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This article presents a method to estimate the coefficients, to test specifica-
tion hypotheses, and to conduct policy exercises in multicountry Vector Autore-
gressive (VAR) models with cross-unit interdependencies, unit-specific dynamics,
and time variations in the coefficients. The framework of analysis is Bayesian: A
prior flexibly reduces the dimensionality of the model and puts structure on the
time variations, Markov chain Monte Carlo (MCMC) methods are used to ob-
tain posterior distributions, and marginal likelihoods to check the fit of various
specifications. Impulse responses and conditional forecasts are obtained with the
output of an MCMC routine. The transmission of certain shocks across countries
is analyzed.

1. INTRODUCTION

There has been a growing interest over the last decade in using multicountry
VAR models for applied macroeconomic analysis (see, e.g., Canova and Marrinan,
1998; Canova and De Nicolo, 2000; Del Negro and Obiols, 2001, among others).
Problems concerning the transmission of shocks across countries, sectors, or indus-
tries; issues related to income convergence and the evaluation of the regional poli-
cies; and questions having to do with the composition of portfolio of assets, the con-
tagion of financial crises, and globalization are naturally studied in this framework.

A multicountry setup differs from a multiagent framework for several reasons.
First, cross-unit lagged interdependencies are likely to be important in explain-
ing the dynamics of multicountry data. Second, heterogeneous dynamics are a
distinctive feature of multicountry time series data (see, e.g., Canova and Pappa,
2007). Third, the number of cross-sectional units is generally limited and the time
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series dimension is of moderate size. These latter two features make the infer-
ential problem nonstandard. For example, the Generalized Method of Moments
(GMM) estimator of Holtz-Eakin et al. (1988), the Quasi-Maximum Likelihood
(QML), and a minimum distance estimators of Binder et al. (2005), all of which
are consistent as the cross section dimension becomes large, or the mean group
estimator of Pesaran and Smith (1996), which is consistent as the time series dimen-
sion becomes large, are inapplicable. Finally, although estimation of time-varying
structures is feasible with a large homogeneous cross section, the combination of
heterogenous dynamics and short cross sections makes it difficult to exploit cross-
sectional information to estimate time series variations in multicountry setups.

When dealing with multicountry data, the empirical literature has taken a num-
ber of short cuts and neglected some or all of these problems. For example, it is
typical to assume that slope coefficients are common across (subsets of the) units
(see, e.g., Fatas and Mihov, 2006), that there are no lagged interdependencies
across units (see Dees et al., 2007), that the structural relationships are stable over
arbitrary samples and that asymptotics in T apply (see Imbs et al., 2005), or a com-
bination of all of these. None of these restrictions is appealing: Short time series
are, in part, the result of new definitions and of the adaptation of international stan-
dards to data collection in developing countries; unit-specific relationships may re-
flect differences in national regulations or policies; interdependencies result from
world markets integration and time instabilities from evolving macroeconomic
structures.

This article shows how to conduct inference in multicountry VARs featuring
time series of moderate length and, potentially, unit-specific dynamics, lagged
interdependences, and structural time variations. Since these last three features
make the number of coefficients of the model large, we take a flexible Bayesian
viewpoint to estimation and weakly restrict the coefficients to depend on a low-
dimensional vector of time-varying factors. These factors capture, for example,
coefficient variations that are common across units and variables (a “common”
effect), variations that are specific to the unit (a “unit” effect), variations that
are specific to a variable (a “variable” effect), etc. We complete the specifications
using a hierarchical structure that allows for time variations in the factors and
exchangeability in the unit effects.

We employ Markov chain Monte Carlo (MCMC) methods to compute exact
finite sample distributions of the quantities of interest and describe how MCMC
draws can be used to compute responses to unexpected perturbations in the inno-
vations of either the VAR or the factors, and conditional forecasting experiments,
featuring displacements of certain blocks of variables from their baseline path—
two exercises of great interest in policy circles. We employ the marginal likelihood
to examine hypotheses concerning the importance of lagged interdependences and
of time variations and to evaluate other important specification choices.

The factor structure we employ effectively transforms the overparametrized
multicountry VAR into a parsimonious Seemingly Unrelated Regression (SUR)
model, where the regressors are linear combinations of the right-hand-side vari-
ables of the VAR, the loadings are the time-varying factors, and the forecast er-
rors feature a particular heteroscedastic structure. Such a reparametrization has,
at least, two appealing features. First, it reduces the problem of estimating a large
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number of, possibly, unit-specific and time-varying coefficients into the problem of
estimating a smaller number of loadings on certain combinations of the right-hand-
side variables of the VAR. Therefore, computational costs are limited. Second,
since the regressors of the SUR model are observable linear combinations of the
right-hand-side variables of the VAR, we produce an estimable structure that is
suitable for a variety of policy purposes. For example, one can produce multistep
multicountry leading indicators (see Anzuini et al., 2005), recursively estimate co-
incident indicators of world and national business cycles and examine their time
variations (see Canova et al., 2007), construct measures of medium-term core in-
flation or medium-term conditional and unconditional forecasts, or examine the
propagation of shocks across countries (Caivano, 2006).

Our reparametrized model shares some similarities with those used in factor
model literature (see, e.g., Stock and Watson, 1989; Otrok and Whiteman, 1998),
but also has important differences. In fact, although the factor structure in this
literature emerges from the desire to obtain the main drivers of the variability of
a large set of variables, here it is the results of flexible restrictions imposed on the
coefficients. As a consequence, the regressors of our SUR model are observable
unweighted combinations of lags of the VAR variables capturing low-frequency
comovements in the data whereas those in factor models are estimated weighted
combinations of the current endogenous variables and are designed to best capture
their variability.

Canova and Ciccarelli (2004) proposed a structure to forecast with multicountry
VAR models, which allows for unit-specific dynamics and time variations. There
the estimation process is computationally demanding since time variations are dif-
ferent across variables and units. Relative to that paper we innovate by providing
(a) a flexible coefficient factorization that renders estimation easy, (b) a testing
approach that makes model selection and inference tractable, and (c) a set of tools
to conduct structural analyses and policy-projection exercises.

The structure of the article is as follows: The next section presents the model,
Section 3 discusses estimation and inference, Section 4 deals with model selection,
and Section 5 with impulse responses and conditional forecasts. In Section 6, an
application is presented. Section 7 concludes.

2. THE MODEL

The multicountry VAR model we consider has the form

yit = Dit (L)Yt−1 + Cit (L)Wt−1 + eit ,(1)

where i = 1, . . . , N; t = 1, . . . , T; yit is a G × 1 vector of variables for each i, Yt =
(y′

1t, y′
2t, . . . y′

Nt)
′, Dit,j are G × GN matrices and Cit,j are G × q matrices for each

j, Wt is a q × 1 vector that may include unit-specific, time-invariant variables (for
example, a vector of ones) or common variables (for example, oil prices), and eit is
a G × 1 vector of random disturbances. We assume that there are p1 lags for each of
the G endogenous variables and p2 lags for the q variables in Wt. In (1), cross-unit
lagged interdependencies exist whenever the matrix Dt (L) 	= I ⊗ Di t (L) for some
L, where I is a 1 × N vector with one in the ith position and zero elsewhere. In
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words, if we stack the elements of Di t, j over i, we obtain a matrix that is not block
diagonal for at least one j. This feature adds flexibility to the specification but it is
costly: The number of coefficients, in fact, is increased by a factor N (we have k =
NGp1 + qp2 coefficients in each equation). In (1), the dynamic relationships are
allowed to be unit specific and the coefficients could vary over time. Let δ

g
it be k ×

1 vectors containing, stacked, the G rows of the matrices Dit and Cit; define δit =
(δ1′

it , . . . , δG′
it )′ and let δt = (δ′

1t, . . . , δ′
Nt)

′ be a NGk × 1 vector. Whenever δit is
unrestricted, it is impossible to estimate it—there are more coefficients than data
points. To solve this problem, we adopt a flexible structure where δt is factored as

δt =
F∑
f

� f θ f t + ut ,(2)

where F <<NGk; θ ft is a low-dimensional vector,∀f , �f are conformable matrices,
and ut captures unmodeled and idiosyncratic variations present in δt. The typology
of the factors θ ft and the exact form of the �f ’s will become evident from the
examples presented below.

Clearly, the choice of factorization is application and, possibly, sample depen-
dent. Although the selection of the type of factors is typically dictated by the needs
of the investigation, its exact numbers is often a matter of choice. For example, in a
cross-country study of business cycle transmissions, common and country-specific
factors are probably sufficient although, when constructing indicators of GDP, one
may want to specify, at least, a common, a country-specific, and a variable-specific
factor. A simple procedure to determine the number of factors and to verify
other specification choices, trading off the fit of the model with the size of F, is in
Section 4. Note also that in (2) all factors are permitted to be time-varying. Time
invariant structures can be obtained via restrictions on their law of motion, as
detailed below.

If we let Xt = ING ⊗ X′
t; where Xt = (Y ′

t−1, Y ′
t−2, . . . , Y ′

t−p, W ′
t, . . . , W ′

t−l)
′; set

Xt ≡ Xt�; � = [�1, �2, �3, . . . , �F ], ζt ≡ Xt ut + Et , and let Yt, Et be NG × 1
vectors, we can rewrite (1) as

Yt = Xtδt + Et

= Xt (�θt + ut ) + Et ≡ Xtθt + ζt .

(3)

In (3), we have reparametrized the original multicountry VAR so that the vector
of endogenous variables depends on a small number of observable indices,Xi t , and
the factors θ it load on the indices. By construction, theXi t ’s are linear combinations
of right-hand-side variables of the multicountry VAR, are correlated among each
other—the correlation decreases as G or N or p = max[p1, p2] increase, and
emphasize comovements across lagged variables.

2.1. Examples. To illustrate what our approach implies for different DGPs,
we study three examples.
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2.1.1. A two-country VAR. The first example we consider is a two-country,
i = 2, two-variable g = 2, VAR(2)

y11t

y12t

y21t

y22t

 =


A1111 A1112 A1121 A1122

A1211 A1212 A1221 A1222

A2111 A2112 A2121 A2122

A2211 A2212 A2221 A2222




y11t−1

y12t−1

y21t−1

y22t−1



+


B1111 B1112 B1121 B1122

B1211 B1212 B1221 B1222

B2111 B2112 B2121 B2122

B2211 B2212 B2221 B2222




y11t−2

y12t−2

y21t−2

y22t−2

 +


e11t

e12t

e21t

e22t

 .

(4)

Let δ = (vec(A)′, vec(B)′)′ be the 32 × 1 vector of parameters. We specify four
factors for δ, i.e., δk,i,g,j = θ1k + θ2i + θ3g + θ4j where θ1 = (θ11, . . . , θ14) is 4 × 1
vector defining the equation where a coefficient belongs, θ2 = (θ21, θ22) is a 2 ×
1 vector of country-specific factors, θ3 = (θ31, θ32) is a 2 × 1 vector of variable-
specific factors, and θ4 = (θ41, θ42) is a 2 × 1 vector of lag-specific factors. Letting
i1 = (1, 1, 1, 1)′, i2 = (1, 1, 0, 0)′, i3 = (0, 0, 1, 1)′, i4 = (1, 0, 1, 0)′, i5 = (0, 1, 0, 1)′,
then

δ =



i1 0 0 0

0 i1 0 0

0 0 i1 0

0 0 0 i1

i1 0 0 0

0 i1 0 0

0 0 i1 0

0 0 0 i1



θ1 +



i2 i3

i2 i3

i2 i3

i2 i3

i2 i3

i2 i3

i2 i3

i2 i3



θ2 +



i4 i5

i4 i5

i4 i5

i4 i5

i4 i5

i4 i5

i4 i5

i4 i5



θ3 +



i1 0

i1 0

i1 0

i1 0

0 i1

0 i1

0 i1

0 i1



θ4 + u,(5)

which implies, for example, that the first equation of the VAR is reparametrized
as

y11t = θ11X1t + θ21X2t + θ22X3t + θ31X4t + θ32X5t + θ41X6t + θ42X7t + ζt ,(6)

where X1t = ∑
i

∑
g

∑
j yigt− j , X2t = ∑

g

∑
j y1gt− j , X3t = ∑

g

∑
j y2gt− j , X4t =∑

i

∑
g yi1t− j , X5t = ∑

i

∑
g yi2t− j , X6t = ∑

i

∑
g yigt−1, and X7t = ∑

i

∑
g yigt−2.

Therefore,X1t captures the information contained in the lags of all the variables of
the model,X2t (X3t ) captures the information contained in the lags of the variables
for country 1 (country 2), X4t (X5t ) captures the information contained in the lags
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of variable 1 (variable 2) and lags, whereas X6t (X7t ) captures the information
contained in the first (second) lag, across countries and variables.

2.1.2. A DSGE model. Consider a log-linearized Dynamic Stochastic Gen-
eral Equilibrium (DSGE) model of the form

y1t = A(β) y1t−1 + B (β) εt(7)

y2t = C (β) y1t ,(8)

where β are structural parameters, A(β), B(β), and C(β) are time-invariant matri-
ces whose entries are nonlinear functions of β, and y1t is a state and y2t a control,
both of them are assumed to be scalar, for simplicity. The dimension of εt is typi-
cally smaller than the dimension of y = [y1t, y2t] and there may be cross equations
restrictions in the sense that βm, m = 1, 2, . . . may appear in several of the entries
of A, B, and C. Equations (7) and (8) can be written as a structural VAR(1) model(

I 0

I −C(β)

) (
y1t

y2t

)
=

(
A(β) 0

0 0

) (
y1t−1

y2t−1

)
+

(
B(β)

0

)
εt

or, letting D1(β) = C(β)A(β) and D2(β) = C(β)B(β), as a factor model(
y1t

y2t

)
=

(
A(β)

D1(β)

)
y1t−1 +

(
B(β)

D2(β)

)
εt .

Consider a reduced-form VAR for yt = (y1t, y2t) of the form yt = Hyt−1 + et and
assume that

δ =


H11

H12

H21

H22

 =


1 0

1 0

0 1

0 1

 θ1 +


1 0

0 0

0 0

0 1

 θ2 ≡ �1θ1 + �2θ2,

where θ s has two components each, s = 1, 2. Then the VAR is(
y1t

y2t

)
=

(
θ11 + θ21 θ11

θ12 θ12 + θ22

) (
y1t−1

y2t−1

)
+

(
e1t

e2t

)

and its SUR reparametrization is

y1t = θ11(y1t−1 + y2t−1) + θ21 y1t−1 + e1t(9)

y2t = θ12(y1t−1 + y2t−1) + θ22 y2t−1 + e2t .(10)
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Here (y1t−1 + y2t−1) plays the role of a common index.
When H12 and H22 are zero, as the theory implies, θ11 = 0; −θ22 = θ12 and the

model correctly recognizes that there is a factor of proportionality between the
two types of equations of the system.

2.1.3. A variance component model. The model we consider here is of the
form

yit = αi t + Tt (1 − ρt L)Tt = et

αi t = αi + vi t (1 − ωi L)vi t = zit

αi = α0 + ε,

(11)

where et is i.i.d. across t, vit is i.i.d. across t, and yit is a G × 1 vector for each i = 1,
2, . . . , N. This model has the following VAR representation:

Yt = α∗
0t + At Yt−1 + Bt Yt−2 + ηt(12)

= α∗
0t + δt Xt + ηt ,(13)

where Yt is a NG × 1 vector each t, α∗
0t = diag{(1 − ωi)}(1 − ρ t)α0, ηit =

(1 − ωiL)et + (1 − ωiL)(1 − ρ t L)ε + (1 − ρ t L)zit whereas Ait = ρ t + ωi and Bit =
ρ t ωi. Therefore, an error component model generates a particular error structure
in the VAR. Note that α∗

0t are time trends common to all the G variables for unit
i. Suppose δt = [vec(At), vec(Bt)] is factored as

δtig j = �1θ1t + �2θ2i + �3θ3g + uδ
tig j ,(14)

where θ1t is a T × 1 vector of time effects (common to all g = variable, i = country,
j = lag), θ2t is N × 1 vector of unit-specific effects (common to all j, g), and θ3t is
G × 1 vector of variables-specific effects (common to all j, i). As for α∗

0t we assume

α∗
0i t = �4θ4i t + uα

j i t ,(15)

where θ4it is an NT × 1 vector. Equations (14) and (15) represent a version of
the model of Canova and Ciccarelli (2004). Here the number of parameters to be
estimated is NT + T + N + G, which is still relatively large. To further reduce
the dimensionality of the parameter vector one could make θ4it time- or unit-
independent and exploit averages in the remaining dimensions to construct the
appropriate regressors. Disregarding how α∗

0t is parametrized, the SUR model is(
Yt − α∗

0t

) = θ1tX1t + θ2iX2t + θ3gX3t + ζt ,

where X1t = �1 Xt is a time index, X2t = �1 Xt is a unit index, X3t = �3 Xt is a
variable index, and ζ t is composite error whose variance depends on time, on the
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unit, on the variable, and on the lag. Hence, the reparametrization maintains the
original error component structure but somewhat reduces the dimensionality of
the parameters space.

2.2. Discussion and Relationship with the Literature. One advantage of our
flexible coefficient factorization is that the overparametrization of the original
multicountry VAR is dramatically reduced. In fact, in the resulting SUR model,
estimation and specification searches are constrained only by the dimensionality
of θ t (δt is integrated out). A second advantage is that, given the Moving Average
(MA) nature of many Xi t , the regressors of (3) capture low-frequency comove-
ments present in the lags of the VAR. Since the model averages out not only cross
section but also time series noise, reliable and stable estimates of θ t can potentially
be obtained, and this makes the framework useful for a variety of medium-term
policy analyses exercises. A third advantage is that (3) has some economic content.
For example, if θ1t captures information that is common to all the coefficients of
the VAR, X1tθ1t is an indicator for Yt based on common information. Indicators
containing other types of information can also be easily constructed. Since Xi t are
predetermined, leading versions of these indicators can be obtained projecting θ t

on the information available at t − τ , τ = 1, 2, . . . .
Some commentators have argued that the equal (and exogenous) weights that

(2) imposes on the regressors of (3) are restrictive and suggested the possibility to
estimate the �’s. Our structure is no more restrictive than the one used in related
literature. Clearly, the equal weighting scheme is appropriate if all variables are
measured in the same units (e.g., growth rates) and their variability is compara-
ble; otherwise, preliminary transformations need to be used or the vector of �i

appropriately scaled. For example, if the variability of the variables of country 1
is considerably larger than the variability of the variables of country 2, then one
could specify �1 = (σ−1

1 , . . . , σ−1
1 , σ−1

2 , . . . , σ−1
2 , . . .), where σ 1 and σ 2 measure

the average standard deviation of the variables in countries 1 and 2. The idea of
estimating the �’s is a bit foreign to our philosophy—the weights are a priori deter-
mined by the flexible factorization we use—but feasible if one directly starts from
(3), treats �i as unknown, and employs the factor models techniques described
below. Given our emphasis on multicountry VAR and the resulting observable
SUR model, we do not pursue this idea further.

Our estimated specification has two types of advantages over single-country
or two-country VARs. First, if the information is weak or the sample short, cross
sectional information may help to get better estimates and smaller standard errors.
Second, if the momentum that shocks induce across countries is the result of lagged
interdependencies, our model will be able to capture it. Such pattern will instead
emerge as “common shocks” in the other two frameworks.

How does our reparametrized SUR model compare with factor models? There
are two types of factor models used in the literature. One is of the form

(yt+1 − α) = γ (L)(yt − α) + β(L) ft + et+1(16)
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Xit = λi (L) ft + ut ,(17)

where i = 1, . . . , N, f t is an r × 1 vector of latent factors, r < < N, N large, and
γ (L), β(L), λi(L) are one-sided polynomial in the lag operator. The so-called
static version of the model, popularized by Stock and Watson (2002a,b), imposes
the restriction that the latter two polynomials are of finite order (at most q lags
are allowed) and rewrite the model as

(yt+1 − α) = γ (L)(yt − α) + βFt + et+1(18)

Xt = �Ft + ut ,(19)

where Ft = (f ′
t, . . . , f ′

t−q)′ is an s × 1 vector, s ≤ (q + 1)r, the ith row of � is (λi0, . . .
λiq), and β = (β0, . . . , βq)′. Although dynamic, (18) and (19) can be estimated with
static principal components techniques: The loadings � are the first s eigenvalues
of the X ′X matrix, where X is the T × N data matrix and F̂ = X′�̂

N .
Since (18) and (19) are not nested into a VAR, comparison with our model is a

bit difficult. To better highlight the relationship, set γ (L) = 0 and choose Xt to be
equal to the lags of yt+1. Under these conditions, our indices differ from the fac-
tors produced by static principal components for several reasons. First, the latter
captures the volatility of the data matrix Xt, whereas our indices extract comove-
ments in series belonging to Xt. Second, our indices are observable, whereas the
factors in (18) and (19) are unobservable and need to be estimated with a data-
driven approach. Third, although the factors obtained with principal component
analysis are statistical in nature—and economic interpretations can be given only
via identification devices—our indices have some direct economic interpretation.
Fourth, our indices will be substantially smoother than the factors extracted with
principal components techniques. Fifth, at least in their classical formulation, the
law of motion of f t is never used in the estimation of the factors, time variations
in the factor loading are difficult to deal with (see, e.g., Stock and Watson, 2002a,
p. 1170), and estimates enjoy good properties only if time variations are small—
therefore excluding, e.g., smooth changes across regimes and/or volatility bursts.
Finally, it is hard to map log-linearized solutions of DSGE models into (18) and
(19). Therefore, the link between economic theory and empirical practice is less
transparent.

The second type of factor models still assumes that f t is unobservable, but posits

φ(L) ft = ut ,(20)

where φ(L) is assumed to be diagonal for each L and, typically, corr(ujt, uj‘t) = 0,
j = 1, . . . , r, and j 	= j′. We will refer to this model as the unobservable factor (UF)
model, which has been used, for example, by Stock and Watson (1989) among
many others. Classical estimation of this model is somewhat more complicated,
as the Kalman filter needs to be used. Also, the EM algorithm typically used for
this purpose is cumbersome when N is large.
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It is relatively easy to show that an UF model can be written as a Vector Au-
toregressive Moving Average (VARMA). In fact, substituting (20) into (16) we
have that

(I − γ (L)L)(yt+1 − α) = β (L) φ−1(L)ut + et+1.(21)

Hence, as long as φ(L) has a convergent representation, a VAR for yt exists. Note
that the error term has two components: One due to shocks to the common factors,
and one due to the idiosyncratic shocks to the model. Because of this feature and
because it is hard to separately identify φ(L) and β(L), our indices and UF factors
have little in common. Hence, when deciding between a SUR or an UF approach,
one has to take a stand on whether (1) or (21) better represents the DGP of the
data.

Bayesian versions of UF models have been estimated by Otrok and Whiteman
(1998), Kim and Nelson (1998), and Del Negro and Otrok (2006). The advantages
of such an approach are multiple. The one more relevant here is that time varia-
tions in the coefficients can be dealt with within standard MCMC routines at no
additional costs.

The SUR model we use has also some similarities with the models used by
Pesaran (2003) and Pesaran et al. (2005) to model global interdependencies,
even though the starting point, the underlying specification, and the estimation
technique differ. In fact, in these papers the baseline specification is a tradi-
tional (micro) panel structure with unobservable common components in the
error term, instead of a VAR; no time variations are allowed in the coefficients
and no lagged interdependences are present; N is assumed to be large. In this
setup, it is possible to obtain a consistent estimate of the common unobserv-
able component by arithmetically averaging the dependent and the independent
variables of the unit-specific regressions. Therefore, the estimated specification
looks like a set of unrelated single-country VARs, where common factors are
proxied by averages of the variables across countries. Our approach shares the
idea of using arithmetic averages as regressors; it can be interpreted as an F-
factor generalization of these authors’ approach, where each factor spans a dif-
ference space, when we allow for lagged interdependencies in the error term
and for time-varying loading. Finally, our approach does not need a large N to
work.

2.3. Completing the Model. We assume that the factors evolve according to
a general law of the form

θt = (I − C) θ̄ + Cθt−1 + ηt ηt ∼ (0, B)

θ̄ = Pµ + ε ε ∼ (0, �),

(22)

where θ̄ is the unconditional mean of θt , P, C are known matrices, ηt and ε are
mutually independent and independent of Et and ut, and B = diag(B̄1, . . . B̄F ).
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Furthermore, we let Et ∼ (0, �), and ut ∼ (0, � ⊗ V), where V = σ 2Ik is a k × k
matrix and � is an NG × NG matrix.

The intuition behind this specification is simple: To permit time variations, we
make the factors obey the stochastic restrictions implied by (22). In the first equa-
tion of (22), we have assumed a general AR structure: Since the matrix C is ar-
bitrary, many patterns are allowed in the specification. Although we treat C as
fixed, it is possible to make it function of a small set of hyperparameters whose
posterior can be jointly obtained with the one of the other parameters. Given that
such a choice adds to the computational costs and that a near random walk spec-
ification for θ t is for all purposes satisfactory, we do not follow such an approach
here.

Whenever C 	= I, the second equation in (22) links the unconditional mean of
the certain factors in an exchangeable fashion. In particular, if a vector country-
specific factors is present, the specification implies that they will have the same
mean and variance. This permits some degree of pooling, which can help to im-
prove the precision of the estimates.

The spherical assumption on V reflects the fact that factors are measured in
common units, whereas the block diagonality of B is needed to guarantee the
identifiability of the factors.

We specify normal distributions for Et, ut, η, and ε, but it is easy to allow
for fat tails if aberrant or nonnormal observations are presumed to be present.
For example, we could let (ut | zt ) ∼ N (0, zt (� ⊗ V)) where z−1

t ∼ χ2 (ν, 1),
since, unconditionally, ut ∼ tν(0, � ⊗ V). As it will be clear from the next sec-
tion, the forecast errors of our SUR model already display fat tail distributions
even when all disturbances are normal. Hence, this extension will not be con-
sidered here. Further complication, allowing, for example, for skewness in the
errors or for time variations in the variance of shocks to the factors, are easy
to introduce (see Canova, 1993, or Fernandez and Steel, 1998). All of these
additions go in the direction of capturing nonnormal patterns in yt, if this is
needed.

Numerous specifications are nested in our model: For example, a factor is time
invariant when Bit = 0 and the appropriate elements of C are set to zero; no
exchangeability obtains when � is large, exact pooling obtains when � = 0, and
the factorization becomes exact when σ 2 = 0.

3. INFERENCE

If θ t = θ ∀t, estimation of (3) is easy: It only requires regressing each element
of Yt on appropriate averages, adjusting estimates of the standard errors for the
presence of heteroscedasticity. With a prior for θ̄ , posterior estimates would be
straightforward to construct.

When the θ t’s are time-varying, MCMC methods can be employed to construct
their exact posterior distributions. The likelihood of the reparametrized SUR
model is
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L(θ, ϒ | Y) ∝
∏

t

| ϒt |−1/2 exp

[
−1

2

∑
t

(Yt − Xtθt )
′
ϒ−1

t (Yt − Xtθt )

]
,

where ϒ t = (1 + σ 2 X′
t Xt) � ≡ σ t�. To calculate the posterior for the unknowns

we need prior distributions for (µ, �−1, �−1, σ−2, B−1). Let data run from (−τ , T),
where (−τ , 0) is a “training sample” used to estimate features of the prior. When
such a sample is unavailable or when a researcher is interested in minimizing
the impact of prior choices, it is sufficient to modify the expressions for the prior
moments, as suggested below.

We let p(µ, �−1,�−1, σ−2, B−1)=p(µ) p(�−1) p(�−1) p(σ−2)
∏

f p(B−1
f ), where

p(µ) = N (µ̄, �µ) p(�−1) = W(z0, Q0)

p(�−1) = W(z1, Q1) p(σ−2) = G
(a1

2
,

a2

2

)
p
(
B−1

f

) = W(z2 f , Q2 f ) f = 1, . . . , F.

HereN (·) stands for Normal,W(·) for Wishart, and G(·) for Gamma distributions.
The hyperparameters (z0, z1, z2 f , a, b, vec(µ̄), vech(�µ), vech(Q0, Q1, Q2 f )) are
treated as fixed, where vec(·) (vech(·)) denotes the column-wise vectorization
of a rectangular (symmetric) matrix. Noninformative priors are obtained set-
ting a, b → 0, Q−1

f → 0, �−1
µ → 0, and Qi → 0, i = 0, 1. The form of the

conditional posterior distributions we present below is unchanged by these
modifications.

Despite the dramatic parameter reduction obtained with (3), the analytical com-
putation of posterior distributions is unfeasible. However, a variant of the Gibbs
sampler approach can be used in our framework. Let YT = (Y1, . . . , YT) denote
the data, ψ = (µ, �−1, �−1, σ−2, B−1

f , θ̄ , {θt }) the unknowns whose joint distri-
bution needs to be found, and ψ−α the vector of ψ excluding the parameter α. Let
θ∗

t−1 = (I − C)θ̄ + Cθt−1 and θ̃t = θt − Cθt−1. Given YT , the conditional posteriors
for the unknowns are

µ | YT, ψ−µ ∼ N (µ̂, �̂µ)

�−1 | YT, ψ−� ∼ W(z0 + 1, Q̂o)

�−1 | YT, ψ−� ∼ W(z1 + T, Q̂1)

B−1
f | YT, ψ−B̄f

∼ W
(
T ∗ dim

(
θ

f
t

) + z2 f , Q̂2 f
)

σ−2 | YT, ψ−σ 2 ∝ (σ−2)
a1
2 −1 exp

{a2σ
−2

2

}
× L(θ, ϒ | YT)

θ̄ | YT, ψ−θ̄ ∼ N ( ˆ̄θ, �̂),

(23)
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where

µ̂ = �̂µ

(
P ′�−1θ̄ + �−1

µ µ̄
)

;

�̂µ = (
P ′�−1P + �−1

µ

)−1
;

Q̂o = [
Q−1

o + (
θ̄ − Pµ

) (
θ̄ − Pµ

)′ ]−1;

Q̂1 =
[

Q−1
1 +

∑
t

(Yt − Xtθt ) σ−1
t (Yt − Xtθt )

′
]−1

;

Q̂2 f =
[

Q−1
2 f +

∑
t

(
θ

f
t − θ

∗ f
t−1

)(
θ

f
t − θ

∗ f
t−1

)′
]−1

;

̂̄θ = �̂

[
�−1Pµ + (I − C)′ B̄−1

∑
t

θ̃t

]
;

�̂ =
[
�−1 + (I − C)′ B̄−1 (I − C)

∑
t

1

]−1

;

θ
f
t refers to the f th subvector of θ t, and dim(θ f

t ) to its dimension.
The conditional posterior of (θ1, . . . , θT | YT, ψ−θt ), can be obtained with a run of

the Kalman filter and of a simulation smoother as in Chib and Greenberg (1995).
In particular, given θ0|0 and R0|0, the Kalman filter gives the recursions

θt |t = θ∗
t−1|t−1 + (

R∗
t |t−1Xt F−1

t |t−1

) (
Yt − Xtθ

∗
t−1|t−1

)
Rt |t = (

I − (
R∗

t |t−1Xt F−1
t |t−1

)
Xt

)(
R∗

t−1|t−1 + B̄
)

Ft |t−1 = Xt R∗
t |t−1X ′

t + ϒt,

(24)

where θ∗
t−1|t−1 and R∗

t−1|t−1 are, respectively, the mean and the variance covari-
ance matrix of the conditional distribution of θ t−1|t−1. In order to obtain a sample
{θ t} from the joint posterior distribution (θ1, . . . , θT | YT, ψ−θt ), the output of the
Kalman filter is used to simulate θT fromN (θT|T, RT|T), θT−1 fromN (θT−1, RT−1),
and θ1 from N (θ1, R1), where θ t = θ t|t + Rt|tR−1

t+1|t (θ t+1 − θ t|t), and Rt = Rt|t −
Rt|t R−1

t+1|t Rt|t. The recursions can be started choosing R0|0 to be diagonal with ele-
ments equal to small values, whereas θ0|0 can be estimated in the training sample
or initialized using a constant coefficient version of the model.

Since the conditional posterior of σ 2 is nonstandard, a Metropolis step is needed
to obtain draws for this parameter. We assume that a candidate (σ 2)† is generated
via (σ 2)† = (σ 2)l + v, where v is a normal random variable with mean zero and
variance c2. The candidate is accepted with probability equal to the ratio of the
kernel of the density of (σ 2)† to the kernel of the density of (σ 2)l and c2 is selected
to achieve a certain acceptance rate.
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Draws from the posterior distributions can be obtained cycling through the
conditional in (23) and (24) after an initial set of draws is discarded. Checking
for convergence of the algorithm to the true invariant distribution is somewhat
standard, given the structure of the model. Convergence, in fact, only requires the
algorithm to be able to visit all partitions of the parameter space in a finite number
of iterations (for example, see Geweke, 2000)

Our choice of making Et and ut correlated, an assumption also used in the
Minnesota prior (see Doan et al., 1984) and in other priors (e.g., Kadiyala and
Karlsson, 1997), allows conjugation between the prior and the likelihood, avoids
identification issues, and greatly simplifies the computation of the posterior. Fur-
thermore, it provides an interesting interpretation for the errors of the model.
In fact, since ϒ t = (1 + σ 2X′

t Xt)�, the prior distribution for the forecast error
ζt = Yt − Xtθt has the form (ζt | σ 2) ∼ N (0, σt�). Therefore, unconditionally, ζ t

has a multivariate t distribution centered at 0, scale matrix proportional to � and
νζ degrees of freedom, and the innovations of (3) are endogenously allowed to
have fat tails. In order to capture conditional heteroscedasticity in yt, Cogley and
Sargent (2005) specify � to be a function of a set of stochastic volatility processes.
The above discussion shows that a similar result can be equivalently obtained
with a simpler set of assumptions. We regard our specification more appealing on
another count: Since shocks to the model may alter its dynamics, there is, built-in,
an endogenous adaptive scheme that allows coefficients to adjust when breaks in
the relationships occur.

The regressors of the SUR model are correlated, but the presence of correlation
(even of extreme form) does not create problems in identifying the loading as long
as the priors are proper (see, e.g., Ciccarelli and Rebucci, 2007), which is the case
in our setup.

While we have assumed that ut is serially uncorrelated, it is conceivable that
this is not the case. General patterns of serial correlation are not allowed in our
specification: Since δt is integrated out, it is not possible to easily account for them.
One extreme possibility would be to specify a process for  ut, specify difference
(3) and estimate the resulting model. This choice does not seem to be sensible
when the variables of the VAR are measured in growth rates, as it is the case for
the specification used in Section 6.

Posterior distributions for any continuous function G(ψ) can be obtained us-
ing the output of the MCMC algorithm and the ergodic theorem. For example,
E(G(ψ)) = ∫

G(ψ)p(ψ | Y) dψ can be approximated using 1
L̄[

∑L̄+L
!=L̄+1 G(ψ!)] (the

first L̄ observations represent a burn-out sample discarded in the calculation).
Predictive distributions for future yit’s can be estimated using the recursive na-
ture of the model and the conditional structure of the posterior. Let Yt+τ =
(Yt+1, . . . , Yt+τ ) and consider the conditional density of Yt+τ , given the data up to
t and a function G(Yt+τ ). Then

F
(
G(Yt+τ ) | Yt

) =
∫

F
(
G(Yt+τ ) | Yt , ψ

)
p

(
ψ | Yt) dψ
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and, e.g., forecasts for Yt+τ can be obtained drawing ψ(!) from the posterior
distribution and simulating the vector Y,t+τ from the density F(Yt+τ | Yt , ψ

(!)).
Turning point distributions can also be constructed by appropriately choosing
G. Impulse responses and conditional forecasts can be obtained with the same
approach as detailed in Section 5.

4. MODEL SELECTION

Although we have assumed that the choice of the type of factors in (2) depends
on the nature of the problem, one may be interested in having a method to sta-
tistically determine the number of indices needed to capture the heterogeneities
present across time, units, and variables in the multicountry VAR or to verify
general hypotheses on the type of indices to be included. In order to discriminate
across models with different indices consider

L(Yt | Mh) =
∫

F(Yt | ψh, Mh)p(ψh | Mh) dψh,(25)

which is the marginal likelihood for Yt in a model with h indices. Here p(ψh |Mh)
is the prior density for ψ in model Mh and F(Yt | ψh, Mh) is the density of the
data under the parameterization produced by Mh. Equation (25) is conceptually
simple, but can be evaluated analytically only in few elementary cases. More often,
it is intractable and must be computed by numerical methods, using the output
of the MCMC sampler, as suggested by Newton and Raftery (1994), Gelfand and
Dey (1994), or Chib (1995). Given the complexity of our model, these numerical
computation are not entirely straightforward. As an alternative, one can rely on
asymptotic (normal) approximations to (25), for example Laplace’s method—
which takes a second-order expansion of (25) around the mode—or the Schwarz
criterion—which expands (25) around the maximum-likelihood estimator. Since
in hierarchical models such as the one we propose asymptotic normality might
not be a sensible approximation, it is probably a good idea to compute alternative
measures of marginal likelihood before taking decisions about the size of h.

Once the marginal likelihood is obtained for any model h, the Bayes factor,

Bhh′ ≡ L(Yt | Mh)
L(Yt | Mh′,)

,(26)

can be used to decide whether Mh or Mh′ fits the data better. Since marginal
likelihoods can be decomposed into the product of one-step-ahead prediction
errors, pairs of models are compared using their one-step-ahead predictive record.
Also, since the marginal likelihood implicitly discounts the performance of models
with a larger number of indices, (26) directly trades off the predictive record with
the dimensionality of the model.

With (26) it is also possible to conduct useful specification searches. For example,
it is possible to examine whether the factorization in (2) is exact, letting ψh be
unrestricted and ψh′ = (. . . , σ 2 = 0, . . .), or whether there are time variations in
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θ t, setting B̄f = bf ∗ I, letting ψh be unrestricted and ψh′ = (. . . , bf = 0, . . .) for
some f . Support for the presence of interdependencies is obtained, on the other
hand, by comparing the marginal likelihoods of the unrestricted model and that
of a vector of country-specific TVC-VARs.

Instead of examining hypotheses on the structure of the model, one may want
to incorporate model uncertainty directly into posterior estimates. Let M1 be the
model with one index and Mh the model with h indices, h = 2, . . . H, and suppose
we have computed the Bayes factor Bh1 for each Mh. The posterior probability of
model h is p(Mh | Yt ) = ahBh1∑H

h=2 ahBh1
, where ah are the prior odds for Mh, and model

uncertainty can be accounted for weighting G(ψh) by p(Mh |Yt).

5. DYNAMIC ANALYSIS

Dynamic analysis is nonstandard in our SUR model, because of the specification
of the error term and the time variations potentially present in the coefficients.
Hence, we describe in details how to produce statistics useful for academics and
policymakers.

5.1. Recursive Unconditional Forecasts. Given the information at time t, un-
conditional forecasting exercises only require the computation of the predictive
distribution of future observations. In some applications recursive unconditional
forecasts are needed, in which case the predictive density of future observations
has to be constructed for every t = t̄, . . . T once recursive estimates of p(ψh |Yt)
are computed. These recursive distributions are straightforward to obtain (we
need to run an MCMC for every t) and, although computationally demanding,
they are feasible on available machines.

5.2. Impulse Responses. Impulse responses are generally computed as the
difference between two realizations of yt+τ , τ = 1, 2, . . . , which are identical up to
time t, but one assumes that between t + 1 and t + τ a one-time impulse in the
jth component of et+τ occurs only at time t + 1 and the other that no shocks take
place at all dates between t + 1 and t + τ .

In a model with time-varying coefficients such an approach is inadequate since
it disregards that between t + 1 and t + τ structural coefficients may also change.
Therefore, our impulse responses are obtained as the difference between two
conditional expectations of yt+τ . In both cases, we condition on the history of
the data (Yt) and of the factors (θ t), the parameters of the law of motion of the
coefficients, and all future shocks. However, in one case we condition on a random
draw for the current shocks, whereas in the other the current shocks is set to its
unconditional value (see also Gallant et al., 1993; Koop et al., 1996). We condition
on future shocks instead of integrating them out because, computationally, such a
choice gives more stable responses, even though, in practice, this makes standard
error bands larger than in the case where future shocks are integrated out.

In our model, one has two potential types of impulses, one to the variables
of the system and one to the factors. Although the former have the standard
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interpretation, the latter can be used, for example, to represent shocks to partic-
ular structural coefficients, e.g., a shock that reduces the sensitivity of some the
variables to world conditions. In order to formally define impulse responses, we
need some notation. The reparametrized SUR is

yt = Xtθt + (Et + Xt ut )

θt = (I − C)(Pµ + ε) + Cθt−1 + ηt ,

where θt = [θ ′
1t , θ

′
2t , . . . , θ

′
Ft ]

′, Xt = [X1t , . . . ,XFt ], Xi t = �i Xt , and Xt = [Yt−1,

Wt ]. Let Ut = [(Et + Xt ut )′, η′
t , ε

′]′ be the vector of reduced-form shocks and
Zt = [H−1

t (Et + Xt ut )′, H−1
t η′

t , H−1
t ε′]′ be the vector of structural shocks where

Et = Htvt, HtH′
t = � so that var(vt) = I and Ht = J∗ Kt, where KtK′

t = I and J is
a matrix that orthogonalizes the VAR shocks.

In our setup a Choleski system is obtained setting Kt = I, ∀t and choosing J to
be lower triangular whereas more structural identification schemes are obtained
letting J be an arbitrary square root matrix and Kt a matrix implementing certain
theoretical restrictions. Note also that we have allowed the identification matrix
Kt to be time-varying. We do this because, in certain applications where recursive
estimation is used, estimates of � depend on t. Also, there may be situations in
which the covariance matrix of reduced-form shocks is time invariant but the
contemporaneous relationships of the structural model are time-varying.

Let Vt = (�, σ 2, Bt , �), let Z̄ j,t be a particular realization of Z j,t and let Z− j,t

indicate the structural shocks, excluding the one in the jth component. Let
F1

t = {Yt−1, θ t ,Vt , Ht ,Z j,t = Z̄ j,t ,Z− j,t ,U t+τ
t+1 } and F2

t = {Yt−1, θ t ,Vt , Ht ,Z j,t =
EZ j,t ,Z− j,t ,U t+τ

t+1 } be two conditioning sets. Then responses to a shock at t in
the jth component of Zt are obtained as

I R(t, t + τ ) = E
(
Yt+τ |F1

t

) − E
(
Yt+τ |F2

t

)
τ = 1, 2, . . . .(27)

In order to see what definition (27) involves, rewrite the original VAR model
(1) in a companion form

Yt+τ = At+τ Yt+τ−1 + Ct+τ Wt+τ−1 + Et+τ(28)

and let

δt+τ = �[(I − C)(Pµ + ε) + Cθt+τ−1 + ηt+τ ] + ut+τ .(29)

Here δt+τ = [vec(A1t+τ ), vec(Ct+τ )] and A1t+τ is the first row of At+τ . Taking Yt−1 =
(Yt−1, Yt−2, . . . , Wt−1, Wt−2, . . .,), At = (At, At−1, . . .), Ct = (Ct, Ct−1, . . .), and
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Ht+τ = Ht∀ τ as given, and solving backward we can write (28) and (29) so we
have

Yt+τ =
(

τ∏
k=0

At+τ−k

)
Yt−1 + Ct+τ Wt+τ−1 +

τ∑
h=1

(
h−1∏
k=0

At+τ−k

)
Ct+τ−hWt+τ−h−1

+ Ht+τ vt+τ +
τ∑

h=1

(
h−1∏
k=0

At+τ−k

)
Ht+τ−hvt+τ−h

(30)

δt+τ = �(I − C)(Pµ + ε)
τ∑

k=0

Ck + �Cτ+1θt−1 + �

τ∑
k=0

Ckηt+τ−k + ut+τ .(31)

Consider first the case of a (m + 1)-period impulse in the jth component of vt, i.e.,
v j,t+k = v̄ j,t+k, whereas v−j,t+k, k = 0, 1, . . . , m and vt+m′ ∀m′ > m are unrestricted.
Then

I R(t, t + τ ) = Et
[
Yt+τ | Yt−1, At , Ct ,Vt , Ht , {v̄ j t+m}m

k=0, {v− j t+k}m
k=0, {vt+k}τk=m+1

]
− Et

[
Yt+τ | Yt−1, At , Ct ,Vt , Ht , {vt+k}τk=0

]
= Et

[ (
τ−1∏
k=0

At+τ−k

) j

H j
t (v̄ j t − Ev j t ) +

(
τ−2∏
k=0

At+τ−k

) j

× H j
t+1(v̄ j t+1 − Ev j t+1) + · · · +

(
τ−m−1∏

k=0

At+τ−k

) j

× H j
t+m(v̄ j t+m − Ev j t+m)

]
,

(32)

where the superscript j refers to the jth column of the matrix. It is easy to see that,
when At = A, Ct = C, ∀t, (32) reduces to standard impulse responses and that
when Et and ηt are correlated, both the sign and the size of the shocks matter—a
shock in vt may induce changes in At or Ct.

Given (27), responses in our SUR model can be computed as follows:

1. Choose t, τ , and Jt. Draw �l = Hl
t (Hl

t)
′, (σ 2)l from their posterior distri-

bution and ul
t from N (0, (σ 2)l I ⊗ Hl

t (Hl
t )′). Compute yl

t = Xtθt + Ht v̄t +
Xt ul

t .
2. Draw �l = Hl

t+1(Hl
t+1)′, (σ 2)l, Bl

t+1, � l. Draw ηl
t+1, εl from their posterior

distribution. Use the law of motion of the factors to compute θ l
t+1, l =

1, . . . , L and the definition of � to compute Xt+1. Draw ul
t+1 from

N(0, (σ 2)l I ⊗ Hl
t+1(Hl

t+1)′) and compute yl
t+1 = Xt+1θ

l
t+1 + Ht+1v̄t+1 +

Xt+1ul
t+1, l = 1, . . . , L.

3. Repeat step 2 and compute θ l
t+k, yl

t+k, k = 2, . . . τ .
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4. Repeat steps 1–3 setting vt+k = E(vt+k), k = 0, . . . , m using the draws for
the shocks in 1–3.

Responses to structural shocks to the law of motion of the factors can be com-
puted in the same way. An impulse in ηt = η̄ lasting (m + 1) periods implies from
(31) that

E(δ̄t+τ − δt+τ ) = �

m∑
k=0

Ht+kCk(η̄t+τ−k − Eηt+τ−k)

so that

IR(t, t + τ ) = Et

[ τ∏
k=0

(Āt+1τ−k − At+τ−k)Yt−1 +
τ∑

h=1

h−1∏
k=0

(Āt+1τ−k − At+τ−k)

× Ct+τ−hWt+τ−h−1 +
τ∑

h=1

h−1∏
k=0

(Āt+1τ−k − At+τ−k)Ht+τ−hvt+τ−h

]
.

(33)

5.3. Conditional Forecasts. There are two types of conditional forecasts one
can compute in our model: those involving displacement of the exogenous vari-
ables Wt from their unconditional path and those involving a particular path for
a subset of the endogenous variables. Both types of conditional forecasts can be
constructed using the output of the Gibbs sampler routine.

Consider first displacing the exogenous variables from their expected future
path for m + 1 periods. Call the new path W̄t+k, k = 0, 1, . . . , m. Then, the response
of Yt+τ is

I R(t, t + τ ) = E

[ (
τ−2∏
k=0

At+τ−k

)
Ct+1(W̄jt − Wjt ) +

(
τ−3∏
k=0

At+τ−k

)
(34)

× Ct+2(W̄jt+1 − Wjt+1)

+ · · · +
(

τ−2−m∏
k=0

At+τ−k

)

× Ct+m+1(W̄jt+m − Wjt+m)

]
.(35)

Therefore, to compute conditional forecasts of this type in our SUR model we
need to

1. Choose t, τ , and a path {W̄t+k}m
k=0. Draw �l, (σ 2)l from their posterior,

draw El
t + Xtul

t, and compute yl
t.

2. Draw (Bt)l, � l from their posterior distribution, draw ηl
t+1, εl, and use the

law of motion of the factors to draw θ l
t+1, l = 1, . . . , L, and the definition of

� to computeXt+1. Draw El
t+1 + Xt+1 ul

t+1 and compute yl
t+1 = Xt+1θ

l
t+1 +

(El
t+1 + Xt+1ul

t+1), l = 1, . . . , L.
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3. Repeat step 2 and compute θ l
t+k, yl

t+k, k = 2, . . . , τ .
4. Repeat steps 1–3 setting Wt+k = E(Wt+k), k = 0, 1, . . . , m, using the draws

for the shocks in 1–3.

Consider finally the case in which the future path of a subset of Yt’s is fixed.
For example, in a system with output growth, inflation, and the nominal rate, we
would like to condition on a given path for the future interest rate. Partition Yt =
AtYt−1 + CtWt−1 + Et into two blocks and let Y2t+k = Ȳ2t+k be the fixed variables
and Y1t+k those allowed to adjust. Then

I R(t, t + τ ) = E

[
H1

t

(
τ−1∏
k=0

At+τ−k

)1

(v̄2t − v2t ) + H1
t+1

(
τ−2∏
k=0

At+τ−k

)1

(v̄2t+1 − v2t+1)

(36)

+ . . . + H1
t+m

(
τ−1−m∏

k=0

At+τ−k

)1

(v̄2t+m − v2t+m)

]
,(37)

where v̄2t+k = Ȳ2t+k − A21t+kY1t−k−1 − A22t+kY2t−k−1 − C2t+kWt+k−1 and the super-
script 1 refers to the first row of the matrix. Hence, to compute this type of condi-
tional forecasts we need to

1. Partition yt = (y1t, y2t) and choose t and a path {y2t+k}τ
k=0. Use the model to

solve for the v̄2t that gives y2t = ȳ2t and back out the implied yl
1t once draws

for El
1t and ul

t are made from their conditional posterior distribution. Draw
ηl

t+1, εl and use the law of motion of the factors to obtain θ l
t+1, l = 1, . . . , L

and the definition of � to compute Xt+1.
2. Use the model to solve for v̄l

2t+1 that gives yl
2t+1 = ȳ2t+1 and back out the

implied yl
1t+1 once draws for El

1t+1 and ul
t+1 are made. Draw ηl

t+2, εl and
use the law of motion of the factors to compute θ l

t+2, l = 1, . . . , L and the
definition of � to compute Xt+2.

3. Repeat step 2 and compute θ l
t+k, yl

t+k, k = 2, 3. . ..
4. Repeat steps 1–3 setting v2t+k = E(vt+k), ∀k using the draws for the shocks

in 1–3.

In step 2 of all algorithms, we have implicitly assumed that selecting a path for
the shocks does not alter the law of motion of the factors, nor does it alter the
beliefs about the true structural shocks (here Ht is kept fixed in the calculations).
If this were not the case, an intermediate step, where a run of the Kalman filter
updates the information about the factors, needs to be used.

6. THE TRANSMISSION OF SHOCKS IN G-7 COUNTRIES

This section shows how one can use our setup to examine two issues of economic
interest: What are the effects of a U.S. real shock on the GDP of G-7 countries
and what are the consequences of an unexpected oil price change on inflation
in euro area countries. By no means do we intend to be exhaustive about these
two problems. Instead, we want to show how the tools we describe in the article
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could be applied to questions that are of crucial interest for applied business cycle
investigators in academics and central banks.

The last 20 years have witnessed an increased globalization of world economies.
Given the current high level of integration in the G-7, inflation and economic ac-
tivity in the euro area are closely related not only to those of the United States but
also of the other industrialized countries. Therefore, it makes sense to try to ex-
ploit cross-sectional information to construct probability distributions of various
scenarios. Furthermore, the evolutionary nature of the relationship, documented,
e.g., in Del Negro and Otrok (2006) among others, suggests that a time-varying
specification will probably be more useful than arbitrarily selecting fixed subsam-
ples, as it is often done in the literature.

For each of the G-7 countries, we use four endogenous variables (real GDP
growth, CPI inflation, employment growth, and rent inflation) and a predeter-
mined one (the growth rate of an oil price index). GDP growth is measured us-
ing Eurostat real GDP at 1995 prices, employment by the OECD index of total
employment, inflation and rent inflation using GDP, and housing rental deflators
(again from Eurostat), and the variables are scaled by their standard deviation. Oil
prices are obtained from the IMF Financial statistic series. For all variables, growth
rates are computed quarter-on-quarter and annualized. Besides GDP growth and
CPI inflation, which are the focus our attention here, the other two endogenous
variables have been selected because they have considerable in-sample predic-
tive power for output growth and inflation across countries. We exclude monetary
variables from the specification as they do not seem to have predictive power for
inflation or output growth once lags of these variables are included. We use one
lag of the endogenous variables, a constant, and one lag of the predetermined
variable. Since in the SUR model, regressors average over lags of the endogenous
variables, the exact number of lags does not matter in our exercises.

Each equation of the VAR has k = 7 ∗ 4 + 1 + 1 = 30 coefficients and there
are 28 equations in the system. The estimation sample covers the period 1980:1–
2000:4. Therefore, without restrictions, there would be a total of 30 × 28 regression
parameters plus 406 covariance parameters to be estimated at each t.

We assume that the coefficient vector δt in (2) depends on three factors and that
the factorization is exact, i.e., δt = �1θ1t + �2θ2t + �3θ3t. Here θ1t a 2 × 1 vector of
common factors, one for euro area variables and one for the rest of the world, so
that �11t = ∑

US,J P,C A,UK

∑
g

∑
j yigt− j , �12t = ∑

GE,IT,F R

∑
g

∑
j yigt− j , θ2t is a

7 × 1 vector of country-specific factors and �2i t = ∑
g

∑
j yigt− j , i = 1, . . . , 7; θ3t

is a 4 × 1 vector of variable-specific factors and �3gt = ∑
i

∑
j yigt− j , g = 1, . . . , 4.

We also set C = I. Hence, θ t = (θ ′
1t, θ

′
2t, θ

′
3t)

′ is 13 × 1 vector and the estimated
model is

yt = X1tθ1t + X2tθ2t + X3tθ3t + ζt

θt = θt−1 + ηt .

(38)

Since our sample is relatively short, no training sample is available to tune
the prior up. In order to minimize the influence of our prior choices we se-
lect relatively loose but proper priors and set p(b−1

i ) = G(5, 0.5), i = 1, 2, 3 and
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p(�−1) = W((z1�OLS)−1, z1), where �OLS is the OLS estimate of the � obtained
on a fixed coefficient version of the model, and the degrees of freedom are chosen
to approximately match the sample size, i.e., z1 = ng + 50. We set θ0|0 to be equal
to the OLS estimate obtained on the time-invariant version of the model, and set
R0,0 to the average estimated variances of NG AR(p)’s.

We produce 3,000,000 iterations of the MCMC routine starting from arbitrary
initial conditions. Runs of 600 elements are drawn 5,000 times and the last ob-
servation of the final 4,000 is used for inference. We checked convergence recur-
sively calculating the first two moments of the posterior of the parameters using
500, 1,000, and 2,000 draws and found that convergence was sufficiently easy to
achieve and obtained with about 1,000 draws. We have also experimented with
different combinations of runs and chains, keeping the total number of iterations
fixed. Results appear to be robust to this choice.

Our basic model has several bells and whistles. Therefore, prior to conducting
the exercises we are interested in, we want to check whether all the features we
consider are really necessary to model the available data. For this reason, we
have computed the marginal likelihood for five different specification. In all of
them the coefficient factorization is exact, i.e., σ 2 = 0, since specifications that
do not impose this restrictions fit the data worse. M1 is our benchmark model
specification. The remaining four models impose additional restrictions on M1.
Specifically, M2 excludes from M1 international lagged interdependencies; M3 is
a model with no time variations in the coefficients, i.e., var(ηt) ≡ B = 0; and M4

and M5 modify M1 by excluding either the country-specific component θ2t or the
variable-specific components θ3t, respectively.

Since, as we have mentioned in Section 4, different methods to compute
marginal likelihoods have advantages and drawbacks and it is empirically unclear
which method to prefer (see, e.g., Bos, 2002), Table 1 presents results obtained
using three different approaches: Chib’s calculation from the Gibbs output (Chib,
1995), a harmonic mean estimator (Newton and Raftery, 1994), and the Schwarz
approximation. In the first method, since we treat θ t as a latent variables, and given
the assumptions we have made, we only need one additional set of Gibbs sampling
iterations to obtain the estimate. The second method averages over all draws the
concentrated likelihood (after integrating out the latent vector θ t) evaluated at

TABLE 1
LOG MARGINAL LIKELIHOOD OF MODELS

Method M1 M2 M3 M4 M5

Chib’s ML −1200 −1236 −2908 −1548 −1579
nse 230 245 578 374 330
Harmonic Mean −1589 −1636 −1627 −1608 −1619
nse 7 8 6 8 8
Max Loglike −1530 −1617 −1610 −1580 −1595
nse 13 17 12 16 15
Parameters 409 409 406 408 408

NOTE: The number of parameters is equal to free elements in B + free elements in �.
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each draw of the posterior. In the last method, we report the log of the maximum
likelihood across draws along with the number of parameters estimated in each
model.2 Note that, because all models have approximately the same number of
parameters, the Schwarz criterion ranking should resemble the ranking obtained
from the simple maximized likelihood. Numerical standard errors (nse), com-
puted using 10 different runs of the Gibbs sampler for each of the models, are also
presented.

The ranking of the models differ across methods. With Chib’s measure, the basic
model (M1) is clearly preferred, whereas the model that excludes time variations
is clearly the worst. On the other hand, since a model with no variable-specific
factors is considerably worse than a model with no country-specific factors, one
can conclude that the dynamics of the endogenous variables across countries are
similar (so the “world” factor largely suffices) whereas the dynamics of, e.g., output
growth and inflation are fairly different within countries. The harmonic mean
estimator and the Schwarz criterion roughly maintain the same relative ranking
across models, even though a model that excludes interdependencies is now worse
than a model that excludes time variations.

Two important points need to be made here. First, although one may find it
surprising that the marginal-likelihood values estimated with the three criteria
are so different, one should also notice that the numerical standard errors around
Chib’s estimates are quite large, indicating that this estimate is much more volatile
and probably less reliable than the other two.3 Second, the size of the drop in the
marginal likelihood obtained with Chib for model M3 is also quite surprising. One
might guess that the estimated posterior distribution obtained is extremely impre-
cise and could be due to the fact that without time variations in the coefficients,
the model is essentially regressing volatile variables on slow-moving ones. Hence,
further work on the properties of Chib’s estimator of the marginal likelihood in
complex hierarchical models such as ours is sorely needed.

In sum, it appears that a factorization of the coefficient vector that includes three
factors and allows for no idiosyncratic component summarizes the information
present in the multicountry VAR reasonably well. Lagged interdependencies, unit-
specific dynamics, and (small) time variations also appear to be important features
of our multicountry VAR. In the following exercises, we therefore use M1 as our
specification.

In order to show how dynamic analysis can be undertaken in our model and
the advantages/disadvantages one can obtain with our setup relative to, for exam-
ple, single-country or two-country VARs, we first consider the effect of U.S. real

2 As is well known (Kass and Raftery, 1995), the harmonic mean converges almost surely to the
correct value but does not generally satisfy a Gaussian central limit theorem. The measure can therefore
be unstable, but it has proven to provide reliable estimates (Newton and Raftery, 1994). We prefer a
simple harmonic mean to a modified one (e.g., Gelfand and Dey, 1994) because for high-dimensional
problems, it is hard to find an appropriate modification function and results can be poor (e.g., Chib,
1995).

3 This instability is probably the direct consequence of the point made by Neal (1999). We thank one
of the referees for pointing out this problem to us. Similar instability problems were also experienced
by Osiewalski and Pipien (2004) in different models.
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FIGURE 1

RESPONSES OF GDP GROWTH TO A 1% SHOCK TO THE GROWTH RATE OF THE U.S. REAL VARIABLES (SOLID

LINES) AND 68% CONFIDENCE BANDS (DASHED LINES)

shocks on the GDP of other countries. We construct such a shock by making the
U.S. variables contemporaneously causally prior to the other G-6 countries. Within
the U.S. block, we make employment growth and output growth jointly increase
1% for one period, whereas the dynamics of the other two variables are unre-
stricted. Figure 1 presents the median responses together with a 68% posterior
band obtained with information up to 2000:4. We also report the results obtained
by running six two-country TVC-BVAR(1) with time-varying coefficients and a
Litterman prior where country 1 is always the United States and country 2 one
of the other six countries. Shocks are identified in the same way as in the multi-
country VAR. Therefore, apart from using cross-sectional information, the setup
of two models is identical.

As Section 5.3 mentioned, one has to make assumptions to compute responses
in TVC models. In particular, one needs to decide whether the loadings are affected
by the shock or not. In the latter case, one would use the law of motion of the
loadings to predict their development over the forecast horizon. In the former
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FIGURE 1

CONTINUED

case a learning process, where estimates of θ t are updated as yt−1 changes, could
be used. Figure 1 presents responses using the law of motion of the loadings since
results appears to be more stable than in the other case. With our random walk
assumption this is equivalent to freezing the loadings at their end-of-sample values.
The amount of in-sample time variation is very important to have sensible impulse
responses and forecasts in general. In our experiments we use a tight prior on the
time variation, which is obtained by assuming for each bi a prior mean of 0.000001
and a standard deviation of 1.0 × 10−09.

As we have pointed out, one should expect two types of differences in the re-
sponses obtained with the two models: First, since the sample is short and the
number of coefficients to be estimated is large, we should expect standard errors
around the impulse responses to be less precisely estimated in the two-country
VAR. Second, since the regressors of our model emphasize low-frequency co-
movements, the responses of a multicountry VAR should be smoother than those
of a two-country VAR. Figure 1 indicates that at least the first prediction is satis-
fied: Although responses in a two-country BVAR model are poorly estimated and
often leave open the question of whether there is any transmission across countries
(see, e.g., the responses of Germany, United Kingdom, and Canada), those of the
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multicountry model are more informative about the features of transmission. For
example, there clearly is an Anglo-Saxon cycle (peak responses of GDP in United
Kingdom and Canada are contemporaneous and almost of the same magnitude
as in the United States); European responses are positive but typically lagged,
except for Germany, with French GDP responding somewhat more persistently
than German and Italian GDP; and the response of Japan is lagged but relatively
small. Note also that responses in the Panel VAR and in the two-country VAR
die out at a similar rate but display different magnitudes.

Since our identification scheme has little economic content, we do not give
responses any structural interpretation. In particular, we cannot say what is the
reason for the asymmetric response across blocks of countries, whether policy
matters or not, and whether the shock we consider is a technological improvement.
In order to do this, a more structural identification scheme and a different set of
variables needs to be considered.

Using the same logic of Pesaran and Smith (1996), one may suspect that our
estimates display some kind of bias because of the way information is pooled in
the stochastic model. This suspicion is incorrect for two reasons. First, pooling is
stochastic and the amount of pooling is endogenously selected. Second, stochastic
pooling has a long tradition in panel data and there is no evidence that such a
procedure produced information-processing biases in reasonable experimental
designs.

Next, we consider the response of inflation in the three European countries
when the growth rate of the oil price index is set to zero for 16 periods from 1998:1
to 2000:4. Since this is a period where the growth rate of the oil price index was
strongly positive, such an experiment mimics what would have happened if the
boost in oil prices had not occurred. The design of our experiment is illustrated
in Figure 2. The shock is given by the difference between the actual and the
counterfactual growth rates, where the latter assumes that the growth rate of the
oil price index goes to zero at a gradual pace. In order to avoid a sudden drop to
zero after 2000:4 and to allow for a more complete dynamics, we use data until
2002:4 in the exercise. On this additional sample, we assume that the growth rate
of oil continues to gradually lessen the difference with the counterfactual path
after the shock. Note that this is one type of conditional forecasting exercises
that Central Banks routinely conduct in the quarterly assessment of current and
future economic conditions. The major difference here is that we do this in the
framework of a model with cross-country interdependences and allow for time-
varying structure.

Figure 3 reports the posterior median and the posterior 68% band for inflation
responses in Germany, France, and Italy. For comparison, we also report the re-
sponses obtained from a single-country BVAR(1) where the growth rate of oil is
predetermined and we allow for time variations in the coefficients and a Litterman
prior. Once again, the difference between the two sets of responses is due only to
the use of cross-country information.

Responses in the three countries look different both in terms of magnitude and
timing. The responses of German and French inflation are significant immediately
after the shock, whereas Italian inflation is significant only four quarters after the
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OIL PRICE SHOCK: ACTUAL (SOLID LINE) AND COUNTERFACTUAL (DASHED LINE)
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FIGURE 3

FORECAST OF INFLATION CONDITIONAL ON A SHOCK TO OIL PRICE GROWTH (SOLID LINES), AND 68%
CONFIDENCE BANDS (DASHED LINES)
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A COINCIDENT MEASURE OF GLOBAL INFLATION (SOLID LINE) WITH 68% CONFIDENCE BANDS (DASHED LINES)

shock. In general, it appears that oil price increases had moderately large and
persistent effects on inflation of the three major EU countries. In comparison,
the responses estimated with single-country VARs are more persistent but less
significant (especially in the case of Italian inflation), as the bands tend to blow
up as the horizon increases, suggesting that there is little information in the data
about the likely direction of inflation changes.

Finally, the estimated model can be used to compute a variety of measures that
are of interest to policymakers. Figure 4 presents the time profile for the posterior
68% band for a coincident measure of world inflation, constructed as CVLIπ

t =
X1tθ1t + (X3tθ3t)π . Two points can be made. First, the bands are tight, reflecting
the usefulness of the cross-sectional information. Second, the dynamics of our
measure seem to match the conventional wisdom about the local trends present
in the inflation rates over the period.

7. CONCLUSIONS

This article develops an approach to conduct inference in time-varying coef-
ficient multicountry VAR models with lagged cross-unit interdependencies and
unit-specific dynamics. We take a Bayesian viewpoint to estimate and restrict the
coefficients to have a low-dimensional time-varying factor structure. We complete
the specifications using a hierarchical prior for the vector of factors that permits
exchangeability, time variations, and heteroscedasticity in the innovations in the
factors.

The factor structure on the coefficients allows us to transform an over-
parametrized VAR into a parsimonious SUR model where the regressors are ob-
servable linear combinations of the right-hand-side variables of the VAR and the
loadings are the time-varying coefficient factors. We derive posterior distributions
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for the vector of loadings using MCMC methods. We show how to construct un-
conditional forecasts, responses to impulses in interesting structural shocks and
conditional forecasts, using the output of the MCMC routine.

The reparametrization of the VAR has a number of appealing features. First, it
reduces the problem of estimating a large number of, possibly, unit-specific and
time-varying coefficients into the problem of estimating a small number of loadings
on certain combinations of the right-hand side variables of the VAR. Second, since
the regressors of the model are observable, the model can be employed recursively
for a variety of policy purposes. Third, since some indices feature an MA structure,
they emphasize low-frequency comovements in the lags of the VAR variables.

The tools described in this article have been applied to a number of interesting
problems (see, e.g., Canova et al., 2007; Anzuini et al., 2005; Caivano, 2006). For
instance, the construction of measures of core inflation and of the natural rate of
unemployment in multicountry settings, the study of the transmission of monetary
policy shocks across economic areas and sectors, and the construction of portfolios
of assets in different geographical regions can all be studied within the general
framework presented in this article.

To conclude, one should mention that the procedure is computationally feasible
on modern computers: One full run of the MCMC routine for the example of
Section 6 takes about 45 minutes. Therefore, the approach is competitive with
existing alternatives.
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