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Abstract

This article reports the results of fitting unobserved components (structural) time series models to data on real income per

capita in eight regions of the United States. The aim is to establish stylised facts about cycles and convergence. It appears that

while the cycles are highly correlated, the two richest regions have been diverging from the others in recent years. A new model

is developed in order to characterise the converging behaviour of the six poorest regions. The model combines convergence

components with a common trend and cycles. These convergence components are formulated as a second-order error correction

mechanism which allows temporary divergence while imposing eventual convergence. After fitting the model, the implications

for forecasting are examined. Finally, the use of unit root tests for testing convergence is critically assessed in the light of the

stylised facts obtained from the fitted models.
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1. Introduction

The revival of growth theory in the mid-eighties

has led to a substantial empirical research effort. The

analysis of regional growth dynamics has proved to be

particularly fertile ground for this literature: to the

extent that common membership of a nation tends to

assure factor mobility and to eliminate technological,

preference and institutional differences, the basic
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assumptions of the neoclassical growth model are

likely to be met, thus rendering regional data sets

the ideal testbed for assessing the absolute conver-

gence implications of the theory.

The approach adopted in this paper differs from

most of the econometric literature in placing the

emphasis on time series models for description and

forecasting. We first show how fitting multivariate

unobserved components (structural) time series mod-

els to data on real income per capita can help to

establish stylised facts about cycles and convergence.

Rather than simply using unit root tests to decide

whether convergence is taking place, we explore dif-

ferent scenarios concerning the extent to which con-
sting 21 (2005) 667–686
rs. Published by Elsevier B.V. All rights reserved.
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vergence is taking place and which regions – if any –

are converging. A new unobserved components

model is then developed and its dynamic properties

are contrasted with those of a corresponding autore-

gressive formulation. Its principal feature is the intro-

duction of what we call convergence components.

These are combined with a common trend and then

incorporated into a model with cycles and irregular

components. The convergence components are for-

mulated as a second-order error correction mechanism

that allows temporary divergence. Fitting the model

provides a description of the movements of the series

in the past and enables coherent forecasts to be made.

In the light of what we find, it is apparent that tests

– even when applied correctly – are at best of limited

value, while at worst they are completely misleading.

In any case, we believe a statistical description of

what is happening coupled with a forecasting mechan-

ism is of more value. This is the case in many areas of

economics. For example, in the context of unit root

testing and purchasing power parity (PPP), Maddala

and Kim (1998, p. 138) state: dA more important issue

is not a test of the validity of PPP but an estimate of

the time it takes for deviations from the PPP to correct

themselvesT.

1.1. Contradictory evidence on US regional

convergence

A brief review of applied work on US regional

growth serves not only to set the scene for our own

empirical work but also to highlight the uncertainty in

the literature. Looking at the results accumulated over

the last two decades, one can find competing studies

concluding in favour of absolute convergence, relative

(conditional) convergence and divergence, depending

on the approach taken.

Using cross-sectional data, Barro and Sala-i-Martin

(1992) showed that a negative correlation between

initial income per capita and growth was the norm

for US regions. As in cross-country comparisons, they

found a slow speed of convergence; see Sala-i-Martin

(1996, p. 1326). Unlike in cross-country studies, this

convergence was taken to be absolute: decreasing

returns to scale should bring about a tendency for

equalisation of income per capita across regions so

that, in the long run, regions only display short term

fluctuations around a common trend.
The validity of inferences drawn from the cross-

sectional approach was questioned by Quah (1993)

who showed that the dbeta convergenceT of the cross-
sectional studies resulted from a weighted average,

and a negative value correlation between initial

income per capita and growth meant only that the

output differences between some pairs of countries

had declined over the sample. It shed no light on

heterogeneities or convergence clubs. Furthermore,

Evans and Karras (1996) argued that the usual

cross-sectional approach was only valid under incred-

ible conditions. Durlauf and Quah (1999) provide a

recent review of these issues.

These debates have led to an increasing interest in

panel data methods for testing whether convergence is

taking place and measuring the speed of convergence.

Allowing for unobservable region-specific heteroge-

neity (individual effects), this literature has produced a

very different picture of the regional convergence

process in the US, characterised by rapid convergence

to different steady states, that is relative convergence;

see Evans and Karras (1996) and Evans (2000). How-

ever, these findings are problematic. Such a high

speed of convergence is difficult to rationalise, even

in traditional neoclassical growth models with a nar-

row view of capital. Econometrically, the typical

dynamic panel formulation used is known to be sub-

ject to strong upward bias in short samples, as a result

of correlation between lagged dependent variables and

unobserved residuals; see Durlauf and Quah (1999).

Moreover, in these short panels, fluctuations at the

business cycle horizon and other high frequency

movements introduce further bias, thus contributing

to a systematic overestimation of the rate of conver-

gence; again see Durlauf and Quah (1999).

Finally, there is the evidence from unit roots

applied to univariate time series. Carlino and Mills

(1993) find no convergence in time series of US

regional per capita income, while Carlino and Mills

(1993), Loewy and Papell (1996) and Tomljanovich

and Vogelsang (2001) try to reconcile these results

with the aforementioned evidence for convergence by

allowing for trend breaks.

1.2. Outline

In Section 2, we review structural time series mod-

els (STMs), as implemented in the STAMP package of



V.M. Carvalho, A.C. Harvey / International Journal of Forecasting 21 (2005) 667–686 669
Koopman, Harvey, Doornik, and Sheppard (2000),

and show how they apply to series exhibiting

balanced growth. Section 3 then employs these mod-

els to capture the stylised facts surrounding the move-

ments in income per head in US regions. The slowly

changing trends show the long-run movements from

which we can infer any tendencies towards conver-

gence. We differ from researchers such as Bernard and

Durlauf (1996) in defining convergence in terms of

the underlying trend rather than the observations.

Distinguishing trends from cyclical movements is

essential to an effective study of convergence. How-

ever, the information in cycles is of considerable

interest in itself. The recent paper by Carlino and

Sill (2001) uses the methodology of Vahid and

Engle (1993) to decompose the series on US regions

into common trends and common cycles. We do not

find the resulting cycles particularly plausible—for

example they are rarely below zero. By contrast, our

cycles, which are based on an UC model and calcu-

lated by a state space smoothing algorithm, are effec-

tively based on two-sided filters rather than one-sided

filters, and their movements are much closer to the

NBER dating of expansions and recessions.

A multivariate model of growth and convergence is

developed in Section 4 and applied in Section 5. The

convergence mechanism is based on an error correc-

tion model. This can be incorporated into an unob-

served components (UC) model that effectively

decomposes trends into a common balanced growth

path component and a set of convergence compo-

nents. A key feature of the model is that the error

correction mechanism is extended so as to produce

smooth convergence components that can display

temporary divergence, thereby rendering the notion

of a simple measure of the speed of convergence

open to question. However, definition 2 of Bernard

and Durlauf (1996) is satisfied in that the forecast

function for the difference between any pair of regions

converges to a constant. Furthermore, because the

cross-section is relatively small, proper account is

taken of the cross-correlations across regions.

Section 6 investigates unit root tests for conver-

gence. In doing so, we distinguish carefully between

the notion of economies which have converged and

those which are in the process of converging. We

present the results of pairwise unit root tests and

discuss the extent to which they are helpful in deter-
mining which regions can be grouped together in a

convergence model. The conclusions are set out in

Section 7.
2. Structural time series models and balanced

growth

2.1. Univariate models

The local linear trend model for a set of observa-

tions, yt, t =1,..,T, consists of a stochastic trend and

irregular components, that is

yt ¼ lt þ et; t ¼ 1; N ; T : ð1Þ

The trend, lt, receives shocks to both its level and

slope so

lt ¼ lt�1 þ bt�1 þ gt; gtfNID 0; r2
g

� �
;

bt ¼ bt�1 þ ft; ftfNID 0; r2
f

� �
; ð2Þ

where the irregular, level and slope disturbances, et, gt
and ft, respectively, are mutually independent and the

notation NID(0,r2) denotes normally and indepen-

dently distributed with mean zero and variance r2.

If variances rg
2 and rf

2 are both zero, the trend is

deterministic. When only rf
2 is zero, the slope is fixed

and the trend reduces to a random walk with drift, b.
Allowing rf

2 to be positive, but setting rg
2 to zero

gives an integrated random walk trend, which tends to

be relatively smooth when estimated. The model is

often referred is often referred to as the dsmooth trendT
model.

The statistical treatment of unobserved component

models, as in the STAMP package of Koopman et al.

(2000), is based on the state space form (SSF). Once a

model has been put in SSF, the Kalman filter yields

estimators of the components based on current and

past observations. Signal extraction refers to estima-

tion of components based on all the information in the

sample. Signal extraction is based on smoothing

recursions which run backwards from the last obser-

vation. Predictions are made by extending the Kalman

filter forward. Root mean square errors (RMSEs) can

be computed for all estimators and prediction or con-

fidence intervals constructed. The unknown variance

parameters are estimated by constructing a likelihood
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function from the one-step ahead prediction errors, or

innovations, produced by the Kalman filter, and max-

imizing it by an iterative procedure.

Distinguishing a long-term trend from short-term

movements is important. Short-term movements may

be captured by adding a serially correlated stationary

component, wt to the model. Thus

yt ¼ lt þ wt þ et; t ¼ 1; N ; T : ð3Þ

An autoregressive process is often used for wt.

Another possibility is the stochastic cycle

wt

w4
t

� �
¼ q

coskc sinkc
� sinkc coskc

� �
wt�1

w4
t�1

� �
þ

jt

j4
t

� �
;

t ¼ 1; N ; T ; ð4Þ

where kc is frequency in radians and jt and jt* are

two mutually independent Gaussian white noise dis-

turbances with zero means and common variance rj
2.

Given the initial condition that the vector (w0, w0*)V
has zero mean and covariance matrix rw

2 I, it can be

shown that for 0Vq b1, the process wt is stationary

and indeterministic with zero mean, variance

rw
2=rj

2 / (1�q2) and autocorrelation function

q sð Þ ¼ qscoskcs; s ¼ 0; 1; 2; N ð5Þ

For 0bkcbp, the spectrum of wt displays a peak,

centred around kc, which becomes sharper as q
moves closer to one; see Harvey (1989, p. 60). The

period corresponding to kc is 2p/kc. In the limiting

cases when kc =0 or p, wt collapses to first-order

autoregressive processes with coefficients q and

minus q, respectively. More generally, the reduced

form is an ARMA(2,1) process in which the autore-

gressive part has complex roots. The complex root

restriction can be very helpful in fitting a model,

particularly if there is reason to include more than

one cycle.

Imposing the smooth trend restriction, that is set-

ting rg
2 to zero, often allows a clearer separation into

trend and cycle.

2.2. Convergence models

Long-run movements often have a tendency to

converge to an equilibrium level. In an autoregres-

sive framework, this is captured by an error cor-

rection model (ECM). The UC approach is to add
cycle and irregular components to an ECM so as

to avoid confounding the transitional dynamics of

convergence with short-term steady-state dynamics.

Thus,

yt ¼ a þ lt þ wt þ et; t ¼ 1; N ; T ð6Þ

with

lt ¼ /lt�1 þ gt or Dlt ¼ / � 1ð Þlt�1 þ gt;

gtfNID 0;r2
g

� �
:

Smoother transitional dynamics, and hence a bet-

ter separation into convergence and short-term com-

ponents, can be achieved by specifying lt in Eq. (6)

as

lt ¼ /lt�1 þ bt�1; t ¼ 1; N ; T ;

bt ¼ /bt�1 þ ft; ftfNID 0; r2
f

� �
ð7Þ

when / =1. If, for convenience, we replace bt-1 by bt

in the equation for lt, this second-order ECM can be

expressed as

Dlt ¼ � 1� /ð Þ2lt�1 þ /2Dlt�1 þ ft

showing that the underlying change depends not

only on the gap but also on the change in the

previous time period. The variance and ACF can

be obtained from the properties of an AR(2) pro-

cess or by noting that the model is a special case

of the second-order cycle with kc =0. The S -step
ahead forecast function, standardised by dividing by

the current value of the gap, is (1+cS )/S , S =0,1,2,..
where c is a constant that depends on the ratio, x, of

the gap in the current time period to the previous one,

that is x = l̃T |T/l̃T�1|T. Since the one-step ahead fore-

cast is 2/�/2/x, it follows that c =1�//x, so

l̃lTþS jT¼ 1þ 1�/=xð ÞSð Þ/S l̃lT ; S ¼0; 1; 2; N ð8Þ

If x =/, the expected convergence path is the same as

in the first order model. Convergence in the second-

order model is typically much slower. Indeed, if the

convergence process stalls sufficiently, the gap can be

expected to widen in the short term. In the first-order

model with / =0.9, only 4% of the original gap is left

after 30 time periods. By contrast, setting x =1 in the

second-order model leaves nearly 17% of the gap

remaining.
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2.3. Multivariate models

Suppose we have N time series. Define the vector

yt=( y1t,..,yNt)V and similarly for mt, yt and et. Then a

multivariate UC model may be set up as

yt¼mtþytþet; etfNID 0;Seð Þ; t¼1; N ; T ; ð9Þ

where �e is an N�N positive semi-definite matrix.

The trend is

mt ¼ mt�1 þ bt�1 þ ht; ht
fNID 0;Sg

� �
bt ¼ bt�1 þ zt; ztfNID 0;Sfð Þ: ð10Þ

With �g =0, we get the smooth trend model. With

�f=0, we get the random walk plus drift.

The similar cycle model, introduced by Harvey and

Koopman (1997) is

yt

yt4

� �
¼ q

coskc sinkc
� sinkc coskc

� �
� IN

� �
yt�1

yt�14

� �
þ

kt

kt4

� �
;

t ¼ 1; N T ; ð11Þ

where yt and yt* are N�1 vectors and kt and kt* are

N�1 vectors of the disturbances such that

E ktkV
t

� �
¼E kt4kt4

V
� �

¼Sj; E ktkt4
V

� �
¼0; ð12Þ

where �j is an N�N covariance matrix. The model

allows the disturbances to be correlated across the

series. Because the damping factor and the frequency,

q and kc, are the same in all series, the cycles in the

different series have similar properties; in particular

their movements are centred around the same period.

This seems eminently reasonable if the cyclical move-

ments all arise from a similar source such as an under-

lying business cycle. Furthermore, the restriction

means that it is often easier to separate out trend

and cycle movements when several series are jointly

estimated.

2.4. Stability and balanced growth

The balanced growth UC model is a special case of

Eq. (9):

yt ¼ ilt þaþ yt þ et; t ¼ 1; N ; T ; ð13Þ

where lt is a univariate stochastic trend as in Eq. (2), i

is a vector of ones, and a is an N�1 vector of
constants. If lt is initialised with a diffuse prior,

then a must be subject to a constraint so that it

contains only N�1 free parameters, for example,

there may be one zero entry. Alternatively, l0 may

be set to zero. Note that although the levels may be

different, the slopes are the same, irrespective of

whether they are fixed or stochastic.

A balanced growth model implies that the series

have a stable relationship over time. This means that

there is a full rank (N�1)�N matrix, D, with no null

columns and the property that Di =0, thereby render-

ing Dyt jointly stationary. The rows of D may be

termed balanced growth co-integrating vectors. Typi-

cally, each row will contain a one, a minus one and

zeroes elsewhere. For example, one country may be

used as a benchmark or numeraire. The multivariate

stationarity test described in Nyblom and Harvey

(2000) and Hobijn and Franses (2000) may be used

to test the null hypothesis1 of balanced growth; the

test statistic is invariant to the choice of D.

If the series are stationary in first differences,

balanced growth may be incorporated in a vector

error correction model (VECM) by writing

Dyt ¼ d þ GDyt�1 þ
Xp
r¼1

F4
rDyt�r þ xt;

Var xtð Þ ¼ Sn; ð14Þ

where the %r*s are N�N matrices, D is as defined in

the previous paragraph and the matrix & is

N� (N�1). The system has a single unit root, guar-

anteed by the fact that Di =0. The constants in d
contain information on the common slope, b, and on

the differences in the levels of the series, as contained

in the vector a. These differences might be parame-

terised with respect to the contrasts in Dyt�1. For

example, if Dyt has elements yit�yi+1,t,

i=1,..,N�1, then ai, the i-th element of the

(N�1)�1 vector a, is the gap between yi and yi+1.

In any case, d =b(I�
P

j=1
p%j*)i�&a. Estimation by

OLS applied to each equation in turn is fully efficient
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since each equation contains the same explanatory

variables.

A UC balanced growth model in which the com-

mon trend is a random walk plus drift may be approxi-

mated by Eq. (14). This can be useful both as a

baseline for forecasting and for giving initial estimates

of some parameters. However, the VECM does not

provide the description that can be obtained by

extracting unobserved components.

2.5. Similar and common cycles

In the similar cycle model, the extent to which the

cycles move together depends on the correlations

between the disturbances driving them, since

Sw ¼ 1� q2
� ��1Sj:

Using principal components analysis, we can decom-

pose �j as EDEV where D is a diagonal matrix of

eigenvalues and E is the corresponding matrix of

eigenvectors. The principal components themselves

are contained in the series in the N�1 vector

yt
y=EVyt, while the variance of the disturbances driv-

ing the j-th principal component is dj, the j-th diag-

onal element of D. These principal component cycles

can be entered into model (9) by writing

yt ¼ mt þ Eyy
t þ et: ð15Þ

The proportion of the variance of the i-th cycle

accounted for by the j-th principal component is

e2ijdj/r
2
wi; note that r2

wi =Aje
2
ijdj.

We can create a set of N standardised princi-

pal component cycles as yt
z=D�1/2EVyt with �j

z= I.

The factor loadings are then 0=ED1/2 and Eq. (15)

becomes

yt ¼ mt þQyz
t
þ et:

This formulation is useful as a starting point for factor

rotations.

If �w is less than full rank, there are common

cycles. A model can be estimated with a given rank

as described in Koopman et al. (2000). If the rank of

�w is one, there is a single common cycle and the

model can be written as

yit ¼ lit þ hiwt þ eit; i ¼ 1; N ;N ð16Þ
where wt is a scalar cycle and the his allow the

common cycle to appear in each series with a different

amplitude. One of the his is set to be equal to unity

and there is no need for a constant as in Eq. (13). A

single common cycle is a common feature in the sense

of Engle and Kozicki (1993) in that it may be removed

by a linear combination, q̄ , of the observations with

the property that q̄Vq =0, where the N�1 vector

q =(h1,. . .,hN)V.
Testing the null hypothesis of a single common

cycle is not straightforward. However, for the case of

N =2, the distribution of the LR statistic is an even

mixture of m0
2 and m1

2; see Harvey (1989, p. 236).

Thus, the 5% critical value is 2.71.
3. Stylised facts: trends and cycles

In this section, we analyse trend and cyclical

dynamics in the logarithms of real per capita incomes

in US census regions: New England (NE), Mid East

(ME), Great Lakes (GL), Plains (PL), South East (SE),

South West (SW), Rocky Mountains (RM) and Far

West (FW). The data were obtained from the Bureau

of Economic Analysis and deflated by the US implicit

price deflator (1996=100). Fig. 1 shows annual obser-

vations for the eight US census regions from 1950 to

1999. Carlino and Mills (1993) use annual data from

1929 (to 1990). However, because the fluctuations in

the 1930s and 1940s are so much bigger than the

cycles after 1950, it is difficult to model the whole

series satisfactorily. The introduction of a trend break,

as in Carlino and Mills (1993) and Loewy and Papell

(1996), does not really address this problem. A corre-

sponding analysis of quarterly seasonally adjusted

observations for the same regions from 1969:1 to

1999:4 can be found in Carvalho and Harvey

(2002). The conclusions are similar.

We report the results of fitting unrestricted multi-

variate structural time series models of the form (9)

with smooth trends in order to obtain some idea of

stylised facts. Estimation of this and all other models

below was done using program routines written in the

OX 3.0 language (Doornik, 1999) with use being

made of the SsfPack package for state space algo-

rithms of Koopman, Shephard and Doornik (1999).

All parameters were estimated by maximum like-

lihood as described in Section 2.1 and variances are
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Fig. 1. Annual income per capita in eight US census regions.

V.M. Carvalho, A.C. Harvey / International Journal of Forecasting 21 (2005) 667–686 673
reported multiplied by 107. The estimated covariance

matrices are reported by showing the variances on the

main diagonal while the entries above contain the

cross-correlations. All graphs show the estimated

components as extracted by the state-space smoothing

algorithm.
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Fig. 2. Cyclical compone
3.1. Cycles

The smoothed cyclical components, w̃it |T, for the

eight annual regional series are shown in Fig. 2. The

recessions of 1954, 1961, 1970, 1975, 1980, 1982 and

1991 all show up with a high degree of coherence
5 1980 1985 1990 1995 2000

nts for annual data.
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across regions, unlike in Carlino and Sill (2001). The

period of the cycle is 5.3 years with a damping factor,

q, of 0.80. The period for the quarterly series is 4.25

years with a damping factor of 0.85.

The matrix of variances and cross-correlations

obtained from �̃j is shown below. There are consid-

erable differences in volatility, with the variance of the

disturbances in PL being almost six times as great as

that of ME. These findings are similar to those

reported by Carlino and Sill (2001, p. 452). However,

our ordering of the regions in terms of volatility

differs from theirs. Furthermore, we find that the

richest regions (NE, ME and FW) are those with the

least volatile cyclical components.

376:9 0:863 0:913 0:882 0:932 0:735 0:962 0:851
172:2 0:975 0:966 0:948 0:927 0:818 0:848

646:8 0:987 0:994 0:865 0:893 0:921
1014:1 0:976 0:816 0:837 0:864

508:8 0:822 0:924 0:942
420:8 0:720 0:790

876:4 0:932
332:7

2
66666666664

3
77777777775

NE

ME

GL

PL

SE

SW

RM

FW:

There are high, positive correlations between the

cyclical disturbances in all regions. The first principal

component of �̃j accounts for 91% of the total var-

iance while the second accounts for a further 5%.

Table 1 shows the weights applied to each of the

first two principal component cycles to obtain the

regional cycle and the percentage variance in each

regional cycle contributed by the first two compo-

nents; see Eq. (15) and the text below it. The eijVs
not only show the weight given to each principal

component in forming the cycle for each region, but

they are also the weights given to the regional cycles

in constructing the principal components. The first

principal component is a composite of the regional

cycles in which the weights are all positive and of a
Table 1

Weights assigned to the first two principal components in cycles for

each series

Region Weight, ei1 Weight, ei2 Proportion, 1 Proportion, 2

NE 0.29 0.29 0.89 0.05

ME 0.20 �0.23 0.92 0.07

GL 0.40 �0.18 0.99 0.01

PL 0.49 �0.38 0.94 0.03

SE 0.36 �0.01 0.99 0.0003

SW 0.28 �0.45 0.73 0.10

RM 0.44 0.68 0.88 0.11

FW 0.27 0.17 0.88 0.02
similar order of magnitude. The second principal

component contrasts the regional cycles.

By standardising the weights, ei1, for the first

principal component so that they sum to one, it is

possible to construct a first principal component

cycle2 from the individual regional cycles. For annual

data, this principal component is shown in Fig. 3,

where it is contrasted with the smoothed cyclical

component series extracted from the univariate US

annual series. The two cycles are very close. This

again illustrates the point that the main source of

regional cyclical volatility is a component closely

related to the national business cycle.

Since the first principal component is so dominant,

we decided to see what happens when the model is

estimated with a single common cycle. The results

were not particularly useful, in that the cycle obtained

bore no relation to the cycles shown in Fig. 3. This is

perhaps an indication that the common cycle restric-

tion is too strong.

The other stationary component is the irregular com-

ponent, the variances and cross-correlations of which

are shown below. It is dominated by the cycle (remem-

ber that the disturbance variance needs to be divided by

1�q2 to give the cycle variance), but nevertheless

plays a useful role. There are no general conclusions

to be drawn from the pattern of correlations.
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3.2. Trends

The smooth trends, l̃it |T, extracted from the annual

series by the state space smoothing algorithm are

shown in Fig. 4. A first glance seems to indicate

that cross-sectional dispersion has declined, thus

indicating convergence. However, closer inspection

reveals otherwise. In particular, note how the trend

dynamics of NE and ME, the two wealthiest

regions at the end of the sample, differ from the
2 Specifically, this is the first element of EVw̃t |T and so the

(unstandardised) weights are as in the first column of E and it is

this that is reproduced under the heading ei1.
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remaining six regions. Thus, while other relatively

rich regions in the 1950s such as the Far West and

Great Lakes seem to be converging to the levels of

lower income regions, New England and Mid East,

particularly from the late 1970s onwards, show no
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Fig. 4. Smooth trends
clear tendency to converge to some kind of com-

mon national trend.

The above conclusions are confirmed by the plot of

the cross-sectional standard deviation of the smoothed

trend component, SD(l̃it |T), in Fig. 5. Overall cross-
75 1980 1985 1990 1995 2000

for annual data.
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sectional dispersion, which was clearly declining until

the early eighties, has since reversed its tendency so

that, by the end of the sample, the situation is much

the same as in the late sixties. In other words, across

all regions, divergence rather than convergence seems

to have been the rule since the early eighties. Exclud-

ing the two richest regions alters this conclusion. For

the remaining six regions (the poorest as defined at the

end of the sample), the fall in trend dispersion seems

to have been continuing throughout the last two dec-

ades. Hence, there appears to be convergence of all

regions apart from the two richest which are diverging

from the other six regions as well as from each other.

The estimated variances and cross-correlations of

the slope disturbances are reproduced below. As in the

cyclical component, considerable regional differences

are evident in trend volatility. For example, the var-

iance of the trend component in NE is almost three

times as great as that of SW. This is reflected in the

larger fluctuations observed in the smoothed NE trend.
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The cross-correlations between the trend distur-

bances show considerably more variation than those

for the cycles. While the disturbances in the two

wealthiest regions are highly correlated, some of

the other disturbances actually display a negative

correlation.
4. Multivariate convergence models

The multivariate STM has provided an idea of

possible convergence patterns. We now proceed to

develop a model to capture these movements.

The basic multivariate convergence model, allow-

ing for relative convergence and a common time

trend, is

yit ¼ ai þ bt þ lit; i ¼ 1; N ;N

with

lit ¼
XN
j¼1

/ijlj;t�1 þ git; i ¼ 1; N ;N ð17Þ

with
P

N
j=1/ij =1 for i=1,..., N. This restriction can be

conveniently imposed by setting /ii =1�
P

j pi/ij. As

will be shown shortly, it ensures that the system

contains a unit root. As the model stands, there are



3 This is because limjYl%j = if̄V; the proof follows along the

same lines as that for a well-known result on ergodic Markov chains

as given, for example, in Hamilton (1994, p. 681).
4 We can also directly adopt the parameterisation implicit in the %

matrix. Although this implies a different set of explanatory variables

in each equation, all satisfy the co-integrating constraints and so

OLS is efficient for each equation in turn.
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N(N�1) parameters governing convergence. Re-for-

mulating it as

Dlit ¼
X
jpi

/ij lj;t�1 � li;t�1

� �
þ git; i ¼ 1; N ;N ;

ð18Þ

shows how the growth of the i-th economy depends

on the gap between it and each of the other N�1

economies. In the bivariate case, the model implies

that the difference between the two economies,

yt=y1t�y2t, satisfies

Dyt ¼ / � 1ð Þ yt�1� að Þ þ gt ¼ d þ / � 1ð Þyt�1þ gt;

t ¼ 2; N ; T ; ð19Þ

where gt=g1t�g2t, a =a1�a2, / =1�/12�/21 and

d =a(1�/). This can be interpreted as saying that, for

data in logarithms, the expected growth rate in the

current period is a negative fraction of the gap

between the two economies after allowing for the

permanent difference, a. Writing the model in this

form accords with the notion of convergence in the

cross-sectional literature, as expounded by Barro and

Sala-i-Martin (1992) and others, except that there the

growth rate is taken to be a linear function of the

initial value, giving a model which is internally incon-

sistent over time; see Evans and Karras (1996, p. 253).

In matrix form

yt ¼ aþ bit þ mt;

with

mt ¼ Fmt�1 þ ht; Var htð Þ ¼ Sg ð20Þ

or, in error correction form,

Dmt ¼ F� Ið Þmt�1 þ ht; Var htð Þ ¼ Sg: ð21Þ

Since each row of % sums to unity, %i= i. Thus,

setting k to one in (%�kI)i =0 shows that % has an

eigenvalue of one with a corresponding eigenvector

consisting of ones. The other roots of % are obtained

by solving |%�kI| =0; they should have modulus less

than one for convergence.

If we write

fff̄VDmt ¼ /̄V F� Ið Þmt�1 þ fff̄Vht ð22Þ

it is clear that the N�1 vector of weights, f̄ , which

gives a random walk, must be such that f̄ V(%� I)=0V.
Since the roots of %V are the same as those of %, it
follows from writing (%V� I)fff̄ =0 that fff̄ is the eigen-

vector of %V corresponding to its unit root. This ran-

dom walk, Ā/t =fff̄ Vmt, is a common trend in the sense

that it yields the common growth path to which all the

economies converge.3 The inclusion of a time trend in

the model means that the overall common trend is a

random walk with drift, b, and if a is defined such

that aVfff̄ =0, each element of a is a deviation from

the common trend.

Unobserved components models. The model in Eq.

(17) may be extended so as to include cycle and

irregular components. Thus

yit ¼ ai þ bt þ lit þ wit þ eit; i ¼ 1; N ;N : ð23Þ

In matrix terms, using the notation of Eq. (9),

yt ¼ aþ bit þ mt þyt þ et; ð24Þ

with mt as in Eq. (20). The model with a smooth

convergence mechanism is written as:

yt ¼ aþ mt þ yt þ et;

mt ¼ Fmt�1 þ bt�1

bt ¼ Fbt�1 þ zt; ð25Þ

so that mt is driven by an N�1 vector of slopes, bt,

that evolve over time because of a disturbance vector,

z t, with covariance matrix, �f. When %= I, the mt

vector reduces to a set of smooth trend components, as

in the model applied in the previous section. As with

the first-order model, Eq. (20), the forecasts from the

second-order model converge to paths parallel to that

of the common trend, l̄/t. Thus, the forecast conver-

gence condition of Bernard and Durlauf (1996, defini-

tion 2) is satisfied.

VECM. Convergence may be captured by the com-

mon trend VECM of Eq. (14). The matrix & contains

N(N�1) free parameters and these may be estimated

by OLS applied to each equation in turn. The %

matrix of Eq. (17) may then be estimated4 as it is



5 The matrix iwV is idempotent (though not symmetric) as its rows

are identical and sum to one. Since its trace is one, it has one root of

unity, while the rest are zero. The matrix %=(1+p)I�piwV also has
a single unit root while the rest are 1+p.
6 In matrix terms, %= I+/D�piV, where /D is a diagonal matrix

with the elements of p on its diagonal. We want to find f
¯

such tha

%Vf̄ =(I+/D� ipV)f̄ = f̄. This can be done by making the i-th

element of f̄ proportional to the inverse of the i-th element of p
We need to standardise so that the elements sum to one.
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given by &D+ I. However, there is no guarantee that

the estimate of & will be such that N�1 of the roots

of% have modulus less than one. If the vector of gaps,

a, is parameterised with respect to the contrasts in

Dyt� 1, then d =b(I�
P

p
j=1%j*)i�&a.

4.1. Deviation and benchmark restrictions

As it stands, the UC model is difficult to esti-

mate because % contains N(N�1) parameters. One

way to impose restrictions is to specify a model

in terms of deviations from a weighted average.

This happens naturally if deviations (of per capita

income) of regions from a national average are to

be considered. Typically, some regions will be

bigger than others and so will receive more

weight in constructing the average. However, in

a more general situation, we might consider the

weights as giving some indication of influence.

Let

l̄w;t ¼
XN
i¼1

wilit;
XN
i¼1

wi ¼ 1

and set

/ii ¼ pi þ 1� piwi ¼ pi 1� wið Þ þ 1 and

/ij ¼ � piwj; ipj: ð26Þ

Substituting in Eq. (18) yields

Dlit ¼ pi

X
jpi

wj li;t�1 � lj;t�1

� �
þ git

¼ pi li;t�1 � l̄w;t�1

� �
þ git; i ¼ 1; N ;N : ð27Þ

Thus Dlit depends on the gap between its own level

and that of the weighted average. If pi=0, then lit is a

random walk.

If l̄w,t is to be a random walk, then the weights

must be such that wV%=wV, that is
P

i/ijwi =wj,

j=1,..,N. The weights will only satisfy this condition

if, for i =1,.., N, pi =p for wi p 0. This being the case,

we have w= f̄ and so l̄w,t= l̄f,t.
In the homogeneous model, when all weights are

non-zero and pi =p for i =1,..,N, we are able to

express the model in deviation form,

D lit � l̄/;t

� �
¼ p li;t�1 � l̄/;t�1

� �
þ git � ḡ/;t;

i ¼ 1; N ;N ; ð28Þ

and any N�1 of these equations may be combined

with the equation for l̄/,t to give a complete system.

The stability condition5 is �2bp b0.
There are a number of ways to proceed. If both

pis and wjs are treated as parameters, the model has

2N�1 parameters for N N2. For moderate size N, this

parameterisation is relatively parsimonious. However,

it is more appealing to focus attention on either the pis

or the wjs. If we let the pis be the same, we can

estimate the wjs as /̄js. Including p, this makes N

free parameters in all. The convergence process is

therefore parameterised as /ij =�p/̄j, i p j, and

/ii =p +1�p/̄i. Alternatively, we may decide to

pre-assign values to the wjs and estimate the N pis.

For the case N =2, these two options are equivalent.

When the pis are different, we can always calculate

the implied weights, /̄i, for the common trend.

The two approaches are mixed if we set wi =0 for

some is, and let the corresponding pis be free. If n is

set to zero, we then, for n bN�1, have N�n�1 free

wis to estimate, together with n pis and one p. When

n =N�1, the benchmark model is obtained. In these

cases, wj= /̄j and the lits may be put in deviation

form.

Deviations from the mean. If we set wi=1/N, then

ȳw,t is the simple mean. The implied weights may be

found from the pis since, provided pjb0 for all j,

/̄i =(1/pi)/
P

j(1/pj) as is easily seen6 from Eq. (27). If

we regard it as reasonable to have 0V /̄iV 1, then the

pis must be less than or equal to zero. If a pi=0, then

we get a benchmark model, as /̄iY1 as piY0.

Within the context of Eq. (27), a test of pi =0 can
t

.
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be based on standard distribution theory as pi=0 does

not, in itself, imply a unit root.

Benchmark model. Take (without loss of general-

ity) the N-th country as the benchmark to which all the

countries converge. Then

Dlit ¼ pi li;t�1 � lN ;t�1

� �
þ git; i ¼ 1; N ;N � 1;

DlNt ¼ gNt;

where the roots of the transition matrix are one and

pi +1, i =1,..,N�1 so �2bpi b0, i=1,..,N�1 for

convergence. Note that this model is a special case

of Eq. (27) obtained by setting all the weights apart

from wN equal to zero. Since lNt is a random walk,

we have

D lit � lNtð Þ ¼ pi li;t�1 � lN ;t�1

� �
þ git � gNt;

i ¼ 1; N ;N � 1: ð29Þ

A further complication with the deviation model is

that if logarithms have been taken to get the yits, then

ȳw,t will not be the same as the logarithm of the

weighted sum of the original observations. Working

in logarithms has no implications for the benchmark

model.

4.2. Autoregressive models

The deviation and benchmark constraints can be

incorporated into an autoregressive model because

yi,t�1�ȳw,t�1, i=1,..,N are all co-integrating vectors.

If one is dropped, it can be reconstructed as a linear

combination of the others. Thus, the & and D

matrices in Eq. (14) can be formed with suitable

constraints. However, it is more convenient to set up

the model as

Dyit ¼ di þ pi yi;t�1 � ȳw;t�1

� �
þ

XN
j¼1

Xp
r¼1

/ijr4 Dyj;t�r

þ git; i ¼ 1; N ;N : ð30Þ

The parameters may be efficiently7 estimated by

SURE, although little is likely to be lost from

simply doing OLS and this may be preferable if
7 If the general model, Eq. (14), can be estimated, an LR test of

the constraints implied by Eq. (30) can be carried out.
N is large. From the estimates of the d́ is, we can

solve to get b and a set of ais for relative convergence
since

di ¼ b 1�
XN
j¼1

Xp
r¼1

/ij4

" #
� piai; i ¼ 1; N ;N : ð31Þ

In a benchmark model with pN =0, there are N�1

gaps represented by ai, i=1, . . ., N�1. More gener-

ally, if we want them to be in terms of deviations from

the level of the common trend, they must satisfyP
i/̄iai =0. Recall that with a simple mean, /̄i is

proportional to 1/pi, if all pis are negative, so that

the equation
P

iai/pi=0 can be added to those in

Eq. (31).

As N becomes large, the above AR model runs

into difficulties because of the potentially large num-

ber of /ijr* parameters, N2p in all. It may well be the

case that little explanatory power is lost by

only including lagged differences of yit, and it

would be interesting to explore the implications of this

for forecasting.

4.3. Unobserved components model

In the autoregressive framework, the natural way

to proceed when the restrictions in Eq. (26) are

imposed is to estimate pis for a given set of pre-

assigned wis. An unobserved components formula-

tion, however, requires nonlinear optimisation with

respect to the elements of % (as well as the other

parameters, such as variances of disturbances). Since

it is unclear what constraints should be imposed

on the pis, it is relatively more attractive to assume a

homogeneous model in which pi =p, i =1,. . ., N, and
to estimate the /̄ i parameters constraining them

to lie between zero and one and to sum to one;

these constraints can be imposed by employing a

logistic transformation and maximizing with respect

to N�1 unconstrained parameters, ni, i=1,.., N�1,

defined by /̄i= /̄i*exp(ni)/(1+exp(ni)), where /̄i*=

1�
P

i�1
j=1 /̄j, j =2,. . ., N�1 and /̄1*=1. It is further

assumed that the convergence parameter, / =1+p, is
such that 0V/V 1, with / =1 indicating no conver-

gence. The statistical treatment of the model is based

on the state space form, with the mt vector initialised

with a diffuse prior.
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The model can be rewritten so as to consist of

convergence components, ly
it, i=1,. . ., N, which are

deviations from the common trend, l̄/,t. Then

yit ¼ ai þ l̄/;t þ ly
it þ wit þ eit; i ¼ 1; N ;N ; ð32Þ

where lit
y=lit� l̄/,t, with

ly
it ¼/ly

i;t�1þgy
it; i¼ 1; N ;N�1; j/jb1; ð33Þ

and

l̄/;t ¼ l̄/;t�1 þ b þ ḡ/;t:

If the state vector is defined in terms of the common

trend and convergence components only N�1 of the

latter need be included as
P

N
i=1/̄il

y
it =0.

The extension to the smooth convergence pro-

cesses is straightforward: Eq. (33) is replaced by

ly
it ¼ /ly

i;t�1 þ by
i;t�1; by

it ¼ /by
i;t�1 þ fyit;

i ¼ 1; N ;N � 1; ð34Þ

with 0V/V1, while l̄/,t is an integrated random

walk.

If, say, /̄N =1, then the N-th series is a benchmark

and l̄/t is replaced by lNt; in this case, we can have

different /is in Eqs. (33) and (34).

Once the series have converged, the ly
its become

stationary with variances, for Eq. (34), given by

ri
y2(1+/2)/(1�/3)2, where ri

y2 is the i-th diagonal

element of the covariance matrix of the vector z t
y=

(zy
1t, z y

2t,..,z y
Nt)V=z t� i~̄/,t. Since f̄/,t=fff̄ Vft, this co-

variance matrix is Var(zzzzy
t )= (zzzz t� ifff̄ V) V �f(zzzzt� ifff̄ V).
5. Convergence and divergence in US regions

The preliminary investigation of stylised facts

reported in Section 4 indicates that the two richest

regions, NE and ME, follow growth paths which,

especially for the last two decades, seem to be diver-

ging from the growth paths of the other regions.

Hence, we only fit a convergence model to the six

poorer regions. The results reported are for the homo-

geneous model, Eq. (32), with smooth convergence as

in Eq. (34) and absolute convergence, that is ai=0,
i=1,. . ., N.
The similar cycle damping factor was estimated to

be 0.79 while the period was 8.0 years. The estimated

variances and cross-correlations of �j are
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while for the irregular component
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The convergence parameter, /, was estimated as

0.889, the estimates of the common trend weights, /̄ i,

are
and the estimated variances and cross-correlations of

�f are
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Recall that this specification not only allows us

to separate trends and cycles but also separates out

the long-run balanced growth path from the transi-

tional regional dynamics, thus permitting a charac-

terisation of convergence stylised facts. We will

focus on this feature of the model, since the

cycle is of secondary interest here and there is

little information beyond what was presented in

Section 4. Fig. 6 shows the smoothed estimates of

the convergence components, lit
y , for the six regions,

while Fig. 7 displays the estimated common trend,

l̄/,t, together with the estimated trends for each

region. The plot of the cross-sectional standard devia-

tion computed from the smoothed trends is similar to

that shown in Fig. 5.
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Fig. 6. Convergence component for six poorest regions.
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The convergence process is such that the common

trend is essentially constructed by weighting Great

Lakes two-thirds and Plains one third. This suggests

that we could proceed further by constructing a

benchmark from the Great Lakes and Plains, thereby

allowing the assumption of a single rate of conver-

gence to be relaxed8; see the discussion in the middle

of Section 4.1.

Although the convergence is clear, substantial

heterogeneity is evident with the convergence com-

ponents being neither monotonic over time nor

homogeneous across regions. Thus, while Great

Lakes and Plains display smooth dynamics with

most of the convergence towards the common

trend taking place from 1950 to 1980, Rocky Moun-

tains and South West display stronger convergence

dynamics but only from the mid sixties onwards.

Moreover, for the latter group, the 1980s are actually

a period of strong divergence that is only reversed in

the last decade of the sample. This type of process is

also evident in the Far West region where, following

a period of (slow) convergence up until the early
8 To be more specific we could set /̄i to zero for all regions –

apart from GL and PL – and let the corresponding /i be specific to

each region. GL and PL have the same /i.
seventies, diverging dynamics dominate from the

mid seventies up until the late eighties when con-

vergence (now stronger) resumes. Finally, the high

average rate of growth of the South East region

translates into the strong catching-up process dis-

played up until the late eighties. However, during

the nineties, this process appears to have slowed

down, or even reversed.

The estimation of the convergence model leads to

slight changes in the analysis of trend variability and

cross-regional correlations. The trend volatility for all

regions, indicated by �̃f, is now lower than in the

model fitted in Section 4, while there are more nega-

tive cross-correlations.

Multi-step forecasts enable us to analyse further

the convergence dynamics implied by the estimates.

Fig. 8 shows the forecasts of the convergence compo-

nents for the six regional series over a 20-year horizon

(2000–2019), while Fig. 9 contrasts the different

paths. The striking feature of Figs. 8 and 9 is not

the eventual convergence, but rather the prediction of

divergence in the short run. Thus, although Plains

and Great Lakes converge rapidly to the growth path

of the common trend, which is hardly surprising

given the composition of the common trend, the

Far West, Rocky Mountains, South East and South

West are all expected to widen their income gap,
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relative to the common trend, during the first 5 years

of the forecast period. Only then do they resume

their convergence towards the common trend and

even then with noticeable differences in dynamics.

Thus, by 2019 (2009), while the Great Lakes are

expected to have removed 95% (50%) of the 1999
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Fig. 8. Forecasts for conv
gap, the remaining six regions will have removed

only between 51% (17%) – for the SW – and 60%

(28%) – for RM – of their respective gaps. This

temporary divergence is a feature of the smooth

convergence model. The second-order error correc-

tion specification not only allows slower changes but
1990 2000 2010 2020

nvergence_RM
nvergence_SE
nvergence_PL

ergence component.
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also, when the convergence process stalls, allows for

divergence in the short run. This is because the

expected convergence path for these type of models

depends not only on the convergence parameter, but

also on the direction of the convergence component

at the end of the sample.
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Fig. 10. Contrast of trends for NE and ME with
Finally we contrast the behaviour of the two richest

regions with that of the six poorest. To this end, we

fitted a bivariate model, Eq. (9), without a conver-

gence component, to NE and ME and extracted the

trends. Fig. 10 shows the differences between each of

these trends and the common trend for the six remain-
5 1980 1985 1990 1995 2000

common trend of the six poorest regions.



Table 2

ADF s test with 4 lags and no constant

NE ME GL PL SE SW RM

ME
GL
PL
SE
SW
RM
FW

–1.091 
0.061 

–0.046 
–0.838 
–0.132 
–0.167 
–1.176

–0.099 
–0.421 
–1.511 
–0.489 
–0.687 
–1.526

–1.833* 
–2.526** 
–1.144 
–1.300 
–0.748

–2.462** 
–1.114 
–1.398 
–1.454

–2.381** 
–1.967** 
–2.417**

–0.924 
–1.069 –1.181

*means significant at 10% level (50 observations), critical value=�1.61.

**means significant at 5% level (50 observations), critical value=�1.95.
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ing regions. The divergence is clear with the gap

increasing markedly in the 1980s.
9 This equation does not follow from the model of Section 4 excep

in the homogenous case when all the p is are the same; see Section

4.2.
6. Testing convergence

The aim of convergence tests is to determine

whether regions are in the process of converging.

Some unit root tests are sensitive to initial conditions,

rendering them of limited value for this purpose.

Harvey and Bates (2003) examine a number of tests

and conclude that the ADF t-test is the most satisfac-

tory one as it is robust to initial values different from

zero. Indeed, when there is no constant, its power

increases the further the initial conditions are from

equilibrium. Note that many researchers seem to be

concerned with testing whether convergence has actu-

ally taken place. For example, Bernard and Durlauf

(1996, p. 171) write that dIn time series tests, one

assumes that the data are generated by economies

near their limiting distributions and convergence is

interpreted to mean that initial conditions have no

(statistically significant) effect on the expected value

of output differences.T If this really were the case, then

stationarity tests, rather than unit root tests, would be

appropriate.

The Monte Carlo experiments in Harvey and Bates

(2003) also highlight the considerable advantages of

tests without the constant when absolute convergence

is the hypothesis of interest. Many studies, for exam-

ple Carlino and Mills (1993), carry out ADF t-tests

with a time trend as well as a constant. However, the

inclusion of a time trend is not only inconsistent with

a convergence model but it also effectively ensures

that the tests have very low power.
The usual approach to testing convergence is based

on fitting models of the form9

D yi;t � ȳw;t
� �

¼ di þ pi yi;t�1 � ȳw;t�1

� �
þ

Xp
r¼1

/irD yi;t�1 � ȳw;t�1

� �
þ git;

i ¼ 1; N ;N ; ð35Þ
and carrying out ADF unit root tests. In the present

application, ȳw,t would usually be the US figure, rather

than a simple weighted average of the individual

figures in logarithms. An overall test of convergence

is often carried out by combining the information in

the individual ADF statistics as in Evans and Karras

(1996) or Levin, Lin and Chu (2002). However, these

tests do not take account of the cross-correlation

between the series, thereby rendering them invalid

in the present application; see the simulation evidence

in O’Connell (1998). More generally, there is the issue

of how useful an overall test is in the first place. As we

have seen for the US, some regions may converge

while others do not. Thus, individual tests may be

more informative. Unfortunately, basing such tests

on the equations in Eq. (35) in an attempt to determine

which regions converge to the overall mean is

obviously invalid since if one region does not con-

verge but all the others do, then yi,t� ȳw,t will be

nonstationary for all N and the tests tell us nothing.

Our preference is therefore to use pairwise ADF tests

to try to determine which regions are converging to

each other.
t



Table 3

ADF s test with 4 lags and constant

NE ME GL PL SE SW RM

ME
GL
PL
SE
SW
RM
FW

–0.081 
–0.757 
–1.681 
–1.796 
–2.169 
–1.689 
–0.685

–1.341 
–1.792 
–1.785 
–2.356 
–2.753* 
–1.299

–1.361 
–1.876 
–1.258 
–1.850 
–2.110

–1.819
–2.439
–1.653
–0.416

–2.265
–1.446
–1.213

–1.195 
–0.954 –1.112

*means significant at 10% (50 observations), critical value=�2.60.
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Tables 2 and 3 show the results of the ADF tests,

with p set to four, applied to the differences between

all the series. The results for the test with no constant

show some support for convergence within the six

poorest regions, though only 6 out of 15 of the test

statistics are statistically significant at the 5% level.

However, five of these involve SE. If a constant is

included, only one t-statistic is statistically significant

at the 10% level and this is between ME and RM!

Overall, the tests appear to contain little useful infor-

mation as to which regions can be grouped into con-

vergence clusters.
7. Conclusions

Fitting a multivariate structural time series model to

the eight US regions provides considerable insight into

convergence, or lack of it, by focussing attention on

the extraction of smooth trends. Based on these trends,

a plausible working hypothesis is that all but the two

richest regions, NE and ME, have displayed (absolute)

convergence over the last 50 years. There are sound

economic reasons why regional per capita incomes

should tend to equalise. For example, in the case of

the US, the recent paper by Caselli and Coleman

(2001) highlights the declining role of agriculture in

bringing about convergence. Explaining the underly-

ing reasons for the recently observed divergence of the

NE and ME presents a more interesting challenge.

A secondary aim of the study was to characterise the

cyclical movements in US regions. This was done by

fitting a similar cycle component and the result is

individual regional cycles that appear entirely plausi-

ble. The first principal component of the estimated

covariance matrix of the cycles accounts for the bulk
of the regional movements and tracks the national cycle

quite closely. Attempts to impose a single common

cycle on the regional series indicated that this model

is too restrictive.

The main theoretical contribution of the paper is

the development of a convergence model which is

then fitted to the six poorest regions. A key feature

of the model is that it embodies convergence com-

ponents that are able to display temporary divergence

before converging to a common trend. This tempor-

ary divergence seems to be a feature of the US

regions. The model not only characterises it over

the period in question, but also displays it when

predictions are made. These findings have important

implications for the dspeed of convergence debate,T
prevalent in many empirical studies of convergence: if

second-order convergence components best character-

ise the series, no single parameter captures the speed

of convergence and a simple notion of a half-life is

inappropriate.

Finally, we note that unit root tests, as usually

applied in the literature, are of limited value in deter-

mining which regions are converging. Building a

model that provides a statistical description of the

underlying movements in the economy is far more

fruitful.
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