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Abstract. In models where privately informed agents interact, agents may need to form
higher order expectations, i.e. expectations of other agents’ expectations. This paper de-
velops a tractable framework for solving and analyzing linear dynamic rational expectations
models in which privately informed agents form higher order expectations. The framework
is used to demonstrate that the well-known problem of the infinite regress of expectations
identified by Townsend (1983) can be approximated to an arbitrary accuracy with a finite
dimensional representation under quite general conditions. The paper is constructive and
presents a fixed point algorithm for finding an accurate solution and provides weak condi-
tions that ensure that a fixed point exists. To help intuition, Singleton’s (1987) asset pricing
model with disparately informed traders is used as a vehicle for the paper.
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1. Introduction

Many economic decisions involve predicting the actions of other agents. For instance, firms
in oligopolistic markets may need to predict how much production capacity their competitors
will invest in and traders in financial markets may need to predict how much other traders
will be willing to pay for an asset at the next trading opportunity. In settings where all
agents are identical and share the same information, this becomes a trivial problem: An
individual agent can predict the behavior of other agents by introspection, since all agents
will choose the same action in equilibrium. The problem becomes more interesting if the
common information assumption is relaxed because predicting the actions of others is then
distinct from predicting ones own’s actions. But since other agents face a symmetric problem,
in order to predict the behavior of agents that form expectations about the actions of others,
an individual agent needs to predict other agents’ expectations about the actions of others,
and so on, leading to the well-known infinite regress of expectations.1 This paper develops
a tractable framework for analyzing linear dynamic rational expectations models in which
privately informed agents form higher order expectations. The framework is then used to
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demonstrate that the infinite regress of expectations can be approximated to an arbitrary
accuracy with a finite dimensional representation under quite general conditions.

Conceptually, there are two distinct steps involved in deriving this result. The first is
to put structure on higher order expectations by assuming that it is common knowledge
that agents form model consistent, or rational, expectations. That is, all agents know that
all agents know, and so on, that all agents form model consistent expectations given their
information sets which gives enough structure to allow any order of expectation to be deter-
mined recursively.2 The intuition is the following: Rationality of individual agents ensures
that first order expectations are model consistent in exactly the same way that expectations
are model consistent in a standard common information rational expectations model. Since
this is common knowledge, the joint distribution of first order expectations and the true
state is also known to all agents. Individual agents then form model consistent second order
expectations by exploiting this knowledge. This argument can be applied recursively to find
any order of expectation, as in the static decision settings of Morris and Shin (2002) and
Woodford (2002). Here, we show how common knowledge of model consistent expectations
can also be used to determine dynamic higher order expectations. That is, expectations
today of what other agents will expect tomorrow about an event the day after tomorrow,
and so on. This type of dynamic higher order expectations arise naturally in settings where
privately informed agents optimize intertemporally.

Deriving the dynamics of higher order expectations does not by itself solve the problem
of the infinite regress of expectations. However, common knowledge of rational expectations
gives enough structure to the problem to allow us to prove the following two results: (i) The
impact of expectations on the endogenous variables tends to zero as the order of expectations
increases, and (ii) the variance of the approximation error introduced by only considering a
finite number of orders of expectations converges to zero as the maximum order of expecta-
tions considered increases.3 These are the main results of the paper and they can be shown
to hold under quite general conditions. In the context of Singleton’s (1987) asset pricing
model it is demonstrated that an accurate finite dimensional representation exists under the
same conditions that guarantee that a solution exists when agents are perfectly informed.

Finite numbers can still be very large, and one may ask if these results are relevant
in practice. First, the paper is constructive and provides a proof that an accurate finite
dimensional representation exists as well as derive an algorithm for finding it. Secondly, and
again in the context of Singleton’s (1987) asset pricing model, it is demonstrated numerically
that the equilibrium dynamics can be captured by a low number of orders of expectation,
i.e. by a vector of dimension in the single digits. This latter result may be reassuring to
those who on grounds of human cognitive constraints doubt that economic agents form an
infinite hierarchy of higher order expectations.

2In the terminology established by Harsanyi (1967-8), there is a common prior about the true state of
nature and the joint probability distribution of the true state of nature and the “types”. Different “types”
are distinguishable only by the realizations of the private signals that they have observed in the past. The
common prior then endows agents with sufficient knowledge to form model consistent expectations of the
signals observed by other agents.

3A result with similar implications for games with countable number of players and a compact action
space can be found in Weinstein and Yildiz (2007).
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Introducing information imperfections into macro economics and finance is not a new idea
and well-known early references include Phelps (1970), Lucas (1972, 1973, 1975), Townsend
(1983), Singleton (1987) and Sargent (1991). However, recently, there has been a renewed
interest in the topic and several interesting results have emerged. First, private information
about quantities of common interest to all agents have been shown to introduce inertia
and sluggishness of endogenous variables in settings with strategic complementarities, e.g.
Woodford (2002), Morris and Shin (2006), Nimark (2008), Mackowiak and Wiederholt (2009)
and Angeletos and La’o (2009). Secondly, private information may also have normative
policy implications as shown by Angeletos and Pavan (2007), Lorenzoni (2009) and Paciello
and Wiederholt (2011). Third, in financial markets, private information may introduce
speculative behavior akin to the “beauty contest” metaphor of Keynes (1936), e.g. Allen,
Morris and Shin (2006), Bacchetta and van Wincoop (2006), Kasa, Walker and Whiteman
(2006), Grisse (2009), Cespa and Vives (2007).

In spite of the renewed interest, no general solution methodology with known properties
has emerged for solving this class of models. This paper aims to help fill this gap and in order
to understand its contribution it is useful to put it into the context of alternative solution
methods used by previous literature. As a consequence of the infinite regress expectations
one could characterize most existing models of private information and strategic interaction
as efforts to avoid modeling higher order expectations explicitly, and instead find alternative
representations where higher order expectations do not occur as state variables.4 The most
common strategy for finding a finite dimensional representation in dynamic decision models
is to make private information short lived. One way to achieve this is to assume that agents
pool their information between periods as in Lucas (1975) or to analyze finite horizon models
as in Allen, Morris and Shin (2006) and Cespa and Vives (2007). Another way to make
private information short lived to assume that all shocks are observed perfectly by all agents
with a lag. This assumption was first introduced by Townsend (1983) as a way to restrict the
dimension of the relevant state for ‘forecasting the forecasts of others’. Optimal forecast of
any variable of interest can then be constructed using projections onto the perfectly revealed
state and a finite dimensional vector of signals.

This paper demonstrates how higher order expectations can be modeled explicitly in a
dynamic setting without making additional assumptions to ensure that private information
is short lived. The approach has at least two advantages. First, the explicit modeling of
higher order expectations helps intuition as it makes the link between private information
and the dynamics of endogenous variables more transparent. Secondly, since relatively few
modeling compromises are needed, the solution method is more suitable than some of the
alternatives for empirical work. As demonstrated by Nimark (2010) and Melosi (2011) the
algorithm presented here is both flexible enough and computationally fast enough to use
for likelihood based estimation of dynamic models with private information. It thus makes
it feasible to empirically validate and to quantify the importance of the results from the
theoretical literature mentioned above.

4Notable exceptions are Woodford (2002), Morris and Shin (2002) and Adam (2007) who by restricting
their attention to models of static decisions are able to analyze higher order expectations explicitly.
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The framework presented here can also help us understand the properties of alternative
approximation approaches. Hellwig (2002) and Hellwig and Venkateswaran (2009) modifies
Townsend’s solution method by rewriting the equilibrium dynamics partly as an MA process
and setting the lag T with which the state is revealed to be a very large number. Intuitively,
it seems plausible to conjecture that in a stationary environment, the equilibrium dynamics
found using this method should converge to some limit as T tends to infinity. Here we show
formally that there does indeed exists a finite dimensional representation of the form used
by Hellwig and Venkateswaran (2009), that as the lag T tend to infinity, converges to the
true infinite dimensional solution.

Finally, a novel approach to solve dynamic models with private information that is worth
mentioning and that does not rely on restricting the dimension of the state has been proposed
by Kasa, Walker and Whiteman (2006) and further developed in Rondina and Walker (2010).
These papers present methods that can be used to ensure that equilibrium outcomes are not
perfectly revealing of the state in models where the number of signals is the same as the
stochastic dimension of the model. In this class of models, Rondina and Walker (2010) show
that endogenous variables can display waves of optimism and pessimism. The approach is
analytically elegant and complementary to the methods proposed here, which are suitable for
settings where agents face a standard filtering problem with more shocks than observables
so that non-invertibility of the equilibrium process is guaranteed.

The next section defines the relevant mathematical space for analyzing dynamic higher
order expectations and sets notation. This is followed by a brief presentation of the model
of Singleton (1987) that will serve as a vehicle for the argument of the paper. Section 4
derives properties of higher order expectations that must hold in any equilibrium. Section
5 introduces an average expectations operator and shows how it can be used to compute
equilibrium outcomes. Section 6 contains the main results of the paper. It is here that
the approximation results are presented, demonstrating that a finite number of orders of
expectations are sufficient for an arbitrarily accurate representation of equilibrium. Section
7 presents an algorithm to find the equilibrium and proves that an equilibrium exists under
quite general conditions. Section 8 presents properties of the solved model and shows that in
practise, only a low number of orders of expectations are necessary as equilibrium dynamics
converge rapidly as the maximum order of expectation is increased. Section 9 demonstrates
that the equilibrium dynamics can be recast in the form used by Hellwig and Venkateswaran
(2009) and Section 10 concludes. The Appendix contains some proofs left out of the main
text.

2. Preliminaries

Before analyzing the dynamics of higher order expectations, it is necessary to invest a
little in notational machinery as well as to define exactly what is meant by a higher order
expectation.

2.1. The inner product space L2. In the model presented in the next section, the signals
that traders observe and their expectations of fundamentals and endogenous variables are
elements of the inner product space L2, which we now define.
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Definition 1. (The inner-product space L2.) The inner product space L2 is the collection of
all random variables X with finite variance

EX2 <∞ (2.1)

and with inner-product
〈X, Y 〉 ≡ E (XY ) : X, Y ∈ L2 (2.2)

Definition 2. Let Ω be a subspace of L2. An orthogonal projection of X onto Ω , denoted
PΩX, is the unique element in L2 satisfying

〈X − PΩX,ω〉 = 0 (2.3)

for any ω ∈ Ω.

In a linear model with Gaussian shocks, conditional expectations are equivalent to orthog-
onal projections. The equality

E (X | Ω) = PΩX (2.4)

thus implies that the conditional expectations in the model share the properties of orthogonal
projections in L2. (For more details, see Brockwell and Davis 2006.)

2.2. Defining higher order expectations. There is a continuum of agents indexed by
j ∈ (0, 1). Agent j’s first order expectation of a variable θt ∈ L2 conditional on his period t
information set Ωt(j) is denoted as

θ
(1)
t (j) ≡ E [θt | Ωt(j)] (2.5)

The average first order expectation θ
(1)
t is obtained by taking averages of (2.5) across agents

θ
(1)
t ≡

∫
E [θt | Ωt(j)] dj (2.6)

The average second order expectation is obtained by taking the average of agents’ expecta-
tions of (2.6)

θ
(2)
t ≡

∫
E
[
θ

(1)
t | Ωt(j)

]
dj (2.7)

and so on so that the kth order expectation of θt is given by

θ
(k)
t ≡

∫
E
[
θ

(k−1)
t | Ωt(j)

]
dj (2.8)

It is sometimes useful to define the zero order expectation of θt as the actual value of the
variable

θ
(0)
t ≡ θt (2.9)

Full information rational expectations implies that the variable θt is common knowledge so

that θt = θ
(k)
t : k = 1, 2, ... for all periods t. We call a sequence of expectations, for instance

from order zero to k, a hierarchy of expectations from order zero to k. Vectors consisting of
a hierarchy of expectations are denoted

θ
(0:k)
t =

[
θ

(0)
t θ

(1)
t ... θ

(k)
t

]′
(2.10)
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2.2.1. Expectations about future expectations. In later sections, it will prove useful to also
have a notation for the average expectation held in period t of the average expectation held
in period t + 1 of the value of a variable in period t + 2, and so on. For that purpose, we
define the following notation. The first order expectation in period t of θt+1 is defined as

θ
(1)
t+1|t ≡

∫
E [θt+1 | Ωt(j)] dj (2.11)

Similarly, the average expectation in period t of the average expectation in period t + 1 of
θt+2 is defined as

θ
(2)
t+2|t+1|t ≡

∫
E
[
θ

(1)
t+2|t+1 | Ωt(j)

]
dj (2.12)

Generalizing this notation

θ
(k)
t+k|···|t ≡

∫
E
[
θ

(k−1)
t+k|···|t+1 | Ωt(j)

]
dj (2.13)

3. The Singleton Asset Pricing Model

This section presents a version of the model of Singleton (1987) with disparately informed
traders that will serve as the vehicle for the argument in the rest of the paper. Singleton
presents and solves a number of models that differ slightly in their patterns of persistence and
assumed structural parameter values. In what he refers to as Models 1-7, the unobservable
fundamental process follows an MA(2) process and in Models 8-12 it follows an AR(1). In
this first class of models, a finite dimensional state representation can be found without
making strong assumptions about the revelation of the shocks since a private signal about
a MA(2) process does not carry information that is useful for forecasts beyond a two period
horizon. Private information about an AR(1) process on the other hand is long lived. To
solve the second class of models, Singleton assumes that the innovations to the AR(1) process
are perfectly and publicly observed with a two period lag. This allows him to derive a finite
dimensional state representation. The rest of this paper uses the same set up as in Singleton’s
Models 8-12 as a vehicle to show how dynamic models with private information can be solved
without assuming that the shocks to the hidden process ever become common knowledge.

3.1. Model Set Up. There is a continuum of competitive traders indexed by j ∈ (0, 1) who
at time t divide their wealth between a risky asset with price pt and coupon payment ct and
a risk free asset with return r. The wealth of trader j then evolves according to

wt+1(j) = zt(j) [pt+1 + ct+1]− [zt(j)pt − wt(j)] (1 + r) (3.1)

where zt(j) is the asset holdings of trader j who chooses his portfolio to maximize

E
[
−e−γwt+1(j) | Ωt(j)

]
(3.2)

and Ωt(j) is the information set of trader j at time t (defined below). The coupon payments
follow the known autoregressive process

ct = c+ ψct−1 + ut : ut ∼ N
(
0, σ2

u

)
(3.3)
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Maximizing (3.2) subject to (3.1) yields agent j’s optimal demand for the risky asset

zdt (j) =
(E [pt+1 | Ωt(j)]− (1 + r) pt) + (c+ ψct)

γδ
(3.4)

where δ is the conditional variance of (pt+1 + ct+1) . The supply of the asset at time t, zst ,
depends linearly on the price pt and additively on the persistent stochastic shock θt and the
i.i.d. disturbance εt

zst = ξpt + θt + εt : εt ∼ N
(
0, σ2

ε

)
(3.5)

θt = ρθt−1 + vt : vt ∼ N
(
0, σ2

v

)
(3.6)

Equating net demand and supply ∫
zdt (j) = zst (3.7)

yields the equilibrium price

pt = λ

(∫
E [pt+1 | Ωt(j)] dj

)
+ λψct − δγλ [θt + εt] (3.8)

where

λ ≡ 1

ξγδ + (1 + r)
. (3.9)

For later reference, note that 0 < λ < (1 + r)−1 .

3.2. Traders’ Information Sets. The basic structure of the model described above is
identical to Model 8-12 in Singleton (1987). Where this paper differ from Singleton’s is in
the assumption on what traders can observe. In Singleton’s paper the information set ΩS

t (j)
of trader j at time t is given by

ΩS
t (j) = {st−T (j), pt−T , ct−T : T ≥ 0; vt−T , εt−T : T ≥ 2} (3.10)

where
st(j) = θt + ηt(j) : ηt(j) ∼ N

(
0, σ2

η

)
∀ j (3.11)

Each trader observes the price of the asset, pt, and the coupon payment, ct, perfectly. The
persistent component θt of the supply process is not perfectly revealed by the observation of
the price due to the unobservable transitory supply shock εt. The transitory supply shock εt
thus serves the same purpose here as the noise traders do in Admati (1985). Trader j also
observes a private signal st(j) of the persistent supply process θt and it is due to the private
measurement error ηt(j) that the need to ’forecast the forecasts of others’ arises. Singleton
uses a similar method to overcome the infinite dimension of the state as Townsend (1983),
i.e. he assumes that the shocks to the supply process become known to all traders after a
finite number of periods (which in Singleton’s case is after two periods). This allows for a
finite dimensional time series representation of the model.

While the assumption of public revelation of shocks with a lag is convenient from a model-
ing perspective, it is not an assumption that is always realistic. We want to solve the model
without imposing that all shocks are observed perfectly after a finite number of periods. The
information set of our trader is therefore given by

Ωt(j) = {st−T (j), pt−T , ct−T : T ≥ 0} (3.12)
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Traders thus form expectations about the future price of the asset by observing the private
signal st(j), the commonly observable price pt and the coupon payment ct. It is common
knowledge that all traders choose their portfolio to maximize (3.2) subject to the structural
equations (3.3) - (3.6).

3.3. The full information solution. To solve the model we need to integrate out the
average expectations term

∫
E [pt+1 | Ωt(j)] dj from equation (3.8). Under full information,

this could be done by iterating (3.8) forward

pt =
∞∑
k=1

λkE (ct+k | ct)− δγλ
∞∑
k=0

λkE (θt+k | θt)− δγλεt. (3.13)

Using the law of iterated expectations, (3.13) then simplifies to

pt =
λψ

1− λψ
ct −

δγλ

1− λρ
θt − δγλεt (3.14)

if |λψ| < 1 and |λρ| < 1.

3.4. A complication. With privately informed traders, we can still use forward substitution
of the Euler equation (3.8). This yields the equilibrium price as a function of higher order
expectations of future values of the persistent supply process θt

pt =
λψ

1− λψ
ct − δγλ

∞∑
k=0

λkθ
(k)
t+k|···|t − δγλεt (3.15)

where we used the notation for higher order expectations of future values of θt defined
in Section 2.2.1. The current price of the asset thus depends on the average expectation in
period t of θt+1, the average expectation in period t of the average expectation in period t+1
of θt+2 and so on. As has been noted before, e.g. Allen, Morris and Shin (2006), average
higher order expectations, i.e. expectations about other agent’s expectations generally differ
from average first order expectations and we cannot use the law of iterated expectations to
integrate out the higher order expectations in the price equation (3.15). To see why, note
that the law of iterated expectations can loosely speaking be attributed to the fact that
agents do not believe that they have ‘incorrect’ expectations so that they do not expect to
revise their own expectations in a particular direction. That is, first order expectations are
martingales. The same is not true about expectations about other agents’ expectations. For
instance, an investor may believe that the average ‘market expectation’ of the fundamental
value of an asset is incorrect, but as more information becomes available to others over time
the ‘market expectation’ will be revised towards what the investor believes is the asset’s true
value. It is the fact that it can be rational to expect others to revise their expectations in
a certain direction that makes the law of iterated expectations inapplicable to higher order
expectations. It is also this fact that makes the dynamics of models with private information
interesting.
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3.5. The strategy. The rest of the paper is devoted to finding a finite dimensional repre-
sentation of the equilibrium price (3.15) of the form

pk,t =
λψ

1− λψ
ct − akθ

(0:k)
t − δγλεt (3.16)

that is arbitrarily close to the solution to the equilibrium price (3.15) and where a′
k

and θ
(0:k)
t

are finite dimensional vectors. We will demonstrate that the discounted sum of higher order
expectations of all future values of θt in (3.15) can be approximated by a linear function of
a finite number of orders of expectations of the current value of θt so that the variance of
approximation error ∆k,t in

δγλ

∞∑
k=0

λkθ
(k)
t+k|···|t ≡ akθ

(0:k)
t + ∆k,t (3.17)

can be made arbitrarily small by choosing a large enough k. To do so, we will conjecture (and
later verify) that there exists a law of motion for the hierarchy of higher order expectations
of the current value of θt of the form

θ
(0:k)
t = Mθ

(0:k)
t−1 +Nwt : wt ∼ N(0, I) (3.18)

The solution will then consist of the equilibrium price (3.16) and the law of motion for the
state (3.18).

The plan from here on is the following. First we will derive some properties of higher
order expectations that must hold in any equilibrium. We then show how the price of the
asset can be expressed as a function of the conjectured law of motion (3.18). This will
give enough structure to the problem to show that there exists a representation with a
finite number of orders of expectations that can be made arbitrarily close to the infinite
dimensional representation. These results are quite general in that they will hold under the
same conditions that guarantee that a stable solution exists under full information, i.e. that
|λρ| < 1.

4. Equilibrium properties of higher order expectations

It is possible to characterize some properties of higher order expectations using only that
it is common knowledge that agents form expectations rationally. The properties derived in
this section will be important for the approximation results presented in Section 6 below, but
they also help develop intuition by making the link between common knowledge of rational
expectations and the properties of higher order expectations explicit.

4.1. First order expectations. We start by establishing some properties of first order
expectations. This may seem pedantic, since properties of first order expectations are well
known. However, this will lay the groundwork for recursively deriving similar, but more
interesting, properties of higher order expectations. We start by defining a useful subspace
of L2.
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Definition 3. The (closed) subspace Ωt(j) ≡ sp {st−T (j), pt−T , ct−T : T ≥ 0} is the space
spanned by the history of variables observed by trader j at period t. Projections onto Ωt(j)
are denoted Pt,j.

From the projection theorem (e.g. Brockwell and Davis (2006) ) we then know that there

exist an element θ
(1)
t (j) ∈ L2 such that〈

θt − θ(1)
t (j), ωj

〉
= 0 ∀ ωj ∈ Ωt(j) (4.1)

that is, there exists a minimum variance expectation of θt conditional on trader j’s informa-
tion set. Given the linear structure of the model, past realizations of vt, εt and ηt(j) form an
orthogonal basis for the subspace Ωt(j). The conditional expectation E [θt | Ωt(j)] thus has
a representation of the form

θ
(1)
t (j) = A(L)vt +B(L)εt + C(L)ηt(j) (4.2)

where by the ex ante symmetry of traders, the (potentially infinite order) lag polynomials
A(L), B(L) and C(L) are common across traders. Expectations will differ across traders
only because of different realizations of the idiosyncratic noise shocks ηt(j).

4.2. The variance of first order expectations. Here, the orthogonality property (4.1)
and the representation (4.2) will be used to prove that the variance of average higher order
expectations are bounded by the variance of lower order expectations. This result will later
be used for the approximation results in Section 6 as well as for the existence results in
Section 7. We start by showing that the variance of trader j’s first order expectations of θt
is bounded by the variance of the actual process θt.

Lemma 1. The variance of trader j’s expectation of θt is bounded by the variance of θt, i.e.

E [θt]
2 ≥ E

[
θ

(1)
t (j)

]2

(4.3)

Proof. Define trader j’s first order expectation error ε
(1)
t (j) as

θt − θ(1)
t (j) ≡ ε

(1)
t (j) (4.4)

and rearrange

θt ≡ θ
(1)
t (j) + ε

(1)
t (j) (4.5)

The variance of the l.h.s. is E [θt]
2 . By (4.1), the error ε

(1)
t (j) is orthogonal to θ

(1)
t (j) ∈ Ωt(j)

so the variance of the r.h.s. is simply the sum of the variances of the individual terms, which
gives the equality

E [θt]
2 = E

[
θ

(1)
t (j)

]2

+ E
[
ε

(1)
t (j)

]2

(4.6)

The proof then follows from the fact that variances are non-negative

0 ≤ E
[
ε

(1)
t (j)

]2

(4.7)

so that

E [θt]
2 ≥ E

[
θ

(1)
t (j)

]2

(4.8)

�
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According to the representation (4.2), trader j′s expectation has both a common and
idiosyncratic component. The fact that the idiosyncratic component is orthogonal to the
common component allows us to prove our next result.

Lemma 2. The variance of the average expectation of θt is bounded by the variance of θt,
i.e.

E [θt]
2 ≥ E

[
θ

(1)
t

]2

(4.9)

Proof. The representation (4.2) implies that the variance of trader j’s first order expectations
is the sum of the variances of the terms in the MA representation

E
[
θ

(1)
t (j)

]2

= E [A(L)vt]
2 + E [B(L)εt]

2 + E [C(L)ηt(j)]
2 (4.10)

Since
∫
ηt(j)dj = 0∀t the average first order expectation is simply

θ
(1)
t = A(L)vt +B(L)εt +

∫
C(L)ηt(j)dj (4.11)

= A(L)vt +B(L)εt (4.12)

with variance

E
[
θ

(1)
t

]2

= E [A(L)vt]
2 + E [B(L)εt]

2 (4.13)

Combining (4.8) and (4.10)

E [θt]
2 ≥ E

[
θ

(1)
t (j)

]2

(4.14)

= E [A(L)vt]
2 + E [B(L)εt]

2 + E [C(L)ηt(j)]
2 (4.15)

≥ E [A(L)vt]
2 + E [B(L)εt]

2 (4.16)

= E
[
θ

(1)
t

]2

(4.17)

gives the desired result where the third line follows from the fact that 0 ≤ E [C(L)ηt(j)]
2

and the last equality is from (4.13) �

4.3. Variance bounds for higher order expectations.

Proposition 1. The variance of higher order expectations of θt are bounded by the variance
of lower order expectations, i.e.

E
[
θ

(k)
t

]2

≥ E
[
θ

(k+1)
t

]2

(4.18)

Proof. To prove the proposition, replace the definition of trader j’s first order expectations

error ε
(1)
t (j) in the proof of Lemma 1 with the definition of the k order expectation error

θ
(k−1)
t − θ(k)

t (j) ≡ ε
(k)
t (j) (4.19)

Noting that the k order error ε
(k)
t (j) is orthogonal to θ

(k)
t (j) ∈ Ωt(j) allows for recursively

establishing the proposition for k = 2, 3, ...by following the same steps as in the proofs of
Lemma 1 and 2. �
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It is straightforward to extend this result to higher order expectations of future values of
θt.

Proposition 2. The variance of higher order expectations of future expectations of θt are
bounded by the variance of lower order expectations, i.e.

E
[
θ

(k−1)
t+k|···|t+1

]2

≥ E
[
θ

(k)
t+k|···|t

]2

(4.20)

Proof. To prove the proposition, replace the definition of trader j’s first order expectations

error ε
(1)
t (j) in the proof of Lemma 1 with the definition of the period t first order expectation

error about θt+1

θt+1 − θ(1)
t+1|t(j) ≡ ε

(1)
t+1|t(j) (4.21)

Using the same steps as in Lemma 1and Lemma 2, it can be established that

E [θt+1]2 ≥ E
[
θ

(1)
t+1|t

]2

(4.22)

so that average first order expectation about future values of θ are also bounded since
E [θt+1]2 = E [θt]

2. Defining a k order future expectation error

θ
(k−1)
t+k|···|t+1 − θ

(k)
t+k|···|t(j) ≡ ε

(k)
t+k|···|t(j) (4.23)

and again repeating the steps of Lemma 1 and 2 establishes the desired result for k =
2, 3, ... �

As noted above, these results will prove useful for the purpose of finding an accurate
solution to the model, but they also illustrate well how the assumption of common knowledge
of rational (i.e. model consistent) expectations lets us derive properties of higher order
expectations. It is the fact that first order expectations are formed rationally and that this
is common knowledge that allows us to derive the variance bounds above. In the absence
of common knowledge of model consistent expectations, we would have to make alternative
assumptions about how traders in the model believe that other traders form expectations
in order to determine how traders form second order expectations. Whether the variance
bounds derived above would hold or not, would then depend on the properties of the second
order beliefs about how other traders form expectations.

4.4. Properties of the law of motion for higher order expectations. In the solution
algorithm proposed in Section 7, we conjecture (and verify) that the hierarchy of higher
order expectations of θt follows a vector autoregressive process of the form

θ
(0:k)
t = Mθ

(0:k)
t−1 +Nwt : wt ∼ N(0, I) (4.24)

We now prove that (4.24) must be a stable process.

Proposition 3. If θt follows a stable process, i.e. if |ρ| < 1, then common knowledge of
rational expectations implies that max |eig (M)| < 1.

Proof. The proof is by contradiction and is a direct corollary of Proposition 1. Consider the
case if max |eigM | = 1. This implies that at least one k 6= 0 order of expectation of θt has
a unit root and as a consequence that the variance of at least one k′ order of expectation of
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θt is increasing without bound in t. But from Proposition 1 we know that the variances of
higher order expectations are bounded by the variance of θt and therefore (4.24) must be a
stable process, i.e. max |eig (M)| < 1. �

In this section, we have derived some properties of higher order expectations that must hold
in any equilibrium when it is common knowledge that traders form expectations rationally.
Specifically, we showed that the variance of higher order expectations are bounded using
orthogonality properties of expectation errors. While based on a simple insight, these results
will later turn out to be very useful for both deriving an accurate finite dimensional solution
as well as for demonstrating that such a solution exists.

5. The equilibrium price

This section demonstrates how a simple matrix operator can be used to compute the
equilibrium price for a given law of motion of the hierarchy of higher order expectations.
The law of motion for the hierarchy of expectations is derived in the Section 7.

5.1. An average higher order expectations operator. To compute the higher order
expectations we will use the linear operator H : R∞ → R∞ defined so that

θ
(k+1:∞)
t = Hθ

(k:∞)
t (5.1)

That is, H applied to a hierarchy of expectations move the hierarchy one step up in order

of expectations. If the state of the economy is given by θ
(0:∞)
t then the average expectations

of the true state is given by Hθ
(0:∞)
t and the operator H thus annihilates the first element

of a vector of higher order expectations. The operator is given by the matrix

H ≡
[

0 I∞
]

(5.2)

where I∞ is the identity matrix.5

5.2. Equilibrium asset prices. We can now derive an explicit expression for the equilib-
rium price of the asset. Given the conjectured law of motion (3.18) and the higher order
expectations operator we can now compute the higher order expectations of the future values
of θt in the forward iteration (3.15) of the price Euler equation (3.8).

The one step ahead average expectation of θt is simply given by first applying H to the
complete hierarchy of expectation to get the average expectation of the state and then apply
M to form the average expectation of the state in the next period. The average expectation
in period t of the value of the persistent supply shock θt is then given by∫

E [θt+1 | Ωt(j)] dj = e′1MHθ
(0:∞)
t (5.3)

5Allen, Morris and Shin (2006) defines an average belief operator E : R2 → R2. The operator E maps the
average k order expectations of the average signal vector into k+1 order expectations of the same vector and
can be used to compute higher order expectations of the state since the static setting results in a proportional
relationship between higher order beliefs. In our model, the elements of N in the law of motion (3.18) could
be generated by a similar operator if θt was a non-persistent process.
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where e1 is a vector with 1 in the first element and zeros elsewhere. Using similar reasoning,
the expectation in period t of the average expectation in period t + 1 of θt+2 is then given
by

θ
(2)
t+2|t+1|t = e′1 (MH)2 θ

(0:∞)
t (5.4)

More generally, the k order expectation of θt+k is given by

θ
(k)
t+k|···|t = e′1 (MH)k θ

(0:∞)
t (5.5)

Substituting (5.5) into (3.15) gives the equilibrium price pt as a function of the period t
hierarchy of higher order expectations of θt as

pt = −δγλ
∞∑
k=0

e′1 (λMH)k θ
(0:∞)
t − δγλεt +

λψ

1− λψ
ct (5.6)

where we used that θt = e′1θ
(0:∞)
t . The relationship between M and MH is thus analogous

to that of physical and risk neutral dynamics in the finance literature. Of course, the
interpretation is different. In the standard framework, fundamentals follows the physical
measure but assets are priced as if traders are risk neutral and fundamentals follow the
risk neutral measure. Here, fundamentals follow the process described by M which is thus
analogous to the physical measure, but the asset is priced as if traders observed the true
state and the fundamentals followed a VAR process with coefficient matrix MH.

6. A Finite Dimensional Approximation

In the previous sections, several properties of higher order expectations were derived that
must hold in equilibrium. Though some of these properties may be interesting per se, here
we show how they can be used to prove a practical result: The equilibrium characterized by
an infinite number of orders of expectations can be approximated to an arbitrary accuracy
by a finite dimensional system. That is, for practical purposes, we do not need to consider
the complete hierarchy of expectation, but instead we can find a maximum (and finite) order
of expectation that we need to consider, for any desired degree of accuracy. We denote this
maximum order of expectation k.

Two results are proved formally here. First, we show that the weight on higher order
expectations tend to zero as the order of expectation increases. Secondly, we show that the
variance of the approximation error tends to zero as we increase the maximum number of
orders of expectations k. Both results are derived using a similar technique. First, we define
an infinite series indexed by the number of orders of expectations. We then show that the
series converges. Since convergence of an infinite series implies that the individual elements
in the sequence tend to zero (while the converse is not generally true), convergence of a series
indexed by the maximum order of expectation considered implies that the cumulative effect
of terms depending on orders of expectations higher than k tend to zero.

6.1. The diminishing impact of higher order expectations. The solved model will
deliver an expression for the equilibrium price pt as a function of the current hierarchy of
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expectations about θt of the form

pk,t = akθ
(0:k)
t − δγλεt +

λψ

1− λψ
ct (6.1)

where ak is a row vector with elements defined as

ak ≡
[
a0 a1 · · · ak

]
From the price equation (3.8) we already know that a0 = −δγλ. The next proposition
establishes that as k →∞ the coefficient ak tends to zero.

Proposition 4. For |λρ| < 1,there exists a finite number k such that

|ak + ak+1 + ...+ ak+n−1 + ak+n| < ε (6.2)

for any ε > 0 , for all n ≥ 1 and k > k.

Proof. The result is an immediate implication of the fact that {Σak}∞k=0 is a convergent
series, which we now establish. To do so, we will use the fact that in the special case when

θt = θ
(k)
t = 1∀k the equilibrium price equals the sum of the elements in the row vector a.

First, note that (if by chance), all orders of expectations coincide so that θt = θ
(k)
t ∀ k then

common knowledge of rational expectations implies that higher order expectations about the
future values of θt must coincide with first order expectations. That is, if there is agreement
about the current state, there must also be agreement about expected future states so that

e′1 (MH)k θ
(0:∞)
t = e′1 (MH)k


θt
θt
...
θt

 (6.3)

= ρkθt : k = 0, 1, 2... (6.4)

Now, setting θ
(k)
t = 1 : k = 0, 1, 2...

e′1 (MH)k × 1∞ = ρk : k = 0, 1, 2... (6.5)

and substituting the right hand side of (6.5) into the price equation (5.6) gives

pt = −δγλ
∞∑
k=0

(λρ)k − δγλεt +
λψ

1− λψ
ct (6.6)

or that

−δγλ
∞∑
k=0

e′1 (λMH)k × 1∞ = −δγλ
∞∑
k=0

(λρ)k (6.7)

= − δγλ

1− λρ
(6.8)

Intuitively, if all orders of expectations coincide then the price must equal the full information
price (adjusted for the appropriate private information values of λ and δ). By definition, the
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l.h.s. of (6.7) equals the infinite sum of the elements of the row vector a∞, i.e.

−δγλ
∞∑
k=0

e′1 (λMH)k × 1∞ ≡ a∞ × 1∞ (6.9)

=
∞∑
k=0

ak (6.10)

Combining (6.8) and (6.10) establishes the limit of {Σak}∞k=0 as
∞∑
k=0

ak = − δγλ

1− λρ
(6.11)

which is finite. Since the infinite series (6.11) converges, there exists a number k such that

|ak + ak+1 + ...+ ak+n−1 + ak+n| < ε for all n ≥ 1 and k > k (6.12)

(see for instance Ok 2007). �

Proposition 4 thus establishes that the coefficients ak that multiply the k order expectation
in the conjectured solution tend to zero as the order of expectation increases, and that
this will hold under the same conditions that guarantee that a stable solution to the full
information model exists, i.e. that |λρ| < 1.

6.2. The variance of the approximation error. Above, we demonstrated that the im-
pact of expectations on the price tend to zero as the order of expectations increases. Com-
bined with the fact that the variance of higher order expectations are bounded, one might
conjecture that the variance of the contribution of the higher order expectation to the price
also tend to zero as the order of expectation increases. Here, we will now demonstrate that
this is indeed the case but using a more direct approach that does not involve using the
result of Proposition 4 above. Instead, we will define a particular convergent series (again
indexed by k) so that the remainder of the sum corresponds to the variance of the approx-
imation error. Since the series converges, the remainder can be made arbitrarily small for
large enough k. To prove this result, we will need the following lemma.

Lemma 3. The variance of the price pt is finite.

Proof. The proof uses that the higher order expectations about future expectations of future
values of θt in the price equation (3.15) are discounted by |ρ| < 1 and have finite variances.
The complete proof can be found in the Appendix. �

Definition 4. The approximation error ∆k,t associated with considering only k orders of
expectations is defined as

∆k,t ≡ pt − pk,t (6.13)

where

pt = akθ
(0:∞)
t − δγλεt +

λψ

1− λψ
ct (6.14)

and

pk,t = akθ
(0:k)
t − δγλεt +

λψ

1− λψ
ct (6.15)
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so that

∆k,t =
(
a−

[
ak 0

])
θ

(0:∞)
t (6.16)

Proposition 5. The variance of the approximation error ∆k,t tends to zero as k tends to
infinity.

Proof. First, define the sequence{zk}

{zk} =


k∑
j=0

k∑
i=0

aiajcov
[
θ

(i)
t , θ

(j)
t

] (6.17)

and denote its limit z∞

z∞ ≡
∞∑
j=0

∞∑
i=0

aiajcov
[
θ

(i)
t , θ

(j)
t

]
(6.18)

If the limit exist we know that there exists a k such that

|z∞ − zk| < ε : ε > 0 (6.19)

From (6.16) the variance of the approximation error is given by

E
(
∆k,t

)2
=

(
a−

[
ak 0

])
E
(
θ

(0:∞)
t θ

′(0:∞)
t

) (
a−

[
ak 0

])′
(6.20)

=
∞∑

j=k+1

∞∑
i=k+1

aiajcov
[
θ

(i)
t , θ

(j)
t

]
(6.21)

which equals the difference between zk and its limit so that

z∞ − zk =
∞∑

j=k+1

∞∑
i=k+1

aiajcov
[
θ

(i)
t , θ

(j)
t

]
(6.22)

To prove that the approximation error tend to zero as k increases it is thus sufficient to show
that the sequence {zk} converges, i.e. that the limit z∞ exists and is finite. Taking variances
of both sides of (6.1) as k → ∞, we find that the variance of the equilibrium price is given
by

E [pt]
2 =

∞∑
j=0

∞∑
i=0

aiajcov
[
θ

(i)
t , θ

(j)
t

]
(6.23)

+2δγλ
∞∑
j=0

ajcov
[
θ

(j)
t , εt

]
+ (δγλ)2 σ2

ε +

(
λψ

1− λψ

)2

σ2
c

By Lemma 3 we know that the variance of the price is finite so that E [pt]
2 < ∞ . This in

turn implies that each term on the right hand side of (6.23) also must be finite. Since the



18 KRISTOFFER P. NIMARK

first term on the right hand side of (6.23) equals the limit z∞ we know that {zk} converges.
There thus exists a finite k such that

E (∆k)
2 = |z∞ − zk| (6.24)

< ε : 0 < ε (6.25)

where the first line follows from (6.20) - (6.22) and the second line follows from (6.19) and
the fact that {zk} converges. �

The equilibrium dynamics of the model can thus be approximated to an arbitrary accuracy
by a finite dimensional representation. In the section following the next, we demonstrate
that “finite” can be a quite small number so that he results of this section are practically
useful. But first, we turn to how an equilibrium representation can be found in practice.

7. A Solution Algorithm

Solving the model implies finding the matrices M and N in the law of motion for the
hierarchy of expectations, the row vector a in the price equation and the conditional variance
δ. This section presents an iterative solution algorithm and shows that a solution exists under
general conditions using a version of Brouwer’s fixed point theorem.

There are three basics steps in each iteration (indexed by s) of the algorithm (i) For given
a given law of motion of the hierarchy of expectations described by Ms and Ns and a given

conditional variance δs, find the row vector ak,s that maps the hierarchy of expectations θ
(0:k)
t

into the price pt. (ii) Conditional on given values of Ms, Ns, ak,s and δs find the new matrices
Ms+1 and Ns+1 of the law of motion of the hierarchy of expectations. (iii) For given Ms+1,
Ns+1, ak,s and δs find the new conditional variance δs+1. These steps are described in detail
below. From now on, all derivations pertain to a finite dimensional approximation of the
equilibrium. To simplify notation, subscripts indicating that vectors and matrices are finite
dimensional have been suppressed at instances where this will not cause confusion.

7.1. Step 1: Computing the price. The first step is to find the price of the asset as a

function of the contemporaneous expectation hierarchy of the supply disturbance θ
(0:k)
t for a

given law of motion of the hierarchy and a given conditional variance of (pt + ct), δ. That is,
we want to find ak in

pt = akθ
(0:k)
t − δγλεt +

λψ

1− λψ
ct (7.1)

as a function of M and δ. This simply entails computing the infinite sum in (5.6) so that

akθ
(0:k)
t = −δγλ

∞∑
k=0

e′1 (λMH)k θ
(0:k)
t (7.2)

For a finite k and given Ms and δs implies that ak,s is given by

ak,s = −δsγλse′1 (I − λsMsH)−1 (7.3)

where we know that λsMsH is stable matrix (since the variance of pt is finite). The price
function thus resembles a standard discounted expected sum of future fundamentals, but
where the coefficient matrix M from the true law of motion is replaced with MH.
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7.2. Step 2: The dynamics of the expectation hierarchy. The state consists of the
actual supply disturbance θt and the hierarchy of expectations of the supply disturbance

θ
(0:k)
t , so the law of motion of the state is determined by the actual supply process (3.6) and

the law of motion of the higher order estimates. The Kalman filter thus plays a dual role: it
both determines traders’ estimate of the state as well as the law of motion of the very same
state that the traders are estimating. To find the updated law of motion Ms+1 and Ns+1 we
first derive the recursive updating equation for trader j’s estimate of the hierarchy of higher
order expectations conditional on the the previous law of motion Ms and Ns. We then take
averages of this recursive updating equation to find the new law of motion for the hierarchy
of average expectations Ms+1 and Ns+1.As inputs, we will also need the vector ak,s from the
s iteration of the price function (7.3) and conditional variance δs.

7.2.1. Trader j’s estimate of the hierarchy. For given values Ms and Ns, the conjectured law
of motion for the hierarchy (3.18) and trader j’s information set (3.12) can be written as a
state space system of the form

θ
(0:k)
t = Msθ

(0:k)
t−1 +Nswt (7.4)

St(j) = Lsθ
(0:k)
t +Qsct +

[
R1s R2

] [ wt
wt(j)

]
:

[
wt
wt(j)

]
∼ N(0, I) (7.5)

where the following definitions were used

St(j) =

[
st(j)
pt

]
, Ls =

[
e′1

ak,s

]
, Q =

[
0
λsψ

1−λsψ

]
R1s =

[
0 0
0 −δsγλsσε

]
, R2 =

[
ση
0

]
The subscript s indicates that a matrix may be changing at each iterative step in the algo-
rithm. Trader j estimates the hierarchy of contemporaneous expectations recursively, using
the Kalman filter updating equation

θ
(1:k)
t (j) = Msθ

(1:k)
t−1 (j) +Ks

[
St(j)− LsMsθ

(1:k)
t−1 (j)−Qct

]
(7.6)

The Kalman gain Ks is given by

Ks = (PsL
′
s +NsR

′
s1) (LsPsL

′
s +RsR

′
s)
−1 (7.7)

Ps = Ms

(
Ps − (PsL

′
s +NsR

′
1s) (LsPsL

′
s +RsR

′
s)
−1 (PsL

′
s +NsR

′
1s)
′)
M ′

s (7.8)

+NsN
′
s

and where Rs =
[
R1s R2

]
. Note that the s subscript on K and P denotes the step in the

solution algorithm, not the time period. That is, for given Ms and Ns, we compute the time
invariant, or steady state, Kalman gain Ks.

7.2.2. The average expectation hierarchy. We want to find the conjectured vector AR(1) law
of motion (3.18) for the hierarchy of average contemporaneous expectations, that is, we
want to find the matrices M and N . We thus need to integrate the state updating equation
(7.6) across traders and express all remaining terms as functions of the lagged expectation
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hierarchy θ
(0:k)
t−1 and the aggregate shocks wt. Use the definition of the private signal st(j)

(3.11), the price equation (3.15) and that
∫
R2wt(j) dj = 0 to write the average signal St ≡∫

S(j) dj as

St = LsMsθ
(0:k)
t−1 + LsNswt +R1swt (7.9)

Substituting the average signal (7.9) into the updating equation (7.6) gives the law of motion
of the average of traders’ estimate of the state

θ
(1:k)
t = (I −KsLs)Msθ

(1:k)
t−1 +KsLsMsθ

(0:k)
t−1 + (KsLsNs +KsR1s)wt (7.10)

The final step to get the conjectured form (3.18) is to collect terms and append the actual
supply disturbance process

θt = ρθt−1 + vt (7.11)

to the updating equation (7.10) to get[
θt

θ
(1:k)
t

]
=

[
ρ 0
0 0

] [
θt−1

θ
(1:k)
t−1

]
+

[
0

KsLsMs

] [
θt

θ
(1:k)
t

]
(7.12)

+

[
0 0
0 (I −KsLs)Ms

] [
θt−1

θ
(1:k)
t−1

]
+

[
σve

′
1

(KsLsNs +KR1)

]
wt

where the last row and/or columns of the matrices have been cropped to make the matrices
conformable (i.e. implementing the approximation that expectations of order k > k are

redundant, and therefore setting θ
(k)
t = 0 : k > k). Equating coefficients in (7.12) and (3.18)

then gives the updated matrices Ms+1 and Ns+1

Ms+1 =

[
ρ 0
0 0

]
+

[
0

KsLsMs

]
+

[
0 0
0 (I −KsLs)Ms

]
(7.13)

Ns+1 =

[
σve

′
1

(KsLsNs +KsR1s)

]
(7.14)

7.3. Step 3: The conditional variance. The conditional variance of (ct+1 +pt+1), δ, is the
variance of investors’ forecast error of the sum ct+1 +pt+1 based on their period t information
sets. The conditional forecast error is given by

δs+1 = âk,sP̂sâ
′
k,s

+

[
1 + 2

λsψ

1− λsψ
+

(
λsψ

1− λsψ

)2
]
σ2
u (7.15)

âk,s =
[

ak,s −δsγλs
]

(7.16)

where P̂s is the one period ahead joint forecast error covariance matrix of εt and the hierarchy

of expectations of θt. Details on how to compute P̂s are given in the Appendix.

7.4. The existence of a fixed point. Solving the model implies finding a fixed point of
equations (7.3),(7.7),(7.8),(7.13),(7.14) and (7.15). We now prove the existence of such a
fixed point using Brouwer’s fixed point theorem, which we first restate.6

6The relevant version of Brouwer’s fixed point theorem is for compact subsets of Rn and is also known as
Kakutanis’ fixed point theorem.
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Lemma 4. (Brouwer fixed point theorem) Every continuous map from a convex compact set
into itself has a fixed point.

We thus need to show that iterating on Step 1 - 3 above is indeed a map from a convex com-
pact set into itself. In order to do so, we will redefine the mapping {Ms, Ns, ak, δs, Ks, Ls} →{
Ms+1, Ns+1, ak,s+1, δs+1, Ks+1, Ls+1

}
described by Step 1 - 3 above in two ways.

First, note that for given Ms+1, Ns+1 and δs+1 we can find ak,s+1, Ks+1 and Ls+1 that do
not depend on ak,s, Ks and Ls. It is thus sufficient to find a fixed point of the mapping
{Ms, Ns, δs} → {Ms+1, Ns+1, δs+1} .

Secondly, we will redefine the matrix M as an equivalent function of two covariance ma-
trices with known properties, i.e. matrices that belong to the convex compact set S, which
we now define.

Definition 5. The set S is the set of
(
k + 1

)
×
(
k + 1

)
matrices Σ matrix with ithrow, jth

column element σi,j such that |σi,j| ≤ E (θ2
t ) : i, j = 1, 2, ..., k + 1

Lemma 5. The matrix Ms can equivalently be expressed as a function of the matrices Σs

and Σ+1,s defined as

Σs ≡ covs

(
θ

(0:k)
t , θ

(0:k)
t

)
(7.17)

Σ+1,s = covs

(
θ

(0:k)
t+1 , θ

(0:k)
t

)
(7.18)

where covs denotes the covariance conditional on the law of motion described by Ms and Ns.

Proof. From the projection theorem we know that

E
[
θ

(0:k)
t+1 | θ

(0:k)
t

]
= Σ+1,sΣ

−1
s θ

(0:k)
t (7.19)

i.e. Ms is given by Σ+1,sΣ
−1
s . �

Lemma 6. The covariance matrices Σs and Σ+1,s belong to S, that is, that all elements of
Σs and Σ+1,s lie in the closed interval [−E (θ2

t ) , E (θ2
t )].

Proof. The mapping {Σs,Σ+1,s, Ns, δs} → {Σs+1,Σ+1,s+1, Ns+1, δs+1} defines a new law of

motion for the hierarchy θ
(1:k)
t,s+1 that is the optimal estimate of the hierarchy θ

(0:k)
t,s if θ

(0:k)
t,s is

governed by the law of motion {Ms, Ns} . We know that the variance of an optimal estimate
cannot be larger than the variance of the object being estimated, so the inequality

E
(
θ

(k)
t,s

)2

≥ E
(
θ

(k+1)
t,s+1

)2

(7.20)

must hold for each iteration s. Starting from an initial guess of M0 and a N0 (for instance
the M and N implied by the full information solution) such that

E
(
θ2
t

)
≥ E

(
θ

(k)
t,0

)2

: k = 1, 2, ... (7.21)

ensures that

Σs ∈ S,Σ+1,s ∈ S : s = 0, 1, 2, ... (7.22)
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The last result follows from the Cauchy-Schwarz inequality (in L2 with the square root norm)

|E(XY )| ≤
√
E (X)2

√
E (Y )2 (7.23)

so that ∣∣∣cov(θ
(k)
t+s, θ

(k+l)
t )

∣∣∣ ≤ max

{
E
(
θ

(k)
t

)2

, E
(
θ

(k+l)
t+s

)2
}

: k, l, s = 0, 1, 2... (7.24)

≤ E
(
θ2
t

)
(7.25)

i.e. all elements of Σs and Σ+1,s must lie in the closed interval [−E (θ2
t ) , E (θ2

t )] which proves
the lemma. �

Definition 6. The set N is the set such that if N ∈ N then N is
(
k + 1

)
× 2 matrix with

elements |ni,j| ≤
√
E (θ2

t ) : i = 1, 2, ..., k + 1 and j = 1, 2.

Lemma 7. The matrices Ns : s = 0, 1, 2... in the iteration described by {Σs,Σ+1,s, Ns, δs} →
{Σs+1,Σ+1,s+1, Ns+1, δs+1} belong to N .

Proof. MsΣsM
′
s in the Lyaponov equation for Σs

Σs = MsΣsM
′
s +NsN

′
s (7.26)

is a positive semi-definite matrix. Since Σs ∈ S for each iteration s, each element ns,ij of

Nsust lie in the interval [−
√
E (θ2

t ),
√
E (θ2

t )] since the ith element on the diagonal of NsN
′
s

is given by

(NsN
′
s)ii =

k+1∑
j=1

nijnij (7.27)

The results then follows immediately the fact that the diagonal elements of Σs are non-
negative for positive semi-definite matrices. �

Definition 7. The set D is the closed interval [0, σ2
pc] on R where σ2

pc is the upper bound of
the unconditional variance of pt + ct.

We then have that δs ∈ D since the conditional variance is bounded by the unconditional
variance

E (pt + ct)
2 ≤ E (pt)

2 + E (ct)
2 + 2 max

{
E (pt)

2 , E (ct)
2} (7.28)

where the inequality follows from the Cauchy-Schwarz inequality and that both the price
and coupon payments have finite variances.

Proposition 6. The set Z ≡ S × S × N ×D is convex and compact and a fixed point
described by the iteration {Σ−1

s ,Σ+1,s, Ns, δs} →
{

Σ−1
s+1,Σ+1,s+1, Ns+1, δs+1

}
exists.

Proof. For finite dimensional sets, compactness is equivalent to a set being closed and
bounded, so compactness follows directly from the definitions of S, N and D. Convexity
follows from that if |x| ≤ c and |z| ≤ c then α |x|+ (1− α) |z| ≤ c. The existence of a fixed
point then follows from Lemma 4 - 7. �
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In this section we have shown how a solution to the model can be found for a finite k. In
practice, we need to choose a maximum order of expectations to include in the representation
of the model. The next section shows how this can be done by ensuring that the impulse
responses function for prices have converged and thus remain unchanged as the maximum
order k is increased further.

8. Properties of the Solved Model

In this section, the properties of the model is explored in more detail. First, we give
an example of how the private information changes the price responses to supply shocks
in contrast to when the model is solved under full or imperfect but common information.
Secondly, we demonstrate how the representation of the equilibrium dynamics of the model
can be used to compute two different types of dispersion of expectations: (i) Dispersion of
conditional expected returns across traders, and dispersion across orders of expectations.
Both of these types of dispersion may be of interest to quantify and it is straight forward to
compute either for a given parameterization of the model.

8.1. Dynamics. One question of interest is how private information affect the responses of
the asset’s price to innovations to the supply of assets. In the top row of Figure 1 below,
we have plotted the impulse response function of the price of the asset to an innovation to
the persistent component of supply (left column) and to a transitory shock (right column).
For comparison, we have also plotted the impulse response to the same innovation under the
alternative assumptions of full information, i.e. the state is observed perfectly by all traders,
and imperfect but common information, i.e. it is common knowledge that all traders observe
the same noisy signal about θt. The parameters

{
k, γ, ξ, ψ, ρ, r, σ2

u, σ
2
v , σ

2
ε , σ

2
ηi,
}

was set to
{15, 1, 1.5, 0.5, 0.9, 0.01, 0.01, .1, 0.001, 1}. For the imperfect but common information case
we set the variance of the noise in the common signal to the same as the idiosyncratic noise
variance in the private information case.

The impulse response functions for this parameterization are displayed in Figure 1 which
demonstrates that the different information structures imply very different price dynamics.
Both private and common imperfect information results in weaker initial responses to a
persistent supply shock compared to the full information case, with the trough appearing
later with private information than with imperfect but common information. Imperfect
information also makes the price response to a transitory shock persistent and the persistence
is stronger with private signals than with an equally precise common signal. 7

That private information can be a strong force of inertia in endogenous variables has
been noted before, e.g. Woodford (2002), Nimark (2008), Graham and Wright (2010) and
Angeletos and L’ao (2009). As first pointed out by Woodford (2002) in a setting where agents
faced a dynamic filtering problem (but with static choices), it is the fact that higher order
expectations respond much more sluggishly to a shock than lower order expectations that

7Singleton concluded that what mattered most in his model was that agents had imperfect information,
rather than private information per se. An earlier version of this paper demonstrated that this was due
to the large variances of the innovations in the supply process in Singleton’s calibration. Since the discount
factor λ depends on the conditional variance of returns δ, absolute (and not only relative) variances of shocks
matter. Larger variances imply faster discounting of the higher order expectation in (3.15).
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Figure 1. Impulse responses of pt (top row) and θ
(0:50)
t (bottom row) to in-

novation to persistent (left column) and transitory (right column) component
of supply.

causes the inertial response of the endogenous variable. This is illustrated in the bottom row
of Figure 1 where the responses of the hierarchy of expectations to the two shocks are plotted.
Average first order expectations (k = 1) respond stronger than higher order expectations in
the impact period to both persistent and transitory shocks. That higher order expectation
respond less than lower order expectations is intuitive. First order expectation respond less
than the true shock on impact since some of the actual supply shock will be attributed to the
transitory shock. Since traders know that first order expectations on average respond less
than the actual shock, second order expectations must respond less than first order shock.
This argument can then be applied recursively to understand why a k+ 1 order expectation
responds less than a k order expectation in the impact period.

After a transitory shock εt and for k ≥ 1, lower order expectations of θt also respond
more strongly on impact. However, lower order expectations respond quicker to the higher
than expected asset prices that follows the impact period and converge faster towards the
true shock (zero) than lower order expectations. The fact that convergence of (higher order)
expectations about θt towards zero is not immediate introduces some persistence of the price
response also to a transitory shock.
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8.2. Cross-sectional dispersion of expectations. Survey evidence suggest that market
participants may have dispersed expectations about future economic outcomes, e.g. Swanson
(2006) and Mankiw, Reis and Wolfers (2003). Private information is one way of introducing
such dispersion in a model and there are at least two reason why this may be of interest.
First, we may want to use quantitative information from for instance surveys to calibrate
the parameters of a model to match the measured dispersion of expectations. Secondly,
and as in Nimark (2010), computing the implied dispersion for a model with parameters
estimated using only aggregate variables, one can gauge the plausibility of the model by
judging whether the dispersion of expectations implied by the parameters that generate the
best fit to aggregate variables is realistic. In the framework presented here, it is straight
forward to compute the cross-sectional dispersion of expectations.

The idiosyncratic noise shocks ηt(j) are white noise processes that are orthogonal across
traders and to the aggregate shocks vt and εt. This implies that the cross-sectional variance
of expectations is equal to the part of the unconditional variance of trader j’s expectations
that is due to idiosyncratic shocks. This quantity can be computed by finding the variance
of the estimates in trader j’s updating equation (7.6), but with the aggregate shocks vt and
εt “switched off”. The covariance Σj of trader j’s state estimate due to idiosyncratic shocks
is defined as

Σj ≡ E

(
θ

(1:k)
t (j)−

∫
θ

(1:k)
t (j′)dj′

)(
θ

(1:k)
t (j)−

∫
θ

(1:k)
t (j′)dj′

)′
(8.1)

and given by the solution to the Lyaponov equation

Σj = (I −KL)MΣjM
′ (I −KL)′ +KR2R

′
2K
′. (8.2)

The cross-sectional dispersion of expectations about endogenous variables are caused by
cross-sectional dispersion of expectations about the state. Agent j′s expectation of the price
s periods ahead is given by

E [pt+s | Ωt(j)] = akM
sE
[
θ

(0:k)
t | Ωt(j)

]
(8.3)

so that the cross-sectional price expectation dispersion can be computed as

E

(
E [pt+s | Ωt(j)]−

∫
E [pt+s | Ωt(j

′)] dj′
)2

= akM
sΣj (akM

s)′ (8.4)

The cross sectional variance of expectations will generally depend on all the parameters
of the model, but some have a more direct influence on the dispersion than others. For
instance, Figure 2 illustrates how the cross sectional variance of one period ahead price
expectations depends on the variance σ2

η of the idiosyncratic noise shock ηt(j) (left panel)

and the variance σ2
ε of the transitory demand shock εt (right panel). Both graphs start at

the origin, i.e. if either the variance of the idiosyncratic noise shocks or the transitory supply
shocks are zero, there is no dispersion of expectations. Of course, if there are no idiosyncratic
noise shocks, there is no private information since all traders observe θt directly and without
error. Similarly, if there are no transitory supply shocks, traders can infer θt perfectly from
observing the price pt and again, there is no private information in equilibrium. This result
is reminiscent of the result in Walker (2007) who uses a version of Singleton’s model to show
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Figure 2. Cross sectional variance of one period ahead price expectation.

that if one of the supply shocks is observed directly, equilibrium prices reveal the other shock
perfectly and there is then no role for private information.

While the limit case of zero variance is similar for the two shocks in the figure, the change
in dispersion as the variance is increased is quite different. If the variance of the idiosyncratic
shock is increased, dispersion of expectations first increases as traders observe private signals
with a larger cross-sectional dispersion. However, at some point the variance of the idiosyn-
cratic noise shocks become large enough so that the weight on the private signal decreases
faster than the variance of the noise increases. This explains the hump shape dependence of
cross-sectional dispersion on the variance σ2

η.
We do not see the hump shape in the right panel. The reason is that when the variance of

the transitory shock is increased, prices become more noisy as signals about θt and traders
tend to put more weight on their private signal st(j). Where the graph flattens out, the price
is so noisy that traders do not put any weight on it at all when estimating θt.

8.3. Dispersion across orders of expectations. The framework presented here can also
be used to compute a different type of dispersion of expectations, that is, when different
orders of expectations do not coincide. Unlike the cross-sectional dispersion, dispersion
across orders of expectations vary over time and gives rise to new dynamics. Indeed, it
is the fact that there is a divergence between orders of expectations that makes models
with private information to display different dynamics since the full information rational
expectations equilibrium can be thought of as a special case when all orders of expectations

coincide in every period so that θt = θ
(k)
t : k = 1, 2, ...for all t. As with the cross-sectional

dispersion, the amount of dispersion across orders of expectations generally depends on
all the parameters in the model but the variance of the transitory supply shock and the
variance of the idiosyncratic noise shock again play a more direct role. Figure 3 illustrates
how the response of the hierarchy of expectations of θt from order zero to 50 to a unit
innovation in θt depend on the variance of the transitory supply shock εt. (Apart from σ2

ε ,
the parameterization is the same as that used for Figure 1.) The thick solid line is the
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Figure 3. Impulse responses of θ
(0:50)
t|t to a unit innovation vt

response of the actual shock, or θ
(0)
t , the dashed line immediately beneath it is the first order

expectations, the dotted line next is the second order expectation and so on. The transitory
supply shock εt functions as aggregate noise that prevents the price from perfectly revealing
θt. If we decrease its variance, equilibrium prices will be more informative about θt and
other traders’ (higher order) expectations of θt. This can be seen in the mid panel of Figure

5, where we have plotted a second impulse response function for the hierarchy θ
(0:50)
t . The

variance of εt in the middle panel is set to 1/10 of that in the top panel. It is clear that
decreasing the variance of the transitory shock makes all orders of expectations move closer
together, i.e. making traders better informed about all orders of expectations of θt.

From a filtering perspective, setting the variance of εt equal to zero is equivalent to making
it perfectly observable. The bottom panel demonstrates that the model with σ2

ε = 0 replicates
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the result of Walker (2007): Equilibrium prices perfectly reveal the value of θt so that all
orders of expectations coincide and the graph collapses to a single line. However, this is not
a general property of Singleton’s model, but an artefact of the additional assumptions that
σ2
ε = 0, or equivalently, that traders can observe εt perfectly.

8.4. Accuracy. In the previous section, we demonstrated that a finite number of orders of
expectations are sufficient to accurately represent the equilibrium dynamics of the model.
In practice, a maximum order k need to be chosen such that we are confident that including
a larger number of orders of expectations would not change the dynamics of the model.
Here, we illustrate that for both the row vector ak and the impulse response functions to the
aggregate shocks to converge, relatively few orders of expectations are needed.

In Figure 4, the row vector ak is plotted for k = 1, 3, ...10. We can see that the vector
converges quite rapidly. When 6 or 7 orders of expectations are included, adding higher
order expectations beyond that does not further alter the elements of ak. We can also see
that the elements of ak converges quite rapidly towards zero, so that Proposition 6, which
stated that the series {Σak}∞k=0 converges , seems to “bite” already for relatively low values
of k.
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Figure 4. Equilibrium impact of k order (x-axis) expectation on price, i.e.
the elements of ak for k = 1, 2, ..., 10.

In order to have a satisfactory approximation to the infinite dimensional dynamics, we
would also like the response of the endogenous price to aggregate shocks to converge. In
Figure 5, the impulse response functions to persistent (left panel) and transitory (right panel)
supply shocks are plotted for k = 1, 3, ...10.

The impulse response functions of the price to the two aggregate shocks completely de-
scribes the endogenous dynamics of the model and they appear to converge rapidly. Visual
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Figure 5. Impulse responses of pt for k = 1, 2, ..., 10

inspection of Figure 5 suggests that six or seven orders of expectations appear to be suffi-
cient to accurately represent the equilibrium dynamics of the price. Of course, the number
of orders of expectations required for an accurate solution depends on the parameters of
the model. In general, the more persistent the supply shocks are, i.e. the closer ρ is to
unity, the more orders of expectations are necessary. Also, the required number of orders
of expectations has a maximum for intermediate levels of signal precision. For very precise
signals higher order expectations about the future can be accurately captured by first order
expectations, since there is then little dispersion across orders of expectations. At the op-
posite extreme, with very imprecise signals, higher order expectations do not respond much
to shocks and they therefore then have little impact on price dynamics.

9. An equivalent alternative representation

Above, we showed that the equilibrium dynamics of the model could be approximated to an
arbitrary accuracy by a finite dimensional representation. The approximation is implemented
by truncating the state at a maximum order of expectation which we called k. An alterative
approach to find a finite dimensional representation builds on Townsend (1983) who proposed
to solve a model in this class by assuming that the state is revealed perfectly with a lag.
This approach avoids explicitly modeling higher order expectations by using that agents do
not intrinsically care about the expectations of others, but about the actions of others. In a
linear-Gaussian setting, these actions can be predicted directly using projection methods but
it is generally optimal to condition on the entire history of observables. As time passes, the
dimension of the vector of observables thus increases without bound. By assuming that the
true state is revealed with a lag, the method effectively truncates the number of observables
relevant for predicting the actions of other agents.
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9.1. Perfect state revelation with a (long) lag. Versions of Townsend’s method have
been developed further by by Bacchetta and van Wincoop (2006), Hellwig (2002), Hellwig
and Venkateswaran (2009). Hellwig (2002) and Hellwig and Venkateswaran (2009) assume
that the state in period t − T is revealed in period t where T can be a very large number.
Intuitively, it seems plausible to conjecture that in a stationary environment, the equilibrium
dynamics found using these methods should converge to some limit as T tends to infinity.
Here we show formally that there does indeed exists a finite dimensional representation of the
form proposed by Hellwig and Venkateswaran (2009) that as T tends to infinity converges
to the same form as the representation derived above. In effect, they derive an equilibrium
representation that is the sum of a finite order MA process plus a linear function of the
perfectly revealed lagged state. Here we show that the representation derived in Section 6
and 7 can be rewritten in this form as the lag T tends to infinity.

Start by rewriting the law of motion (4.24) for the hierarchy θ
(0:k)
t in MA form

θ
(0:k)
t =

∞∑
s=0

M sNwt−s (9.1)

The price (6.1) then has an alternative representation as the sum of an MA process in the
supply shocks vt and εt and a linear function of the perfectly known coupon payment ct

pt = ak

∞∑
s=0

M sNwt−s − δγλεt + λψct (9.2)

We will now show that there exists a representation of the form used by Hellwig (2002) and
Hellwig and Venkateswaran (2009) that as the lag T increases converges to (9.2). In those
papers, projection methods are used to find the MA coefficients As in a solution of the form

pt =
T∑
s=0

Aswt−s − δγλεt + p̂t (9.3)

where p̂t is the “common knowledge” component of the current price which for the Singleton
(1987) model is given by

p̂t ≡
ρT

1− ρ
θt−T + λψct. (9.4)

As T tend to infinity, this representation converges to the form (9.2) since

lim
T→∞

ρT

1− ρ
θt−T = 0 (9.5)

For a finite T there thus exists representation of the form (9.3) with MA coefficients given
by As = akM

sN that is arbitrarily close to the representation (9.2).

10. Conclusions

In this paper we derive a method for solving dynamic models with private information.
The principal difficulty of solving models in this class is the infinite regress of expectations
arising from agents’ need to ‘forecast the forecasts of others’. Here, we demonstrate how
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the infinite regress problem can be made tractable by imposing some structure on expecta-
tions. Specifically, it is common knowledge that agents form expectations rationally. This
assumption allows us to derive the dynamics of higher order expectations explicitly and
transparently.

We use the structure imposed on expectations by common knowledge of rationality to
solve a version of Singleton’s (1987) asset pricing model with privately informed traders.
By defining an average expectations operator, we derive an expression for the price of the
asset as a geometric sum that resembles the present discounted value of expected future
fundamentals. While the functional form is similar to the corresponding expression in a full
information model, there is an important difference since the price function is not derived
by relying on the law of iterated expectations. Instead, the operator is used to compute a
convergent sequence of higher order expectations of future fundamentals. The current price
of the asset is given by the discounted sum of this sequence.

Determining the dynamics of higher order expectations and how these map into the price
of an asset does not by itself solve the infinite regress problem. However, it does provide
us with a framework that is tractable enough to derive conditions under which the model
can be approximated to an arbitrary accuracy by a finite dimensional state representation.
Incidentally, this is the same condition that guarantees that a stable solution exists in the
full (or common) information case: If the discount rate multiplied by the eigenvalue of the
fundamental process is smaller than unity in absolute value, we only need to model a finite
number of orders of expectations to achieve any required degree of accuracy.

The equilibrium representation derived here can be taken as a literal description of agents’
behavior, i.e. as representing agents who explicitly form expectations about other agents’
expectations. The convergence results derived here can then be comforting for readers who
find it implausible on cognitive limitations grounds that traders form an infinite number of
higher order expectations. Indeed, what has been shown here is that forming only a finite
and even low number of orders of expectations may in some settings be sufficient. An
alternative interpretation is to view the equilibrium representation simply as a convenient
functional form to model agents who have access to to private information and condition on
the entire history of observables. The main advantage of the method is then to deliver a
finite dimensional and time invariant representation of equilibrium dynamics.

While the model used to illustrate the method here had a scalar process as the latent
fundamental, none of the proofs rely on this fact. The method also works well for a general
vector valued latent process and have been applied both to calibrated macro models, as in
Nimark (2008) and Graham and Wright (2010) as well as to estimated finance and macro
models as in Nimark (2010) and Melosi (2011).

The literature has to date produced a wealth of qualitative results derived from the inter-
actions that arise between agents when individuals have access to private information about
variables of common interest. A natural next step is to test whether these qualitative results
hold up when subjected to quantitative scrutiny. The solution method proposed in this
paper allows us to solve dynamic models with private information accurately (and quickly)
without making some of the modeling compromises previously thought to be necessary. In
addition, the method delivers the solved model in a form that can be estimated directly by
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maximum likelihood methods. This paper helps shorten the step from qualitative to quanti-
tative results by opening up the possibility of using dynamic models with privately informed
agents that are realistic enough to use for empirical work.
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Appendix A. Computing the conditional variance

The conditional variance of (ct+1 + pt+1), δ, is the variance of investors’ forecast error of
the sum ct+1 + pt+1 based on their information sets in period t and is given by

δ = E

[(
1 +

λψ

1− λψ

)
ut + aθ

(0:k)
t|t − aMθ

(1:k)
t−1|t−1 − δγλεt

]2

(A.1)

which can be rearranged to

δ =

[
1 + 2

λψ

1− λψ
+

(
λψ

1− λψ

)2
]
σ2
u (A.2)

+aPa′ + (δγλ)2 σ2
ε − 2E

[(
aθ

(0:k)
t|t − aMθ

(1:k)
t−1|t−1

)
δγλεt

]
The expression on the second line of (A.2) can be computed by putting the hierarchy of
contemporaneous expectations into state space form together with the transitory supply
shock εt [

θ
(0:k)
t|t
εt

]
=

[
M 0
0 0

][
θ

(0:k)
t−1|t−1

εt−1

]
+

[
N1 N2

0 1

] [
vt
εt

]
(A.3)

[
st(j)

pt − λψ
1−λψct

]
=

[
e′1 0
a −δγλ

] [
θ

(0:k)
t|t
εt

]
+

[
1
0

]
ηt(j) (A.4)

Define

Xt ≡

[
θ

(0:k)
t|t
εt

]
(A.5)

P̂ ≡ E
(
Xt −Xt|t−1

) (
Xt −Xt|t−1

)′
(A.6)

â ≡
[

ak −δγλ
]

(A.7)

then

âP̂ â′ = aPa′ + (δγλ)2 σ2
ε − 2E

[(
akθ

(0:k)
t|t − akMθ

(1:k)
t−1|t−1

)
δγλεt

]
(A.8)

where P̂ is the one period ahead forecast error covariance matrix associated with the state
space system (A.3)-(A.4). The conditional variance of the sum of the coupon payment and
the price is then given by

δ = âP̂ â′ +

[
1 + 2

λψ

1− λψ
+

(
λψ

1− λψ

)2
]
σ2
u. (A.9)
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Appendix B. Proof of Lemma 4

Lemma 8. The variance of the price pt is finite

Proof. We want to show that E (pt)
2 <∞. Taking variances of both sides of the expression

for the equilibrium price (3.15) we get

E (pt)
2 = (δγλ)2

∞∑
j=0

∞∑
i=0

λ(i+j)cov
[
θt+i|···|t, θt+j|···|t

]
(B.1)

+2δγλ
∞∑
j=0

λjcov
[
θt+i|···|t, εt

]
(B.2)

+ (δγλ)2 σ2
ε +

(
λψ

1− λψ

)2

σ2
c (B.3)

The two terms on the last line are finite and given exogenously. We thus need to show that
the infinite sums on the first and second line converge. We will do this by demonstrating
that the absolute values of the covariance term is bounded by the variance of the true supply
process, i.e ∣∣cov [θt+i|···|t, θt+j|···|t]∣∣ ≤ E (θt)

2 (B.4)

By the Cauchy-Schwartz inequality we know that∣∣cov [θt+i|···|t, θt+j|···|t]∣∣ ≤ max
{
E
(
θt+i|···|t

)2
, E
(
θt+j|···|t

)2
}

(B.5)

and from Proposition 2 we know that

E
(
θt+i|···|t

)2 ≤ E (θt)
2 (B.6)

i.e. that the variance of higher order expectations are bounded by the variance of the true
process. Applying these results to the first infinite series in (B.1) we have that

(δγλ)2
∞∑
j=0

∞∑
i=0

∣∣∣λ(i+j)cov
[
θ

(i)
t+i|···|t, θ

(j)
t+j|···|t

]∣∣∣ ≤ (δγλ)2
∞∑
j=0

∞∑
i=0

∣∣λ(i+j)E (θt)
2
∣∣ (B.7)

=
(δγλ)2

(1− λ)2E (θt)
2 (B.8)

< ∞ (B.9)

Similarly, for the second infinite series, we have that

2δγλ
∞∑
j=0

λj
∣∣cov [θt+i|···|t, εt]∣∣ ≤ max

{
2δγλ

∞∑
j=0

λjE (θt)
2 , 2δγλ

∞∑
j=0

λjE (εt)
2

}
(B.10)

< ∞ (B.11)
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