
Journal of Economic Dynamics and Control 17 (1993) 233-261. North-Holland 

Modelling and forecasting exchange 
rates with a Bayesian time-varying 
coefficient model 

F a b i o  Canova* 
Brown University, Providence, RI 02912, USA 
European University Institute, 1-50016 San Domenico di Fiesole, Italy 

Received May 1990, final version received January 1992 

This paper employs a multivariate Bayesian time-varying coetficients (TVC) approach to model 
and forecast exchange rate data. It is shown that, if used as a data-generating mechanism, a TVC 
model induces nonlinearities in the conditional moments and leptokurtosis in the unconditional 
distribution of the series. It is also shown that leptokurtic behavior disappears under time 
aggregation. As a forecasting device, a Bayesian TVC model improves over a random walk 
model. The improvements are robust to several changes in the forecasting environment. 

I. Introduction 

It is widely recognized that short-term changes in a variety of asset prices 
are well described by linearly unpredictable stochastic processes which are 
unconditionally leptokurtic and conditionally heteroskedastic. Studies by 
Meese and Rogoff (1983a, b), Domowitz and Hakkio (1985), Boothe and 
Glassman (1987), Hsieh (1988), and Diebold (1988) have documented that for 
the case of exchange rate changes (1) the conditional mean is approximately 
linear and nonlinearities, if they exist, arise in the even conditional moments 
of the process and (2) the current value of the process summarizes all the 
information that is relevant to forecast future values. One implication of 
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these findings was that a random walk (RW) model appeared to be the best 
tool for out-of-sample point forecasts. 

The lack of predictability in asset price changes, however, is increasingly 
being questioned both at a theoretical and an empirical level. Theoretically, 
Sims (1984) argues that any price which is strongly anticipatory of future 
events will behave like a martingale only as the sampling interval goes to 
zero. Empirically, Engle, Lilien, and Robbins (1987), Pagan and Yong (1990), 
and Engel and Hamilton (1990), among others, have demonstrated the 
existence of nonlinear dependencies in the conditional mean of certain asset 
prices using data at various frequencies. 

In an attempt to exploit these nonlinear dependencies in forecasting 
exchange rate changes, Diebold and Nason (1990) examine the performance 
of a class of univariate models where the conditional mean is allowed to be a 
nonlinear function of the available information set. They employ nonpara- 
metric methods to construct an estimate of the conditional mean which is, 
under a quadratic loss function, the best predictor of future exchange rate 
changes. Their results are mixed: the particular form of nonlinear depen- 
dence they employ does not necessary improve the out-of-sample forecasting 
performance of linear models (and of a RW model in particular). Mizrach 
(1990), using an analogous but multivariate technique and a different sam- 
piing interval, improves over a RW model in only one exchange market. 
Similarly, Meese and Rose (1989) show that the same class of models has 
only a slightly better in-sample fit than linear models over a variety of 
samples and situations. 

This paper contributes to this emerging literature in two ways. I provide a 
parametric model which, if used as a data-generating mechanism, produces 
complex nonlinear dependencies in the conditional moments of the gener- 
ated time series and can replicate several important empirical features of 
exchange rate data [see Gallant, Hsieh, and Tauchen (1990) for a similar 
undertaking using Clark's (1973) 'mixture' model]. I then demonstrate that 
the forecasts of this model substantially improve upon the forecasts of a RW 
model. 

The approach of the paper differs from previous efforts in several respects. 
First, a Bayesian time-varying coefficient (TVC) autoregressive model of the 
variety pioneered by Litterman (1982), Doan, Litterman, and Sims (1984), 
and Sims (1989) is employed. Second, a number of foreign exchange and 
interest rate markets are simultaneously considered in the forecasting exer- 
cise. This approach has the advantage of employing a richer information 
structure and exploiting common features existing in a variety of financial 
markets to construct forecasts [see Diebold and Nerlove (1989) for a similar 
argument]. 

I show that the TVC methodology has several appealing features for 
modelling financial data. First, a TVC model is flexible enough to include as 
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special cases several nonlinear time series specifications recently employed to 
model the first two conditional moments of exchange rates and of other 
financial data [see Tsay (1987) for some of these relationships]. Second, if 
used as a data-generating mechanism (DGM), the model produces nonnor- 
malities in the endogenous time series by means of time variation in the 
coefficients. Time variation was found to be a relevant ingredient in ex- 
plaining the leptokurtic behavior of exchange rate data [Friedman and 
Vandersteel (1982), Boothe and Glassman (1987)] and in forecasting ex- 
change rates with structural models [Wolff (1987), Schinasi and Swamy 
(1989)]. Third, the generated time series have the property that time aggrega- 
tion reduces nonnormalities [see Diebold (1988) for this feature of exchange 
rate data]. Fourth, since the model has a linear recursive conditionally 
Gaussian structure [Lipster and Shiryayev (1978)], simple estimation and 
forecasting procedures are applicable to a vector of time series. Finally, as 
emphasized by Engle and Watson (1985), TVC models have a Bayesian 
interpretation. Therefore the information contained in various foreign ex- 
change and interest rate markets can be pooled with a simple Bayesian 
procedure. 

I also show that as a forecasting tool, a Bayesian TVC model is useful and 
improves upon RW forecasts at all horizons and for all the exchange rates 
considered using three different loss functions. The improvement is statisti- 
cally significant, essentially independent of the time period chosen to com- 
pute forecasts and robust to various alterations in the model specification. 

The rest of the paper is organized as follows: the next section describes a 
TVC model and examines the statistical properties of time series generated 
with such a model. Section 3 presents details on the forecasting exercise. 
Section 4 presents the forecasting results and a robustness analysis. Section 5 
contains the conclusions. 

2. A statistical model for exchange rate data 

Consider the following data-generating mechanism (DGM): 

Yt = [3',xt + u t ,  (1) 

where u t, conditional on x t, is white noise with variance V. For the sake of 
presentation, I assume that Yt is a scalar stochastic process, 1 fl't is a 
1 × (l + 1) vector of time-varying coefficients of the model, and x t is a 
(1 + 1) × 1 vector of lagged dependent or exogenous variables. I also assume 
that/3 t evolves according to 

13t = Gl3 t_~  + El3 o + A e , ,  (2) 

1None of the results presented in this section depend on the scalar specification assumption. 
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where e t is a vector of disturbances and G, F, and A are conformable, 
positive definite matrices. 

2.1. Nonlineari t ies  in the condi t ional  m o m e n t  structure: S o m e  special cases 

To demonstrate the flexibility of (1)-(2) as a DGM, substitute (2) into (1) 
to obtain 

Yt = f t X t  -[- U,, (3) 

where/3t = G f l t - i  + Fflo and v t = ( A e t ) ' x  t + u r Given auxiliary assumptions 
regarding the nature of x t and the relationship between x t and et, the 
present framework encompasses several parametric nonlinear time series 
specifications often used to model exchange rate data. For example, if x t and 
e t are conditionally independent and e t has variance Z, then Yt is a 
conditionally heteroskedastic process with mean fl 'txt and variance 0 t = V + 

x ' tA ' . ,~Ax r In addition, if x t includes lagged dependent variables and a 
constant and (e t lx t ,  ~ t t ) ~  ..4/(0, ,~), where ~tt is the tr-algebra generated by 
past values of Yt, then the TVC model generates a conditionally normal 
ARMA-ARCH model [see Weiss (1984) for the theory of ARMA-ARCH 
models and Hsieh (1989) for an application to exchange rates]. However, if x t 

includes latent variables or variables which are not perfectly predictable 
given ~t,  then, conditional on ~ t  alone, Yt will be a non-Gaussian het- 
eroskedastic process. Therefore, Clark's (1973) mixture model, recently em- 
ployed by Gallant, Hsieh, and Tauchen (1990) to model the daily British 
pound/US dollar exchange rate, is a special case of a TVC model. On the 
other hand, if some components of x t and e t are conditionally dependent 
(say, xit  and ejt, for i = j )  with E t _ l ( e ' t A ' x t )  = ~.iOliieitxit, then Yt has 
conditional mean equal to fi 'txt + Eia i ie i t x i t  and conditional variance equal 
to V +  ( E j . i E i a j ~ e j t x i t )  2. Therefore, a version of a TVC model where x t 

includes, e.g., stochastic exogenous variables correlated with the innovations 
in fit, produces a version of the bilinear model of Granger and Anderson 
(1978) as a special case. 

A TVC model can also generate something similar to an ARCH-M model 
[see Engle, Lilien, and Robbins (1987) and Domowitz and Hakkio (1985) for 
an application to exchange rates]. If e t = eli  + e2t , where elt  is independent 
of x t and eEt and has covariance matrix .~, and where .e2t is perfectly 
dependent on xt, then the conditional mean of Yt is f x t + x ' t A x t  and 
conditional variance is V +  x ' t A ' . ~ A x  r 

Finally, a version of Hamilton's (1989) two-state discrete shift model, 
recently employed by Engel and Hamilton (1990), can be cast into this 
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framework by choosing 

x', = [a o, a t, 1,0,0 . . . . .  0], 

[~tt= [ 1 , S t , z t , z t _  1 . . . .  , Z t _ r ] ,  

/3~ = [1, E 0 So, EoZ 0 . . . . .  EoZo] , 

e' t = [0, v t ,  e , ,  0 , . . . ,  0]. 

F is a zero matrix except for the element f22 = (1 - q ) / ~ ' o  and G has the 
following structure: 

/x 0 " "  

G =  0 0 
R 

0 0 

where R is an unrestricted matrix, A = I, and u t ~-0 V t .  Here S t is an 
unobservable two-state Markov process with AR representation 

St.=(1-q)"l-l.~St_l"l-ut, I~=p+q-1 ,  (4) 

where p and q are the diagonal elements of the transition matrix, ~'0 = EoS0, 
and z t is an AR( r )  process with innovations e t. 

In conclusion, the TVC model described by eqs. (1) and (2) can accommo- 
date several parametric models currently used to characterize nonlinearities 
in the first two conditional moments of exchange rate data. Obviously, if e t 

has a degenerate distribution for all t, the model reduces to the simple 
homoskedastic linear model with constant coefficients. 

2.2.  N o n n o r m a l i t i e s  in t h e  g e n e r a t e d  d a t a  

Since the TVC model includes Clark's (1973) mixture model as a special 
case, one could follow the steps of Gallant, Hsieh, and Tauchen (1990) and 
show that the model generates nonnormal heteroskedastic time series if x t  is 
serially dependent  and unobservable. However, these features emerge from a 
TVC model even when x t  is observed at t. To see this let x t =  

[Yt-I, Yt-z,''',Yt-L], and u t and e t be normally and independently dis- 
tributed random variables, and let e t and x t be conditionally independent. 2 

2This last assumption is not crucial for the results. If we assume that x t and e t are 
conditionally dependent ,  then, independent  of k, yt is non-Gaussian. 
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~lt+k ~- ak+l[3t_l WFflo a j Xt+k--Et_lXt+k) 

(k-1 )' [ k - l  . ~' 
+ ,j=0~-'Gk-JAet+j Xt+k--E'- l [ j~=oGk-JAet+]JXt+k 

+ e't+kh'Xt+ k + ut+ k. 

It follows that for fixed t and all k: 

Et- lYt+k= (ak+lflt-l+Ffloj~=oGJ)'Et-lXt+k 

+ Et_ 1 ~ Gk-JAet+j xt+ k, (5) 
i=0  

vart_lYt+ k = E ,_ l (a ,+k)  2, (6) 

skt_lYt+k = Et_I(a ,÷k)3 / (var ,_ ly t÷~)  3/2, (7) 

kUt_lYt+k = E t _ I ( a t + k )  4/(var,_, y,+k) 2, (8) 

where sk and ku are the skewness and the kurtosis coefficients. For k = 0, it 
is easy to verify that sk t_ 1Yt = 0, ku t_ 1Yt = 3, so that, condit ional  on  ~t, Yt is 
normal with time-varying conditional mean Et_lY t = fl'x t and conditional 
variance O r For k = 1 the conditional mean of Yt+l is nonlinear and equal 
to 

Et_  1( fl;+ 1xt+ 1) = ( a 2 f l t -  1 + F( I + G)flo) 'E t_ 1Xt+I 

+ Et-  le'tA'Gxt+ 1, 

w h e r e  E t_ 1xt+ 1 ~ [ E l -  1Yt, Yt- 1 , . . . ,  Yt-l+ 1], whi le  its condit ional  variance is 
given by 

Et_ , (a t+ l )2  = Et_I((G2/3t_I + F/30(1 + G ) ) ' ( X t + l - E t _ l X t + l )  

+(e'tA'G'xt+x - Et_le'tA'G'Xt+l) 

+e't+lA'Xt+ 1 + Ut+l)  2. 
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Note that (xt+ 1 - E t _ l X t + l ) '  = [e ' tA 'x t  + ut ,0 ,0  . . . .  ,0] and ( ( e ' tA 'G 'x t+  1) - 
E t - l ( e ' t A ' G ' x t +  1)), involve, among other things, terms of the form e ' t A ' G ' u  t. 
Therefore, even though e t and u t are normal and independent, Yt+l is 
nonnormal because the prediction error t~t+ 1 involves the product of normal 
randbm variables, none of which is predictable given ~ .  

Using (5)-(8) for any k > 1, one can show that the above argument holds 
in general. Hence, this DGM has several potential channels to induce 
complex nonlinearities and nonnormalities in the data. 

2.3. The uncondi t ional  m o m e n t  structure and  t ime aggregation 

Boothe and Glassman (1987), Diebold (1988), Hsieh (1988), and Gallant, 
Hsieh, and Tauchen (1990) showed that the unconditional distribution of 
exchange rate changes is leptokurtic, slightly skewed to the left for certain 
currencies, and that it converges to a normal as data is aggregated over time. 
To show that a TVC model induces these properties in the time series for YI, 
one should compute the third and fourth moments of the unconditional 
distribution of Yt. For general specifications of the model, the computation of 
these higher unconditional moments has proven to be too complex to be 
undertaken analytically. 3 Under regularity conditions on the characteristic 
roots of G, F, and A, the unconditional variance of Yt will be bounded. 
Therefore, the unconditional distribution of Yt will not belong to the family 
of stable Paretian distributions which have been used in the past to char- 
acterize exchange rate dynamics [see Boothe and Glassman (1987) for 
references]. 4 Also, since the prediction errors generated by this DGM are 
conditionally heteroskedastic and nonnormal for any k > 1, one can guess 
that the unconditional distribution of Yt is leptokurtic. To illustrate the 
features of the unconditional distribution of Yt and the convergence to the 
normal under time aggregation I use a Monte Carlo simulation. 

The results of the simulations are presented in figs. 1-3. Fig. 1 plots the 
empirical density, estimated using the procedure described in Rao (1984, 
p. 102), of the scalar wt = l o g ( y  t )  - log(yt_l), where Yt is generated with a 
fourth-order AR model with a constant [i.e., x t - - - ( Y t - 1 , . . . ,  Yt-4,  ct )], with 
/30 = [0.97, 0.00, 0.00, 0.03, 0.00], G = 0.999*•, F = 0.001"I, A = I, ,~ = 
diag(tr11, tr22, tr33, tr44, trcc), Orll = (0.002/12, l = 1 , . . . ,  4), trcc= 0.002, and V = 
0.002. Both u and e are drawn from a normal distribution. 500 points were 

3Analytic results for special cases are available, e.g., in Diebold (1988) and Gallant, Hsieh, and 
Tauchen (1990). 

4These distributions are conditionally heteroskedastic, unconditionally leptokurtic, possess a 
domain of attraction, but are invariant under time aggregation, and have infinite variance except 
in the normal case [see Blattberg and Sargent (1971), Fama and Roll (1968)]. 
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DENSITY 
VALUE 

5QOO 

q O O O  

3000  

2000 

1000  

D e n s i t y  o f  a 
TVE-AR(4) 

Normal D e n s i t y  

. . . . . . . . . . . . . . .  0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1  
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0  . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . .  O I ~ 3 ~ S 6 7 8 g O I ~ S ~ 5  
5 ~ 3 2 1 0 • 0 ? G 5 ¼ 3 2 I 

Fig. 1. Data  set 1. 

generated for the specific realization reported. Plotted with w t is a normal 
distribution with the same mean and the same variance of w t (dashed area). 
Fig. 2 plots the empirical density of a w t series whose coefficients are subject 
to a structural break. To be specific I generate 250 points with the same 
parameters as in fig. 1 and 250 points with the same G,/30, A, F, V, and trcc 
parameters,  while tr u = diag(0.0002/12). This simulation mimics a situation 
where the uncertainty in the coefficients drops after a certain date. A normal 
distribution with the same mean and the same variance of w t is also plotted 
in fig. 2. In both cases the empirical distribution of w t is more peaked around 
zero and has fatter tails relative to the normal, and in the second case it is 
slightly skewed to the left. 

Fig. 3 plots the 90% confidence band for the skewness and the kurtosis of 
the two specifications above when the generated series are time aggregated 
over various intervals. Together with the band, fig. 3 plots the skewness and 
the kurtosis of a normal distribution (these are equal to 0 and 3, respectively). 
To construct the bands I draw 1000 samples of 500 data points each for each 
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DENSITY 
VALUE 

~o.oo 

SO00 

2 0 0 0  

1 0 0 0  

D e n s i t y  o f  a 
TVC-AR(4) 

. . . . . . . . . . . . . . .  O O  O O O O O O O  O I 1 1 1 1  ! 
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0  . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . .  0 1 ~ 3 q ~ 6 7 8 g O 1 2 3 q 5  
5 ~ 3 2 1 0 9 6 7 6 5 q 3 2 1  

Fig. 2. Data  set 2. 

of the two specifications. For each sample and each specification I then 
aggregate every 2,4,8,12,16,20 observations to construct samples of 
250, 125, 63, 42, 31, 25 data points, respectively. For each of these seven sam- 
ples and for each draw, I then estimate the skewness and the kurtosis, order 
the estimated values, and compute the 90% confidence bands for each of the 
two model specifications. Let skr, i and kur, i be the ordered estimated 
skewness and kurtosis for a sample size T and for draw i. Then, for each T, 
the 90% confidence bands for the skewness ranges from skT,5o t o  SkT,950 and 
the 90% confidence bands for the kurtosis ranges from kur,5o to kur,95 o. As 
fig. 3 indicates, in both specifications the size of the band and the median 
value of the kurtosis decrease as T decreases. Therefore, with time aggrega- 
tion, convergence to normality is likely to occur. From fig. 3 one can also see 
that the band for the estimated skewness for the second model specification 
is centered below zero and does not change very much with time aggregation. 

In conclusion, the simulations show that the distribution of w, is leptokur- 
tic, is skewed to the left in certain cases, and converges to the normal when 
data is time aggregated. These features were all found to be present in 
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Fig. 3. 90% c o n f i d e n c e  b a n d s .  

exchange rate changes as well as in other asset price changes [see, e.g., Fama 
(1976)]. Earlier applications of the TVC methodology to the problem of 
modelling data from other asset markets also confirm the usefulness of the 
approach [see Shaefer et al. (1975), Rosenberg (1973)]. To check whether a 
TVC model captures the out-of-sample features of the exchange rate data as 
well, I turn next to a forecasting exercise. 
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3. The specification of the forecasting exercise 

2 4 3  

3.1. The data 

In this exercise I employ a panel of spot exchange rates and spot interest 
rates. Interest rates are used because they provide information for exchange 
rate dynamics which is not contained in past values of the exchange rates. 
The data set spans a nine-year interval from the first week of 1979 to the last 
week of 1987. For all variables weekly sampling (at Wednesday) of daily 
values are constructed. The exchange rates are the quoted closing values at 
the New York market for five different currencies [French franc (FF), Swiss 
franc (SF), German mark (DM), English pound (L), and Japanese yen 
(YEN)] in terms of the US dollar. The six interest rates considered are 
short-term (13-week) Eurodeposit rates on $, FF, SF, DM, L, and YEN 
dominated securities computed as the average of the bid-ask spread. 

3.2. A Bayesian version of  the model 

Throughout the rest of the paper Yt is an 11 × I vector (including five spot 
exchange rates and six interest rates) with the following representation: 

yt = fl't x , q- u, u t l ~tt "~ .1//(0, V),  

B , = G B , _ I  + F B + A e , ,  e t ~ ( O ,  2~t), 

(9) 

(10) 

where /~t is an 11 × 11(l + 1) matrix of coefficients and B t = vec(/3 t) is its 
stacked version, /~ = vec(/30), x t is an l l ( l  + 1 )x  1 vector of lagged de- 
pendent and exogeneous variables, and (u t, e t) are white noise processes, 
independent of xt,  with covariance matrices V and -~t, respectively. For 
computational reasons, I restrict the lag length to 4. The covariance of e t is 
specified to be time-dependent in order to capture slow but continuous 
changes in the distribution of the coefficients. However, for the sake of 
simplicity, discrete regime shifts of the type described in Sims (1989) are not 
considered. 

Under a standard Bayesian interpretation of the model [see, e.g., Engle 
and Watson (1985), Ljung and Soderstrom (1987)], (10) is treated as part of 
the prior and/3 is assumed to have a prior distribution with mean E(/~) and 
covariance 2~ 0 = k * I, where I is the identity matrix and k is either a given 
large number or a parameter with a prior distribution. 

Litterman (1982), Doan, Litterman, and Sims (DLS) (1984), and Sims 
(1989) refined the Bayesian version of the TVC model in several directions. 
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First, since the variability of the forecasts is proportional to nZ(l + 1), where 
n is the dimension of the Yt vector and l is the lag length of the model, point 
forecasts of Yt+k, k = 1,2, . . . ,  obtained from a highly parameterized or a 
large scale version of the model (9)-(10) tend to be very poor. DLS proposed 
making the matrices G, F, A, and -~t (describing the law of motions of the 
B's), E(/~) and Z0 (describing the initial conditions) dependent on a small set 
of unknown parameters 0. This refinement introduces a new layer of uncer- 
tainty in the model which is of smaller dimension than the B vector, 
decreases the number of parameters to be estimated and possibly reduces the 
variability of the forecasts. Second, they assumed ~0 to be of the form 
k * diag[h(1)f(i, j)], where h(l) is a function describing how the prior covari- 
ance matrix becomes concentrated around the median as I = 1,2 . . . .  , L 
increases and f ( i , j )  describes the relative importance of variable j in 
equation i :  Finally, they specified E(/~) to be zero except for the elements 
E(/~i, 1), i = 1, 2 . . . .  , n, which are assumed to be equal to one. 

3.3. The specification of  the prior 

In this paper I follow the DLS approach but modify the specification of the 
dependence of 2t, G, F, A, E(/~), and "~0 on the 0 vector. I assume: 

G -- 0 0 • I, (11) 

F = I - G ,  

A = I ,  (12) 

iil if 1=1,  
E(/3it)= i2 if l = 4 ,  i =  1,2 . . . . .  11, (13) 

otherwise, 

Zt = F1Zo + F22,_1, (14) 

/ " 1 = 0 3 " 1 ,  

r 2 "~ 0 4 * I, (15 )  

~o = diag(~j~), (16) 

orij l = (05/l°6)f(  i, J)( si/sj), (17) 

where i stands for equations, j for variable, and l for lag. 

~Canova (1992) extends the approach of DLS to include frequency domain restrictions which 
make Z0 a nondiagonal matrix, Sims (1989) describes a 'dummy observation' procedure that 
tmakes "~0 nondiagonal as well. 
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The motivation for these choices is the following. With (11)-(12) I assume 
that the law of motion of the coefficients has a simple first-order Markov 
specification with decay toward the time zero value. 00 controls the speed 
of the decay. For 00 = 0, the coefficients are random around /~. For 00 = 1, 
they are random walks. One possible alternative, which can capture higher- 
dimensional Markov process, is G = 00 * C, where C is a the companion 
matrix of the Markov process. 

Since no information is available on the contemporaneous correlation of 
the elements of et, I choose A = I. 

I use a mean of zero for the prior on all coefficients except the first own 
and fourth lag in each equation. Canova (1989) found significant four-week 
cycles in exchange rate data. By allowing the fourth lag to have mean 
different from zero, I hope to capture these patterns. However, contrary to 
DLS, I do not restrict 01 + 0 2 to be equal to one. 

The dispersion matrix of the coefficients is assumed to evolve linearly over 
time. The idea behind this specification is that there is some form of 
persistence in the uncertainty surrounding the true value of the coefficients. 
Since the matrices r I and r 2 are fixed, the specification prevents discrete 
shifts in the coefficient vector even though it allows for a specific form of 
heteroskedasticity to appear. To see this, one can solve (14) and (15) 
backward to obtain 

1 --  042t-1 
~ t  = t~t * "~0, ~t = 0~ + 0 3 * ( 1 8 )  

1 - 04 

For 04 = 0, the coefficients are time-varying but no heteroskedasticity is 
present; for 03 = 0, the variance of the coefficients is geometrically related 
to "Yo. Finally, if both parameters are equal to zero, neither time variation 
nor heteroskedasticity is present. 

The structure of Xo is standard: 05 is the general tightness on the variance 
of the coefficients (corresponding to the parameter k in the previous subsec- 
tion) and 06 controls the speed of the lag decay in the variance. Lower values 
of 05 imply higher concentration of the prior density of the entire coefficient 
vector around the prior median. Higher values of 06 imply smaller prior 
variance for the coefficients as l increases, s i and sj are the standard errors 
of variable i and j, and f ( i ,  j )  is a matrix of weights, f ( i ,  i) = 1.0. Here f ( i ,  j )  
controls the pooling of information among variables and markets. If all 
f ( i ,  j )  = 0.0, i ~ j ,  the model reduces to a panel of univariate TVC models. If 
all f ( i , j ) =  0.0 and 06 is large, the model approximates a panel of RW 
models with time-varying coefficients. In addition, if 05 is zero, the model for 
each variable is exactly a RW model with constant coefficients. 
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With the above choices the number of free parameters is still large. 
Thisted and Wecker (1981), Zellner and Hong (1989) showed that the 
forecasting performance of models like our's may improve if certain parame- 
ters are restricted to be common to all equations. For this reason I standard- 
ize 00, 03, 04 to be the same in all equations, while 01, 05, 06 and the elements 
of the f ( i ,  j )  matrix are restricted to be the same in the block of exchange 
rates and in the block of interest rates. In particular, f ( i ,  j )  will feature two 
tightness parameters: 07, which measures the relative importance of ex- 
change rates in all equations, and 08, which measures the relative importance 
of interest rates in all equations. 6 With these restrictions the model has 11 
equations and a total of 15 parameters to be estimated. 

3.4. Estimation and forecasting 

The model (9)-(10) with the prior (11)-(17) has a probabilistic structure of 
the form: 

~a(  yt, /3tlxt, O) = P( Ytlflt, x , ) a (  /3,1o ). (19) 

To close the model, one could specify a prior distribution for the parameter 
vector 0, say R(O), apply Bayes rule to construct its posterior distribution, 
and use this distribution to build confidence intervals for Yt+k [see, e.g., 
Sarris (1973), Geweke (1989)]. This approach is straightforward but may be 
analytically intractable. As an alternative, one could integrate/3, out of (19) 
and obtain a function, say d~(ytlxt, 0), which, for given Yt and xt, plays the 
role of the likelihood function of the 0 (see DLS for this interpretation). If 
R(O) is diffuse over a bounded hypercube, the posterior of 0 will then be 
propositional to c~¢(YtlX t, O) and the mode of the posterior will be propor- 
tional to the peak of the likelihood. Therefore, as a simplification, one could 
use the 0 vector generating the model of the posterior both for inference and 
for constructing point forecasts of Yt+k. In this case, the estimation of the 0 
vector by maximum likelihood approximates the Bayesian procedure of 
choosing the vector of 0 that makes the remaining portion of the prior, 
Q(/3tlO), best agree with the data. 

Since the analytic maximization of the likelihood for the problem is 
complicated, I employ numerical methods to obtain an estimate of 0. DLS 
show that the likelihood function can be written as a weighted average of 
one-step-ahead forecast errors with weights given by a weighted average of 
the recursive variance of the forecasts. Under the assumption of normality 
of e t and u t, one-step-ahead forecast errors are easily obtained with the 

6For the German and the Japanese interest rates equations, 07 and 08 are allowed to be 
different from the standardized values. 
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Kalman filter algorithm once a value of 0 is specified. Therefore, to numeri- 
cally maximize the likelihood function, I run the Kalman filter through the 
given data set using a grid of 0 vectors all having equal a priori probability. 7 

Once the 'optimal' 0 vector is found, out-of-sample point forecasts for 
steps ranging from 1 to 52 are computed recursively and estimates of the/3's 
are updates using the Kalman filter algorithm. For the exercises reported in 
section 4 forecasting statistics are collected over a two-year period. There- 
fore, there are 103 one-step-ahead forecasts and 52 52-step-ahead forecasts. 

3.5. Comparing the forecasts of  the TVC and of the RW models 

To compare the forecasting performance of the TVC model to that of a 
RW model, I employ three different loss functions: the Schwarz (1978) 
criterion, the Theil U-statistics, and the ratio of the Mean Absolute Devia- 
tions (MAD) of the two models. 

The Schwarz criterion compares the discounted (by the number of parame- 
ters) maximized value of the likelihood of the two specifications and can be 
used here because an approximate RW model is nested in the TVC model. 
Also since the Theft U-statistic is the ratio of the Mean Square Error (MSE) 
of the two models, if it obtains values greater than one the RW model 
dominates, while if it obtains values less than one the TVC model dominates. 
Although the Theil U is routinely used in these type of comparisons, it is not 
necessarily the most appropriate criterion when the unconditional distribu- 
tion of the data has fat tails [see Blattberg and Sargent (1971), Koenker and 
Basset (1982)]. In this case the ratio of MAD's provides a better criterion to 
assess the forecasting ability of the two models. 

I consider the Theil U and the ratio of MAD statistics at 1-, 13-, 
52-step-ahead horizons. For each of the two statistics I also report an average 
over 52 steps for each variable, an average over variables at 1, 13, 52 steps 
and an overall average over all variables and all steps. I chose to present 
statistics at the 13-step-ahead (three-month) horizon because the interest 
rates chosen have a 13-week maturity and therefore three months is an 
appropriate horizon to judge the forecasting performance of the model. I 
also consider the 52-step-ahead (one-year) horizon to check the long-run 
performance of the model. Finally, averages over variables and over steps are 

7The Bayesmth algorithm, written by Sims (1986), is used to locate the peak of the likelihood. 
The algorithm takes as inputs the value of the likelihood at a finite number of grid points and 
uses a spline interpolation to fit a surface to the inputted likelihood values and to provide a 
guess for the location of the peak(s) of the function and for the vector of 0 corresponding to the 
peak. The algorithm then proceeds iteratively, adding the value of the likelihood generated with 
the 0 vector corresponding to the guessed peak to the old ones, repeating the interpolation and 
providing a new guess for the location of the peak(s) of the function and for the vector of 
parameters corresponding to the guessed peak. The procedure stops when the increase in the 
likelihood function from the previous iteration is less than a specified amount. 
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employed to eliminate series or horizon-specific errors in the evaluation of 
the general performance of the specification [see Schinasi and Swamy (1989) 
for additional motivations on the use of averages over steps]. 

4. The results 

The results of the forecasting exercise are presented in table 1. The model 
(9)-(10) is estimated over the 1979.1-1985.52 sample and forecasts are 
generated from 1986.1 up to 1987.51. The 'optimal' 0 vector is presented in 
table 2, together with the maximized value of the likelihood and the value of 
the likelihood for the approximated RW model. 

It is easy to see that the TVC model improves upon a RW model according 
to all criteria. When the Schwarz criterion is used the difference between the 
maximized values of the likelihood of the two models is significant. When the 
Theil U-statistic is used, the TVC model dominates a RW model for all 

Table 1 

Estimation sample 1979.1-1985.52/Forecasting sample 1986.1-1987.51. 

Average 
Steps Average at steps over Overall 

Variable 1 13 52 1 13 52 steps average 

Theil U statistics 
$/DM 0.9724 0.7574 0.5096 0.9817 0.8726 0.8314 0.7187 
$/L 0.9829 0.8172 0.7422 0.8738 
$/SF 0.9780 0.7804 0.6379 0.7060 
$/FF 0.9740 0.8295 0.5591 0.7697 
YEN/$ 0.9758 0.8840 0.6890 0.7940 
IRwG 0.9984 1.1182 1.9381 1.3418 
IRuK 0.9851 0.7905 0.5743 0.7269 
IRsw 0.9817 1.0569 0.6270 0.8647 
IRFR 0.9890 0.8577 0.5744 0.7446 
IRus 1.0130 1.1772 1.9680 1.4071 
IRjAp 0.9479 0.5599 0.3309 0.4918 

0.8581 

Ratio of MAD's 

$/DM 0.9427 0.7633 0.4050 1.0914 1.0244 0.8843 0.6650 
$/L 0.7612 0.6885 0.3359 0.5694 
$/SF 1.1812 1.1236 0.7358 0.9312 
$/FF 1.0000 0.6822 0.6626 0.7823 
YEN/$ 0.9885 0.8009 0.5889 0.7545 
IRwG 1.0521 1.1967 2.0369 1.4436 
IRuK 1.1436 2.4739 1.3888 1.9063 
IRsw 0.4091 0.2572 0.1320 0.2161 
IRFR 2.4501 1.5066 1.1875 1.4219 
IRus 1.0224 1.1832 1.9335 1.3574 
IRjAp 0.9605 0.5919 0.3209 0.4744 

0.9555 
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Table 2 

Optimal  parameter  est imates and likelihood value, a 

249 

TVC model 
for Monte  Carlo 

TVC model R W  model  and bootstrap 

1.0 1.0 1.0 

1.0 if i = I R u s ,  IRFR 1.0 1.02 if i = E R  
0.9 otherwise 0.96 if i = IR 

0.1 if i =  E R  0.0 0.0 
0.0 if i =  IR 

0.99 0.99 0.99 

0.01 0.01 0.01 

0.01 if i = E R  0.000001 0.01 
0.05 if i = IR 

3.0 if i = IRFR, I R u s ,  10.0 1.0 
IRjAp, S / Y E N  

0 otherwise 

0.4 if i = IRwG 0.0 0.5 
0.05 otherwise 

0.2 if i =  IRjA P 0.0 0.2 
1.0 otherwise 

10694.42 10526.97 

00 
01 

02 

03 
04 
05 

06 

07 

08 

Likelihood values 

a iR  = interest rate, E R  = exchange rate. 

variables and all horizons (except for the US dollar and German mark 
denominated deposit rates). The improvements are of the order of 2-3% at 
the one-step horizon, of 10-20% at the 13-step horizon, and of 25-50% at 
the 52-step horizon. According to the average Theil U over steps and 
variables the improvement is substantial, ranging from 13 to 30%. When the 
MAD criterion is used, the TVC model still outperforms a RW model for all 
exchange rates, while for interest rates the results are mixed. 

Although these results are encouraging, they do not demonstrate the 
statistical superiority of the TVC model in forecasting exchange rates. Two 
objections can be raised. First, since estimates of the standard error for the 
Theil U and the ratio of MAD's are not available, differences between the 
two models may be statistically insignificant. Second, since the forecasting 
ability of the TVC model may be period-dependent, slight alterations of the 
conditions existing in the sample may reverse the results. 

To examine the statistical significance of the forecasting improvements 
obtained with a TVC model, I conducted a simple Monte Carlo exercise 
using two different DGM's: a RW and a TVC model. In the first case I 
generated 11 random walks 100 times, estimated a TVC model on the 
synthetically generated data replications using the same 0 vector which 
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produced table 1, and constructed the frequency distribution of the resulting 
Theil U and ratio of MAD statistics. To make the experiment credible, I 
imposed that the drift and the conditional variances of the simulated random 
walks must be the same as those of the five exchange rates and the six 
interest rates over the 1979.1-1987.51 period. In the second case, I generated 
11 time series 100 times, using a TVC model and the parameters presented 
in the last column of table 2, and estimated a TVC model, using the 'optimal' 
# vector. The reason for estimating the model with a 0 vector which differs 
from the one used to generate the data is to check whether the forecasting 
ability of the model is independent of the exact choice of parameters. 

Besides providing useful standard errors for the two statistics under a 
well-specified null hypothesis, these exercises may also tell us whether a naive 
rule (Theil U or ratio of MAD's greater than one) will give the correct 
rejection criterion with high probability. 

Table 3 contains the mean value and the standard error (over replications) 
of the Theil U and of the ratio of MAD statistics at 1, 13, 52 steps and its 
standard error for each of the 11 variables of the system when the conditional 
variances are estimated using nonparametric methods as in Pagan and Ullah 
(1988). Table 4 contains the same statistics when the DGM is a TVC model. 
For each step and each statistic I also report in each table the probability 
that a value greater than one is observed. 8 

The results indicate that when a RW is used as DGM, the mean Theil U 
over replications at each of the four horizons considered is greater than one 
in 9 out of the 11 cases. The standard errors tend to be large. However, the 
values presented in table 1 for the 1- and 13-steps-ahead fall in the lower 5% 
of the simulated distribution for four out of five exchange rates. The standard 
errors at the 52-step horizon are huge and the values reported in table 1 for 
this horizon are insignificantly different from one. For the ratio of MAD's the 
results are stronger. The mean value is always substantially above one and 
the standard errors are larger than in the case of the Theil U. However, the 
values presented in table 1 for this statistic for all five exchange rates at 1- 
and 13-steps horizon fall in the lower 5% of the simulated distribution. Again 
for the 52-step horizon, none of the entries of table 1 is significantly different 
from one. Finally, if one uses a naive rule of preferring a RW model when 
the Theil U (ratio of MAD's) is above one, one would reject the TVC model 
when a RW is the true DGM, on average, in about 78% (99%) of the cases. 9 

SGiven the computational complexity of this exercise, I was forced to limit the size of the 
Monte Carlo to 100 draws only. On a mainframe VAX machine using RATS programs it took 
approximately five hours of CPU time to construct each table. 

9I also computed forecasting statistics when the conditional variance of the DGM is estimated 
with a GARCH(1,1) model. The results, which are available on request, are similar to those 
reported in table 3. The only difference is that the standard errors for the two statistics are 
somewhat smaller. 
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Table 5 

Theil U-statistics; 100 replications over 1986.1-1987.52 sample; 90% confidence interval; L = 
lower bound, U = upper bound. 

Steps Average at steps Average 
over Overall 

Variable 1 13 52 1 13 52 steps average 

$/DM L 0.982 0.677 0.486 0.966 0.772 0.667 0.618 
U 0.995 0.716 0.531 0.974 0.826 0.857 0.733 

$/L L 0.999 0.766 0.682 0.807 
U 1.006 0.798 0.727 0.865 

$/SF L 0.984 0.712 0.519 0.642 
U 0.997 0.744 0.646 0.728 

$/FF L 0.994 0.774 0.499 0.687 
U 1.003 0.849 0.849 0.784 

YEN/$ L 0.997 0.940 0.758 0.701 
U 0.998 0.958 0.817 0.813 

IRwG L 0.947 0.895 1.376 1.003 
U 0.956 1.016 1.593 1.196 

IRuK L 0.907 0.691 0.514 0.646 
U 0.974 0.702 0.581 0.738 

IRsw L 0.937 0.759 0.584 0.772 
U 0.943 0.884 0.634 0.895 

IRvR L 0.980 0.660 0.502 0.670 
U 0.986 0.705 0.583 0.764 

IRus L 1.002 0.962 1.125 1.120 
U 1.011 0.996 1.246 1.196 

IRjAp L 0.948 0.746 0.281 0.411 
U 0.957 0.785 0.377 0.538 

0.816 
0.878 

When the true DGM is a TVC model, both the Theil U and the ratio of 
MAD's  have mean values below one and the value of one is in the upper 5% 
of the simulated distribution, except for the one-step-ahead for some interest 
rates. Note also the standard errors under this DGM are smaller than in the 
previous case and that, although the 0 are mispecified, the estimated model 
still captures the nonlinear dependence present in the mean of the DGM. 

To examine the robustness of the results to changes in the forecasting 
environment I conducted several experiments. First, I computed replications 
of the forecasting statistics using a suboptimal 0 vector (listed in the last 
column of table 2) to forecast the eleven variables of the model in 100 
replications of the sample 1986.1-1987.51. Replications are constructed using 
an algorithm which bootstraps the normalized recursive residuals of the TVC 
model. Table 5 presents a 90% confidence band for the ordered Theil U over 
replications and indicates that, even when the parameters of the prior are 
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arbitrarily chosen, the TVC model is superior to the RW model in forecast- 
ing all the variables at all horizons (except for the Eurodollar rate). While the 
performance of the TVC model in forecasting exchange rates at the one-step 
horizon is unimpressive, at longer horizons the 90% confidence band for the 
Theil U-statistic is still significant below one. 1° 

To further examine the robustness of the results to various alterations of 
the forecasting environment, first I sequentially reduced the estimation 
period dropping one year of data at a time and keeping the end date fixed at 
1985.52. In this way one can check the extent to which the availability of data 
influences the forecasts of the TVC model. Second, I changed the forecasting 
sample. Engel and Hamilton (1990) have recently demonstrated that ex- 
change rates exhibit long swings. Therefore,  the forecasting performance of 
the model could be exaggerated if the forecasting sample coincides with one 
of these swings. To check for this possibility, I estimated the model from 
1979.1 up to five different dates (1982.52-1983.26-1983.52-1984.26-1984.52) 
and then computed forecasting statistics for the following two years in each 
of the five cases. Table A.1 in the appendix provides the Theil U-statistic and 
the ratio of MAD's when the parameters of the TVC model are estimated 
with one year of data (1985.1-1985.52) and forecasts are computed over the 
1986.1-1987.51 period. Table A.2 reports the forecasting statistics for the 
TVC model when the parameters are estimated over the 1979.1-1984.52 
period and forecasts are computed over the 1985.1-1986.51 sample. H I find 
that the availability of data influences the MSE of the TVC model at all 
horizons and the performance of the model deteriorates when the forecasting 
sample is changed. However, even in these cases, the MSE and MAD of the 
TVC model are still smaller than those of the RW model for all the exchange 
rates considered. 

Finally, to assess how sensitive the results are to changes in the model 
specification I conducted a few experiments by altering features of the prior. 
There are at least three features of the specification which can, in principle, 
account for the results o b t a i n e d -  a seasonal prior mean, the presence of 
interest rates in the exchange rate equations, and the presence of nonlineari- 
ties. It is therefore worthwhile to try to disentangle the contribution of each 
of these features to the forecasting performance of the model. Table A.3 
presents the forecasting statistics obtained when the prior means of the 
exchange rates are assumed to be random walks (i.e., 02 = 0 in all equations), 
while table A.4 presents the forecasting statistics when interest rates are 

l°Since the results for Theil U and for the ratio of MAD's were qualitatively similar, I present 
results for the Theil U only. On a VAX mainframe, the exercise required about three hours of 
CPU time. 

11I chose to present statistics for the 1985.1-1986.51 sample because the trend in all exchange 
rates in terms of the dollar changes during the sample. If the model exploited a local trend to 
forecast, it is bound to perform very poorly in this situation. 
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excluded from the exchange rate equations (i.e., 08 = 0 in all equations). The 
tables indicate that, although both a seasonal prior mean and the presence of 
interest rates in the exchange rate equations improve the general forecasting 
performance of the model, they are not primarily responsible for the substan- 
tial superiority of the TVC model over the RW model in the leng run. The 
'good' long-run performance of the TVC model is therefore due the nonlin- 
earities generated by time variation in the coefficients. 

4.1. A comparison with the existing literature 

It is not easy to compare the results of this paper with those presented in 
the existing literature for several reasons. First, the models recently em- 
ployed by Diebold and Nason (1990), Meese and Rose (1989), and Mizrach 
(1990) are not nested in the framework of analysis of this paper. In their 
approach nonlinearities emerge in the functional specification of the DGM, 
i.e., their DGM is Yt =f(xt ,  [3), where f is nonlinear, while here the DGM is 
conditionally linear and nonlinearities appear because of time variation in 
the/3's. In addition, since they all estimate the coefficients of the model using 
a fixed window width, they do not allow for the type of time variation 
examined here. Second, in some cases the sampling frequency and the 
exchange rates used are not the same as ours. For example, Mizrach (1990) 
uses daily data from 1980 to 1985 on three EMS currencies (DM, FF, and 
Italian lira) in terms of the US dollar, while Engel and Hamilton (1990) use 
quarterly data for the 1973.1-1988.1 period for three currencies (DM, FF, L) 
in terms of the US dollar. Third, the samples used for estimation and 
forecasting are different from ours. This prevents, for example, a comparison 
with the work of Schinasi and Swamy (1989), who estimate a univariate 
frequentist version of the TVC model employed in this paper, using monthly 
data for the period 1973.1-1981.4, and forecast over the next 15 months. 
Fourth, some authors [e.g., Meese and Rose (1990) and Cheung and Pauly 
(1990)] examine only the in-sample fit of their model and provide no out- 
of-sample experiments. 

The only meaningful comparison that can be made here is with the work of 
Diebold and Nason (1990). Diebold and Nason use weekly data for ten 
different currencies (Canadian dollar, FF, DM, Italian lira, YEN, SF, L, 
Belgium franc, Danish kroener, Dutch guilder) in terms of the US dollar for 
the period 1973.1-1987.38. Of this sample the first thirteen and a half years 
are used for estimation and about one year of data (1986.24-1987.38) is used 
to forecast from one to twelve weeks ahead. Table 6 presents the Theil 
U-statistic for the best nonparametric specification employed by Diebold and 
Nason and the Theil U of the TVC model when the parameters of the prior 
are chosen optimally over the period 1979.1-1986.23. For comparability, the 
Theil U-statistic for the TVC model is computed over the 1986.24-1987.38 
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Table 6 

Comparison with Diebold and Nason (1990); estimation sample 1979.1-1986.38/forecasting 
sample 1986.39-1987.38; Theil U-statistics? 

Steps 
Variable 1 4 12 

$/DM TVC 0.9826 0.9289 0.8593 
DN 0.9709 1.0128 1.0353 

$/L TVC 0.9885 0.9307 0.8514 
DN 0.9447 1.0610 0.9759 

$/SF TVC 0.9923 0.9511 0.8778 
DN 0.9939 1.0088 0.9853 

$/FF TVC 0.9712 0.9085 0.8357 
DN 1.0130 1.0473 1.0920 

YEN/$ TVC 0.9895 0.9850 0.9797 
DN 0.9271 1.0457 1.0116 

aDN indicates the values of the statistics computed with the best model found by Diebold and 
Nason. For $/DM, $/FF, and $/SF, the best model required a value of 10 for the smoothing 
parameter, for $/L a smoothing parameter value of 0.2, and for YEN/$ a smoothing parameter 
value of 0.7. For all five currencies the best model has lag length of three. 

period. One can see that the performance of the two specifications are 
approximately equivalent at the one-step horizon, but that the model of this 
paper  substantially outperforms their best specification at the twelve-step 
horizon. 

5. Conclusions 

This paper  shows that a TVC model produces complex nonlinear depen- 
dencies in the moments  of generated time series, replicates features of the 
conditional and the unconditional distributions of actual exchange rates, and 
improves upon the point forecasts of a RW model. It also demonstrates that 
the improvements obtain at various forecasting horizons and persist when 
parameters  are chosen arbitrarily and when the forecasts are computed over 
repeated samples. 

Two ingredients of the methodology are primarily responsible for the 
results: the use of t ime variation in the coefficients, which produces a specific 
form of nonlinearity and nonnormality in the estimated process, and the use 
of  a Bayesian 'shrinkage'  procedure,  which exploits common features of 
several exchange markets. Neither of  these features was exploited in previous 
work. Time variation in the coefficients was not, in general, allowed in the 
estimation procedure. Nor were interdependences across markets  explicitly 
modelled and accounted for in the estimation. The paper  shows that the 
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incorporation of these two forms of nonlinearities can appreciably improve 
the forecasting performance of a RW model. 

The results obtained in this paper suggest two directions for future 
research. First, since the technique employed in the paper is complementary 
to that of Diebold and Nason, Meese and Rose, and Mizrach, it is of interest 
to examine whether the use of both forms of nonlinearities further improve 
our understanding of the DGM of exchange rate data. Also, since at shorter 
forecasting horizons nonlinearities of the type examined in this paper do not 
play a prominent role, further work is needed to assess the usefulness of 
other types of nonlinearities in forecasting at short horizons. 

Second, since a TVC model is an appropriate statistical framework to 
model a situation where agents learn over time about the structure of the 
economy, the results suggest that work along the lines of Lewis (1989) or 
Kaminsky (1989) may be necessary to bring current theoretical models of 
exchange rate determination in line with the properties of the actual data. 

Appendix 

Table A.1 

Estimation period 1985.1-1985.52/Forecasting sample 1986.1-1987.51. 

Average 
Steps Average at steps over Overall 

Variable 1 13 52 1 13 52 steps average 

Theil U-statistics 

$/DM 1.031 1.088 1.576 1.021 1.075 1.189 1.252 
$/L 1.008 1.077 2.174 1.492 
$/SF 1.028 1.093 1.849 1.351 
$/FF 1.034 1.238 1.782 1.421 
YEN/$ 0.994 1.180 1.088 1.184 
IRwG 1.017 1.137 1.447 1.193 
IRug 1.014 1.071 1.548 1.148 
IRsw 0.9881 1.191 1.450 1.410 
IRFR 1.005 1.148 1.985 1.419 
IRus 1.005 1.074 2.288 1.480 
IRjAp 1.157 1.441 1.599 1.848 

1.382 

Ratio of MAD's 

$/DM 0.988 1.057 1.272 1.176 1.279 1.839 1.103 
$ /L  0.777 0.906 1.145 0.957 
$/SF 1.219 1.442 2.073 1.688 
$/FF 1.051 0.951 1.017 1.380 
YEN/$ 1.034 0.993 1.085 1.051 
IRw6 1.085 1.244 1.317 1.150 
IRuK 1.210 2.104 3.352 2.873 
IRsw 0.413 0.266 0.343 0.275 
IRFR 1.105 1.518 1.900 1.787 
IRus 1.016 1.087 1.372 1.412 
IRjA p 1.175 1.456 1.440 1.413 

1.371 
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Table A.2 

Estimation period 1979.1-1984.52/Forecasting period 1985.1-1986.52. 

Variable 

Average 
Steps Average at steps over 

1 13 52 1 13 52 steps 
Overall 
average 

TheilU-statistics 

$ / D M  0.988 0.884 1.140 1.021 1.111 1.121 0.981 
$ / L  0.990 1.058 1.402 1.206 
$ /SF  0.999 1.036 1.383 1.152 
$ / F F  0.988 0.999 1.315 1.122 
YEN/$  0.992 0.968 1.145 1.023 
IRwG 1.044 1.164 1.400 1.179 
IRuK 1.034 1.005 1.089 0.968 
IRsw 0.996 0.966 0.935 0.897 
IRFR 1.016 0.886 1.105 0.934 
IRus 0.991 0.929 0.668 0.780 
IRjA P 1.019 1.092 0.726 0.988 

1.019 

Ratio of MAD's 

$ / D M  0.987 0.833 1.018 1.051 1.109 1.039 0.867 
$ / L  0.891 0.700 0.595 0.677 
$ /SF  0.973 0.861 0.887 0.920 
$ / F F  0.950 1.003 1.152 1.048 
YEN/$  1.001 1.025 0.952 0.990 
IRwG 1.091 1.346 1.522 1.361 
IRuK 1.060 1.033 0.947 1.016 
IRsw 1.001 1.021 0.865 0.972 
IRFR 1.103 1.171 1.108 1.145 
IRus 1.003 1.020 0.990 1.039 
IRjA P 1.089 1.134 1.062 1.098 

1.012 

Table A.3 

Estimation period 1979.1-1985.52/Forecasting sample 1986.1-1987.51; no seasonal prior mean. 

Average 
Steps Average at steps over Overall 

Variable 1 13 52 1 13 52 steps average 

Theil U-statistics 

$ / D M  0.9643 0.7657 0.4778 0.9825 0.8757 0.8214 0.7105 
$ / L  0.9762 0.8061 0.7395 0.8704 
$ /SF  0.9711 0.8006 0.6177 0.7058 
$ / F F  0.9753 0.8347 0.4982 0.7527 
YEN/$  0.9758 0.8404 0.6890 0.7940 
IRwG 0.9984 1.1191 1.9431 1.3437 
IRuK 0.9860 0.7927 0.5741 0.7269 
IRsw 0.9854 1.0340 0.6223 0.8646 
IR FR 0.9890 0.8522 0.5742 0.7446 
IRus 1.0139 1.1809 1.9679 1.4071 
IRjA P 0.9471 0.5640 0.3309 0.4918 

0.8556 
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Table A.3 (continued) 
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Steps Average at steps 

Variable 1 13 52 1 13 52 

Average 
over 
steps 

Overall 
average 

Ratio of MAD's 

$ /DM 0.9382 0.7698 0.3908 0 .9895  0.9206 0 . 8 1 6 5  0.6496 
$ /L  0.7570 0.6853 0.3380 0.5694 
$ /SF 1.1683 1 .1387  0.7256 0.9274 
$ /FF  1.0000 0.6837 0.5939 0.7618 
YEN/$ 0 . 9 8 8 5  0.8009 0.5889 0.7547 
IRwo 1.0521 1 .1971  2.0437 1.4460 
IRuK 1.1436 1 .4763  1.3881 1.2345 
IRsw 0.4091 0.2572 0.1320 0.2165 
IRFR 1.5440 1 .5018  1.1871 1.3446 
IRus 1.0224 1 .1832  1.9335 1.3574 
IRjA P 0.9605 0.5918 0.3209 0.4744 

0.8851 

Table A.4 

Estimation sample 1979.1-1985.52/Forecasting sample 1986.1-1987.51; system with exchange 
rates only. 

Average 
Steps Average at steps over Overall 

Variable 1 13 52 1 13 52 steps average 

TheilU-statistics 

$ /DM 0.9866 0.8063 0.4854 0.9906 0.8832 0 . 6 3 7 5  0.7095 
$ / L  0.9984 1 .0000  0.8984 0.9483 
$ /SF 0.9912 0.8397 0.6223 0.7951 
$ /FF  0.9878 0.8857 0.4928 0.7697 
YEN/$ 0.9794 0.8840 0.6886 0.7939 

0.8033 

Ratio of MAD's 

$ /DM 0.9652 0.8346 0.4116 0.9910 0.8944 0.5537 0.6593 
$ /L  0.7684 0.8769 0.4145 0.6286 
$ /SF 1.2000 1 .2110  0.7297 0.9861 
$ /FF  1.0361 0.7486 0.6243 0.7716 
YEN/$ 0 . 9 8 8 5  0.8010 0.5885 0.7543 

0.7599 
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