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1. INTRODUCTION

In their investigation of relationships between stationary
components, referring to such comovements in economic se-
ries as “common feature cycles,” Engle and Kozicki (1993)
motivated further investigation of such relationships. In particu-
lar, they made the following remark (p. 376): “Often, however,
the interesting forms of comovement are stationary; common
shocks that are less persistent than unit roots may be the most
important in understanding business cycles.” They defined a
common feature as being present if “there exists a nonzero lin-
ear combination of the series that does not have this feature”
(p. 370). Vahid and Engle (1993) adapted this approach to non-
stationary data by using multivariate Beveridge–Nelson decom-
positions in a preliminary step. This amounts to decomposing
a series into two parts, trend and cycle, where the latter refers
to “the stationary remainder after subtracting the random walk
trend” (footnote 1, p. 341). The view of the world is thus one
in which series are integrated of order 1, denoted by I(1), and
components or features are extracted by one-sided filters. This
contrasts with the approach based on structural time series mod-
els (STMs), in which trends may be I(2), filters are two-sided
(except at the ends), and components satisfying the definition of
common features can be constructed as special cases. As is well
known, the cycles obtained in real business cycle economics us-
ing the Hodrick–Prescott filter can be interpreted in terms of an
STM with I(2) trend components.

This article compares and contrasts the structural time series
and common features methodologies as they apply to trends and
cycles. Common trends are a prominent feature of many mul-
tivariate time series, and their relationship to cointegration is
well known. However, the series of interest are sometimes in the
process of converging. They do not then display cointegration at
the outset, and cointegration tests are misleading. Carvalho and
Harvey (2005) recently proposed a model that facilitates the
correct interpretation of long-run movements and allows even-
tual convergence to a balanced growth path. Here we take the
opportunity to test the forecasting performance of the model

fitted by Carvalho and Harvey to per capita income in U.S. re-
gions using genuine postsample data. A comparison is made
with forecasts obtained with vector autoregressions (VARs) and
vector error correction models (VECMs). In investigating fore-
casting performance, we pay particular attention to whether the
second-order error-correction mechanism that lies at the heart
of the multivariate convergence model has been able to capture
the medium-term behavior.

The similar cycle model used in STMs to capture correlations
between cycles in different series contains common cycles as a
special case. In a bivariate model, this observation enables us to
develop a test for the null hypothesis of a common cycle against
the alternative of similar cycles. The asymptotic distribution is
nonstandard, because a parameter lies on a boundary when cy-
cles are in common. The small-sample properties of the test
are studied by Monte Carlo experiments, and the test is applied
when a bivariate STM, with generalized higher-order cycles of
the kind introduced by Harvey and Trimbur (2003), is fitted to
data on GDP in Canada and the U.S. We also examine the evi-
dence for common cycles in real per capita income in some of
the U.S. regions and make some comparisons with the studies
by Vahid and Engle (1993) and Carlino and Sill (2001).

The article is organized as follows. Section 2 reviews mul-
tivariate STMs and shows how they can provide a description
of trends and cycles. Section 3 sets out the second-order error
correction convergence mechanism and looks at its forecasting
performance. The multivariate model is described and the way
in which balanced growth can be incorporated into a VECM
is reviewed. Forecasting comparisons are then given. Section 4
sets out the common cycle test and gives applications. Section 5
concludes.

Estimation for the higher-order cycles and convergence mod-
els was carried out with programs written in the Ox language
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of Doornik (1999), with use made of the SsfPack library of
functions of Koopman, Shephard, and Doornik (1999). Some
of the standard models with first-order cycles were estimated
using the STAMP package of Koopman, Harvey, Doornik, and
Shephard (2000).

2. MULTIVARIATE STRUCTURAL TIME
SERIES MODELS

Suppose that we have N time series. Define the vector yt =
(y1t, . . . , yNt)

′ and similarly for the unobserved components
representing the trend µt, cycle ψ t, and irregular εt. Then a
multivariate structural time series model may be set up as

yt = µt + ψ t + εt, εt ∼ NID(0,�ε), t = 1, . . . ,T, (1)

where NID(0,�ε) denotes normally and (serially) indepen-
dently distributed with a mean-0 vector and N × N positive
semidefinite matrix, �ε . Seasonal components may also be
added but are not considered here (see Harvey 1989).

The trend is

µt = µt−1 + β t−1 + ηt, ηt ∼ NID(0,�η),
(2)

β t = β t−1 + ζ t, ζ t ∼ NID(0,�ζ ).

With �ζ = 0 and �η positive definite, each trend is a random
walk plus drift. On the other hand, setting �η = 0 when �ζ is
positive definite yields a vector of integrated random walks
(IRWs), and the extracted trend is typically much smoother than
that obtained with a random walk plus drift.

The similar cycle model, introduced by Harvey and Koopman
(1997), is[

ψ t

ψ∗
t

]
=
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ρ

(
cosλc sinλc
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)
⊗ IN
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t = 1, . . . ,T, (3)

where ψ t and ψ∗
t are N × 1 vectors and κ t and κ∗

t are N × 1
vectors of Gaussian disturbances such that

E(κ tκ
′
t) = E(κ∗

t κ
∗′
t ) = �κ , E(κ tκ

∗′
t ) = 0, (4)

where �κ is an N ×N covariance matrix. The parameter ρ is the
damping factor; it satisfies 0 < ρ ≤ 1 and 0 ≤ λc ≤ π . Because
ρ and λc are the same in all series, the cycles in the different
series have similar properties; in particular, their movements
are centered around the same period. The model allows corre-
lation of the disturbances across the series. The same pattern of
correlations carries over to the cycles themselves because the
covariance matrix of ψ t is

�ψ = (1 − ρ2)−1�κ . (5)

Rünstler (2004) extended this model to allow for leads and lags.
Harvey and Trimbur (2003) generalized the model in such a

way that it can produce smoother extracted cycles. A univariate
n th-order stochastic cycle, ψn,t, is defined for i = 2, . . . ,n, by[
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where, as in (4), κt and κ∗
t are uncorrelated white noise dis-

turbances with mean 0 and variance σ 2
κ . Further details on the

properties of higher-order cycles have been given by Trimbur
(2006). The extension to multivariate similar cycles is straight-
forward.

The disturbance vectors driving the various components are
assumed to be mutually uncorrelated in all time periods. One
implication of this assumption is that the weights in the filters
for extracting components are symmetric in the middle of the
series (see Harvey and Koopman 2000).

The statistical treatment of unobserved component models
is based on the state-space form. Once a model has been cast
in state-space form, the Kalman filter yields estimators of the
components based on current and past observations, whereas
the associated smoother estimates the components using all the
information in the sample. Predictions are made by extending
the Kalman filter forward. Root mean squared errors (RMSEs)
can be computed for all estimators, and prediction or confidence
intervals can be constructed. In a Gaussian model, the unknown
variance parameters are estimated by constructing a likelihood
function from the one-step-ahead prediction errors, or innova-
tions, produced by the Kalman filter. The likelihood function is
then maximized by an iterative procedure.

3. COMMON TRENDS AND CONVERGENCE

The first section here begins by setting out the special case
of a single common trend and the restrictions that yield bal-
anced growth. This is done as a prelude to the introduction of
the convergence model, the principal feature of which is the
modification of a multivariate trend to allow for convergence to
a balanced growth path. Thus this model is able to capture a
common feature that at best becomes apparent only toward the
end of the sample. The second section investigates the perfor-
mance of the model using postsample data.

3.1 Balanced Growth and the Structural Time Series
Error-Correction Model

Let �ζ = 0 in (1). The model has common trends or, equiv-
alently, displays co-integration if �η is not of full rank. If the
rank of �η is 1, then there is a single common trend, and

yt = θµt + α + ψ t + εt, t = 1, . . . ,T, (7)

where µt is a random walk with drift

µt = µt−1 + β + ηt, ηt ∼ NID(0, σ 2
η ), (8)

θ is an N ×1 vector, and α is an N ×1 vector of constants. (Un-
less µ0 is set to 0, α must be constrained so as to contain only
N − 1 free parameters.) In the IRW trend model, the existence
of common trends depends on the rank of �ζ ; when this is less
than N, the series (which need to be differenced twice to be-
come stationary) yield linear combinations that are stationary.
With a single common trend, the model is again as in (7), but
with

µt = µt−1 + βt−1, βt = βt−1 + ζt, ζt ∼ NID(0, σ 2
ζ ).

(9)
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The balanced growth STM is a special case of (7) with θ = i,
where i is a vector of 1’s. Thus the difference between any pair
of series in yt is stationary. The trend component may be as in
(8) or (9).

If the series are stationary in first differences, then balanced
growth may be incorporated in a VECM by writing

�yt = δ + �Dyt−1 +
p∑

r=1

�∗
r �yt−r + ξ t,

ξ t ∼ NID(0,�ξ ), (10)

where the �∗
r ’s are N × N matrices, D is a matrix of co-

integrating vectors defined such that Di = 0, and the matrix � is
N ×(N −1). The balanced growth VECM has a single unit root,
guaranteed by the fact that Di = 0. The constants in δ contain
information on the common slope, β , and on the differences in
the levels of the series, as contained in the vector α. Specifi-
cally, δ = β(I − ∑p

j=1 �∗
j )i − �α. Estimation of δ,�, and �∗

r ,
r = 1, . . . ,p, by ordinary least squares applied to each equa-
tion in turn is fully efficient, because each equation contains the
same explanatory variables.

Carvalho and Harvey (2005) modified the multivariate STM
by incorporating into the trend a mechanism for capturing con-
vergence to a common growth path. Thus

yt = α + µt + ψ t + εt, t = 1, . . . ,T, (11)

where, in the preferred specification,

µt = �µt−1 + β t−1, β t = �β t−1 + ζ t, var(ζ t) = �ζ ,

with � = φI + (1 − φ)iφ
′
, where φ = (φ1, . . . , φN)′ is a vec-

tor of weights summing to one and each weight lying between
0 and 1. Using scalar notation to write the model in terms of the
common trend, µφ,t = ∑

φiµit, and convergence components,
µ

†
it = µit − µφ,t, i = 1, . . . ,N, yields

yit = αi + µφ,t + µ
†
it + ψit + εit,

t = 1, . . . ,T, i = 1, . . . ,N, (12)

where the common trend is

µφt = µφ,t−1 + βφ,t−1, βφt = βφ,t−1 + ζφt

and the convergence components are

µ
†
it = φµ

†
i,t−1 + β

†
i,t−1,

(13)
β

†
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†
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†
it , i = 1, . . . ,N,

with ζφt = φ
′
ζ

†
t , βφt = φ

′
β

†
t , and 0 < φ < 1. If we write a

convergence component in what might be termed second-order
error correction form,

�µ
†
it = (φ − 1)µ

†
i,t−1 + β

†
i,t−1,

(14)
�β

†
it = (φ − 1)β

†
i,t−1 + ζ

†
it , t = 1, . . . ,T,

then it can be seen that there is a convergence mechanism oper-
ating on both the gap in the level and the gap in the growth rate.
One interesting feature of the second-order mechanism is that
the predicted gap between the series can actually widen in the
short run. When φ is close to 1, the extracted convergence com-
ponents tend to be quite smooth, and, as with an IRW trend,

there is a clear separation of long-run movements and cycles.
The forecasts for each series converge to a common growth
path, but in doing so they may exhibit temporary divergence.
On the other hand, when φ is equal to 1, the STM of Section 2
is obtained, and there is no convergence.

The foregoing convergence model is referred to as a struc-
tural time series error correction model (STECM). In what
follows, all disturbances are assumed to be Gaussian, and es-
timation is by maximum likelihood (ML).

3.2 Postsample Predictive Testing for U.S. Regions

Carvalho and Harvey (2005) investigated convergence for
the logarithms of real per capita incomes in U.S. census re-
gions: New England (NE), Mid-East (ME), Great Lakes (GL),
Plains (PL), South East (SE), South West (SW), Rocky Moun-
tains (RM), and Far West (FW). Annual data from 1950 to 1999
were used. The preliminary investigation of stylized facts re-
ported indicated that the two richest regions, NE and ME, fol-
lowed growth paths that, especially for the last two decades,
seem to be diverging from the growth paths of the other re-
gions. Hence a STECM was fitted only to the six poorer regions.
The model is as in (12) but with absolute convergence, that is
αi = 0 for all i = 1, . . . ,N. The convergence parameter, φ, was
estimated as .889, whereas the estimates of the common trend
weights, φi, were dominated by those for the GL and PL at
.64 and .30. In 1950 the standard deviation of the convergence
components was .180, whereas in 1999 it was only .051. Fig-
ure 1 plots the smoothed estimates of these components from
1990 to 1999, together with their forecasts. The second-order
ECM shows up in the tendency for the forecasts to move apart
in the short-run with the standard deviations in 2002, 2004, and
2020 of .054, .052, and .021.

Since the model of Carvalho and Harvey (2005) was esti-
mated, new observations from 2000 to 2003 have become avail-
able. (The Bureau of Economic Analysis had altered the base
year, so we deflated at 1996 prices to ensure compatibility with
the earlier series.) Therefore, we can test its forecasting perfor-
mance using postsample data. For each region, the univariate
postsample predictive test statistic, ξ∗(4), is calculated as the
sum of squares of the standardized one-step-ahead prediction
errors. If the specification of the model remains the same, then

Figure 1. Forecasts for Convergence Components for U.S. Regions
Together With Smoothed Estimates up to 1999 ( SW; RM;

FM; SE; GL; PL).
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Table 1. Postsample Predictive Test Statistics, ξ∗(4), for U.S. Regions

SW RM FW SE GL PL

STM 2.2091 4.2354 3.7936 2.0760 .5481 1.9645
STECM 4.7282 5.1635 3.8904 2.1291 1.7598 2.9232

ξ∗(4) is asymptotically distributed as χ2
4 (see Harvey 1989,

p. 271). The values of these statistics are given in Table 1 for
the STECM and the STM, (1). Both models are satisfactory,
but the crucial test comes with their unconditional predictive
performance.

There are three components in the STECM forecast: the com-
mon trend, the cycle, and the convergence components. To gain
some insight into the contribution of the convergence compo-
nents to the overall predictive performance, we created a com-
posite series by weighting the observations in the same way
as for the common trend, that is, yφt = ∑

φiyit. We then sub-
tracted yφt from each series to give

y†
it = yit − yφt = µ

†
it + ψit − ψφt + εit − εφt,

t = 1, . . . ,T, i = 1, . . . ,N,

where ψφt and εφt are defined analogously to yφt. The effect
of this operation is to give series very close to the convergence
components, because the common trend is removed and the cy-
cles are—as we will see in the next section—very highly corre-
lated. Hence it is possible to gauge the role of the convergence
components by comparing the y†

it’s in the postsample period, as
shown in Figure 2, with the predictions in Figure 1. As can be
seen, the initial divergence predicted for FW does indeed take
place, SE and SW remain roughly the same, and GL and PL
continue to move closer to 0.

Autoregressive models are the norm in econometric studies
of convergence, and so they provide a good yardstick against
which to judge the forecasting performance of the STECM.
Table 2 compares the forecasting performance of the STECM,
STM, VAR(2), and balanced-growth VECM for each region us-
ing the extrapolative sum of squares of the unconditional fore-
cast errors, that is,

ESS(T, �) =
�∑

j=1

(
yT+j − ŷT+j|T

)2
, � = 1,2, . . . ,

Figure 2. U.S. Regional Series After Removing a Composite Series
Constructed Using the Common Trend Weights ( SW; RM;

FM; SE; GL; PL).

Table 2. ESS(1999, 4) for U.S. Regions

SW RM FW SE GL PL

VAR .0006 .0123 .0031 .0012 .0019 .0076
VECM .0035 .0006 .0014 .0003 .0025 .0008
STM .0008 .0009 .0013 .0002 .0016 .0016
STECM .0013 .0021 .0015 .0003 .0017 .0007

where T is the last period of data used to generate the fore-
casts, ŷT+j|T , and � is the lead time (see Harvey 1989, p. 273).
The forecasting performance of the STECM is similar to that
of the STM; it will take longer to judge the effectiveness of
the convergence mechanism. The VAR does not perform well
on the whole. It does particularly badly for RM and does not
deal well with the temporary divergence in FW. The balanced-
growth VECM fares better; however, it is not as good as the
STECM for two regions and is about the same for three regions.

Some researchers (e.g., Carlino and Sill 2001) have been
tempted to use co-integration tests to find the number of com-
mon trends in U.S. regions. For our sample of six regions, the
Johansen trace test, reported in Table 3, cannot reject the null
hypothesis of two co-integrating vectors, that is, four common
trends. However, in our view there is little point in estimating
a model with two co-integrating vectors. The application of the
test again simply confirms that it is misleading if series are in
the process of converging.

4. COMMON AND SIMILAR CYCLES

Fitting a multivariate STM to the eight U.S. regions, as was
done by Carvalho and Harvey (2005), provides a good illus-
tration of the stylized facts produced by a similar (first-order)
cycle model, (3), and yields an interesting comparison with the
Beveridge–Nelson cycles reported by Carlino and Sill (2001).
ML estimation gives a damping factor of .80 and a period of
5.3 years. In a plot of the smoothed cyclical components, the
recessions of 1954, 1961, 1970, 1975, 1980, 1982, and 1991 all
show up with a high degree of coherence across regions; this is
not the case for the cycles estimated by Carlino and Sill (2001).
There are considerable differences in volatility, with the vari-
ance of the disturbances in PL being almost six times as great
as that of ME. Because the expected value of ψ2

t +ψ∗2
t is 2σ 2

ψ,

the amplitude of a cycle is best measured by its standard devi-
ation times

√
2; these figures, multiplied by 100, are given in

Table 4. Carlino and Sill (2001, p. 452) also reported big dif-
ferences in volatility, but our ordering differs from theirs. In
particular, we find that the richest regions (NE, ME, and FW)
are those with the least volatile cyclical components.

Table 3. Trace Test for Co-Integration
in U.S. Regions

R Trace test statistic

0 141.92 [0]∗∗
1 78.474 [.008]∗∗
2 36.938 [.355]
3 7.225 [.632]
4 5.075 [.799]
5 .940 [.332]

NOTE: Computed using PcGive (see Doornik
and Hendry 2001).
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Table 4. Estimated Amplitudes of Cycles in Real per Capita GDP
in U.S. Regions

NE ME GL PL SE SW RM FW

.9 .6 1.1 1.4 1.0 .9 1.3 .8

The extent to which similar cycles move together depends
on the correlations between the disturbances driving them be-
cause �ψ , the covariance matrix of the vector of cycles, is
(1−ρ2)−1�κ . There are high positive correlations between the
cyclical disturbances in all pairs of U.S. regions. The minimum
is .720, and the maximum is .987. The first principal compo-
nent of �̃κ accounts for 91% of the total variance, whereas the
second accounts for another 5%.

4.1 Common Cycles

If �ψ is less than full rank, then there are common cycles.
If the rank of �ψ is 1, there is a single common cycle, and the
model can be written as

yit = µit + θiψt + εit, i = 1, . . . ,N, t = 1, . . . ,T, (15)

where ψt is a scalar cycle and the θi’s allow the common cy-
cle to appear in each series with a different amplitude. One
of the θi’s is set equal to unity for identifiability, and, because
the cycles have mean 0, there is no need to add a vector of
constants as with common trends. A single common cycle is
a common feature in the sense of Engle and Kozicki (1993)
in that it may be removed by a linear combination, θ , of the
observations with the property that θ ′θ = 0, where the N × 1
vector θ = (θ1, . . . , θN)′. [There is a slight difference between
the common cycle definition of Vahid and Engle (1993) and the
foregoing in that if the series are I(1) and not co-integrated, then
the former requires that there exist linear combinations whose
first differences are unpredictable from their past. In a structural
model with random-walk trends, the presence of an irregular
component means that although a common cycle is removed
by θ ′yt, θ ′�yt has a first-order moving average representation
and so is predictable. We are grateful to a referee for pointing
this out.]

The common cycle constraint is a strong one, particularly if
the irregular component is relatively small. Harvey and Trimbur
(2003) found that fitting higher-order cycles tends to cause the
irregular component to become relatively more important while
the extracted cycle is smoother. Thus higher-order cycles may
be better for modeling common cycles.

4.2 Testing for Common Cycles

We now consider how to test the null hypothesis of a single
common cycle in a bivariate STM against the alternative of sim-
ilar cycles. Under the alternative hypothesis, �κ is of full rank,
whereas under the null hypothesis, the correlation between the
disturbances in the two cycles is 1. Because a correlation of 1
is on a boundary of the admissible parameter space, the asymp-
totic distribution of the likelihood ratio (LR) statistic is an even
mixture of χ2

0 and χ2
1 , and the 10%,5%, and 1% critical values

are 1.642, 2.706, and 5.412. This is an example of the appli-
cation of a classic result of Chernoff (1954). Andrews (2001,

pp. 712–714) provided a recent unified discussion of the rel-
evant theory under very general conditions. Another way of
viewing this result is to transform the vector (ψ1t,ψ2t)

′ so that
there is a common cycle in each series and a specific cycle in
one; we can then test the null hypothesis that the variance of the
specific cycle is 0.

To investigate small-sample properties, we carried out a se-
ries of Monte Carlo experiments on a simple bivariate cycle
plus irregular model,

y1t = ψ1t + ε1t,

y2t = ψ2t + ε2t, t = 1, . . . ,T,

with E(εtε
′
t) = σ 2

ε I and

E(ψ tψ
′
t) = �ψ = σ 2

ψ

[
1 ω

ω 1

]
.

Only first-order and second-order cycles were considered with
ρ = .9 for n = 1 and .75 for n = 2. The test is of the null hypoth-
esis of a common cycle, that is, ω = 1 against the alternative of
similar cycles, ω < 1. All of the results reported here are based
on 10,000 replications with random numbers generated by Ox
subroutines.

Table 5 gives the estimated test sizes for T = 100,200,
and 500 for signal-to-noise ratios, q = σ 2

ψ/σ 2
ε , of 1 and 10.

As can be seen, there is a slight tendency for the tests to be
undersized, but there is a movement toward the nominal size
as T increases. Some experiments were also run for q = .1, and
these showed the test to be somewhat oversized, particularly
for n = 1. However, such a small q is unlikely to arise in prac-
tice. The probabilities that the LR statistic is 0 are somewhat
greater than the .5 predicted by asymptotic theory, but fall as
T increases and seem to be closer to .5 for higher values of q.
There is a slight tendency for the probabilities to be closer to .5
for n = 2, but there is no corresponding movement in the size
up toward the nominal.

Table 6 gives estimated probabilities of rejection when as-
ymptotic critical values are used. Size-corrected powers would
be somewhat larger for small samples. As might be anticipated,
the power of the test increases with q. There appears to be little
difference between first-order and second-order cycles.

For N > 2, the distributional theory for the LR statistic
becomes more complex, and it may be necessary to resort
to simulation methods to obtain critical values (see Andrews
2001; Robin and Smith 2000; Stoel, Garre, Dolan, and van den
Wittenboer 2006). For example, when N = 3, Stoel et al. (2006)
showed that the asymptotic distribution of the LR statistic for
a test of the null hypothesis of one common cycle against the

Table 5. Estimated Sizes of Tests Based on Asymptotic Critical Values
and Probability That the Test Statistic Is Zero

q = 1 q = 10

T n 10% 5% 1% Pr(0) 10% 5% 1% Pr(0)

100 1 .069 .040 .010 .646 .081 .042 .013 .612
2 .080 .039 .008 .612 .076 .037 .008 .600

200 1 .078 .040 .009 .596 .080 .040 .009 .585
2 .078 .039 .008 .577 .078 .037 .006 .567

500 1 .085 .042 .007 .564 .084 .043 .009 .549
2 .081 .040 .007 .551 .083 .040 .008 .545
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Table 6. Estimated Probability of Rejection at the (asymptotic)
5% Level of Significance for the Common Cycle Test

q = 1 q = 10

n T ω = .95 ω = .8 ω = .95 ω = .8

1 100 .202 .518 .869 .997
2 .193 .521 .886 1
1 200 .263 .760 .988 1
2 .242 .757 .994 1

alternative that �ψ is of full rank is a mixture of chi-squared
with 0, 1, 2, and 3 degrees of freedom, with weights depending
on the data.

4.3 Examples

This section illustrates the common cycles test with two ap-
plications that have appeared in the common features literature.

U.S. and Canada. Engle and Kozicki (1993) entertained
the possibility of common business cycle features in U.S. and
Canadian GDP. Here we investigate whether STMs with gen-
eralized cyclical specifications support the notion of a common
cycle. The data are the logarithms of quarterly, seasonally ad-
justed real GDP from 1961:1 to 2001:4 for the United States
(Source: Bureau of Economic Analysis, U.S. Department of
Commerce) and Canada (Source: Statistics Canada).

Models of the form (1), with smooth trends, were estimated
with generalized cycles of order 1–6. To save space, only the
results for cycles of orders 1, 2, and 4 are reported in Table 7.
The first-order and second-order models show the best diagnos-
tics. The second-order model would be chosen on the basis of
goodness of fit as measured by the standard error of each equa-
tion. The estimated period is around 7.5 years. Figures 3 and 4
show the first-order and second-order cycles obtained by state-
space signal extraction. The second-order cycles are smoother.
The cycles appear to differ somewhat in their timing, although
on the whole the differences are slight, and there is no firm evi-
dence to suggest that the U.S. cycle leads the Canadian one.

The estimated periods for the common cycle models are
close to those for the similar cycle case, and the Box–Ljung
Q-statistics are not very different; see Table 8. The best fit is
again obtained for the second-order cycle. The load factor for
Canada is .85 (the model is normalized by setting the U.S. co-
efficient in θ to unity), and so the amplitude of the Canadian
cycle is, on average, only .85 of that of the U.S. Figure 5 shows
the extracted cycles.

The correlation between the cycle disturbances is around .8
in the similar cycle models, with the maximum being .85 for
n = 2. In all cases, the null hypothesis of a common cycle is
convincingly rejected by the LR test. Such evidence as there

Table 7. Similar Cycle Model Fitted to U.S. and Canadian GDP:
(a) Estimated Variance Parameters (×105), Equation Standard

Errors (×105), and Box–Ljung Statistics; (b) Correlations,
Cycle Parameters, and Information Criteria

Part (a)
U.S. Canada

n σ 2
ζ

σ 2
ψ

σ 2
ε Q(12) SE σ 2

ζ
σ 2
ψ

σ 2
ε Q(12) SE

1 .08 28.1 .78 15.48 805 .13 25.8 1.04 13.13 834
2 .04 43.9 1.54 12.97 789 .09 37.5 1.83 15.78 816
4 .11 25.7 1.59 18.82 823 .14 23.6 1.81 20.49 845

Part (b)
n corr(ζ ) corr(κ) corr(ε) ρ 2π/λc AIC BIC

1 .869 .796 −.763 .941 24.21 −2,185.81 −2,139.31
2 .801 .855 −.137 .794 30.5 −2,186.89 −2,140.39
4 .704 .824 −.088 .505 31.75 −2,174.94 −2,128.45

Figure 3. Similar First-Order Cycles in the U.S. ( ) and Cana-
dian ( ) GDPs.

Figure 4. Similar Second-Order Cycles for the U.S. ( ) and
Canadian ( ).

Table 8. Common Cycle Model for U.S. and Canadian GDP: Equation Standard Errors (×105), Goodness of Fit, Cycle Parameter Estimates,
Information Criteria, and Common Cycle LR Test Statistic

U.S. Canada Cycle parameters
Test
LR

Information criteria

n SE Q(12) SE Q(12) ρ 2π/λc θ AIC BIC

1 813 13.90 854 14.92 .941 21.99 .805 14.94 −2,172.86 −2,129.46
2 806 12.61 837 16.41 .767 28.80 .851 11.81 −2,177.08 −2,133.68
4 822 15.06 838 20.19 .506 28.57 .814 6.10 −2,170.85 −2,127.45
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Figure 5. Common Second-Order Cycle for the U.S. ( ) and
Canada ( ).

is in favor of a common cycle is strongest for n = 4, but even
here the LR statistic of 6.10 is well in excess of the 1% criti-
cal value of 5.41. The Akaike information criterion (AIC) and
Bayes information criterion (BIC) point to similar conclusions.

Are U.S. and Canadian GDP co-integrated? The Johansen
trace test suggests not. The probability value of a test of
no cointegration (against one co-integrating vector) is .383.
The STM—which has I(2) trends—has a correlation between
growth rates of .801 for n = 2. The two trends are shown in
Figure 6, and a simple plot of their difference makes it clear
why tests reject the null. The lack of balanced growth may be
due to a number of factors, for example, not using per capita
data or converting currencies at an inappropriate exchange rate.

Perhaps more interesting is the graph of the smoothed esti-
mates of the growth rates shown in Figure 6. Both exhibit a
steady decline from the 1960s coupled with long swings in the
1980s and 1990s. As with the extracted cycles, we have a near
common feature.

U.S. Regions. Attempting to estimate a model for all eight
U.S. regions with one common cycle led to implausible results,

even though, as noted earlier, the first principal component ac-
counted for more than 90% of the total variance. The same exer-
cise for quarterly data from 1969:1 to 1999:4 produced similar
conclusions (see Carvalho and Harvey 2002); however, these
models used only first-order cycles.

We now turn to investigating the plausibility of common cy-
cles between certain pairs of U.S. regions when higher-order
cycles are used. We focus on the NE and ME regions with quar-
terly data where a bivariate model gives first-order cycles with a
correlation of .97. Figure 7 shows the trends and cycles. As can
be seen, there are slight differences in the cycles. We also note
that the correlation between the slopes is .962; as with the U.S.–
Canada example, it is interesting to see the extent to which the
growth rates move together.

Tables 9 and 10 give the results of estimating models with
higher-order cycles. The model selection criteria favor the com-
mon cycle restriction for n = 2 and 4, and the LR test fails to
reject the null hypothesis of common cycles at the 10% level of
significance in both cases, whereas for n = 1 it easily rejects at
the 1% level. The BIC, which for moderately large sample sizes
attaches a greater penalty to model complexity, reaches a mini-
mum for the second-order common cycle model. The smoothed
cyclical components for the two regions are shown in Figure 8.

If there is a single common cycle, then the cycles in each
series in (15) have the same amplitude if θi = 1 for all i =
1, . . . ,N, and so are identical. This restriction may be tested by
a standard LR test in which the test statistic has a χ2

N−1 distribu-
tion, asymptotically, under the null hypothesis. For NE and ME,
the LR test statistics for n = 2 and 4 are 1.46 and 0.28, and so
it seems reasonable to treat the cycles as being identical.

Although some other pairs of regions also appear to share
a common higher-order cycle, there is insufficient communal-
ity to allow a single common cycle for all regions even when
higher-order cycles are used.

Finally we note that Vahid and Engle (1993, pp. 355–358)
analyzed the four industrial regions NE, ME, GL, and FW
and found three common trends, as did Carvalho and Harvey

Figure 6. Trends and Growth Rates for the U.S. and Canadian GDPs.
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Figure 7. Trends, Growth Rates, and (first-order) Cycles in the NE and ME U.S. Regions.

Table 9. Similar Cycle Model for per Capita GDP in NE and ME:
Correlations, Cycle Parameters, and Model Selection Criteria

n corr(ζ ) corr(κ) corr(ε) ρ 2π/λc AIC BIC

1 .962 .970 .797 .940 29.24 −1,760.94 −1,718.63
2 .948 .975 .829 .729 35.03 −1,760.72 −1,718.42
4 .937 .986 .828 .377 28.70 −1,756.74 −1,714.43

Table 10. Common Cycle Model for NE and ME: Cycle Parameters,
LR Test Statistic, and Model Selection Criteria

n ρ 2π/λc θ LR AIC BIC

1 .951 21.96 .852 9.95 −1,752.99 −1,713.50
2 .731 31.51 .867 1.50 −1,761.23 −1,721.74
4 .466 25.81 .870 1.46 −1,757.27 −1,717.79

Figure 8. Second-Order Common Cycle in Real GDP in the NE
( ) and ME ( ) Regions of the U.S.

(2005). Whereas Vahid and Engle pointed out in their foot-
note 12, page 356, that they “are not convinced that cointegra-
tion is necessary for convergence,” they nevertheless estimated
a VECM incorporating a co-integrating vector ME − .48NE −
.45GL − .07FW , the economic interpretation of which is un-
clear to us. On the basis of canonical correlations of the first
differences, they found evidence for two common cycle features
that are linear combinations of the first differences. As with the
co-integrating vector, we are uncertain of the meaning of these
combinations.

5. CONCLUSION

Common trends are undoubtedly the most important com-
mon feature of economic time series. However, data on coun-
tries or regions often show that they are converging, have just
converged, or converged some time earlier but still have a large
part of the series dependent on initial conditions. This is cer-
tainly the case with per capita GDP in the U.S. regions. Such
series are not co-integrated within the sample, but the fact
that they are converging to a special case of a co-integrated
system—namely, balanced growth—must be taken into account
if coherent medium-term forecasts are to be made. This arti-
cle has reviewed the unobserved components error-correction
model, the STECM, proposed in Carvalho and Harvey (2005)
and compared its forecasting performance in a postsample pe-
riod with unrestricted VARs and balanced-growth VECMs. The
way in which the second-order error correction mechanism
copes with temporary divergence is particularly appealing. In
the case of the U.S. regions, the STECM forecasts well and
predicts the temporary divergence of FW at the beginning of
the postsample period. The relatively poor forecasts obtained
with an unrestricted VAR illustrates the case for taking account
of convergence to balanced growth.

Structural time series models can handle common cycles
within the framework of similar cycles, and the cycle model can
be generalized so that when extracted, it is relatively smooth.
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We develop a LR test for common cycles in a bivariate series
and apply it to the series on U.S. and Canadian GDP. Although
the U.S. and Canadian cycles move closely together, the hy-
pothesis that they share a common cycle is decisively rejected
for a range of cyclical models. However, for some pairs of U.S.
regions, it seems that a common second-order cycle cannot be
rejected; the example we give is that of ME and NE.

In the bivariate case, the asymptotic critical values for the
common cycle test statistic are obtained from tables of the χ2

1
distribution by doubling the nominal significance level. More
generally, it seems difficult to find a correspondingly simple
test for a specific number of common cycles. It is perhaps worth
noting, however, that common cycle restrictions may not offer
significant gains in forecasting; making allowances for the cy-
cles being highly correlated may be all that is needed.

Finally, we note that because a structural time series model
can include several components, the possibility of more than
two common features can be entertained. In particular, it is
easy to allow for common seasonal effects, and seasonal co-
integration tests can be carried out as described by Busetti
(2006).
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