Bubbly Business Cycles

Vasco Carvalho, Alberto Martin, Jaume Ventura

CREI and Universitat Pompeu Fabra

June 2011

Introduction

- Recent crisis: crucial role of financial markets
- Macroeconomics has turned to financial-accelerator models:

 $net worth = (NPV of profits) \cdot (fraction that serves as collateral)$

Introduction

- Recent crisis: crucial role of financial markets
- Macroeconomics has turned to financial-accelerator models:

 $net worth = (NPV of profits) \cdot (fraction that serves as collateral) + bubble$

- Traditional view: small (but amplified) productivity shocks, $\Downarrow NPV \ of \ profits$
- In recent work: large shocks to net worth
 - theory: interaction of rational bubbles and financial frictions
 - * expansionary effects of bubbles
 - * bubbles and dynamic inefficiency
 - application: crisis as collapse of bubbles or pyramid schemes in financial markets

Introduction

- Recent crisis: crucial role of financial markets
- Macroeconomics has turned to financial-accelerator models:

 $net worth = (NPV of profits) \cdot (fraction that serves as collateral) + bubble$

- Traditional view: small (but amplified) productivity shocks, $\Downarrow NPV \ of \ profits$
- In recent work: large shocks to net worth
 - theory: interaction of rational bubbles and financial frictions
 - * expansionary effects of bubbles
 - * bubbles and dynamic inefficiency
 - application: crisis as collapse of bubbles or pyramid schemes in financial markets
- This paper: research project to
 - develop general model of bubbly business cycles
 - * provide a simplified version to develop intuitions
 - evaluate contribution of technology / bubble shocks to recent events

Related literature

- Rational bubbles
 - Samuelson (1958), Tirole (1985)
 - Caballero and Krishnamurthy (2006), Kocherlakota (2008), Farhi and Tirole (2009)
 - Martin and Ventura (2011a, 2011b)
- Financial accelerator
 - Bernanke and Gertler (1989), Kiyotaki Moore (1997)
 - Carlstrom and Fuerst (1997), Bernanke Gertler and Gilchrist (1996), Gertler and Kiyotaki (2010)
- Quantitative OLG
 - Rios-Rull 1996
 - Krueger and Kubler 2004, Glover, Heathcoate, Krueger and Rios-Rull 2011

A model of bubbly business cycles

- OLG: T-period lifetimes, generations of size one
 - each generation composed of workers and entrepreneurs
- Preferences: individual i of generation τ maximizes

$$U_{i,s^t} = E_t \left\{ \sum_{n=t}^{\tau+T} \beta^{n-t} \cdot \frac{c_{i,s^n}^{1-\gamma} - 1}{1-\gamma} \right\},$$

where $s^t \in S_t$ denotes history of shocks until t

• Individual $i \in I_t$:

- works in the first $T - T^R$ periods of life * income $y_{i,s^t} = \begin{cases} wage \ w_{s^t} & \text{if } i \text{ worker} \\ \text{rents } z_{i,s^t} & \text{if } i \text{ entrepreneur} \end{cases}$

 $-\operatorname{retires}$ in the last T^R periods of life

* income $y_{i,s^t} = 0$

Optimal savings and portfolios

- Full set of one-period Arrow-Debreu securities
 - $-a_{s^ts^{t+1}}$: issued in history s^t , delivers in s^{t+1}
- Flow budget constraint of individual *i*:

$$c_{i,s^{t}} = y_{i,s^{t}} + a_{i,s^{t-1}s^{t}} - \sum_{s^{t+1} \in S_{t+1}} q_{s^{t}s^{t+1}} \cdot a_{i,s^{t}s^{t+1}} \text{ and } a_{i,s^{\tau-1}s^{\tau}} = 0$$

with restriction that $a_{i,s^{\tau+T-1}s^{\tau+T}} \ge 0$

• Optimization implies

$$\pi_{s^{t}s^{t+1}} \cdot \beta \cdot \left(\frac{c_{i,s^{t+1}}}{c_{i,s^{t}}}\right)^{-\gamma} = q_{s^{t}s^{t+1}} \quad \text{and} \quad a_{i,s^{\tau+T-1}s^{\tau+T}} = 0$$

• Note: representative individual within each generation, with c_{τ,s^t} satisfying

$$c_{\tau,s^{t}} = w_{\tau,s^{t}} + z_{\tau,s^{t}} + a_{\tau,s^{t-1}s^{t}} - \sum_{s^{t+1} \in S_{t+1}} q_{s^{t}s^{t+1}} \cdot a_{\tau,s^{t}s^{t+1}} \text{ and } a_{\tau,s^{\tau-1}s^{\tau}} = 0$$
$$\pi_{s^{t}s^{t+1}} \cdot \beta \cdot \left(\frac{c_{\tau,s^{t+1}}}{c_{i,s^{t}}}\right)^{-\gamma} = q_{s^{t}s^{t+1}} \text{ and } a_{\tau,s^{\tau+T-1}s^{\tau+T}} = 0$$

Firms

- Production undertaken in firms:
 - $\mbox{ new: managed by founding entrepreneur}$
 - old: managed by employees once entrepreneur retires
- All firms produce according to

$$F\left(l_{i,s^{t}},k_{i,s^{t}}\right) = A_{s^{t}}^{Q} \cdot l_{i,s^{t}}^{1-\alpha} \cdot k_{i,s^{t}}^{\alpha}$$

• Labor markets competitive:

$$w_{s^t} = (1 - \alpha) \cdot A_{s^t}^Q \cdot l^{-\alpha} \cdot k_{s^t}^\alpha$$

where $k_{s^t} \equiv \sum_{\tau = -\infty}^t \int_{i \in I_\tau} k_{i,s^t}$ and $l = 1 - \frac{T^R}{T}$.

• Gross output of firm i:

$$F(l_{i,s^{t}}, k_{i,s^{t}}) + p_{s^{t}}^{K} \cdot (1 - \delta) \cdot k_{i,s^{t}} - w_{s^{t}} \cdot l_{i,s^{t}} = R_{s^{t+1}}^{K} \cdot k_{i,s^{t}}$$

where

$$R_{s^{t+1}}^K = \alpha \cdot A_{s^t}^Q \cdot l^{1-\alpha} \cdot k_{s^t}^{\alpha-1} + p_{s^t}^K \cdot (1-\delta)$$

Old vs. new firms

- Investment efficiency:
 - $-\ensuremath{\mathsf{entrepreneurs}}$ raise the efficiency of investment
 - firm *i*'s capital stock evolves accorting to:

$$k_{i,s^{t+1}} = \max\left\{A_{i,s^t}^K, \frac{1}{p_{s^t}^K}\right\} \cdot I_{i,s^t}$$

where I_{i,s^t} is gross investment and

$$A_{i,s^t}^K = \left\{ egin{array}{cc} A_{s^t}^K > 1 & ext{if } i ext{ is new} \ 1 & ext{if } i ext{ is old} \end{array}
ight.$$

- Contracting friction:
 - entrepreneur appropriates share $(1-\phi)$ of gross output
 - entrepreneurial rents

$$z_{i,s^t} = \begin{cases} (1-\phi) \cdot R_{s^{t+1}}^K \cdot k_{i,s^t} & \text{if } i \text{ is new} \\ 0 & \text{if } i \text{ is old} \end{cases}$$

- Assume $\phi \cdot A_{s^t}^K < 1$:
 - $-\operatorname{in}$ principle, no borrowing by new firms
 - but capital is not the firm's only asset!

Bubbles

• Let V_{i,s^t} denote market value / financing to firm *i*:

$$V_{i,s^{t}} = \sum_{s^{t+1} \in S_{t+1}} q_{s^{t}s^{t+1}} \cdot \left(R_{s^{t+1}}^{K} \cdot k_{i,s^{t+1}} - z_{i,s^{t+1}} - I_{i,s^{t+1}} + V_{i,s^{t+1}} \right)$$

• Define bubble in firm *i* as

$$b_{i,s^t} = V_{i,s^t} - I_{i,s^t} \ge 0$$

difference between market value and gross investment

• In equilibrium:

$$p_{s^t}^K = \sum_{s^{t+1} \in S_{t+1}} q_{s^t s^{t+1}} \cdot R_{s^{t+1}}^K$$

• Old firms: indifferent between investing or not, no bubble creation

$$\sum_{s^{t+1} \in S_{t+1}} q_{s^t s^{t+1}} \cdot b_{i,s^{t+1}} = b_{i,s^t} \quad \text{if } i \text{ is old}$$

• New firms: entrepreneurs maximize investment, possible bubble creation

$$I_{i,s^{t}} = \frac{\sum_{s^{t+1} \in S_{t+1}} q_{s^{t}s^{t+1}} \cdot b_{i,s^{t+1}} - b_{i,s^{t}}}{1 - \phi \cdot A_{s^{t}}^{K}} \quad \text{if } i \text{ is new}$$

Equilibrium

Sequence for c_{τ,s^t} , $a_{\tau,s^ts^{t+1}}$, w_{τ,s^t} , z_{τ,s^t} , k_{s^t} , I_{s^t} , b_{s^t} , b_{τ,s^t} and $q_{s^ts^{t+1}}$ satisfying:

- Individual optimization (s.t. definitions of $w_{ au,s^t}$, $z_{ au,s^t}$)
- Aggregate stock and price of capital

$$k_{s^{t+1}} = I_{s^t} + (A_{s^t}^K - 1) \cdot \sum_{\tau = -\infty}^t \frac{\sum_{s^{t+1} \in S_{t+1}} q_{s^t s^{t+1}} \cdot b_{\tau, s^{t+1}} - b_{\tau, s^t}}{1 - \phi \cdot A_{s_t}^K}$$
$$p_{s^t}^K = \sum_{s^{t+1} \in S_{t+1}} q_{s^t s^{t+1}} \cdot R_{s^{t+1}}^K = 1$$

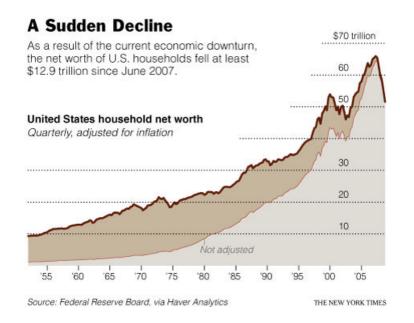
where we assume some investment by old firms

• Aggregate bubble:

$$\sum_{s^{t+1} \in S_{t+1}} q_{s^t s^{t+1}} \cdot b_{\tau, s^{t+1}} = b_{\tau, s^t} \quad \text{if } \tau \text{ old and } \sum_{s^{t+1} \in S_{t+1}} q_{s^t s^{t+1}} \cdot b_{\tau, s^{t+1}} \ge b_{\tau, s^t} \quad \text{if } \tau \text{ new } t \in S_{t+1}$$

• Financial markets clear:

$$\sum_{\tau = -\infty}^{t} a_{\tau, s^{t} s^{t+1}} = R_{s^{t+1}}^{K} \cdot k_{s^{t+1}} - \sum_{\tau = -\infty}^{t} z_{\tau, s^{t+1}} + b_{s^{t+1}}$$


Quantitative evaluation

• Objectives:

- Evaluate contribution of technology / bubble shocks to macroeconomic developments of past 25 yrs.

Quantitative evaluation

- Objectives:
 - Evaluate contribution of technology / bubble shocks to macroeconomic developments of past 25 yrs.
 - Seems worthy of exploring...

- 2000-2002: \$5 trillion loss to US household wealth
- 2007-2008: \$12.9 trillion loss to US household wealth
- What has changed regarding productive capabilities of the economy? (US GDP \$14 trillion in 2009)

Quantitative evaluation

- Objectives:
 - Evaluate contribution of technology / bubble shocks to macroeconomic developments of past 25 yrs.
 - Welfare analysis: quantitative evaluation of costs and benefits of bubbly episodes
- Natural benchmarks to compare with:
 - No bubble: OLG version of RBC model (Rios-Rull '96)
 - Deterministic (constant) bubble: Financial accelerator models (Carlstrom and Fuerst '97, Bernanke, Gertler and Gilchrist '99; Gerltler and Kyotaki '11)
- Not quite there yet...

Quantitative evaluation: challenges

- Dimension of State Space: #Wealth Distribution \times #Current Shock Configuration
 - For annual calibration the dimension of state space \simeq 60-70
- Potential solutions:
 - Traditional: linearize around steady state (e.g. Heer and Maussner 07) or quadratic objectives (Rios-Rull '96)
 - * In our case: potentially large shocks, not local deviations from steady state
 - Global solution methods based on sparse grids (Krueger and Kubler '04, Glover, Heathcoate, Krueger and Rios-Rull ´11)
 - * Good interpolation properties while keeping low the number of evaluation points
- We are close, but: for today, intuition on mechanism

Developing intuitions

- Two simplifications to baseline model:
 - -T = 2: two-period lifetimes
 - $-\,\beta \rightarrow \infty:$ all consumption during old age
- Now:
 - workers: w_{s^t} when young
 - entrepreneurs: z_{s^t} when old
- Individual optimization:

$$c_{is^{t}} = 0 \text{ and } c_{is^{t+1}} = \frac{\left(q_{s^{t},s^{t+1}}\right)^{-\frac{1}{\gamma}} \left(\pi_{s^{t},s^{t+1}}\right)^{-\frac{1}{\gamma}}}{\sum_{s^{t+1'} \in S_{t+1}} \left(q_{s^{t},s^{t+1'}}\right)^{1-\frac{1}{\gamma}} \left(\pi_{s^{t},s^{t+1'}}\right)^{-\frac{1}{\gamma}}} \cdot y_{is^{t}}$$

• Firms: new for one period

$$\begin{array}{lll} b_{i,s^t} &=& \sum_{s^{t+1} \in S_{t+1}} q_{s^t s^{t+1}} \cdot b_{i,s^{t+1}} & \text{if } i \text{ old} \\ \\ b_{i,s^t}^N &\equiv& \sum_{s^{t+1} \in S_{t+1}} q_{s^t s^{t+1}} \cdot b_{i,s^{t+1}} & \text{if } i \text{ new} \end{array}$$

so that b_{i,s^t}^N denotes bubble creation

Equilibrium

• Aggregate investment by new firms:

$$\frac{1}{1 - \phi \cdot A_{s^t}^K} \cdot b_{s^t}^N$$

• Law of motion of aggregate bubble (attractive)

$$\sum_{s^{t+1} \in S_{t+1}} q_{s^t s^{t+1}} \cdot b_{s^{t+1}} = b_{s^t} + b_{s^t}^N \tag{1}$$

• Some investments by old firms in equilibrium (feasibility)

$$(1 - \alpha) \cdot A_{s^t}^Q \cdot k_{s^t}^\alpha \cdot l^{1 - \alpha} > (1 - \delta) \cdot k_{s^t} + b_{s^t} + \frac{1}{1 - \phi \cdot A_{s^t}^K} \cdot b_{s^t}^N$$
(2)

• Law of motion of capital stock:

$$k_{s^{t+1}} = (1-\alpha) \cdot A_{s^t}^Q \cdot k_{s^t}^\alpha \cdot l^{1-\alpha} - b_{s^t} + \frac{A_{s^t}^K - 1}{1 - \phi A_{s^t}^K} \cdot b_{s^t}^N$$
(3)

- crowding-out effect: b_{s^t}
- reallocation effect: $b_{s^t}^N$
- Competitive equilibrium: sequence of k_{s^t} , b_{s^t} and $b_{s^t}^N$ satisfying Equations (1)-(3)

Bubbly episodes

- Interpretation: investor sentiment shocks $v_{s^t} \in \{F, B\}$
- Economy oscillates between:
 - Fundamental state: $b_{s^t} = 0$
 - Bubbly episodes: $b_{s^t} > 0$
- For analytical convenience: focus on particular class of examples
 - Constant probability of beginning /end

* $\Pr(v_{s^{t+1}} = B | v_{s^t} = F) = q \text{ and } \Pr(v_{s^{t+1}} = B | v_{s^t} = F) = p$

- Constant rate of bubble creation
 - * during bubbly episode: $b_{s^t}^N = n \cdot b_{s^t}$
- Full depreciation

Bubbly episodes (II): recursive representation

• Define
$$x_{s^t} \equiv \frac{b_{s^t}}{(1-\alpha) \cdot A_{s^t}^Q \cdot l^{1-\alpha} \cdot k_{i,s^t}^{\alpha}}$$

• Equilibrium: sequence of x_{s^t} satisfying

$$\frac{\sum_{s^{t+1}\in S_{t+1}} \pi_{s^{t}s^{t+1}} \cdot \left(\frac{\alpha}{1-\alpha} + x_{s^{t+1}}\right)^{-\gamma}}{\sum_{s^{t+1'}\in S_{t+1}} \pi_{s^{t}s^{t+1'}} \cdot \left(\frac{\alpha}{1-\alpha} + x_{s^{t+1'}}\right)^{-\gamma}} \cdot \frac{x_{s^{t+1}}}{x_{s^{t}}} = \frac{\frac{\alpha}{1-\alpha} \cdot (1+n)}{1 + \left(\frac{A_{s^{t}}^{K} - 1}{1-\phi A_{s^{t}}^{K}} \cdot n - 1\right) \cdot x_{s^{t}}},$$

and

$$x_{s^t} \le \frac{1 - \phi \cdot A_{s^t}^K}{1 - \phi \cdot A_{s^t}^K + n}.$$

• Intuition: bubble must be attractive and feasible

Bubbly episodes (III)

• Law of motion of capital stock:

$$k_{s^{t+1}} = \left[1 + \left(\frac{A_{s^t}^K - 1}{1 - \phi A_{s^t}^K} \cdot n - 1\right) \cdot x_{s^t}\right] \cdot (1 - \alpha) \cdot A_{s^t}^Q \cdot k_{s^t}^\alpha \cdot l^{1 - \alpha}$$

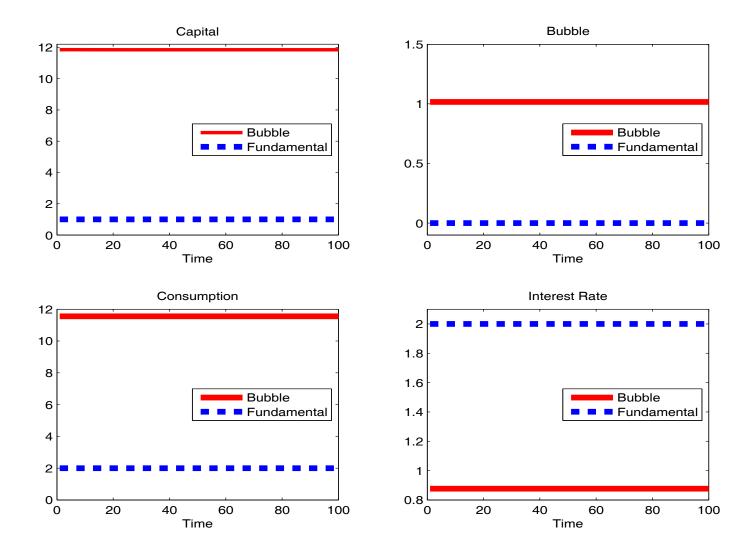
- Two benchmark episodes:
 - Conventional bubbles (Samuelson-Tirole)

$$\frac{A_{s^t}^K - 1}{1 - \phi A_{s^t}^K} \cdot n < 1$$

- * Contractionary (raise the interest rate and crowd out k)
- \ast Do not require financial frictions
- * Require dynamic inefficiency
- Non-conventional bubbles (Martin-Ventura 2011)

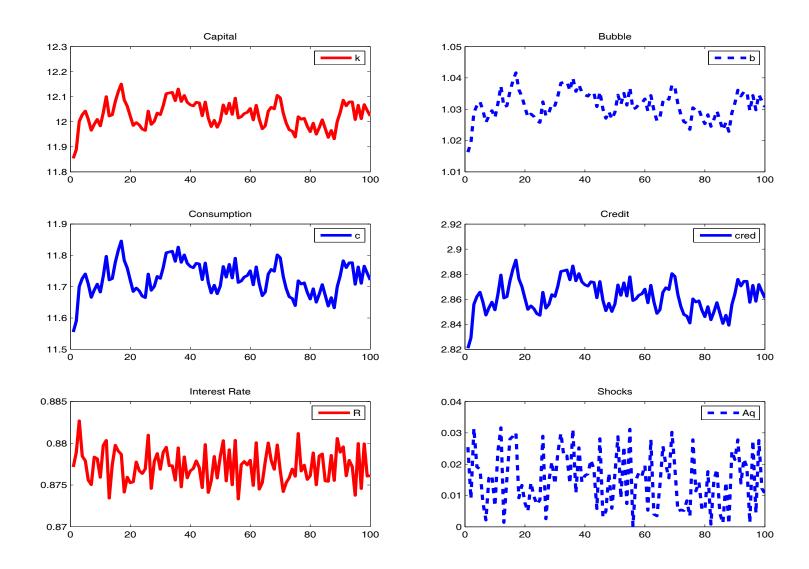
$$\frac{A_{s^t}^K-1}{1-\phi A_{s^t}^K}\cdot n>1$$

- * Expansionary (lower interest rate and crowd in k)
- * Require financial frictions
- * Do not require dynamic inefficiency.

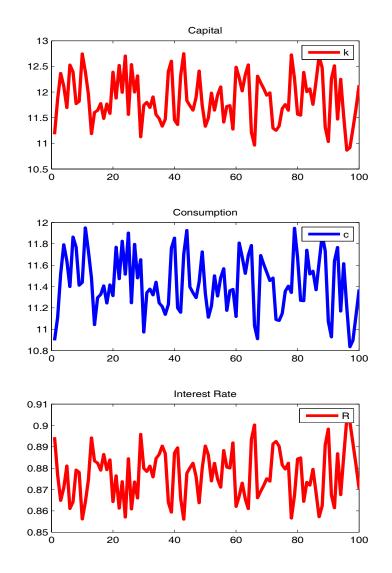

Example 1: deterministic economy

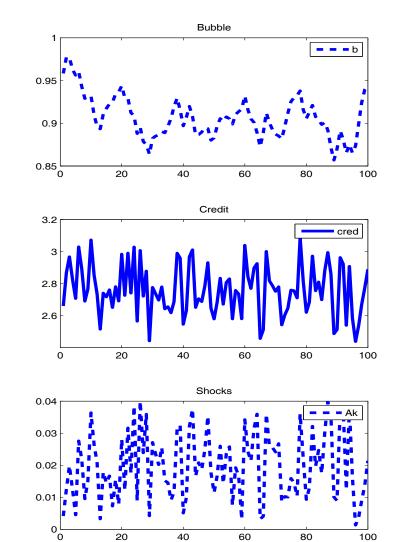
- \bullet No technology shocks: $A_{s^t}^K = \overline{A^K}$ and $A_{s^t}^Q = \overline{A^Q}$
- \bullet Bubbly episode that never ends: p=0
- With bubbly episode
 - High investor sentiment sustain bubble / bubble creation
 - Helps overcome contracting friction
 - * higher borrowing by new firms
 - * higher efficient investment
 - In example: $x_{s^t} \thickapprox 12\%$ sustains six-fold increase in k and c
- Expansion and dynamic inefficiency
 - Existence requires dynamically inefficient chain of investments
 - In fundamental equilibrium: savings > capital income

$$\begin{array}{rcl} (1-\alpha) \cdot \overline{A^Q} \cdot l^{1-\alpha} \cdot k^{\alpha}_{s^{t+1}} &> \ \alpha \cdot \overline{A^Q} \cdot l^{1-\alpha} \cdot k^{\alpha}_{s^{t+1}} \\ 0.5 &> \ \alpha \end{array}$$


- If not satisfied, bubbly episode must generate dynamic inefficiency: expansionary!

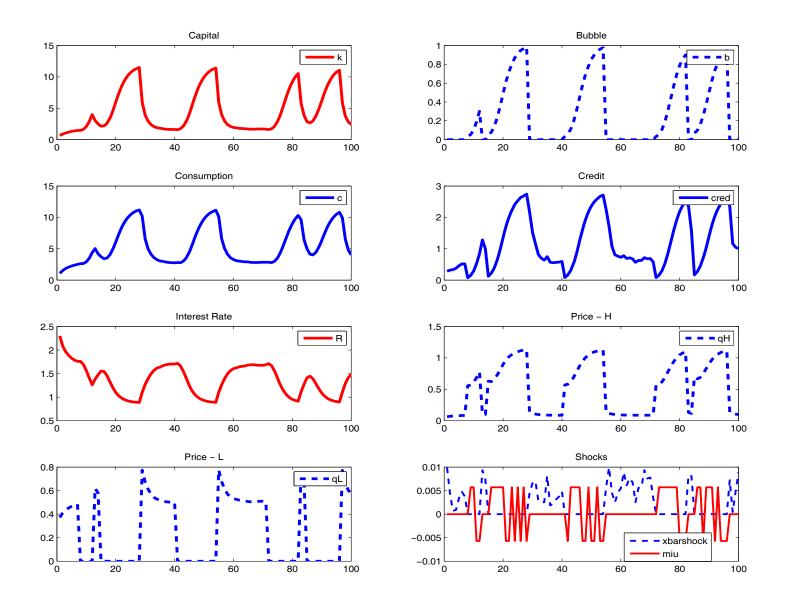
Example 1: deterministic economy



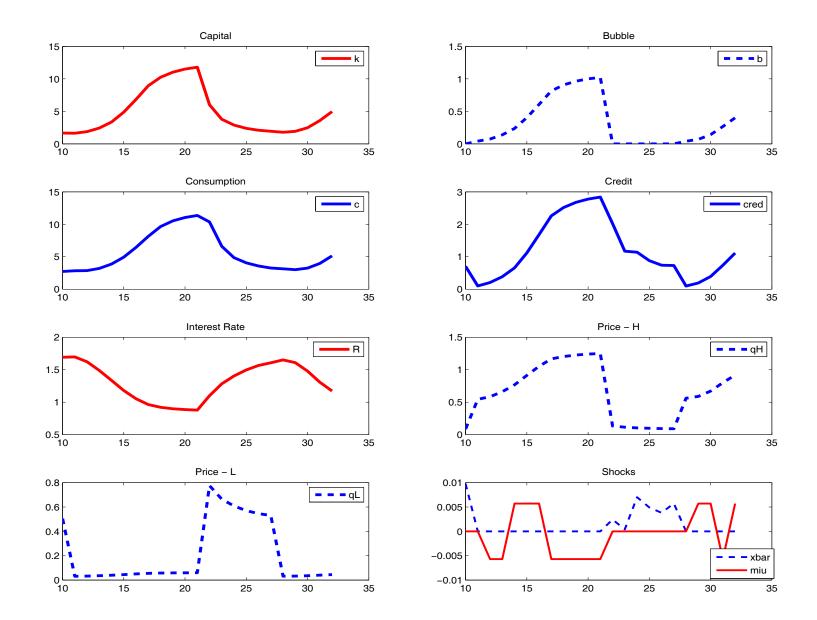

Example 2: stochastic economy with deterministic bubble

- Technology shocks: $A_{s^t}^Q \in \left[A_L^Q, A_H^Q\right]$ and $A_{s^t}^K \in \left[A_L^K, A_H^K\right]$
- \bullet Bubbly episode that never ends: p=0
- Fundamental shocks have the usual effects
 - High values of $A_{s^t}^Q$
 - \ast Raise output, consumption, capital accumulation
 - \ast Lower interest rate: raise borrowing and investment by new firms
 - High values of $A_{\boldsymbol{s}^t}^{\boldsymbol{K}}$
 - \ast Raise output and consumption with a lag
 - \ast Raise borrowing and investment by new firms
- Interaction with bubble
 - Shocks to $A_{s^t}^Q$: proportional effect on output and bubble (x_{s^t} unaffected)
 - Shocks to $A_{s^t}^K$: lower interest rate and growth rate of bubble
 - Bubble amplifies effects of technology shocks (\uparrow volatility)
 - \ast aggregate effects proportional to intermediation
 - \ast intermediation proportional to aggregate bubble creation

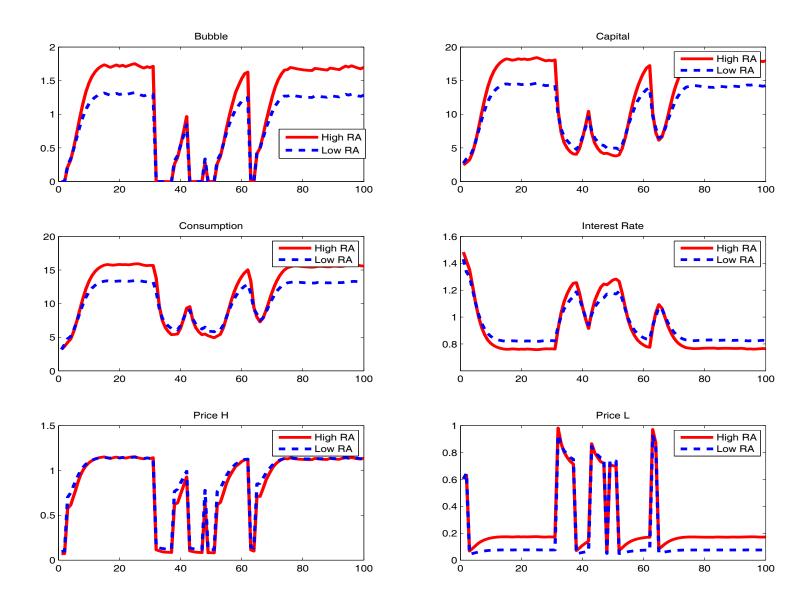
Example 2: stochastic economy with deterministic bubble



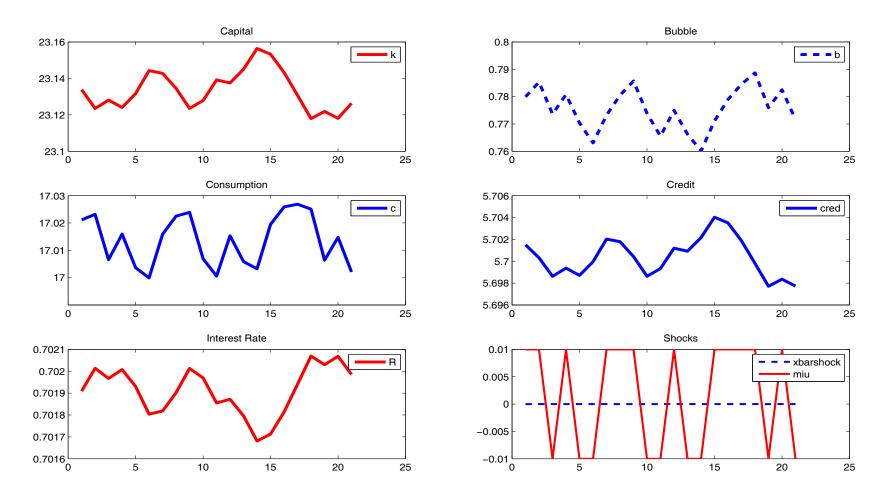
Example 2: stochastic economy with deterministic bubble

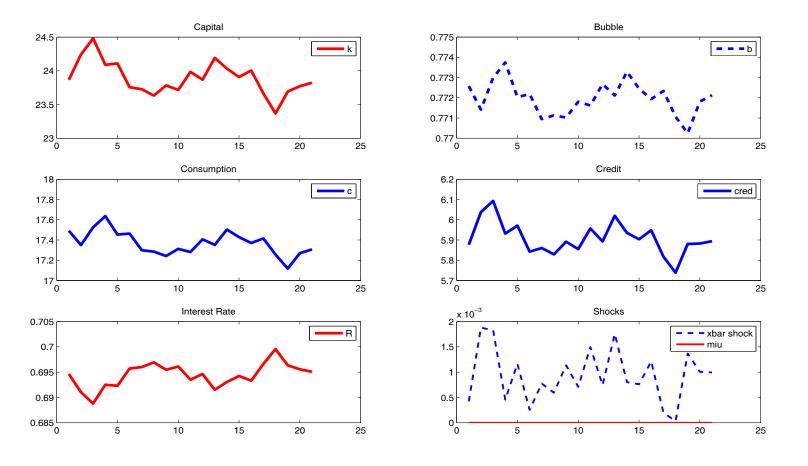

Example 3: bubbly business cycles

- \bullet No technology shocks: $A_{s^t}^K = \overline{A^K}$ and $A_{s^t}^Q = \overline{A^Q}$
- \bullet Stochastic bubbly episodes: $p>0 \mbox{, } q>0$
 - shocks to x_{s^t} and to $x_{s^t}^N$
- Huge effects of investor sentiment shocks
 - Bubbly episodes of approx. 20 periods
 - Bubble peaks at approx. 8% of wages
 - Increase of capital stock, consumption, efficient investment: >500%
 - When episode ends: increases disappear in two periods
- Main insight
 - $-\ensuremath{\,\text{Large}}$ equilibrium effects of investor sentiment shocks
 - Despite rationality and risk aversion
 - * risk aversion increases the effects

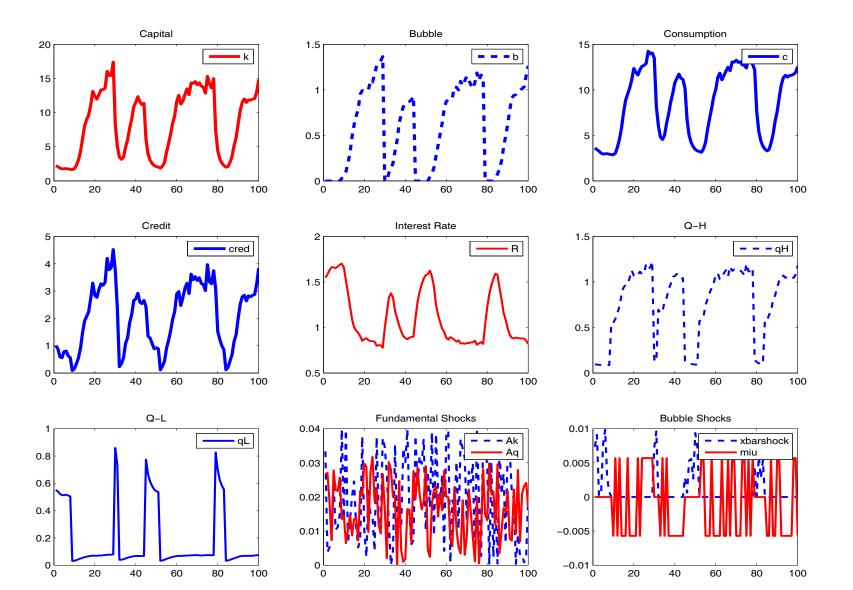

Example 3: bubbly business cycles

Example 3: a closer look at an episode


Example 3: role of risk aversion


Example 4: types of bubble shocks

- \bullet No technology shocks: $A_{s^t}^K = \overline{A^K}$ and $A_{s^t}^Q = \overline{A^Q}$
- \bullet Bubbly episode that never ends: p=0
 - shocks to x_{s^t} and to $x_{s^t}^N$
- Shocks to existing bubble x_{s^t}
 - Contractionary
 - Crowding-out of capital
 - Decrease in consumption and intermediation
- \bullet Shocks to bubble creation $x_{s^t}^N$
 - $\operatorname{Expansionary}$
 - Reallocation of resources towards efficient investment
 - Increase in consumption



Example 4: shocks to $x_{s^t}^N$

Example 5: the full economy

Conclusions

- This paper: research project to
 - develop general model of bubbly business cycles
 - * provide a simplified version to develop intuitions
 - evaluate contribution of technology / bubble shocks to recent events (PENDING)
- Main message: rationality consistent with large macroeconomic effects of investor sentiment shocks

Parametrization

Table 1: Parameter values for figures			
Parameter	Description	Value	Shock
α	Capital Share	2/3	-
ε	Measure of entrepreneurs	0	-
$1-\phi$	Entrepreneurial rent	0.75	-
γ	Risk aversion coefficient	2	$\gamma'=8$
A^Q	Total factor productivity	3	[-0.005%, 0.005%]
A^k	Investment efficiency	3.77	[-0.005%, 0.005%]
\overline{x}	Initial bubble	0.02	
n	Growth Rate of Bubble	0.14	
μ	Shocks to existing bubbles		± 0.005
q	Probability of bubble episode starting	0.15	-
p	Probability of bubble bursting	0.5	-