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Abstract

We provide methods for forecasting variables and predicting turning points in panel Bayesian
VARs. We specify a .exible model, which accounts for both interdependencies in the cross
section and time variations in the parameters. Posterior distributions for the parameters are ob-
tained for hierarchical and for Minnesota-type priors. Formulas for multistep, multiunit point and
average forecasts are provided. An application to the problem of forecasting the growth rate of
output and of predicting turning points in the G-7 illustrates the approach. A comparison with
alternative forecasting methods is also provided.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Panel VAR models have become increasingly popular in macroeconomics to study
the transmission of shocks across countries (Ballabriga et al., 1998), the propagation
e7ects of monetary policy in the European Union (Gerlach and Smets, 1996) and
the average di7erential response of developed and underdeveloped countries to domes-
tic and external disturbances (Ho7maister and Rold<os, 1997; Rebucci, 1998). At the
same time, recent developments in computer technology have permitted the estimation

∗ Corresponding author. Tel.: +49-69-1344-8721; fax: +49-69-1344-6575.
E-mail addresses: fabio.canova@upf.es (F. Canova), matteo.ciccarelli@ecb.int (M. Ciccarelli).

0304-4076/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0304-4076(03)00216-1

mailto:fabio.canova@upf.es
mailto:matteo.ciccarelli@ecb.int


328 F. Canova, M. Ciccarelli / Journal of Econometrics 120 (2004) 327–359

of increasingly complex multicountry VAR models in reasonable time, making them
potentially usable for a variety of forecasting and policy purposes.
Despite this interest, the theory for panel VAR is somewhat underdeveloped. Af-

ter the works of Chamberlain (1982, 1984), Holtz-Eakin et al. (1988) and Binder
et al. (2000), who specify panel VAR models for micro-data, to the best of our knowl-
edge only Pesaran and Smith (1996), Canova and Marcet (1997) and Hsiao et al.
(1999) have considered problems connected with the speciCcation and the estimation
of (univariate) dynamic macro-panels. Garcia Ferrer et al. (1987), Zellner and Hong
(1989), Zellner et al. (1991), on the other hand, have provided Bayesian shrinkage
estimators and predictors for similar models. In general, a researcher focuses on the
speciCcation

yit = A(L)yit−1 + �it ; (1)

where yit is a G × 1 vector, i = 1; : : : ; N ; A(L) is a matrix in the lag operator; �it =
�i + �t + uit , where �t is a time e7ect; �i is a unit speciCc e7ect and uit a disturbance
term. In some cases a speciCcation with time varying slope coeGcients and a Cxed
e7ect is used (see e.g. Holtz-Eakin et al., 1988). Two main restrictions characterize this
speciCcation. First, it assumes common slope coeGcients. Second, it does not allow
for interdependencies across units. With these restrictions, the interest is typically in
estimating the average dynamics in response to shocks (the matrix A(L)).
Canova and Marcet, Pesaran and Smith and others, instead, use a univariate dynamic

model of the form

yit = �i + �iyit−1 + x′it�i + v′t�i + �it ; (2)

where yit is a scalar, xit is a set of k exogenous unit speciCc regressors, vt is a set of h
exogenous regressors common to all units while �i, �i and �i are unit speciCc vectors
of coeGcients. Two restrictions are implicit also in this speciCcation. First, no time
variation is allowed in the parameters. Second, there are no interdependencies either
among di7erent variables within units or among the same variable across units.
In this paper we relax these restrictions and study the issues of speciCcation, estima-

tion and forecasting in a macro-panel VAR model. Our point of view is Bayesian. Such
an approach has been widely used in the VAR literature since the works of Doan et al.
(1984), Litterman (1986), and Sims and Zha (1998) and provides a convenient frame-
work where one can allow for both interdependencies and meaningful time variations
in the coeGcients. The speciCcation we consider has the general form

yit = Ait(L)Yt−1 + �it ; (3)

where Ys(s¡ t) is a GN × 1 vector (with G variables for each unit i = 1; : : : ; N ).
Because coeGcients vary across units and along time, estimation of the parameters is
impossible without imposing restrictions. Instead of constraining the coeGcients to be
the same across units, we assume that they are random and a prior distribution on Ait(L)
is introduced. We decompose the parameter vector into two components, one which is
unit speciCc and one which is time speciCc. We specify a .exible prior on these two



F. Canova, M. Ciccarelli / Journal of Econometrics 120 (2004) 327–359 329

components which parsimoniously accounts for interdependencies in the cross section
and for time variations in the evolution of the parameters. The prior shares features
with those of Lindley and Smith (1972), Doan et al. (1984) and Hsiao et al. (1999)
and has a hierarchical structure, which allows for various degrees of ignorance in the
researcher’s information about the parameters.
Bayesian VARs are known to produce better forecasts than unrestricted VAR and,

in many situations, ARIMA or structural models (Canova, 1995 for references). By
allowing interdependencies and some degree of information pooling across units, we
introduce an additional level of .exibility which may improve the forecasting ability
of these models.
We describe in detail two situations of interest: one with fully hierarchical priors and

one Minnesota-type priors. In the former case, a Markov Chain Monte Carlo method
(the Gibbs sampler) is employed to calculate posterior distributions. Such an approach
is useful in our setup since it exploits the recursive features of the posterior distribution.
For the Minnesota-type prior, unknown parameters are estimated using the predictive
density and posterior estimates are obtained by plugging-in our estimates in the relevant
formulas in an empirical Bayes fashion. We provide recursive formulas for multistep,
multiunit forecasts, consistent with the information available at each point in time using
the posterior of the parameters or the predictive density of future observations. The
latter is also used to compute turning point probabilities.
To illustrate the features of the proposed approach, we apply the methodology to

the problem of predicting output growth and of forecasting turning points in output
growth in the G-7 and computing the probability of a recession in the US. To evaluate
the forecasting performance we provide an extensive comparison with other speciCca-
tions suggested in the literature. The results indicate that our approach improves the
forecasting performance of existing univariate and simple BVAR models, both at the
one and at the four steps horizons. The improvements are of the order of 5–15%
when the Theil-U is used and about 2–8% when the MAD is used. The forecasting
performance of our speciCcation is also preferable to the one of a BVAR model which
mechanically extends the Litterman prior to the panel case. In terms of turning point
predictions, the three versions of the panel approach we consider are able to recognize
about 80% of turning points and they turn out to be the best for this task, along with
Zellner’s g-prior shrinkage approach. The simple extension of the Litterman’s prior to
the panel case does poorly along this dimension and it is the second worst among
all the procedures employed. Finally, we show that the method is competitive with
the best speciCcations in predicting the downturn in US economic activity occurred
in 1990:3 when using the information available in 1988:4, a turning point which was
missed by many commercial and government forecasting agencies. Depending on the
speciCcation, our approach suggests that downturn at that date occurs with 30–57%
probability.
The rest of the paper is organized as follows. The next section gives the general

model speciCcation and the assumptions made. Section 3 provides general formulas
for the posterior. Section 4 sets up the prior and discusses the computational issues
involved. Section 5 describes formulas for multistep, multiunits forecasts. Section 6
contains the application. Section 7 concludes.
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2. General speci�cation

The statistical (reduced form) model we use is of the form

yit =
N∑

j=1

p∑
l=1

bj
it; lyjt−l + ditvt + uit ; (4)

where i=1; : : : ; N ; t=1; : : : ; T ; yit is a G×1 vector for each i, bj
it; l are G×G matrices,

dit is G × q, vt is a q × 1 vector of exogenous variables, common to all units, and
uit is a G × 1 vector of random disturbances. Here p is the number of lags, G the
number of endogenous variables and q the number of exogenous variables (including
a constant).
The generality of (4) comes from at least two features. First, the coeGcients are

allowed to vary both across units and across time. Second, there are interdependencies
among units whenever bj

it; l �= 0 for j �= i and for any l. Both features constitute the main
di7erence with the literature (Holtz-Eakin et al., 1988; Rebucci, 1998) that considers
panel VAR models. It is easy to verify that if ditvt=at , bit=bt ∀i, uit= tfi+!itb

j
it; l=0,

j �= i, ∀l, our speciCcation collapses to the one used by Holtz-Eakin et al. (1988). We
rewrite (4) in a stacked regression manner

Yt =Wt#t + Ut; (5)

where Wt = ING ⊗ X ′
t ; Xt = (y′

t−1; y
′
t−2; : : : ; y

′
t−p; v

′
t)
′; #t = (#′1t ; : : : ; #

′
Nt)

′ and #it =
(�1it

′; : : : ; �G
it
′)′. Here ys(s¡ t) is an NG× 1 vector, �g

it are k× 1 vectors, k=NGp+ q,
containing, stacked, the g rows of the coeGcient matrices bit and dit , while Yt and Ut

are NG × 1 vectors containing the endogenous variables and the random disturbances
of the model.
If #it are di7erent for each cross-sectional unit in di7erent time periods, there is no

way to obtain meaningful estimates of them using classical methods. One possibility
is to view each coeGcient vector as random with a given probability distribution. We
make the following assumptions:

1. For each i, the Gk×1 vector #it has a time invariant and a time varying component:

#it = �i + (it : (6)

2. For each i, the Gk × 1 vector �i is normally distributed

�i ∼ N(Ri M�; *i); (7)

where Ri = IG ⊗ Ei, *i = V ⊗ Ei-1Ei, the G × G matrix V and the k × k matrix
-1 are symmetric and positive semideCnite and Ei is a k × k matrix that commutes
the k coeGcients of unit i for each of the G equations with those of unit one. We
assume cov(�i; �j) = 0 ∀i �= j.

3. The mean vector M� is assumed to have a normal distribution

M� ∼ N(0;1): (8)
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4. For each i, (it = Ri(t , with (t independent of �i. The Gk × 1 vector (t evolves
according to

(t = B(t−1 + (I − B)(0 + et ; (9)

where B=�∗ IGk and, conditional on Ut and Wt , et ∼ N(0; V ⊗-2t), -2t=41-2t−1+
42-20 and -20 is a positive semideCnite, symmetric matrix. The initial conditions
are such that (0 ∼ N((̃0; V ⊗ P20).

5. Conditional on Wt , the vector of random disturbances Ut has a normal distribution

Ut ∼ N(0; 5u): (10)

where 5u=5⊗H , 5 is N×N and H is G×G, both positive deCnite and symmetric
matrices.

Given the previous assumptions, the structure of the model can be summarized with
the following a priori hierarchical scheme

Yt |Ft; �; (t ∼ N(Wt�+ Zt(t ; 5u);

� |Ft ∼ N(SN M�;Q);

M� |Ft ∼ N(0;1);

(t |Ft ∼ N((̂t|t−1; -̂t|t−1); (11)

where Ft is the information set at t (which includes Y0, the presample information, and
Wt); SN = diag{Ri}; Zt =WtSN ; Q = diag(*1; : : : ; *n), (̂t|t−1 = B(̂t−1|t−1 + (I − B)(̂0;
-̂t|t−1 =B-̂t−1|t−1B′+(I −B)(V ⊗-20)(I −B)′+V ⊗-2; t|t−1, and the notation t|t− 1
indicates values at t predicted with information at t − 1.
Assumptions 1–4 decompose the parameters vector for each i in 2 components:

one is unit speciCc and constant over time; the other is common across units but
varies with time. The prior possibility for time-variation increases the .exibility of the
speciCcation and provides a general mechanism to account for structural shifts without
explicitly modelling the source of the shift. The fact that the time-varying parameter
vector is common across units does not prevent unit-speciCc structural shifts, since #it
can be re-written as

#it = (I − B)(�i + (i0) + (I − B)#it−1 + eit ; (12)

where unit speciCc variations of time occur through the common coeGcient vector B.
Assumptions 2 and 3 can be used to recover the vector � or the mean coeGcient

vector M�. In this sense, we can distinguish between “Cxed” and “random” e7ects,
following Lindley and Smith (1972). By Cxed e7ects we mean the estimation of the
vector #it , while the term random e7ects refers to the estimation of M#t = M� + (t . For
example, in a VAR without interdependencies (i.e. bj

it; l = 0, j �= i), we may be more
interested in the relationships among the variables of the system for a “typical” unit,
in which case interest centers in the estimation of the random e7ect M#t . If, instead, we
are interested in the relationships across units, for example, wishing to Cnd the e7ect
of a shock in the g variable of unit j on the variables of unit i, we better estimate #it
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for each i. In the context of forecasting, we may be concerned with point prediction
using the average vector M#t or in predicting future values of the variables of interest
using information available for each unit. Assumption 2 allows for some degree of
a priori pooling of cross-sectional information via an exchangeable prior on �i. This
may be useful in a panel when there are similarities in the characteristics of the vector
of variables across units. In this case coeGcients of other units may contain useful
information for estimating the coeGcients of unit i.
The structure underlying assumption 4 is similar to Canova (1993). There it is

shown that (9) allows for nonlinearities in the moment structure (of both ARCH-M
and Markov switching type) and nonnormalities in the time series under consideration.
Note that the common component evolves over time with an heteroschedastic structure
(for homoskedastic variations set 41 = 0). Besides being useful to directly capture
generic volatility clustering which are common across countries, time variations in the
variance allow the model to quickly adapt when outliers or regime switches of short
mean length are present.
The assumed Kronecker structure for the variance–covariance matrices is compu-

tationally convenient and allows us to nest interesting hypothesis. For instance, when
-1=0, there is no heterogeneity in the cross-sectional dimension of the panel. If B=IGk ,
coeGcients evolve over time as a random walk, while when B = IGk and 41 = 42 = 0,
the model reduces to a standard dynamic panel model with no time-variation in the
coeGcient vector. Moreover, when V = 0 neither heterogeneity nor time variation are
present in the model. Finally, a single country VAR with Cxed coeGcients can be
obtained by setting bj

it; l = 0, ∀j �= i, ∀l and letting -1, 1, 5t go to zero. Note that,
with the Kronecker structure, the prior is fully symmetric in the sense that it is the
same regardless of the variables and of the units we are considering. There are both
notational and computation advantages in setting the prior this way. However, when
the N units display scale and transmission di7erences, one may want to relax this as-
sumption and let, e.g., *i = V ⊗ -i1 while leaving the prior distributions for M� and (t

are unchanged.
Stock and Watson (2002), Forni et al. (2000) and others have examined macro-panel

models where either N or G or both are large. Their approach is to setup the problem
so that it can be handled in the context of (dynamic) index models with classical
methods. From (11) one can see that also our speciCcation has an index structure,
where the two indices we consider are a “common” one and a “time speciCc” one.
Two major features di7erentiate our approach from theirs: Crst, the coeGcients on
our indices are allowed to vary over time; second, their inferential methods require
asymptotic approximations, while our approach delivers exact estimates even when N
or G are small.

3. Posterior estimates

3.1. Fixed e;ects model

From (11) the likelihood function is

L(Yt |#t ; Ft) = N(Wt�+ Zt(t ; 5u)
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and the prior, given information up to t, is

p(#t |Ft) = N(#̂t−1; Ĥ t−1); (13)

where #̂t−1 = SN

(
0 + (̂t|t−1

)
and Ĥ t−1 = (SN1S ′

N + Q) + SN -̂t|t−1S ′
N . Standard cal-

culations give us that the posterior ;0(#t |Ft; Yt) is normal with mean #∗t and variance
H∗

t where

#∗t =H∗
t

(
W ′

t 5
−1
u Yt + Ĥ−1

t−1#̂t−1
)

= #̂t−1 + Ĥ t−1W ′
t

[
WtĤ t−1W ′

t + 5u
]−1

(Yt −Wt#̂t−1); (14)

H∗
t =

[
Ĥ−1

t−1 +W ′
t 5

−1
u Wt

]−1

= Ĥ t−1 − Ĥ t−1W ′
t

[
WtĤ t−1W ′

t + 5u
]−1

WtĤ t−1: (15)

In the second expression, posterior estimates are obtained recursively, given #̂0 and Ĥ 0.
In some cases one may want to obtain posterior distributions of � and (t separately.

It is straightforward to show that(
�

Yt

∣∣∣∣∣Ft

)
∼ N

[(
SN0

Zt(0 + (̂t|t−1)

)
;

(
<11 <12

<21 <22

)]
;

where <11=(SN1S ′
N +Q); <12=<11W ′

t ; <21=Wt<11; <22=Wt<11W ′
t +Zt-̂t|t−1Z ′

t +5u.
Using the properties of multivariate normal distributions, the conditional marginal

;1(�|Ft; Yt) is normal with mean �∗ = SN0+<12<−1
22

[
Yt − Zt

(
0 + (̂t|t−1

)]
and vari-

ance V ∗
� = <11 − <12<−1

22 <21 and the conditional marginal ;2((t |Yt; Ft) is normal

with mean (∗t = (̂t|t−1 + -̂t|t−1Z ′
t <

−1
22

[
Yt − Zt

(
0 + (̂t|t−1

)]
and variance -∗

t = -̂t|t−1−
-̂t|t−1Z ′

t <
−1
22 Zt-̂t|t−1.

3.2. Random e;ects model

When interest centers on the estimation of the mean vector M#t , we rewrite the model
as

Yt = Zt M#t + =t ; (16)

where M#t = M�+ (t and =t = ut +Wtv. Standard manipulations give us that the posterior
;3( M� |Yt; Ft) ∼ N( M�∗; 1∗) where

M�∗ = 0 −1Z ′
t

[
Zt

(
1 + -̂t|t−1

)
Z ′
t + 5u +Wt QW ′

t

]−1 [
Yt − Zt

(
0 + (̂t|t−1

)]
;

(17)

1∗ =1 −1Z ′
t

[
Zt

(
1 + -̂t|t−1

)
Z ′
t + 5u +Wt QW ′

t

]−1
Zt1; (18)
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while the posterior ;2((t |Yt; Ft) ∼ N((∗t ; -
∗
t ) and (∗t and -∗

t are the same as before.
Hence the posterior ;4( M#t |Yt; Ft) ∼ N( M#∗t ; H

∗
t ) where

M#∗t =
(
0 + (̂t|t−1

)
+
(
1 + -̂t|t−1

)
Z ′
t

[
Zt

(
1 + -̂t|t−1

)
Z ′
t + 5u +Wt QW ′

t

]−1

×
[
Yt − Zt

(
0 + (̂t|t−1

)]
; (19)

H∗
t =

(
1 + -̂t|t−1

)
−
(
1 + -̂t|t−1

)
Z ′
t

[
Zt

(
1 + -̂t|t−1

)
Z ′
t + 5u +Wt QW ′

t

]−1

×Zt

(
1 + -̂t|t−1

)
: (20)

4. Setting up the priors

The formulas derived in the previous section are operational only if the vector

>= (vec(0); vec((̃o); vech(5u); vech(-20); vech(B); vech(1); vech(Q))

is known.
When this is the case, to obtain marginal posteriors we need to integrate nuisance

parameters out of the joint posterior density. This integration, in general, is diGcult,
even with brute force numerical methods, given the large number of parameters con-
tained in >. In this section we describe two approaches which make the computation
of the posterior feasible.

4.1. Informative priors

When the prior for the parameter vector is informative, the posterior distribution
does not have an analytical closed form. Nevertheless, we can implement a hierarchi-
cal Bayes analysis using a sampling-based approach, such as the Gibbs sampler, (see
e.g. Geman and Geman, 1984; Gelfand and Smith, 1990; Gelfand et al., 1990 among
others).
The basic idea of the approach is to construct a (computable) Markov chain on a

general state space such that the limiting distribution of the chain is the joint posterior
of interest. Suppose we have a parameter vector # with k components (#1; #2; : : : ; #k)
and that the posterior distributions ;(#j |#s; s �= j) are available. Then the algorithm
works as follows. We start from arbitrary values for #(o)1 ; #(o)2 ; : : : ; #(o)k . Setting i = 1,

we cycle through the conditional distributions sampling #(1)1 from ;
(
#1 |#(o)2 ; : : : ; #(o)k

)
,

#(1)2 from ;
(
#2 |#(1)1 ; : : : ; #(o)k

)
, up to #(1)k from ;

(
#k |#(1)1 ; : : : ; #(1)k−1

)
. Next, we set

i=i+1 and repeat the cycle. After iterating on this cycle, say, M times, the sample value

#(M)=
(
#(M)
1 ; #(M)

2 ; : : : ; #(M)
k

)
can be regarded as a drawing from the true joint posterior

density. Once this simulated sample has been obtained, any posterior moment of interest
or marginal density can be estimated, using the ergodic theorem. Convergence to the
desired distribution can be checked as suggested in Gelfand and Smith (1990).
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In order to apply the Gibbs sampler to our panel VAR model, we need to specify
prior information so that the conditional posterior distribution for components of the
parameter vector can be obtained analytically. Recall that our hierarchical model is
given by

Yt =Wt�+ Zt(t + ut ;

�i = Ri M�+ �i;

M�= 0 + v;

(t = B(t−1 + (1− B)(0 + et ;

where ut ∼ N(0; 5 ⊗ H); �i ∼ N(0; V ⊗ Ei-1Ei); v ∼ N(0; 1); (o ∼ N(0; V ⊗ -20);
et ∼ N(0; V ⊗-2t) and -2t = 41-2t−1 + 42-20. We assume that the covariance matrices
are independent, that V , 1, 41, 42, and 0 are known and that 5 ∼ iWN (Ao;Mo),
H ∼ iWG(ho; Po), -1 ∼ iWk(w1; W1), and -20 ∼ iWk(w2; W2), where the notation D ∼
iWp(v; Z) means that the symmetric positive deCnite matrix D follows a p-dimensional
inverted Wishart distribution with v degrees of freedom and scale matrix Z . We also
assume that for each of these distributions the degrees of freedom and the scale matrix
are known. These assumptions are inconsequential and the analysis goes through, even
when consistent estimates are substituted for the true ones.
Given this prior information, the posterior density of the parameter vector

#T =
(
vec(�); vech(5); vech(H); vec( M�); vech(-1); vec{(t}Tt=0; vech(-20)

)
is given by

;(#T |YT ; FT )˙ f(YT |#T ; FT )p(#T |FT ); (21)

where YT=(Y1; : : : ; YT ) is the sample data and p(#|FT ) is the prior information available
at T .
To obtain marginal posteriors, we iterate on the conditional distributions of the pa-

rameters, which can easily be obtained from the conditional posterior (21). To deal
with the presence of time varying parameters we adapt the results of Carter and Kohn
(1994) and Chib and Greenberg (1996). In fact, conditional on {(t}Tt=0, the distribution
of the remaining parameters can be derived without diGculty. Let  −x be the vector #
containing all the parameters but x. Then, the conditional distributions for parameters
other than {(t} are:

-1 |  −-1 ; YT ; FT ∼ iWk(w1 + NG; Ŵ 1);

-20 |  −-20 ; YT ; FT ∼ iWk(w2 + TG; Ŵ 2);

5 |  −5; YT ; FT ∼ iWN (Ao + GT; M̂ o);
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H |  −H ; YT ; FT ∼ iWG(ho + NT; P̂o);

� |  −�; YT ; FT ∼ N(�̂; V̂ �);

M� |  − M�; YT ; FT ∼ N(�∗; V̂ ∗); (22)

where the expressions for Ŵ 1; Ŵ 2; M̂ o; P̂o; �̂; V̂ �; �∗; V̂ ∗ are given in the appendix.
Following Chib and Greenberg (1996), the parameter vector (t can be included in

the Gibbs sampler via the distribution ;((o; : : : ; (T |YT ; FT ;  T ) where  t ≡ #−{(t}t . We
can rewrite such a distribution as

;((T |YT ; FT ;  T )× ;((T−1 |YT ; FT ;  T−1; (T )× · · ·
× ;((o |YT ; FT ;  0; (1; : : : ; (T ): (23)

A draw from the joint distribution can be obtained by drawing (̃T from ;((T |YT ;
FT ;  T ); then (̃T−1 from ;((T−1 |YT ; FT ;  T−1; (̃T ) and so on. Let (s = ((s; : : : ; (T ) and
Y s = (Ys; : : : ; YT ) for s6T . The density of the typical term in (23) is

;((t |YT ; FT ;  t ; (t+1)

˙ ;((t |Y t; Ft ;  t);((t+1 |Yt; Ft ;  t−1; (t)f(Y t+1; (t+1 |Yt; Ft ; (t ; (t+1)

˙ ;((t |Y t; Ft ;  t);((t+1 |Ft;  t−1; (t): (24)

The last row of (24) follows from the fact that, conditional on (t+1, the joint density
of (Y t+1, (t+1) is independent of (t and, conditional on (t ; (t+1 is independent of
Yt . The second density in (24) is Gaussian with moments B(t + (I − B)(0 and V⊗
-2t . The Crst was derived in Section 3, and it is Gaussian with mean (̂t|t = (̂t|t−1 +
-̂t|t−1Z ′

t <
−1
22 (Yt−Zt0−Zt(̂t|t−1) and variance -̂t|t=-̂t|t−1−-̂t|t−1 Z ′

t <
−1
22 Zt-̂t|t−1. Hence,

;((t |YT ; Ft ;  t ; (t+1) ∼ N((̂t ; -̂t) where (̂t = (̂t|t + Mt((t+1 − B(̂t|t − (I − B)(0); -̂t =
-̂t|t−Mt-∗

t+1|; t M
′
t and Mt=�-̂t|t -̂

∗−1
t+1|t , with -̂∗

t+1|t=[-̂t+1|t−(I−B)(V⊗-20)(I−B)′].
To be concrete the following algorithm can be used to sample {(t}: Crst, starting

from given initial conditions, we run the Kalman Clter to recursively get (̂t and -̂t ;
then we simulate (̃T from a normal with mean (̂T |T and variance -̂T |T ; (̃T−1 from
N((̂T−1; -̂T−1), and so on until (̃o is simulated from N((̂o; -̂o) where, for each t,

(̂t = (̂t|t +Mt((̃t+1 − �(̂t|t − (1− �)(̂0|0);

and

-̂t = -̂t|t −Mt-̂∗
t+1|; tM

′
t :

One special case of this setup deserves some attention. Assume informative priors
on all the parameters except on H , whose prior is now di7use. Then our framework
resembles the Normal-Di7use prior of Kadiyala and Karlsson (1997) where posterior
dependence among the coeGcients of di7erent equations obtains even when there is
prior independence. There are two additional major di7erence with the speciCcation
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used by these authors: Crst, we assume that both the mean and the variance of #t are
random variables—they take the mean and the variance of #t to be Cxed. Second, we
do not restrict 5u to be diagonal and therefore allow complicated interactions among
variables within and across countries.
Canova and Ciccarelli (1999) describe in detail two special cases of the general

setup of this subsection: (i) no information on the location of the mean of the unit
speciCc e7ect (1−1 =0) and (ii) no information on the time varying component of the
coeGcients at a particular point in time (-̂−1

t|t−1 =0). They show that a di7use prior on
M� does not allow to update the prior information we have on (t and that, in the latter
case, the posterior mean and variance for #t are the same as those obtained when only
prior information on � is used.
Finally, it is worth reminding that the structure employed imposes symmetry restric-

tions, which are desirable in an unrestricted VAR system. Clearly, these restrictions
may be inappropriate for structural or restricted VAR systems and alternative speciC-
cations, along the lines of Sims and Zha (1998), should be used.

4.2. Minnesota-type prior

Given the computational complexity involved in calculating posterior Gibbs sampling
estimates for large-scale problems, one may be interested in knowing whether shortcuts,
which do not require iterative procedures, may be used.
Here, we adapt the so-called Minnesota prior to a panel VAR framework. The Min-

nesota prior, described in Litterman (1986), Doan et al. (1984), Ingram and Whiteman
(1994), Ballabriga et al. (1998) among others, is a way to account for the near non-
stationarity of many macroeconomic time series and, at the same time, to weakly re-
duce the dimensionality of a VAR model. Given that the intertemporal dependence
of the variables is believed to be strong, the prior mean of the VAR coeGcients on
the Crst own lag is set equal to one and the mean of remaining coeGcients is equal
to zero. The covariance matrix of the coeGcients is diagonal (so we have prior and
posterior independence between equations) and the elements are speciCed in a way
that coeGcients of higher order lags are likely to be close to zero (the prior variance
decreases when the lag length increases). Moreover, since most of the variations in the
VAR variables is accounted for by own lags, coeGcients of variables other than the
dependent one are assigned a smaller relative variance. The prior on the constant term,
other deterministic and exogenous variables, is di7use. Finally, the variance–covariance
matrix of the error term is assumed to be Cxed and known.
For a panel VAR setup we introduce the following modiCcations. The covariance-

matrices -20; 1;Q, are assumed to have the same structure. Take, for example, Q =
diag(*1; : : : ; *n), where *i = V ⊗ Ei-1Ei. We assume that V = H (see Eq. (10)) and
that -1 is diagonal with elements:

A2gijs =

(
E1�E

�(gijs)
3

lE2
1
Ajs

)2
g; j = 1; : : : ; G i; s= 1; : : : ; N l= 1; : : : ; p;
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where �(gi; js) = 0 if i = s and 1 otherwise and

A2gm = (E1�E4)2; m= 1; : : : ; q:

Here, gi represents equation g of unit i; js the endogenous variable j of unit s; l the
lag, m exogenous or deterministic variables.
The hyperparameter E1� controls the tightness of beliefs for the vector �; E2 the

rate at which the prior variance decays with the lag; E3 the degree of uncertainty for
the coeGcients of the variables of unit s in the equations of unit i; E4 the degree
of uncertainty of the coeGcients of the exogenous variables and Ajs are the diagonal
elements of the matrix 5u used as scale factors to account for di7erences in units
of measurement. Notice that we do not have prior independence between equations:
our prior information speciCes that , for example, the coeGcient on lag 1 of the GNP
equation for the US may have some relationship with the same coeGcient in the PRICE
equation for US. Moreover, we have not speciCed a hyperparameter which controls the
overall tightness of beliefs because the randomness of the coeGcients depends on �i

and (t and we parametrize the uncertainty in each of them separately. Finally, there is
no distinction between own versus other countries variables (see Sims and Zha, 1998).
This would not be the case if Vi were country speciCc. The structures for 1 and -o

are identical with E1� being replaced by E1 M� and E1(, respectively.
To complete the speciCcation, the elements of the matrix H and the A’s are estimated

from the data to tune up the prior to the application.
The prior time-varying features of the model are determined by specifying the ma-

trices B; -2t . We assume that B is diagonal and that each of the k× k diagonal blocks
Bg satisCes: Bg = diag(E5). Furthermore, we let -2t = E6-2o. Here, E5 controls the
evolution of the law of motion of (t and E6 = 41 control the time variations in (t .
Finally, we assume that the k × 1 vectors 0g and (̃og have the following structures:

0g =




0

...

E7

0

...

0



; (̃og =




0

...

1− E7

0

...

0



;

where 0g and (̃og are the gth-elements of the mean vectors 0 and (̃o and E7 controls
the prior mean on the Crst own lag coeGcient of the dependent variable in equation g
for unit i.
Summing up, our prior information can be represented with a nine-dimensional vec-

tor of hyperparameters G = (E1�; E1(; E1 M�; E2; E3; E4; E5; E6; E7). Estimates of G can be
obtained by maximizing the predictive density of the model as in Doan et al. (1984).
Posterior distributions for the parameters are obtained by plugging-in the resulting



F. Canova, M. Ciccarelli / Journal of Econometrics 120 (2004) 327–359 339

estimates for 0; (̃o; -2o; 5u; B;1;Q in the formulas of Section 3 in an empirical Bayes
fashion (see e.g. Berger, 1985).
Compared with Ballabriga et al. (1998), who used a Minnesota prior on a panel VAR

model for the Spanish, German and French economies, our speciCcation separates the
prior information for the time and the individual component (they have one parameter
in place of E1�; E1(; E1 M�); it introduces a further level of uncertainty by specifying a
prior for M� and allows for a priori pooling of the information present in the cross
section of the panel. None of these features is present in their speciCcation.

5. Forecasting

Once posterior estimates are obtained, forecasts can be computed. In order to ob-
tain multistep forecasting formulas for a panel VAR and to compute turning points
probabilities, we rewrite (4) in a companion VAR(1) form

Yit =
N∑

j=1

Bj
itYjt−1 + Ditzt + Uit ; (25)

where Yit and Uit are Gp × 1 vectors, Bj
it is a Gp × Gp matrix and Dit is a Gp × q

matrix.
Stacking for i, and repeatedly substituting we have

Yt =

[
h−1∏
r=0

Bt−r

]
Yt−h +

h−1∑
s=0

[
s−1∏
r=0

Bt−r

]
Dt−szt−s +

h−1∑
s=0

[
s−1∏
r=0

Bt−r

]
Ut−s (26)

or

yt = J

[
h−1∏
r=0

Bt−r

]
Yt−h +

h−1∑
s=0

DstDt−szt−s +
h−1∑
s=0

Dstut−s; (27)

where Dst =Zs−1
r=0 Bt−r , and J = IN ⊗ J1; J1 = [IG 0] and J is a selection matrix such

that JYt = yt; JUt = ut and J ′JUt =Ut . The expression in (27) can be used to compute
the h-steps ahead forecast of the NG-dimensional vector Yt .
First, we compute a “point” forecast for yt+h. The forecast function is given by

yt(h) = J

[
h−1∏
r=0

Bt+h−r

]
Yt +

h−1∑
s=0

Dst+hDt+h−szt+h−s (28)

or, recursively

yt(h) = J B̃t+hYt(h− 1) + D̃t+hzt+h;

where D̃t+h is the NG×q matrix [d1t d2t · · ·dNt]′ and B̃t+h=diag(B1t ; B2t ; : : : ; Bnt) with
Bit=(B1

it ; B
2
it ; : : : ; B

N
it ). One way to obtain a h-step ahead forecasts is to use the posterior

mean of B̃t+h and D̃t+h and the mean of the predictive density for zt+h, conditional on
the information at time t. Estimates for the posterior mean of the coeGcients can be
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obtained from the recursive formulas for (t (and, consequently, for #t) using expressions
like (9) and by drawing from distributions like (23) in a recursive fashion. Call this
estimates B̂t+h|t and D̂t+h|t . The forecast error is yt+h − ŷ t(h) =

∑h−1
s=0 Dst+hut+h−s +

[yt(h)− ŷ t(h)]. To measure the forecasting performance we compute the mean square
error (MSE) or the mean absolute error (MAD) of the estimated forecast which are
given by

MSE(ŷ t(h)) =
h−1∑
s=0

Dst+h5uD′
st+h +MSE[yt(h)− ŷ t(h)];

MAD(ŷ t(h)) =
h−1∑
s=0

|ut+h−s|+MAD[yt(h)− ŷ t(h)]:

The Crst term on the RHS of each equation can be obtained using posterior mean
estimates of Bt+h−r and of Ut , conditional on the information at time t, while for the
second term an approximation can be computed along the lines of L[utkepohl (1990,
pp. 86–89). Clearly, if a researcher is interested in point forecasts using the average
value of the parameters, then the previous formulas apply using for B̂t+h|t and D̂t+h|t
the posteriors derived in Section 3.2.
In many situations, it may be more appealing to compute “average” forecasts h-step

ahead using the predictive density

f(Yt+h|Ft) =
∫

f(Yt+h|Ft; #)p(#|Ft);

where f(Yt+h|Ft; #) is the conditional density of the future observation vector given #,
and p(#|Ft) is the posterior pdf of # at time t. To compute forecasts for Yt+h we can
sample from the predictive density numerically. For each i=1; : : : ; M we draw #(i) from
the posterior distribution and simulate the vector Y (i)

t+h from the density f(Yt+h|Ft; #(i)).
{Y (i)

t+h}Mi=1 constitutes a sample, from which we can compute the necessary moments.
The value of the forecast is then the ergodic average Ŷ t+h = M−1∑M

i=1 Y (i)
t+h and its

numerical variance can be estimated using var(Ŷ t+h)=M−1[Qo +
∑r

s=1(1− s=(r+1))
(Qs + Q′

s)] where Qs =M−1∑M
i=s+1 [Y

(i)
t+h − Ŷ t+h][Y

(i)
t+h − Ŷ t+h]′.

Since the computation of the impulse response function for orthogonalized shocks
is a simple corollary of the calculation of forecasts, the approach we provide here to
calculate point and average forecasts can also be used to compute impulse responses.
In fact, given the information up to time t, computing impulse response at t + h
is equivalent to calculating the di7erence between the conditional forecasts at t + h,
given that at t + 1 there has been a one unit impulse in one of the orthogonal shocks,
and the unconditional forecast, i.e. with the value of the vector that would have oc-
curred without shocks (see Koop, 1992 for an application to structural VAR models).
This idea is exploited in a recent paper by Waggoner and Zha (1998). The authors,
using a version of (27), develop two Bayesian methods for computing probability dis-
tributions of conditional forecasts. The last term in (27) represents the dynamic impact
of structural shocks which a7ect future realizations of variables through the impulse
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response matrix Dst . With conditions or constraints imposed on this last term we can
produce what they call conditional forecasts.
In order to compute structural impulse responses and their error bands we must

work with a structural VAR, e.g. impose some restrictions on the contemporaneous
coeGcient matrix. A prior (.at or informative) can then be assigned to the non-zero
elements of this matrix, as suggested by Sims and Zha (1998). The extension of their
approach to panel data is however not straightforward and we postpone this issue to
future work.
Turning point predictions can also be computed from the predictive density of future

observations (see in Zellner et al., 1991). We deCne turning points as follows:

De�nition 5.1. A downward turn for unit i at time t+h+1 occurs if Sit+h, the growth
rate of the reference variable (typically, GNP), satisCes for all h Sit+h−2; Sit+h−1 ¡
Sit+h ¿Sit+h+1. An upward turn for unit i at time t + h + 1 occurs if the growth rate
of the reference variable satisCes Sit+h−2; Sit+h−1 ¿Sit+h ¡Sit+h+1.

Similarly, we deCne a non-downward turn and a non-upward turn:

De�nition 5.2. A non-downward turn for unit i at time t+h+1 occurs if Sit+h satisCes
for all h Sit+h−2; Sit+h−1 ¡Sit+h6 Sit+h+1. A non-upward turn for unit i at time t+h+1
occurs if the growth rate of the reference variable satisCes Sit+h−2; Sit+h−1 ¿Sit+h¿
Sit+h+1.

Although there are other deCnitions in the literature (see e.g. Lahiri and Moore,
1991) this is the most used one and it suGces for our purposes. Let f̃(Yi; t+h|Ft) =∫
Yp; t+h

f(Yt+h|Ft)dYp; t+h be the marginal predictive density for the variables of unit i

after integrating the remaining p variables and let K(S1it+h|Ft)=
∫ · · · ∫ f(S1it+h · · · SG

it+h
|Ft) dS2it+h · · · dSG

it+h be the marginal predictive density for the growth rate of the ref-
erence variable, which we order Crst in the list, in unit i.
Take now the simplest case of h=0. To compute the probability of a turning point

we have to calculate S1it+1. Given the marginal predictive density K, the probability
of a downturn in unit i is

PDt = Pr(S1it+1 ¡S1it |S1it−2; S
1
it−1 ¡S1it ; Ft)

=
∫ S1it

−∞
K(S1it+1|S1it−2; S

1
it−1; S

1
it ; Ft) dS1it (29)

and the probability of an upturn is

PUt = Pr(S1it+1 ¿S1it |S1it−2; S
1
it−1 ¿S1it ; Ft)

=
∫ ∞

S1it

K(S1it+1|S1it−2; S
1
it−1; S

1
it ; Ft) dS1it : (30)

Using a numerical sample from the predictive density satisfying S1it−2; S
1
it−1 ¡S1it , we

can approximate these probabilities using the frequencies of realizations which are less
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than or greater than Sit . With a symmetric loss function, minimization of the expected
loss leads to predict the occurrence of turning point at t+1 if PDt ¿ 0:5 or PUt ¿ 0:5.
For h �= 0 the probability of a turning point can be computed using the joint pre-

dictive density for all future observations, i.e. in the case of a downturn,

PDt+h = Pr(S1it+h+1 ¡S1it+h ¿S1it+h−2; S
1
it+h−1|Ft)

=
∫ S1it+h

−∞

∫ ∞

S1it+h

∫ ∞

S1it+h

K(S1it+h+1 ¡S1it+h ¿S1it+h−2; S
1
it+h−1|Ft)

× dS1it+h dS
1
it+h−1 dS

1
it+h−2: (31)

Given the available panel data structure we may also be interested in computing the
probability that a turning point occurs jointly for m6N units of panel. For example,
we would like to compute the probability that at t + 1 there will be a recession in
European countries. Let K̃(S1t+h|Ft) be the joint predictive density of the reference
variable for the m units of interest. Then the probability of a downturn is

Pm
Dt = Pr(S1it+1 ¡S1it i = 1; : : : ; m|S1it−2; S

1
it−1 ¡S1it ; Ft)

=
∫ S1it

−∞
· · ·
∫ S1mt

−∞
K̃(S1t+1|S1t−2; S

1
t−1 ¡S1t ; Ft) dS11t · · · dS1mt: (32)

6. An application

In this section we apply the methodology to the problem of forecasting growth rates
and predicting turning points in the G-7 countries. For each country we consider three
national variables (GNP, real stock returns and real money growth) and a world one
(the median real stock return in OECD countries) which is assumed to be exogenous in
each equation. Figs. 1–3 plot the series. Hence there are 21 variables in the panel VAR.
These variables are chosen after a rough speciCcation search over about 10 variables
because they appear to have the highest in-sample pairwise and multiple correlation
with output growth. Among the variables we tried are also the nominal interest rate,
the slope of the term structure and in.ation. Data are sampled quarterly from 1973,1
to 1993,4 and taken from IMF statistics. The sample 1973,1–1988,4 is used to estimate
the parameters and the sample 1989,1–1993,4 to evaluate the forecasting ability and to
predict turning points.
We compare the forecasting performance of our panel VAR speciCcations with those

obtained with other models suggested in the literature. As a benchmark we Crst run
two versions of a tri-variable VAR(2) model for each country separately. The Crst one
is an unrestricted (VAR). The second a weakly restricted VAR(BVAR) where we use
a standard Litterman-prior with a mean of one on the Crst lag, a general tightness of
0.15, no decay in the lags and a weight of 0.5 on the lags of other variables. Since
these two models do not exploit cross-sectional information nor do they allow for time
variation, they are the natural benchmark to measure the improvements obtained by
speciCcations which allow any of these two features in the model.
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Fig. 1. Growth rate of GNP.
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Fig. 2. Real stock return.
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Fig. 3. Real money growth.
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Also for comparison, we run a single equation AR(3) for GNP growth for each
single country, augmented with two lags of real stock returns, 1 lag of real money
balances and one lag of the median world real stock return. This is the speciCcation
used by Garcia Ferrer et al. (1987), Zellner and Hong (1989) and Zellner et al. (1991)
to forecast annual growth rates of output in 18 countries. With the extended sample
and the higher frequency of the data we have available, we conCrm their results for
all of the G-7 countries. This model represents a restricted version of the previous
unrestricted VAR where insigniCcant lags are purged from the speciCcation. The fore-
casting power of this model is measured when parameters are estimated with OLS
and with the three shrinkage procedures: a ridge estimator (RIDGE), an estimator ob-
tained assuming an exchangeable prior on the coeGcients (as in Garcia Ferrer et al.,
1987) (EXCHANGEABLE) and an estimator obtained using a g-prior (as in Zellner
and Hong, 1989) (G-PRIOR). The two latter estimators attempt to improve upon OLS
by combining the information coming from all the units in the cross section. They
di7er in the way they combine this information. Since none of these estimators al-
lows for time variations in the coeGcients we also consider a speciCcation where the
coeGcient vector of the AR(3) model smoothly evolves over time. The evolution of
the coeGcients is controlled by Cve parameters: a general tightness E1, a lag decay
parameter E2, a tightness on world variables E3, a parameter controlling the persistence
in the coeGcients E4 and a parameter controlling for time variations in the variance E5.
Optimal values of these parameters are obtained maximizing the in-sample predictive
density with a simplex algorithm and appear in Table 1.
As a Cnal term of comparison, we use a version of the panel VAR speciCcation

suggested by Ballabriga et al. (1998) (PBVAR). This model speciCcation does not
use the information coming from the cross section—every variable is treated in the
same way regardless of the country where is from—but allows for time variations
in the coeGcients of the model. The model has the same structure as Doan et al.
(1984) and assumes that the coeGcient vector �t has an AR(1) structure of the form
�t=M�t−1+ut where ut , conditional on the information available, is normal with mean
zero and variance 5u. The matrices �0, M , and 5u depend on seven hyperparameters:
Cve parameters control the structure of 5u0 (a general tightness (E1), a tightness on
variables of the same country (E3), a tightness on the variables of other countries (E4),
a geometric lag decay parameter (E2), and a tightness on world variables (E5)); a
parameter describes the structure of M (E6); and a parameter controls the prior mean

Table 1
Estimated hyperparameters: univariate TVC

US Japan Germany UK France Italy Canada

General tightness (E1) 0.022 0.022 0.096 0.091 0.087 0.122 0.022
Lag decay (E2) 2.0 1.0 1.0 0.5 1.0 0.5 2.0
World tightness (E3) 10000 100 100 10000 10000 10000 10000
AR coeGcient (E4) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Time variations (E5) 1:0E− 05 1:0E− 05 1:0E− 05 1:0E− 05 1:0E− 04 1:0E− 05 1:0E− 05



F. Canova, M. Ciccarelli / Journal of Econometrics 120 (2004) 327–359 347

on the Crst lag of �0 (E7). Table 2 reports the optimal values obtained by maximizing
the in-sample predictive density with a simplex algorithm.
We produce forecasts from two versions of our panel VAR model: one with a

modiCed Minnesota-prior (PANEL1) and one with a fully hierarchical heteroschedastic
speciCcation (PANEL2). In the Crst one, the nine prior parameters are selected to
maximize the predictive density using a simplex method. Their optimal values are in
Table 3. For both PBVAR and PANEL1 forecasts are computed using the posterior
mean of the coeGcients, after we have plugged-in estimates of the prior parameters in
the relevant formula. For PANEL2 posterior estimates are computed numerically using
the Gibbs sampler and forecasts are directly obtained from these estimates.
For both models we set H =V . For the PANEL1 speciCcation we compute the scale

factors V and the matrix 5u as follows. We estimate a trivariate VAR for each country
and take the average of the estimated variance–covariance matrix of the residuals across
countries as a measure of V . Furthermore, for each of the three variable we estimate a
7-variable VAR (the same variable across countries) and store the variance–covariance
matrices of the residuals. An estimate of 5u is

5̂u =
3∑

j=1




A1 0 · · · 0

0 A2 · · · 0

...
...

. . .
...

0 0 · · · A7




j

⊗



0 0 0

0 vj 0

0 0 0


 ;

Table 2
Estimated hyperparameters: PBVAR

General tightness (E1) 0.01
Lag decay (E2) 13.96
Own country tightness (E3) 3:5− e005
Other countries tightness (E4) 7:3− e004
World variable tightness (E5) 5:0e− 007
AR coeGcient (E6) 0.95
Prior mean on the Crst lag (E7) 0.11048

Table 3
Estimated hyperparameters: PANEL1

Tightness for � (E1�) 0.1207
Tightness for ( (E1() 0.1300
Tightness for M� (E M�) 0.0004
Lag decay (E2) 1.9156
Tightness on other countries (E3) 0.0046
Tightness on world variables (E4) 4.7804
Law of motion of ( (E5) 0.1211
Time variation (E6) 0.4295
Prior mean on the Crst lag (E7) 0.0754
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where the Crst matrix contains on the diagonal the estimated standard deviations ob-
tained by running the three 7-variate VARs; while the second matrix contains just one
element di7erent from zero, the (j; j) element, which is obtained from the diagonal
of the matrix V . For the PANEL2 speciCcations we need to choose the scale and the
degrees of freedom in the various Wishart distribution. We still estimate V as before.
Following Kadiyala and Karlsson (1997) we set A0=N+2+(T−p)∗G, !1=k+2+N+g,
!2=k+2+(t−p)∗G, while the scale matrices M0, W1 and W2 are such that 5u;Q; 5�

have the same structure as in the PANEL1 speciCcation. Furthermore, 41 and 42 are
selected with a rough speciCcation search and -i1 is drawn from an inverted Wishart
with k + G degrees of freedom and scale matrix W1 + (AiEi − MA)′V−1(AiEi − MA).
We compare the forecasting ability of various models using both the Theil-U Statis-

tics and the mean absolute deviation (MAD), 1 and 4 periods ahead, which are re-
ported in Table 4. Since no measure of uncertainty is available for these statistics (so
that di7erences across methods may be due to chance) we complement this informa-
tion by examining the p-value of a Diebold and Mariano (1995) sign-test for predic-
tive accuracy, using our PANEL2 speciCcation as a benchmark, and by reporting, in
Fig. 4, simulated distributions for median and mean values of the MSE for the PANEL2
speciCcation, constructed using the output of the Gibbs sampling. In the case of the
Diebold and Mariano test the null hypothesis is that the loss di7erential between the
forecasts obtained with the PANEL2 model and with any other candidate is an i.i.d.
random variable. In the second case, the forecasts of the PANEL2 model will be dif-
ferent from those of a rival model if the MSE produced by the candidate is outside a
speciCc range (interquartile, interdecile, etc.) the investigator chooses.
To examine the performance of various models as business cycle indicators we com-

pute turning points predictions one period ahead. Following Zellner et al. (1991), we
compute the total number of turning points, the number of downturns and no-downturns,
and the number of upturns and no-upturns in the sample (across all countries) and for
each procedure we report the number of correct cases in Table 5. Finally, for each
model, we compute the probability of a downward turn in the growth rate of US
output over the period 1989:1–1991:4, given the information available in 1988:4. Ac-
cording to the oGcial NBER classiCcation the long expansion of the 1980s terminated
in 1990:3 and it was followed by a brief and shallow recession. The probabilities for
the 10 models for each of the 12 periods we consider are presented in Table 6.
The forecasting performance of univariate OLS, ridge and exchangeable procedures

are very similar. The minimum and maximum values of the Theil-U across countries
at one and four steps for the latter two are slightly smaller, but the mean and the
median at both steps are practically identical. On the other hand, a univariate model
where the parameters are shrunk with a g-prior is somewhat better than OLS in all
the dimensions using the Theil-U at both steps. The improvements obtained using time
variations in univariate speciCcations are somewhat limited: there are some gains for
Japan, but on average a time varying coeGcients model is somewhat worse than a
model with exchangeable and g-priors.
Unrestricted VAR models are not very successful in forecasting growth rates of out-

put because of the large number of parameters to be estimated. This is noticeable in
particular for Japan, Germany and the UK where the Theil-Us are signiCcantly worse
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Table 4
Statistics

Method Step US Japan Germany UK France Italy Canada Median Mean

Theil-U
VAR 1 1.06 0.88 0.91 0.94a 1.00a 0.73 0.95a 0.94 0.92

4 0.73 0.95 0.56 0.81 1.32 0.96a 0.72 0.81 0.86
BVAR 1 0.83a 0.89 0.69 0.91a 0.90a 0.80 0.85a 0.85a 0.84

4 0.75a 0.89 0.65a 0.79 1.16 1.00 0.70 0.89 0.85

OLS 1 1.21 0.86 0.88 0.86a 0.90a 0.79 0.91 0.88 0.90
4 0.77 0.90a 1.07a 0.76a 0.98a 1.03a 0.67 0.90a 0.88

Ridge 1 1.17 0.83 0.89 0.85 0.89a 0.79 0.89 0.89a 0.90
4 0.76a 0.88 1.06a 0.75a 0.99a 1.01a 0.68 0.88 0.87

Exchangeable 1 1.18 0.84 0.90 0.85 0.89a 0.78 0.89 0.89a 0.90
4 0.76a 0.90 1.09a 0.75a 0.99a 1.01a 0.68 0.90 0.88

g-prior 1 1.06 0.86 0.69 0.78 1.00 0.72 0.92 0.86 0.86
4 0.83a 1.07 0.77a 0.75a 1.12a 1.02a 0.70 0.83a 0.89

TVC 1 1.07a 0.85a 0.97 0.94a 0.84a 0.83 0.90a 0.90a 0.91
4 0.74a 0.70a 1.25a 0.77 0.88a 1.09 0.88 0.88a 0.90

PBVAR 1 0.82 0.85 0.68 0.76 0.98a 0.73 0.85 0.82 0.81
4 0.86a 0.91 0.77a 0.75 1.08a 1.03a 0.66 0.86a 0.87

Panel 1 1 0.81 0.88 0.67 0.75 1.02 0.70 0.88 0.81 0.81
4 0.86 0.90 0.76 0.74 1.07 1.03 0.66 0.86 0.86

Panel 2 1 0.85 0.80 0.63 0.76 0.95 0.75 0.88 0.80 0.80
4 0.85 0.87 0.78 0.76 1.07 0.99 0.66 0.85 0.85

MAD
VAR 1 0.46a 1.71 1.74 1.35 1.26a 2.91a 0.65a 1.35 1.44

4 0.35a 1.55 1.18 1.33 1.66 2.74a 0.56a 1.33 1.34
BVAR 1 0.46a 1.62 1.48 1.32 1.15a 3.22a 0.58a 1.32 1.40

4 0.40a 1.39 1.25 1.28 1.42a 2.98a 0.51 1.28 1.40

OLS 1 0.56a 1.59 1.51 1.37a 1.06 3.17a 0.57a 1.37a 1.40
4 0.34a 1.54 1.58 1.28a 1.14 3.19a 0.54 1.28a 1.37

Ridge 1 0.54a 1.50 1.68 1.31a 1.07 3.14a 0.56a 1.31a 1.40
4 0.36a 1.46 1.72a 1.25a 1.17a 3.09a 0.53 1.25a 1.37

Exchangeable 1 0.54a 1.52 1.68 1.32a 1.06 3.14a 0.56a 1.32a 1.40
4 0.35a 1.48 1.73a 1.26a 1.17 3.09a 0.53 1.26a 1.37

g-prior 1 0.53a 1.63 1.33 1.18 1.26a 2.89a 0.54a 1.26a 1.34
4 0.41a 1.60 1.35 1.18a 1.34 3.12a 0.51a 1.34 1.36

TVC 1 0.51a 1.52 1.53a 1.41 1.04 3.48a 0.59a 1.41 1.44
4 0.36a 1.24 1.76a 1.19 1.10a 3.28a 0.68 1.24 1.37

PBVAR 1 0.46a 1.47 1.29a 1.17a 1.27 2.85a 0.53a 1.27 1.29
4 0.44a 1.48 1.27a 1.12a 1.31 3.14 0.51 1.27a 1.32

Panel 1 1 0.46 1.53 1.24 1.08 1.37 2.82 0.54 1.24 1.29
4 0.44 1.48 1.27 1.11 1.31 3.14 0.50 1.27 1.32
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Table 4 (continued)

Method Step US Japan Germany UK France Italy Canada Median Mean

Panel 2 1 0.49 1.44 1.23 1.18 1.20 2.93 0.56 1.20 1.25
4 0.43 1.43 1.33 1.21 1.26 2.99 0.52 1.26 1.31

Notes: VAR is a VAR(2) model for output growth, real stock returns and real money growth, BVAR
is the same model with a Minnesota prior. OLS refer to a model where the parameters are estimated with
OLS, Ridge to a Ridge correction, Exchangeable to a model with an exchangeable prior, g-prior to Zellner’s
g-prior speciCcation and TVC to a univariate time varying coeGcient model. PBVAR is a 21 VAR model
with a Minnesota prior and time variation, Panel 1 is a panel VAR model with all seven countries with a
modiCed Minnesota prior, Panel 2 is the same model with a hierarchical prior and heteroschedasticity.

aNull hypothesis that the loss di7erential between the forecasts of the model and of a PANEL2 is iid,
where the loss functions are either the MSE and the MAD has a p-value smaller or equal than 0.10. The
test for the mean is not available.

than those obtained with univariate speciCcations at the one step horizon. However,
unrestricted VAR models outperform all univariate speciCcations at the four step hori-
zon. Hence, the presence of interdependencies across variables helps in predicting the
evolution of the growth rate of output in the medium run. BVAR are signiCcantly
better than VAR and univariate approaches at the one step horizon: in the median the
gains are of the order of 5–6% over univariate speciCcations and of more than 10%
over the unrestricted VAR. At the four step horizon BVARs turn out to be inferior to
unrestricted VARs, and comparable to univariate shrinkage procedures. This is to be
expected since to improve the performance at short horizons BVARs reduce both the
memory and the interdependencies of the system, which are useful when medium-long
run forecasts have to be made.
Adding time variation to the coeGcients and interdependencies across countries

substantially improves the forecasting performance of multivariate models both at short
and at medium horizons. For example, the median (mean) Theil-U at one step goes
from 0.85 (0.84) with a simple BVAR to 0.80 (0.80) with the PANEL2 version of the
model. There are gains also relative to the PBVAR speciCcation but smaller in magni-
tude. Relatively speaking, the information contained in the cross section is crucial for
the UK (the Theil-U is lower by as much as 15%) and important for Japan, Germany
and Italy. For the other three nations country speciCc models appear to be suGcient
to predict output growth. The improvements are noticeable also at longer horizons:
the distribution of the Theil-U across countries at the four step horizon is similar to
the one obtained with an unrestricted VAR, which is the best among the benchmark
models.
The size of the forecasts errors are large for every procedure. The median size of the

scaled MSE (forecast error divided by the quantity being forecasted) is always greater
than 1.0. In certain countries these numbers are even more dramatic. For example,
when forecasting German output growth the size of the scaled error is larger than
3.0 for Cve approaches. Similarly, the scaled MSE obtained in forecasting UK output
growth exceeds 3.0 with seven of the 10 procedures. Zellner’s g-prior, the PBVAR and
our Panel model tend to provide the smallest errors (on average and in the median)
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Fig. 4. Empirical distributions of main statistics.
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Table 5
Turning points forecasts

Method Turning points DT & NDT UT & NUT

TRUE 96 47 49
VAR 65 32 33
BVAR 72 34 38

OLS 74 37 37
Ridge 72 37 35
Exchangeable 72 37 35
g-prior 75 37 38
TVC 72 34 38

PBVAR 68 32 36

Panel 1 73 36 37
Panel 2 76 38 38

Notes: VAR is a VAR(2) model for output growth, real stock returns and real money growth, BVAR is
the same model with a Minnesota prior. OLS refer to a model where the parameters are estimated with OLS,
Ridge to a Ridge correction, Exchangeable to a model with an exchangeable prior and g-prior to Zellner’s
g-prior speciCcation. PBVAR is a 21 VAR model with a Minnesota prior and time variation, Panel 1 is a
panel VAR model with all seven countries with a modiCed Minnesota prior and Panel 2 is the same model
with a hierarchical prior and heteroschedasticity. DT means downturn, NDT means non-downturn, UT means
upturn and NUT means non-upturn.

Table 6
Probabilities of a downturn in US GDP growth

Quarter VAR BVAR OLS RIDGE EXCH g-PRIOR TVC PBVAR PANEL1 PANEL2

89:1 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.000 0.000 0.000
89:2a 0.000 0.005 0.005 0.010 0.000 0.270 0.781 0.420 0.410 0.625
89:3 0.020 0.010 0.005 0.010 0.200 0.250 0.089 0.010 0.250 0.000
89:4 0.780 0.590 0.625 0.815 0.370 0.280 0.000 0.070 0.210 0.000
90:1 0.200 0.375 0.365 0.160 0.070 0.050 0.000 0.070 0.230 0.000
90:2 0.000 0.005 0.000 0.000 0.070 0.080 0.983 0.040 0.220 0.517
90:3a 0.645 0.660 0.700 0.660 0.320 0.360 0.017 0.820 0.300 0.572
90:4 0.005 0.010 0.030 0.015 0.280 0.380 0.000 0.040 0.250 0.000
91:1 0.000 0.005 0.000 0.003 0.230 0.050 0.000 0.130 0.240 0.000
91:2 0.000 0.000 0.000 0.000 0.170 0.060 0.073 0.000 0.250 0.572
91:3a 0.005 0.015 0.000 0.000 0.180 0.490 0.881 0.790 0.230 0.633
91:4 0.015 0.005 0.005 0.035 0.250 0.350 0.033 0.080 0.240 0.000

Notes: aDownturn in output growth occurred at that date.

both at one and four steps ahead. Therefore, measured by this yardstick, the PANEL2
model is, at least, competitive with the best univariate one.
Are these di7erences signiCcant? Fig. 4 indicates that the distribution of the mean and

median Theil-U statistics for the PANEL2 model are very much concentrated around
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the point estimates we present in Table 4, both at the one and four steps ahead. There-
fore, for example, the interquartile range of these distributions do not include the value
of the Theil-U at that step for any of the competitors but PBVAR model. The Diebold
and Mariano test indicates that the PBVAR, which is the closer competitor, produce
forecasts which are qualitatively di7erent from those of the PANEL2 model for the
UK at one step ahead and for US, Germany, France and Italy at the four step ahead.
Note also that while at the one step ahead the forecasts obtained by the g-prior and
exchangeable models are not qualitatively di7erent from those of the PANEL2 model,
at four step ahead di7erences are noticeable for, at least, Cve countries. Hence, the
PANEL2 model produce forecasts which are di7erent, both qualitatively and quantita-
tively, from other models.
The results obtained using the MAD are somewhat similar but four features deserve

comments. First, all shrinkage procedures are better than OLS at the one step horizon.
The same is true at four steps horizons except for the case of g-prior, which is sig-
niCcantly worse. Second, unrestricted and simple BVAR display a somewhat mediocre
performance at both horizons: the distribution of the MAD across countries is more
concentrated but the mean and the median are above those obtained with univariate
approaches. Third, the improvements obtained with panel VAR approaches are largest
for US, Japan, Germany and France and the PANEL2 version of the model produces
the best distribution of MAD at the one step horizon. Fourth, at the four step hori-
zon the improvements obtained over univariate shrinkage procedures are small or at
times negligible. The Diebold and Mariano test suggests that the forecasts produced by
the PANEL2 model are qualitatively di7erent from those of the other models when a
MAD loss function is used. The di7erences are evident both for single countries and
for median measures.
It is worth discussing the relative merits of the three models with cross-country

interdependencies. Our reCnement of the Litterman’s prior, which employs both cross-
sectional and time series a priori restrictions, has similar forecasting performance as
the PBVAR model at both horizons. However, there are three features which are worth
discussing. First, the maximized value of predictive density of the PANEL1 model is
signiCcantly higher than the one of the PBVAR model (−36:90 vs. −985:35) suggesting
that the former Cts the data for the in-sample period better. Second, E6, the time
variation parameter in the process for ( is signiCcant. Third, while in the PBVAR, the
coeGcient vector evolves with a persistence equal to 0.95 but with very small variance,
in our PANEL1 speciCcation the time varying component of the coeGcients is close
to be a white noise. This di7erence can be explained by examining the role of the
parameters regulating the cross-sectional prior (i.e. the tightness on � and M�). These
parameters force a high degree of coherence across countries in the time invariant
component and leave the time varying component to evolve randomly. In the PBVAR
this distinction is not possible and to produce coeGcients which are almost constant
over time it is necessary to have close to a random walk dynamics coupled with a
small variance. Using Eq. (12), one can see in fact that coeGcients of the PANEL1
model are approximately constant over time and are tightly linked to each other because
of the restrictions imposed on �i. The omission of the Cxed e7ect component in the
PBVAR is therefore likely to bias upward estimates of the persistence parameter.
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The performance of a fully hierarchical model with heteroschedasticity is somewhat
better than the two versions of the Minnesota prior we consider. However, one should
weight this improved performance against the computation costs. While forecasts for the
fully hierarchical prior required several hours of computer time on a Pentium IV-700,
the forecasts produced with a PBVAR or PANEL1 were obtained in a matter of min-
utes. We are currently experimenting with an alternative speciCcation which drastically
reduces the dimensionality of the time component. Preliminary results suggest that the
computational costs are reduced by as much as 95% while the quality of the forecasts
is only marginally a7ected.
In sum, using interdependencies and cross-sectional restrictions in the coeGcients

helps in improving forecasts at short-medium horizon. Given the poor results obtained
by the univariate-TVC speciCcation and the good performance of g-prior speciCcation,
it appears that it is the cross-sectional information that helps most in the exercise.
Nevertheless, because of the substantial di7erences in the process for the growth rate
of output across countries, improvements are not uniform and in some cases considering
only domestic variables seems appropriate. Also, time variation in the coeGcients is
important only when coupled with heteroschedasticity in the variance probably because
the structure of the economies is changing over time and outliers are present.
How good are various approaches in predicting turning points? Out of 96 total ac-

tual turning points in the sample, univariate approaches recognize between 72 and 75.
Di7erences emerge when we try to predict upturns and non-upturns and for this type of
turning points, Zellner’s-g and TVC models are the best. Unrestricted VARs fare very
poorly in this dimension and recognize about 10% less turning points than the best
ones. The performance of the BVAR model is comparable to the one of Ridge and Ex-
changeable approaches but, contrary to them, it predicts upturns and non-upturns better
than downturns and non-downturns. The performance of the PBVAR model is surpris-
ingly poor: it is the second worst in recognizing the total number of turning points
and is comparable to unrestricted VARs in predicting downturns and non-downturns.
The PANEL2 model produces 76 correct turning point forecasts and recognizes the
same number of upturns and downturns (38). From Fig. 4, we can see that the distri-
bution of turning points selected by the PANEL2 model is very concentrated around
the median and the interquartile range of the distribution of downturns includes only
the value of 38 and of upturns the values 37 and 38. Hence, with the exception of the
g-prior speciCcation, the record of turning point recognition obtained with the model
is signiCcantly di7erent than all the others.
Two other conclusions can be drawn from Table 5. First, di7erent models are

better in recognizing di7erent types of turning points. If predicting downturns (and
non-downturns) is more important than predicting upturns (and non-upturns) our re-
sults suggest that VAR, BVAR and PBVAR should not be used. Second, while in
terms of linear forecasting statistics there was a clear ranking of procedures, with more
complicated ones doing a better job, when we look at non-linear forecasting statistics,
simple univariate approaches, and OLS in particular, are almost as good as other more
reCned approaches.
Given that our suggested speciCcations are good in forecasting on average, we would

like to know if they are also good in predicting a speciCc episode of interest, i.e., the
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downturn in real activity occurred in the US in 1990:3. This is an interesting episode
because many commercial and government models, which were forecasting pretty well
in the 1980s, failed to Cnd any relevant signs that a downturn and a short recession were
forthcoming (see e.g. Stock and Watson, 1993). Interestingly, all procedures except the
univariate TVC model predict that there is a nonnegligible probability of a downturn
in economic activity at 1990:3. For OLS and ridge methods this probability is larger
than the threshold of 0.5, which we use to date a downturn. Single country VAR,
with and without a Bayesian prior, are comparable to the best univariate procedures
(probability 0.64 and 0.66 respectively) and signiCcantly improve over Exchangeable
and g-prior speciCcations. The PBVAR speciCcation is overwhelmingly predicting a
downward turn in 1990:3 (probability is 0.82) and does not produce any false alarm in
the neighborhood of this date. The performance of the PANEL2 approach is somewhat
mixed: the probability of a downturn in 1990:3 is above the 0.5 threshold but smaller
than the best univariate and single country VAR models. However, the approach gives
a strong warning signal also a quarter before the downturn occur, which is indicative
of the good anticipatory features of the model. In comparison, the anticipatory signal
given by the univariate TVC model is not corroborated at the time of actual downturn.
Note also that while four out of Cve univariate approaches produce a false alarm in
1989:4, probably due to the stock market crash of the fall of 1989, the probabilities
produced by PBVAR and PANEL models at dates other than 1990:3 are small. The
latter four models in the table also produce a high probability of a downturn in 1991:3,
a date where a downturn materialized. Finally, the downturn in 1989:2 is missed by
all approaches but the univariate TVC and the PANEL2 models.

7. Conclusions

The task of this paper was to describe the issues of speciCcation, estimation and
forecasting in a macro-panel VAR model with interdependencies. The point of view
used is Bayesian. Such an approach has been widely used in the VAR literature since
the works of Doan et al. (1984), Litterman (1986), and Sims and Zha (1998), and
provides a convenient framework where one can allow for both interdependencies and
meaningful time variations in the coeGcients. We decompose the parameter vector
into two components, one which is unit speciCc and the other which is time speciCc.
We specify a .exible prior on these two components which parsimoniously accounts
for interdependencies in the cross section and for variations in the evolution of the
parameters over time. The prior shares features with those of Lindley and Smith (1972),
Doan et al. (1984) and Hsiao et al. (1999) and it is speciCed to have a hierarchical
structure, which allows for various degrees of ignorance in the researcher’s information
about the parameters.
Bayesian VARs are known produce better forecasts than unrestricted VAR and,

in many situations, ARIMA or structural models (Canova, 1995 for references). By
allowing interdependencies and some degree of information pooling across units in the
model speciCcation, we introduce an additional level of .exibility which may improve
the forecasting ability of these models.
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In the case of fully hierarchical priors, the Gibbs sampler is employed to calculate
posterior distributions and to construct forecasts. Such an approach is useful in our setup
since it exploits the recursive features of the posterior distribution. We also consider
a version of the Minnesota prior. In this case we employ the predictive density of
the model to estimate unknown parameters and plug-in our estimates in the relevant
formulas in an empirical Bayes fashion.
To illustrate the approach, we apply the methodology to the problem of predicting

output growth, of forecasting turning points in output growth in the G-7 and comput-
ing the probability of a recession in the US. We show that our panel VAR approach
is competitive and improves over existing univariate and simple BVAR models using
either the Theil-U or the MAD criteria both at the one step and at the four steps
horizons. The improvements are of the order of 5–15% with the Theil-U and about
2–8% with the MAD. The forecasting performance of our speciCcation is also better
than the one of a BVAR model which mechanically extends the Minnesota prior to
the panel case. In terms of turning point prediction, the three Panel VARs are able
to recognize about 80% of turning points in the sample and they turn out to be the
best for this task, along with Zellner’s g-prior shrinkage approach. The simple ex-
tension of the Litterman’s prior to the panel case does poorly along this dimension
and, among all the procedures employed, is the second worst. Finally, all the proce-
dures produce a signiCcant probability of a downturn at 90:3, the date selected by the
NBER committee to terminate the long expansion of the 1980s. However, the other two
downturn dates in our sample are correctly recognized only by one of our Panel VAR
speciCcations.
We consider the current work the Crst step in developing a coherent theory for

Bayesian Panel VAR models which take into consideration the nature of interdepen-
dencies, the similarities in the model across units and the existence of time variation
in the coeGcients. Extensions of the theory include the set-up of leading indicator
index models; the formulation of interesting hypothesis on the nature of the inter-
dependencies, the similarities across units and the variations over time; and the de-
velopment of tools to undertake structural identiCcation in these models. The work of
Sims and Zha (1998) is the starting point for developments in this latter
case.
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Appendix A. De�nition of the matrices for the Gibbs sampler

Ŵ 1 =W1 +
∑

i

(AiEi − MA)′V−1(AiEi − MA);

Ŵ 2 =W2 +
∑
t

(Pt − �Pt−1 − (1− �)P0)′(�tV1)−1(Pt − �Pt−1 − (1− �)P0);

M̂ 0 =M0 +
∑
t

(Yt − (tW′
t)H

−1(Yt − (tW′
t)

′;

P̂0 = P0 +
∑
t

′
(Yt − (tW′

t)
′5−1(Yt − (tW′

t);

�̂= V̂ �

(∑
t

W ′
t (5⊗ H)−1(Yt − Zt(t) + Q−1SN M�

)
;

V̂ � =

(∑
t

W ′
t (5⊗ H)−1Wt +Q−1

)−1

;

�∗ = V̂ ∗
(
(V ⊗ -1)−1

∑
i

Ri�i +1−10

)
;

V̂ ∗ = (N (V ⊗ -1)−1 +1−1)−1;

where �t = vt2 + v1(1 − vt2)=(1 − v2), Yt is the N × G matrix such that vecr(Yt) = Yt ,
(t − [vecr((1t); : : : ; vecr((Nt)]′ is N × Gk and Wt = (IG ⊗ X ′

t ). Here, vecr() is the
row vectorization of a matrix; (it = Ai + PtEi is a G × k matrix and � = vecr(A);
(t = vecr(Pt).
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