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Abstract. This note describes how the Kalman filter can be modified to allow for the
vector of observables to be a function of lagged variables without increasing the dimension
of the state vector in the filter. This is useful in applications where it is desirable to keep
the dimension of the state vector low. The modified filter and accompanying code (which
nests the standard filter) can be used to compute (i) the steady state Kalman filter (ii) the
log likelihood of a parameterized state space model conditional on a history of observables
(iii) a smoothed estimate of latent state variables and (iv) a draw from the distribution of
latent states conditional on a history of observables.
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This note describes how the Kalman filter can be modified to allow for the vector of
observable variables in the measurement equation to be a function of lagged variables. The
standard approach, which is to augment the state vector of the filter to include also lagged
variables, works fine in most applications. However, it also doubles the dimension of the state
vector, which in some applications may be undesirable. The modified filter presented here
avoids increasing the dimension of the state by exploiting that the innovation representation
can be modified so as to make it unnecessary to augment the state vector with lagged
variables. The derivation of the modified filter, which nests the standard filter as a special
case, is presented in the next section.

As it turns out, the Kalman smoother and the Kalman simulation smoother can be com-
puted using the standard backward recursions, once the modified filter has been used to
compute the forward recursions. The reason is that there is no additional information in
the observation vectors about the latent state that can be used in the backward recursions
beyond what is already implied by the state estimate from the forward filter. Therefore,
whether the vector of observables is a function of lagged variables or not, does not mat-
ter. To provide the reader with a Kalman “one stop shop”, the formulas for the Kalman
smoother and an algorithm for the Kalman simulation smoother are given in Section 3 and
4, though these sections contain nothing new beyond the original references, i.e. Hamilton
(1994) and Durbin and Koopman (2002). Section 5 contains two examples, illustrating how
a simple linearized general equilibrium model can be mapped into the state space system of
the filtering problem. Section 6 concludes.
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1. A filtering problem

Consider the state space system

Xt = AXt−1 + Cut (1.1)

Zt = D1Xt +D2Xt−1 +Rut (1.2)

where Xt is the n× 1 dimensional state vector, A is an n×n matrix, C is and n×m matrix
and ut ∼ N(0, N) is an m×1 vector of white noise Gaussian disturbances. Zt is a p×1 vector
of observable variables and D1, D2 and p× n matrices and R is a p×m matrix. Solving the
filtering problem implies finding a recursive formula

Xt|t = AXt−1|t−1 +Kt

(
Zt − AXt−1|t−1

)
(1.3)

for the linear minimum variance estimate of Xt conditional on the history of observations
up to period t defined as

Xt|t = arg min
X̂t

E
(
Xt − X̂t

)(
Xt − X̂t

)′
(1.4)

s.t. Xt|t ≡
t∑

s=0

asZs − bX0|0 (1.5)

whereX0|0 is an initial estimate of the stateX0 with covariance P0|0 andXt|t−s ≡ E (Xt|Zt−s) .

P0|0 ≡ E
[(
X0 −X0|0

) (
X0 −X0|0

)′]
(1.6)

and as and b are vectors of appropriate dimension. The initial state estimation error is
assumed to be orthogonal to the disturbances ut, that is, E

[(
X0 −X0|0

)
u′t+s

]
= 0 for all s.

Solving the filtering problem implies finding Kt in (1.3) such that (1.4) - (1.5) holds.
The state space system (1.1) - (1.2) is standard apart from the fact that the vector of

observables Zt depends on the lagged state in addition to the current state. A straight
forward and common way to get around this problem is to redefine the state so as to include
also lagged Xt to get

X t = AX t−1 + Cut (1.7)

Zt = DX t +Rut (1.8)

where

X t =
[
X ′t X ′t−1

]′
, A =

[
A 0
I 0

]
C =

[
C
0

]
, D =

[
D1 D2

]
The standard filter can the be applied to the augmented system (1.7) - (1.8). In most
application, this does not cause any complications. However, in some cases it is desirable
to have a state of low dimension, and redefining the state as above causes a doubling of
the dimension of the state, i.e. X t is a 2n × 1 vector. Below a new filter is derived that
avoids expanding the state and solves the filtering problem (1.3) - (1.5) while maintaining
an n-dimensional state vector.
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2. A modified filter

In this section, a modified filter is derived using the Gram-Schmidt approach of recursively
orthogonalizing the observables (a derivation along similar lines of the standard filter can be
found in Anderson and Moore (1979).) The basic idea is to exploit that the projection of a
variable onto a set of orthogonal variables is equivalent to adding up the projections of the
variable onto the individual variables. That is,

E(x | z, y) = E(x | z) + E(z | y) (2.1)

if

E(zy′) = 0 (2.2)

and x, y and z are Gaussian random variables. Our strategy will be to add the projections
of Xt onto period t− 1 information and onto the component of period t information that is
orthogonal to period t− 1 information, that is Xt|t will be computed as

Xt|t = Xt|t−1 + E
(
Xt | Z̃t

)
(2.3)

where

Z̃t ≡ Zt − E
(
Zt | Xt−1|t−1

)
(2.4)

and E(Xt|t−1Z̃
′
t) = 0. To find the recursive formula we thus need find an expression for

E
(
Xt | Z̃t

)
.

2.1. The Initial Period. There are two pieces of information available in period 1: The
initial state estimate X0|0 with covariance P0|0 and the observation vector Z1. The initial
state estimate can together with (1.1) be used to construct a prior for X1 as

X1|0 = AX0|0 (2.5)

We now want to find a Kalman gain K1 such that

X1|1 = AX0|0 +K1Z̃1 (2.6)

is the linear minimum variance estimate of X1 conditional on Z1 and X0|0 and where

Z̃1 = Z1 − E
(
Z1 | X0|0

)
(2.7)

where by (1.1) and (1.2)

E
(
Z1 | X0|0

)
= D1AX0|0 −D2X0|0 (2.8)

We can verify that Z̃1 is orthogonal to X0|0 by writing the innovation Z̃1 as a function of the
initial period error and the period 1 disturbance vector u1

E
(
X0|0Z̃

′
1

)
= E

(
X0|0

(
X0|0 −X0

)′
(D1A−D2)

′ +X0|0u
′
1 (D1C +R)′

)
= 0

since E
(
X0|0

(
X0|0 −X0

)′)
= E

(
X0|0u

′
1

)
= 0 by assumption.
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From the projection theorem (see Brockwell and Davis 2006) we know that K1 is given by
the projection formula

K1 = E
(
X1Z̃

′
1

) [
E
(
Z̃1Z̃

′
1

)]−1

(2.9)

We thus need to find E
(
X1Z̃

′
1

)
and E

(
Z̃1Z̃

′
1

)
.

2.2. The covariance of the state and the innovation. The covariance of the state and
the innovation vector can be expanded by using the definition of the innovation (2.7)

E
(
X1Z̃

′
1

)
= [EX1

(
Z1 −D1AX0|0 −D2X0|0

)′
] (2.10)

and then further expanding by substituting out the observation Z1 by using (1.1) - (1.2) to
get

E
(
X1Z̃

′
1

)
= E[X1

(
D1 (AX0 + Cu1) +D2X0 +Rut −D1AX0|0 −D2X0|0

)′
] (2.11)

Now define the posterior state estimation error X̃t

X̃t = Xt −Xt|t (2.12)

and use that to rearrange the expression for the covariance (2.11) so that

E
(
X1Z̃

′
1

)
= E[

(
A
(
X̃0 +X0|0

)
+ Cu1

)
(2.13)

×
(

(D1A+D2) X̃0 +D1Cu1 +Ru1

)′
]

Finally, the fact that E
(
X0|0X̃

′
0

)
= 0 (since the period 0 state estimation error must be

orthogonal to quantities known in period 0) allows us to simplify (2.13) to get

E
(
X1Z̃

′
1

)
= AP0|0 (D1A+D2)

′ + CC ′D′1 + CR′. (2.14)

We thus have the first term in the Kalman gain (2.9).

2.3. The covariance of the innovation vector. Expand the second term in the Kalman
gain (2.9) by again using the definition of the innovation (2.7) and the system definitions
(1.1) - (1.2)

E
(
Z̃1Z̃

′
1

)
=

(
(D1A+D2) X̃0 + (D1C +R)u1

)
(2.15)

×
(

(D1A+D2) X̃0 + (D1C +R)u1

)′
and then use that the definition (1.6) of the period zero error covariance and the definition

of X̃0 (2.12) together implies

P0|0 = E
(
X̃0X̃

′
0

)
(2.16)

to get

E
(
Z̃1Z̃

′
1

)
= (D1A+D2)P0|0 (D1A+D2)

′ (2.17)

+ (D1C +R) (D1C +R)′
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2.4. The Kalman gain. Plugging in (2.14) and (2.17) into the (2.18) then yields the
Kalman gain for the first period

K1 =
(
AP0|0 (D1A+D2)

′ + CC ′D′1 + CR′
)

(2.18)

×
[
(D1A+D3)P0|0 (D1A+D3)

′ + (D1C +R) (D1C +R)′
]−1

2.5. The posterior covariance. To start the recursion and find a general expression for the
period t Kalman gain Kt, we simply need to go through the same steps as above. However, in
the initial period the covariance P0|0 of the initial period estimate X0 was given exogenously.
To start the recursion we thus first need to find an expression for posterior covariance matrix
in period 1, i.e P1|1. This can be done as follows. We have

X1|1 = X1|0 +K1Z̃1 (2.19)

Add X1 to each side and rearrange to get

X1 −X1|1 +K1Z̃1 = X1 −X1|0 (2.20)

Since the posterior error X1−X1|1 must be orthogonal to the innovation Z̃1 the variance on
the left hand side is just the sum of the variance of the error and the innovation, so that

P1|1 +K1

[
(D1A+D2)P0|0 (D1A+D2)

′ + (D1C +R) (D1C +R)′
]
K ′1 = P1|0 (2.21)

rearranging gives

P1|1 = P1|0 −K1

[
(D1A+D2)P0|0 (D1A+D2)

′ + (D1C +R) (D1C +R)′
]
K ′1 (2.22)

Since

X2|1 −X2 = A
(
X1|1 −X1

)
+ Cut (2.23)

the prior covariance in period 2 is given by

P2|1 = AP1|1A
′ + CC ′ (2.24)

2.6. The Kalman recursions. We now have all the ingredients we need for the Kalman
recursions. Applying the same step (2.5) - (2.18) as in the initial period but for period t
gives

Kt = Pt|t−1D
′
1 (2.25)

×
[
(D1A+D2)Pt−1|t−1 (D1A+D2)

′ + (D1C +R) (D1C +R)′
]−1

Pt|t = Pt|t−1 (2.26)

−Kt

[
(D1A+D2)Pt−1|t−1 (D1A+D2)

′ + (D1C +R) (D1C +R)′
]
K ′t

Pt+1|t = APt|tA
′ + CC ′ (2.27)

The steady state Kalman gain K∞ can as usual be found by iterating on (2.26) - (2.27) until
convergence.
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2.7. Computing the log likelihood. The fact that the innovations Z̃t are i.i.d. Gaussian
vectors can be used (just as with the standard filter) to recursively compute the log likelihood
L of the data conditional on a parameterized state space system with Gaussian disturbances.
It is given by

L (Z | A,C,D1, D2, R) = −1

2

T∑
t=1

(
p lnπ + ln |Ωt|+ Z̃ ′tΩ

−1
t Z̃t

)
(2.28)

where

Ωt ≡ E
(
Z̃tZ̃

′
t

)
(2.29)

= (D1A+D2)Pt−1|t−1 (D1A+D2)
′ + (D1C +R) (D1C +R)′ (2.30)

3. The Kalman smoother for the modified system

The smoothed estimate of Xt is defined as the linear minimum variance estimate of Xt

conditional on the complete history of observables, i.e.

Xt|T = arg min
X̂t

E
(
Xt − X̂t

)(
Xt − X̂t

)′
(3.1)

s.t. Xt|T ≡
T∑
s=0

asZs − bX0|0 (3.2)

As shown in Hamilton (1994), there is no additional information in Zt about the state Xt

beyond what is already incorporated in the estimate Xt|t. This makes it possible to derive the
smoother without an explicit role for the history of observables, once we have the recursions
(2.25)-(2.27). The smoothed estimates of Xt are given by

Xt|T = Xt|t + Jt−1

(
Xt+1|T −Xt+1|t

)
(3.3)

where

Jt = Pt|tA
′P−1
t+1|t (3.4)

The covariances of the smoothed state estimation errors can be computed as

Pt|T = Pt|t + Jt
(
Pt+1|T − Pt+1|t

)
J ′t

(for more details, see Hamilton 1994).

3.1. A Kalman smoother algorithm.

(1) Compute the sequence Xt|t : t = 1, 2, .., T using the forward recursions (1.3) and
(2.25) - (2.27). Store Xt|t, Pt|t and Pt+1|t.

(2) Compute the smoothed estimates Xt|T : t = T − 1, T − 2, ..., 1 using the backward
recursions (3.3) - (3.4).

4. The Kalman simulation smoother for the modified system

As described in Durbin and Koopman (2002), a draw from p(XT |ZT ) can be generated
by the following algorithm
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4.1. A Kalman simulation smoother algorithm.

(1) Construct a draw Z+T from p(ZT ) using the system (1.1) (1.2) and save the draw of
the state X+T .

(2) Construct Z∗T = ZT − Z+T .

(3) X̃T = X̂∗T + X+T is then a draw from p(XT |ZT ) where X̂∗T = E
(
X|TZ∗T

)
(i.e.

X̂∗T is the output of running Z∗T through the smoothing algorithm above).

This algorithm has the advantage over some other simulation smoothers in that it only
involves drawing from the i.i.d. vectors of ut rather than from conditional distributions of
the state xt (with the exception of generating the draw from the distribution of the initial
state p(X0)). The latter is often singular in interesting economic applications, due to that
the state dimension is often larger than the stochastic dimension in models with endogenous
state variables. A singular covariance matrix requires additional computational steps which
are avoided in Durbin and Koopman’s algorithm.

5. Examples

Consider the simple New Keynesian model

πt = βEtπt+1 + κ(yt − yt) (5.1)

yt = Etπt+1 − σ (it − Etπt+1) (5.2)

it = φπt (5.3)

yt = ρyt−1 + εt (5.4)

where πt, yt, ytt, it are inflation, output, potential output and nominal interest rate respec-
tively. This model has a single variable, potential output yt, as the state. The model can be
solved to get [

πt
yt

]
= Gyt (5.5)

where

G =

[
−κ ρ−1

ρ+βρ−βρ2−κσφ+κσρ−1

−κ σφ−σρ
ρ+βρ−βρ2−κσφ+κσρ−1

]
(5.6)

5.1. Two vintages of data. Assume that we have two vintages of noise ridden data so
that in period t we can observe

Zt =


πt
yt
πt−1

yt−1

+ vt (5.7)
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where vt is a vector of measurement errors. We then have

Xt = yt, A = ρ

C =
[ √

E (εt)
2 01×p

]
,

D1 =

[
G

02×1

]
, D2 =

[
02×1

G

]
R =

[
04×1 [E (vtv

′
t)]

1/2
]

5.2. Data in 1st differences.

Zt =

[
∆πt
∆yt

]
+ ṽt (5.8)

we then have

D1 = G, D2 = −G

R =
[

02×1 [E (ṽtṽ
′
t)]

1/2
]

6. Summing up

Above it was demonstrated how the Kalman filter can be modified to allow for lagged
observables without increasing the dimension of the state vector in the filter. While the
standard approach of augmenting the state vector with lagged variables works well in many
applications, it also introduces additional computational burdens that in some applications
may have non-negligible costs. The aim of this note is to provide a single reference for filtering
problems with lagged observables in settings where it is desirable to keep the dimension of
the state low, either to improve tractability of a model, increase computational speed or to
reduce storage requirements.1

The accompanying code for the Kalman filter, smoother and simulation smoother is de-
scribed in the Appendix.
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Appendix A. Guide to MatLab code

M-files available at www.kris-nimark.net

A.1. The Steady State filter. The m-file Steady.m takes the matrices A,C,D1, D2, R as
inputs and returns the steady state Kalman gain Kt and Pt+1|t for t =∞.

[K,P ] = steady(A,C,D1, D2, R)

A.2. The Log-Likelihood. The m-file logl.m takes the matrices A,C,D1, D2, R and the
data matrix Z ≡

[
Z1 Z2 · · · ZT

]
as inputs and returns the log-likelihood LL =

L (Z | A,C,D1, D2, R) .
[LL] = log l(A,C,D1, D2, R, Z)

A.3. The Kalman Smoother. The m-file smooth.m takes the matrices A,C,D1, D2, R
and the data matrix Z ≡

[
Z1 Z2 · · · ZT

]
as inputs and returns the smoothed estimate

X =
[
X1|T X2|T · · · XT |T

]
[X] = smooth(A,C,D1, D2, R, Z)

A.4. The Kalman Simulation Smoother. The m-file sim.m takes the matricesA,C,D1, D2, R
and the data matrix Z ≡

[
Z1 Z2 · · · ZT

]
as inputs and returns a draw X from

p
(
XT | Zt

)
.

[X] = sim(A,C,D1, D2, R, Z)

A.5. The State Distribution Plotter. The m-file plotdist.m takes the matricesA,C,D1, D2, R
and the data matrix Z ≡

[
Z1 Z2 · · · ZT

]
as inputs together with the percentiles

(upper and lower), the number of draws ndraws, and two indicators plotplease and
legendplease.

[M,U,L] = plotdist(A,C,D1, D2, R, Z, upper, lower, ndraws, plotplease, legendplease)

The output M,U,L are n × (T + 1) matrices containing respectively the median and the
upper and lower percentile of the smoothed distribution of XT . Upper and lower should be
of the form 0.975, 0.025 etc, plotplease and legendplease should be set to 1 if plots and
legends are desired.

To use the code for the standard filter, simply set D2 equal to (the scalar) 0.


