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Monetary Policy and  
Rational Asset Price Bubbles†

By Jordi Galí*

I examine the impact of alternative monetary policy rules on a rational 
asset price bubble, through the lens of an overlapping generations 
model with nominal rigidities. A systematic increase in interest rates 
in response to a growing bubble is shown to enhance the fluctuations 
in the latter, through its positive effect on bubble growth. The optimal 
monetary policy seeks to strike a balance between stabilization of 
the bubble and stabilization of aggregate demand. The paper’s main 
findings call into question the theoretical foundations of the case for 
“leaning against the wind” monetary policies. (JEL E13, E32, E44, 
E52, G12)

The spectacular rise (and subsequent collapse) of housing prices experienced by 
several advanced economies over the past decade is generally viewed as a key factor 
underlying the global financial crisis of 2007–2009, as well as a clear illustration of 
the dangers associated with speculative bubbles that are allowed to go unchecked.

The role that monetary policy should play in containing such bubbles has been the 
subject of a heated debate, well before the start of the recent crisis. The consensus 
view among most policy makers in the pre-crisis years was that central banks should 
focus on controlling inflation and stabilizing the output gap, and thus ignore asset price 
developments, unless the latter are seen as a threat to price or output stability. Asset 
price bubbles, it was argued, are difficult—if not outright impossible—to identify or 
measure; and even if they could be observed, the interest rate would be too blunt an 
instrument to deal with them, for any significant adjustment in the latter aimed at con-
taining the bubble may cause serious “collateral damage” in the form of lower prices 
for assets not affected by the bubble, and a greater risk of an economic downturn.1

1 See, e.g., Bernanke (2002) and Kohn (2006, 2008) for a central banker’s defense of this view. Bernanke and 
Gertler (1999, 2001) provide a formal analysis in its support.
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But that consensus view has not gone unchallenged, with many authors and policy 
makers arguing that the achievement of low and stable inflation is not a guarantee of 
financial stability and calling for central banks to pay special attention to develop-
ments in asset markets.2 Since episodes of rapid asset price inflation often lead to 
a financial and economic crisis, it is argued, central banks should act preemptively 
in the face of such developments, by raising interest rates sufficiently to dampen or 
bring to an end any episodes of speculative frenzy—a policy often referred to as 
“leaning against the wind.” This may be desirable—it is argued—even if that inter-
vention leads, as a by-product, to a transitory deviation of inflation and output from 
target. Under this view, the losses associated with those deviations would be more 
than offset by the avoidance of the potential fallout from a possible future bursting 
of the bubble, which may involve a financial crisis and the risk of a consequent epi-
sode of deflation and stagnation like the one experienced by Japan after the collapse 
of its housing bubble in the 1990s.3

Independently of one’s position in the previous debate, it is generally taken for 
granted (i) that monetary policy can have an impact on asset price bubbles and 
(ii) that a tighter monetary policy, in the form of higher short-term nominal inter-
est rates, may help disinflate such bubbles. In the present paper I argue that such an 
assumption is not supported by economic theory and may thus lead to misguided 
policy advice, at least in the case of bubbles of the rational type considered here. 
The reason for this can be summarized as follows: in contrast with the fundamental 
component of an asset price, which is given by a discounted stream of payoffs, the 
bubble component has no payoffs to discount. The only equilibrium requirement on 
its size is that the latter grow at the rate of interest, at least in expectation. As a result, 
any increase in the (real) rate engineered by the central bank will tend to increase the 
size of the bubble, even though the objective of such an intervention may have been 
exactly the opposite. Of course, any decline observed in the asset price in response 
to such a tightening of policy is perfectly consistent with the previous result, since 
the fundamental component will generally drop in that scenario, possibly more than 
offsetting the expected rise in the bubble component.

Below I formalize that basic idea by means of a simple asset pricing model, with 
an exogenous real interest rate. That framework, while useful to convey the basic 
mechanism at work, fails to take into account the bubble’s general equilibrium 
effects as well as the possible feedback from the bubble to interest rates implied 
by the monetary policy rule in place. That concern motivates the development of a 
dynamic general equilibrium model that allows for the existence of rational asset 
pricing bubbles and where nominal interest rates are set by the central bank accord-
ing to some stylized feedback rule. The model assumes an overlapping generations 
structure, as in the classic work on bubbles by Samuelson (1958) and Tirole (1985). 
This is in contrast with the vast majority of recent macro models, which stick to an 
infinite-lived representative consumer paradigm, and in which rational bubbles can 
generally be ruled out under standard assumptions.4 Furthermore, and in contrast 

2 See, e.g., Borio and Lowe (2002) and Cecchetti et al. (2000) for an early exposition of that view.
3 See Issing (2009), ECB (2010), and Blanchard et al. (2012) for an account of the gradual evolution of central 

banks’ thinking on this matter as a result of the crisis.
4 See, e.g., Santos and Woodford (1997). An exception to that statement is given by models with heterogenous 

infinite-lived agents and borrowing constraints. See Scheinkman and Weiss (1986) and Kocherlakota (1992) for 
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with the earlier literature on rational bubbles, the introduction of nominal rigidities 
(in the form of prices set in advance) makes room for the central bank to influence 
the real interest rate and, through it, the size of the bubble. While deliberately styl-
ized, such a framework allows me to analyze rigorously the impact of alternative 
monetary policy rules on the equilibrium dynamics of asset price bubbles. In par-
ticular, it makes it possible to assess the consequences of having a central bank use 
its interest rate policy to counteract asset price bubbles in a systematic way, as has 
been proposed by a number of authors and commentators.5

The paper’s main results can be summarized as follows:

•  Monetary policy cannot affect the conditions for existence (or non-existence) 
of a bubble, but it can influence its short-run behavior, including the size of its 
fluctuations.

•  Contrary to the conventional wisdom, a stronger interest rate response to bubble 
fluctuations (i.e., a “leaning against the wind policy”) may raise the volatility of 
asset prices and of their bubble component.

•  The optimal policy must strike a balance between stabilization of current 
aggregate demand—which calls for a positive interest rate response to the 
bubble—and stabilization of the bubble itself (and hence of future aggregate 
demand)—which would warrant a negative interest rate response to the bubble. 
If the average size of the bubble is sufficiently large the latter motive will be 
dominant, making it optimal for the central bank to lower interest rates in the 
face of a growing bubble.

The paper is organized as follows. In Section I, I present a partial equilibrium 
model to illustrate the basic idea. Section II develops an overlapping generations 
model with nominal rigidities, and Section III analyzes its equilibrium, focusing on 
the conditions under which the latter may be consistent with the presence of rational 
bubbles. Section IV describes the impact on that equilibrium of monetary policy 
rules that respond systematically to the size of the bubble. Section V analyzes the 
optimal central bank response to the bubble. Section VI discusses some of the cave-
ats of the analysis. Section VII concludes.

I.  A Partial Equilibrium Example

The basic intuition behind the analysis below can be conveyed by means of a 
simple, partial equilibrium asset pricing example. Consider an economy with risk 
neutral investors and an exogenous, time-varying (gross) riskless interest rate ​R​t​.  
Let ​Q​t​ denote the price in period t of an infinite-lived asset, yielding a dividend 
stream {​D​t​}. In equilibrium the following difference equation must hold:

	​ Q​t​ ​R​t​  = ​ E​t​{​D​t+1​  + ​ Q​t+1​}.

early contributions to that literature. Miao and Wang (2012) provide a recent example in that tradition, in which the 
size of the bubble attached to firms’ stocks affects the dividends generated by the latter, through the relaxation of 
firms’ borrowing constraints.

5 The work of Bernanke and Gertler (1999, 2001) is in a similar spirit. In their framework, however, asset price 
bubbles are not fully rational, and the optimal policy analysis not fully microfounded.
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In the absence of further equilibrium constraints, we can decompose the asset 
price into two components: a fundamental component, ​Q​ t​ F​, and a bubble component, ​
Q​ t​ B​.6 Formally,

	​ Q​t​  = ​ Q​ t​ F​  + ​ Q​ t​ B​,

where the fundamental component is defined by the present value relation

(1)	​ Q​ t​ F​  = ​ E​t​  ​{ ​ ∑ ​ 
k=1

 ​ 
∞

  ​​(  ​∏​ 
j=0

 ​ 
k−1

​(1/​R​t+j​) )​ ​D​t+k​ }​ .
The bubble component, defined as the deviation between the asset price and its 

fundamental value, must satisfy

(2)	​ Q​ t​ B​​ R​t​  = ​ E​t​ ​{  ​Q​ t+1​ B
  ​ }​.

It is easy to see that, ceteris paribus, an increase in the interest rate (current or 
anticipated) will lower ​Q​ t​ F​, the fundamental value of the asset. On the other hand, 
the same increase in the interest rate will raise the expected growth of the bubble 
component, given by ​E​t​ ​{ ​Q​ t+1​ B

  ​/​Q​ t​ B​ }​. Note that the latter corresponds to the bubble’s 
expected return, which must equate the interest rate under the risk neutrality assump-
tion made here. Hence, under the previous logic, any rule that implies a systematic 
positive response of the interest rate to the size of the bubble, will tend to amplify 
the movements in the latter—an outcome that calls into question the conventional 
wisdom about the relation between interest rates and bubbles.

Changes in interest rates, however, may affect the bubble through a second chan-
nel: the eventual comovement between the (indeterminate) innovation in the bubble 
with the surprise component of the interest rate. To formalize this, it is convenient 
to log-linearize (2) (evaluated at t − 1) and eliminate the expectational operator to 
obtain

	​ q​ t​ B​  = ​ q​ t−1​ B
  ​  + ​ r​t−1​  + ​ ξ ​t​ ,

where lowercase letters denote the natural logarithm of the corresponding variable, 
and where {​ξ​t​} is a zero mean martingale-difference process, i.e., ​E​t−1​ {​ξ​t​} = 0 for 
all t. Note that {​ξ​t​} may or may not be related to fundamentals, a reflection of the 
inherent indeterminacy of the bubble size. As a result, the contemporaneous impact 
of an interest rate increase on the size of the bubble depends on the eventual relation 
between ​ξ​t​ and the interest rate innovation, ​r​t​ − ​E​t−1​{​r​t​}. Thus, assuming a station-
ary environment, one can write without any loss of generality,

	​ ξ​t​  = ​ ξ​ t​ ∗​  + ​ ψ​r​(​r​t​  − ​ E​t−1​ {​r​t​}),

6 Transversality conditions generally implied by optimizing behavior of infinite-lived agents are often used to 
rule out such a bubble component (see, e.g., Santos and Woodford 1997). On the other hand models with an infinite 
sequence of finite-lived agent types, as the one developed below, lack such transversality conditions.
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where {​ξ​ t​ ∗​} is a zero-mean martingale-difference process orthogonal to interest rate 
innovations at all leads and lags, i.e., E {​ξ​ t​ ∗​​ r​t−k​} = 0, for k = 0, ± 1, ± 2, …. Note 
that neither the sign nor the size of ​ψ​r​  , nor its possible dependence on the policy 
regime, are pinned down by the theory. Accordingly, the impact of an interest rate 
innovation (or of any other shock) on the bubble is, in principle, indeterminate.

In much of what follows I assume that {​ξ​t​} has no systematic relation to interest 
rate innovations (i.e., ​ψ​r​ = 0 in the formulation above).7 While admittedly arbitrary, 
this seems a natural benchmark assumption. Note that in that case a change in the 
interest rate does not affect the current size of the bubble, but only its expected 
growth rate. To illustrate this point formally, assume that {​r​t​} follows an exogenous 
AR(1) process with autoregressive coefficient ​ρ​r​ ∈ [0, 1) and innovation ​ε​ t​ r​.8 Then, 
it can be easily checked that the response of the bubble to a positive interest rate 
shock at different horizons is given by

	​ 
∂  ​q​ t+k​ B

  ​
 _ 

∂  ​ε​ t​ r​
 ​   = ​ 

1 − ​ρ​ r​ k​ _ 
1 − ​ρ​r​

 ​  >  0,

for k = 0, 1, 2, …. Thus, we see that a persistent (though transitory) increase in the 
interest rate does not alter the size of the bubble on impact, but has a positive effect 
on its subsequent growth rate, leading to a permanent increase in its size, given by

	​  lim   
k→∞

​ ​ 
∂  ​q​ t+k​ B

  ​
 _ 

∂  ​ε​ t​ r​
 ​   = ​   1 _ 

1 − ​ρ​r​
 ​ > 0.

The previous outcome is clearly at odds with the conventional wisdom regarding 
the effects of interest rates on a bubble. Of course, the impact on the observed asset 
price may be positive or negative, depending on the relative size of the bubble and 
fundamental components. In the long run, however, the impact on the fundamental 
dies out, but the permanent positive effect on the bubble will remain (at least in the 
partial equilibrium example above).

How does the previous analysis change if we assume an arbitrary value for ​ψ​r​?9 
The resulting response of the bubble to an interest rate shock is now given by

	​ 
∂  ​q​ t+k​ B

  ​
 _ 

∂  ​ε​ t​ r​
 ​   = ​ ψ​r​  +  ​ 

1 − ​ρ​ r​ k​ _ 
1 − ​ρ​r​

 ​,

for k = 0, 1, 2, …. Thus, the initial impact of an interest rate hike on the bubble is 
just ​ψ​r​. If the latter is negative, the rise in the interest rate will dampen the size of any 

7 {​ξ​t​} being a “pure” sunspot process, i.e., one orthogonal to fundamentals, can be viewed as a particular case of 
that assumption.

8 Note that in this case the bubble will follow the process

(1 − ​ρ​r​ L)Δ ​q​ t​ B​  = ​ ε​ t−1​ r
  ​ + (1 − ​ρ​r​ L)​ξ​ t​ ∗​ ,

where {​ξ​ t​ ∗​} is exogenous relative to the interest rate process.
9 In this case the bubble will follow the process

(1 − ​ρ​r​ L)Δ ​q​ t​ B​  = ​ ε​ t−1​ r
  ​  +  (1 − ​ρ​r​ L)(​ξ​ t​ ∗​ + ​ψ​r​​ε​ t​ r​)

	 = ​ ψ​r​ ​ε​ t​ r​  +  (1 − ​ρ​r​ ​ψ​r​)​ε​ t−1​ r
  ​ + (1 − ​ρ​r​ L)​ξ​ t​ ∗​.
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existing bubble, in a way consistent with the conventional wisdom. But that negative 
effect may not be permanent. To see this, note that the long term effect is given by

	​  lim   
k→∞

​ ​ 
∂ ​q​ t+k​ B

  ​
 _ 

∂ ​ε​ t​ r​
 ​   = ​ ψ​r​  + ​   1 _ 

1 − ​ρ​r​
 ​,

which will be negative only if ​ψ​r​ < −1/(1 − ​ρ​r​) < 0, i.e., only if ​ψ​r​ is sufficiently 
negative, relative to the persistence of the interest rate. Otherwise, the effect of an 
interest rate increase on the size of the bubble will become positive sooner or later.

A. An Alternative Equilibrium

As discussed above, the value of ​ψ​r​ is, in principle, indeterminate. Though ​ψ​r​ = 0 
seems a natural benchmark (nesting the case of a pure sunspot), other selection cri-
teria may also be plausible.10 One possible criterion consists in choosing ​ψ​r​ so that 
the (percent) impact of an interest rate innovation on the bubble equals that on the 
fundamental (which is uniquely determined). This will be the case if investors hap-
pen to coordinate their expectations around the belief that the two components of an 
asset price show an identical response to an interest rate innovation.11

For the simple partial equilibrium model of an infinite-lived asset considered 
above, the response of the fundamental component to an interest rate innovation is 
given by (see Appendix 1 for a derivation):

	​ 
∂  ​q​ t​ F​

 _ 
∂  ​ε​ t​ r​

 ​  =  − ​  R _ 
R − ​ρ​r​

 ​,

where R > 1 is the steady state gross real interest rate.12 Thus, under the equilibrium 
refinement considered here we set ​ψ​r​ = −R/(R − ​ρ​r​). Accordingly, the response of 
the bubble component to an interest rate shock would be given by

	​ 
∂  ​q​ t+k​ B

  ​
 _ 

∂​  ε​ t​ r​
 ​   =  − ​  R _ 

R − ​ρ​r​
 ​  + ​ 

1 − ​ρ​ r​ k​ _ 
1 − ​ρ​r​

 ​ .

In the long run, the interest rate increase has a permanent positive effect on the 
bubble, given by

	​  lim   
k→∞

​ ​ 
∂  ​q​ t+k​ B

  ​
 _ 

∂  ​ε​ t​ r​
 ​   = ​ 

​ρ​r​(R − 1)
  __  

(R − ​ρ​r​)(1 − ​ρ​r​)
 ​  >  0.

10 Adam (2003) shows how adaptive learning can be used to overcome the multiplicity of equilibria in a mon-
etary overlapping generations model where money itself can be thought of as a bubbly asset.

11 Interestingly, that assumption would seem to be consistent with the “fundamentals logic” underlying the con-
ventional wisdom about the effects of monetary policy on asset price bubbles, as discussed above.

12 Note that for the fundamental price of an asset that yields positive (stationary) dividends over an infinite 
horizon to be well defined (finite) we require that R > 1, i.e., the (net) interest rate must be positive in the steady 
state. As discussed below, that condition is inconsistent with the existence of a bubble in general equilibrium. In the 
present section I ignore these general equilibrium constraints.
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Thus, we see that under the refinement proposed here the effect of an interest rate 
increase on the size of the bubble is negative only over a finite horizon, eventually 
turning positive.

The simple partial equilibrium example above has illustrated how the relation 
between monetary policy and asset price bubbles can be potentially at odds with 
the conventional wisdom, which invariably points to an interest rate increase as the 
natural way to disinflate a growing bubble. More precisely, the previous analysis 
makes clear that any case for “leaning against the wind” policies must be based on 
a systematic negative relation between interest rate and bubble innovations (i.e., a 
negative value for coefficient ​ψ​r​  ). Since neither the sign nor the size of that relation 
is pinned down by economic theory, such a case would rest on extremely fragile 
grounds, at least under the assumptions made here.

Of course, one might argue that the partial equilibrium nature of the previous 
example may be misleading in that regard, by not taking into account the existence 
of aggregate constraints that may impose limits on the size of the bubble and hence 
on its survival. Furthermore, the type of policy intervention considered (i.e., an 
exogenous change in the real rate) is arguably less relevant for the issue at hand than 
a policy rule that describes the systematic response of the interest rate to movements 
in the size of the bubble. The remainder of the paper seeks to address those potential 
criticisms by providing an example of possible failure of the conventional wisdom 
regarding the effects of “leaning against the wind” policies that is grounded on a 
general equilibrium setting, and in which the central bank follows a well defined 
interest rate rule allowing for a systematic response to asset price bubbles.

II.  Asset Price Bubbles in an OLG Model with Nominal Rigidities

I develop a highly stylized overlapping generations model without capital and 
where labor is supplied inelastically as a laboratory for the analysis of the impact 
of monetary policy on asset pricing bubbles. In equilibrium, aggregate employment 
and output are constant. The assumptions of monopolistic competition and price 
setting in advance, however, imply that monetary policy is not neutral.13 In par-
ticular, by influencing the path of the real interest rate, the central bank can affect 
asset prices (including those of bubbly assets) and, as a result, the distribution of 
consumption across cohorts and welfare.

A. Consumers

Each individual lives for two periods. Individuals born in period t seek to maxi-
mize expected utility

	 log ​C​1, t​  +  β ​E​t​ {log ​C​2, t+1​},

where ​C​1, t​ ≡ ​​( ​∫​ 0​ 1​ ​C​1, t​(i​)​1−​  1 _ ϵ ​​ di )​​
​  ϵ _ 
ϵ−1

 ​
​ and ​C​2, t+1​ ≡ ​​( ​∫​ 0​ 1​ ​C​2, t+1​(i​)​1−​ 1 _ ϵ ​​ di )​​

​  ϵ _ 
ϵ−1

 ​
​ are the 

bundles consumed when young and old, respectively. Note that, in each period, there 

13 See also Adam (2003) for a monetary overlapping generations model with monopolistic competition and 
sticky prices.
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is a continuum of differentiated goods available, each produced by a different firm, 
and with a constant elasticity of substitution given by ϵ. Henceforth I assume ϵ > 1. 
Goods (and the firms producing them) are indexed by i ∈ [0, 1]. The size of each 
cohort is constant and normalized to unity.

Each individual is endowed with the “know-how” to produce a differentiated 
good, and with that purpose he sets up a new firm. That firm becomes productive 
only after one period (i.e., when its owner is old) and only for one period, generat-
ing a profit which accrues to its owner.14 Each individual is also endowed at birth 
with δ ∈ [0, 1) units of an intrinsically worthless asset (a “bubble”), whose price 
is ​Q​ t|t​ B

 ​ ≥ 0 (with the non-negativity constraint being guaranteed by free disposal). 
A market is assumed to exist where such bubbly assets, introduced by both current 
and previous cohorts, can be traded.15 Each period, a fraction δ of each vintage of 
bubbly assets is assumed to lose its value (e.g., they are physically destroyed). The 
latter assumption implies that the total amount of bubbly assets outstanding remains 
constant and equal to one.

Each young individual sells his labor services inelastically, for a (real) wage ​W​t​. 
He consumes ​C​1, t​ and purchases two types of assets: (i) one-period nominally risk-
less discount bonds yielding a nominal return ​i​t​ and (ii) a variety of bubbly assets, 
introduced by both current and previous cohorts.

Accordingly, the budget constraint for the young at time t is given by

	​ ∫​ 
0
​ 
1

​ ​ 
​P​t​(i)​C​1, t​(i) _ ​P​t​

 ​  di  + ​ 
​Z​ t​ M​

 _ ​P​t​
 ​   + ​ ∑​ 

k=0
​ 

∞

 ​ ​Q​ t | t−k​ B
  ​ ​Z​ t | t−k​ B

  ​  = ​ W​t​  +  δ ​Q​ t | t​ B
 ​  ,

where ​P​t​ ≡ ​​( ​∫​ 0​ 1​ ​P​t​(i​)​1−ϵ​ di )​​
​  1 _ 
1−ϵ

 ​
​ is the aggregate price index, ​Z​ t​ M​ is the value of 

one-period bonds purchased, and ​Z​ t|t−k​ B
  ​ denotes the quantity purchased of the bubbly 

asset introduced by cohort born in period t − k, and whose current price is ​Q​ t|t−k​ B
  ​, 

for k = 0, 1, 2, ….
When old, the individual consumes all his wealth, which includes the dividends 

generated by his firm, the payoff from his maturing bond holdings, and the proceeds 
from the sale of his bubbly assets. Formally,

	​ ∫​ 
0
​ 
1

​ ​ 
​P​t+1​(i)​C​2, t+1​(i)  __ ​P​t+1​

 ​  di  = ​ D​t+1​  + ​ 
​Z​ t​ M​(1 + ​i​t​) _ ​P​t+1​

 ​   +  (1 − δ) ​∑​ 
k=0

​ 
∞

 ​ ​Q​ t+1 | t−k​ B
  ​ ​Z​ t | t−k​ B

  ​ .

The optimal allocation of expenditures across goods yields the familiar demand 
functions:

(3)	​ C​1, t​(i)  = ​​ ( ​ ​P​t​(i) _ ​P​t​
 ​  )​​

−ϵ

​ ​C​1, t​

14 This is just a convenient device to avoid having infinite-lived firms, whose market value would not be bounded 
under the conditions that make it possible for a bubble to exist in the present model.

15 In an earlier version of the paper, the bubble was attached to the stock of firms, which could be traded beyond 
their (productive) life, thus becoming a pure bubble. The current formulation simplifies the notation considerably, 
without affecting any of the results.
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(4)	​ C​2, t+1​(i)  = ​​ ( ​ ​P​t+1​(i) _ ​P​t+1​
 ​  )​​

−ϵ

​ ​C​2, t+1​,

for all i ∈ [0, 1], which in turn imply ​∫​ 0​ 
1​ ​ 

​P​t​(i)​C​1, t​(i) _ ​P​t​
  ​ di = ​C​1, t​ and ​∫​ 0​ 

1​ ​ 
​P​t+1​(i)​C​2, t+1​(i)  _ ​P​t+1​

  ​ di 
= ​C​2, t+1​.

The remaining optimality conditions associated with the consumer’s problem take 
the following form:

(5)	 1  =  β(1 + ​i​t​)​E​t​ ​{ ​( ​  ​C​1, t​
 _ 

​C​2, t+1​
 ​ )​ ​( ​  ​P​t​ _ ​P​t+1​

 ​ )​ }​ 
(6)	​ Q​ t | t−k​ B

  ​  =  (1 − δ)β​E​t​ ​{ ​( ​  ​C​1, t​
 _ 

​C​2, t+1​
 ​ )​ ​Q​ t+1 | t−k​ B

  ​ }​ ,
for k = 0, 1, 2, …. Equation (5) is a standard Euler equation linking consumption 
growth to the real interest rate. Equation (6) shows that the market value of the bub-
bly asset reflects investors’ expectations of the (properly discounted) price at which 
it can be sold in the future.

Finally, and for future reference, I define the (gross) real interest rate as

	​ R​t​  ≡  (1 + ​i​t​)​E​t​ ​{ ​  ​P​t​ _ ​P​t+1​
 ​ }​.

B. Firms

Each individual, endowed with the “know-how” to produce a differentiated good, 
sets up a firm that becomes productive after one period (i.e., when its founder is 
old). When productive, the firm operates under the technology

(7)	​ Y​t​(i)  = ​ N​t​(i),

where ​Y​t​(i) and ​N​t​(i) denote firm i’s output and labor input, respectively, for 
i ∈ [0, 1]. After its operational period (i.e., once its founder dies) the firm becomes 
unproductive (with its index i being “inherited” by a newly created firm).

Each firm behaves as a monopolistic competitor, setting the price of its good in 
order to maximize its value, subject to the demand constraint ​Y​t​(i) = ​​( ​P​t​(i)/​P​t​ )​​

−ϵ​​C​t​, 
where ​C​t​ ≡ ​C​1, t​ + ​C​2, t​.

I introduce nominal rigidities by assuming that the price of each good is set in 
advance, i.e., before the shocks are realized. Thus, the price of a good that will be 
produced and sold in period t, denoted by ​P​ t​ ∗​, is set at the end of t − 1 in order to 
solve

	​ max   
​P​ t​ ∗​

  ​ ​E​t−1​ ​{ ​Λ​t−1, t​ ​Y​t​​( ​ ​P​ t​ ∗​ _ ​P​t​
 ​ − ​W​t​ )​ }​,
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subject to the demand schedule ​Y​t​(i) = ​​( ​P​ t​ ∗​/​P​t​ )​​
−ϵ​ ​C​t​, where ​Λ​t−1, t​ ≡ β(​C​1, t−1​/​C​2, t​) 

is the relevant discount factor. The implied optimal price setting rule is then given by

(8)	​ E​t−1​ ​{ ​Λ​t−1, t​ ​Y​t​​( ​ ​P​ t​ ∗​ _ ​P​t​
 ​ − ​W​t​ )​ }​ = 0,

where  ≡ ​  ϵ _ ϵ − 1 ​.
Note also that if firms could instead set the price of their good after the shocks are 

realized, they would choose a price ​P​ t​ ∗​ equal to a constant gross markup  times 
the nominal marginal cost ​P​t​ ​W​t​  . Hence, under flexible prices (or in the absence of 
uncertainty),

	​ P​ t​ ∗​  =   ​P​t​ ​W​t​  .

C. Monetary Policy

The central bank is assumed to set the short-term nominal interest rate ​i​t​ according 
to the following rule:

(9)	 1  + ​ i​t​  =  R​E​t​  { ​Π​t+1​}​​( ​Π​t​/Π )​​​ϕ​π​​​​( ​Q​ t​ B​/​Q​B​ )​​​ϕ​b​​,

where ​Π​t​ ≡ ​P​t​/​P​t−1​ denotes gross inflation, Π is the inflation target, and ​Q​ t​ B​ is an 
aggregate bubble index (defined below), with ​Q​B​ being its steady state value. Note 
that under the above rule the real interest rate responds systematically to fluctuations 
in inflation and the size of the aggregate bubble, with a strength indexed by ​ϕ​π​ and ​
ϕ​b​  , respectively.16 Henceforth I assume ​ϕ​π​ > 0, which guarantees the determinacy 
of the price level, as shown below. Much of the explorations below examine the 
consequences of alternative ​ϕ​b​ settings for the equilibrium behavior of the bubble 
itself as well as for consumers’ welfare.

III.  Equilibrium

In the present section I derive the model’s remaining equilibrium conditions. The 
clearing of the market for each good requires that ​Y​t​(i) = ​C​1, t​(i) + ​C​2, t​(i) for all 

i ∈ [0, 1] and all t. Letting ​Y​t​ ≡ ​​( ​∫​ 0​ 1​ ​Y​t​(i​)​1− ​ 1 _ ϵ ​​ di )​​
​  ϵ _ 
ϵ−1

 ​
​ denote aggregate output, we 

can use the consumer’s optimality conditions (3) and (4) to derive the aggregate 
goods market clearing condition:

(10)	​ Y​t​  = ​ C​1, t​  + ​ C​2, t​  .

16 As an alternative I have also analyzed the specification

1  + ​ i​t​  =  R​​( ​Π​t​/Π )​​​ϕ​π​​​​( ​Q​ t​ B​/​Q​B​ )​​​ϕ​b​​.

The main qualitative results obtained under (9) carry over to this alternative specification, though the analysis is 
(algebraically) more cumbersome in the latter case.
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Also, from the income side we have

(11)	​ Y​t​  = ​ D​t​  + ​ W​t​  .

Labor market clearing implies

(12)	 1  = ​ ∫​ 
0
​ 
1

​ ​Y​t​(i) di

	 =  ​Y​t​  ,

where the second equality follows from the fact that all firms set identical prices 
and produce identical quantities in the symmetric equilibrium. Thus, the supply of 
aggregate output is constant and equal to unity.

Evaluating the optimal price-setting condition under sticky prices at the symmet-
ric equilibrium we obtain

(13)	​ E​t−1​ ​{ (1/​C​2, t​)​( 1 − ​W​t​ )​ }​  =  0.

Note also for future reference that both in the case of flexible prices and/or in the 
absence of uncertainty, the optimal price setting implies a constant real wage

	​ W​t​  =  1/.

Asset markets clearing requires

	​ Z​ t​ M​  =  0,

and

	​ Z​ t | t−k​ B
  ​  =  δ(1 − δ​)​k​,

for k = 0, 1, 2, ….
Define the economy’s aggregate bubble index, ​Q​ t​ B​, and the corresponding index 

for the “pre-existing” bubbles, ​B​t​, as follows:

	​ Q​ t​ B​  ≡  δ​ ∑ ​ 
k=0

 ​ 
∞

  ​(1 − δ​)​k​ ​Q​ t | t−k​ B
  ​

	​ B​t​  ≡  δ​ ∑ ​ 
k=1

 ​ 
∞

  ​(1 − δ​)​k​ ​Q​ t | t−k​ B
  ​ .
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It is also convenient to let ​U​t​ ≡ δ​Q​ t | t​ B
 ​ denote the aggregate market value of the 

newly introduced bubbles. The following equilibrium condition then follows from 
(6) and the previous definitions:

(14)	​ Q​ t​ B​  ≡ ​ B​t​  + ​ U​t​  =  β ​E​t​ ​{ ​( ​  ​C​1, t​
 _ 

​C​2, t+1​
 ​ )​ ​B​t+1​ }​ .

Two exogenous driving forces are assumed. First, the value of the new bubbles 
brought along by the new cohorts, {​U​t​}, which is assumed to follow an exogenous 
i.i.d. process with mean U. Secondly, the innovations in the value of the pre-existing 
bubbles, ​B​t​ − ​E​t−1​{​B​t​}, are assumed to be exogenous and independent from {​U​t​}.

Equations (10), (11), (12), (13), and (14) combined with (5) and (9) introduced 
earlier, describe the equilibrium dynamics of the model economy. Next I character-
ize the equilibrium for the deterministic case, for which an exact solution exists. For 
the (more interesting) stochastic case, analyzed further below, I need to rely instead 
on the log-linearized equilibrium conditions around a deterministic steady state.

A. Equilibrium Dynamics: The Deterministic Case

I start by analyzing the deterministic case, where it is assumed that ​U​t​ = U > 0 
and ​B​t​ − ​E​t−1​{​B​t​} = 0 for all t. As discussed above, in the absence of uncertainty 
the optimal price setting condition (13) implies ​W​t​ = 1/, for all t. It follows 
from (11) that ​D​t​ = 1 − 1/, whereas consumption of the young and old are 
given respectively by ​C​1, t​ = 1/ − ​B​t​ and ​C​2, t​ = 1 − 1/ + ​B​t​, for all t. 
Furthermore, the real interest rate is given by

(15)	​ R​t​  = ​ ( ​ 1 _ 
β
 ​ )​ ​( ​ 1 − 1/ + ​B​t+1​

  __  
1/ − ​B​t​

 ​  )​  ≡  R(​B​t​, ​B​t+1​).

Note that the previous conditions determine the equilibrium allocation, given an 
equilibrium path for the (pre-existing) bubble, {​B​t​}. The latter must satisfy the deter-
ministic version of (14), given by

	​ 
​B​t​ + U

 _ 
1/ − ​B​t​

 ​  = ​ 
β ​B​t+1​
 __  

1 − 1/ + ​B​t+1​
 ​.

Thus a deterministic bubbly equilibrium is defined by a sequence {​B​t​} satisfying

(16)	​ B​t+1​  = ​ 
(1 − 1/)(​B​t​ + U)

   __   
β/ − (1 + β)​B​t​ − U

 ​  ≡  H(​B​t​  , U  ),

with ​B​t​ ∈ (0, 1/) for all t, for some U ≥ 0. Note that the aggregate bubble 
along that path is then given by ​Q​ t​ B​ = ​B​t​ + U. Given {​B​t​}, we can determine the 
equilibrium values for the remaining variables using the expressions above.
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Similarly, a bubbly steady state is defined by a pair (B, U) such that B = H(B, U) 
with B ∈ (0, 1/) and U ≥ 0. Note that a steady state is locally stable (unstable) 
if ∂ H(B, U)/∂B < 1 (>1).

The following Lemma establishes the conditions for the existence of such bubbly 
equilibria and steady states.

Lemma 1: A necessary and sufficient condition for the existence of a deterministic 
bubbly equilibrium is given by

(17)	   <  1  +  β.

Furthermore, when (17) is satisfied there exists a continuum of stable bubbly 
steady states, {(​B​S​(U  ), U  ) | ​B​S​(U) = H(​B​S​(U ), U ) for U ∈ (0, ​

_
 U ​)}, as well as a 

continuum of unstable bubbly steady states {(​B​U​(U ), U ) | ​B​U​(U) = H(​B​U​(U ), U ) 
for U ∈ [0, ​

_
 U ​)}, where ​

_
 U ​ ≡ β + (1 + β)(1 − W) + 2 ​√

_____________
  β(1 + β)(1 − W) ​ > 0.

Proof:
See Appendix 2.

Figure 1 illustrates graphically the mapping (16), the two steady states, and the 
trajectories for the bubble consistent with equilibrium for a given U > 0.

Let (B) ≡ R(B, B) denote the steady state real interest rate. One can easily 
check that condition (17) is equivalent to (0) < 1, which corresponds to a nega-
tive (net) interest rate in a bubbleless steady state. The latter is in turn associated 
with a Pareto suboptimal allocation since it implies 1/​C​1​ < β/​C​2​ and, hence, the 
possibility of making all cohorts better-off by transferring resources from the young 
to the old (which is what a bubble does). A similar condition holds in the models of 
Samuelson (1958) and Tirole (1985).

Given that ​Q​B​ = B + U > B it follows from (14) that (B) < 1 must hold 
in any bubbly steady state, thus implying a negative (net) real interest rate in the 
latter. Note that if the interest rate were positive any existing bubble would grow 
unboundedly, which would be inconsistent with the definition of a steady state.17 
Furthermore, the unbounded growth in the size of the bubble would eventually lead 
to a violation of the resource constraint, and would thus be inconsistent with equi-
librium. The negative interest rate is needed in order for the aggregate bubble to 
remain constant over time, as the shrinking size of the pre-existing bubble is exactly 
compensated by introduction of new bubbles.18

Note that the previous constraint on the interest rate, together with the fact that 
′(B) > 0, imposes an upper bound on the steady state bubble, namely, 
B < 1/ − 1/(1 + β) ≡ ​B​U​(0), where (​B​U​(0)) = 1. Hence the upper bound 
on the size of any bubbly steady state is given by the bubbly (unstable) steady state 

17 As is well known, the introduction of secular productivity growth makes it possible to reconcile the existence 
of a bubbly steady state with a positive real interest rate (see, e.g., Tirole 1985). See below for further discussion.

18 A similar property can be found in the model of capital accumulation with bubble creation of Martín and 
Ventura (2012).
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when U = 0. Note that the previous upper bound is always smaller than 1/, the 
wage of the young.

Most importantly for the purposes of the present paper, one should note that 
neither the existence nor the allocations associated with a deterministic bubbly 
equilibrium are influenced by monetary policy. The intuition behind that result is 
straightforward: in the absence of uncertainty, the assumed constraint on the timing 
of price setting is not binding, so the economy behaves as if prices were fully flex-
ible. Hence monetary policy is neutral. In particular, the real interest rate is given by 
(15), which evolves independently of monetary policy rule. The role of the latter is 
restricted to pinning down inflation, whose equilibrium path is given by

	​ Π​t​  =  Π ​​[ (​R​t​/R)​​( ​Q​ t​ B​/​Q​B​ )​​​ϕ​b​​ ]​​
​ 1 _ 
​ϕ​π​

 ​
​ .

Extension: The Case of Positive Deterministic Growth.—The analysis above has 
been conducted under the assumption of a stationary technology. Consider instead 
a technology ​Y​t​(i) = ​A​t​ ​N​t​(i) with constant productivity growth, i.e., ​A​t​ = ​Γ​t​ and 
Γ > 1. It is easy to check that under this modified technology the model above 
implies the existence of an equilibrium with balanced growth. In particular, it can 
be easily shown that all the equilibrium conditions derived above still hold, with 
the original real variables (output, consumption, dividend, wage, stock prices, 
and, eventually, bubble size) now normalized by parameter ​A​t​  , and with ​R​t​ being 
replaced with ​​  R​​t​ ≡ ​R​t​/Γ. Accordingly, a bubble can exist along the balanced growth 
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Figure 1. Equilibrium Dynamics
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path (i.e., a steady state of the normalized system) only if ​  R​ ≤ 1 or, equivalently, 
R ≤ Γ, i.e., as long as the real interest rate is below the economy’s growth rate. Such 
a bubble would be growing at the same rate as the economy. An analogous result 
was shown in Samuelson (1958) and Tirole (1985), among others. That extension 
allows one to reconcile the existence of a bubbly equilibrium with the steady state 
(net) real interest rate being positive.

Discussion: Robustness to the Introduction of Money.—The previous analysis did 
not incorporate money explicitly. One may wonder, in particular, whether the exis-
tence of bubbly equilibria is robust to the introduction of money. Two cases must be 
distinguished, corresponding to two different motives for holding money. I briefly 
discuss them in turn.

The first case is that of pure fiat money, i.e., money is assumed to be an intrinsi-
cally worthless asset which can be used as a store of value (see, e.g., Samuelson 
1958). In that case, money is just another bubbly asset, one that happens to be used 
also as a unit of account. Its main distinctive feature is that its net nominal return is 
zero (by definition) and hence its real return is given by minus the rate of inflation. 
This has an important consequence in terms of the analysis here: monetary policy 
can no longer be described by an interest rate rule like (9), since the nominal inter-
est rate must equal zero in any equilibrium in which money is valued. As a result 
one cannot examine the impact of “leaning against the wind policies” of the sort 
considered here.19

Perhaps a more natural (and realistic) approach to the introduction of money in 
the framework above consists in assuming that money holdings provide some ser-
vices (other than “storage of wealth”). In that case the nominal interest rate in any 
monetary equilibrium is no longer pinned down at zero. Still, a zero lower bound on 
the nominal interest rate applies. But as in other examples in the literature of mon-
etary models that assume interest rate rules, the zero lower bound can be dealt with 
whenever it is not the focus of the analysis, by making assumptions that guarantee 
that it will not be binding. In the context of the present model, those assumptions 
can take two forms (or a combination thereof), both of which are realistic. First, 
and as argued above, the assumption of positive trend growth (Γ > 1) implies that a 
continuum of bubbly steady states exist involving positive real interest rates. Those 
would be consistent with positive nominal interest rates in a neighborhood of such 
steady states, even if a zero steady state inflation (Π = 1) were to be assumed. 
Alternatively, one may assume a sufficiently high, positive inflation target (Π > 1), 
in which case, even in the absence of trend growth, there will be a continuum of 
steady states involving positive nominal interest rates. In either case, the assumption 
that real balances provide services other than “storage of wealth” implies that con-
sumers will be willing to hold money even if the latter is dominated in rate of return 
by both bonds and bubbly assets, as will be the case whenever the nominal interest 

19 In a model with pure fiat money and a constant growth rate k of the money supply, one can show the existence 
of bubbly equilibria as long as the condition

0 ≤ k < ​ 
(1 + β) − 

  __  
 − 1

 ​

is satisfied. The composition between the monetary and non-monetary components of the bubble is, however, inde-
terminate. See Galí (2013) for details.
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rate is positive. But money will still be valued in that case, and a well defined money 
demand will determine the amount of steady state real balances as a function of the 
interest rate. In Appendix 3, I provide an example of an extension of the benchmark 
model above in which real balances enter separably in the utility function (a com-
mon assumption in macro models), and where the analysis can proceed as in the 
text without any changes (other than the possible “normalization” required by the 
assumption of positive trend growth, as discussed above).

B. Equilibrium Dynamics: The Stochastic Case

The analysis of the deterministic case found above has uncovered the conditions 
for the existence of a bubbly steady state. My analysis of the stochastic case, as is 
common in much of the literature on monetary policy rules, focuses on stationary 
fluctuations in a neighborhood of one such steady state. Thus, and in order to make 
progress in that direction, I start by log-linearizing the model’s equilibrium condi-
tions around a steady state and analyze the resulting system of difference equations. 
Unless otherwise noted I use lowercase letters to denote the log of the original vari-
able, and the ˆ symbol on top of a variable to indicate the deviation from its steady 
state value. The resulting equilibrium conditions can be written as

(18)	 0  = ​​   c​​1, t​  +  β R​​  c​​2, t​

(19)	​​   c​​1, t​  = ​ E​t​ {​​  c​​2, t+1​}  − ​​   r​​t​

(20)	​​   c​​2, t​  =  (1 − Γ)​​  d​​t​  +  Γ​​  b​​t​

(21)	​​   q​​ t​ B​  =  R​​  b​​t​  +  (1 − R)​​  u​​t​

	 =  ​E​t​ {​​  b​​t+1​} − ​​  r​​t​

(22)	​ E​t−1​{​​  w​​t​}  = ​ E​t−1​{​​  d​​t​}  =  0

(23)	​​   r​​t​  = ​ ϕ​π​ ​​  π​​t​  + ​ ϕ​b​ ​​  q​​ t​ B​,

where R = (B) (as defined above) and Γ ≡ ϵB/(ϵB + 1).
Note that one can rewrite (21) to obtain

(24)	​​   b​​t​  =  R​​    b​​t−1​  +  (1 − R)​​  u​​t−1​  + ​​   r​​t−1​  + ​ ξ​t​  ,

where {​ξ​t​} is an arbitrary martingale-difference process (i.e., ​E​t−1​{​ξ​t​} = 0 for all t  ). 
As discussed above, and in order to avoid embedding in the model an arbitrary link 
between monetary policy and the size of the bubble, I assume in what follows that ​ξ​t​ 
is an exogenous sunspot shock whose variance is independent of the policy rule. By 
making this assumption I force monetary policy to influence the size of the bubble 
only through the interest rate channel and not through an (arbitrary) indeterminacy 
channel.
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Flexible Price Equilibrium.—Before I turn to the case of sticky prices, I take a 
brief detour to analyze the flexible price case. This will help us understand the role 
played by sticky prices in the analysis below. As discussed above, when firms can 
adjust freely their prices once the shocks are realized, they optimally choose to 
maintain a constant gross markup . This, in turn, implies that the wage and divi-
dend remain constant at their steady state values. Accordingly, equilibrium condi-
tion (22) must be replaced by

(25)	​​   w​​t​  = ​​   d​​t​  =  0.

Combined with (19)–(21), the above equilibrium condition implies

(26)	​​   r​​t​  =  ϵ(1 + β)BR ​​  b​​t​  +  ϵB(1 − R)​​  u​​t​  .

The previous condition makes clear that the real interest rate is, under flexible 
prices, independent of monetary policy (i.e., of ​ϕ​π​ and ​ϕ​b​). Plugging the previous 
result in (24),

	​​   b​​t​  =  χ ​​  b​​t−1​  +  (1 − R)(1  +  ϵB)​​  u​​t−1​  + ​ ξ​t​  ,

where χ ≡ R(1 + ϵ(1 + β)B). Stationarity of the bubble requires χ ∈ [0, 1), 
which I henceforth assume.20 As shown in Appendix 4, χ = ∂H(B, U)/∂ ​B​t​  . Thus, 
the condition for (local) stationarity of the bubble around the steady state in the 
stochastic equilibrium corresponds to the condition of stability of that steady state 
under the deterministic equilibrium dynamics. The analysis below is restricted to 
fluctuations around a stable deterministic steady state.21

Note that under flexible prices, monetary policy has no influence on the evolution 
of the bubble, due to its inability to affect the real interest rate. Naturally, though, 
monetary policy can influence inflation (and other nominal variables). In particular, 
equilibrium inflation can be derived by combining interest rate rule (23) and (26) 
to yield

(27)	​​   π​​t​  =  −(1/​ϕ​π​)​( (​ϕ​b​ − ϵB(1  +  β))R ​​  b​​t​  +  (​ϕ​b​ − ϵB)(1 − R)​​  u​​t​ )​ .

Not surprisingly the impact of bubbles on inflation is not independent of the mon-
etary policy rule. In particular, we see that some positive systematic response of 
the interest rate to the aggregate bubble (​ϕ​b​ > 0) is desirable from the viewpoint 
of inflation stabilization. More precisely, the value of ​ϕ​b​ that minimizes the vari-
ance of inflation under flexible prices is given by ​ϕ​b​ = ϵB(1 + λβ) > 0, where 
λ ≡ ​R​2​ var{​​  b​​t​}/var{​​  q​​ t​ B​ }. Of course, there is no special reason why the central bank 

20 That stationarity assumption also justifies the use of methods based on a log-linear approximation of the 
equilibrium conditions.

21 Note that (​  B​)(1 + ϵ​  B​(1 + β)) = 1 implicitly defines an upper bound ​  B​ > 0 on the size of the steady state 
bubble consistent with stationarity of bubble fluctuations. That upper bound satisfies ​   B​ = ​B​S​ = ​B​U​.
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would want to stabilize inflation in the present environment, so I do not analyze this 
issue further here.22

C. Sticky Price Equilibrium

We can combine (18) through (21) to write the goods market clearing condition as

	 0  =  ϵB(1 + β)R ​​  b​​t​  +  ϵB(1 − R)​​  u​​t​  +  βR​​  d​​t​ − ​​  r​​t​.

As discussed in Section IIIB, in the presence of sticky prices we have

(28)	​ E​t−1​{​​  w​​t​}  = ​ E​t−1​{​​  d​​t​}  =  0

for all t. Note also that the predetermination of prices implies

(29)	​ E​t−1​{​π​t​}  = ​ π​t​ .

Combining the previous equation with the interest rate rule (23) and equilibrium 
condition (22) one can derive the following closed form solution for the evolution 
of the bubble (see Appendix 5 for details):

(30) ​​   b​​t​  =  χ ​​  b​​t−1​  +  (​ϕ​b​ + 1)(1 − R)​​  u​​t−1​  + ​ ξ​t​  +  (​ϕ​b​ − ϵB(1 + β))R​ξ​t−1​ .

Note that the persistence of the bubble fluctuations, as measured by the autore-
gressive coefficient χ ≡ R(1 + ϵB(1 + β)), is the same as in the flexible price 
equilibrium and, hence, independent of monetary policy. The latter, however, can 
influence the bubble’s overall size and volatility through the choice of interest rate 
rule coefficient ​ϕ​b​, as made clear by (30). Through the influence of the real interest 
rate on the size of the bubble ​​  b​​t​ as well as on the incentives to allocate consumption 
intertemporally, monetary policy will affect the allocation of aggregate consumption 
across cohorts, thus affecting welfare. This is discussed in detail in the following 
section.

On the other hand, equilibrium inflation is given by the AR(1) process23

(31)	​​   π​​t​  =  χ ​​  π​​t​ − (1/​ϕ​π​)​( ​ϕ​b​ − ϵB(1 + β)R )​(​ϕ​b​ + 1)​ε​t−1​ ,

where ​ε​t​ ≡ R​ξ​t​ + (1 − R)​​  u​​t​ is the innovation in the aggregate bubble. Thus, we see 
that inflation inherits the persistence of the aggregate bubble, while it fluctuates as a 
result of innovations in the latter, interacting with the central bank’s feedback rule.

22 It is easy to check that the central bank could fully stabilize inflation in this case if it could identify and respond 
separately to existing and new bubbles with a rule

​​  r​​t​  = ​ ϕ​π​ ​π​t​  + ​ Θ​b​ ​​  b ​​t​  + ​ Θ​u​ ​​  u​​t​ ,

where ​Θ​b​ ≡ ϵB(1 + β) and ​Θ​u​ ≡ ϵB.
23 See Appendix 5 for details.
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IV.  The Impact of Monetary Policy on Bubble Dynamics

As made clear by the analysis in the previous section, the existence of bubbles 
in the present model economy is not a monetary phenomenon. In other words, the 
conditions for their existence do not depend on how monetary policy is conducted.

When prices are flexible, monetary policy is neutral vis-à-vis the bubble: it cannot 
have an effect either on its size or on its persistence. On the other hand, and as shown 
in Section IIIC, in the presence of nominal rigidities monetary policy can have an 
effect on the size and volatility of asset price bubbles. In particular, it can influence 
the anticipated component of the bubble, ​E​t−1​{​​  b​​t​}. As shown in Appendix 5, the lat-
ter evolves according to the simple AR(1) process,

(32)	​ E​t−1​{​​  b​​t​}  =  χ ​E​t−2​{​​  b​​t−1​}  +  (​ϕ​b​ + 1)​ε​t−1​ ,

where, again, ​ε​t​ ≡ R​ξ​t​ + (1 − R)​​  u​​t​ is the innovation in the aggregate bubble.
Thus we see that the influence of monetary policy on the anticipated component 

of the bubble works through the choice of the interest rate coefficient ​ϕ​b​. To see 
how that choice influences the volatility of the aggregate bubble ​​  q​​ t​ B​ note that (32), 
together with equation

(33)	​​   q​​ t​ B​  =  R​E​t−1​{​​  b​​t​}  + ​ ε​t​

implies

(34)	 var{​​  q​​ t​ B​}  = ​ ( ​ ​R​2​(​ϕ​b​ + 1​)​2​
 _ 

1 − ​χ​2​
 ​   +  1 )​ ​σ​ ε​ 2​ ,

where ​σ​ ε​ 2​ ≡ ​R​2​ ​σ​ ξ​ 2​ + (1 − R​)​2​ ​σ​ u​ 2​ is the variance of the aggregate bubble innovation. 
That relation is illustrated graphically in Figure 2, which displays the standard 
deviation of the aggregate bubble as a function of ​ϕ​b​.24

An analysis of that relation yields several results of interest (all of which are 
captured in Figure 2). First, equation (34) implies that a “leaning against the wind” 
policy (which corresponds to ​ϕ​b​ > 0) generates a larger volatility in the bubble 
than a policy of “benign neglect” (​ϕ​b​ = 0). Secondly, and conditional on ​ϕ​b​ ≥ 0, 
the stronger is the interest rate response to the bubble, the larger is the volatility of 
the latter. Finally, note that the central bank can minimize the bubble volatility by 
setting ​ϕ​b​ = −1 < 0, a policy which fully stabilizes the anticipated component of 
the bubble (i.e., it implies ​E​t−1​{​​  b​​t​} = 0, for all t). In other words, stabilization of 
bubble fluctuations requires that the interest rate be lowered in response to positive 
innovations in existing or new bubbles, a finding clearly at odds with the conven-
tional wisdom.

24 The following parameter settings are assumed in constructing Figure 2: β = 1, M = 1.2, B = 0.1, and 
​σ​ ξ​ 2​ = ​σ​ u​ 2​ = 0.01. None of the qualitative findings discussed in the text hinge on the specific choice of parameter 
values, as long as (17) is satisfied.
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As shown above, and as long as ​ϕ​π​ ≠ 0, equilibrium inflation in the economy 
with sticky prices is uniquely pinned down and satisfies

(35)	​​   π​​t​  =  χ​​  π​​t​ − (1/​ϕ​π​)​( ​ϕ​b​ − ϵB(1 + β)R )​(​ϕ​b​ + 1)​ε​t−1​ .

The central bank can follow three alternative strategies if it seeks to stabilize 
inflation. First, it can respond very strongly to inflation itself (by setting ​ϕ​π​ arbi-
trarily large, for any finite ​ϕ​b​). Secondly, it can adjust interest rates in response to 
fluctuations in the bubble with a strength given by ​ϕ​b​ = ϵB(1 + β)R (while setting ​
ϕ​π​ at a finite value). Doing so exactly offsets the impact of the bubble on (expected) 
aggregate demand, thus neutralizing its impact on inflation. Note that neither of 
these policies eliminates fluctuations in the bubble, they just prevent the latter from 
affecting the aggregate price level. Finally, the central bank may choose to stabilize 
the anticipated component of the bubble (the only one that can affect inflation when 
prices are set in advance), which can be achieved by setting ​ϕ​b​ = −1, as discussed 
above. The latter result illustrates how the emergence of an aggregate bubble and the 
existence of fluctuations in the latter do not necessarily generate a policy trade-off 
between stabilization of the bubble and stabilization of inflation.25

25 The absence of a trade-off obtains when, as assumed above, bubble shocks are the only source of uncertainty 
in the economy. Other sources of fluctuations may require interest rate adjustments in order to stabilize inflation, 
which in turn may induce additional volatility in the size of the bubble.
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Figure 2. Monetary Policy and Bubble Volatility
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Note however that in the economy above, with synchronized price-setting and an 
inelastic labor supply, inflation is not a source of welfare losses. Accordingly, and 
within the logic of the model, there is no reason why the central bank should seek to 
stabilize inflation. It is also not clear that minimizing the volatility of the aggregate 
bubble constitutes a desirable objective in itself. In order to clarify those issues, the 
next section analyzes explicitly the nature of the model’s implied optimal policy.

V.  Optimal Monetary Policy in the Bubbly Economy

I analyze the optimal response of monetary policy to asset price bubbles in the 
model economy developed above. I take as a welfare criterion the unconditional 
mean of an individual’s lifetime utility. In a neighborhood of the steady state that 
mean can be approximated up to second order as

E{log ​C​1, t​ + β log ​C​2, t+1​}  ≃  log ​C​1​ + β log ​C​2​ − ​( ​ 1 _ 
2
 ​ )​(var{​​  c​​1, t​} + β var{​​  c​​2, t​}).

Note that the goods market clearing condition ​C​1, t​ + ​C​2, t​ = 1 implies that 
var{​​  c​​1, t​} is proportional to var{​​  c​​2, t​}. Thus, a central bank that seeks to maximize 
welfare under the criterion set above will minimize the variance of

	​​   c​​2, t​  =  (1 − Γ)​​  d​​t​ + Γ​​  b​​t​,

where, again, Γ ≡ ϵB/(ϵB + 1) ∈ [0, 1].
That objective poses a dilemma for the central bank. To see this note that, as 

derived in Appendix 6, dividends are given by26

	​​   d​​t​  =  (1/βR)​[ (​ϕ​b​ − ϵB(1 + β))R​ξ​t​  +  (​ϕ​b​ − ϵB)(1 − R)​​  u​​t​ ]​.

Thus, minimizing the volatility of dividends calls for setting ​ϕ​b​  
= ϵB(1 + β​R​2​(​σ​ ξ​ 2​/​σ​ ε​ 2​)) > 0. Note that such a policy would require adjusting the 
interest rate upward in response to positive bubble shocks, in order to stabilize aggre-
gate demand and to prevent upward (downward) pressure on wages (dividends) 
from emerging. However, as discussed in the previous section, such a policy would 
amplify the impact of current bubble shocks on the future size of the bubble through 
the effect of interest rates on bubble growth, thus contributing through that chan-
nel to the destabilization of cohort-specific consumption. In fact, and as discussed 
above, minimizing the volatility of cohort-specific consumption directly linked to 
bubble fluctuations calls for setting ​ϕ​b​ = −1 < 0. Note finally that neither the vola-
tility of dividends nor that of the bubble depend on the inflation coefficient ​ϕ​π​.

26 Accordingly, and given (11) the wage will be given by

	​​   w​​t​  =  −( − 1)​​  d​​t​

	 =  −( − 1)(1/βR)​[ (​ϕ​b​ − ϵB(1 + β))R​ξ​t​ + (​ϕ​b​ − ϵB)(1 − R)​​  u​​t​ ]​.
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The welfare-maximizing choice of ​ϕ​b​ will naturally seek a compromise between 
stabilization of dividends and stabilization of the bubble size. Formally, the optimal 
coefficient minimizes

	 var{(1 − Γ)​​  d​​t​ + Γ​​  b​​t​}  ∝ ​ ( (​ϕ​b​ − ϵB​)​2​  + ​ 
(βRϵB​)​2​(​ϕ​b​ + 1​)​2​

  __  
1 − ​χ​2​

 ​  )​ ​σ​ ε​ 2​ .

Figure 3 displays the expected welfare loss as a function of ​ϕ​b​, under the model’s 
baseline parameter settings. The minimum of that loss function determines the 
optimal interest rate coefficient. The latter can be written as

(36)	​ ϕ​ b​ ∗​  =  (−1)Ψ  +  ϵB(1 − Ψ),

where Ψ ≡ (βRϵB​)​2​/(1 − ​χ​2​ + (βRϵB​)​2​) ∈ [0, 1] is an increasing function of B, 
the steady state size of the bubble (relative to the economy’s size, which is normal-
ized to unity).

Thus, the optimal strength of the central bank’s response to the bubble is a nonlin-
ear function of the average size of the latter, as well as other exogenous parameters. 
Figure 4 displays the optimal coefficient ​ϕ​ b​ ∗​ as a function of B, under the baseline 
parameter settings. Note that the mapping is non-monotonic: ​ϕ​ b​ ∗​ is shown to be first 
increasing, and then decreasing, in the size of the bubble. As the steady state size of 
the bubble approaches zero, so does the optimal coefficient, i.e., li​m​ B→0​     ​ ​ϕ​ b​ ∗​ = 0, as 
can be checked using (36). On the other hand, as B approaches its maximum value 
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Figure 3. Monetary Policy and Welfare Losses
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consistent with stationarity (implying χ → 1), the optimal coefficient converges to 
(minus) the corresponding interest rate, i.e., li​m​ B→​  B​​     ​ ​ϕ​ b​ ∗​ = −1 < 0. Hence, given a 
sufficiently large average bubble consistent with a stable steady state, it is optimal 
for the central bank to lower interest rates in response to a rise in the size of the 
bubble.

The latter finding illustrates that the optimal monetary policy strategy in response 
to asset price bubbles does not necessarily take the form of a “leaning against the 
wind” policy or one of just “benign neglect.”

VI.  Discussion

The analysis above calls into question the theoretical underpinnings of “lean-
ing against the wind” monetary policies with respect to asset price developments. 
According to those proposals central banks should raise interest rates in the face of a 
developing asset price bubble, in order to tame it or eliminate it altogether. The anal-
ysis above has shown that, at least when it comes to a rational asset pricing bubble, 
such a policy may be counterproductive and lead instead to larger bubble fluctua-
tions and possibly lower welfare as well. In the model economy developed above, it 
is generally desirable from the viewpoint of bubble stabilization (and, under some 
assumptions, from a welfare perspective as well) to pursue the opposite policy. That 
finding, which is a consequence of a basic arbitrage constraint that must be satisfied 
by a rational bubble, seems to have been ignored (or, at least, swept under the rug) 
by proponents of “leaning against the wind” policies.
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To be clear, it is not my intention to suggest that policies that seek to prevent the 
emergence of bubbles or its excessive growth are necessarily misguided, but only to 
point out that certain interest rate policies advocated by a number of economists and 
policy makers may not necessarily have the desired effects in that regard.

There are at least three assumptions in my model which undoubtedly play an 
important role in accounting for my findings. I discuss them briefly next.

Firstly, and in the context of the OLG model developed above, I have assumed 
that there is no systematic impact of interest rate surprises on the “indeterminate” 
component of the bubble. Some readers may find that assumption arbitrary. But 
it would be equally arbitrary to assume the existence of a systematic relation of a 
given size or sign. Furthermore, and as illustrated by the partial equilibrium example 
of Section I, the possible short run negative impact of an interest rate hike on the 
size of the bubble when the orthogonality assumption is relaxed may be more than 
offset by the subsequent higher growth. At the end of the day, whether a systematic 
relation between interest rate surprises and bubble innovations exists is ultimately 
an empirical issue, but one that will not be settled easily given the inherent unob-
servability of bubbles. Thus, and if nothing else, one should view the present paper’s 
contribution as pointing to the fragility of the foundations of “leaning against the 
wind” policies advocated on the basis of such a systematic relation.

Secondly, the asset pricing bubbles introduced in the model economy above are of 
the rational type, i.e., they are consistent with rational expectations on the part of all 
agents in the economy. In actual economies there may be asset price deviations from 
fundamentals that are different in nature from the rational bubbles considered here 
and for which “leaning against the wind” interest rate policies may have more desir-
able properties. Assessing that possibility would require the explicit modelling of 
the nature of deviations from fundamentals and how those deviations are influenced 
by interest rate policy. Of course, one should not rule out the possibility that some 
models of non-rational bubbles may lead to entirely different implications regarding 
the desirability of “leaning against the wind” policies.

Thirdly, the analysis above has been conducted in a model economy with no 
explicit financial sector and no financial market imperfections (other than the exis-
tence of bubbles). In fact, the assumption of a representative consumer in each 
cohort implies that the only financial transactions actually carried out are the sale 
of bubbly assets by the old to the young, but no credit is needed (in equilibrium) to 
finance such transactions. By contrast, much of the empirical and policy-oriented 
literature has emphasized the risks associated with the rapid credit expansion that 
often accompanies (and helps finance) asset price booms.27 It is not clear, how-
ever, that a tighter monetary policy may be the best way to counter the credit-based 
speculative bubbles that may arise in this context, as opposed to a stricter regulatory 
and supervisory framework with the necessary tools to dampen the growth of credit 
allocated to (potentially destabilizing) speculative activities. Further efforts at mod-
elling explicitly the interaction of credit, bubbles and monetary policy would thus 
seem highly welcomed.28

27 See, e.g., Schularick and Taylor (2012).
28 Recent research on non-monetary economies with rational bubbles and credit frictions suggests that such 

interaction is likely to be a complex one, which may depend on a number of modeling choices. Thus, in a model 
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Gathering empirical evidence on the impact of monetary policy on asset price 
bubbles should, of course, be high on the research agenda. It is clear that any empiri-
cal analysis of that link faces many challenges. Firstly, the difficulty inherent to the 
identification of an asset’s bubble component does not facilitate the task. Secondly, 
any observed comovement between asset prices and policy rates can hardly be 
given a simple causal interpretation since both variables are endogenous and likely 
to be influenced by numerous factors (including each other). In ongoing research 
(Galí and Gambetti 2013), we seek to assess the impact of monetary policy shocks 
on asset price bubbles by estimating time-varying dynamic responses of selected 
asset price indexes to an exogenous interest rate shock, identified as in Christiano, 
Eichenbaum, and Evans (2005). In particular, we seek to uncover changes over time 
in the patterns of response of asset prices to such shocks, which may correspond 
to changes in the relative size of the bubble component of several asset categories. 
Further empirical work on this issue, including case studies focusing on specific 
bubbly episodes, would seem to be highly welcome in order to complement any 
theoretical efforts.

VII.  Concluding Remarks

The present paper should be viewed as part of an effort to enhance our understand-
ing of the relation between monetary policy and bubbles and, more specifically, of 
the possible underpinnings of “leaning against the wind” policies. Both the simple 
partial equilibrium example, described in Section I, and the general equilibrium 
framework analyzed in the remainder of the paper make clear that the predictions 
of economic theory regarding that relation do not always support the conventional 
wisdom.

The bulk of my theoretical analysis has made use of a highly stylized overlapping 
generations model with monopolistic competition and price setting in advance. The 
overlapping generations structure allows for the existence of asset price bubbles in 
equilibrium, as in the models of Samuelson (1958) and Tirole (1982). The introduc-
tion of nominal rigidities implies that monetary policy is not neutral. In particular, 
by influencing the path of the real interest rate, the central bank can affect real asset 
prices (including those of bubbly assets) and, as a result, the distribution of con-
sumption across cohorts and welfare.

Two main results have emerged from the analysis of that model. First, contrary to 
conventional wisdom, a “leaning against the wind” interest rate policy in the face of 
bubble fluctuations may raise the volatility of the latter. Secondly, the optimal policy 
must strike a balance between stabilization of current aggregate demand—which 

with capital accumulation and borrowing constraints à la Martín and Ventura (2012), an interest rate increase engi-
neered by the central bank will tighten or relax the borrowing constraint (thus dampening or enhancing investment 
and growth) depending on its overall impact on the total price (fundament plus bubble) of the assets which are used 
as collateral. On the other hand, the nature of the borrowing constraints assumed by Miao and Wang (2012), among 
others, implies that the simple arbitrage relation linking the growth rate of the bubble to the interest rate is broken, 
since the bubble generates a “dividend” in the form of the extra profits resulting from the implied relaxation of the 
borrowing constraint. Accordingly, the required expected increase in the bubble resulting from a higher interest rate 
will be smaller. In addition, the net effect of an interest rate change on aggregate demand is ambiguous since the 
“conventional” effect may be partly offset or enhanced by the induced effect on borrowing constraints, whose sign 
may depend on a number of factors.
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calls for a positive interest rate response to the bubble—and stabilization of the bub-
ble itself (and hence of future aggregate demand)—which would warrant a negative 
interest rate response to the bubble. If the average size of the bubble is sufficiently 
large the latter motive will be dominant, making it optimal for the central bank to 
lower interest rates in the face of a growing bubble.

Needless to say, the conclusions should not be taken at face value when it comes 
to designing actual policies. This is so because the model may not provide an accu-
rate representation of the challenges facing actual policy makers. In particular, it 
may very well be the case that actual bubbles are not of the rational type and, hence, 
respond to monetary policy changes in ways not captured by the theory above. In 
addition, the model above abstracts from many aspects of actual economies that may 
be highly relevant when designing monetary policy in bubbly economies, including 
the presence of frictions and imperfect information in financial markets. Those cave-
ats notwithstanding, the analysis above may be useful by pointing out a potentially 
important missing link in the case for “leaning against the wind” policies.

Appendix

Appendix 1

Assuming a stationary environment, the log-linearized difference equation 
describing the evolution of the fundamental component is

	​​   q​​ t​ F​  =  (1/R)​E​t​{​​  q​​ t+1​ F
  ​}  +  (1 − 1/R)​E​t​{​​  d​​t+1​} − ​​  r​​t​ ,

which can be solved forward to yield

	​​   q​​ t​ F​  = ​ ∑​ 
k=0

​ 
∞

 ​(1/R​)​k​​( (1 − 1/R)​E​t​{​​  d​​t+1+k​} − ​E​t​{​​  r​​t+k​} )​.

Under the AR(1) assumption for the interest rate, ​E​t​{​​  r​​t+k​} = ​ρ​ r​ k​ ​​  r​​t​ and hence

	​​   q​​ t​ F​  =  − ​  R _ 
R − ​ρ​r​

 ​ ​​  r​​t​  +  (1 − 1/R)​ ∑ ​ 
k=0

 ​ 
∞

  ​(1/R​)​k​​E​t​{​​  d​​t+1+k​} ,

implying ∂ ​​  q​​ t​ F​/∂ ​ε​ t​ r​ = −R/(R − ​ρ​r​).

Appendix 2

The following properties of the H mapping are stated for future reference:

(P1) H(B, U ) ≥ 0 is twice continuously differentiable for 0 ≤ B < 
​ β/ − U

 _ (1 + β)  ​ ≡ ​
_
 B ​(U ). Note that H(B, U ) < 0 for B > ​

_
 B ​(U ).
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(P2)  ∂H(B, U)/∂​B​t​  =  ​ β(1 − 1/)(1/ + U)
  __  

[β/ − U − (1 + β)B​]​2​
 ​  >  0  and  ​∂​ 2​H(​B​t​, U )/∂​B​ t​ 2​  

= ​ 2β(1 + β)(1 − 1/)(1/ + U)
   __   

[β/ − U − (1 + β)B​]​3​
  ​  >  0  for  0  ≤  B  < ​

_
 B ​(U )  and  li​m​ B→​

_
 B ​(U)​    ​H(B, U )  

= +∞.

(P3)  ∂H(B, U)/∂​U​t​  =  ​ 2β(1 − 1/)(1/ − B)
  __  

[β/ − U − (1 + β)B​]​2​
 ​  >  0  and  ​∂​ 2​H(B, U )/∂​U​ 2​  

= ​ β(1 − 1/M)(1/M − B)
  __  

[β/M − U − (1 + β)B​]​3​
 ​ > 0 for 0 ≤ B < ​

_
 B ​(U  ).

(P4) ​∂​ 2​H(B, U )/∂B∂U > 0 for 0 ≤ B < ​
_
 B ​(U ).

Consider first the case of U = 0. A bubbly equilibrium path must then satisfy

	​ B​t+1​  = ​ 
(1 − 1/)​B​t​

  __  
β/ − (1 + β)​B​t​

 ​  ≡  H(​B​t​ , 0).

Note that H(0, 0) = 0, implying the existence of a bubbleless deterministic 
steady state in that case, i.e., B = 0. Given (P2), a necessary and sufficient condi-
tion for the existence of a bubbly steady state ​B​U​ > 0 such that H(​B​U​, 0) = ​B​U​ is 
∂H(0, 0)/∂​B​t​ = ​  − 1 _ β  ​ < 1, or, equivalently,

(A1)	   <  1  +  β.

Note that in that case H(​B​t​, 0) > ​B​t​ and ∂[H(​B​t​, 0) − ​B​t​]/∂​B​t​ > 0 for any 
​B​t​ > ​B​U​. Thus, the solution to ​B​t+1​ = H(​B​t​, 0) given an initial condition ​B​0​ > ​B​U​ 
violates the constraint ​B​t​ < 1/ in finite time and hence is not consistent with 
equilibrium. On the other hand, H(​B​t​, 0) < ​B​t​ for any ​B​t​ < ​B​U​, implying that the 
solution to ​B​t+1​ = H(​B​t​, 0) given an initial condition ​B​0​ < ​B​U​ converges asymptoti-
cally to the bubbleless steady state B = 0. Thus, ​B​U​ is an unstable steady state.

Sufficiency: Suppose that (A1) holds. Then it follows from (P3) and the continu-
ity of H(·, ·) that there is a non-degenerate set (0, ​

_
 U ​) of values for the new bub-

ble U, with ​
_
 U ​ ≡ β + (1 + β)(1 − 1/) + 2​√

_______________
  β(1 + β)(1 − 1/) ​ such that 

for any U ∈ [0, ​
_
 U ​) the mapping ​B​t+1​ = H(​B​t​, U) has two fixed points, denoted by 

​B​S​(U ) and ​B​U​(U ), where ​B​S​(U ) < ​B​U​(U ) and such that

	 (i)	 H(​B​t​, U ) > ​B​t​ for ​B​t​ ∈ [0, ​B​S​(U )) ∪ (​B​U​(U ), ​
_
 B ​(U )),

	 (ii)	 H(​B​t​, U ) < ​B​t​ for ​B​t​ ∈ (​B​S​(U ), ​B​U​(U )),

	 (iii)	  ​B​t​ = H(​B​t​, U ) for ​B​t​ ∈ {​B​S​(U ), ​B​U​(U )}.

Thus, given an initial condition ​B​0​ ∈ [0, ​B​U​(U )), the solution to ​B​t+1​ = H(​B​t​, U ) 
corresponds to a bubbly equilibrium path, which converges asymptotically to 
​B​S​(U ). The latter is, thus, a (locally) stable steady state. On the other hand, any 
solution to ​B​t+1​ = H(​B​t​, U ) given an initial condition ​B​0​ > ​B​U​(U ) violates the con-
straint ​B​t​ < 1/ in finite time and hence cannot be an equilibrium.
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Note also that ​B​S​(U) is a continuous function defined on [0, ​
_
 U ​], such that 

​B​S​(0) = 0 and ∂​B​S​(U)/∂U > 0.

Necessity: Suppose  ≥ 1 + β. Then (P2) implies ∂H(0, 0)/∂​B​t​ > 1. Then it 
follows from (P4) that ∂H(0, U )/∂​B​t​ > 1 for U > 0 as well, implying H(​B​t​, U) > ​B​t​ 
and ∂[H(​B​t​, U ) − ​B​t​]/∂​B​t​ > 0 for any ​B​t​ > 0. Thus, the solution to ​B​t+1​ = H(​B​t​, 0) 
given an initial condition ​B​0​ > 0 violates the constraint ​B​t​ < 1/ in finite time.

Appendix 3

Next I describe a variation on the benchmark model in the text which explicitly 
introduces money as an additional asset, paying no interest but yielding utility. The 
consumer’s utility function is now given by

 	 log ​C​1, t​  +  log(​M​t​/​P​t​)  +  β​E​t​{log ​C​2, t+1​},

where ​M​t​ denotes the holdings of money at the end of the period. The modified bud-
get constraints of the young and old are respectively given by

	​ ∫​ 
0
​ 
1

​ ​ 
​P​t​(i)​C​1, t​(i) _ ​P​t​

 ​  di  + ​ 
​M​t​ _ ​P​t​

 ​  + ​ 
​Z​t​ _ ​P​t​

 ​  + ​ Q​ t​ B​  = ​ W​t​  + ​ U​t​  + ​ 
​T​t​ _ ​P​t​

 ​

	​ ∫​ 
0
​ 
1

​ ​ 
​P​t+1​(i)​C​2, t+1​(i)  __ ​P​t+1​

 ​  di  = ​ 
​M​t​ _ ​P​t+1​

 ​  + ​ 
​Z​t​(1 + ​i​t​) _ ​P​t+1​

 ​   + ​ D​t+1​  + ​ B​t+1​ ,

where ​T​t​ represents (lump-sum) monetary injections by the central bank (in the 
form of transfers to the young).

The optimality conditions of the consumer’s problem found in the main text also 
apply here with no modifications. To those optimality conditions we now have to 
add an implied money demand equation of the form

(A2)	​ 
​M​t​ _ ​P​t​

 ​  = ​ C​1, t​​( 1  + ​  1 _ ​i​t​
 ​ )​, 

as well as the zero lower bound constraint ​i​t​ ≥ 0 which must hold in equilibrium 
(otherwise, bonds would be return-dominated by money).

The analysis found in the main text (including the steady state and the log-lin-
earized equilibrium dynamics) goes through without any modifications, once we 
assume a positive steady state nominal rate, either by having positive trend growth 
or positive target inflation (see discussion in main text). Given the equilibrium val-
ues of ​C​1, t​, ​P​t​, and ​M​t​, money demand equation (A2) determines the quantity of 
money ​M​t​, which is supplied passively by the central bank by means of transfers ​
T​t​ = Δ​M​t​.



749galÍ: monetary policy and rational asset price bubblesVOL. 104 NO. 3

Appendix 4

Note that the H(​B​t​, U ) mapping must satisfy

	 H(​B​t​, U )  =  R(​B​t​, H(​B​t​, U ))(​B​t​ + U ), 

where R(​B​t​, ​B​t+1​) ≡ ​( ​ 1 _ β ​ )​ ​( ​ 1 − 1/ + ​B​t+1​  _ 1/ − ​B​t​
  ​ )​. Differentiating with respect to ​B​t​, 

noting that ​R​1​(B, B) = ​  R _ 1/ − B ​ and ​R​2​(B, B) = ​  1 _ β(1/ − B) ​ (where ​R​i​ denotes 

the partial derivative with respect to the i th argument), and evaluating the resulting 
derivative at the steady state, we obtain (after some algebraic manipulation),

	​ 
∂H(B, U)
 _ 

∂B
 ​   =  (B)(1 + ϵ(1 + β)B).

Appendix 5

Combining (18) through (21) yields the following goods market clearing 
condition:

	 0  =  ϵB(1 + β)R​​  b​​t​  +  ϵB(1 − R)​​  u​​t​  +  βR​​  d​​t​ − ​​  r​​t​.

Taking expectations, and using (22) we obtain

(A3)	​ E​t−1​{​​  r​​t​}  =  ϵB(1  +  β)R​E​t−1​{​​  b​​t​}.

Taking expectations on both sides of the interest rate rule (23):

(A4)	​ E​t−1​{​​  r​​t​}  = ​ ϕ​π​​ ​  π​​t​  + ​ ϕ​b​ R​E​t−1​{​​  b​​t​}.

Combining (A3) and (A4) yields

	​​   π​​t​  =  −(R/​ϕ​π​)​( ​ϕ​b​ − ϵB(1 + β) )​ ​E​t−1​{​​  b​​t​}.

Letting ​ε​t​ ≡ R​ξ​t​ + (1 − R)​​  u​​t​, note that

(A5)	​​   r​​t​  =  ​E​t−1​{​​  r​​t​}  +  (​​  r​​t​ − ​E​t−1​{​​  r​​t​})

	 =  ϵB(1 + β)R​E​t−1​{​​  b​​t​} + ​ϕ​b​ ​ε​t​

	 =  ϵB(1 + β)R(R​​  b​​t−1​ + (1 − R)​​  u​​t−1​ + ​​  r​​t−1​) + ​ϕ​b​ ​ε​t​  .

It follows that

	 (1 − ϵB(1 + β)RL)​​  r​​t​  =  ϵB(1 + β)R(R ​​  b​​t−1​ + (1 − R)​​  u​​t−1​) + ​ϕ​b​ ​ε​t​  .
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Combining the previous result with the bubble difference equation 
(1 − RL)​​  b​​t​ = (1 − R)​​  u​​t−1​ + ​​  r​​t−1​ + ​ξ​t​ yields

	​​   b​​t​  =  χ ​​  b​​t−1​ + (​ϕ​b​ + 1)(1 − R)​​  u​​t−1​ + ​ξ​t​ + (​ϕ​b​ − ϵB(1 + β))R​ξ​t−1​,

where, as above, χ ≡ R(1 + ϵ(1 + β)B) is assumed to be between zero and one.
Note that the predictable component of the bubble follows the process

​E​t−1​{​​  b​​t​} = χ(​E​t−2​{​​  b​​t−1​} + ​ξ​t−1​) + (​ϕ​b​ + 1)(1 − R)​​  u​​t−1​ + (​ϕ​b​ − ϵB(1 + β))R​ξ​t−1​

	 = χ ​E​t−2​{​​  b​​t−1​} + (​ϕ​b​ + 1)​ε​t−1​.

Accordingly,

	 var{​E​t−1​{​​  b​​t​}}  = ​ 
(​ϕ​b​ + 1​)​2​

 _ 
1 − ​χ​2​

 ​ ​ σ​ ε​ 2​  ,

where ​σ​ ε​ 2​ ≡ (1 − R​)​2​ ​σ​ u​ 2​ + ​R​2 ​​σ​ ξ​ 2​.
Finally, and using the fact that ​​  q​​ t​ B​ = R(​E​t−1​{​​  b​​t​} + ​ξ​t​) + (1 − R)​​  u​​t​  

= R​E​t−1​{​​  b​​t​} + ​ε​t​, we have

	 var{​​  q​​ t​ B​}  = ​ ( ​ ​R​2​(​ϕ​b​ + 1​)​2​
 _ 

1 − ​χ​2​
 ​  + 1 )​ ​σ​ ε​ 2​.

Note also that we can now write the equilibrium process for inflation as

	​​   π​​t​  =  −(R/​ϕ​π​)​( ​ϕ​b​ − ϵB(1 + β) )​ ​E​t−1​{​​  b​​t​}

	 =  χ ​​  π​​t​ − (R/​ϕ​π​)​( ​ϕ​b​ − ϵB(1 + β) )​(​ϕ​b​ + 1)​ε​t−1​.

Appendix 6

As noted in Appendix 5, goods market clearing implies

	 0  =  ϵB(1 + β)R​​  b​​t​ + ϵB(1 − R)​​  u​​t​ + βR​​  d​​t​ − ​​  r​​t​.

Using (A5) to substitute out the real rate ​​  r​​t​, one can rewrite the above condition as

    βR​​  d​​t​  =  ​ϕ​b​(R​ξ​t​ + (1 − R)​​  u​​t​) + ϵB(1 + β)R​E​t−1​{​​  b​​t​} 

	 − (ϵB(1 − R)​​  u​​t​ + ϵB(1 + β)R​​  b​​t​)

	 =  (​ϕ​b​ − ϵB(1 + β))R​ξ​t​ + (​ϕ​b​ − ϵB)(1 − R)​​  u​​t​  .
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Letting Γ ≡ ​  ϵB _ ϵB + 1 ​ we have

  βR​​  c​​2, t​  =  βR((1 − Γ)​​  d​​t​  +  Γ​​  b​​t​)

	 =  (1 − Γ)βR(​​  d​​t​ + ϵB​ ​  b​​t​)

	 =  (1 − Γ)​( (​ϕ​b​ − ϵB(1 + β) )​R​ξ​t​ + (​ϕ​b​ − ϵB)(1 − R)​​  u​​t​ + βRϵB​​  b​​t​)

	 =  (1 − Γ)((​ϕ​b​ − ϵB)​ε​t​ + βRϵB​E​t−1​{​​  b​​t​},

implying

	 var{​​  c​​2, t​}  ∝ ​ ( (​ϕ​b​ − ϵB​)​2​  + ​ 
(βRϵB​)​2​(​ϕ​b​ + 1​)​2​

  __  
1 − ​χ​2​

 ​  )​ ​σ​ ϵ​ 2​  .
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