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This paper explores the hypothesis that the seasonal patterns of macroeconomic variables vary with 
expansions and contractions. Graphical techniques and generalized predictive tests for structural 
stability are used to identify and test patterns of changing seasonality. A Monte Carlo exercise shows 
the power of the tests against interesting alternatives. The empirical results suggest that seasonal 
patterns are unstable and that in many cases changes are linked to the stages of the business cycle. 
The forecasting costs incurred by treating seasonality as constant are discussed and evaluated. 
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1. Introduction 

It is typical in the macroeconomics literature to neglect seasonal fluctuations 
either by constructing theoretical models which abstract from the seasonal 
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component or by using seasonally adjusted data both in testing theories and in 
analyzing policy issues. Those studies that explicitly examine the information 
contained in the seasonal component of time series generally assume that 
deterministic dummies capture the most interesting aspects of these fluctuations 
[see, e.g., Miron (1986) or Singleton (1988)]. 

The statistical modelling of seasonal fluctuations with dummies has gained 
widespread acceptance in macroeconomics for four reasons. First, it is a simple 
and easily reproduced procedure which can be mechanically applied to any time 
series, therefore reducing judgmental decisions on the possible forms seasonality 
can take. Second, for most series, seasonal dummies capture a substantial 
portion of the existing seasonal fluctuations. Third, the procedure implements 
a traditional statistical view that the business and seasonal cycles are phe- 
nomena to be studied separately. Finally, the application of dummies to sea- 
sonally unadjusted series generates seasonal facts which correspond to econom- 
ists’ prior notion of seasonal fluctuations [see, e.g., Barsky and Miron (1989)]. 

Despite its widespread use, the dummy approach to seasonality neglects two 
important facts. First, the traditional separation of seasonal and business cycles 
is not an attribute of modern dynamic business cycle theory which, in general, 
embodies extensive cross-frequency restrictions [see, e.g., Ghysels (1988)] and, 
in many cases, contains explicit information about the interaction of seasonal 
and business cycles [see, e.g., Hansen and Sargent (1992)]. Second, a number of 
researchers have noted that the seasonal patterns of many macroeconomic 
variables appear to evolve over time [see, e.g., Bell and Hillmer (1984)] and 
several statistical tests have been suggested to formally examine whether sea- 
sonal patterns are constant (stable) or not [see, e.g., Franzini and Harvey (1983), 
Canova and Hansen (1991), Sutradhar, MacNeill, and Dagum (1991)]. 

When seasonals drift through time a simple deterministic seasonal dummy 
model should be abandoned in favor of a model which also contains some 
stochastic elements. One possible specification for stochastic seasonality is 
a model with seasonal unit roots as in Dickey, Hasza, and Fuller (1984) or 
Hylleberg, Engle, Granger, and Yoo (HEGY) (1990). A standard justification for 
using such a model is that changes in the seasonal patterns are long-run 
phenomena primarily linked to modifications of institutional factors of the 
economy. While institutional modifications certainly are contributing elements 
to the changes we observe, short-run factors may also play a significant role. For 
example, Ghysels (1990) suggests that changes in the seasonal patterns of several 
post-WWII aggregate quarterly US time series may be linked to the stages of the 
business cycle. There are two implications of this finding. First, both time series 
models which represent seasonal factors with deterministic dummies (no-change 
model) and those with seasonal unit roots (long-run changes) are subject to 
specification errors. Second, because standard tests for unit roots at seasonal 
frequencies are perversely affected by the presence of seasonal mean shifts in the 
same way as standard unit root tests are affected by the presence of infrequent 
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breaks in the long-run properties of the data [see, e.g., Perron (1990)], recent 
findings suggesting the existence of seasonal unit roots may be erroneous. 

The idea to link the seasonal shifts to the business cycle was motivated by the 
fact that dynamic macroeconomic models imply a nontrivial interaction be- 
tween the seasonal component and other types of fluctuations. Ghysels studied 
this interaction using a model where seasonal dummies were allowed to differ in 
expansions and recessions. The evidence presented, while indicative of the 
complex interactions contained in the data, was not conclusive since it was 
based on a simple model with the NBER business cycle chronology as the basis 
for the switching regime indicator function. 

The purpose of this paper is to study in detail the existence of medium-run 
changes in seasonal patterns for a large class of quarterly aggregated and 
monthly disaggregated US time series. In our analysis we rely on both informal 
graphical methods [as suggested, e.g., by Franses (1991)] and on generalized 
predictive tests (GPT) for structural stability [as proposed by Dufour, Ghysels, 
and Hall (DGH) (1991)]. The hypothesis of interest here is one where we allow 
for the presence of multiple breaks at unknown dates under the alternative. 
Because GPT are exploratory and can detect single or multiple shifts that are 
either temporary or permanent in nature, they are, in principle, better suited 
than alternative stability tests to examine the presence of cyclical variations in 
seasonal patterns. A relevant question is whether in practice they can detect 
breaks in processes which switch state recurrently over time. Using a small 
Monte Carlo design we show that the tests have good power against the type of 
alternatives we are most interested. 

The empirical analysis shows that the majority of the US aggregate data we 
examined possess seasonals which drift over time and that, in some cases, these 
changes are linked to the stages of the business cycle. One special case which 
deserves mention is the Ml series which, in addition to cyclical instability, 
displays a puzzling second-quarter upward trend. The evidence for disag- 
gregated data is statistically less significant but economically more compelling 
because changes emerge primarily during recessions. 

We attempt to quantify the gains one can obtain by allowing seasonals to 
evolve over time with a simple forecasting exercise. We show that both a model 
which conditions the seasonal switches on business cycle phases, and a flexible 
Bayesian model, which allows the coefficients of the dummies to drift over time, 
improve upon a model where seasonals are treated as constant. For the second 
specification and for most series, the average forecasting gain at each step is 
about 10%. 

The rest of the paper is organized as follows. Section 2 documents the features 
of seasonal patterns and their variation through time. In section 3 we review the 
statistical tests, describe the modifications needed to adapt them to our context, 
and perform a small Monte Carlo experiment to check the power of the tests 
against some interesting alternatives. The empirical analysis is contained in 
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section 4. Section 5 discusses the costs of treating seasonality as constant, and 
section 6 concludes the paper. 

2. The evolution of seasonal patterns 

In this section we employ a simple graphical technique [also used, for 
instance, by Franses (1991) and Hylleberg, Jorgensen and Sorensen (1991)] to 
highlight a possible relationship between the evolution of seasonal patterns and 
the phases of the business cycle. We limit our attention to quarterly time series 
since graphical methods are cumbersome to read and interpret with monthly 
data. Although the graphical technique does not require stationarity assump- 

tions, the graph are easier to interpret if the long-run features of the series are 
filtered out. For this purpose we first-differenced the log of the series. While 
other transformations are possible, the evidence we present is essentially inde- 
pendent of the exact stationary inducing transformation employed. Intuitively, 
this occurs because although alternative detrending methods affect business 
cycle frequencies differently, they appear to have little impact on the seasonal 
frequencies of the spectrum and on the cross-spectrum of the components [see 
Canova (1992)]. 

In what follows we denote with {yin} all observations pertaining to quarter 
i= l,... ,4, where n is a yearly sampling index, and plot {yr,, . . . ,yan} on one 
graph. Given our stationary inducing transformation, the plots can be used as 
specification diagnostics for the process generating seasonal patterns. For 
example, if the data generating process is one of stationary mean shifts for each 
quarter around a log first-differenced process, the graphs should display station- 
ary plots. If the data generating process is one of deterministic mean shifts for 
each quarter, the graphs should display completely parallel lines. Finally, if the 
plots of the four quarters drift apart or cross, the quarterly processes is not 
stationary around a particular (seasonal) mean. One typical example of such 
a class of time series is a seasonal unjt root process whose quarterly plots will 
display some crossing over time, i.e., summer becomes winter. 

To highlight a possible relationship between the pattern of seasonal instabili- 

ties and phases of the business cycle, we shade recession years according to the 
NBER business cycle chronology. Since the chronology is monthly, we convert 
it to a quarterly series using a ‘majority rule’ [as in Ghysels (1991b)], i.e., if at 
least two months of the quarter are in an expansion (contraction), the quarter is 
classified as an expansion (contraction). Shaded areas on the graphs represent 
years where at least one quarter is in a recession. 

Fig. 1 graphs the evolution of seasonal patterns of six US quarterly time series 
[GNP, Fix Investments (IFIX), Consumption of Durables (CDUR), Ml, Em- 
ployment (EMPL), and Final Sales (FINSALE)] and their relationship with the 
business cycle. All series but FINSALE are in log first-difference. 
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Fig. 1. Annual plots of quarterly data. 

In all six graphs there appears to be visual support for the idea that he 
magnitude and the evolution of seasonal fluctuations are sensitive to the various 
stages of the business cycle. Concentrating on the evidence emerging from 1970 
on, the plot of IFZX indicates a tendency for the four quarterly time series to 
converge in recessions and to diverge in expansions suggesting that for this 
variable seasonal and cyclical components interact multiplicatively. The plot of 
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CDUR shows parallel movements of the four quarters over the cycle: in expan- 
sions all quarters shift up and in recessions all quarters shift down, suggesting 
the presence of a cyclical level effect. This pattern emerges to a lesser extent also 
in GNP, and FZNSALE, where the first quarters (the lowest time series in each 
plot) seem to move in the opposite direction of the other three quarters over the 
cycle. The quarterly structure of EMPL is more complicated. Early in the 
sample the four time series roughly follow the four quarters of GNP. Over the 
last ten years a seasonal inversion tends to appear. 

The most striking features, however, emerge with the Ml series whose second 
quarter (the solid line) displays a clear upward trend of about 3% throughout 
the entire sample, apart from a small decline right after WWII and a sharp dip at 
the beginning of the 1980’s when the Fed targeted monetary aggregates. Fig. 2 
highlights these features by plotting the time series for each quarter separately 
around its mean. 

One possible explanation for this pattern is that income taxes in the US are 
paid in the second quarter and income taxes have become an increasing 
proportion of income over the last thirty years. In this case, the money demand 
function of agents is not only seasonal, but may also display a trend in the 
second quarter. But while the presence of this upward trend in the second 
quarter of the growth rate of MI is rather puzzling from an economic point of 

First Second Third 

CIuarvJr 

Fig. 2. Quarterly growth of Ml, 1959: l-1991:3 (NSA). 
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view, we would also like to stress some statistical implications of this finding. It 
is typically believed that the first-difference of the seasonally adjusted MI series 
is nonstationary. Sims (1972) suggested using the (1 - 0.751)2 filter to make the 
MI series stationary. Eichenbaum and Singleton (1986) and others used a twice- 
differenced MI series, while Stock and Watson (1989), performing a set of formal 
unit root tests, found no evidence in favour of a second-difference filter but fitted 
a statistically significant linear trend to the first-differenced data. Our plots 
indicate that the linear trend specification seems most appropriate, but it 
appears that the trend in the growth of MZ is entirely due to the second quarter. 

The drifting seasonal pattern of money growth in the second quarter also has 
implications for studies involving seasonally unadjusted Ml. Recently Lee and 
Siklos (1991) reported that, besides a unit root at the zero frequency, unadjusted 
M1 has a unit root at the biannual frequency and used this evidence to question 
the findings and conclusions of Barsky and Miron (1989). Fig. 2 indicates that 
the biannual unit root may be spurious and a consequence of the fact that the 
second quarter is trending. 

For reasons of space we present’graphical evidence for only six macro time 
series, but it should be clear that the pattern of instabilities we described here is 
very typical of almost all the US aggregate time series we examined. For 
example, for the 25 series belonging to the Barsky and Miron data set, we noted 
examples of quarterly time series converging, crossing, approaching zero, and 
then moving away from it and, in one case, slightly diverging, providing 
compelling evidence of seasonal instability. In addition, and more importantly 
for this paper, we found visual evidence that the stages of the business cycle have 
something to do with this instability. We find, roughly speaking, that the four 
quarterly plots tend to move either together or in the opposite direction in 
recessions. To put things in the right perspective however, one should keep in 
mind that the graphs are only suggestive and that we should expect some 
instability to appear simply because seasonal growth rates converge towards 
zero during recessions. 

3. Testing for seasonal instability 

The problem of testing whether seasonal patterns are time-varying is very 
closely related to the question of structural stability of a regression model. 
Testing the structural invariance of a statistical model has been considered in 
many research papers. Typically, the analysis has focused on a linear regression 
equation where the null hypothesis of structural invariance is tested against the 
alternative of a single breakpoint with known or unknown location. Such tests 
include (1) Wald, likelihood ratio, or Lagrange multiplier tests [see, e.g., Andrews 
and Fair (1988)], (2) predictive out-of-sample tests [see Ghysels and Hall (1990a, b) 
or Hoffman and Pagan (1989)], or (3) recursive CUSUM-type tests [see Brown, 



1150 F. Canova and E. Ghysels, Changes in seasonal patterns 

Durbin, and Evans (1975) and Kramer, Ploberger, and Alt (1989)]. Another 
approach often encountered in the analysis of structural stability is one where 
under the alternative the parameters drift, for instance, they behave like a ran- 
dom walk. Within this literature, Franzini and Harvey (1983) Canova and 
Hansen (1991), and Sutradhar, MacNeill, and Dagum (1991) have designed tests 
which examine the null of stability against the alternative of drifting seasonals. 
Clearly, both the alternative hypotheses that there is only one structural break 
or that the parameters drift over time like a random walk are not very well 
suited when the question of interest is whether changes in seasonal patterns are 
recurrent and when multiple shifts may occur at unknown dates. 

To investigate the hypothesis of cyclicality in seasonal patterns we adopt the 
approach recently developed by Dufour, Ghysels, and Hall (1991), which will be 
referred to as Generalized Predictive Tests (GPT). The testing procedure is 
analogous to Chow’s predictive test [see Chow (1960)]. It is applicable to linear 
and nonlinear dynamic models without the requirement of i.i.d. Gaussian errors 
and can be viewed as an extension of the exploratory technique studied in 
Dufour (1980, 1982) and of the predictive structural stability tests of Ghysels and 
Hall (1990a). Generalized predictive tests are useful in our context, because they 
are not designed against a two-regime nor a random walk alternative. Instead 
they allow for an exploratory analysis of the patterns of structural changes that 
might occur, in the same spirit as the informal graphical method we used in 
section 2. The procedure has several attractive features: (i) the tests are based 
on out-of-sample predicted residuals; (ii) the prediction subsample considered 
can be arbitrarily small (e.g., one observation); (iii) estimates of the parameter 
vector need to be obtained from one sample only (the estimation period); 
(iv) consistency of the parameter estimates is required but, in principle, conver- 
gence can occur at any rate and the asymptotic covariance matrix of the 
estimator of the parameter vector is not necessary to perform the tests; (v) 
general forms of temporal dependence in the model disturbances are, in prin- 
ciple, allowed. 

We summarize the basic features of the approach in section 3.1. Because the 
tests have been designed for situations where the parameters of the model are 
stable during a given (relatively large) estimation sample, while the form and 
timing of possible structural change(s) during a second (prediction) sample are 
left unspecified, they are not directly applicable to our context. In section 3.2 we 
discuss potential problems and the modifications needed for our analysis. 

3.1. Generalized predictive tests - A brief review 

The basic structure we consider is the following linear regression equation: 
S-l 

4 = P + C 4,df + i ajX,-j + c1Z, + )~r, tET, (1) 
s=l j= 1 
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where z, is a linear time trend and tl its coefficient, p is the mean of the series, 
df are standard seasonal dummies, and c$~ are the seasonal deviations from the 
mean, which are assumed to be invariant through time. It is assumed that I], are 
independent and identically distributed or a martingale difference sequence. 
Define the residual process as ylt -f(x,,p), where p = (~$i, . . . , q5s,al, . . . ,~~,a)‘, 
and suppose that T = T1 u T2 and that T1 = ( - tl + 1, . . . ,O> and T2 = 
(1, . . . , tz}. T1 is assumed to be large enough so that asymptotic distribution 
theory can be applied to estimators of /I, while the size of the second sample is 
left unspecified. Our task is to detect the presence of structural changes within 
T2 and analyze, when possible, the timing and form of possible shifts. The null 
hypothesis is 

Ho: WCxt>Bol) = 0, VtET, (2) 

while the alternative is a subset of the general alternative, 

H,: W-Cxt, Bol) = 0, VtET,, 

W-Cxt,Bol) + 0, for some tET,. (3) 

A natural way of testing stability consists of estimating the model from 
the first sample and then checking whether the estimated disturbances from 
the second sample are ‘large’. More precisely, if &, is an estimator of p 
obtained from T1, we check whether ij,(T,) =f[xt, &II, tET, are statistically 
‘large’. 

Two types of predictive tests have been suggested. One examines individual 
values of ij,(T,), tETZ, for evidence of structural instability: these tests are called 
individual predictive tests (IPT). The other examines several values of &(T,), 

tE T,, stacked into vectors for evidence of instability: these tests are referred to as 
joint predictive tests (JPT). For example, one can perform tests by stacking the 
residuals of a particular year or by stacking the residuals for a fixed season over 
a number of years (matching the quarterly graphs presented in the previous 
section). By looking at individual elements of Q,(T,) we can assess which time 
periods exhibit discrepancies, by stacking them into a vector of years we will be 
able to examine whether a particular year displays structural instability, while 
by taking a particular season over several years we will be able to study its 
evolutionary pattern over time. Note that the two types of JPT provide very 
different information regarding the types of changes the series may display. For 
example, a large temporary change in one seasonal intercept will cause the 
yearly predictive test to reject the hypothesis of stability while the season 
predictive test may not reject the null hypothesis. The opposite will occur when 
there is a small but permanent change in the pattern of one season. Individual 
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predictive tests check whether 

are large, where d ( T1 ) is the estimated standard error using the residuals of the 
first sample. When I], is i.i.d., d(T,) is the OLS estimate of the variance of the 
residuals. When Q is a martingale difference, with possibly heteroskedastic 
errors, C(T,) is, say, a Newey-West (1987) nonparametric estimator of the 
height of the spectrum at frequency zero. Joint predictive test statistics examine 
whether 

fi:(T,) = ~:(T,)'Cd",(T,)l-'ii~(T,), z = 1, . . . ,m,2, (5) 

fiS(T,) = ~S(T1)‘Cd”,(T,)l-‘iiS(T1), z = 1, . . . ,m,, (6) 

are large, where u”:(T,) is the stacked vector of predicted residuals from a par- 
ticular year in T2, rn; is the number of years in T2, iIs is a stacked vector of 
predicted residuals from a particular season ove_r T2, and m, equals the number 
of seasons in a year. d,(T,) E diag(d(T,)) and d,(T,) E diag(c?(T,)) are consis- 
tent estimators of the covariance matrices of u;(T,) and u:(T,), i.e., as Tl + co, 

d”,(T,) + 01 and d”,(T,) + 01. When q is i.i.d., d”JT1) and is(Tl) are OLS 
estimates of the variance of the vector of predictive residuals. When q is 
a heteroskedastic martingale difference process, d;(T,) and d”,(T,) are estimates 
of the height of the spectrum at frequency zero for the vectors iif and fis(T1). 

Deciding whether f,(T1), @‘(T,), or 6:(T,) are ‘large’ requires being able to 
determine the (unconditional) distribution of qt. Under the regularity conditions 
discussed in DGH (1991, sect. 3), ij,(T,) and qto =ft[x,, PO] have the same 
asymptotic distribution as T1 + co under the null, provided plim,, _ m/ITi 
= /IO. DGH also derive the distribution of the test statistics under normality of 

the Q and note that distributional assumptions about model disturbances Q 
play a role even asymptotically. To avoid this type of problem they suggest 
a testing strategy based on Markov inequalities, which only requires very weak 
distributional assumptions. Simplicity and generality are the major advantages 
of this approach. The cost of this approach is that the size properties of Markov 
inequalities are extremely conservative. One additional drawback is that if the 
normality assumption is correct, normality tests will be more powerful and the 
size properties of the test would not be conservative. Under suitable regularity 
conditions an upper bound on the p-values of &( T,) is 

TT’ 5 Ir?j(Tl)l’ 
atcB, ri, I) = j=-t,+l 

Ir?t(T~)l’ 
, &T,, I = l,..., m. (7) 
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Although the choice of r is arbitrary, it is typical to choose r = 1 or r = 2. While 
focusing on second moments is more common, studying the case r = 1 may be 
instructive in situations where second moments may not exist. The principle of con- 
structing upper bounds on the p-values for (qf} can be extended to ai( j = s, y 
[see DGH (1991)]. For example, the upper bound for the p-values for ii: is 

where rni is the number of years in T1. The upper bound for the p-values for 
ii: is similar. 

3.2. Unit roots at seasonal frequencies, stochastic switching, and GPT 

In this paper GPT will be applied to a context which may deviate from the 
setup for which they were originally developed. Consequently, one needs to be 
aware of two potential problems that may invalidate inference: the possibility 
that the data generating process (GDP) has one or more unit roots at seasonal 
frequencies and the possibility that business cycle switching appears within the 
estimation sample. In the first case, the asymptotic distribution of the tests may 
be invalid. In the second case, the first subsample need not be stable and 
estimates of pTI may not be meaningful. 

As part of the univariate characterization of seasonality, one might expect 
that unit roots appear at some or all seasonal frequencies. Evidence on this issue 
is mixed when one uses the formal statistical apparatus of HEGY. For example, 
Hylleberg, Jorgensen, and Sorensen (1991), who examine the GNP series for 
several countries, and Beaulieu and Miron (1992) and Ghysels, Lee, and Siklos 
(1992) who study other quarterly and monthly series, indicate that for some 
series the tests do not reject the null hypothesis of unit roots at some seasonal 
frequencies. When one uses the procedure suggested by Canova and Hansen 
(1991), which reverses the null and the alternative of HEGY, the null of no unit 
roots is rejected in many cases. 

The presence of unit roots in x, at some or all of the seasonal frequencies does 
not create particular problems here. First, to apply GTP we only need to 
estimate the vector /I consistently. No mention is made of the rate of conver- 
gence of the estimator, which m_ay be slower or faster than the usual root-T, and 
the asymptotic distribution of B need not be known to perform the tests. Second, 
if unit roots appear in xt at some of the seasonal frequencies, they can be taken 
care of through the polynomial a(l) in (1). What is important here is that 
seasonal unit roots are not left in the error process since the assumptions on the 
model disturbances will be violated. This means that with s seasons at least s - 1 
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lags should be included. If this does not occur, one has to assume that no unit 
roots at seasonal frequencies are present in x, to guarantee standard asymptotic 
results [see, e.g., Gallant and White (1988)]. 

In addition to the possible existence of unit roots at seasonal frequencies, 
there is a second potential source of misleading inference. The tests described in 
the previous section are readily applicable if seasonals were stable for a fairly 
long period (the sample T,) and then, due to institutional changes or other 
factors not necessarily known to the econometrician, show patterns of perma- 
nent or transitory changes. However, this may not be the case when seasonal 
instability is linked to business cycle fluctuations. In this situation the param- 
eters obtained from T1 will be drawn from an unstable sample. While this is 
a matter of concern, it is not necessarily fatal for the empirical investigation we 
will conduct in the next section. An example may clarify this point. Let us 
assume that the true model is one where seasonal patterns are subject to cyclical 
changes. For simplicity, we focus on one of the seasonal mean shifts. To describe 
business cycle variations, we assume there are two states, one being a recession 
and the other an expansion [as in Hamilton (1989)]. Furthermore, we let the 
steady state probability of recession be J. and the mean of the season during this 
regime be xi. Expansions have steady state probability of 1 - 2 and the mean of 
the season in this state is x2 > xi. In such a situation, for T1 sufficiently large, the 
estimate of the mean of the process is x3 = A*xi + (1 - 2)*x2 which, by con- 
struction, is bounded below by x1 and above by x2. When it comes to testing the 
hypothesis of stability with data from the second sample and we are in an 
expansion (recession), we draw observations from a sample with mean x2 (x1) and 
compare them with a sample whose estimated mean is x3. It is fairly clear that, 
when expansions and recessions are sharp enough, we should reject the hypothesis 
of stability as the out-of-sample observations will have low p-values when compared 
with the estimated distribution from the first sample. However, this may not be the 
case if business cycle variations cause mild changes in the mean of the season. 

To confirm this intuition we performed a Monte Carlo exercise designed to 
study the power of the test when the DGP displays switches within the estima- 
tion sample. We consider the following three DGP’s: 

DGPl 

Ylt = @Ylt-I + /J + i bjdt-j + ~lt, 
j=l 

1 ItIT,, 

Ylt = @Ylt-I + P + (bl + hl)dl + f: bjdt-j + ult, 71 < t IT2, 
j=2 

Ylt = @-Ylt-I + P + i bjdt-j + ~lty 
j=l 

72 < t < T, (9) 
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DGP2 

Yz~ = MYzI-I + P + i b&j + UZ~, 
j=l 

Yz~ = MY,,- I + P + 5 (bj + kj)dt-j + UZ~, 
j=l 

~22 = UY.Z~-I + P + i bjdt-j + ~219 
j=l 

DGP3 

~32 = ~~3t-4 + P + i bj4-j + ~3t3 
j=l 

3 

~32 = (N + Y)YS~-4 + P + 1 bjdt-j + ~3r, 
j=l 

~3t = a~3t-4 + P + i bjdt-j + ~319 
j=l 

1 stsr1, 

71 < t I T2, 

z2 < t I T, (10) 

lstlz1, 

71 -c t I T2, 

z2 < t I T, (11) 

where Ujt, j = 1,2,3, are drawn from a normal distribution with zero mean and 
unit variance. One interpretation of (lo)-(12) is that r1 and 52 represent turning 
points of the business cycle and the seasonals are changing with the stages of the 
business cycle. Ghysels (1991) provides a more complicated setup where this 
interaction may emerge. 

The first DGP shows a switch in one of the seasonal deviations from the 
mean, the second shows a switch in the entire vector of seasonal deviations from 
the mean, and the third DGP shows a switch in the seasonal slope. In all the 
experiments we take T = 160, which is comparable to the size of the quarterly 
time series we use in the next section, and we set the number of replications 
N = 1000. 

Generalized predictive tests based on Markov inequalities are extremely 
conservative tests, even asymptotically [see DGH (1991)]. Although we do not 
report this, we found that the tests remained conservative in our design (the size 
of the test is close to zero). In some sense this is a virtue, since one wants tests 
which are robust to certain types of misspecification (like first sample instability) 
which may cause false alarms. 
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We studied the power properties of the test to the timing of the switches in two 
situations: one where a switch occurs in the estimation sample and the predictive 
sample T2 starts at the time of the second switch (i.e., T2 = T - z2) and one 
where a switch occurs in the estimation sample and the predictive sample starts 
before the time of the break (T2 > T - z2). The two situations we study are 
~~ = 40, ~~ = 120, T2 = 40 and r1 = 40, r2 = 130, T2 = 40. 

We also studied the power of the test to the magnitude of the switch and to the 
overall amplitude of seasonal fluctuations. In particular we consider p = 
[O.O, 6.01, two sets of seasonal coefficients [b,, b2, b3] = [16.0,2.0, 10.01 or 
[b,, b2, b3] = CO.2 - 0.3,0.3], two values of the seasonal slope a = [O.S,O.l], 
and two types of switches. For the first DGP and the first set of seasonal 
coefficients we consider h1 = [l.O, 5.01 and for the second set of seasonal 
coefficients h1 = [0.2,1.0]. For the second DGP and the first set of coefficients 
we set [k,, k2, k3] = [l.O, 1.0, 1.01 or [S.O, 5.0,5.0] and for the second set of 
seasonal coefficients [k,, k2, k3] = [0.2,0.2,0.2] or [l.O, 1.0, 1.01. For the third 
DGP and both values of a, y = [O.l, 0.43. 

Table 1 reports the results for a = 0.5, ~1 = 6.0, and [b,, b2, b3] = 
[16.0,2.0,10.0]. Table 2 reports the results for a = 0.1, p = 0.0, and 
[b,, b2, b3] = [0.2, - 0.3,0.3]. In all cases we estimate a model of the type 

Yl= i Pjdj+ 5 P~Y~-~ + et (12) 
j=l q=l 

over T1 and construct predictive residuals over T2. In constructing the upper 
bound to the Markov inequalities we employ the Newey-West procedure with 
a set of Bartlett weights and a lag window of length 5. In all the experiments we 
report Q = 4, and in calculating Markov inequalities we set I = 2. 

The results indicate that, when the DGP is a switching process, the individual 
predictive tests are, in general, accurate in detecting the timing of the switch 
when the magnitude of seasonal fluctuations is large and when the size of switch 
is large for all three DGP’s. The power of individual predictive tests is also 
essentially independent of the timing when the predictive sample starts. When 
the size of the switch is small the tests are very conservative and do not reject the 
null of no structural breaks when a switch does exist, regardless of the exact 
timing when the predictive sample starts. This is true both when the magnitude 
of seasonal fluctuations is large and also when seasonal fluctuations are minor. 

The power of joint yearly test is slightly different across DGP’s. When only 
one intercept is switching, the test is not very powerful in detecting the timing of 
the switch regardless of the magnitude of the change, but when the switch occurs 
in the entire vector of intercepts or in the slope, the test identifies the timing of 
the break with sufficient precision. Once again the exact timing of the shift is not 
crucial, as long as it occurs in the predictive sample. 
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The joint season and overall tests detect the presence of structural breaks only 
in the case where the switch is large enough and where it persistently changes the 
pattern of that season. For example, a switch in one seasonal intercept is not 

sufficient for the joint seasonal and overall tests to reject the null. However, 
when we consider large enough switches in the seasonal slope, the tests always 
reject the null. Also in this case the intensity of the seasonal fluctuations, more 
than the size of the switch, is important in determining the power of the test for 
all three DGP’s. 

Although we report results only for a limited set of experiments, it is worth 
mentioning that we also conducted several additional exercises such as changing 
the number of lags in the estimated model (i.e., changing Q from 2 to 6), adding 
switches in the estimation sample or in the predictive sample. Depending on the 
exact specification, the results are slightly altered, but the basic message of the 
exercise is maintained. The tests are in general powerful in detecting a break and 
in correctly selecting its timing when seasonal fluctuations are significant and 
the size of the switch is large, regardless of the exact selection of other param- 
eters. The power however deteriorates when the size of the switch or the 
magnitude of the seasonal fluctuations is negligible. 

In sum, when the DGP is a switching type process the tests are more 
conservative than in the case when the DGP is stable in the estimation sample 
and structural breaks occur only in the predictive sample, but the power is 
independent of the exact starting period of the predictive sample. There are two 
implications of these results. First, if we find evidence of instability in the 
estimation sample and if the tests detect changes in the seasonal patterns in the 
predictive sample, we can be confident that the underlying time series has really 
changed in a dramatic manner and that the tests have not given a false alarm. 
Evidence of instability of first sample estimates will be examined in detail for 
each data set. Second, the exact selection of T1 and T2 is somewhat irrelevant so 
long as there is a break in T2. This allows an arbitrary division of the sample 
period in estimation and predictive samples and reduces the scope for data 
mining connected with the choice of the ending date of the estimation period. In 
the next section, we will choose the estimation sample to be equal to 75% of the 
entire data set, while the prediction sample represents the remaining 25%. 

4. An empirical investigation 

4.1. The data 

We apply generalized predictive tests to two data sets. Details on the sources 
of the data are provided in the appendix of Canova and Ghysels (1992). The 
first data set was originally examined by Barsky and Miron (1989) in their 
study of the seasonal and cyclical fluctuations and includes all the major 
aggregate seasonally nonadjusted US macroeconomic series. For all series but 
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the monetary base, the money multiplier, hours, and wage, T1 ends in 1974.1. 
For the monetary base and the money multiplier, T1 ends in 1977.1. For hours 
and wage, T1 ends in 1980.1. The upper bound of the Markov inequalities are 
constructed using a Newey-West procedure with a Bartlett window of length 
m = 5 for all series but hours and wage, for which we set m = 4, as suggested by 
Andrews (1991). The lag length p in (1) is equal to 5 for all series. 

The second data set is the same used by Beaulieu and Miron (1991). For 
reason of space we concentrate on the attributes of three industries, two from the 
nondurable category (textile and petroleum) and one from the durable category 
(machinery), which appear to be sensitive to business cycle conditions. For all 
series p = 13, m = 4, and T1 ends in 1980.1 except for HOURS and EMPL 
where T1 ends in 1977.1. 

For all series we present results obtained using a log first-difference trans- 
formation of the data and set r = 2. In order to study the sensitivity of the results 
to different stationary inducing transformation we also considered two other 
procedures: a polynomial detrending and a seasonal first-order differencing. We 
also studied the sensitivity of the results to changes in r setting Y = 1. Although 
numerical values of the Markov inequalities change, the basic message of the 
exercises is unchanged by these experiments. One reason for the robustness of 
our conclusions is that to apply GPT we only need consistency of parameter 
estimates and martingale differenced residuals and as long as the lag length of 
the autoregression p in (1) is approximately correct, consistency is ensured 
regardless of the detrending transformation used. 

Before discussing the results we examine whether model (1) is unstable over 
T, with each data set. Besides helping to decide whether the resulting p-values 
are conservative or not, this exercise is also useful because it may give some 
economic information on the evolution of seasonals over time. For this purpose 
we compute recursive residuals for each series in each data set in the first sample 
and perform sequential Chow tests for the stability of the estimates. The results 
suggest that for the first data set T, is essentially stable except perhaps for the 
unemployment, the labor force, and the wage series. It is also worth mentioning 
that, although not statistically significant, many aggregate series display in- 
creased heteroskedasticity around the turning points of the business cycles. The 
second data set is more supportive of the assumption of a stable first sample. For 
many series we found almost no evidence of structural instability. The excep- 
tions are production and shipments in the textile industry, whose residuals 
display increased volatility after 1978, and hours and employment in the 
petroleum industry, which show outliers in 1953 and 1969, respectively. 

4.2. Post- WWII US aggregately quarterly macro variables 

For many variables in this data set there is a tendency for the p-values of the 
Markov inequalities for IPT to go below the 5% mark during the three 



F. Canova and E. Ghysels. Changes in seasonal patterns 1161 

recessions of the prediction sample. This tendency however is not generalized. 
For example, the three labor series (unemployment, employment, and labor 
force) and the money multiplier series do not display statistically significant 
evidence of instabilities, even though the unemployment rate displays important 
spikes in the p-values during recessions (see fig. 3), while series like consumption 

Fig. 3. Aggregated quarterly macro series, p-values for Markov inequalities. 
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Fig. 3 (continued) 

of services, imports, and Ml pass the 5% mark both in expansions and in 
recessions. In addition, the effects of recessions are not all alike over time. While 
during the 1974-75 recession structural changes appear to be minor (the basic 
exceptions here are the three consumption series), a clear pattern of instabilities 
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emerge in the last two recessions (1979-81) and (1981-82), with a strong 
concentration of structural changes during the 1981-82 contraction. 

The joint annual tests (see table 3) strengthen the results of the ITP and confirm 
(i) the emergence of structural instabilities primarily in the last two recessions of 
the sample and (ii) a tendency of seasonals toward long-run drifts. The joint 
season tests provide further evidence that the seasonals of most series in this data 
set are unstable. The exceptions here are the labor force, the unemployment rate, 
and the wage series. All these series displayed some instability in the first sample, 
so that while there is no statistical tendency for structural changes one should 
keep in mind that the p-values are conservative. Overall, the season which appears 
to be the most unstable is summer, but the differences across seasons are minor. 

4.3. Post- WWII disaggregated monthly macro variables 

The evidence emerging from the second data set is supportive of the idea that 
business cycle fluctuation play a nontrivial effect on the pattern of seasonality of 
existing disaggregated time series (see table 4). For reason of space we only 
report JPT for this data set. Graphs of IPT are contained in Canova and 
Ghysels (1992). If we exclude the price level in the petroleum industry and 
shipments in the machinery industry, there is a tendency for the p-value of the 
Markov inequalities of IPT for many series to pass the 5% bound exactly in 
recessions. It is also worth emphasizing that because of the relatively small 
sample size available for production, shipment, and prices (20 years), the 5% 
mark for the Markov inequality is probably too demanding and one should 
look for tendencies more than for direct violation of this bound. 

Although not completely significant from the statistical point of view, the 
evidence provided by the employment series in all three industries is economi- 
cally important. The only time when seasonals appear to be moving is during 
recessions. One can think of many explanations for this pattern. Given the 
existing rigidities in adjusting employment levels, the most obvious one seems 
that, in recessions, firms provide longer vacation time for workers, therefore 
altering the existing pattern of seasonality in employment. 

The joint tests also support these results. All series but employment in the 
petroleum industry display both changes in their joint yearly pattern as well as 
changes in the pattern of months in the sample. The exception here is the employ- 
ment series in the petroleum industry, which displays instabilities when individual 
months are considered, but, over the year, these instabilities appear to average out. 

5. The costs of treating seasonality as constant 

The last section has provided evidence suggesting that the seasonal patterns 
of many macro variables are unstable and that the instabilities are perhaps 
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related to business cycle fluctuations. To determine the costs a researcher incurs 
by assuming a model in which seasonals are represented by time-invariant 
deterministic dummies, when the actual DGP for the seasonals varies with the 
stages of the business cycle, we conduct a simple forecasting exercise. Ghysels, 
Lee, and Siklos (1992) examine the effects of incorrectly specifying the seasonal 
component of a series from the point of view of the univariate time series 
properties of the data. 

To determine the forecasting costs of a wrong model specification we con- 
struct a statistic similar to the Theil-U. The denominator of the statistic is the 
Mean Square Error (MSE) of a model whose seasonals are treated as constant 
over time (seasonal dummy model). The numerator is either the MSE of a model 
where seasonal dummies are allowed to change with the stages of the business 
cycle [as in Ghysels (1990)] or the MSE of a model where the coefficients of the 
dummies are allowed to drift over time according to a Litterman-type prior [as 
in Canova (1992)]. This statistic provides a useful measure of the forecasting 
performance of alternative models, allows a rough calculation of the gains 
obtained by taking into account the evidence we uncovered in previous sections, 
and has a very simple interpretation. If a value less than 1 obtains, the model 
with changing seasonals dominates in MSE terms a model with constant 
deterministic dummies, and vice versa if a value greater than 1 obtains. The 
three model specifications we employ are given by (1) and by 

S-l 

xt = P + C (4s + Xt6_Jdf + i ajxt-j + clzt + vlt 
s=l j=l 

and 

S-l 

xt = P + 1 &.vtdf + f ajtX,-j + c(Z, + f/f, 
s=l i= 1 

(13) 

(14) 

where xt is a dummy variable which is equal to 1 if the economy is in an 
expansion according to NBER chronology and 0 otherwise, d,‘s are seasonal 
dummies, z, is a linear time trend, fii = [41t, . . . , 4st, al,, . . . , ajt, p, ~11, G = block- 
diag[Gl,Gz] with Gl = fJZl*Z and G2 = I, u; = [ulr,O], E,[u,,,u~,] = a:, 
= diag[a:] * e2, where 8i and tZ2 are hyperparameters which will be selected 
with a rough specification search as described by Litterman (1986). In all three 
specifications, p lags of x, are included to prewhiten the residuals. 

In the exercises we focus attention on changes in the coefficient representing 
seasonal deviations from the overall mean so that in (14) and (15)-(16) only the 
coefficients of the dummies are allowed to vary over time. All other coefficients 
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are time-invariant. It is also clearly possible to consider time variation in the 
seasonal AR coefficients of the models. Such extensions are studied elsewhere 
[see, e.g., Canova (1993)] and are not examined here. The basic constant 
seasonal dummy model (1) is nested in the two above specifications by simply 
setting xt = 0 Vt in (14) and e1 = 1 and e2 = 0 in (15)-(16). In addition, by 
setting 8i = 1 and d2 to a dummy variable which takes a value different than 1 at 
business cycle turning points we can approximately nest model (14) into model 

(15)-(16). 
To conduct forecasts in real time with model (14), we move business cycle 

turning points in the forecasting sample two quarters forward. That is, if 
a recession started in the first quarter of 1980, agents would not have been able 
to use this information until the third quarter of 1980 because of the typical two- 
quarter delay needed in the classification of turning points. To make the 
forecasting comparison across models fair we therefore introduce this informa- 
tional delay in our exercises. For the model (15)-(16) and for all series we 
examined, we selected G2 = 0.01 while, depending on the series, 8r ranges from 
0.80 to 1.03. Finally, p is set to 4 for quarterly data and 12 with monthly data. 

The results of the forecasting exercise for selected series are presented in table 
5. We report the outcome of our forecasting exercise for a total of 12 series 
only (7 from the first data set and 5 from the second data set) because they are 
very much representative of the patterns we obtained with the 251 series 
included in both data sets. The estimation samples for the two data sets are 
1951-1976.4 for aggregate quarterly series and 1947.1-1976.12 (or 
1967.1- 1979.12) for disaggregated monthly series. The forecasting samples are 
1977.1-1985.1 and 1997.1(1980.1)-1987.12, respectively. We present results for 
1, 4, and 9 steps ahead for quarterly data and for 1,4, and 13 steps ahead for 
monthly data. 

Table 5 indicates that there are some gains from modelling cyclical changes in 
seasonality. The gains are not overwhelming with model (14). Although this may 
be due to its extreme simplicity, it is comforting to see that, independent of the 
horizon, the model outperforms on average a model with unchanged seasonality 
in more than half of the series examined. When we model changes in the 
seasonal patterns flexibly with a Bayesian prior the evidence is more supportive. 
The generic time-varying coefficients (TVC) model outperforms the basic 
dummy model for 6 of the 7 aggregated quarterly macro data and for all 
disaggregated macro data. Although formal statements are not possible because 
there is no analytical closed form expression for the asymptotic standard error 
of the statistic we use, it is interesting to note that the TVC model outperforms 
the dummy model for these two data sets on average over variables and steps by 
about 10%. 

In conclusion, we find that there are MSE gains to be made in modelling time 
variation in seasonal fluctuations and that business cycle switches generate 
important instabilities in the seasonal patterns of macroeconomic variables. 
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Variable 

Table 5 

Forecasting comparison, modified U-statistic.B 

Interactive model Time-varying model 

1 4 9 13 1 4 9 13 

Aggregate quarterly macro data, forecasting sample 1977.1-1985.4 

GNP 1.00 1.00 1.03 0.95 0.95 0.92 
IFIX 1.00 1.01 1.02 0.94 0.97 0.98 
CDUR 1.00 1.00 1.00 0.98 0.99 0.93 
Ml 1.00 1.00 0.99 0.98 1.00 1.00 
EMPL 0.93 0.94 1.04 0.97 0.92 1.00 
FINSALE 0.99 0.99 1.01 0.95 0.97 0.86 
MONMULT 0.98 0.96 0.94 0.96 1.02 0.98 

Disaggregate monthly macro data, forecasting sample 1977.1(1980.1)-1987.12 

Y435 0.97 0.97 0.98 0.78 0.79 0.87 
SH35 0.99 0.99 1.00 0.68 0.67 0.80 
PR35 1.08 1.11 1.08 0.67 0.66 0.74 

EMP35 0.90 0.90 0.89 0.99 0.99 0.98 
HO URS35 1.00 1.00 1.01 0.99 1.02 1.00 

“In the aggregate macro data GNP is gross national product, IFIX is fixed investments, CDUR is 
consumption of durables, Ml is money, EMPL is employment, FINSALE is final sales, MON- 
MULT is the money multiplier. The disaggregate macro data refer to industry 35 (machinery), and 
Y4 is a measure of output, SH is a measure of shipments, PR is the price of output, EMP is a measure 
of employment, and HOURS is a measure of production hours. ‘Interactive model’ refers to a model 
where seasonal deviations from the mean are interacted with a cyclical dummy. ‘Time-varying 
model’ refers to a model where time variations in the seasonal deviations from the mean are flexibly 
modelled with a Bayesian prior. 

Although more evidence must be collected before general conclusions can be 
drawn, the results we present indicate that the forecasting costs of taking 
a short-cut approach to account for seasonal fluctuations may be substantial. 

6. Conclusions 

This paper documents the existence of instabilities in seasonal patterns for 
a large class of US time series, including quarterly and monthly aggregated and 
disaggregated data, and attempts to link these instabilities to the stages of the 
business cycle. In documenting the pattern of instabilities we rely both on the 
graphical technique and on recently developed tests for structural stability for 
dynamic systems as proposed by Dufour, Ghysels, and Hall (1991). This testing 
methodology is particularly suited to examine the hypothesis of cyclicality of 
seasonal patterns because it can detect single or multiple shifts that are either 
temporary or permanent in nature. 
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We find that for the majority of the aggregated US time series examined 
seasonals drift over time and, in some cases, these changes are linked to the 
stages of the business cycle. The evidence for disaggregated data is less statis- 
tically significant but more compelling from the economic point of view, since 
changes appear to occur primarily in recession. We demonstrated with a simple 
forecasting exercise that there are gains to be made by taking into account the 
time structure of seasonal instabilities. In particular, by allowing a flexible 
pattern of time variation in the seasonal dummies we find that one can improve 
(in MSE terms) the forecasting performance of a model with constant seasonals 
by 10% on average. 

The results of this paper have a number of interesting implications for those 
who are interested in characterizing the properties of cyclical and seasonal 
fluctuations in macro aggregates and wish to examine the validity of models 
using the restrictions implied by the interaction between various components of 
the series. First, cataloging business cycle facts with seasonally adjusted data is 
improper unless the seasonal adjustment takes into account the particular form 
of interaction existing among the components of the series (and this is seldom 
the case). Second, aggregate macroeconomic models should explicitly examine 
not only seasonal fluctuations but also the seasonal and cyclical interaction in 
order to provide guidelines to organize the facts we have described in this paper. 
Third, the asymmetric behavior of seasonals over the business cycle makes it 
clear that linear-quadratic models or models which are linear-quadratically 
approximated around the steady state are incapable of capturing important 
features of the data. Theoretical models with some form of threshold may be 
more useful in characterizing the cyclical/seasonal properties of the data. 
Finally, the observation that the sectoral monthly employment series displays 
the most interesting economic variations in seasonal patterns while the aggre- 
gate quarterly employment series does not, speaks against the use of representa- 
tive agent general equilibrium models. It also suggests that rigidities in sectoral 
labor markets may generate these nonlinear effects in macroeconomic time 
series. 
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