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Abstract

In this paper we analyze asymptotic properties of the simulated out-of-sample predictive mean squared error

(PMSE) criterion based on a rolling window when selecting among nested forecasting models. When the window

size is a �xed fraction of the sample size, Inoue and Kilian (2006) show that the PMSE criterion is inconsistent.

We consider alternative schemes under which the rolling PMSE criterion is consistent. When the window size

diverges slower than the sample size at a suitable rate, we show that the rolling PMSE criterion selects the

correct model with probability approaching one when parameters are constant or when they are time-varying.

We provide Monte Carlo evidence and illustrate the usefulness of the proposed methods in forecasting in�ation.
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1 Introduction

It is a common practice to compare models by out-of-sample predictive mean squared error (PMSE). For example,

Meese and Rogo¤ (1983a,b) and Swanson and White (1997) compare models according to their PMSE calculated

in rolling windows. Another common practice is to use a consistent information criterion such as the Schwarz

Information Criterion (SIC), used for example in Swanson and White (1997). Information criteria and the out-of-

sample PMSE criteria deal with the issue of over�tting inherent in the in-sample PMSE criterion. Information

criteria penalizes overparameterized models via penalty terms and are easy to compute. The out-of-sample

PMSE criteria simulate out-of-sample forecasts and are very intuitive. 1

In a recent paper Inoue and Kilian (2006) show that the recursive and rolling PMSE criteria are inconsistent

and recommend that consistent in-sample information criteria, such as the SIC, be used in model selection.

They also show that even when there is structural change these out-of-sample PMSE criteria are not necessarily

consistent. Their results are based on the assumption that the window size is proportional to the sample size.

In this paper we consider an alternative framework in which the window size goes to in�nity at a slower rate

than the sample size. Under this assumption we show that the rolling-window PMSE criterion is consistent for

selecting nesting linear forecasting models. When the nesting model is the truth, the criterion selects the nesting

model with probability approaching one because the parameters and thus the PMSE are consistently estimated

as the window size diverges. When the nested model is generating the data, the quadratic term in the quadratic

expansion of the loss di¤erence becomes dominant when the window size is small. Because the quadratic form is

always positive, the criterion will select the nested model with probability approaching one. When the window

size is large, however, the linear term and the quadratic term are of the same order and the sign cannot be

determined. By letting the window size diverge slowly, the rolling PMSE criterion is consistent under a variety

of environments, when parameters are constant or when they are time-varying.

When the window size diverges at a slower rate than the sample size, the rolling regression estimator can

be viewed as a nonparametric estimator (Giraitis, Kapetanios and Yates, 2011) and time-varying parameters

are consistently estimated. We show that our rolling-window PMSE criterion remains consistent even when

parameters are time-varying. When the window size is large, that is when it is assumed to go to in�nity at

the same rate as the total sample size, the criterion is not consistent because the rolling regression estimator is

oversmoothed. In the time-varying parameter case, the conventional information criterion is not consistent in

general.

This paper is related to, and di¤erent from, the works by West (1996), Clark and McCracken (2001), Giaco-

mini and White (2006), Giacomini and Rossi (2010) and Rossi and Inoue (2011) in several ways. West (1996)

1The out-of-sample PMSE criteria are based on simulated out-of-sample predictions where parameters are estimated from a sub-

sample to predict an observation outside the subsample. When subsamples always start with the �rst observation and use consecutive

observations whose number is increasing, we call the simulated quadratic loss the recursive PMSE criterion. When subsamples are

based on the same number of observations and are moving, we call the simulated quadratic loss the rolling PMSE criterion and the

number of observations in the subsamples is the window size. See Inoue and Kilian (2006) for more technical de�nitions of these criteria.
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and Clark and McCracken (2001) focus on comparing models�relative forecasting performance when the window

size is a �xed fraction of the total sample size, whereas Giacomini and White (2006) focus on the case where the

window size is constant; this paper focuses instead on the case where the window size goes to in�nity but at a

slower rate than the total sample size. Giacomini and Rossi (2010) argue that, in the presence of instabilities,

traditional tests of predictive ability may be invalid, since they focus on the forecasting performance of the

models on average over the out-of-sample portion of the data. To avoid the problem, they propose to compare

models�relative predictive ability in the presence of instabilities by using a rolling window approach over the

out-of-sample portion of the data. The latter helps them to follow the relative performance of the models as it

evolves over time. In this paper we focus on consistent model selection procedures, instead, rather than testing;

furthermore, our focus is not to compare models�predictive performance over time, rather to select the best

forecasting model asymptotically. Rossi and Inoue (2011) focus on the problem of performing inference on pre-

dictive ability that is robust to the choice of the window size. In this paper, instead, we take as given the choice

of the window size and our objective is not to perform tests; we focus instead on understanding whether it is

possible to consistently select the true model depending on the size of the window relative to the total sample

size.

The rest of the paper is organized as follows: In Section 2 we establish the consistency of the rolling PMSE

criterion under the standard stationary environment as well as under the time-varying-parameter environment.

In Section 3 we investigate the �nite-sample properties of the rolling-window PMSE criterion. Section 4 demon-

strates the usefulness of our criteria in forecasting in�ation. Section 5 concludes.

2 Asymptotic Theory

Consider two nesting linear forecasting models, models 1 and 2, to generate h-steps ahead direct forecasts (where

h is �nite):

Model 1: yt+h = �
�0xt + ut+h; (1)

Model 2: yt+h = �
0zt + vt+h = �0xt + 

0wt + vt+h; (2)

where dim(�) = k and dim(�) = l. The �rst terms on the right hand sides of eqs. (1) and (2), ��0xt and

�0zt, are the population linear projections of yt+h on xt and zt, respectively. Thus zt is uncorrelated with vt+h,

�� = [E(xtx
0
t)]
�1E(xtyt+h) and � = [E(ztz0t)]

�1E(ztyt+h).

De�ne the population quadratic loss of each model by

�21 = limT!1
1

T�h
PT�h

t=1 E[(yt+h � �0xt)2] = limT!1
1

T�h
PT�h

t=1 E(u
2
t+h);

�22 = limT!1
1

T�h
PT�h

t=1 E[(yt+h � �
0zt)

2] = limT!1
1

T�h
PT�h

t=1 E(v
2
t+h):

Our goal is to select the model with smallest quadratic loss.

Let the window size used for parameter estimation be denoted by W for some W > h. De�ne the rolling
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ordinary least squares (OLS) estimators as follows, for t =W + 1; :::; T :

�̂t;W =

 
t�hX

s=t�W
xsx

0
s

!�1 t�hX
s=t�W

xsys+h; (3)

�̂t;W =

 
t�hX

s=t�W
zsz

0
s

!�1 t�hX
s=t�W

zsys+h; (4)

and the associated rolling PMSEs by:

�̂21;W =
1

T � h�W

T�hX
t=W+1

û2t+h; (5)

�̂22;W =
1

T � h�W

T�hX
t=W+1

v̂2t+h; (6)

where ût+h = yt+h � �̂0t;Wxt, v̂t+h = yt+h � �̂
0
t;W zt: We say that the rolling PMSE criterion is consistent if

� �̂21;W < �̂22;W with probability approaching one if �21 = �
2
2; and

� �̂21;W > �̂22;W with probability approaching one if �21 > �
2
2.

Under what conditions on the window size is the rolling PMSE criterion consistent? The existing results are

not positive. When the window size is large relative to the sample size (i.e., 9� 2 (0; 1) s.t. W = �T + o(T )),

Inoue and Kilian (2005) show that the criterion is not consistent. Speci�cally, when �21 = �
2
2, they show that the

criterion selects model 2 with a positive probability resulting in the overparameterized model. We will discuss

this result more in detail in the next section, where we will compare it with the theoretical results proposed in

this paper.

When the window size is very small (i.e.,W is a �xed constant), it is straightforward to show that the criterion

may not be consistent. For example, compare the zero-forecast model (xt = ;) and the constant-forecast model

(wt = 1) with W = h = 1. Suppose that yt+1 = c+ ut+1; where ut � iid(c; �2). Note that �21 = c2 + �2 and

�22 = �
2. Since

�̂21;1 = 1
T�1

PT�1
t=1 y

2
t+1

p! c2 + �2;

�̂22;1 = 1
T�1

PT�1
t=1 (yt+1 � yt)2

p! 2�2;

however, �̂21;1 < �̂
2
2;1 with probability approaching one whenever c

2 < �2. This is because parameter estimation

uncertainty never vanishes even asymptotically, when the window size is �xed.

The goal of the next section is to show that the criterion is consistent if the window size is small, but not

too small, relative to the sample size in the following sense: W ! 1 and W=T ! 0 as T ! 1. Following

Clark and McCracken (2000), we use the following notation: Let q2;t = ztz
0
t, q1;t = xtx

0
t, Bi = [E(qit)]

�1,

Bi(t) =

�
1
Wh

t�hP
s=t�W

qi;s

��1
, H1(t) = 1

Wh

t�hP
s=t�W

xs(ys+h � ��0xs), H2(t) = 1
Wh

t�hP
s=t�W

zsvs+h, where i is either 1

or 2 and Wh =W � h+ 1.
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2.1 Consistency of the Rolling-Window PMSE Criterion When Parameters are

Constant

First, consider the case where the parameters are constant.

Assumption 1. As T !1, T 1=2=W = O(1) and W=T ! 0.

Assumption 2.

(a) f[x0t z0t yt+h]0g is covariance stationary and has �nite 10 moments with E(ztz0t) positive de�nite and B2(t)

positive de�nite for all t almost surely.

(b) W 1=2(Bi(t)�Bi) and W 1=2Hi(t) have �nite fourth moments uniformly in t for i = 1; 2.

(c) E(vt+hjFt) = 0 with probability one for 1; 2; :::, where Ft is the �-�eld generated by f(ys+h; zs)gt�hs=1.

(d) E[H 0
1(t)B1(xtx

0
t�E(xtx0t))B1H1(t)] = o(W�1) and E[H 0

2(t)B2(ztz
0
t�E(ztz0t))B2H2(t)] = o(W�1) uniformly

in t.
(e)

Cov

24vech
0@ T�hX
t=W+1

H
0
i(t)(Bi(t)� Bi)qi;t(Bi(t)� Bi)Hi(t)

1A35 = O

0@ T�hX
t=W+1

Cov
h
vech

�
H
0
i(t)(Bi(t)� Bi)qi;t(Bi(t)� Bi)Hi(t)

�i1A ;

Cov

24vec
0@ T�hX
t=W+1

H
0
i(t)Biqi;t(Bi(t)� Bi)Hi(t)

1A35 = O

0@ T�hX
t=W+1

Cov
h
vec

�
H
0
i(t)Biqi;t(Bi(t)� Bi)Hi(t)

�i1A ;

Cov

24vech
0@ T�hX
t=W+1

H
0
i(t)Biqi;tBiHi(t)

1A35 = O

0@ T�hX
t=W+1

Cov
h
vech

�
H
0
i(t)Biqi;tBiHi)

�i1A ;

for i = 1; 2.

Remarks. When the window size is assumed to be proportional to the sample size, W = [rT ] for

r 2 [0; 1], the functional central limit theorem (FCLT) is often used to �nd the asymptotic properties

of the recursive and rolling regression estimators (e.g., Clark and McCracken, 2001). For example, if

h = 1,
p
T (�̂t;W � �) =

 
1

T

t�1X
s=t�W

zsz
0
s

!�1
1p
T

t�1X
s=t�W

zsvs+1

and if vech(ztz0t) and ztvt+1 satisfy the FCLT, we obtain

p
T (�̂[rT ] � �) )

�

r
[E(ztz

0
t)]
�1=2Bl(r)

where Bl(r) is the l-dimensional standard Brownian motion, provided [z0t vt+1]
0 is covariance-stationary.

Thus we have �̂t;W � � = Op(T
�1=2) uniformly in t . When the window size diverges slower than the

sample size it is tempting to use the same analogy and claim �̂t;W � � = Op(W
�1=2) uniformly in t.

This result does not follow from the FCLT, however, even though �̂t;W � � = Op(W
�1=2) pointwise
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in t. To see why, let zt = 1. Then

�̂t;W � � =
1

W

t�1X
s=1

vs+1 �
1

W

t�W�1X
s=1

vs+1

=

p
T

W

1p
T

t�1X
s=1

vs+1 �
p
T

W

1p
T

t�W�1X
s=1

vs+1

= op

 p
T

W

!

uniformly in t, where the last equality follows from 1p
T

Pt�1
s=1 vs+1 � 1p

T

Pt�W�1
s=1 vs+1 = op(1) by the

FCLT and W = o(T ). Thus the FCLT alone does not imply �̂t;W � � = Op(W�1=2) uniformly in t in

general. This is why we need some high-level assumption, such as Assumptions 2(b)(d)(e).

Assumption 1 requires thatW diverges slower than T . This assumption makes the convergence rates

of terms in the expansion of the PMSE di¤erential uneven which helps establish the consistency of this

criterion when the nested model is generating the data. Assumption 2(c) requires that the nesting model

is (dynamically) correctly speci�ed. Assumption 2(d) is trivially satis�ed if zt is strictly exogenous and

allows for weak correlations between zt and vs. Assumption 2(e) is a high level assumption and

imposes that the variance of the sum is in the same order of the sum of variances. In other words,

the summands are only weakly serially correlated so that their autocovariances decay fast enough.

This assumption is somewhat related to the concept of essential stationarity of Wooldridge (1994,

pp.2643�2644). Assumptions somewhat similar to this condition are used in the central limit theorem

for stationary and ergodic processes (e.g., Theorem 5.6 of Hall and Heyde, 1980, p.148) and the central

limit theorem for near epoch dependent processes (e.g., Theorem 5.3 of Gallant and White, 1988, p.76;

Assumption C1 of Wooldridge and White, 1988).

Theorem 1. Under Assumptions 1 and 2, the rolling-window PMSE criterion is consistent.

To compare our consistency result and the inconsistency result of Inoue and Kilian (2006), consider

two simple competing models, yt+h = ut+h (model 1) and yt+h = c+ vt+h (model 2) where vt+h is i.i.d.

with mean zero and variance �22 and h = 1: The di¤erence of the out-of-sample PMSE can be written

as

�̂22;W � �̂21;W = � 2

T �W � 1

T�1X
t=W+1

(ĉt � c)vt+1 +
1

T �W � 1

T�1X
t=W+1

(ĉt � c)2

where ĉt = (1=W )
Pt�1
s=t�W ys+1. Assume that c = 0 in population.

When W = [�T ] for some � 2 (0; 1), it follows from Lemmas A6 and A7 of Clark and McCracken
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(2000) that

T
�
�̂22;W � �̂21;W

� d! � 2

� (1� �)�
2
2

Z 1

�
(B(r)�B(r � �))dB(r)

+
1

�2 (1� �)
�22

Z 1

�
(B(r)�B(r � �))0(B(r)�B(r � �))dr

where B(�) is the standard Brownian motion. Because the probability that the right hand side is
negative is non-zero, the criterion is inconsistent when c = 0. This is the inconsistency result in Inoue

and Kilian (2006).

When W = o(T 1=(1+2")) for some " 2 (0; 1=2), the case considered in this paper, we have:

W (�̂22;W � �̂21;W ) = � 2W
1
2
+"

T �W � 1

T�1X
t=W+1

 
1

W
1
2
+"

t�1X
s=t�W

vs+1

!
vt+1

+
1

T �W � 1

T�1X
t=W+1

 
1

W
1
2

t�1X
s=t�W

vs+1

!2

=
1

T �W � 1

T�1X
t=W+1

 
1

W
1
2

t�1X
s=t�W

vs+1

!2
+ op(1)

Because the right hand side remains positive even asymptotically, the criterion will choose model 1

with probability approaching one. The key for the consistency result is that the last quadratic term in

the expansion dominates the middle cross term when the window size is small.

Lastly it should be noted that our consistency result does not imply that the resulting forecast

based on a slowly diverging window size is optimal. When parameters are constant, one would expect

that the optimal forecast for the T +1st observation should be based on all T observations, not on the

last W observations. Assumption 1 is merely a device to obtain the consistency of the rolling PMSE

criterion.

2.2 Consistency of the Rolling-Window PMSE Criterion When Parameters are Time-

Varying

Sometimes it is claimed that out-of-sample PMSE comparisons are used to protect practitioners from

parameter instability. As Inoue and Kilian (2006) show, this is not always the case. In this section we

show that the rolling PMSE criterion with small window sizes delivers consistent model selection even

when parameters are time-varying.

Suppose that the slope coe¢ cients are time-varying in the sense that

yT;t+h = �

�
t

T

�0
zT;t + vT;t+h (7)
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where �(r) = [�(r)0 (r)0]0 for r 2 [0; 1]. When the slope coe¢ cients are time-varying, the second

moments are also time-varying. Let�
�zz

�
t
T

�
�zy

�
t
T

�
�yz

�
t
T

�
�yy

�
t
T

� � =
24 �xx

�
t
T

�
�xw

�
t
T

�
�xy

�
t
T

�
�wx

�
t
T

�
�ww

�
t
T

�
�wy

�
t
T

�
�yx

�
t
T

�
�yw

�
t
T

�
�yy

�
t
T

�
35 =

24 E[xT;tx
0
T;t] E[xT;tw

0
T;t] E[xT;tyT;t]

E[wT;tx
0
T;t] E[wT;tw

0
T;t] E[wT;tyT;t]

E[yT;tx
0
T;t] E[yT;tw

0
T;t] E[y2T;t]

35 ;
for t = 1; 2; :::; T and T = 1; 2; :::. Let �B1

�
t
T

�
= [E(xT;tx

0
T;t)]

�1 and �B2
�
t
T

�
= [E(zT;tz

0
T;t)]

�1. Then

�(�) = [�zz(�)]�1�zy(�). We compare

yT;t+h = �

�
t

T

�0
xT;t + uT;t+h (8)

and (7), where (7) simpli�es to (8) if (u) = 0 for all u 2 [0; 1].

Assumption 3. As T !1, T 1=2=W = O(1) and W = o(T 2=3).

Assumption 4. (a)

�t = vech
��

zT;tz
0
T;t zT;tyT;t+h

yT;t+hz
0
T;t y2T;t+h

�
�
�
�zz

�
t
T

�
�zy

�
t
T

�
�yz

�
t
T

�
�yy

�
t
T

� �� (9)

has �nite �fth moments with B2(t) positive de�nite for all t almost surely.

(b) W 1=2
�
Bi(t)� �Bi

�
t
T

��
and W 1=2Hi(t) have �nite fourth moments uniformly in t for i = 1; 2.

(c) E(vT;t+hjFTt) = 0 with probability one for 1; 2; :::, where FTt is the �-�eld generated by f(yT;s+h; zTs)gt�hs=1.

(d) E[H 0
i(t)

�Bi
�
t
T

�
(qi;T;t � E(qi;T;t)) �Bi

�
t
T

�
Hi(t)] = o(W

�1) uniformly in t for i = 1; 2, where q1;T;t =

xT;txT;t and q2;T;t = zT;tz0T;t.
(e)

Cov

24vech
0@ T�hX
t=W+1

H0
i(t)

�
Bi(t)� �Bi

�
t

T

��
qi;T;t

�
Bi(t)� �Bi

�
t

T

��
Hi(t)

1A35
= O

0@ T�hX
t=W+1

Cov
�
vech

�
H0
i(t)

�
Bi(t)� �Bi

�
t

T

�
qi;T;t

�
Bi(t)� �Bi

�
t

T

��
Hi(t)

���
;

Cov

24vec
0@ T�hX
t=W+1

H
0
i(t)

�Bi

�
t

T

�
qi;T;t(Bi(t)� �Bi

�
t

T

�
Hi(t)

1A35 = O

0@ T�hX
t=W+1

Cov
�
vec

�
H
0
i(t)

�Bi

�
t

T

�
qi;T;t

�
Bi(t)� �Bi

�
t

T

��
Hi(t)

��1A ;

Cov

24vech
0@ T�hX
t=W+1

H
0
i(t)

�Bi

�
t

T

�
qi;T;t �Bi

�
t

T

�
Hi(t)

1A35 = O

0@ T�hX
t=W+1

Cov
�
vech

�
H
0
i(t)

�Bi

�
t

T

�
qi;T;t �Bi

�
t

T

�
Hi)

��1A ;

where i = 1; 2.

(f) �zz(u) is positive de�nite for all u 2 [0; 1], and � (:) � �xx(�) �1 �xy(�) and � (:) � �zz(�)�1 �zy(�)
satisfy a Lipschitz condition of order 1.

Remarks. Assumption 3 is more restrictive than Assumption 1 to keep the bias of the rolling regression

estimator from interfering the consistency of the rolling PMSE estimator. Assumptions 4(a)(b) requires
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that �t behaves like a stationary process with enough many moments. Assumptions 4(b)�(e) are

analogues of Assumptions 2(b)�(e). Assumption 4(f) requires that the second moments change very

smoothly.

Theorem 2. Suppose Assumptions 3 and 4 hold. Then the rolling-window PMSE criterion is consistent.

Remarks. The above consistency result is intuitive once it is recognized that the rolling regression

estimator is a nonparametric regression estimator of parameters with a truncated kernel. For example,

Cai (2007) establish the consistency and asymptotic normality of nonparametric estimators of time-

varying parameters, and Giraitis, Kapetanios and Yates (2011) prove the consistency and asymptotic

normality of nonparametric estimators for stochastic time-varying coe¢ cient AR(1) models.

In general, the conventional information criteria, such as SIC, are not consistent when parameters

are time-varying. To show why that is the case consider comparing two competing models yt+h = ut+h

and yt+h = c+ vt+h for h = 1 when the data are generated from:

yt =
t

T
� 1
2
+ "t (10)

where "t is i.i.d. with mean zero and variance �2. Then the population in-sample PMSE of the zero

forecast model is

lim
T!1

E

 
1

T � 1

T�1X
t=1

y2t+1

!
= �2 +

Z 1

0

�
r � 1

2

�2
dr = �2 +

1

12

The population in-sample PMSE of the forecast model that estimates the constant in rolling windows

is also

lim
T!1

min
c
E

 
1

T � 1

T�1X
t=1

(yt+1 � c)2
!
= min

c

�
�2 +

Z 1

0
(r � c)2dr

�
= �2 +

1

12

Thus, the SIC would select the zero forecast model while the true DGP is a time-varying constant fore-

cast model. Our criterion, by re-estimating the constant in rolling windows, is robust to time variation

in the parameters and will select the second model with probability approaching unity asymptotically.

3 Monte Carlo Evidence

In this section we investigate the �nite-sample performance of the rolling window PMSE criterion in

two Monte Carlo experiments. In the �rst experiment, we use the data generating process (DGP) of

Clark and McCracken (2005) as it is similar to the empirical application that we will consider in the

next section. In the second experiment, we use a simple DGP in which the dependent and independent

variables both follow �rst-order autoregressive processes, and consider both constant parameter and

time-varying parameter cases.
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3.1 Simulation 1: DGP2 in Clark and McCracken (2005)

The second DGP of Clark and McCracken (2005) is based on estimates based on quarterly 1957:1�

2004:3 data of in�ation (Y ) and the rate of capacity utilization in manufacturing (x). We consider

restricted and unrestricted forecasting models as follows:

Model 1 : �Yt+1 = �0 + �1�Yt + �2�Yt�1 + u1;t+1 (11)

Model 2 : �Yt+1 = �0 + �1�Yt + �2�Yt�1 + 1xt�1 + 2xt�2 + 3xt�3 + 4xt�4 + u2;t+1 (12)

When the restricted model (11) is true, the DGP is parameterized using the equation (7) in Clark and

McCracken (2005):

�Yt = �0:316�Yt�1 � 0:214�Yt�2 + uy;t; (13)

xt = �0:193�Yt�1 � 0:242�Yt�2 � 0:240�Yt�3 � 0:119�Yt�4

+1:427xt�1 � 0:595xt�2 + 0:294xt�3 � 0:174xt�4 + ux;t; (14)

where h
uy;t
ux;t

i
iid� N

�h
0
0

i
;
h
1:792 0:244
0:244 1:463

i�
: (15)

When the unrestricted model (12) is the truth, the DGP is parameterized using the equation (9) in

Clark and McCracken (2005).

�Yt = �0:419�Yt�1 � 0:258�Yt�2

+0:331xt�1 � 0:423xt�2 + 0:309xt�3 � 0:139xt�4 + uy;t; (16)

where xt is de�ned as in equation (14) andh
uy;t
ux;t

i
iid� N

�h
0
0

i
;
h
1:517 0:244
0:244 1:463

i�
; (17)

In both (15) and (17), the initial values of �Yt and xt are generated with draws from the unconditional

normal distribution. We compare the performance of the SIC and the rolling window PMSE criteria;

the latter is implemented with a window size that is either (i) �xed relative to the sample size; (ii)

proportional to the sample size; or (iii) diverging slower than the sample size. The number of Monte

Carlo replications is set to 10,000. Tables 1�4 report the empirical probabilities of selecting the correct

model. If the procedure is correct, the corresponding probabilities in the tables should be unity.

Tables 1, 2 and 3 report the results for the SIC, the PMSE criterion with W proportional to T ,

and the PMSE criterion with �xed W , respectively. As expected, the SIC selects the correct model

with probability approaching one as the sample size increases. The second last column of Table 2
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shows that, when the window size is set to a fraction of the total sample size, W = [�T ], the PMSE

criterion tends to over-parameterize the model when � is not very small. When the window size is

�xed to a small number (W = 10), the PMSE criterion tends to under-parameterize the model. The

results for W = [0:2T ], W = 50 and W = 90 seem to contradict our claim that these speci�cations of

the window size should yield inconsistent model selection; however, for reasonably large sample sizes,

these speci�cations are observationally equivalent to the small window size speci�cation we propose.

Table 4 shows the results when the window size is small but diverging, W = o(T ). The results for

W = T 3=4 support our consistency results. Although the window size W = T 1=3 and W = T 1=2 does

not satisfy our su¢ cient condition (Assumption 1), the resulting criterion chooses the restricted model

with probability approaching one when it is true. The PMSE criterion with W = T 1=3 fails to choose

the unrestricted model when it is the truth, however.2

Overall, our results suggest that a window size that is a �xed fraction of the total sample size

does not appear to give consistent results when Model 1 is the true data generating process. On the

other hand, a constant window size W = 10 is not consistent when Model 2 is true. The divergent

window size, in general, consistently selects the correct model, asymptotically. When W = T 1=3, the

consistency is not obvious due to the small window size, but unreported results show that the frequency

of consistency will eventually converge to 1 when the total sample size becomes in�nite large.

The SIC does select the correct model asymptotically, and it appears to do so with an even higher

probability that the PMSE criterion with a slowly diverging window size. However, as we will show in

the next set of Monte Carlo simulations, the SIC will not select the correct model in the presence of

time variation.

3.2 Simulation 2: Autoregressive DGP With/Without a Time-Varying Parameter

Next we consider two forecasting models

Model 1: yt = �yt�1 + u1;t

Model 2: yt = �yt�1 + xt + u2;t

where the data are generated by

xt = 0:5xt�1 + ux;t;

yt = 0:5yt�1 + xt + uy;t;

ux;t � iid N(0; 1) and uy;t � iid N(0; 1) are independent of each other. We consider four cases:  = 0;
 = 0:25;  = 0:5 and  = t=T � 0:5. When  = 0 Model 1 is true. Under the cases where  = 0:5

or 0:25, Model 2 is true. Even when T;t = t=T � 0:5, Model 2 should be selected since the true data

2When T = 100, W = T 1=3 is too small to compute a rolling estimator.
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generating process does include a constant, although the constant is time-varying. The number of

Monte Carlo replications is set to 10,000.

Tables 5, 6, 7 and 8 report the empirical probabilities of selecting the right model for the SIC and

the rolling-window PMSE criterion with W = [�T ], W being a constant, and W = o(T ), respectively,

when  is time-invariant. As before, the SIC is consistent and the PMSE criterion tends to either

overparameterize or underparameterize the model when W is a large fraction of T or when W is a

small constant. The results when W is a small fraction of T (� = 0:2) or when W is 50 or 90 show that

the PMSE criterion selects the correct model. This may be due to �nite samples in which these window

sizes are consistent with slowing diverging ones. The results in Table 8 shows that the PMSE criterion

selects the correct forecasting model with probability approaching one as the sample size increases

when W !1 and T 1=2=W = O(1) as T grows.

The aforementioned results indicate that while the PMSE criterion with a slowly diverging window

size is consistent the SIC tends to perform better. One advantage of the PMSE criterion over the SIC is

that the PMSE criterion is robust to parameter instabilities. Table 9 reports the selection probabilities

of the SIC and PMSE criterion when T;t = t=T � 0:5. T;t is modeled so that the in-sample PMSE of
Model 2 equals that of Model 1 while the out-of-sample PMSE of Model 2 is smaller than that of Model

1. Table 9 shows that the PMSE criterion selects Model 2 with empirical probability approaching one

while the SIC selects Model 1. 3

To summarize, the Monte Carlo results are consistent with our asymptotic theory and the PMSE

criterion with a slowly diverging window size chooses the correct forecasting model with probability

approaching one, no matter whether the parameters are time-varying or not. On the other hand,

although the SIC is consistent when the parameter is constant over time, it is inconsistent when the

parameter is time-varying.

4 Empirical Application

We consider forecasting quarterly in�ation h-periods into the future. Let the regression model be:

yht+h = 0 + 1 (L)xt + 2 (L) yt + u
h
t+h; t = 1; :::; T (18)

where the dependent variable is yht+h = (400=h) ln(Pt+h=Pt)�400 ln (Pt=Pt�1) where Pt is the price level

(CPI) at time t, h is the forecast horizon and equals four, so that the forecasts involve annual percent

growth rates of in�ation. 1 (L) =
Pp
j=0 1jL

j and 2 (L) =
Pq
j=0 2jL

j , where L is the lag operator.

Following Stock and Watson (2003), we consider several explanatory variables, xt, one at a time. The

explanatory variable, xt, is either an interest rate or a measure of real output, unemployment, price,

3Technically, the window size W = T 2=3 does not satisfy our su¢ cient condition but yields good results.
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money or earnings. The data are transformed to eliminate stochastic or deterministic trends and to

quarterly frequencies. For a detailed description of the variables that we consider, see Table 10. We

utilize quarterly, �nally revised data available in January 2011. The earliest starting point of the

sample that we consider is January 1959, although both M3 and the exchange rate series have a later

starting date due to data availability constraints. Overall, this implies that the total sample size is

about 240 observations. In the out-of-sample forecasting exercise, we estimate the number of lags (p

and q) recursively by BIC; the estimation scheme is rolling with a window size of 40 observations. The

benchmark model is an autoregressive model:

yht+h = 0 + 2 (L) yt + u
h
t+h; t = 1; :::; T: (19)

Results are reported in Figure 1. The �gure reports the ratio of the MSFE of the model, eq. (18),

relative to the MSFE of the autoregressive benchmark model, eq. (19). According to the Monte Carlo

simulations in the previous section, the most successful window sizes are between T 1=2 and T 2=3, which,

given the available sample of data, implies between 16 and 39 observations.

Panel A reports results for predictors (xt) that include real output measures. It is well known that

such measures should be good predictors of in�ation according to the Phillips-curve. Several studies

have documented the empirical success of Phillips curve models, see for example Stock and Watson

(1999a,b and 2003), although the empirical results in Massimiliano Marcellino, Stock, and Watson

(2003) suggests that the ability of such measures to forecast in�ation in Europe is more limited than

in the United States. The �gure shows that capacity utilization, employment and unemployment

measures are very useful predictors for in�ation. In fact, when the window size is less than about 80,

the MSFE of the model is always smaller than that of the autoregressive benchmark, sometimes even

substantially. Note that for larger window sizes the PMSE criterion would however suggest that the

AR benchmark forecasts better than the economic model.

Earnings, instead, is not a successful predictor: in window sizes in the range between T 1=2 and T 2=3,

it is signi�cantly worse, and occasionally better, although only for larger window sizes. However, recall

from the discussion in Section 2 that when the window size is large relative to the total sample size,

Inoue and Kilian (2005) have shown that the PMSE criterion tends to select over-parameterized models.

When the window sizes are between T 1=2 and T 2=3, the previous sections showed that the PMSE

criterion tends to select the correct model. This suggests that earnings are particularly unreliable for

forecasting in�ation.

The performance of industrial production and real GDP predictors, instead, is less clear: the ratio

can be either above or below unity depending on the window size. Even for window sizes in the

range between T 1=2 and T 2=3, the ratio can be either above or below unity. These results suggest

instabilities in the forecasting performance of these predictors, and are consistent with the results in
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Rossi and Sekhposyan (2010), although the latter were interested in testing equal predictive ability

rather than consistently selecting the correct model, as we do here. Rossi and Sekhposyan�s (2010)

empirical evidence documented that the economic predictors have forecasting ability in the early part

of their sample, but the predictive ability disappears in the later part of their sample. The reversals in

predictive ability happened, according to their tests, around the time of the Great Moderation, which

the literature dates back to 1983-4 (see McConnell and Perez-Quiros, 2000), similarly to the results in

D�Agostino, Giannone and Surico (2006).

Panel B focuses on monetary measures. M1, M2 and M3 never have predictive ability except for

some selected window sizes, again pointing to the presence of instabilities.

Panel C focuses on interest rates. The results are quite interesting. They show that interest rates

(such as 1-year or 10-year bonds) appear to be very good predictors of in�ation for medium window

sizes, below 120-140 observations. Again, however, for very large window sizes the PMSE criterion

would select the smaller model. Short-term interest rates tend to be useful predictors only when the

window size is large, but again the ratio is below unity for some selected window sizes and above unity

for others. Again, we conjecture that instabilities are important, as discussed in Rossi and Sekhposyan

(2010).

Panel D focuses on other monetary variables. Stock prices are never useful for predicting in�ation.

Interestingly, the producer price index is a good predictor for in�ation: the �gure shows that for the

relevant window sizes, the ratio of the MSFE of the model relative to that of the benchmark is always

lower than unity, and it becomes higher than unity only for large window sizes.

Overall, our empirical results suggest that traditional Phillips-curve predictors such as capacity

utilization and unemployment are useful in forecasting in�ation, as well as the producer price index.

The empirical results for the other macroeconomic predictors are not clear-cut, and might signal the

importance of instabilities in the data. In order to provide more information on the instability in the

forecasting regressions we consider, we report joint tests for structural breaks in the parameters of eq.

(18) using Andrews�(1993) test for structural breaks. Table 11 reports the p-values of the test, which

con�rm that instabilities are extremely important.

5 Concluding Remarks

There is a known break, forecasters tend to use post-break observations when they make forecasts. In

other words, they base their forecasts on a �truncated window�instead of the full sample. This paper

shows that this type of ideas can deliver the consistency of the rolling PMSE criterion not only when

parameters are time-varying but also when they are constant over time.

In this paper we focus on the rolling scheme. Inoue and Kilian (2006) show that the PMSE criterion

based on the recursive scheme is inconsistent if the number of initial observations is large, i.e., a �xed

fraction of the sample size, while Wei (1992) proves that it is consistent if the number of initial
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observations is very small, i.e., a �xed constant. One might be able to extend Wei�s (1992) result to

the case in which the number of initial observations diverges at a rate slower than the sample size.

Such a model selection criterion might not be robust to parameter instability, however.

It should be noted that our consistency results are based on correctly speci�ed nested models.

Although information criteria are not robust to parameter instabilities, they are robust to misspeci�-

cation and non-nestedness (Sin and White, 1996). We leave PMSE criterion based model comparison

of misspeci�ed or non-nested models for future research.

The main object of forecasters is often to minimize PMSE rather than identify the true model. We

are currently developing a data-dependent method for choosing the window size to achieve this goal in

a separate paper.
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Appendix

1.1 Lemmas

Next, we present a lemma similar to Lemma A2 of Clark and McCracken (2000).

Lemma 1. Suppose that Assumptions 1 and 2 hold and that  = 0. Then:

(a) 1
T�h�W

PT�h
t=W+1 ut+hxtB1(t)H1(t) = op

�
1
W

�
.

(b) 1
T�h�W

PT�h
t=W+1 vt+hztB2(t)H2(t) = op

�
1
W

�
.

(c) 1
T�h�W

T�hP
t=W+1

H 0
1(t)B1(t)xtx

0
tB1(t)H1(t) =

1
T�h�W

T�1P
t=W+h

H 0
1(t)B1H1(t) + op

�
1
W

�
.

(d) 1
T�h�W

T�hP
t=W+1

H 0
2(t)B2(t)ztz

0
tB2(t)H2(t) =

1
T�h�W

T�hP
t=W+1

H 0
2(t)B2H2(t) + op

�
1
W

�
.

Proof of Lemma 1: The proofs for (a) and (c) are very similar to those for (b) and (d), respectively.

For brevity, we only provide the proofs of (b) and (d). The results for (a) and (c) can be easily derived

by replacing zt and � by xt and �, respectively.

Note that

1

T � h�W

T�hX
t=W+1

vt+hztB2(t)H2(t)

=
1

T � h�W

T�hX
t=W+1

vt+hztB2H2(t) +
1

T � h�W

T�hX
t=W+1

vt+hzt(B2(t)�B2)H2(t)

By Assumption 2(b) and Hölder�s inequality, the second moments of the summands on the right hand

side are of order O(W�1) and O(W�2), respectively. Thus it follows from Assumption 2(c) that the

variance of the left hand side is of order O(T�1W�1). By the Chebyshev inequality and Assumption

1, the left hand side is op(W�1).

The proof of (d) is composed of two stages. In the �rst stage, we show that B2(t) in the equation

can be approximated by its expectation B2, which is

1

T � h�W

T�hX
t=W+1

H 0
2(t)B2(t)ztz

0
tB2(t)H2(t) =

1

T � h�W

T�hX
t=W+1

H 0
2(t)B2ztz

0
tB2H2(t) + op

�
1

W

�
(20)
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Since the left-hand side of equation (20) contains four terms,

1

T � h�W

T�hX
t=W+1

H 0
2(t)B2(t)ztz

0
tB2(t)H2(t) =

1

T � h�W

T�hX
t=W+1

H 0
2(t)B2ztz

0
tB2H2(t)

+
1

T � h�W

T�hX
t=W+1

H 0
2(t)(B2(t)�B2)ztz0t(B2(t)�B2)H2(t)

+
1

T � h�W

T�hX
t=W+1

H 0
2(t)B2ztz

0
t(B2(t)�B2)H2(t)

+
1

T � h�W

T�hX
t=W+1

H 0
2(t)(B2(t)�B2)ztz0tB2H2(t); (21)

which include the �rst term in the right-had side of equation (20).

By Assumption 2(b) and Hölder�s inequality, the second moments of the summands in the last

three terms are of order O(W�4), O(W�3) and O(W�3), respectively. Thus, their �rst moments are at

most O(W�3) = o(W�1). By using these and Assumption 2(e), the second moments of the last three

terms are thus of order O(T�1W�4), O(T�1W�3) and O(T�1W�1), respectively. By the Chebyshev

inequality and Assumption 1, these last three terms are of order op(W�1), proving (20).

The second stage of the proof of (d) is to show that we can further approximate ztz0t in the �rst term

in the right-hand side of equation (21) by its expectation E(ztz0t). Adding and subtracting E(ztz
0
t), we

obtain

1

T � h�W

T�hX
t=W+1

H 0
2(t)B2ztz

0
tB2H2(t) =

1

T � h�W

T�hX
t=W+1

H 0
2(t)B2E(ztz

0
t)B2H2(t)

+
1

T � h�W

T�hX
t=W+1

H 0
2(t)B2(ztz

0
t � E(ztz0t))B2H2(t) (22)

The mean of the second term is op(W�1) by Assumption 2(d). The second moments of the summand

in the second term is O(W�2) by Assumption 2(b). Using these and Assumption 2(e), the second

moment of the second term is of order o(W�2). By the Chebyshev inequality, (22) is op(W�1).

Lemma 2. Suppose that Assumptions 3 and 4 hold and that (�) = 0.
(a) 1

T�h�W
PT�h
t=W+1 uT;t+hxT;tB1(t)H1(t) = op

�
1
W

�
.

(b) 1
T�h�W

PT�h
t=W+1 vT;t+hzT;tB2(t)H2(t) = op

�
1
W

�
.

(c) 1
T�h�W

T�hP
t=W+1

H 0
1(t)B1(t)xT;tx

0
T;tB1(t)H1(t) =

1
T�h�W

T�hP
t=W+1

H 0
1(t)

�B1
�
t
T

�
H1(t) + op

�
1
W

�
.

(d) 1
T�h�W

T�hP
t=W+1

H 0
2(t)B2(t)zT;tz

0
T;tB2(t)H2(t) =

1
T�h�W

T�hP
t=W+1

H 0
2(t)

�B2
�
t
T

�
H2(t) + op

�
1
W

�
.

Proof of Lemma 2. Under Assumptions 3 and 4 the proof of Lemma 2 takes exactly the same steps

as the proof of Lemma 1 except that Bi, ut and vt are replaced by �Bi
�
t
T

�
, uT;t and vT;t, respectively.

This is because Lemma 2 is written in terms of uT;t and vT;t rather than in terms of �̂t;W ��
�
t
T

�
and

�̂t;W � �
�
t
T

�
which we deal with in the proof of Theorem 2.
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1.2 Proofs of Theorems

Proof of Theorem 1. Note that the PMSEs �̂21;W and �̂22;W can be expanded as

�̂21;W =
1

T � h�W

T�hX
t=W+1

�
yt+h � b�0txt�2

=
1

T � h�W

T�hX
t=W+1

�
yt+h � ��0xt �

�b�0txt � ��0xt��2
=

1

T � h�W

T�hX
t=W+1

�
yt+h � ��0xt

�2 � 2

T � h�W

T�hX
t=W+1

�
yt+h � ��0xt

�
x0t (b�t � ��)

+
1

T � h�W

T�hX
t=W+1

�b�0t � ��0�xtx0t (b�t � ��) (23)

and

�̂22;W =
1

T � h�W

T�hX
t=W+1

�
yt+h � b�0tzt�2

=
1

T � h�W

T�hX
t=W+1

�
yt+h � �0zt �

�b�0tzt � �0zt��2
=

1

T � h�W

T�hX
t=W+1

�
yt+h � �0zt

�2 � 2

T � h�W

T�hX
t=W+1

�
yt+h � �0zt

�
z0t

�b�t � ��

+
1

T � h�W

T�hX
t=W+1

�b�0t � �0�ztz0t �b�t � �� ; (24)

respectively, where �� = [E(xtx
0
t)]
�1E(xtyt+h). There are two cases: the case in which the data are

generated from model 1, i.e.,  = 0 (case 1) and the case in which the data are generated from model

2, i.e.,  6= 0 (case 2).

In case 1, the actual model is yt+h = �0xt + vt+h. The �rst component of �̂22;W in equation (24) is

numerically identical to the �rst component of �̂21;W in equation (23) because  = 0 and ���� = 0. Note

that all the other components converge to zero faster since all parameters are consistently estimated.

Under the case where Model 1 is true, the di¤erence between the probability limit of �̂21;W and �̂22;W is

zero, which does not identify which model is the true model. Only comparing the probability limits of

�̂21;W and �̂22;W as T and W go to in�nity and W diverges slowly than T is not su¢ cient for the model

selection to indicate that limT!1; W!1 P (�̂
2
1;W < �̂22;W ) = 1. However, if we can tell whether �̂

2
1;W is

always smaller than �̂22;W along the path of convergence of T and W towards in�nity, the true model
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can still be identi�ed. Since the models are nested ut+h = vt+h, it follows from (23) and (24) that

�̂22;W � �̂21;W =
2

T � h�W

T�hX
t=W+1

h
vt+hz

0
t(
b�t � �)� vt+hx0t(b�t � �)i

+
1

T � h�W

T�hX
t=W+1

h�b�0t � �0�ztz0t �b�t � ��� �b�0t � �0�xtx0t (b�t � �)i

=
2

T � h�W

T�hX
t=W+1

�
vt+hz

0
tB2(t)H2(t)� vt+hx0tB1(t)H1(t)

�
+

1

T � h�W

T�hX
t=W+1

�
H2(t)

0B2(t)ztz
0
tB2(t)H2(t)�H1(t)0B1(t)xtx0tB1(t)H1(t)

�
=

1

T � h�W

T�hX
t=W+1

�
H2(t)

0B2H2(t)�H1(t)0B1H1(t)
�
+ op

�
1

W

�
(25)

where the last equality follows from Lemma 1(a)�(d).

To get the sign of equation (25), we �rst de�ne Q by

Q = [E(ztz
0
t)]

1
2

�
[E(ztz

0
t)]
�1 �

�
[E(xtx

0
t)]
�1 0l�(k�l)

0(k�l)�l 0(k�l)�(k�l)

��
[E(ztz

0
t)]

1
2 (26)

as in Lemma A.4 of Clark and McCracken (2000). Clark and McCracken (2000) show that the Q

matrix is symmetric and idempotent. An idempotent matrix is positive semide�nite, which means for

all v 2 <k, vTQv � 0. It implies that24 1

W
1
2
h

t�hX
s=t�W

zsvs+h
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35 � 0 (27)

Note that the probability that [E(ztz0t)]
�1=2W

�1=2
h

Pt�h
s=t�W zsvs+h lies in the null space of Q for in�-

nitely many t approaches zero because the dimension of the null space is l < k. Thus the average of

(27) over t is positive with probability approaching one. Combining the results in equations (25) and

(27), we �nd that the sign of W (�̂22;W � �̂21;W ) is always positive with probability approaching one.
Therefore, when  = 0, �̂21;W < �̂22;W with probability approaching one.

In case 2, that is when Model 2 is the true model, we have yt+h = �0zt + vt+h = �0xt + 0wt + vt+h.
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By Assumptions 2(a)(b), the second and third terms on the right-hand sides of (23) and (24) are both

op(T
1=2=W ) and op(T=W 2), respectively. Thus they are op(1) by Assumption 1. The �rst term on the

right-hand side of equation (24) converges to the variance of vt+h as the sample size T goes to in�nity:

1

T � h�W

T�hX
t=W+1

�
yt+h � �0zt

�2
=

1

T � h�W

T�hX
t=W+1

v2t+h
p! �22: (28)

Similarly, the �rst term on the right-hand side of equation (23) converges in probability to the variance

of ut+h � yt+h � ��0xt:

�̂21;W =
1

T � h�W

T�1X
t=W+h

�
yt+h � ��0xt

�2
+ op(1)

p! E
�
(yt+h � ��0xt)2

�
= E

�
(�0xt + 

0wt + vt+h � ��0xt)2
�

= E
�
(vt+h + (�

0 � ��0)xt + 0wt)2
�

= �22 +
h
�� ��


i0 � E(xtx0t) E(xtw
0
t)

E(wtx
0
t) E(wtw

0
t)

� h
�� ��


i
> �22: (29)

Therefore, when Model 2 is true, the PMSEs satisfy P (�̂21;W > �̂22;W ) = 1 as T ! 1 and W ! 1,
where W diverges slower than T .

Proof of Theorem 2. Note that the PMSEs, �̂21;W and �̂22;W can be expanded as
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1
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respectively. If we show that each of
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are op(1=W ) when the data are generated from model 1 (case 1) and are op(1) when the data are

generated from model 2 (case 2), the proof of Theorem 2 takes exactly the same steps as the proof of

Theorem 1. Thus it remains to show that (32)�(35) are op(W�1) in case 1 and op(1) in case 2. Note

that the bias of the rolling regression estimator can be written as:
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Thus the di¤erence (34) is
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By Assumption 4(c), the summands have zero mean. By Hölder�s inequality and Assumptions 4(b)(c)(e)(f),

the second moments of the right hand side terms are O(W=T 2). By Chebyshev�s inequality, (34) is
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Op(W
1=2=T ) which is op(1=W ) by Assumption 3. It can be shown that (32) is also op(1=W ) in a similar

fashion.

The di¤erence (35) is the sum of the following three terms:

1

T � h�W

T�hX
t=W+1

vT;t+hzT;tz
0
T;tB2(t)

1

Wh

t�hX
s=t�W

zsz
0
s

�
�
� s
T

�
� �

�
t

T

��
; (38)

1

T � h�W

T�hX
t=W+1

�
�
� s
T

�
� �

�
t

T

��0 1
Wh

t�hX
s=t�W

zsz
0
sB2(t)zT;tz

0
T;tvT;t+h; (39)

1

T � h�W

T�hX
t=W+1

�
�
� s
T

�
� �

�
t

T

��0 1
Wh

t�hX
s=t�W

zsz
0
sB2(t)zT;t

�z0T;tB2(t)
1

Wh

t�hX
s=t�W

zsz
0
s

�
�
� s
T

�
� �

�
t

T

��
; (40)

Using Chebyshev�s inequality, Hölder�s inequality, Assumptions 3 and 4(b)(c)(e)(f), it can be shown

that (38), (39) and (40) are Op(W 1=2T�2), Op(W 1=2T�2) and Op(W 2T�2) all of which are op(W�1).

It can be shown that (33) is also op(1=W ) when (�) = 0 in an analogous fashion.

The rest of the proof of Theorem 2 takes exactly the same steps as the proof of Theorem 1 except

that ��, �, Bi, ut, vt, xt, yt, zt and Lemma 1 are replaced by �
�
t
T

�
, �
�
t
T

�
, �Bi

�
t
T

�
, uTt, vTt, xTt, yTt,

zTt and Lemma 2, respectively.
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Tables
Table 1. Selection Probabilities of the SIC

T The restricted model is true The unrestricted model is true
100 0.9901 0.6640
250 0.9977 0.9847
500 0.9997 1
1000 0.9997 1

Table 2. Selection Probabilities of the PMSE Criterion When
the Window Size is a Fixed Fraction of the Total Sample Size
� T The restricted model is true The unrestricted model is true
0.2 100 0.9955 0.2326

250 0.9914 0.9113
500 0.9907 0.9997
1000 0.9916 1

0.5 100 0.7459 0.8101
250 0.7353 0.9845
500 0.7383 0.9995
1000 0.7427 1

0.8 100 0.3385 0.8476
250 0.3682 0.9411
500 0.3735 0.9841
1000 0.3719 0.9985

Table 3. Selection Probabilities of the PMSE Criterion
When the Window Size is Constant

W T The restricted model is true. The unrestricted model is true.
10 100 1 0.0008

250 1 0
500 1 0
1000 1 0

50 100 0.7459 0.8101
250 0.9914 0.9113
500 1 0.9729
1000 1 0.9972

90 100 0.1937 0.8612
250 0.8959 0.9840
500 0.9954 0.9990
1000 1 1
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Table 4. Selection Probabilities of the PMSE Criterion
When the Window Size is Slowly Diverging

W T The restricted model is true. The unrestricted model is true.
T 1=3 100 N/A N/A

250 1 0
500 1 0
1000 1 0

T 1=2 100 1 0.0008
250 1 0.0016
500 1 0.0532
1000 1 0.5512

T 3=4 100 0.9500 0.5947
250 0.9749 0.9619
500 0.9883 0.9998
1000 0.9953 1

Table 5. Selection Probabilities of the SIC
T  = 0  = 0:25  = 0:5
100 0.9645 0.7548 0.9989
250 0.9815 0.9826 1
500 0.9881 1 1
1000 0.9926 1 1

Table 6. Selection Probabilities of the PMSE Criterion When
the Window Size is a Fixed Fraction of the Sample Size

� T  = 0  = 0:25  = 0:5
0.2 100 0.9364 0.5497 0.9795

250 0.9411 0.9360 1
500 0.9414 0.9981 1
1000 0.9422 1 1

0.5 100 0.8075 0.7433 0.9759
250 0.8100 0.9368 0.9998
500 0.8089 0.9914 1
1000 0.8182 0.9998 1

0.8 100 0.6724 0.6944 0.8784
250 0.6787 0.8338 0.9753
500 0.6882 0.9205 0.9971
1000 0.6963 0.9800 0.9999
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Table 7. Selection Probabilities of the PMSE Criterion
When the Window Size is Constant

W T  = 0  = 0:25  = 0:5
10 100 0.9859 0.2170 0.8569

250 0.9998 0.1118 0.9591
500 1 0.0449 0.9945
1000 1 0.0054 0.9996

50 100 0.8075 0.7433 0.9759
250 0.9411 0.9360 1
500 0.9856 0.9909 1
1000 0.9982 1 1

90 100 0.6145 0.6421 0.7845
250 0.8688 0.9568 1
500 0.9479 0.9980 1
1000 0.9885 1 1

Table 8. Selection Probabilities of the PMSE Criterion
When the Window Size is Slowly Diverging

W T  = 0  = 0:25  = 0:5
T 1=3 100 0.9983 0.0092 0.0970

250 0.9999 0.0040 0.4060
500 1 0.0008 0.7201
1000 1 0.0016 0.9959

T 1=2 100 0.9859 0.2170 0.8569
250 0.9982 0.4115 0.9987
500 0.9997 0.7848 1
1000 1 0.9901 1

T 3=4 100 0.8909 0.6889 0.9858
250 0.9213 0.9506 1
500 0.9361 0.9980 1
1000 0.9551 1 1

Table 9. Selection Probabilities When a Parameter is Time Varyingr
T SIC W = T

1
3 W = T

1
2 W = T

2
3

100 0.0489 0.0063 0.1943 0.4904
250 0.0313 0.0026 0.4567 0.8703
500 0.0215 0.0005 0.8664 0.9953
1000 0.0139 0.0015 0.9982 1.0000
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Table 10. Series Description
Label Name Period Description Source

Asset Prices
rovnght@us FEDFUNDS 1959 M1 2010 M9 Int Rate: Fed Funds (E¤ective) F
rtbill@us TB3MS 1959 M1 2010 M9 Int Rate: 3-Month Treasury Bill,

Sec Mkt Rate

F

rbnds@us GS1 1959 M1 2010 M9 Int Rate: US Treasury Constant

Maturity, 1-Yr

F

rbndm@us GS5 1959 M1 2010 M9 Int Rate: US Treasury Constant

Maturity, 5-Yr

F

rbndl@us GS10 1959 M1 2010 M9 Int Rate: US Treasury Constant

Maturity, 10-Yr

F

stockp@us SP500 1959 Q1 2010 Q3 US Share Prices: S&P 500 F
exrate@us 111..NELZF... 1960 M1 2010 M9 NEER from ULC I

Activity
rgdp@us GDPC96 1959 Q1 2010 Q3 Real GDP F
ip@us INDPRO 1959 M1 2010 M9 Industrial Prod. Index, (sa) F
capu@us CAPUB04 1959 M1 2010 M9 Capacity Utilization Rate: Manu-

facturing (sa)

F

emp@us CE16OV 1959 M1 2010 M9 Civilian Employment: thou. per-

sons

F

unemp@us UNRATE 1959 M1 2010 M9 Civilian Unemp rate (sa) F
Money

mon0@us AMBSL 1959 M1 2010 M9 Monetary Base: St. Louis Adj. (sa) F
mon1@us M1SL 1959 M1 2010 M9 Money: M1 (sa) F
mon2@us M2SL 1959 M1 2010 M9 Money: M2 (sa) F
mon3@us M3SL 1959 M1 2006 M2 Money: M3 (sa) F

Wages and Prices
ppi@us PPIACO 1959 M1 2010 M9 Producer Price Index F
earn@us AHEMAN 1959 M1 2010 M9 Hourly Earnings: Manufact. (nsa) F

Notes to Table 10. Sources are abbreviated as follows: D - Datastream, F - Federal Reserve Economic Data, I -

IMF International Financial Statistics, O - OECD Main Economic Indicators, G - Global Insight.

Table 11. QLR Break Test
P-values

Indicator P-value
A. Real Output Measures
Capacity Utilization 0.00
Unemployment 0.00
Employment 0.00
Earnings 0.00
Industrial Production 0.05
Real GDP 0.00
B. Money Measures
M0 0.00
M1 0.00
M2 0.00
M3 0.00
C. Interest Rates
Fed Funds 0.00
Real 3-mo. Treasury Bill 0.00
1-Year Bond 0.04
10-Year Bond 0.04
D. Other Nominal Measures
Stock Prices 0.03
Producer Price Index 0.00

Notes to Table 11. The table reports results for Andrews� (1993) QLR test for structural breaks implemented with a

HAC covariance estimator with a bandwidth equal to (1/5)T.
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2 Figures

Panel A. Real Ouput Measures
Capacity Utilization
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Employment
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Industrial Production
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Earnings
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Panel B. Money Measures.
Money (M0)
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Panel C. Interest Rates
Interest Rate (Fed Funds)
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Panel D. Other Nominal Measures.
Stock Prices
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