

The block-diagonal analysis can be extended to quasi-block-diagonal matrices, with
some porosity ε between blocks. Consider for this purpose a simpler case where
blocks have the same size i (it does not change the qualitative results to relax this
constraint), i.e.

Σ = (1− ε)Σd +
ε

I − i
Uab

where 0 < ε < 1, Σd the previous block-diagonal matrix and Uad is the associated
anti-block diagonal matrix, i.e. the matrix with 1 everywhere except in the blocks
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of Σd:

Σd =


Σ1 0 . . . 0 0

0
. . . 0

0 0 . . . 0 ΣK

, Uad =


0 1 . . . 1 1

1
. . . 1

1 1 . . . 1 0

In this setup, since ΣdUad = UadΣd = 0,

Σn = (1− ε)nΣn
d +

(
ε

I − i

)n
Un
ab

It is quite easy to derive that

Un
ab = [I − i]n 1

I
U + (−i)n Uab

where U is the square I× I matrix full of 1. From this, we can derive the expression
of ρn:

ρn = (1− ε)n ρ̄n + µ

1 + µ
+ εn +

(
−ε i

I − i

)n
A

where

A =

[
Y −N ′Y

]′
Uab
[
Y −N ′Y

]
[Y −N ′Y ]

′
[Y −N ′Y ]

The intergenerational elasticity is now composed of two exponentially decreasing
terms: (i) the pure block diagonal process weighted by (1− ε)n, (ii) the residual
mobility between blocks εn +

(
− i
I−i

)n
A. In such a framework, the society does

revert to mediocrity:

µ > 0, r < 1, µ > 0⇒ limn→∞ρn = 0

The idea is that the small movements between blocks ensure a sufficient porosity
for the expected future perspectives of dynasties to converge. The presence of the
first term ensures however that the process will be more persistent than an AR(1)
as long as ε is not too large.

D. Translation from one occupational code to the other

A problem that arises empirically is that occupational codes need to be translated
from 1990-codes to 2000-codes. This translation is not completely obvious, it ac-
counts for the grouping of some 1990 occupations into one banner and reciprocally,
the creation of several jobs that were given the same code in 1990. I will create
the i90 × i00 matrix T90,00, giving the weight of each 1990 occupations in each 2000

24



occupation.
In the same vein, it can be useful to group some occupations at a higher level

than the 4 digit occupational code, i.e. 3 digit or 2 digit. In this regard, I create
the i400 × i300 matrix T4,3, giving the weight of each 4-digit 2000 occupations in each
3-digit occupation.
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