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Abstract

We analyze the effects of neutral and investment-specific technology shocks
on hours worked and unemployment. We characterize the response of unem-
ployment in terms of job separation and job finding rates. Job separation rates
mainly account for the impact response of unemployment while job finding rates
for movements along its adjustment path. Neutral shocks increase unemploy-
ment and explain a substantial portion of unemployment and output volatility;
investment-specific shocks expand employment and hours worked and mostly
contribute to hours worked volatility. This evidence is consistent with the view
that neutral technological progress prompts Schumpeterian creative destruction,
while investment specific technological progress has standard neoclassical fea-
tures.
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1 Introduction

There has been a renewed interest in examining how labor market variables respond to

technology shocks. The analysis has generally focused on the dynamics of total or per-

capita hours worked–see, among others, Galí (1999), Uhlig (2004), Francis and Ramey

(2005), and Fernald (2007). This focus is partly motivated by having as reference

the basic neoclassical growth model, where a representative household offers his labor

services in a competitive market. However, such a focus obscures whether fluctuations

in labor input are due to fluctuations in hours per employee (the intensive margin of

labor market adjustment) or in the number of employed workers (the extensive margin)

and whether employment adjustments arise because of changes in the hiring or in the

firing policies of firms. Analyzing these different margins can convey useful information

for at least two reasons. First, hours and employment have different volatility and their

correlation is far from perfect (see, for example, Cooley, 1995). Second, worker flows

provide key insights into employment adjustments. For example, the conventional

wisdom has generally been that recessions–periods of sharply rising unemployment–

begin with a wave of layoffs and persist over time because unemployed workers have

hard time to find a new job. Shimer (2005b) and Hall (2005) have challenged this view

by arguing that the flow of workers out of jobs hardly increases in recessions. But

are all the recessions alike? Can we safely neglect the role of the separation rate in

characterizing unemployment dynamics?

In this paper we address these issues by analyzing how labor market variables

respond to technology shocks along the extensive and the intensive margin. We char-

acterize employment dynamics in terms of the job separation rate (the rate at which

workers move from employment to unemployment) and the job finding rate (the rate

at which unemployed workers find a job). Our analysis focuses on the response to

investment-neutral and investment-specific technology shocks. The identification re-

strictions we use are taken directly from Solow (1960) growth model and require that

investment specific technological progress is the unique driving force for the secular

trend in the relative price of investment goods, while neutral and investment specific

technological progress explain long-run movements in labor productivity (see also Altig

et. al. (2005), Fisher (2006) and Michelacci and Lopez Salido (2007)).
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As in Blanchard and Quah (1989) and in Fernald (2007), we recognize that low

frequency movements could give a misleading representation of the effects of shocks.

This is a relevant concern since in the sample the growth rate of both labor productivity

and the relative price of investment goods exhibit significant long run swings which have

gone together with important changes in labor market conditions. These patterns have

been greatly emphasized in the literature on growth and wage inequality (see Violante,

2002 and Greenwood and Yorokoglu, 1997, among others). The productivity revival

of the late 90’s has also been heralded as the beginning of a new era in productivity

growth and it has been a matter of extensive independent research, see for example

Gordon (2000), Jorgenson and Stiroh (2000). Once we efficiently take care of the low

frequency movements in the variables entering the VAR we find that:

1. Labor market adjustment mainly occurs along the extensive margin in response

to neutral technology shocks and the intensive margin in response to investment

specific technology shocks.

2. Neutral technology shocks increase unemployment. The separation rate accounts

for the impact response of unemployment, the finding rate for its dynamic ad-

justment. Thus, the response to a neutral technology shock is in line with the

conventional wisdom: unemployment initially rises because of a wave of layoffs

and remains high because the job finding rate takes time to recover.

3. Investment specific technology shocks expand aggregate hours worked both be-

cause hours per worker increase and because unemployment falls. Again, the job

separation rate accounts for a major portion of the impact response of unemploy-

ment, and the job finding rate for its dynamic path.

4. Neutral technology shocks explain a substantial proportion of the volatility of

unemployment and output while investment specific technology shocks mainly

account for the volatility of hours worked. Taken together, technology shocks ex-

plain around 30 per cent of the cyclical fluctuations of key labor market variables

at time horizons between 2 and 8 years.

5. Our estimated technology shocks accurately characterize certain historical busi-

ness cycle episodes. In particular, the recession of the early 90’s and the subse-
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quent remarkably slow labor market recovery appear to be driven almost entirely

by advancements in the neutral technology. Neutral technology shocks initially

cause a rise in job separation and unemployment; output builds up until it reaches

its new higher long run value, but over the transition path employment remains

below normal levels because of the low job finding rate. This makes the output

recovery appear to be “jobless”.

These findings are robust to the choice of the lag length, to the presence of omitted

variables, to the identification scheme, to the measurement of the labor variables, and

to other auxiliary assumptions needed in specifying the VAR.

We shows that this evidence is consistent with the Schumpeterian view that the

introduction of new neutral technologies causes the destruction of technologically ob-

solete productive units and the creation of new technologically advanced ones. In the

presence of search frictions in the labor market, this leads to a temporary rise in unem-

ployment. Investment specific technological progress has instead standard neoclassical

features. Schumpeterian creative destruction matters for productivity dynamics at the

micro level, see Foster et al. (2001) and it is a prominent paradigm in the growth litera-

ture, see Aghion and Howitt (1994), Mortensen and Pissarides (1998), Violante (2002)

and Hornstein et al. (2005). Yet it has generally been overlooked in business cycle

analysis–notable exceptions are Caballero and Hammour (1994, 1996) and Michelacci

and Lopez-Salido (2007). We show that Shumpeterian creative destruction also plays

a key role in qualitatively and quantitatively explaining key business cycle episodes,

including the jobless recovery of the early 90’s.

The standard explanation for the fall in hours in response to neutral technology

shocks is based on sticky-prices, see for example Galí (1999). In sticky-price models,

when technology improves and monetary policy is not accommodating enough, demand

is sluggish to respond and firms take advantage of technology improvements to econo-

mize on labor input. This mechanism applies most naturally to the intensive margin,

since displacing workers is typically more costly than changing prices–due to both

the direct cost of firing and the value of the sunk investment in training and in job

specific human capital that is lost with workers displacement(see e.g. Mankiw, 1985
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and Hamermesh, 1993 for a review of the literature).1 The Schumpeterian mechanism

has distinctive features and different policy implications. For example, the extensive

margin plays a key role in the adjustment since the fall in hours caused by creative

destruction is due to the time consuming process of reallocation of workers across pro-

ductive units. The policy implications also differ. The fall in hours in sticky-price

models is due to an inefficient response of monetary policy. In our model, it is the

result of the (possibly) socially optimal process of technology adoption in the presence

of creative destruction and search frictions in the labor market.

This paper extends in a number of ways the analysis of Michelacci and Lopez-Salido

(2007) who consider a vintage model with search frictions in the labor market to analyze

the effects of technology shocks on job flows. First, the model economy we use to

interpret the evidence is a streamlined version of theirs. Second, we focus the analysis

on the social planner problem to provide evidence that the labor market response to

technology shocks may be socially efficient. Third, the labor market flow data here

are representative of the whole US economy rather than just of the manufacturing

sector. Fourth, instead of using job creation and job destruction rates, we consider

workers flow data, which have recently received much attention in the business cycle

literature. This allows us to revisit the conclusions by Shimer (2005b) and Hall (2005)

on the importance of the separation rate over the business cycle. Finally, our analysis

of the episode of the recession of the early 90’s and the subsequent remarkably slow

labor market recovery provides novel evidence that Schumpeterian technology shocks

are important in explaining jobless recoveries.

There are two reasons why our conclusions are apparently at odds with those in

Shimer (2005b) and Hall (2005). First, our analysis is conditional on technology shocks

rather than unconditional. This allows to separately quantify the contribution of the

separation rate to unemployment dynamics on impact and over the adjustment path.

Second, our analysis shows that part of the response of the finding rate is due to the

initial response of the separation rate: since both finding and separation rates are
1It should be pointed out, however, that this is only a conjecture since we are aware of no paper

that has formally analyzed the trade-off between changing prices and displacing workers. This would
require replacing the staggered price setting a la Calvo (1983) of standard sticky price models with
an endogenous decision to change prices subject to menu-costs (as in Caballero and Engel, 2007) and
then allowing firms to choose whether to adjust hours or employment at a cost.
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endogenous, the separation rate can indirectly contribute to cyclical unemployment

through the effects it exerts on the finding rate. This may provide a warning to the

recent tendency to use search models with exogenous separation rates for business cycle

analysis.

The rest of the paper is structured as follows. Section 2 discusses the identification

of shocks. Section 3 describes the data and shows the biases caused by low frequency

movements. Section 4 presents impulse responses. Section 5 examines the role of

potentially omitted variables. Section 6 quantifies the contribution of the separation

and finding rates to unemployment dynamics. Section 7 presents a model which helps

to interpret the evidence. Section 8 analyzes cyclical fluctuations induced by technology

shocks. Section 9 deals with robustness. Section 10 concludes.

2 Identification of technology shocks

We use a version of Solow (1960) model to decompose aggregate productivity into the

sum of a stationary component and a component driven by neutral and investment

specific technology shocks. This decomposition holds in several versions of the model

(including the one in Section 7), and justifies its use for identification purposes.

Solow model Assume technological progress is exogenous and the rate of saving and

capital depreciation are stationary. The production function is:

Ỹ = ZK̃αN1−α, 0 < α < 1,

where Ỹ is final output, K̃ is capital, N is labor and Z is the investment-neutral

technology. Final output can be used for either consumption C̃, or investment Ĩ . A

stationary fraction of output s is invested, Ĩ = sỸ . Next period capital is

K̃ 0 = (1− δ)K̃ +QĨ,

where 0 < δ < 1 is a stationary depreciation rate. The variable Q formalizes the notion

of investment specific technological change. A higher Q implies a fall in the cost of

producing a new unit of capital in terms of output or an improvement in the quality

of new capital produced with a given amount of resources. If the sector producing new

capital is competitive, the inverse of its relative price is an exact measure of Q.

5



One can check that this economy evolves around a (stochastic) trend given by

X ≡ Z
1

1−α Q
α

1−α

and that the quantities Y ≡ Ỹ / (XN) , and K ≡ K̃/ (XQN) converge to Y ∗ =

(s/δ)
α

1−α and K∗ = (s/δ)
1

1−α , respectively. As a result the logged level of aggregate

productivity, yn ≡ ln Ỹ /N , evolves according to

yn = y∗ + v + x = y∗ + v +
1

1− α
z +

α

1− α
q (1)

where small letters denote the log of the corresponding quantities in capital letters and v

is a stationary termwhich accounts for transitional dynamics. Equation (1) decomposes

aggregate productivity into the sum of a stationary term plus a trend induced by the

evolution of the neutral and the investment specific technologies. This result can

be used to identify technology shocks from a VAR: a neutral technology shock (a z-

shock) is the disturbance having zero long-run effects on the relative price of investment

goods and non-negligible long-run effects on labor productivity; an investment specific

technology shock (a q-shock) affects the long-run level of both labor productivity and

the price of investment. No other shock has long-run effects on the price of investment

or labor productivity. In the simple model above, the price of investment goods is

exogenous and there is a one-to-one mapping between the price and q. But in more

general models with variable capital utilization and adjustment costs, the short run

marginal cost of producing capital is increasing and the price of investment goods

responds in the short run to any change in investment demand. Since in the long

run investment specific technological progress is the only determinant of the price of

investment, our identification strategy is robust to the existence of short run increasing

marginal costs to produce investment goods.

Choice of deflator There is some controversy on how the price of investment and

GDP should be deflated. We show below that our results are not sensitive to the

choice of deflator. In our baseline specification we deflate them both by using the

output deflator. Fisher (2006) and Michelacci and Lopez-Salido (2007) instead deflate

both of them by the CPI index. Altig et al. (2005) appear to deflate the relative

price of investment with the CPI index, and output with the output deflator (although

6



they are not entirely clear about the issue). In a closed economy, and if we exclude

indirect taxes, the CPI and the output deflator are similar, but in an open economy

important differences arise because some consumption goods are produced abroad.2

In the appendix we show that our approach is consistent with the balanced growth

conditions of a well defined open economy, while other approaches may imply that

the decomposition (1) no longer holds exactly and that the real exchange rate, in

addition to the z and the q shocks, determines long run productivity (see also Kehoe

and Ruhl (2007) for a similar point). Using the GDP deflator is equivalent to use

as a numeraire domestic consumption–i.e. the consumption goods produced in the

US. The Consumer Price Index, Pc, is Pc =
³
PH
c

a

´a ³
PF
c

1−a
´1−a

, where PH
c and PF

c are

the prices of consumption goods produced in the US and abroad, respectively; and a

represents the share of domestic consumption goods. Let qc and ycn denote the inverse

of the relative price of investment and labor productivity (both in logs), when deflated

with the CPI index. In appendix A we show that

ycn = cte+
1

1− α− β
z +

α+ β

1− α− β
qc +

1

1− α− β
(1− a)

¡
pHc − pFc

¢
(2)

where α and β are the output elasticities to domestic and foreign capital, respectively.

Hence, with this choice of numeraire, a permanent change in the real exchange rate

affects long run labor productivity measured in CPI units and could be confused with

“neutral” technology shocks. This may be a relevant concern since the real exchange

rate is known to exhibit remarkable persistence. Similarly, when we deflate the relative

price of investment with the CPI index and output with the GDP deflator we obtain

that

yn = cte+
1

1− α− β
z +

α+ β

1− α− β
qc +

α+ β

1− α− β
(1− a)

¡
pHc − pFc

¢
,

and again a permanent change in pHc − pFc has long run effects on productivity.

Empirical implementation Let Xt be a n× 1 vector of variables and let X1t and

X2t be the first difference of qt and ynt, respectively. The Wold representation of
2There could be differences between the output deflator and the CPI even in closed economies

because the CPI only includes a subset of the consumption goods while the output deflator includes
all of them. Moreover, the weights in the CPI may differ from those in the output deflator because
the CPI measures the prices paid by urban consumers for a market basket of consumer goods and
services.
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Xt = (X1t, . . . , Xnt) is Xt = D(L)ηt, where D(L) has all its roots inside the unit circle

and E (ηtη
0
t) = Ση. In general, ηt is a combination of several structural shocks �t. We

assume a linear relationship between ηt and �t, η = S�, where, by convention, the first

element of �t is taken to be the q-shock and the second the z-shock. We also assume

that the structural shocks �t are uncorrelated and normalize their variance so that

E (�t�
0
t) = I. Under this normalization, impulse responses represent the effects of shocks

of one-standard deviation of magnitude. The restrictions that the nonstationarities in

qt and ynt originate exclusively from technology shocks imply that the first row of

G = D(1)S is a zero vector except in the first position, while the second row is a

zero vector except in the first and second position.3 With the assumed orthogonality

of structural shocks, these restrictions are sufficient to separate the two technology

shocks and to analyze the dynamic responses to each disturbance.

3 Effects of low frequency comovements on the VAR

Our benchmark model has six variables X = (∆q, ∆yn, h, u, s, f)
0, where ∆ denotes

the first difference operator. All variables are in logs (and multiplied by one hundred):

q is equal to the inverse of the relative price of a quality-adjusted unit of new equipment,

yn is labor productivity, h is the number of per-capita hours worked (thereafter simply

hours), u is the unemployment rate and s and f are the job separation rate and the job

finding rate. The dynamics of hours per worker in response to shocks can be obtained

assuming that labor force participation is insensitive to shocks. We show below that

this is a reasonable assumption. The dynamics of output per-capita can be obtained

from those of labor productivity and hours. We use 8 lags and stochastically restrict

their decay toward zero.

The series for labor productivity, unemployment, and hours are from the USECON

database commercialized by Estima and are all seasonally adjusted; q is from Cummins

and Violante (2002), who extend the Gordon (1990) measure of the quality of new

equipment till 2000:4. The availability of data for q restricts the sample period to

1955:1-2000:4. The original series for q is annual and it is converted into quarters as
3Equation (1) implies that G12, the long run effect of a q-shock on labor productivity is α

1−α . We
leave this coefficient unrestricted since its exact magnitude depends on the production function and
the details of the law of motion of the capital stock.
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in Galí and Rabanal (2004).4

The series for the job separation and the job finding rates are from Shimer (2005b).

They are quarterly averages of monthly rates. Shimer calculates two different series

for the job separation and job finding rates. The first two are available from 1948

up to 2004. Their construction uses data from the Bureau of Labor Statistics for

employment, unemployment, and unemployment duration to obtain the instantaneous

(continuous time) rate at which workers move from employment to unemployment and

viceversa. The two rates are calculated under the assumption that workers move be-

tween employment to unemployment and viceversa. Since they abstract from workers’

labor force participation decisions, they are an approximation to the true labor market

rates. Starting from 1967:2, the monthly Current Population Survey public microdata

can be used to directly calculate the flow of workers that move in and out of the three

possible labor market states (employment, unemployment, and out of the labor force).

With this information Shimer calculates an exact instantaneous rates at which workers

move from employment to unemployment and viceversa.We analyze both measures:

the first two are termed approximated rates, the others exact rates.

The first graph in the first row of Figure 1 plots hours and the unemployment rate

together with NBER recessions (the grey areas). Hours display a clear U-shaped pat-

tern and are highly negatively correlated with unemployment (-0.8). Whether the two

series are stationary or exhibit persistent low frequency movements, is matter of contro-

versy in the literature, see for example Fernald (2007) and Francis and Ramey (2005).

The second graph plots hours worked per employee (measured as hours over aggregate

employment). Clearly, the series exhibits some low frequency changes, primarily at the

beginning of the 1970s.

The two graphs in the second row of Figure 1 plot the first difference of yn and of

the relative price of investment (equal to minus q), respectively. One can notice the

existence of a dramatic fall in the value of q in 1974 and its immediate recovery in the
4Real output (LXNFO) and the aggregate number of hours worked (LXNFH) correspond to the non-

farm business sector. The relative price of investment is expressed in output units by subtracting to
the (log of the ) original Cummings and Violante series the (log of) the output deflator (LXNFI) and
then adding the log of the consumption deflator ln((CN+CS)/(CNH+CSH)). Here CN and CS denotes
nominal consumption of non-durable and services while CNH and CSH are the analogous values of
consumption in real terms. The aggregate number of hours worked per capita is calculated as the
ratio of LXNFH to the working age population (P16), i.e. h ≡ ln(LXNFH/P16).
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Figure 1: First graph: the dashed line is the aggregate number of hours worked per capita; the con-
tinuous line is civilian unemployment both series in logs. Second graph: (logged) hours per employee.

Third graph: rate of growth of labor productivity in the non-farm business sector. Fourth graph:

growth rate of the relative price of investment goods. Fifth and sixth graph: job finding rate and job

separation rate (both in logs), respectively. The solid line corresponds to the approximated rate, the

dashed to the exact rate. Shaded areas are NBER recessions.

following years. Cummins and Violante (2002) attribute this to the introduction of

price controls during the Nixon era. Since price controls were transitory, they do not

affect the identification of investment specific shocks, provided that the sample includes

both the initial fall in q and its subsequent recovery. The two panels in the third row

of Figure 1 display the job finding rate and the job separation rate. Each graph plots

approximated and exact rates. The two job finding rate series move quite closely. The

exact job separation rate has a lower mean in the 1968-1980 period, higher volatility but

tracks the approximated series well. The job finding rate is relatively more persistent

than the separation rate (AR1 coefficient is 0.86 vs. 0.73). Recessions are typically

associated with a persistent fall in the job finding rate. This has motivated Shimer

(2005b) and Hall (2005) to claim that cyclical fluctuations in the unemployment rate

are driven mainly by fluctuations in the job finding rate.

The low frequency co-movements of the series are highlighted in Figure 2. We follow

10



the growth literature and choose 1973:2 and 1997:1 as a break points, two dates that

many consider critical to understand the dynamics of technological progress and of the

US labor market (see Greenwood and Yorokoglu, 1997, Violante, 2002, Hornstein et

al. 2002). The rate of growth of the relative price of investment goods was minus 0.8

per cent per quarter over the period 55:1 to 73:1 and moved to minus 1.2 per cent per

quarter in the period 73:2-97:1. This difference is statistically significant. During the

productivity revival of the late 90’s the price of investment goods was falling at even a

faster rate. The rate of growth of labor productivity exhibits an opposite trend. It was

higher in the 55:1 to 73:1 period than in the 73:2-97:1 period, and recovered in the late

90’s. Also in this case, differences are statistically significant. Shifts in technological

progress occurred together with changes in the average value of the unemployment

rate, see the first row of Figure 2.
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Figure 2: First graph: average quarterly growth rate of the relative price of investment (dotted
line) and unemployment rate (solid line). Second graph: average quarterly growth rate of labour

productivity (dotted line) and unemployment rate (solid line). Third graph: Hodrick Prescott trend

of labor productivity growth (dotted line) and hours per capita (solid line). Fourth graph: Hodrick

Prescott trend of labor productivity growth (dotted line) and unemployment rate (solid line). Fifth and

sixth graph: Hodrick Prescott trend of finding and separation rates (dotted lines) and unemployment

rate (solid line). The smoothing coefficient is λ = 1600.

The graphs in the second row of Figure 2 plot the trend component of labor pro-

ductivity growth, hours and unemployment obtained by using a Hodrick Prescott filter
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with smoothing coefficient equal to 1600. The trends are related: there appears to

be a negative comovement between productivity growth and the unemployment rate

and a positive comovement between productivity growth and hours. The third row of

Figure 2 shows that the separation rate exhibits low frequency movements that closely

mimic those present in the unemployment rate. The opposite is true for the finding

rate. Next, we show why these comovements are problematic.

The effects of low-frequencies comovements on impulse responses Panel

(a) in Figure 3 displays the responses of labor productivity, the relative price of invest-

ment, unemployment, hours, hours per employee, the separation rate, and the finding

rate to a neutral shock. Panel (b) present responses to an investment specific shock. We

plot together the point estimates obtained for three different samples: 1955:I-2000:IV,

1955:I-1973:I, and 1973:II-1997:I. The responses of labor productivity and output to

either shock in the full sample specification are similar to those found in Fisher (2006).

However, we have a slight initial fall in hours and in the price of investment in response

to a neutral shock that Fisher does not have. As shown in Canova et al. (2006), the

inclusion of the additional labor market variables (unemployment, job finding rate and

job separation rate) in the empirical model explain the differences.

When considering panel (a), it is apparent that the estimated responses to neutral

shocks in the two subsample are similar. Yet, they look quite different from the re-

sponses for the full sample. In the full sample, the relative price of investment and

the separation rate fall, while they increase in the two subsamples. Moreover the fall

in hours and the job finding rate and the increase in unemployment are much less

pronounced in the full sample than in each sub-sample. Finally, output and labor pro-

ductivity respond faster in the full sample. The potential bias present in the estimated

responses for the full sample can be related to the low frequency correlations previously

discussed. In the full sample, a permanent change in the rate of productivity growth is

at least partly identified as a series of neutral technology shocks. Thus, over the period

1973:II-1997:I when productivity growth is on average lower, the full sample specifi-

cation finds a series of negative neutral technology shocks. Since in this period the

unemployment rate and the separation rate are above their full sample average, while

hours and the finding rate are below, biases emerge leading, for example, to a lower

12



response of the unemployment rate and of the separation rate, and a higher response

of hours and the job finding rate.
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(a) Neutral technology shock (b) Investment specific technology shock

Figure 3: Responses to a one-standard deviation shocks. Each line corresponds to a six variable
VAR(8) with the rate of growth of the relative price of investment, the rate of growth of labour
productivity, the (logged) unemployment rate, and the (logged) aggregate number of hours worked
per capita, the log of separation and finding rates, estimated over a different sample period.

Panel (b) deals with the effects of investment specific shocks for the same three

samples. In comparing the results, one should bear in mind two important facts (see

Figures 11 and 12 in Appendix C): i) the estimated responses in the first subsample

are almost never significant (with the exception of the response of the relative price

of investment) and ii) investment specific technology shocks contribute little to the

volatility of all variables in the first subsample (again leaving aside the price of invest-

ment). In the second sub-period the contribution of investment specific shocks instead

becomes important. Hence, it is appropriate to compare estimates for the full sample

and the 1973:2-1997:1 sub-period. The bias in the estimated responses for the full

sample is in line with the low frequency correlations previously discussed. In the full

sample, a permanent change in the rate of growth of the relative price of investment

is at least partly identified as a series of investment specific technology shocks. Thus,
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over the period 1973:II-1997:I when the price of investment falls at a faster rate on

average, the full sample specification tends to identify a series of positive investment

specific technology shocks. Since over the period, the unemployment rate and the sep-

aration rate are also higher than their full sample average, while hours, the job finding

rate, and productivity growth are lower, the full sample specification biases estimates

towards a higher response of the unemployment rate and of the separation rate, and a

lower response of hours, the job finding rate, and productivity.

These results are robust to a number of modifications: they are unaffected if the

second subsample is 1973:II-2000:IV (see panels (a) and (b) in Figures 13 in Appendix

C) or if we use the population-adjusted hours produced by Francis and Ramey (2005).

In fact, as shown in Canova et al. (2006), this adjusted hours series exhibits the

same low frequency variations as the one used here. In sum, sub-sample instabilities

maybe minor and difference with the full sample estimates are due to the low frequency

comovements exhibited by the variables of the VAR.

4 The full sample results after dealing with trends

To tackle the issue of the low frequency comovements one could estimate the VAR in

each sub-sample. Splitting the sample is however inefficient, since the dynamics are

roughly unchanged over the sub-samples. Moreover, imposing as identifying long run

restrictions in a system estimated over a small sample may induce biases in the struc-

tural estimates (see Erceg et al. 2005). As an alternative, we allow the intercept of all

VAR equations to vary over time but restrict the slopes to be time invariant. We have

considered several options: in the baseline specification (the “dummy” specification)

the intercept is deterministically broken at 1973:2 and 1997:1. We show below that

conclusions are robust to several alternative low frequency removal approaches.

4.1 Evidence using the approximated rates

Panel (a) in Figure 4 plots the response of the variables of interest to a neutral tech-

nology shock for the full sample using the approximated job finding and job separation

rates. The reported bands correspond to 90 percent confidence intervals. A neutral

shock leads to an increase in unemployment and to a fall in the aggregate number of
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hours. The effects on hours worked per employee are small and generally statistically

insignificant. The impact rise in unemployment is the result of a sharp rise in the

separation rate and of a significant fall in the job finding rate. In the quarters follow-

ing the shock, the separation rate returns to normal levels while the job finding rate

takes up to fifteen quarters to recover. Hence, the dynamics of the job finding rate

explains why unemployment responses are persistent. Output takes about 5 quarters

to significantly respond but then gradually increases until it reaches its new higher

long-run value. Interestingly, once low frequency movements are taken into account,

the dynamic responses for the full sample look like those of the two subsamples.
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(a) Neutral technology shock (b) Investment specific technology shock

Figure 4: Responses to a one-standard deviation shocks. Full sample with intercept deterministi-
cally broken at 1973:II and 1997:I. Six variables VAR(8). Dotted lines are 5% and 95% quantiles of
the distribution of the responses simulated by bootstrapping 500 times the residuals of the VAR. The
continuous line is the median estimate.

Panel (b) in Figure 4 plots responses to an investment specific shock. The estimated

responses are very similar to those obtained in the 1973:2-1997:1 sub-sample. An

investment specific technology shock leads to a short run increase in output and hours

per capita and a fall in unemployment. The fall of unemployment on impact is due to

a sharp drop in the separation rate. Since this effect is partly compensated by a fall
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in the job finding rate, the initial fall in unemployment rate is small in absolute terms

and statistically insignificant. Hence, the increase in the number of hours is primarily

explained by the sharp and persistent increase in the number of hours worked per

employee. Thus, labor market adjustment to an investment specific technology shock

mainly occurs along the intensive margin.

4.2 Evidence using the exact rates

We next analyze the effects of technology shocks when considering exact job finding

and separation rates. Again, we report results obtained with the dummy specification.

Panel (a) in Figure 5 presents the responses to a neutral technology shock with the

exact rate (dotted line) together with the previously discussed responses obtained with

the approximated rates (solid line). Both specifications agree on the sign and shape

of the responses. There are however two important quantitative differences. When

considering the exact rates, the separation rate rises on impact twice as much, while

the finding rate falls slightly less. Furthermore, over the adjustment path the separation

rate exhibits more persistence when exact rates are used.

Panel (b) in Figure 5 reports responses to an investment specific technology shock

when exact and approximated rates are used. Also in this case, the two specifications

agree on the sign and shape of the responses, but there are two significant quantitative

differences. When the exact rates are used, the response of the separation rate is more

pronounced and falls on impact twice as much. Instead, the job finding rate is now

unaffected on impact and remains above normal levels all along the adjustment path.

As a result, the fall in the unemployment rate is more pronounced both on impact

and during the transition suggesting that the extensive margin plays a more important

role in accounting for the rise in hours when exact rates are used. Nevertheless, the

increase in hours per employee remains predominant.

5 Omitted variables

Our specification has allowed for enough lags, so that the residuals are clearly white

noise processes. Yet, it is possible that omitted variables play a role in the results. For

example, Evans (1992) showed that Solow residuals are correlated with a number of
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(a) Neutral technology shock (b) Investment specific technology shock

Figure 5: Exact rates (dotted lines) and approximated rates (solid lines). Both VAR includes
dummies corresponding to the breaks in technology growh. Each VAR has 8 lags and six variables.
Reported are point estimates of the responses.

policy variables, therefore making responses to Solow residuals shocks uninterpretable.

To check for this possibility we have correlated our two estimated technology shocks

with variables which a large class of general equilibrium models suggest as being jointly

generated with neutral and investment specific shocks. In particular, we compute

correlations up to 6 leads and lags between each of our technology shocks and the

consumption to output ratio, the investment to output ratio, and the inflation rate. The

point estimates of these correlations together with an asymptotic 95 percent confidence

tunnel around zero are in Figure 6. The shocks are obtained in the dummy specification

with the approximated rates (similar results are obtained with the exact rates).

There is some evidence that the consumption to output and the investment to

output ratios help to predict neutral technology shocks, while none of the three poten-

tially omitted variables significantly correlate with investment specific shocks. Hence,

we investigate what happens when we enlarge the system to include these three new

variables. Panels (a) and (b) in Figures 14 in Appendix C present the responses when

considering a VAR which includes the original six variables plus the consumption to
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Correlation with omitted variables
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Figure 6: Left column corresponds to neutral technology shocks; right column to investment specific
technology shocks. The first row plots the correlation with the consumption-output ratio, the second

with the investment-output ratio, the third with the inflation rate. The shocks are estimated from

the six variables VAR with approximated rates in the dummy specification. The horizontal lines

correspond to an asymptotic 95 percent confidence interval for the null of zero correlation.

output and the investment to output ratios and the inflation rate in the dummy specifi-

cation, when approximated rates are used. None of our previous conclusions is affected

and this is still the case when exact rates are used. Only the volatility of technology

shocks falls somewhat when considering the extended VAR.

6 The dynamics of fictional unemployment rates

Shimer (2005b) and Hall (2005) have challenged the conventional view that recessions–

defined as periods of sharply rising unemployment–are the result of higher job-loss

rates. They argue that recessions are mainly explained by a fall in the job finding

rate. Our impulse responses suggest instead that the separation rate plays a major

role in determining the impact effect of technology shocks on unemployment. This is

consistent with the evidence by Fujita and Ramey (2006) that the separation rate leads

the cycle (by about one quarter) while the finding rate lags it (by about two months).

To further evaluate the role of the separation rate, we use a simple two state model
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of the labor market (see Jackman et al., 1989 and recently Shimer, 2005b) and we

assume that the stock of unemployment evolves as:

u̇t = S(lt − ut)− Fut (3)

where lt and ut are the size of the labor force and the stock of unemployment, respec-

tively; while S and F are the separation and finding rates in levels, respectively. The

unemployment rate tends to converge to the following fictional unemployment rate:

ũ =
S

S + F
≡ exp(s)

exp(s) + exp(f)
.

Shimer (2005b) shows that the fictional unemployment rate ũ tracks quite closely the

actual unemployment rate series, so that one can fully characterize the evolution of the

stock of unemployment just by characterizing the dynamics of labor market flows. After

linearizing the log of ũ, we can calculate its response using the information contained

in the response of (the log of) the separation rate s and the finding rate f. This allows

to measure the contribution of finding and separation rates to the cyclical fluctuations

of fictional unemployment ũ; and to evaluate how accurately fictional unemployment

approximates actual unemployment, that is, whether workers movements in and out of

the labor force play a role in determining unemployment.

Panel (a) in Figure 7 reports results for the specification with approximated rates,

panel (b) with the exact rates. In both cases, the same nine variable VAR employed in

section 5 is used. In each panel, the response of the true unemployment rate appears

with a solid line and the response of (logged) ũ appears with a dotted line. The

dash-dotted line corresponds to the response of (logged) ũ that would be obtained if

the job finding rate had remained unchanged at its average level in the sample. It

therefore represents the contribution of the separation rate to fluctuations in fictional

unemployment.

There are several important features of figure 7. First, the dynamics of fictional

unemployment after a neutral shock are explained to a large extent by fluctuations

in the separation rate, especially when considering the specification with exact rates.

In agreement with previous results, the separation rate explains almost 90 per cent

of the impact effect on fictional unemployment. However, after only one quarter, its

contribution falls to 40 per cent and drops to 20 per cent one year after the shock.
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There are some differences in the impact response of actual and fictional unemployment.

This suggests that workers movements in and out of the labor force play some role in

characterizing the response of the unemployment rate, at least on impact.
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(a) Approximated rates (b) Exact rates

Figure 7: Nine variables VAR with approximated or exact rates. Full sample with deterministic
time dummies. Reported are median estimates from 500 bootstrap replications.

Following an investment specific shock, in the specification with approximated rates,

unemployment falls little on impact because the fall in the separation rate makes

unemployment decrease while the fall in the job finding rate makes unemployment

increase. When considering the specification with exact rates, unemployment falls

substantially on impact and this is mainly due to the fall in the separation rate. The

differences between the response of fictional and actual unemployment are minimal both

with approximated and with exact rates. Hence, other labor market flows are likely to

play a minor role in determining the unemployment responses to investment specific

shocks. This reinforces the conclusion that labor market adjustments to investment

specific shocks mainly occur along the intensive margin.

7 Interpretation

Next, we present a model which can be used to interpret the evidence we have un-

covered. We assume there are no frictions in the adoption of the investment specific

technology, while we impose a vintage structure on the neutral technology. As reviewed

by Brynjolfsson and Hitt (2000), the idea is that the adoption of new neutral tech-

nologies, such as more effective managerial practices, better organization of production
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or the introduction of new products and services, alter the entire job structure of the

firm and require the performance of new tasks for which previously hired workers may

not be suitable. This implies that the firm has to replace part of its current workforce

to upgrade its technology. In the analysis we focus on the social planner problem to

stress that the observed responses could result from the optimal process of technology

adoption in the presence of Schumpeterian creative destruction and labor market fric-

tions.5 We first describe the economy and then discuss impulse responses. Appendix

B contains the derivation of equilibrium conditions.

7.1 Assumptions

There is one consumption good, the numeraire. Output is produced according to

Ỹ = F (K̃, H̃) = K̃αH̃1−α,

where K̃ is the capital stock and H̃ the amount of labor intensive intermediate goods

used in production. Labor intensive intermediate goods are produced in jobs which

consist of firm-worker pairs. A worker can be employed in at most one job where he

supplies one unit of labor at an effort cost (in utility terms) cw. A job with neutral

technology z produces an amount of intermediate goods equal to exp
¡

z
1−α
¢
. As in

standard vintage models (see for example Jovanovic and Lach, 1989, Caballero and

Hammour, 1996, and Aghion and Howitt, 1994), newly created jobs always embody

leading-edge technologies while old jobs do not upgrade their previously installed tech-

nologies. Specifically, a job which starts producing at time t operates with a neutral

technology zit equal to the economy leading technology zt of that time, while the current

period neutral technology of old jobs, zit, remains (in expected value) unchanged:

zit = zit−1 + �it (4)
5Michelacci and Lopez Salido (2007) analize the decentralized equilibrium of a related economy.

Caballero (2007) discusses the inefficiencies involved in the Schumpeterian process of worker reallo-
cation across productive units. Generally the inefficiencies due to search frictions are solved when
workers can direct their search as in the models by Moen (1997) and Acemoglu and Shimer (1999).
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where �it is an idiosyncratic shock which is iid normal with standard deviation σ�.6 The

leading edge neutral technology evolves as:

zt = µz + zt−1 + εzt (5)

where εzt is iid normal with standard deviation σz. Hereafter, we will refer to the

difference between the leading technology zt and the job’s neutral technology zit as the

job technological gap, τ it ≡ zt − zit.

The law of accumulation of capital is K̃ 0 = (1− δ)K̃ + eqĨ where Ĩ is the amount

of investment expenditures measured in final output and q is the investment specific

technology, which evolves according to

qt = µq + qt−1 + εqt (6)

where εqt is iid normal with standard deviation σq.

At every point in time jobs are exogenously destroyed with probability λ. Jobs can

also be destroyed when their technological gap is too large relative to an endogenously

determined critical threshold τ ∗t . Jobs created at time t starts producing at time t+1.

Creating new jobs requires the services of recruiters. The cost of creating n new jobs

involves a cost in utility terms to recruiters equal to:

C(u, n) = cu−η0nη1 , η0, η1 > 0 (7)

so that unemployment reduces the cost of creating new jobs, as it is standard in search

models, see e.g. Pissarides (2000). This formulation embeds others present in the

literature. For example, if the matching function has constant returns to scale and

the utility cost of posting a vacancy is constant, then η1 − η0 = 1. If instead the

cost of posting vacancies is increasing in the number of posted vacancies or in the

number of newly created jobs, as in Caballero and Hammour (1996) and Michelacci

and Lopez-Salido (2007), η1 − η0 > 1.

The population of workers is constant and normalized to one. We assume that a

representative household exists so that workers and recruiters pool their income at the
6The idiosyncratic shocks � guarantee that the cross-sectional distribution of job technology has

no mass points. In turn, this property ensures a smooth transitional dynamics by ruling out the
possibility that persistent oscillations occur over the transition path –i.e. the “echo effects” that
typically arise in vintage models, see for example Benhabib and Rustichini (1991).
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end of the period and choose consumption and effort costs to maximize the sum of the

expected utility of the household’s members. The instantaneous utility is:

ln C̃ − cw (1− u)− C(u, n) (8)

where C̃ is aggregate consumption, while u and n denote the unemployment rate and

the flow of newly created jobs, respectively. The last two terms in (8) account for the

effort cost of working for workers and recruiters, respectively. The household’s discount

factor is β. The aggregate resource constraint is: Ỹ = Ĩ + C̃.

We adopt the following convention about the timing of events within a period t:

i. Aggregate technology shocks εzt and εqt are realized;

ii. Old jobs realize whether their job is exogenously destroyed (which occurs with

probability λ) and their idiosyncratic shocks �it. New jobs (resulting frommatches

at time t− 1) start with neutral technology zt;

iii. Decisions about job destruction, job creation, and investment are taken;

iv. Output is produced, income pooled and consumed. Next period begins.

7.2 Equilibrium conditions

Let ft(τ) denote the time-tmeasure of old jobs which, in case they are kept in operation,

would produce with technological gap τ . In the described sequence of events, this is

the distribution resulting after the events in ii). Then unemployment is

ut = 1−
Z τ∗t

−∞
ft(τ)dτ − nt−1 (9)

since jobs are destroyed when their technology gap is greater than the critical tech-

nological gap τ ∗t , while all newly created jobs are productive. The fraction of jobs

destroyed between time t− 1 and time t (i.e. the job separation rate) is

St = λ+

R∞
τ∗t

ft(τ)dτ

1− ut−1
while the job finding probability for workers searching between time t− 1 and time t
is Ft =

nt−1
ut−1

so that unemployment evolves as

ut = ut−1 + St (1− ut−1)− Ftut−1
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which is the discrete time analogue of equation (3). Jobs are created up to the point

that the marginal cost of job creation is equal to its expected future net value, so that

cη1n
η1−1
t u

−η0
t = βEt (Vt+1(0)) (10)

where Vt+1(0) is the next period (utility) value of a job with technological gap equal

to zero (see Appendix B for further details).

This economy fluctuates around the stochastic trend given by Xt ≡ ext, where

xt =
1

1− α
zt +

α

1− α
qt

Hence, we scale quantities by Xt and solve log-linearizing the first order conditions

around the steady state version of the model when εz,t = 0 and εq,t = 0. To characterize

the beginning-of-period distribution, ft, we follow Campbell (1998) and Michelacci and

Lopez-Salido (2007) and use values at a fixed grid of technological gaps.7

The logged level of unscaled aggregate productivity, ynt ≡ ln(Yt/ (1− ut)) + xt,

evolves as in (1), where Yt ≡ Ỹt/Xt denotes scaled aggregate output. Specifically, let Y

and 1−u denote the constant level of scaled output and employment around which the
economy fluctuates. Then (1) holds for y∗ = lnY − ln (1− u) and v accounts for the

stationary fluctuations of Yt and 1−ut around their mean. Therefore, our identification
approach is fully consistent with the structure of this model.

7.3 The response to technology shocks

We calibrate the model at the quarterly frequency and derive the implied average

monthly rate of the associated labor market flows to make results comparable with

the empirical analysis.8 The values of the parameters used are in Table 1. Most

of the choices are standard, including the value of the discount factor β and of the

output elasticity to capital, α, (see for example Cooley (1995)). Following Greenwood

et al. (1997), µz, µq and δ are chosen so as to yield, at the yearly level, a growth rate

of z of 0.39 percent, a growth rate of q of 3.21 per cent, and a capital depreciation
7A Computational Appendix (available at http://www.cemfi.es/~michela) describes in more detail

the procedure used.
8Alternatively we could calibrate the model at the monthly frequency and aggregate the results

at the quarterly level. This alternative approach, however, would force us into specifying when the
shock has occurred within a given quarter, an issue that can be sidestepped here.

24



Parameter Values

β:0.99 α:0.36 µz:0.0975% µq: 0.8025% δ: 3.2% σz:0.56% σq:1.3%
λ:3% η0:0.66 η1:4 σ�: 4.9% cw: 0.62 c:408.85

Table 1: Parameters values used in the baseline specification.

rate of capital of 12.4 per cent, respectively. The standard deviation of the shocks is

obtained from the previous analysis by noticing that a one-standard-deviation neutral

technology shock leads to a long run increase in labor productivity of approximately

0.85 percentage points, while a one-standard-deviation investment specific shock leads

to a long-run fall in the relative price of investment of 1.3 percentage points, see Figure

5. The resulting volatility values are just smaller than those typically used in the real

business cycle literature (see for example Cooley (1995) and Greenwood et al. (2000)).

The parameter λ is obtained as in den Haan et al. (2000), assuming that exogenous

separation accounts for about one half of total separation and η0 is set by assuming that

it exist a constant return to scale matching function where the matching elasticity to

unemployment is 0.4, which is the estimated value by Blanchard and Diamond (1990).

To calibrate η1 we assume that the cost of posting vacancy is increasing in the number of

newly created jobs, say, because recruits require some training to be productive in new

jobs and recruiters have decreasing marginal utility to leisure. If we assume that these

services are exchanged in a competitive labor market, we can use standard estimates

for the Frisch elasticity of labor supply–which is typically slightly greater than one

half, see Blundell et al. (1993) and Lee (2001)– together with the reported estimates

for the matching elasticity to vacancies to estimate η1. The remaining parameters σ�,

cw, and c are set to match, in the steady state version of the model without aggregate

shocks, i) that the fraction of existing jobs more productive than a newly created job

is around 60 percent, ii) that the job finding probability is 80 per cent, and iii) that

the separation rate is 6 percent. The first condition is in line with Baily et al. (1992).

The last two are the quarterly counterpart of a monthly job finding rate of 40 percent

and separation rate of 2 per cent, which are the averages in our sample.

Panel (a) in Figure 8 characterizes the response of the economy to a one-standard

deviation z-shock, (i.e. an increase in εzt of σz). These responses are obtained inte-
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(a) Neutral technology shock (b) Investment specific technology shock

Figure 8: Impulse responses to a one-standard deviation z-shock at time zero in the model, Panel
(a), and to to one-standard deviation q-shock, Panel (b). The separation and finding rates are implied
average monthly rate. All responses are multiplied by 100.

grating out of the aggregate decision rules variables which are not used in the VAR. As

discussed in Canova (2007) this implies that the model responses are fully compatible

with those obtained in the empirical analysis. The implied monthly separation rate

Sm
t and finding rate Fm

t , are obtained by using the relations 1 − St = (1− Sm
t )

3and

1 − Ft = (1− Fm
t )

3 . Neutral technology shocks bring about a simultaneous increase

in the destruction of technologically obsolete jobs and in the creation of new highly

productive units which prompts a contractionary period during which employment

temporarily falls. More formally, as zt increases, jobs with a given technology be-

come obsolete relatively to the technological frontier so the distribution of old jobs

ft(τ) shifts to the right on impact. This leads to an initial cleansing of technologically

outdated jobs which makes the separation rate and the unemployment rate increase.

Quantitatively, the shock leads to an increase of about four per cent in the monthly

separation rate and in the unemployment rate, which are close to what we obtained in

the VAR with exact rates, see Panel (a) in Figure 5.

In the quarters after the shock, more jobs are created both because the pool of un-

employed workers has increased and because the value of new jobs Vt(0) has increased.

Thus, the initial upsurge in unemployment is gradually absorbed and, as new jobs em-

body the more advanced technology, output, investment and consumption reach their

permanently higher new long-run value. Unemployment takes around 4 years to return

to normal levels–which is in line with the empirical evidence. The dynamics of the
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job finding rate, that remains below its steady state level over the whole adjustment

path, explains these persistent effects. The job finding probability falls because the

increase in reallocation pushes up the costs of job creation, which slows the pace of

job creation. Quantitatively, the maximal fall in the job finding rate is of about four

percentage points, which is similar to the effects obtained in the VAR with exact rates,

see Panel (a) in Figure 5.9

Panel (b) in Figures 8 presents responses to a one-standard deviation fall in the

price of capital (i.e. an increase in εqt of σq). As qt rises, it is optimal to accumulate

more capital. Since capital accumulation is costly, C̃t falls below its state value. This

reduces the value of the effort cost of working which increases the value of jobs with

a given technological gap τ . This pushes up the critical technological gap τ ∗t and

makes the separation rate fall. In other words, the desire to smooth consumption

makes the economy spread over time the pruning of relatively outdated technologies,

so more obsolete technologies are temporarily kept in operation. Quantitatively, the

job separation rate falls by less than a percentage point, which is slightly smaller than

the effect observed in the data. In the quarters following the shock, job creation falls

due to the reduction in the pool of searching workers. The initial fall in unemployment

is gradually absorbed and, after about seven years, employment returns to its pre-shock

level while output, consumption and productivity reach their new long-run values. The

persistent effects on unemployment are driven by the response of the job finding rate,

that remains above its steady state level over the adjustment path. This is due both to

the increase in the value of new jobs Vt(0), and to the fall in reallocation that reduces

the cost of job creation. Quantitatively, the shock leads to a maximal increase in the

job finding rate of more than one per cent, in line with the empirical findings.
9Shimer (2005a) has recently questioned the ability of the standard Mortensen and Pissarides

(1994) model to reproduce the right volatility of key labor market variables. Hagedorn and Manovskii
(2006) show that this is possible only if the difference between job output and the income forgone by
employed workers is low enough. In our baseline calibration the difference between new jobs output
and the value of the effort cost of working is around to 0.191, which is somewhat closer to the favorite
value by Hagedorn and Manovskii of 0.057 than to the value of 0.6 chosen by Shimer (2005a).
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7.4 The intensive margin

It is interesting to analyze the response of the intensive margin to technology shocks

and contrast it with the response of the extensive margin. For this purpose, assume

that a job with neutral technology z, produces an amount of intermediate goods equal

to exp
¡

z
1−α
¢
e, where e denotes the number of hours worked in the job. Assume also

that the utility cost of working e hours is: cw = c̄+ ce
e
1+ 1

φ

1+ 1
φ

, where φ is the elasticity of

the disutility of working with respect to the number of hours worked. At any point in

time and for any job, the social planner chooses e so that

(1− α)

Ã
K̃t

H̃t

!α

exp

µ
z

1− α

¶
1

C̃t

= cee
1
φ ,

which can be solved to obtain the equilibrium number of hours worked, and to trace

out how they respond to shocks. Since the adoption of new technologies requires

time and investment in capital, C̃t falls below its long run value in response to either

technology shock, so the marginal disutility of working falls, and a worker in a job

with a given technological gap works longer hours. As a result the average number

of hours worked per employee increases. Thus, in response to a z-shock, the number

of employed workers fall, but the average number of hours worked per employee tend

to increase. This composition effect is such that neutral shocks contribute relatively

less to the volatility of aggregate hours worked than to the volatility of unemployment

while the opposite is true for investment specific shocks which is precisely what we find

in the data (see next section).

8 The contribution of technology shocks

Here we analyze the contribution of technology shocks to business cycle fluctuations.

Table 1 reports the forecast error variance decomposition using either the approximated

rates or the exact rates. We focus on the VAR(8) with nine variables (given by the

growth in the investment relative price and in labor productivity, hours, the unemploy-

ment rate, job finding and job separation rates, the consumption and the investment

to output ratio, and the inflation rate). In the six variables VAR, the contribution of

technology shocks is slightly larger.
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Variable Neutral Investment specific
Horizon (quarters) Horizon (quarters)
1 8 16 32 1 8 16 32

A. Approximated rates, full sample
Investment Relative Price 16 13 12 12 42 45 46 46
Labor Productivity 23 21 21 21 3 4 4 4
Output 1 6 30 55 3 5 5 4
Hours 8 9 8 7 14 16 21 22
Hours per Worker 5 5 4 4 17 23 29 29
Unemployment 23 21 21 21 3 3 6 6
Finding Rate 17 17 17 17 0 1 2 2
Separation Rate 10 8 7 6 5 8 12 14

B. Approximated rates, 1973:II-2000:IV sample
Investment Relative Price 4 3 4 3 38 36 34 35
Labor Productivity 18 18 18 18 0 1 1 1
Output 1 4 24 43 22 11 10 9
Hours 12 14 12 11 37 18 20 21
Hours per Worker 10 10 8 9 44 30 31 32
Unemployment 12 18 16 14 13 2 2 3
Finding Rate 7 13 12 12 4 1 2 2
Separation Rate 28 28 12 14 2 4 8 12

C. Exact rates
Investment Relative Price 3 2 3 3 35 35 34 34
Labor Productivity 7 11 11 11 1 1 2 2
Output 8 4 17 37 14 8 6 6
Hours 22 19 18 16 24 15 14 14
Hours per Worker 14 12 11 10 35 27 28 28
Unemployment 34 30 29 27 3 1 1 1
Finding Rate 1 25 24 24 0 1 2 3
Separation Rate 34 34 30 26 0 1 1 1

Table 2: Forecast Error Variance Decomposition: percentage of variance explained by neutral
or investment-specific technology shocks at different time horizons for the selected variables. All
VARs have nine variables with intercept deterministically broken at 1973:II and 1997:I. The variables
are the growth in the relative price of investment and in labor productivity, hours per capita, the
unemployment rate, the job separation and the job finding rate, the consumption to output ratio,
the investment to output ratio, and the inflation rate. Panel A deals with a VAR with approximated
rates, Panel B restrict the analysis to the 1973:II-2000:IV sub-sample, Panel C deals with the exact
rates.
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Neutral technology shocks explain a substantial proportion of the volatility of unem-

ployment and output. In the specification with approximated rates, neutral technology

shocks explain between 30 and 50 per cent of output fluctuations at time horizons be-

tween 4 and 8 years and 20 percent of unemployment volatility (see panel A). The

contribution of neutral technology shocks to fluctuations in hours per worker is how-

ever small. Investment specific technology shocks instead account for a substantial

proportion of the volatility of hours worked: around 20 per cent of the volatility of

hours per capita and 30 per cent of the volatility of hours per worker. The contribu-

tion of investment specific technology shocks to output and unemployment volatility is

instead small (generally smaller than 10 per cent). Taken together, technology shocks

explain a relevant proportion of the business cycle volatility: at horizons between 2

and 8 years they explain around 40 per cent of the volatility of output, and about 30

per cent of the volatility of unemployment and hours. The importance of technology

shocks is generally greater when exact rates are used (see panel C). This is however due

to the greater importance of technology shocks in the 1973:II-2000:IV sample period.

When we estimate the VAR with approximated rates in the 1973:II-2000:IV sample,

we find that technology shocks explain roughly the same amount with approximated

and exact rates (see panel B). The only exception is in the contribution of neutral

technology shocks to the volatility of the separation rate, which is three times larger

with exact rates.

To further examine whether technology shocks are an important source of cyclical

fluctuations, we analyze the historical contribution of technology shocks to fluctuations

in logged unemployment, job separation and job finding. The graphs in the left column

of Figure 9 represent as a solid line the original series and as a dotted line its com-

ponent due to technology shocks (either neutral or investment specific), as recovered

from the nine variables VAR in the dummy specification with the exact rates. All

series are detrended with a Hodrick Prescott filter with smoothing parameter equal

to 1600. It is apparent that technology shocks are an important driving force of busi-

ness cycles. They explain several business cycle episodes including the recession of

the early 80’s and of the early 90’s and the subsequent recovery. The graphs in the

right column permit us to evaluate how accurately the model replicates the fluctuations

due to technology in the corresponding variable. Each graph contains the previously
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calculated technology component of the relevant series (again represented as a dotted

line) together with the model generated series obtained by feeding the z-shocks and

the q-shocks recovered by the VAR into the model. Hence, the two series share the

shocks while the transmission mechanism is independently obtained. If the series look

alike, there is evidence that the model closely replicate the transmission mechanism

of the data. Overall, the model is quite successful in quantitatively reproducing the

technology component of unemployment and job separation of the data and reproduces

well the dynamics of the finding rate, although fluctuations are slightly larger in the

model than in the data.

Figure 9: Effects of technology shocks in data and model. Left column: solid line is the raw data, the
dotted line the component due to technology shocks (either neutral or investment specific) as recovered

from the nine variables VAR with the exact rates. Right column: dotted line is the component due to

technology shocks in the data, solid line is the series obtained after feeding the shocks obtained from

the VAR into the model. The separation and finding rates correspond to the implied average monthly

rate. All series are detrended with a Hodrick Prescott filter with smoothing parameter equal to 1600.

Finally, we study the recession of the early 1990s and the subsequent recovery. This

episode have been extensively investigated in the literature, yet its causes are still un-
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explained; see for example Bernanke (2003). A key feature of the episode is that the

downturn in employment was severe. Another is that the peak in unemployment oc-

curred about two years later than the trough in output. This is a remarkable exception

relative to other business cycle episodes, see McKay and Reis (2007). The graphs in the

left column of Figure 10 presents the original output and unemployment series (solid

lines) and their component due just to technology shocks (dotted lines), again obtained

from the nine variables VAR(8) with the exact rates. All series are detrended with the

Hodrick Prescott filter. The vertical lines capture the NBER recession. Technology

shocks explain well the recession of the early 90’s and the subsequent remarkably slow

recovery in the labor market. This is due to the contribution of neutral technology

shocks that naturally tend to induce jobless recoveries since, following the initial rise

in job separation and unemployment, output increase to their new higher long run

value, while unemployment remains above trend because of the low job finding rate.

Hence, the rise in output appears to be jobless. The graphs in the right column show

how the model can account for the jobless recovery of the early 90’s. It plots as dot-

ted line the technology component of the original series and as a solid line the model

generated series obtained by feeding the technology shocks recovered by the VAR into

the model. Again all series are detrended with the Hodrick Prescott filter. The model

accurately reproduces both the magnitude of the effects and the faster recovery of out-

put relative to employment. Only the fall in output at the start of the recession is

somewhat more pronounced in the data than in the model.

9 Robustness

This section briefly describes some robustness exercises we have undertaken. The

conclusions are that our technology shocks are unlikely to stand in for other sources of

disturbances and that our results persist when we change i) the method to remove low

frequency fluctuations, ii) the lag length, iii) the identifying restrictions, iv) the price

deflator and v) the labor market data and the series for the relative price of investment.

Other disturbances Despite the fact that our technology shocks do not proxy

for omitted variables, it is still possible that they stand in for other sources of dis-
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Figure 10: The jobless recovery of the 90s. Left Column: Solid lines are raw data (either un-
employment or output), the dotted lines the component due to technology shocks (either neutral or
investment specific) as recovered from the nine variables VAR with the exact rates. Right Column:
the dotted line is again the component due to technology shocks in the data, the solid line is the
technology component generated by the model after feeding the technology shocks from the VAR into
the model. All series are detrended with a Hodrick Prescott filter with smoothing parameter equal to
1600. The vertical lines identifies the NBER recession.

turbances. To check for this possibility, we have correlated the estimated technology

shocks obtained from the nine variables VAR with the approximated rates with oil

price and federal fund rate shocks.10 Figure 15 in Appendix C shows that correlations

are insignificant.

Alternative treatments of trends We have considered two alternatives to re-

move low frequency movements: we have allowed up to a fifth order polynomial in time

in the intercept; we filtered all the variables, before entering them in the VAR, with the

Hodrick Prescott filter with a smoothing parameter λ = 10000. Figure 16 in Appendix

C show that responses have the same shape and approximately the same size as with

the dummy specification.

VAR lag length The issue of the length of VAR has been recently brought back

to the attention of applied researchers by Giordani (2003) and Chari et al. (2005),

who show that the aggregate decision rules of a subset of the variables of a model may
10The mnemonics for the corresponding variables are PZTEXP and FFED, respectively. Technology

shocks are correlated with ln(FFED) and ln(PZTEXP) − ln((CN+CS)/(CNH+CSH)), the last term being
the consumption deflator.
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have not always be representable with a finite order VAR. This issue is unlikely to be

important in our context since we checked that VAR and model based responses are

fully compatible. To further investigate whether this is an issue, we have reestimated

our VAR using 4, 8 and 12 lags. The results using approximated rates and the dummy

specification are in Figure 17 in Appendix C. Responses are unchanged.

Medium versus long-run identifying restrictions Uhlig (2004) has argued

that disturbances other than neutral technology shocks may have long run effects on

labor productivity and that, in theory, there is no horizon at which neutral (and in-

vestment specific) shocks fully account for the variability of labor productivity. To

take care of this problem Uhlig suggests to check if conclusions change when medium

term restrictions are used. In Panel (a) and (b) in Figure 18 in Appendix C we report

the responses obtained when the restrictions that the two shocks are the sole source of

fluctuations in labor productivity and the price of investment is imposed at the time

horizon of 3 years rather than in the long-run. The sign and the shape of responses

are almost unchanged. Similar results are obtained if the restriction is imposed at any

horizon of at least one year.

Relative price effects So far labor productivity and the relative price of invest-

ment are deflated by using the output deflator. To investigate whether this choice

matters for our results we have computed responses for the VAR with approximated

rates in the dummy specification deflating output and the price of investment by the

CPI (see Figures 19 in Appendix C). Responses are unaffected by this choice except

for the response of the price of investment to a neutral technology shock, which is more

pronounced when the price of investment is deflated with the CPI index.

Alternative data sets Elsby et al. (2007) have recently calculated an alter-

native series for the job finding and job separation rates, by slightly modifying the

methodology of Shimer (2005b). Jaimovich and Rebelo (2006) have also extended

the series for the investment specific technology up to the mid 2000’s. Our results are

unaffected by the use of these alternative series for labor market flows and for q.
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10 Conclusions

We analyzed the labor market effects of neutral and investment specific technology

shocks on unemployment, hours worked and other labor market variables. We char-

acterized the dynamic response of unemployment in terms of job separation and job

finding rates. After efficiently taking care of the low frequency movements in the vari-

ables entering the VAR we found that the job separation rate accounts for a major

portion of the impact response of unemployment. Later unemployment is mainly ex-

plained by fluctuations in the job finding rate. Neutral shocks prompt an increase in

unemployment while investment specific shocks rise employment and hours worked.

Neutral technology shocks are an important source of cyclical variability. They almost

entirely explain the recession of the early 90’s and the subsequent jobless recovery, a

recession typically hard to interpret with conventional models.

We show that the evidence is consistent with the view that neutral technological

progress is Schumpeterian, while investment specific progress operates essentially as in a

neoclassical growth model. Neutral technology shocks leads to a simultaneous increase

in the destruction of technologically obsolete productive units and in the creation of

new technologically advanced ones. But since labor market frictions make reallocation

sluggish, employment temporarily falls. Contrary to what happens in sticky price

models, the rise in unemployment is not ascribed to an inefficient response of monetary

policy to technology shocks, but it results from a process of technological adoption in

the presence of creative destruction and search frictions in the labor market. We

evaluate the quantitative performance of the model by feeding the technology shocks

recovered by the VAR into the model and we compare model generated data with

their technology component observed in the data. We find that the model is quite

successful in quantitatively reproducing the technology component of unemployment,

job separation and job finding and accounts well for the business cycle experience of

the early 90’s.
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