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SENSITIVITY ANALYSIS AND MODEL EVALUATION IN SIMULATED 
DYNAMIC GENERAL EQUILIBRIUM ECONOMIES* 

BY FABIO CANOVAI 

This paper describes a Monte Carlo procedure to evaluate dynamic nonlin- 
ear general equilibrium macro models. The procedure makes the choice of 
parameters and the evaluation of the model less subjective than standard 
calibration techniques, it provides more general restrictions than estimation by 
simulation approaches and provides a way to conduct global sensitivity 
analysis for reasonable perturbations of the parameters. As an illustration the 
technique is applied to three examples involving different models and statis- 
tics. 

1. INTRODUCTION 

A growing body of research in the applied macroeconomic literature uses 
simulation techniques to derive the time series properties of nonlinear stochastic 
general equilibrium models, to compare them to real world data and to evaluate 
policy options (see e.g. King, Plosser, and Rebelo 1988, or Cooley and Hansen 
1990). In implementing numerical analyses of general equilibrium models, one has 
to overcome four hurdles. First, an economy must be specified and functional 
forms for its primitives selected. Second, a decision rule for the endogenous 
variables in terms of the exogenous (and predetermined) variables and of the 
parameters must be computed. Third, given the probability structure of the 
economy, values for the parameters must be chosen. Fourth, the closeness of 
functions of simulated and the actual data must be assessed in a metric which is 
relevant to the problem and policy conclusions, if any, should be drawn. 

While models are often specified with an eye to analytical tractability and there 
has been progress in developing techniques to numerically approximate unknown 
decision rules for the endogenous variables (see e.g. Sims 1984, Coleman 1989, 
Novales 1990, Baxter 1991, Tauchen and Hussey 1991, Judd 1992, Marcet 1992 and 
the January 1990 issue of the Journal of Business and Economic Statistics), 
surprisingly little attention has been paid to the problems connected with the other 
two steps of the simulations. In particular, the selection of the parameters and the 
evaluation of the simulation results have been undertaken using procedures which 
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lack statistical foundations (exceptions include Smith 1993, Burnside, Eichenbaum, 
and Rebelo 1993). 

Starting with Kydland and Prescott (1982) it has been common to use a 
"calibration" methodology which typically consists of three steps: (i) select the 
parameters of the model using an array of criteria which range from matching long 
run averages, consistency with estimates obtained in the micro literature and a 
priori settings, (ii) represent the properties of actual data with simple statistics (the 
so-called "stylized facts") which are relatively insensitive to approximation and 
measurement errors, (iii) evaluate the quantitative properties of the model infor- 
mally using a metric which is specific to the researcher and the question being asked 
(see Gregory and Smith 1993 and Kim and Pagan 1993 for detailed surveys of the 
methodology). Calibration procedures have beenjustified in different ways. Shoven 
and Whalley (1984) argue that calibration is a tractable procedure to convert general 
equilibrium structures from abstract representations into realistic models of actual 
economies. Jorgenson (1984) indicates that it is the only feasible alternative when 
it is impossible to simultaneously estimate the parameters without requiring an 
unrealistically large number of observations or overly severe identifying restric- 
tions. Kydland and Prescott (1982) suggest that it is a reasonable way to assess the 
quality of a model when measurement errors are present and when its abstract 
nature is likely to result in a sure rejection when formally tested. Finally, Kydland 
and Prescott (1991) suggest that calibration is the natural heir of the original 
quantitative approach advocated by Frisch (1933). 

Although popular among theorists, calibration procedures have always made 
econometricians uneasy. With the advent of modern computer technology, tracta- 
bility and size limitations are no longer a stumbling block to the use of estimation 
methods. But apart from the issue of estimation (thoroughly discussed in Gregory 
and Smith 1989), there are other compelling reasons for considering the conclusions 
obtained with calibration procedures debatable. 

The parameters used in simulations are typically chosen either to reproduce the 
long run properties of a particular data set or from existing econometric evidence. 
The former procedure is problematic since information used in different studies 
may be inconsistent (e.g. a parameter chosen to match average labor payments 
from firms in national account data may not equal the value chosen to match the 
average labor income received by households). The latter is dubious because 
existing evidence is contradictory and because the range of estimates for certain 
parameters (e.g. risk aversion) is so large that selection biases may be important. In 
addition, the micro studies that are cited to support particular parameter choices, 
may have obtained estimates using model specifications which are inconsistent with 
those imposed in the model under consideration (such as completeness versus 
incompleteness of markets or general versus partial equilibrium). 

Because no uncertainty is typically allowed in the selection of the parameters and 
the number of replications typically performed is small, the results of the simula- 
tions can not be corroborated with formal statements on the range of possible 
outcomes of the model. Therefore, one must resort to informal techniques to judge 
the closeness of simulated and actual data and to evaluate policy alternatives. 
Moreover, although certain parameters are crucial in determining the conclusions 
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of the study, results are often reported without any sensitivity analysis on how 
summary statistics change with reasonable perturbations of the parameters of 
interest. While these problems are well known in the static computable general 
equilibrium (CGE) literature (see e.g. Pagan and Shannon 1985) and partially 
recognized by Kydland and Prescott (1982), they were neglected by most of the 
subsequent literature. 

The purpose of this paper is methodological. I propose a simulation methodology 
which formalizes the evaluation of properties of the model and allows for 
meaningful sensitivity analysis on the outcomes of the simulations. The methodol- 
ogy shares features with those recently proposed by Gregory and Smith (1991) and 
Kwan (1991b), can be justified using simple Bayesian tools (see Box 1980 and 
El-Gamal 1993) and has similarities with stochastic simulation techniques employed 
in dynamic nonlinear large scale macro models (see e.g. Fair 1991). Sims (1989), 
Smith (1992), Watson (1993) and Canova, Finn, and Pagan (1993) have suggested 
alternative procedures to formally measure the fit of calibrated models. 

The idea of the procedure is simple. The model is recognized to be afalse data 
generating process for the observed time series and the task is to know in which 
dimensions it is most at odds with actual data. The metric I use to evaluate the fit 
is probabilistic. I simulate the model repeatedly using a Monte Carlo procedure 
which randomizes over both the exogenous stochastic processes and the parame- 
ters. Parameters are drawn from a density consistent with the frequency distribu- 
tion of estimates existing in the literature. I then construct the frequency distribu- 
tion for the realizations of the statistics of interest and examine either in what 
percentile of the distribution of the simulated statistics the actual value lies or the 
percentage of simulated values which lie in a ball around the actual realization or 
both. Extreme values for the first percentile (say, below a percent or above (1 - a) 
percent) or a low value for the second percentile indicates that the model is 
particularly poor in the dimensions examined. 

The approach I propose has several appealing features. First, it accounts for the 
uncertainty faced by a simulator in choosing the parameters of the model with a 
"realistic" Bayesian prior. This prior can be formally obtained using information 
theoretical measures and the outcomes of point estimation experiments (see 
El-Gamal 1993). Second, it has a built-in feature which allows for global sensitivity 
analysis on the support of the parameter space and generalizes techniques on 
randomized design for strata existing in the static CGE literature (see e.g. Harrison 
and Vinod 1989). Third, it provides a general evaluation criteria which attaches 
probabilities to events we are interested in characterizing (as in Box 1980). Finally, 
it provides a simple and convenient metric to judge the closeness of the simulated 
and the actual data. 

The paper is divided in 6 sections. The next section reviews model building 
procedures and the criteria employed to examine the empirical relevance of 
dynamic economic models. Section 3 introduces the technique and describes the 
details involved in the implementation of the procedure. Section 4 spells out the 
relationship between the approach and existing techniques. Section 5 presents 
some examples. Section 6 concludes. 
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2. ON EVALUATING THE EMPIRICAL RELEVANCE OF ECONOMIC MODELS 

The formulation, estimation and evaluation of dynamic general equilibrium 
macro models is a relatively recent undertaking. Hansen and Sargent (1979) pose 
the foundations for a maximum likelihood estimation of the "deep" (preference, 
technological) parameters of these models and for testing their validity. Hansen and 
Sargent face two basic problems. First, since closed form solutions for the 
endogenous variables in terms of exogenous variables and parameters do not 
always exist, they concentrate on parametric structures which deliver closed form 
solutions (linear-quadratic specifications for the primitives of the model and linear 
processes for the exogenous variables). Second, since many economic models do 
not provide a "realistic" statistical specification for the endogenous variables and 
will be discarded as empirically irrelevant in formal testing, Hansen and Sargent 
augment their models with additional random components (measurement errors, 
error in variables or unobserved components). Once a closed (final) form solution 
is obtained and there are enough sources of randomness in the economy to make 
the model "complete" in a probabilistic sense (see Haavelmo 1944), one proceeds 
to identify and estimate the parameters. The empirical relevance of the model is 
then judged by performing statistical goodness of fit tests or likelihood ratio tests for 
hypotheses concerning the parameters of interest. 

Given the intrinsic limitations existing in the choice of linear quadratic specifi- 
cations, Hansen (1982) proposed to estimate and test hypotheses concerning 
"deep" parameters directly from the Euler equations using simple moment 
conditions. Hansen's GMM-IV approach does not require a closed (or a final) form 
solution for the endogenous variables, is robust to any failure of the econometrician 
to have the same information set as agents (see Pagan and Ullah 1988) but still 
requires a fully specified probability structure for the model. The validity of the 
model is examined using standard goodness of fit tests (the J-tests). 

Contemporaneously with the work of Hansen, Kydland, and Prescott (1982) 
suggested an alternative procedure to tackle the problem of the probabilistic 
underspecification of the model. Rather than augmenting an artificial economy with 
extraneous random components to obtain a richer statistical structure, they start 
from the observation that the model, as a data generating mechanism (DGP), is 
false. That is, it is known that, as the sample size grows, the data generated by the 
model will be at greater and greater variance with the observed time series. For 
Kydland and Prescott an economic model is neither an accurate nor a realistic 
description of the actual data but only an approximation to the stochastic process 
generating it. The task of an applied researcher is to indicate in what dimensions the 
approximation is poor and suggest ways to modify the artificial economy to obtain 
a better fit. 

There are several logical consequences of this point of view. First, because the 
model is a false DGP for the actual data, classical estimation of the parameters is 
meaningless. In addition, classical hypothesis testing is inappropriate because a 
false model can not be regarded as a null hypothesis to be statistically examined (it 
can be rejected even before the test is undertaken). Similarly, standard Bayesian 
analysis is inapplicable because the (simulated) likelihood need not be the correct 
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one, so that posterior statements for the parameters are worthless. In response to 
these deficiencies, researchers working in this area have adopted a two step 
approach which chooses the parameters so that the model replicates the data in 
some basic dimension of interest and evaluates the model on its ability to reproduce 
"stylized facts." For example, in an aggregate model of the business cycle, 
parameters are chosen so that the behavior of the endogenous variables in the 
steady state coincides with the long run behavior of the corresponding variables in 
the actual economy, and the model is evaluated on its ability to replicate variances 
and covariances of the cyclical component of macro variables. This first step of the 
approach is typically justified as a way to unify observations from different fields of 
economics but it should be noted that it is entirely analogous to the procedure 
employed in experimental sciences where the physical instrument used to measure 
some phenomenon is "calibrated" so as to reproduce some known result. For 
example, to measure the temperature of water a thermometer is calibrated so that 
in freezing water it gives a value of 32F and in boiling water it gives a value of 212F. 

However, because the economy is not fully specified in a probabilistic sense and 
no measure of dispersion is attached to "calibrated" parameters, the metric 
employed to determine the quality of the approximation is left unspecified, 
inferential procedures are subjective to the researcher and, in general, lack 
statistical foundations. Continuing with the analogy with experimental sciences, if 
a measurement of 65F is reported it is hard to say if it is different from any value 
observed in real life or in any other experimental situation. 

To overcome these problems Watson (1993) develops a classical procedure 
which makes evaluation less subjective in situations where the model is known to 
be a "false" description of the actual economy and the parameters are calibrated. 
The metric Watson uses is the relative contribution of the second order properties 
of the model to the second order properties of the actual data. A model fits the data 
well if the correlation between summary statistics of simulated and actual data in a 
particular range of frequencies is large (in a R 2 sense). 

Sims (1989) and Smith (1992) have suggested a VAR metric to judge the fit of the 
model. Their approach applies to both situations where the parameters are 
calibrated or estimated. A VAR is a window which may only partially capture 
aspects of the data. A model is regarded as appropriate if the "distance" between 
the unrestricted VAR representations of simulated and actual data is small either in 
absolute terms or relative to the distance of other models to the actual data. 

Finally, Canova, Finn, and Pagan (1993) use the restrictions implied by a 
calibrated model on the long and short run dynamics of the actual data to provide 
several general goodness of fit tests and an encompassing procedure to discriminate 
among models which pass the first round of goodness of fit tests. The procedure has 
some analogy to the one of Hansen and Sargent (1979) since it employs the 
restricted VAR representation implied by the model to examine exclusion restric- 
tions for the actual data, and has the advantage of providing the information 
necessary to modify a model in response to its failure to pass the tests. 

In developing an alternative framework of inference I follow Kydland and 
Prescott's philosophy very closely. I take the actual data to be the realization of an 
unknown underlying vector stochastic process. The task here is to reproduce 
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features of the data with an "artificial economy," which is known to be almost 
surely a false generating mechanism for the actual data. The features of the actual 
data we may be interested in include conditional and unconditional moments (or the 
entire densities), the autocovariance function of the data and various functions of 
these quantities (e.g. measures of persistence or of relative volatility) and specific 
events (e.g. a recession or an average upward sloping term structure of interest 
rates). I recognize that "calibrating" the model to the actual data involves sampling 
error and, more importantly, that some judgmental decisions need to be made 
which lead to a whole range of calibrated values indexed by data sets, measurement 
techniques, model specifications and evaluation procedures. The presence of this 
cross sectional variability is the crucial ingredient to construct numerical measures 
of discrepancy between simulated and actual data. The inferential procedure 
adopted here follows Friedman (1959) and judges the validity of a model on its 
ability to reproduce, in a probabilistic sense, a selected number of facts of the actual 
economy. If the model is regarded to be a good approximation to the actual data 
generating process, it can be fruitfully used to evaluate policy options. 

3. MODEL EVALUATION AND SENSITIVITY ANALYSIS 

I assume that a simulator is faced with an m x 1 vector of time series Yt, which 
are the realizations of a vector stochastic process Xt and that she is interested in 
reproducing features of Yt using a dynamic general equilibrium model. The analysis 
of policy options will be discussed later on in this section. Xt is assumed to be a 
Markov process with absolutely continuous but unknown distribution and moments 
up to the nth. For the sake of presentation, I assume that the unconditional 
distribution of Xt is independent of t but there is nothing in the framework that 
prevents shifts in the unconditional distribution of Xt at known points. Xt may 
include variables like GNP, consumption, interest rates, exchange rates, etc. I also 
assume that dynamic economic theory gives us a model expressing the endogenous 
variables Xt as a function of exogenous and predetermined variables Zt (the states 
of the problem) and of the parameters 1B. Zt may include objects like the existing 
capital stock, exogenous fiscal and monetary variables or shocks to technology and 
preferences. I express the model's functional relation as Xt = f(Zt, ,B) where f is, 
in general, an unknown function. Under specific assumptions about the structure of 
the economy (e.g. log or quadratic preferences, Cobb-Douglas production function, 
full depreciation of the capital stock),f can be computed analytically either by value 
function iteration (see e.g. Bertsekas 1976) or by solving the Euler equations of the 
model subject to the transversality condition (see e.g. Hansen and Sargent 1979). 
Under general specifications, however, f can not be derived analytically from the 
primitives of the problem. A large body of current literature has concentrated on 
the problem of finding approximations which are either locally or globally close to 
f in a given metric.2 

2 Kydland and Prescott (1982), King, Plosser, and Rebelo (1988) for example, locally approximate the 
function f by linear or log-linear expansions of f around the steady state of the model. Sims (1984) and 
Novales (1990) employ a backward solution to recover the function f. Their idea is that although f is 



SENSITIVITY ANALYSIS AND MODEL EVALUATION 483 

Here I assume that either f is available analytically or that one of the existing 
numerical procedures has been employed so that a simulator has a functional i; 
which approximates f in some sense, i.e. II 9;(Zt, y) - f(Zt, 13)II < e, where y are 
functions of the parameters 13 and 11-11 is a given norm. Given the model f, an 
approximation procedure i;, a set of parameters 13 and a probability distribution for 
Zt, one can infer the probability distribution of Xt from the model. 

Let %(Xt 1,, f ) be the density of the Xt vector, conditional on the parameters 13 
and the modelf. ?(Xt IOp, f) represents the probability that a particular path for the 
endogenous variables will be drawn given a parametric model structure for the 
artificial economy and a set of parameters and is a deterministic (nonlinear) 
transformation of K(Zt), the probability density of the exogenous variables. In 
other words, Xt is random because Zt is random. The vector 13 is, in general, 
unknown. Let 7T(1IJB) be the density of the parameters of the model, conditional on 
the information set 1. *O(1IJ) represents the information available to a simulator on 
the parameters of the model. Let WC(Xt, Olf, 1) be the joint density of simulated 
data and of parameters and let p(Xtlf, 1, sA) = fJ W(Xt, 13f, ) d1 be the 
simulated predictive density of Xt where sA C 1 is the parameter space. 

A generic formulation for the problem we are interested in is to compute 
functions of simulated data under p(XtIf, 1, sA), i.e. evaluating objects of the 
form: 

(1) E(I(Xt)If, 1, sA, I) = I ,(Xt)p(XtIf, 1, sA) dXt 

= ff A ,u(Xt)W(Xt, ,BIf, ) d: dXt 

where u(Xt) is the vector of functions of simulated data and I is the support of the 
exogenous variables. Let h(ft) be the corresponding vector of functions of the 
actual data. 

The problem of examining the fit of the model can be summarized with the 
following question: how likely is the model to generate h(Yt)? To answer note that 
(1) allows us to compute probabilities of the form P(u(Xt) E D), where D is a 
bounded set. To do this choose, for example, the mth component of ,u to be 
pum(Xt) = X(Xt: u(Xt) E D) where X is the indicator function, i.e. y(,u(Xt); D) = 
1 if u(Xt) E D and zero otherwise. From (1) one can also compute a value h 
satisfying P[pu(Xt) ? h] = a for any given a, by appropriately selecting the 
indicator function. 

impossible to compute, f-1 may be easier to find. In their approach, a process for the endogenous 
variables is selected and one seeks processes for the exogenous variables which may have generated them 
under f. Marcet's (1992) method of parametrizing expectations and Judd's (1992) minimum weighted 
method can be seen as choosing a set of known functions which globally approximatef in a given norm. 
Baxter's (1991) and Coleman's (1989) methods are grid procedures which obtain the function f by 
piecewise linear interpolation. Finally, Tauchen and Hussey's (1991) quadrature method is a grid 
approximation procedure which is appropriate for integral equations which are of Fredholm's second 
type. 
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Model evaluation then consists of several types of statements which are 
complementary and differ only in the criteria used to measure distance. For 
example, one can compute the probability that the model can generate a U,m(Xt) 
less than or equal to hm (vt). In other words, we can examine the likelihood of an 
event (the observed realization of the summary statistics in the actual data) from the 
point of view of the model. Extreme values for this probability would indicate a 
poor "fit" in the dimensions examined. Alternatively, if one can measure the 
sampling variability of hm (t), one can chose an a and compute the implied h. 
Then, by choosing the set D to include the actual realization of hm (ft) plus one or 
two standard deviations around the point estimate, one can either see if h lies inside 
D or calculate the probability that the model generates functions U,m(Xt) in the 
chosen set. If evaluation needs to be done in several dimensions of the u(Xt) vector 
simultaneously, one can partition the simulated distribution of u(Xt) into hyper- 
cubes and check the likelihood of the event h(xt) from the point of view of the 
model. For example, if the task is to study the equity premium-risk free rate (EP-R) 
puzzle (see Merha and Prescott 1985), one could partition the space of simulated 
EP-R pairs into 4 quadrants with the origin on the actual mean values of the EP-R 
pair and check the proportion of simulated pairs which falls in each quadrant. 

3.1. Implementation. There are four technical issues regarding the implemen- 
tation of the procedure that deserve some discussion. The first concerns the 
computation of integrals like those appearing in (1). If the (,B, Zt) vector is of high 
dimension simple discrete grid approximations, spherical or quadrature rules 
quickly become unfeasible since the number of function evaluations increases 
exponentially with the dimension of 1B and Zt. In addition, unless the contours of 
Xk(Xt, 81I , f ) are of ellipsoidal forms, grid evaluations may miss most of the action 
of this density. There are several feasible alternatives available: one is the Monte 
Carlo procedure described in, e.g., Geweke (1989), another is the data augmenta- 
tion procedure of Tanner and Wong (1987) or the "Gibbs sampler" discussed, e.g., 
in Gelfand and Smith (1990). Finally, one could use one of the quasi-random 
procedures presented in Niederreiter (1988). 

In the examples of Section 5, I adopt a Monte Carlo approach. After drawing 
with replacement iid ,B vectors from *,13I) and Zt paths from K(Zt), I substitute 
sums over realizations for the integrals in (1) and appeal to the law of large numbers 
for functions of iid variables to show that 

l N a.s. 

(2) - > i(Xt) -E(,u(Xt)) N i=1 

where N is the number of replications. Note that, although We is unknown, sampling 
from We (orp) can be conveniently accomplished by simulating the model repeatedly 
for random (13, Zt). 

Second, since in most cases the functionf is unknown, % itself becomes unknown 
and the direct computation of integrals like (1) is not feasible. If the approximation 
i; to f is accurate, one could simply neglect the approximation error and proceed 
using I (Xt 1,, fJ) in place of %(Xt 1,3, f). However, since only very little is known 



SENSITIVITY ANALYSIS AND MODEL EVALUATION 485 

about the properties of any of the approximation procedures and some have only 
local validity (see e.g. Christiano 1990 and Dotsey and Mao 1991), one may want to 
condition explicitly on the existence of an approximation error in conducting 
inference (as e.g. in Geweke 1989). In this case one would replace (1) with 

(3) E(g (Xt) I f , sA, , ) = J I (Xt)X(Xt, P I, i)@ ( , f, i) dP dXt 

where co are weights which depend on the "true" density i(Xt 3I f ) and on the 
approximation density J (Xt, 131 9, fJ). Thus, the approximation problem can be 
posed in terms of choosing a procedure which makes the weights in (3) as close as 
possible to 1. In the example of Section 5 where the functionf is unknown I simply 
neglect the approximation error. 

Third, one must specify a density r(fl31I) for the parameters. One could choose 
this density to reflect the asymptotic distribution of a GMM estimator of 1B (as in 
Burnside, Eichenbaum, and Rebelo 1993), of a simulated method of moments 
(SMM) estimator of P (as in Canova and Marrinan 1993), or of a maximum 
likelihood (ML) estimator of P (as in Phillips 1991). Two disadvantages of this 
approach need to be noted: first, because the density of ,3 is selected on the basis 
of one data set, it does not reflect all the information available to a simulator which 
includes estimates of P indexed by data sets, estimation procedures or model 
specifications. Second, and as a consequence of the above, the dispersion associ- 
ated with the density may have little relationship with the true uncertainty faced by 
a simulator in choosing the parameters of a model. 

The idea of the paper is to choose 71(131k9) so as to reflect all available 
cross-sectional information. El Gamal (1993) has shown how to do this formally, 
using information theoretical measures. The resulting *,8(1) is the least informative 
(Bayesian) density consistent with available cross sectional information. Roughly 
speaking, the procedure amounts to counting estimates of P3 previously obtained in 
the literature and constructing *,8(1) by smoothing the resulting histogram. For 
example, if one of the elements of the P vector is the risk aversion parameter, and 
one counts estimates over the last 15 years obtained from fully specified GE models 
and smooths the resulting histogram, one would obtain a truncated (below zero) 
bell-shaped density, centered around two with a small mass above four. If for some 
parameters previous econometric evidence is scant or there is no theoretical reason 
to expect that one value is more likely to occur than others, one could assume 
uniform densities on the chosen support. 

Estimates of P available in the literature are not necessarily independent (the 
same data set is used in some cases), some are less reliable than others and many 
may be noncompatible as different definition of variables and model specification 
are used. Nonindependent estimates are legitimate candidates to enter into the 
information set as long as they reflect sampling variability or different estimation 
techniques. The influence of less reliable estimates or of estimates obtained with 
models which very are different from the theoretical framework used can be 
discounted by giving them a smaller weight in constructing histograms. In the 
examples of Section 5 I will choose a reasonable range for ,B based on theoretical 
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considerations and current simulation practices and impose informative densities 
only in those dimensions where econometric evidence is rich. 

Finally, in many applications the joint density of the parameter vector can be 
factored into the product of lower dimensional densities. If no relationship across 
estimates of the parameters exists, *,8(1) is simply the product of univariate 
densities. If estimates of certain parameters are related (e.g. in the case of 
parameters describing the share of various intermediate goods in a production 
function), one can choose bivariate or trivariate densities for these dimensions and 
maintain univariate specifications for the densities of the other parameters. 

3.2. Sensitivity Analysis. If one adopts a Monte Carlo approach to compute 
(1), an automatic global and efficient sensitivity analysis is performed on the entire 
support of the parameter space as a by-product of the simulations. Sensitivity 
analysis, however, can take other more specific forms. For example, one may be 
interested in examining how likely g(Xt) is to be close to h(Yt) when ,B = ,B is a 
"cocktail party" estimate of ,. In this case one could choose a path for Zt and 
analyze the conditional distribution of Xt for the selected value(s) of ,. Alterna- 
tively, one might wish to assess what is the maximal variation in g(Xt) which is 
consistent, say, with ,B being in a two standard error band of a particular value. To 
answer this question one chooses a path for Zt and constructs paths for xt for 
draws of , in a particular range. 

3.3. Analysis of Policy Options. Once a model has been validated, one can 
proceed to analyze policy options. The issue of policy analyses is subtle to deal with 
for two reasons. First, one has to decide how to model an intervention. Second, 
since many approximations to the decision rule are appropriate only locally, policy 
changes must be designed so that they belong to the region where approximations 
are valid. 

The easiest case to analyze is when the component of Zt we are interested in 
changing is deterministic (e.g. tax or tariff rates). In that case Xt(Xt, 81f, ) a 
r(,813) and only the randomness in the parameters affects the outcome of the 
experiment. 

If the component of Zt we are interested in is stochastic, but policy options do 
not involve changes in the distribution of the Z's, one can undertake an analysis of 
different policy options by simply comparing a band for g(Xt) obtained by 
randomizing the , vector under the, two policies. Finally, if a policy experiment 
involves changes in the entire distribution for Zt one may want to compare XJ(Xt, 
,ILfl, 1) with XJ(Xt, I1f2, 1) where fi and f2 now represent two different 
specifications for Zt. Differences in the outcomes can be examined using nonpa- 
rametric methods as discussed in Pagan and Ullah (1991). In the example of Section 
5 dealing with the evaluation of policy options, I will only consider deterministic 
policy changes. 

4. A COMPARISON WITH EXISTING PROCEDURES 

The approach we have described in the previous section lends itself to a simple 
Bayesian interpretation and shares features with several existing Bayesian tech- 
niques. 
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We have already mentioned that our "prior" on the parameters can be justified 
formally as the least informative density which is consistent with the information 
contained in a variety of estimation experiments. The procedure we employ to 
construct this density is also tightly linked to the selection procedure used in the 
so-called "consensus literature" (see Genest and Zidek 1986), where the problem 
is to combine different subjective Bayesian priors into an overall (more objective) 
one, and to the one employed in "meta-analysis" (see Wolf 1986), where the 
outcomes of a number of hypothesis testing experiments are combined to reach a 
decision (accept or reject) based on the collection of experimental p-values. 

Because G(xtl,I, f) is not necessarily the correct "likelihood" of the data, our 
procedure shares features also with the limited information approach of Kwan 
(1991a), where an unknown density G is approximated with G on the basis of one 
or more statistics. As Kwan shows, the approximation is appropriate if and only if 
the statistic on which the approximated likelihood function is built is consistent and 
uniformly asymptotically normal. He uses these properties to construct a diagnos- 
tic check for the quality of the approximation. Because in our setup the statistic 
g(Xt) need not be consistent, Kwan's diagnostic check is inapplicable. 

Our inferential approach has direct connections with the one pioneered by Box 
(1980). Box used predictive densities and functions of the data to provide a 
diagnostic check for model adequacy, which may be used to either discredit or 
support posterior statements about the parameters. There are two major difference 
between that approach and ours: first, the predictive density need not be the correct 
predictive density for the actual data and second, it need not have a closed form 
expression. The lack of closed form expression for the predictive density prevents 
us from computing the probability of paths analytically, like Box does. 

Our model evaluation procedure is also related to the ones proposed by Gregory 
and Smith (1991) and Kwan (1991b). However, a few differences need to be 
emphasized. Gregory and Smith take the model as a testable null hypothesis and 
compute the probability of type I error by simulation. Although the Monte Carlo 
methodology underlying their procedure is identical to ours, the interpretation of 
the results is different for three reasons. First, Gregory and Smith assume that the 
mod is the true DGP for the actual data while this is not the case here. Second, they 
do not account for parameter uncertainty in evaluating the outcomes of the model. 
Finally, because they take a calibrated version of the model as the "truth," they 
conduct sensitivity analysis inefficiently, by replicating the experiments for differ- 
ent calibrated values. Kwan, on the other hand, allows for parameter uncertainty in 
his simulation scheme. However, he chooses a subjective "prior" density for the 
parameters. In addition, he evaluates the outcomes in relative terms, by comparing 
two alternative model specifications using a posterior-odds ratio. A model is 
preferred to another if it maximizes the probability that the simulated statistics are 
in a given set (typically chosen to be of two standard deviations width around the 
point estimate of the actual statistics). 

Finally, the procedure for sensitivity analysis proposed here extends the ap- 
proach that Harrison and Vinod (1989) used in deterministic CGE models and is 
complementary to the local analysis of Canova, Finn, and Pagan (1993). To 
determine how robust simulation results are to "small" perturbations of the 
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parameters around the calibrated values, they examine the magnitude of the local 
derivative of the statistic in the direction of interest. Because the two procedures 
measure the sensitivity of the results to perturbations in the parameters of different 
size and because they take a different point of view regarding the reliability of 
calibrated parameters, they provide complementary information and should both 
be used as specification diagnostics for simulated models. 

It is simple to show that both "calibration" and "estimation by simulation" 
exercises appear as special cases of our simulation procedure. Calibration exercises 
can be seen as imposing a point mass for *,(13) on a particular value of ,B and, in 
certain cases, also selecting a particular path for the exogenous processes. One 
interpretation of this choice is that a simulator is perfectly confident that the vector 
,B used is correct and does not worry about the cross-study or time series 
uncertainty surrounding estimates of 13. Note that when the density of 13 is a 
singleton the marginal and the conditional density of Xt are identical. In addition, 
when a path for the vector of exogenous variables is selected in advance, either by 
drawing only one realization from their distribution or by choosing a Zt on the basis 
of extraneous information (for example, inputting Solow residuals in the model), 
the marginal for Xt has a point mass. In this last instance the likelihood of the model 
to produce any particular event is either 0 or 1 and one must resort to informal 
techniques to compare the closeness of functions of simulated and actual data. In 
some studies the randomness in Zt is explicitly taken into account and repeated 
draws for the exogenous variables are made for a fixed value of 13. In this case one 
computes moments of the statistics of interest by averaging the results over a small 
number of simulations (see, e.g., Backus, Gregory, and Zin 1989). 

Simulation exercises conducted after parameters have been selected using a 
SMM or a GMM technique are also special cases of the proposed framework of 
analysis. Here *,1(1) has a point mass at ,B*, where ,B* is either the SMM estimator 
of ,B (see Lee and Ingram 1990) or the SQML estimator of ,B (see Smith 1992) or the 
GMM estimator of ,B. In some cases, *,1(1) is taken to be the asymptotic 
distribution of one of these estimators (see Canova and Marrinan 1993). Simula- 
tions are performed by drawing one or more realizations from 6(XtI,3*, f, 1) (or 
from X(Xt, I1f, 5), if the asymptotic distribution of ,B* is used) and standard 
errors of g(Xt) are computed using the asymptotic standard error of ,B* and a linear 
approximation to ,. 

In evaluating the model's performance these last procedures have two advan- 
tages over calibration. First, they allow formal statements on the likelihood of 
certain parameter values to reproduce the features of interest. For example, if the 
four standard error range around the point estimate of the AR(1) parameter for the 
productivity disturbance is [.84, .92], then it is highly unlikely (with probability 
higher than 99 percent) that persistent (in the sense of unit root) productivity 
disturbances are needed to match the data. Second, they provide a setup where 
sensitivity analysis to a reasonable perturbation of the parameters can easily be 
undertaken (although not often done). 

Estimation procedures however, have two major shortcomings. First, they 
impose a strong form of ignorance on the simulator which does not reflect the 
available a priori information. The vector 13 may include meaningful economic 
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parameters which can be bounded on the basis of theoretical arguments. For 
example, a priori it is known that a risk aversion parameter which is negative or in 
excess of, say 30, is very unlikely. With SMM, GMM or SQML procedures the 
range of possible , is [-co, co]. By appropriately selecting a hypercube for their 
densities a researcher can make "unreasonable" parameter values unlikely and 
avoid a posteriori adjustments. Second, simulations may not constitute an inde- 
pendent way to cross validate the model because the parameters used are obtained 
from the same data set which later will be used to compare results. 

Procedures mixing calibration and GMM estimation and calibration and estima- 
tion by simulation recently employed by, e.g., Burnside, Eichenbaum, and Rebelo 
(1993), are also special cases of our approach. In this approach some parameters are 
fixed using extraneous information, while others are formally estimated using 
moment conditions. Although these strategies allow a more formal evaluation of the 
properties of the model than pure calibration procedures, they face several 
problems. First, parameters may be estimated regardless of their identifiability. 
Second, as for generic estimation procedures, the evaluation of the model is 
problematic because standard errors for the statistic of interest do not reflect the 
uncertainty faced by a simulator in choosing parameter values. Finally, as Gregory 
and Smith (1989) have pointed out, the small sample properties of estimators 
obtained from these procedures may be far from reasonable unless the parameters 
which are fixed in advance are consistent estimators of the true parameters. When 
this condition is not met, estimates of the remaining parameters may be sensitive to 
errors in pre-setting and close matching of simulated and actual moments may yield 
misleading inference. 

5. SOME EXAMPLES 

5.1. A One Sector Growth Model. The first example I consider is the 
Brock-Mirman one sector growth model. Here a social planner maximizes the 
discounted sum of utilities of the representative consumer subject to an economy 
wide resource constraint. The problem is of the form 

(4) max Eo , OtU(ct) 
Ct t=O 

subject to 

(5) ct + Kt - (1 - S)Kt-I f(Kt-1, ?t) 

where It = Kt - (1 - 6)Kt- I is investment at t, Kt is the capital stock at t, a is 
the depreciation rate, Et is a productivity shock and Eo is the expectation operator. 
For computational convenience, I assume that the production function has the form 
Yt = f(Kt- I, Et) = K I Et and that the instantaneous utility function has the form 
U(ct) = In (ct). 

For 5 = 1 a solution for consumption and investment in terms of the states of the 
problem (Kt-1, Et) exists and it is given by (see Sargent 1987) 
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(6) ct = (1- O)K- c t 

It = (0Kt-lEt. 

When ( =# 1 a closed form solution for ct and It does not exist and numerical 
techniques must be used to compute an approximation to it. To avoid the issue of 
numerical approximations in this first example I will set ( = 1. Therefore, there are 
two parameters in the model , = (0, g) and one driving process Zt = Et. Since there 
need not be any relationship between the range of possible 0 and g, I assume that 
the density of , is the product of the densities of the two parameters. 

Several studies have estimated the discount factor 0 to be, for monthly data, in 
the neighborhood of 0.996 (see e.g. Hansen and Singleton 1983). Estimates of this 
parameter range across studies from 0.990 to 1.0022. Theoretically, it is known that 
in the steady state, the discount factor determines the real interest rate and that a 
reasonable range for the annualized real interest rate is [-0.005, 0.05]. In 
simulation studies various authors have used values of 0 in the range [0.9951, 
0.9992] (see e.g., Cooley and Hansen 1990 or Backus, Gregory, and Zin 1989). I 
capture these observations by choosing the density for 0 to be truncated normal 
(with truncation on both sides) centered around 0.997 and with range [0.990, 
1.0022]. Note that this distribution is skewed to express the idea that a real interest 
rate of 2 to 3 percent or lower is more likely than an interest rate in excess of 5 
percent. I assume that g has a uniform distribution in the range [0, 1]. This range is 
consistent with either decreasing or constant returns to scale. Finally, to make 
simulations operative I draw Et as iid from a X(0, 1). Although the iid assumption 
is clearly unrealistic, it avoids the introduction of a nuisance (AR) parameter in the 
problem. 

Since the model generates stationary paths for the endogenous variables, I take 
stationary inducing transformations of the real data. Suppose we are interested in 
the relative volatility of consumption to output as in, e.g. Deaton (1987). Using U.S. 
monthly data on the growth rate of personal consumption expenditure and income 
(as proxied by an index of industrial production) for the sample 1955-1985, I obtain 
a value of 0.56 for this ratio with a standard deviation of 0.21. Using (6) and the 
production function, I generate time series for ct and Yt using the level of the 
capital stock in the U.S. in 1954, 12 for ko. 

Figure 1 presents the estimated density of the statistic when 10000 random 
replications for the 1B, {It}t 1 pair are drawn. Estimates of the density are obtained 
nonparametrically using a kernel estimator with variable width as in Pagan and 
Ullah (1991).3 A value of 0.56 lies in the 98th percentile of the density of the 
simulated statistics and only 25 percent of the simulated density mass lies within 
one standard deviation band around 0.56. Moreover, the mean value for the 
simulated density is 0.26, the median is 0.24, the mode is 0.02, the standard 
deviation is 0.12, the 90 percent range is [0.7, 0.49] and the minimum and maximum 
are 0.001 and 0.71. Therefore, it is unlikely that this parameterization of the one 

I The use of the nonparametric density estimate in place of the empirical frequency density is of no 
consequence for the results obtained here and in the next two examples (see also Gregory and Smith 
1991). 
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FIGURE 1 

sector growth model is able to generate the relative variability of consumption to 
income we see in the U.S. data. 

5.2. Profits from Uncovered Speculative Strategies. The second example 
draws from Canova and Marrinan (1991) and (1993) who attempt to reproduce 
features of profits from uncovered speculative strategies in several foreign ex- 
change markets and of holding premiums in the term structure of U.S. interest 
rates. 

The economy they consider is characterized by two countries. Every period, 
each country i is endowed with Yit, i = 1, 2 units of a nonstorable consumption 
good. There are two governments which consume Git units of their own country's 
good. To finance these consumption requirements each government issues a 
country specific money, Mit, collects real lump sum taxes, Tit, levied equally on 
agents from both countries, and issues debt to finance any purchases in excess of 
money creation and tax collections. This debt is in the form of state contingent 
nominal bills of maturity k, k = 1, 2, ..., K, denominated in their own country's 
currency. Endowments, government consumption requirements and money sup- 
plies are exogenous and follow independent first order Markov processes with a 
stationary and ergodic transition function. 

Countries are each populated by a representative household maximizing a time 
separable utility function defined over the two goods. Households are subject to 
both a wealth constraint and a liquidity constraint which compels them to purchase 
goods with cash. The timing of the model is such that asset markets open first and 
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goods markets follow. At the beginning of each period the consumer enters the 
asset market and decides how to allocate her wealth among the productive assets 
of the 2 countries, currencies, and the state contingent nominal bonds issued by the 
2 governments. After the asset market closes, the consumer enters the goods 
market and makes her consumption purchases with previously accumulated 
currency. 

In equilibrium the expected nominal profits from holding a bond to maturity k for 
h periods relative to holding an h-period bond to maturity, defined as HP kth - 

(klh)rit,k - ((k - h)lh)rit+h,k-h - rit,h, are 

HPkh1(lh 'n [EtohYit+k (Mit+k) luit+kl [Et ok Yit+k (Mit+k) 'Uit+k 
(7) HP~4IZ = ' L it+h (Mlt+h) Uit+h ln Y (M 

t) 1Uit 
J 

Et 0 hYit+h (Mit+h ) Uit+h 
+ ln Yito(Mit) -luit l. 

The approximate annualized percentage expected nominal profits from speculating 
in foreign exchange markets defined as EPt,h = (log Et{St+h} - log{Ft,h}), where 
Ft,k = St,ke rl,,k -r2,,k are 

Ihf Ylt+h (Mlt+h) 1Ult+h B 

(8) EPt,h = h1*(log E Y2t+h (M2t+h) 1U2t+hl 

fEt[ Y2t+h (M2t+h) U2t+h] 

l Et[ Ylt+h (Mlt+h Ult+h] 

Canova and Marrinan examine a wide array of functions of (7) and (8) for different 
h. Here I confine attention to the variability and first order autocorrelation of three 
month holding premium and three months profits from forward speculation. The 
reason is that the second order properties induced by similar general equilibrium 
models are, in general, so different from those of actual data that some authors (e.g. 
Campbell and Shiller 1987, Frankel and Froot 1987) have concluded that the simple 
version of the rational expectations-efficient market hypothesis is severely flawed. 
By describing the distribution of the outcomes of these second moments from the 
point of view of the model we can shed light on this issue. The standard deviation 
and the AR(1) coefficient for profits from holding 3 months a 6 month T-bill as 
compared to holding a 3 month T-bill to maturity for the period 1960-1988 are .221 
and .792 respectively. The standard deviation and the AR(1) coefficient for profits 
from 3 month forward speculation on the dollar in the dollar/mark market for the 
period 1979-1987 are .042 and .785 respectively. 

To obtain closed form solutions for (7) and (8), I take a second order Taylor 
expansion around qt = (A ln (Ylt), A ln (Y2t), A ln (Mlt), A ln (M2d), ln (1 - 

OJ'lt), ln (1 - 0J2t) where (*it = GitlYit. I assume that the conditional mean and 
conditional variance of mt evolve according to 

(9) Et(7jt) =Ao +AIj7jt-I j6= 1, ..., 6 

(0) Et (7Bjt 
- Et (77j)2 ?2 =aj 

+ 
ilcJt _ 

2 a 2jJ j=1,........................,6 
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where ?jt = qjt - E(nqt) - iid(O, ojt2). Finally, I assume a utility function of the 
form U(c1t, C2t) = (CltC2tI 

- g) 1 -Y/(1 - y) where X is share of domestic goods in 
total consumption and y is risk aversion parameter. 

The problem under consideration is much more complex that the previous one 
since there are 6 exogenous sources of shocks (Yit, Git, Mit, i = 1, 2), 27 
parameters to select and an approximation error to consider. Note that there are 
two types of parameters: preference parameters (r, y) and "auxiliary" parameters, 
which enter expressions (7) and (8) only because of the particular time series model 
selected for the exogenous variables. For preferences parameters existing evidence 
is sufficiently rich to construct informative densities, while for the others the 
evidence is very slim and this forces us to choose uninformative densities for these 
parameters. 

The density for , = (r, y) is assumed to be the product of univariate densities and 
it is selected as follows.4 Since little is known about the mean value of X (the share 
of domestic good in total consumption) and different studies have used different 
values, I assume a uniform density over the range [0.5, 1.0]. I take the density for 
the risk aversion parameter to be truncated x2(4) and range [0, 20]. The rationale for 
this wide range is the large differences across studies for estimates of y, which have 
obtained values between 0.5 and 3.0 (see e.g. Hansen and Singleton 1983 and 
Canova and Marrinan 1991) and recent simulation studies analyzing properties of 
financial data, which experimented with values ranging from 0.5 to 55 (see e.g. 
Merha and Prescott 1985, Backus, Gregory, and Zin 1989 and Kandel and 
Stambaugh 1990). Despite this diversity, there is enough consensus in the profes- 
sion that y = 2 is the most likely value. I capture this belief by selecting the mode 
of the density to take on this value. Finally, since the 95 percent range for a x2(4) 
is approximately [0.7, 10], no more than 1.5 percent of the mass of the distribution 
is in the region where y > 15. 

The remaining 25 parameters describe the conditional mean and variances of the 
exogenous processes. Based on the estimates of Stock and Watson (1989) and my 
own calculations I chose the ranges forA11, A12 andA13 to be [-.10, .00], [-.06, 
.00], [.45, 60] respectively. On the ranges for A I I and A 12 I assume that 50 percent 
of the density mass is uniformly distributed below 0 and 50 percent is lumped at 0 
(see Sims 1988 for a rationale for this choice) while on the range for A 13 I assume 
a uniform density. Based on arguments provided in Canova and Marrinan (1993) 
and estimates of Hodrick (1989) I assume a uniform density for all GARCH 
parameters. a11, a12, a13 have support on [-0.37, 0.13], [-0.41, 0.19] and [-0.14, 
-0.04], respectively while a2l and a22 both have support on [0.00, 0.50] and a23 
has support on [0.17, 0.27].5 The ranges for A01, A02, A03 and a0l, a02, a03 are 
chosen endogenously so that the unconditional mean and the variance of the 
processes match the unconditional mean and variance of the growth rates of U.S. 
and OECD industrial production and of the monetary base in the U.S. For the 
remaining 10 parameters characterizing the behavior of government expenditure no 

4Canova and Marrinan (1991) consider the case where the information about some of the parameters 
of the model is correlated. I will not examine this case here. 

S The ranges for all the parameters are constructed from the point estimate for the period 64-88 plus 
or minus one standard error. 
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evidence exists because data on government expenditure shares in total output is 
not available at monthly frequency. Based on the quarterly estimates of Canova 
and Marrinan (1993) 1 assume that (A05, A06) have uniform densities in [0.05, 0.30], 
the densities of (aO5, aO6) are uniform in [0.05, 0.15]. Finally, the densities of (A 15, 
A16, a15, a16, a25, a26) are chosen to be uniform [0, 1.0] but I eliminate all the 
paths for qfit which are too volatile or have a mean that lies outside of the cross 
sectional range of estimates of OECD countries. 

For this problem I drew 5000 iid (,B, {rnt}/TI ) vectors and neglect the approxi- 
mation error due to the Taylor expansion by drawing mt from a lognormal 
distribution. Estimates of the densities for the simulated variance and the simulated 
first autocovariance of the two series appear in Figure 2. For the holding profits 
series, the actual value of the standard deviation lies in the 28th percentile of the 
estimated density, while the actual value of the AR(1) coefficient is in 53th 
percentile. The means (modes) of the univariate distributions are 0.60, and 0.73 
(0.18 and 0.35), the standard deviations are 0.53 and 0.22, 90 percent ranges are 
[0.18, 1.74] for the standard deviation and [0.35, 0.90] for the first order serial 
correlation. In 28 percent of the simulated values both the standard deviation and 
the AR(1) coefficient are below actual values, in 25 percent of the cases the variance 
is below the actual value but the AR(1) is greater than the actual value and in 47 
percent of the cases both are greater than the actual values. For the risk profits 
series, the actual value of the standard error lies below all the simulated values, 
while the actual value of the AR(1) coefficient is in the 87th percentile. The means 
(modes) of the univariate distributions are 2.29 and 0.28 (1.14 and 0.57), the 
standard deviations are 1.36 and 0.32 and the 90 percent ranges are [1.37, 5.37] for 
the standard deviation and [0.07, 0.86] for the first order serial correlation. Finally, 
in 90 percent of the cases the standard deviation is above the actual value but the 
AR(1) is below than the actual value and in 10 percent of the cases they are both 
greater than the actual values. 

In conclusion, the current model specification can generate on average more 
variability than what is found in the data but there are many reasonable parameter 
configurations for which the first order serial correlation coefficient is lower than 
what we see in the actual data. 

5.3. Optimal Taxation. The final example considers the model employed by 
Cooley and Hansen (1990) and is chosen to illustrate how the procedure for 
sensitivity analysis outlined in the paper can be used to examine the consequences 
of policy options. The problem they examine is whether there is a combination of 
three different taxes which is less distorting than the actual U.S. taxation system. 

The framework of analysis they employ is a closed economy model with 
production and two goods (cash and credit). To simplify the analysis, and because 
none of the conclusions depend on this, I assume that all goods are cash goods. The 
representative consumer maximizes lifetime utility given by 

(11) Eo , Ot[log (ct) + B*(1 -ht) 
t=O 
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FIGURE 2 

The cash-in-advance constraint and the wealth constraint are 

(12) ptct s m,t- + (6, -1 )m,_ 

(13) Tc,ct + I, + (1-Th,)w,h, + (l-Tkt)rtKt + Tk,tK, + + TR, 
Pt Pt 

where gt > 0 is the gross growth rate of the money supply, It is investment, ht is 
hours, w t h t is labor income, rt Kt is capital income, Tct, Tht, Tkt and TR t are the 
consumption tax, labor income tax, capital income tax and net transfers at t, 
respectively. Capital is accumulated according to 

(14) K, = (1 - B)K,t1 + I,. 

There is a representative firm in the economy, owned by the consumer, maximizing 
-profits 

(15) PR, = Khl- -w,h,t- r,K,. 

Finally, there is a government which taxes agents using four distortionary taxes 
(inflation, consumption, labor income and capital tax) and transfers the total back 
to agents in a lump sum fashion. The government budget constraint is 
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(16) t- 1) + Thtwtht + Tkt(rt - 8)Kt + Tc ct = TR . 
Pt 

The task here is to determine how consumer's welfare varies in the steady state 
with various levels and forms of taxes and to provide a upper and lower bound to 
the welfare costs of the current U.S. tax system. Because the analysis is conducted 
in the steady states, only the randomness in selecting ,3 vector affects the outcomes 
of the exercise. As a welfare measure, Cooley and Hansen use the change in 
consumption as a percentage of steady state GNP which is required to restore an 
individual to the level of utility achieved with Pareto optimal allocations. Therefore 
Ac solves: log (c + Ac) - log J - B(I - h) = 0 where J and h are the steady 
states values of consumption and hours when all taxes are zero. 

In this model there are four parameters ,3 = (0, B, a, 8) and three policy 
instruments (TC Tk, Th). Note that because the CIA constraint is always binding, 
the inflation tax does not affect real allocations in the steady state it will not be 
considered here. I compute the welfare losses associated with each tax instrument 
separately using a 10 point grid on (0, 1) with 0.1 increments. 

The density for the four parameters are as follows: 0 is truncated normal, 
centered at 0.997 with range [0.990, 1.0022], a is uniform [0.25, 0.50], 8 is uniform 
[0.006, 0.01] and B is endogenously chosen so that in the steady state agents spend 
between one-third and one-sixth of their time working. Choices for the range of 0 
has already been described. 8 chosen so that the annual depreciation rate of the 
capital stock is between 8 and 12 percent per year. In simulation studies 8 is 
commonly set to 0.025 which corresponds to a 10 percent annual depreciation rate. 
Cooley and Hansen chose a slightly lower value to match the value of the postwar 
investment-output ratio. In calculations I performed when quantities are not 
measured in per capita terms, I came up with a quarterly value for 8 of 0.03. Finally, 
McGratten (1990) estimates 8 to be 0.0226 with a standard error of 0.001. The range 
for a reflects calculations appearing in Christiano (1988) where, depending on how 
proprietors income is treated, the share of total output that is payment to capital 
varies between 0.25 and 0.43 and estimates obtained by, e.g., McGratten (1990). 

Figure 3 plots the 90 percent bands for the welfare costs associated with each tax 
instrument when 10000 ,3 vectors are drawn together with the median value of the 
distribution. The bands are, in general, large and nonmonotone, for a substantial 
portion of the grid the welfare costs of capital taxation include negative and zero 
values and the costs of consumption and income taxation are high for moderate tax 
rates. Note also that, in relative terms, the costs of capital taxation are smaller than 
with the other two taxes. The nonmonotonicity of the bands is due to the strong 
nonlinearities of Ac in the various tax rates. The fact that a low level of capital 
taxation yields negative welfare losses and that the costs of capital taxation appear 
to be smaller than with the other two taxes is related to the disincentive to work that 
capital taxation induces on agents. Therefore, the lower disutility of working is 
compensated by a lower level of consumption which needed to restore the agents 
to the nondistorted steady state level of utility. 

To examine how far the U.S. economy is from an optimum, I compute the 
welfare losses using the values of the average tax rates on labor and capital obtained 
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FIGURE 3 

from Joines (1981) (0.23 and 0.50) and a consumption tax rate of zero. The 90 
percent band for welfare losses corresponding to this tax vector is [0.12, 0.71], the 
median value of 0.25 and a mode of 0.52 (compared with a value of 0.31 obtained 
by Cooley and Hansen). Hence, if one takes the model seriously and believes 



498 FABIO CANOVA 

Joines' estimates, one can bound the distortions caused by the current U.S. tax 
system between 12 and 71 percent of U.S. steady state consumption with the most 
likely value at 52 percent.6 

6. CONCLUSIONS 

This paper describes a Monte Carlo approach to evaluate the properties of 
dynamic general equilibrium models. The starting point of the approach is the 
assumption that the model as DGP for the actual data is false. Given this point of 
view, standard classical inferential procedures are inappropriate and a new 
methodology for model evaluation is called for. The technique suggested in this 
paper can cope with the deficiencies of standard statistical analysis and provides 
formal foundations for the evaluation of the model via "stylized facts," which has 
been typical in the real business cycle literature. The procedure accounts for the 
uncertainty faced by a simulator in choosing the parameters of the model in a 
realistic way. The presence of this uncertainty becomes the key to provide a 
measure of dispersion for simulated statistics, a probabilistic metric to judge the 
closeness of the simulated and the actual data and an evaluation criteria for the 
model. The approach has a built-in feature which allows for global sensitivity 
analysis and several forms of conditional or local sensitivity analysis and evaluates 
the range of possibilities of the model by attaching probability statements to events 
a simulator may be interested in characterizing. Finally, the approach is easy to 
implement and includes existing calibration, estimation by simulation and GMM 
techniques as special cases. 

The technique is applied to three examples involving different objectives, level of 
knowledge about the "deep" parameters and complexity and shows how to provide 
realistic conclusions to policy questions. Note also that computation considerations 
are not a major issue for problems of moderate size. For all the examples presented 
in this paper densities for the objects of interest were computed in a matter of 
minutes. 

Universitat Pompeu Fabra, Spain 
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