
Chapter 6: Likelihood methods

Maximum likelihood (ML) techniques have enjoyed a remarkable come back in the last few
years, probably as a consequence of the development of faster computer technology and
of the substantial improvement in the specification of structural models. In fact, complex
stochastic general equilibrium models have been recently estimated and tested against the
data. This represents a shift of attitude relative to the 1980’s or the beginning of the 1990’s
where GMM and related techniques dominated the scene. As we have seen maximum like-
lihood is a special case of GMM when the scores of the likelihood are used as orthogonality
conditions. Nevertheless, (full information) ML differs from GMM in several respects.

In both cases, a researcher starts from a fully specified dynamic stochastic general
equilibriummodel. However, while with GMM the first order conditions of the maximization
are sufficient for estimation and testing, with maximum likelihood the final form, expressing
the endogenous variables of the model as a function of the exogenous variables and of the
parameters, is needed. As we have seen in Chapter 2, this is not a small enterprise in
general and approximations are often needed, transforming nonlinear specifications into a
linear ones. The presence of nonlinearities, on the other hand, does not present particular
problems for GMM estimation and testing. Moreover, while with GMM one uses only the
(limited) information contained in a subset of the equilibrium conditions, e.g. the Euler
equations, once the final form is calculated, all the implications of the model must necessarily
be taken into account for estimation. Therefore, while with the former one can estimate and
test assuming that only some of the equations of the model appropriately characterize the
data generating process, such an assumption is untenable when ML is used. An interesting
conundrum arises when misspecification is present. Following White (1982), one can show
that a quasi-ML estimator of the parameters, obtained when the distribution of the errors is
misspecified, has the same asymptotic properties as the correct ML estimator under a set of
regularity conditions. However, as we will argue in chapter 7, the misspecification present
in DSGE models is unlikely to be reducible to the distributions of the errors. Hence, it is
unknown what kind of properties ML estimates have in these setups and care must be used
in reporting and interpreting estimates and tests.

With both ML and GMM the final scope of the analysis is the evaluation of the quality of
the model’s approximation to the data and, given estimates, to study the effects of altering
interesting economic (policy) parameters. This should be contrasted with the exercises
typically performed in VARs. Here the full implications of the model, as opposed to a set of
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minimal restrictions, are used to obtain estimates of the objects of interest; the analysis is
geared towards the estimation of ”structural parameters’ as opposed to ”structural shocks”;
and model evaluation is often more important than describing the (restricted) structure of
the data in response to disturbances. Which approach one subscribes depends on how much
a researcher trusts the model. With ML (and GMM) one puts a lot of faith in the model
as a description of the data - the structure is correct, only the parameters are unknown.
With VARs the opposite is true. Therefore only a limited set of conventional or generic
restrictions are considered.

This chapter describes the steps needed to estimate models with ML. We start by de-
scribing the use of the Kalman filter and of the Kalman smoother for state space models.
State space models are general structures: any multivariate ARMA model and almost all
log-linearized DSGE model can be fit into this framework. The Kalman filter, besides
providing minimum MSE forecasts of the endogenous variables and optimal recursive es-
timates of the unobserved states, is an important building block in the prediction error
decomposition of the likelihood. In fact, the likelihood function of a state space model can
be conveniently expressed in terms of the one-step ahead forecast errors, conditional on the
initial observations, and of their recursive variance, both of which can be obtained with
the Kalman filter. Therefore, given some initial parameter values, the Kalman filter can be
used to recursively construct the likelihood function; gradient methods can be employed to
provide new estimates for the parameters and the two-step procedure can be repeated until
the gradient or the parameters do not change across iterations.

In the third section we provide some numerical tips on how to update parameter esti-
mates and on other issues often encountered in practice. The algorithms are only sketched
here. For details the reader should consult Press et al. (1980) or Judge, et. al (1985).
The last portion of this chapter applies the machinery we have developed to the problem of
estimating DSGE models. The (log)-linearized solution of such models naturally comes into
a state space format where the coefficients are highly nonlinear functions of the structural
parameters. We discuss a number of peculiarities of DSGE models relative to other time se-
ries specifications and describe how to use cross-equations restrictions to identify structural
parameters and to test the model. This is the approach popularized by Sargent (1979) and
Sargent and Hansen (1980) and exploits the fact that linearized expectational equations
impose restrictions on the VAR of the data. We conclude estimating the parameters of a
simple sticky price model driven by technology and monetary disturbances and confronting
some of the implied unconditional moments to the data.

6.1 The Kalman filter

The Kalman filter is one of the most important instruments in the toolkit of applied macroe-
conomists and we will extensively use it throughout the rest of this book. The presentation
here is basic and the reader should refer to Harvey (1991) or Anderson and Moore (1979)
for more extensive details.



Methods for Applied Macro Research 6: Likelihood methods 199

The Kalman filter is typically employed in state space models of the form

yt = x01tαt + x
0
2tv1t (6.1)

αt = D0t +D1tαt−1 +D2tv2t (6.2)

where x01t is m ×m1 matrix, x02t is m ×m2 matrix , D0t is m1 × 1 vector, D1t, D2t are
m1 ×m1 and m1 ×m3 matrices; v1t is a m2 × 1 vector of martingale difference sequences,
v1t ∼ N(0,Σv1); v2t is m3 × 1 vector of martingale difference sequences, v2t ∼ N(0,Σv2).
We also assume that E(v1tv

0
2τ ) = 0 and E(v1tα

0
0) = 0, for all t and τ . The first assumption

can be dispensed of, as we will see later on. The two together insure that the states αt and
the disturbances v1t are uncorrelated.

(6.1) is typically referred as the measurement (observation) equation while (6.2) is the
transition (state) equation. Note that, in principle, αt is allowed to vary over time and that
x1t, x2t,D0t,D1t,D2t could be fixed (i.e. matrices of numbers) or realizations of random
variables. For example, in time series context x1t could contain lagged yt’s and x2t current
and/or lagged stochastic volatility terms. Notice that it is possible to have m2 shocks
driving the m endogenous variables, m2 ≤ m.

The framework provided by (6.1)-(6.2) is general: a number of time series and regression
models can be cast in such a format. We consider a few special cases next.

Example 6.1 Consider an m variable VAR yt = A(`)yt−1+et, where A(`) is a polynomial
of order q and et is a martingale difference process, et ∼ (0,Σe). As we have seen such a
system can be rewritten in a companion form as Yt = AYt−1 +Et where A = [A1,A2]0 and
A1 = (A1, . . . , Aq)

0 contains the first m rows of A, A2 is a matrix of ones and zeros and
Et = (et, 0, . . . , 0)

0. Such a system fits into (6.1)-(6.2) setting αt = Yt = [y0t, y0t−1, . . . y0t−q]0,
x01t = [I, 0, . . . 0], D1t = A,Σv1 = 0, v2t = Et, D2t = I, D0t = 0. Hence, there is no
measurement error, the measurement equation is trivial and states and observables coincide.

Example 6.2 Consider the univariate process, yt = A1yt−1 +A2yt−2 + et +D1et−1. This
model can be equivalently written as:

yt = [1 0]

·
yt

A2yt−1 +D1et

¸
·

yt
A2yt−1 +D1et

¸
=

·
A1 1
A2 0

¸·
yt−1

A2yt−2 +D1et−1

¸
+

·
1
D1

¸
et

Hence, an ARMA(2,1) structure fits (6.1)-(6.2) setting αt =

·
yt

A2yt−1 +D1et

¸
, D1t =·

A1 1
A2 0

¸
, D2t =

·
1
D1

¸
, D0t = 0, x01t = [1, 0],Σv1 = 0,Σv2 = σ2e .

Exercise 6.1 Consider a process of the form y1t = A1(`)y1t−1 +D(`)et +A2y2t where y2t
represents exogenous variables, A1(`) is of order q1 and D(`) of order q2. Show the form of
the state space model in this case. Display D1t,D2t, x01t, x02t.
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Besides time series models, several structures naturally fit into a state space framework.

Example 6.3 1) In many economic problems the ex-ante real rate is needed but only the
ex-post real rate of interest is computable. In this case we could set αt ≡ ret = it−πet where
πet is the expected inflation rate and assume e.g., αt = D1αt−1+ v2t. The observed real rate
then is yt ≡ it − πt = αt + v1t where v1t is a measurement error.
2) A RBC model driven by unit root technology shocks implies that all endogenous variables
have a common trend (see King, Plosser, Stock and Watson (1991)). Here αt = αt−1 + v2t
is a one dimensional process; x01t = x01 are the loadings on the trend and x02t = x02 are the
loadings on everything else (cycle, irregular, etc.).

Exercise 6.2 When agents are risk neutral, uncovered interest parity implies that interest
rates differentials should be related to the expected change in the exchange rate (see example
2.3 of chapter 5). Cast such a relationship into a state space format carefully defining the
matrices x01t, x02t,D0t,D1t,D2t.

Exercise 6.3 (Nonlinear state space model) Consider the model yt = αt + v1t, αt+1 =
αtθ + v2t and suppose one is interested in θ, which is unobservable, as is αt. (In a trend-
cycle decomposition, θ represents, e.g., the persistence of the trend). Cast the problem in a
state space format; show the state vector and display the matrices of the model.

The Kalman filter can be used to optimally estimate the unobservable state vector αt
and to update estimates when a new observation becomes available. As a byproduct, it also
produces recursive forecasts of yt, consistent with the information available at t.

Suppose we want to compute αt|t, the optimal (MSE) estimator of αt using information
up to t; and Ωt|t the MSE matrix of the forecast errors in the state equation. At this stage
we let x01t = x01, x02t = x02,D1t = D1, D0t = D0, D2t = D2 be known. We also assume that
a sample {yt}Tt=1 is available. The Kalman filter algorithm has five steps.

Algorithm 6.1

1) Select initial conditions. If all eigenvalues of D1 are less then one in absolute value,
set α1|0 = E(α1) and Ω1|0 = D1Ω1|0D01 + D2Σv2D02 or vec(Ω1|0) = (I − (D1 ⊗
D01)−1)vec(D2Σv2D02), in which case the initial conditions are the unconditional mean
and variance of the process. When some of the eigenvalues of D1 are greater than one,
initial conditions cannot be drawn from the unconditional distribution and one needs
a guess (say, α1|0 = 0, Ω1|0 = κ ∗ I, κ large) to start the iterations.

2) Predict yt and construct the mean square of the forecasts using t− 1 information

E(yt|t−1) = x01αt|t−1 (6.3)

E(yt − yt|t−1)(yt − yt|t−1)0 = E(x01(αt − αt|t−1)(αt − αt|t−1)0x1) + x02Σv1x2
= x01Ωt|t−1x1 + x

0
2Σv1x2 ≡ Σt|t−1 (6.4)
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3) Update state equation estimates (after observing yt):

αt|t = αt|t−1 +Ωt|t−1x1Σ−1t|t−1(yt − x01αt|t−1) (6.5)

Ωt|t = Ωt|t−1 −Ωt|t−1x1Σ−1t|t−1x01Ωt|t−1 (6.6)

where Σ−1t|t−1 is defined in (6.4).

4) Predict the state equation random variables next period:

αt+1|t = D1αt|t +D0 = D1αt|t−1 +D0 + Kt²t (6.7)

Ωt+1|t = D1Ωt|tD01 +D2Σv2D02 (6.8)

where ²t = yt − x01αt|t−1 is the one-step ahead forecast error in predicting yt, and
Kt = D1Ωt|t−1x1Σ−1t|t−1 is the Kalman gain.

5) Repeat steps 2)-4) until t = T .

Note that in step 3) Ωt|t−1x1 = E(αt−αt|t−1)(yt−x01αt|t−1)0. Hence, updated estimates
of αt are computed using the least square projection of αt−αt|t−1 on yt−yt|t−1, multiplied
by the prediction error. Similarly, Ωt|t−1 = E(αt − αt|t−1)(αt − αt|t−1)0 is updated using a
quadratic form involving the covariance between forecast errors in the two equations and
the MSE of the forecasts. Note also that equations (6.7)-(6.8) provide the inputs for the
next step of the recursion.

Example 6.4 Consider extracting a signal αt, for example, the long run trend of output,
given that αt = αt−1 and that the trend is linked to output via yt = αt + v1t where v1t
is a normal martingale difference process with variance σ2v1. Using (6.6) we have that

Ωt|t = Ωt|t−1 − Ωt|t−1(Ωt|t−1 + σ2v1)−1Ωt|t−1 =
Ωt|t−1

1+
Ωt|t−1
σ2v1

=
Ωt−1|t−1

1+
Ωt−1|t−1

σ2v1

. Hence, starting from

some Ω0 = Ω̄0, we have Ω1|1 = Ω̄0

1+
Ω̄0
σ2v1

; Ω2|2 = Ω̄0

1+2
Ω̄0
σ2v1

; . . .; ΩT |T = Ω̄0

1+T
Ω̄0
σ2v1

. From (6.5) and

(6.7), αT+1|T+1 = αT |T +
Ω̄0
σ2v1

1+T
Ω̄0
σ2v1

(yT+1 − αT |T ). Hence, as T → ∞, αT+1|T+1 = αT |T so
that, asymptotically, the contribution of additional observations is negligible.

Exercise 6.4 Consider a vector MA process yt = et + et−1 where et ∼ N(0, I). Show that
the optimal one-step ahead predictor for yt+1 is yt+1|t = t+1

t+2 [yt − yt|t−1]. Conclude that as
T → ∞, the optimal one-step ahead predictor is just last period’s forecast error. (Hint:
Cast the process into a state space format and apply the Kalman filter).

Exercise 6.5 Consider the process yt = A1yt−1 +A2yt−2 + et. Here αt = [y0t, y0t−1]0, v2t =

[et, 0], D1 =
·
α1 α2
1 0

¸
, Σv2 =

·
σ2e 0
0 0

¸
, D0t = v1t = 0, x01 = [1, 0]. Show how to start

the Kalman filter recursions; compute prediction and updated estimates of αt for the first
two observations.
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Exercise 6.6 Suppose y1t = Aty1t−1 +Dty2t + v1t and αt = (At,Dt) = αt−1 + v2t, where
y2t are exogenous variables. Show the updating and prediction equations in this case. How
would you handle the case of serially correlated v2t?

At times, it may be useful to construct estimates of the state vector which, at each
t, contains information present in the entire sample. This is the case, in particular, in
signal extraction problems; for example, when αt is a common trend for a vector of yt, we
want estimates at each t to contain all the information available up to T . In this case the
Kalman filter can be applied starting from the last observation, working backward through
the sample, t = T − 1, . . . , 1, using αT |T ,ΩT |T and as initial conditions. That is:

αt|T = αt|t + (Ωt|tD01Ω−1t+1|t)(αt+1|T −D1αt|t) (6.9)

Ωt|T = Ωt|t − (Ωt|tD01Ω−1t+1|t)(Ωt+1|T −Ωt+1|t)(Ωt|tD01Ω−1t+1|t)0 (6.10)

Equations (6.9)-(6.10) define the recursions of the so-called Kalman smoother.

Example 6.5 Continuing with example 6.4, take αT |T and ΩT |T as initial conditions. Then

Ω1|t =
ΩT |T

1+T
ΩT |T
σ2v1

and αt|T = αt+1|T +

Ω̄T |T
σ2v1

1+T
Ω̄T |T
σ2v1

(yt|T − αt+1|T ). Can you guess what α1|T is?

As a byproduct of the estimation, the Kalman filter allows us to transform (6.1)-(6.2)
into a system driven by innovations in the measurement equation. In fact, using (6.5)-(6.7),
it is immediate to see that (6.1) and (6.2) are equivalent to

yt = x01tαt|t−1 + ²t (6.11)

αt+1|t = D1αt|t +D0 + Kt²t (6.12)

where ²t is the forecast error and Et(²t²
0
t) ≡ Σt|t−1. Hence, if the Kalman gain Kt−1 is

available and given (α1|0,Σ1|0), αt|t−1 and ²t can be computed recursively at any t. In turn,
the Kalman gain is immediately obtained when Ωt−1|t−1 is available.

Exercise 6.7 The reparametrization in (6.12)-(6.11) is trivial in the case of a constant
coefficient VAR(q), since it is always possible to rewrite the measurement equation as yt =
E[yt|Ft−1] + ²t, where Ft−1 is the information set at t − 1. Show how to transform the
ARMA(2,1) model of example 6.2 to fit such a representation.

Hansen and Sargent (1998, pp.126-128) show that equation (6.6) can also be written as
Ωt|t = D1Ωt−1|t−1D01 + D2Σv2D02 − D1Ωt−1|t−1x1Σ−1t|t−1x01Ωt−1|t−1D1. One can recognize in
this expression a version of the matrix Riccati equation used in chapter 2 to solve linear
regulator problems. Therefore, under regularity conditions, in state space models with
constant coefficients, limt→∞Ωt|t = Ω. Consequently, limt→∞ Kt = K, and the stationary
covariance matrix of the innovations is Σ = limt→∞Σt|t = x01Ωx1 + x02Σv1x2. As we show
next, the expressions for Ω,K,Σ obtained in a constant coefficient model are the same as
those asymptotically produced by a recursive least square estimator.
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Example 6.6 Consider estimating the constant (steady state) real interest rate αt us-
ing T observations on the nominal interest rate yt, demeaned by the average inflation
rate, where yt = αt + v1t and v1t is a martingale difference process with variance σ

2
v1.

An unbiased minimum variance estimator is α̂T =
1
T

PT
t=1 yt. If yT+1 becomes available

α̂T+1 =
1

T+1

PT+1
t=1 yt =

T
T+1(

1
T

PT
t=1 yt) +

1
T+1yT+1 =

T
T+1 α̂T +

1
T+1yT+1 which is a recur-

sive least square estimator. This estimator weights previous and current observations using
the number of available observations and does not forget: each observation gets equal weight
regardless of the time elapsed since it was observed. A more informative way to rewrite
this expression is α̂T+1 = α̂T +

1
T+1(yT+1 − α̂T ) and ²t ≡ (yT+1 − α̂T ) is the innovation in

forecasting yT+1. Clearly, KT+1 =
1

T+1 → 0 as T →∞. Hence, as T →∞, α̂T+1 → α̂T .

The recursions in (6.3)-(6.8) assume constant coefficients. The Kalman filter, however,
can also be applied to models with time varying coefficients, as long as they are linear in
parameters. For example, in the multivariate model

yt = αtyt−1 + v1t
αt = αt−1 + v2t (6.13)

recursive estimates of αt|t and of the forecast error ²t = yt − αt|t−1yt−1 consistent with the
information available at each t can be easily obtained. We extensively use models like (6.13)
in chapter 10 when studying time varying Bayesian VAR models.

Exercise 6.8 Consider the model yt = x
0
tαt+ v1t where αt = (I −D1)α0+D1αt−1+ v2t+1,

α0 is a constant; v1t is a martingale difference with variance σ
2
v1 and v2t is a vector of

martingale difference with variance Σv2. Define α†t = αt − α0. Show the form of the

updating equations for α†t and Ωt, assuming α
†
1 ∼ N(α1|0,Ω1|0).

A modified version of the Kalman filter can also be used in special nonlinear state space
models; for example, those displaying structures like the one of exercise 6.3. To compute
the Kalman gain in this case it is necessary to linearize the extended state space around
the current estimate. For example, the updating equations are

αt|t = αt|t−1θt|t−1 + K1t(yt − αt|t−1)
θt|t = θt|t−1 + K2t(yt − αt|t−1) (6.14)

where where K1t,K2t are matrices involving linear and quadratic terms in the predictors
θt|t−1 and αt|t−1, linear terms in the variance σ2v1 and in past Kalman gains (see Ljung and
Soderstroem (1983), pp. 39-40 for details).

If initial conditions and innovations are normally distributed, the Kalman filter predictor
is the best in both the class of linear and nonlinear predictors. Moreover, forecasts of yt
are normal with mean x01αt|t−1 and variance Σt|t−1. When the two above conditions are
not satisfied, the Kalman filter only produces the best linear predictor for yt, based on
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information at time t. That is, there are nonlinear filters which produce more efficient
estimators than those produced in (6.5)-(6.6). A nonlinear filter for a model with binomial
innovations was described in chapter 3 (see also Hamilton (1994), ch.22).

Example 6.7 As we have seen, a two-state Markov switching model for yt can be written
as yt = a0 + a1κt + yt−1 where κt has an AR(1) representation of the form

κt = (1− p2) + (p1 + p2 − 1)κt−1 + v1t (6.15)

and where v1t can take four possible values [1 − p1,−p1,−(1 − p2), p2] with probabilities
[p1, 1−p1, p2, 1−p2] and therefore is non-normal. It is immediate to verify that this process
has a state space representation and that the orthogonality assumptions needed for identifi-
cation are satisfied. However, while corr(v1t,κt−τ ) = 0 ∀τ > 0, the two processes are not
independent. Equation (6.15) can be rewritten as

(1− (p1+p2−1)`)∆yt = a1(1− (p1+p2−1)`)κt = a1(1−p2)+a0(2−p1−p2)+v1t (6.16)

Hence, although yt has a linear ARIMA(1,1,0) structure, Kalman filter estimates of yt+1|t
based on such a model are suboptimal since the non-linear structure present in v1t is ignored.
In fact, optimal forecasts are obtained using

Et∆yt+1 = a0+a1Etκt+1 = a0+a1[
1− p2

2− p1 − p2 +(p1+p2−1)(P [κt = 1|Ft]−
1− p2

2− p1 − p2 )]
(6.17)

where Ft represents the information set at t. The nonlinear filtering algorithm described in
chapter 3 uses (6.17) to obtain estimates of κt.

While we have assumed that the measurement error and the error in the state equation
are uncorrelated, in some situations this assumption may be unpalatable. For example, in
the context of a model like (6.13), one may want to have the innovations in yt and in αt to
be correlated. Relaxing this assumption requires some ingenuity. The next exercise shows
that a system with a serially correlated measurement error is equivalent to a system with
correlation between innovations in the transition and the measurement equations.

Exercise 6.9 Suppose that all coefficients are constant, that D0 = 0 and that vt in equa-
tion (6.1) satisfies v1t = ρvv1t−1 + υt where ρv has all the eigenvalues less than one in
absolute value and υt is a martingale difference with covariance matrix Συ. Assuming that
E(v2tυ

0
τ ) = 0 ∀t, and τ 6= t, show that an equivalent state space representation is given

by (6.2) and by y†t = x†1tαt + v
†
1t+1 where y

†
t = yt+1 − ρvyt, x†1t = x1tD1 − ρvx1t and

v†1t+1 = x1tD2v2t+1 + v1t+1.

Exercise 6.10 Suppose αt is normally distributed with mean ᾱ and variance Σ̄α, that yt =
x01αt + v1t, where v1t is orthogonal to αt, and v1t ∼ iid N(0,σv1).
(i) Show that yt ∼ N(x01ᾱ, x01Σ̄αx1 + σ2v1).
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(ii) Using the fact that the posterior density of αt is g(αt|yt) = g(αt)f(yt|αt)
g(yt)

, show that

g(αt|yt) ∝ exp{−0.5((αt − ᾱ)0Σ̄−1α (αt − ᾱ) + (yt − x01αt)0σ−2v1 (yt − x01αt)} ≡ exp{−0.5((αt −
α̃)0Σ̃−1α (αt − α̃)} where α̃ = ᾱ+ Σ̄αx1σ−2v1 (yt − x01ᾱ) and Σ̃α = Σ̄α + Σ̄αx1σ−2v1 x01Σ̄α.

Exercise 6.11 A generalized version of a log-linearized RBC model can be written as αt =
D1t−1αt−1 + v2t, v2t ∼ (0,Σt), and yt = x01tαt where αt represents a vector of states and
shocks and yt are the controls. Assume that Σt, x1t,D1t−1 are known.
(i) Find the updating equation for the forecast error variance and show that x01tΩt|tx1t = 0.
(ii) Show that Ωt+1|t = D1tΩt|tD01t +Σt.

Given the recursive nature of Kalman filter estimates, it is easy to compute multistep
forecasts of yt. We leave the derivation of these forecasts as an exercise for the reader.

Exercise 6.12 Consider the model (6.1)-(6.2) and the prediction of yt+τ . Show that the
τ-steps ahead forecast error is x01t+τ (αt+τ − αt+τ,t) + x02t+τv1t+τ and that the MSE of the
forecast is x01t+τΩt+τ |tx1t+τ + x02t+τΣv1x2t+τ . Show the form of αt+τ |t and Ωt+τ |t.

Example 6.8 Consider an m × 1 VAR(q) model, Yt = AYt−1 + Et. As we have seen in
example 6.1, this is a state space model for x01t = I, αt = yt, D1t = A, Σv1 = 0, v2t =
Et, D2t = I,D0t = 0. The τ-steps ahead forecast of yt is Et[yt+τ ] = SAτYt, where S is a
selection matrix. The forecast error variance is (S(Yt+τ −AτYt))(S(Yt+τ −AτYt)0)).

6.2 The Prediction error decomposition of likelihood

Maximum likelihood estimation of nonlinear models is complicated. However, even in mod-
els like (6.1)-(6.2), which are conditionally linear in the parameters, maximization of the
likelihood function is problematic when observations are not independent. This section is
concerned with the practical question of constructing the likelihood function for models
which have a format like (6.1)-(6.2), when yt is serially correlated over time. It turns out
that there is a convenient format, called prediction error decomposition, which can be used
to estimate ARMA, structural VARs and, as we will see, DSGE models.

To understand what this decomposition entitles let f(y1, . . . yT ) be the joint density of
{yt}Tt=1. Given the properties of joint densities, it is possible to decompose f(y1, . . . yT ) into
the product of a conditional and a marginal, and repeatedly substituting we have:

f(y1, . . . yT ) = f(yT |yT−1 . . . y1)f(yT−1, . . . y1)
= f(yT |yT−1 . . . yt)f(yT−1|yT−2, . . . y1)f(yT−2, . . . y1)
. . .

=
JY
j=0

f(yT−j|yT−j−1 . . . y1)f(y1) (6.18)
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and log f(y1, . . . yT ) =
P
j log f(yT−j, |yT−j−1 . . . y1) + log f(y1). If y = [y1, . . . yT ] ∼

N(ȳ,Σy)

L(y|φ) = log f(y1, . . . , yT |φ) = −T
2
(log 2π + log |Σy|)− 1

2
(y − ȳ)Σ−1y (y − ȳ) (6.19)

where φ = (ȳ,Σy). Calculation of (6.19) requires the inversion of Σy, which is a T × T
matrix, and this may be complicated when T is large. Using decomposition (6.18), we can
partition L(y1, . . . , yt|φ) = L(y1, . . . , yT−1|φ)L(yt|yT−1, . . . , y1,φ). When{yt}Tt=1 is normal,
both the conditional and the marginal blocks are normal.

Let yt|t−1 be a predictor of yt using information up to t − 1. The prediction error is
²t = yt − yt|t−1 = yt − E(yt|yt−1, . . . , y1) + E(yt|yt−1, . . . , y1)− yt|t−1 and its Mean Square
Error (MSE) is E(²t−E(²t))2 = E(yt−E(yt|yt−1, . . . y1))2+E(E(yt|yt−1, . . . y1)− yt|t−1)2.
The best predictor of yt, i.e. the one that makes the MSE of the prediction error as small
as possible, is obtained when E(yt|yt−1, . . . , y1) = yt|t−1. Given this choice, the MSE of ²t,
denoted by σ2²t , equals the variance of (yt|yt−1, . . . , y1).

The conditional density of yt given information at time t− 1 can then be written as:

L(yt|yt−1, . . . , y1,σ2²t) = −
1

2
log(2π)− log(σ²t)−

1

2

(yt − yt|t−1)2
σ2²t

(6.20)

Since (6.20) is valid for any t > 1 using (6.18) we have that

L(y1, . . . yT |σ2²1 , . . . ,σ2²T ) =
TX
t=2

L(yt|yt−1, . . . , y1,σ2²2 , . . . ,σ2epsilonT ) + L(y1|σ2²1)

= −T − 1
2

log(2π)−
TX
t=2

log σ²t −
1

2

TX
t=2

(yt − yt|t−1)2
σ2²t

− 1

2
log(2π)− log σ²1 −

1

2

(y1 − ȳ1)2
σ2²1

(6.21)

where ȳ1 is the unconditional predictor of y1. (6.21) is the decomposition we were looking for.
Three important aspects need to be emphasized. First, (6.21) can be computed recursively,
since it only involves one step ahead prediction errors and their optimal MSE. This should be
contrasted with (6.19) where the entire vector of yt’s is used. Second, both the best predictor
yt|t−1 and the MSE of the forecast σ2²t vary with time. Therefore, we have transformed a
time invariant problem into a problem involving quantities that vary over time. Third, if
y1 is a constant, prediction errors are constant and exactly equal to the innovations in yt.

Example 6.9 Consider a univariate AR(1) process yt = Ayt−1 + et, |A| < 1, where et is
normal martingale difference process with variance σ2e . Let φ = (A,σ

2
e). Assume that the

process has started far in the past but it has been observed only from t = 1 on. For any
t, yt|t−1 ∼ N(Ayt−1,σ2e). Hence, the prediction error ²t = yt − yt|t−1 = yt − Ayt−1 = et.
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Moreover, since the variance of et is constant, also the variance of the prediction error is

constant (from time t = 2 on). Setting ȳ = 0, y1 ∼ N(0, σ2e
1−A2 ) and

L(φ) =
TX
t=2

L(yt|yt−1, . . . , y1,φ) + L(y1|φ)

= −T
2
log(2π)− T log(σe)− 1

2

TX
t=2

(yt −Ayt−1)2
σ2e

+
1

2
(log(1−A2)− (1−A

2)y21
σ2e

)

Hence σ2²t = σ
2
e for all t ≥ 2, while σ2²1 = σ2e

1−A2 .

Exercise 6.13 Consider the univariate model y1t = A1(`)y1t−1+D(`)et+A2y2t, where y2t
are exogenous variables, A1(`) is a polynomial of order q1, D(`) is a polynomial of order
q2. Find y1t|t−1 and σ2²t in this case. Show the form of the log likelihood function assuming
that the first q = max[q1, q2 + 1] values of yt = [y1t, y2t] are constants.

Taking the initial observations as given is convenient since it eliminates a source of
nonlinearities. In general, nonlinearities do not allow to compute an analytical solution to
the first order conditions of the maximization problem and the maximum of the likelihood
must be located using numerical techniques. Conditioning on the initial observations makes
the maximization problem trivial in many cases. Note also that, as T →∞, the contribution
of the first observation to the likelihood becomes negligible. Therefore, exact and conditional
maximum likelihood coincide if the sample is large. Furthermore, when the model has
constant coefficients, the errors are normally distributed and the initial observations fixed,
maximum likelihood and OLS estimators are identical (see chapter 4 in the case of a VAR).
This would not be the case when a model features moving average terms (see example 6.11),
since nonlinearities do not wash out, even conditioning on the initial observations.

Example 6.10 Consider finding the ML estimator of the AR process described in example
6.9. Conditioning on y1 the log likelihood of (y2, . . . , yT ) is proportional to

PT
t=2{− log(σe)−

1
2σ2e
(yt−Ayt−1)2}. Maximizing this quantity with respect to A (conditional on σ2e), is equiv-

alent to minimizing (yt −Ayt−1)2, which produces AML = Aols. Using AML, the likelihood
can be concentrated to obtain −T−12 log(σ2e)−

P
t ²
0
t²t

2σ2e
. Maximizing it with respect to σ2e leads

to σ2ML =
P
t ²
0
t²t

T−1 . Suppose now that we do not wish to condition on y1. Then the likelihood

function is proportional to
PT
t=2{− log(σe)− 1

2σ2e
(yt−Ayt−1)2}+{−0.5 log( σ2e

1−A2 )−
y21(1−A2)
2σ2e

}.
If T → ∞, the first observation makes a negligible contribution to the likelihood of the
sample. Therefore, conditional ML estimates of A asymptotically coincide with full ML
estimates, provided |A| < 1.

Consider, finally, the case where A is time varying, e.g. At = D1At−1 + v2t. Condi-
tional on some A0, the recursive conditional maximum likelihood estimator of At|t and the
smoothed maximum likelihood estimator At|T can be obtained with the Kalman filter and the
Kalman smoother. As T →∞, the importance of the initial observation will be discounted
as long as the roots of D1 are all less than one in absolute value.
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Exercise 6.14 (i) Suppose that yt = x0tα + et where et is normal martingale difference
with variance σ2et and let xt be fixed regressors. Show how to derive the prediction error
decomposition of the likelihood for this model.
(ii) Let xt be a random variable, normally distributed with mean x̄ and variance Σx. Show
how to compute the prediction error decomposition of the likelihood in this case.

Multivariate prediction error decompositions present no difficulties. If yt is m×1 vector

L(y|φ) = −Tm
2
log(2π)− 1

2

TX
t=1

log |Σt|t−1|−
1

2

TX
t=1

(yt − yt|t−1)Σ−1t|t−1(yt − yt|t−1) (6.22)

where ²t = yt−yt|t−1 ∼ N(0,Σt|t−1) and where we assume y1 ∼ N(ȳ1,Σ1|0) and ²1 = y1− ȳ1.
Exercise 6.15 Consider the setup of exercise 6.11. Show the form of yt|t−1 and Σt|t−1 and
the prediction error decomposition of the likelihood in this case.

The prediction error decomposition is convenient in two respects. First, the building
blocks of the decomposition are the forecast errors ²t and their MSE Σt|t−1. Since the
Kalman filter produces these quantities recursively, it can be used to build the prediction
error decomposition of the likelihood of any model which has a state space format. Second,
since any ARMA process has a state space format, the prediction error decomposition of
the likelihood can be easily obtained for a variety of statistical an economic models.

Maximization of the likelihood conditional on the initial observations, can be obtained
by extending algorithm 6.1. Let φ = [vec(x01), vec(x02), vec(D1), vec(D0), vec(D2),Σv1,Σv2].
Then

Algorithm 6.2

1) Choose some initial φ = φ0.

2) Do steps 1)-4) of algorithm 6.1.

3) At each step save ²t = yt − yt|t−1 and Σt|t−1. Construct the log likelihood (6.22).
4) Update initial estimates of φ using any of the methods described in section 6.3.

5) Repeat steps 2)-4) until |φl − φl−1| ≤ ι; or ∂L(φ)
∂φ |φ=φl < ι, or both, for ι small.

Two comments on algorithm 6.2 are in order. First, the initial values of iterations can
be typically obtained by running an OLS regression on the constant coefficient version of
the model. If the assumptions underlying the state space specification are correct this will
consistently estimate the average value of the parameters. Second, for large dimensional
problems, maximization routines typically work better if Choleski factor of Σt|t−1, is used
in the computations of the likelihood.

The conditional prediction error decomposition is particularly useful to estimate models
with MA terms. Such models are difficult to deal with in standard setups but fairly easy
to estimate within a state space framework.
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Example 6.11 In testing the efficiency of foreign exchange markets one runs a monthly
regression of the realized three month change in spot exchange rate at t+ 3 on the forward
premium quoted at t for t+ 3. As seen in chapter 5, such a regression has moving average
errors of order up to 2 because of overlapping time intervals. Therefore, a model for testing
efficiency could be yt+3 = b0xt + ²t+3 with ²t+3 = et+3 + b1et+2 + b2et+1 where, under the
null hypothesis, b0 = 1 and et is a normal martingale difference with variance σ

2
e . This

model can be cast into a state space framework by defining D0 = 0,D2 = I, x02t = I, v1t = 0,

αt =


xt
et+3
et+2
et+1

 , D1 =

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

, x1t =

b0
1
b1
b2

 v2t =


xt
et+3
0
0

. Suppose we are
interested in estimating [b0, b1, b2] and in testing b0 = 1. Then ML estimates can be obtained
starting the Kalman filter at α1|0 = [x1, 0, 0, 0] and Ω1|0 = diag{σ2x,σ2e ,σ2e ,σ2e} where σ2x is
the unconditional variance of the forward premium and σ2e could be either the variance of
the error êt = yt − b̂0xt−3 in a training sample (say, from −τ to 0) or set to an arbitrarily
large number. To start the iterations we need x10, that is, we need some initial estimates of
(b0, b1, b2). An estimate of b0 could be obtained in a training sample or, if no such a sample
exists, using available data but disregarding serial correlation in the error term. Initial
estimates of b1 and b2 could then be b1 = b2 = 0. Then the sequence of iterations producing
αt|t−1 and Ωt|t−1 can be used to compute the likelihood function. Note that for this simple
problem one could evaluate the likelihood numerically at successive grids of, say, 20 points
in each dimension and locate the maximum numerically.

Exercise 6.16 Consider an AR(2) process yt = A0 + A1yt−1 + A2yt−2 + et where et ∼
iid N(0,σ2e). Show that the exact log likelihood function is L(φ) ∝ −T log(σe) + 0.5log((1 +
A2)

2[(1−A2)2 −A21]) −1+A2
2σ2

[(1−A2)(y1 − ȳ)2 − 2A1(y1 − ȳ)(y2 − ȳ) + (1−A2)(y2 − ȳ)2]
−PT

t=3
(yt−A0−A1yt−1+A2yt−2)2

2σ2
where ȳ = A0

1−A1−A2 . Which terms disappear if a condi-

tional likelihood approach is used? Show that σ2ML =
1

T−2
PT
t=3(yt −A0,ML −A1,MLyt−1 −

A2,MLyt−2)2.

6.2.1 Some Asymptotics of ML estimators

It is fairly standard to show that, under regularity conditions, ML estimates of the pa-
rameters of a state space model are consistent and asymptotically normal (see e.g. Harvey
(1991)). The conditions needed are generally of three types. First, we need the state equa-
tion to define a covariance stationary process. One simple sufficient condition for this is
that the eigenvalues of D1t are all less than one in absolute value for all t. Second, if the
model includes exogenous variables we also need them to be covariance stationary, linearly
regular processes. Third, we need the true parameters not to lie on the boundary of the

parameter space. Then, under the above conditions,
√
T (φML − φ0) D→ N(0,Σφ) where

Σφ = −T−1E(
P
t
∂2L
∂φ∂φ0 |φ=φ0)−1.
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For the case in which the innovations are the errors in the measurement equation, the
asymptotic covariance matrix is block diagonal, as it is shown next.

Example 6.12 For an AR(1) model it is quite easy to derive Σφ. In fact, conditional on the

initial observations, the log likelihood is L(φ) ∝ −T−12 log σ2² −
PT
t=2 ²

2
t

2σ2²
where ²t = yt−Ayt−1

and the matrix of second derivatives is

· −σ−2²
P
t y
2
t−1 −σ−4²

P
t ²tyt−1

−σ−4²
P
t ²tyt−1 (2σ4² )

−1(T − 1)− σ−6²
P
t ²
2
t

¸
.

Since the expectation of the off-diagonal elements is zero, the asymptotic covariance matrix

is diagonal with var(A) = σ2²
(T−1)Pt y

2
t−1

and var(σ2e) =
2σ4²
T−1 .

The derivation of the Kalman filter assumes that the innovations in the measurement
and in the observation equations are normally distributed. Since the likelihood function
is calculated with the Kalman filter estimates, one may wonder what are the properties of
maximum likelihood estimates when the distribution of the driving forces is misspecified.

As mentioned, misspecification of the distribution of the errors does not create consis-
tency problems for Kalman filter estimates. It turns out that this property carries over to
maximum likelihood estimates. In fact, maximum likelihood estimates obtained incorrectly
assuming a normal distribution (typically called quasi-ML) have nice properties under a
set of regularity conditions. We ask the reader to verify that this is the case for a simple
problem in the next exercise.

Exercise 6.17 Suppose observations on yt are drawn from a t-distribution with a small
number of degrees of freedom (say, less than 5) but that an econometrician estimates the
constant coefficient state space model yt = αt + v1t, αt = αt−1 where v1t is a normal
martingale difference with variance σ2v1. Show that the ML estimator for αt based on the
wrong (normal) distribution will be consistent and asymptotically normal. Show the form
of the asymptotic covariance matrix.

Intuitively, if the sample size is large and homogeneous, a normal approximation is
appropriate. In the context of a constant coefficient state space model, we could have
achieved the same conclusion by noting that recursive OLS is consistent and asymptotically
normal if the regressors are stationary, ergodic and uncorrelated with the errors and that
recursive OLS and Kalman filter-ML estimates coincide if a conditional likelihood is used.

When the coefficients of the state space model are time varying, ML estimates obtained
with misspecified errors are no longer asymptotically equivalent to those of the correct
model and Kalman filter estimates are not best linear MSE estimates of αt.

We have seen that maximum likelihood estimates have an asymptotic covariance ma-

trix equal to which is − 1
TE(

∂2L(φ)
∂φ∂φ0 |φ=φ0)−1. There are many ways to estimate this matrix.

One is to evaluate the quantity at the ML estimator, substituting averages for expecta-

tions, that is, var1(φ) = (−Pt
∂2Lt(φ)
∂φ∂φ0 |φ=φML

)−1. An alternative is obtained noting that
an approximation to the second derivatives of the likelihood function can be calculated
taking the derivatives of the scores, i.e. var2(φ) = (

P
t(
∂Lt(φ)
∂φ |φ=φML

)(∂Lt(φ)∂φ |φ=φML
)0)−1.
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Finally, a quasi ML estimator can be obtained combining the two above estimators. That
is, var3(φ) = −((var1(φ))(var2(φ))−1(var1(φ)).

Exercise 6.18 For the AR(1) model considered in example 6.12, show the form of the three
estimates of the asymptotic covariance matrix.

Hypothesis testing on the parameters is fairly standard. Given the asymptotic normality
of ML estimates, one could use t-tests to verify simple restrictions on the parameters or
likelihood ratio tests when more general hypotheses are involved.

Example 6.13 Continuing with example 6.11, to test b0 = 1 use
b0,ML−1
σb0,ML

and compare it

to a t distribution with T − 1 degrees of freedoms (or to a normal (0,1), if T is large).
Alternatively, one could estimate the model under the restriction b0 = 1, construct the
likelihood function, calculate −2[L(b0,ML)− L(b0 = 1)] and compare it with a χ2(1).

As we have seen with GMM, it may be more convenient at times to use estimates of
a restricted model. This would be the case, for example, if the model is non-linear, but it
becomes linear under some restrictions, or if it contains MA terms. In this case one can
use the Lagrangian Multiplier (LM) statistic 1

T [
P
t(
∂L(φ)
∂φ )|φre]0Σ−1φ [(

P
t
∂L(φ)
∂φ )φre)] ∼ χ2(ν),

where ν is the number of restrictions.

Example 6.14 For the model of example 6.2, if D1 = 0, conditional ML estimates of
A = [A1, A2]

0 solve the normal equations Ax0x = x0y where xt = [yt−1, yt−2], x = [x1, . . . xt]0.
However, if D1 6= 0 the normal equations are nonlinear and no analytical solution exists.
Therefore, one may impose D1 = 0 for estimation and test if the restriction holds.

Two non-nested hypotheses can be evaluated using, for example, forecasting accuracy
tests like the one of Diebold and Mariano (1995). Let ²it be the prediction errors produced
by specification i = 1, 2 and let ht = (²

1
t )
2 − (²2t )2. Then, under the hypothesis of similar

predictive accuracy, the statistic S = h̄
se(h) , where h̄ =

1
T

P
t ht, se(h) =

q
1
T

P
t(ht − h̄)2

is asymptotically normally distributed with mean zero and variance one. We will use this
statistic in section 6.5 when comparing the forecasting accuracy of a DSGE model relative
to an unrestricted VAR.

6.3 Numerical tips

There are many ways to update initial estimates in step 4) of algorithm 6.2. Here we only
briefly list some of them and highlighting advantages and disadvantages of each.

• Grid search.
This maximization method is feasible when the dimension of φ is small. It involves
discretizing the problem and selecting the value of φ which achieves the maximum on
the grid. One advantage of the approach is that no derivatives of the likelihood are
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needed - which can be useful if the problem is complicated. When the likelihood is
globally concave, the approach will find an approximation to the maximum. How-
ever, if multiple peaks are present, it may select local maxima. For this reason, the
grid should be fine enough to avoid pathologies. While care should be exercised in
taking them as final estimates, grid estimates are useful as initial conditions for other
algorithms.

• Simplex method
A k-dimensional simplex is spanned by k + 1 vectors which are the vertices of the
simplex (e.g. if k = 2, two dimensional simplexes are triangles). This method is
typically fast and works as follows. If a maximum is found at some iteration, the
method substitutes it with a point on the ray from the maximum through the centroid
of the remaining points. For example, if L(φm) = maxj=1,k+1L(φj), we replace φm
by %φm + (1− %)φ̄, where φ̄ is the centroid, 0 < % < 1 and repeat the maximization.
This approach does not require the calculation of gradients or second derivatives of
the likelihood and can be used when other routines fail. The major disadvantage is
that no standard errors for the estimates are available.

• Gradient methods
All algorithms in this class update initial estimates by taking a step based on the
gradient of the likelihood at the initial estimate. They differ in the size and the
direction in which the step is taken.

a) Method of Steepest ascent.
At each iteration l, parameters are updated using: φl = φl−1 + 1

2λgr(φ
l) where

gr(φl) = ∂L(φ)
∂φ |φ=φl and λ is the Lagrangian multiplier of the problemmaxφl L(φl)

subject to (φl − φl−1)0(φl − φl−1) = κ . In words, the method updates current
estimates using the scaled gradient of the likelihood. λ is a smoothness param-
eter which prevents large jumps in φ between iterations (it plays the same role
as λ in the Hodrick Prescott or exponential smoothing filters). Note that if
φl ≈ φl−1, gr(φl) ≈ gr(φl−1) and one can use φl = φl−1 + %gr(φl−1) where %
is small positive scalar (e.g. 10−5). This choice is very conservative and avoids
jumps in the estimates. However, a lot of iterations are typically needed before
convergence is achieved and convergence could only be to local maximum. It is
therefore a good idea to start the algorithm from several initial conditions and
check whether the same maximum is obtained.

b) Newton-Raphson Method

The method is applicable if ∂
2L(φ)
∂φ∂φ0 exists and if L(φ) is concave (i.e. the matrix

of second derivatives is positive definite). In this case, taking a second order
expansion of L(φ) around φ0, we have:

L(φ) = L(φ0) + gr(φ0)(φ− φ0)− 0.5(φ− φ0)0∂
2L(φ)
∂φ∂φ0

(φ− φ0) (6.23)
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Maximizing (6.23) with respect to φ and using φl−1 as an estimate of φ0 we have

φl = φl−1 + (
∂2L(φ)
∂φ∂φ0

|φ=φl−1)−1gr(φl−1) (6.24)

If likelihood is quadratic, (6.24) generates convergence in one step. If it is close
to quadratic, iterations on (6.24) will converge quickly and the global maximum
will be achieved. However, if the likelihood is far from quadratic, not globally
concave or if φ0 is far away from the maximum, the method may have worse

properties than the method of steepest ascent. Note that (∂
2L(φ)
∂φ∂φ0 )

−1 can be used
to provide an estimate of the variance covariance matrix of φ at each iteration.

Once could combine steepest-ascent and Newton-Raphson methods into an hy-
brid one which shares the good properties of both, may speed up calculation
without producing large jumps in the parameters estimates. This is done, e.g.,

by choosing φl = φl−1+%(∂
2L(φ)
∂φ∂φ0 |φ=φl−1)−1gr(φl−1) where % > 0 is a small scalar.

c) Modified Newton-Raphson.

The basic Newton-Raphson method requires the calculation of the matrix ∂2L(φ)
∂φ∂φ0

and its inversion. When φ is of large dimension this maybe computationally
difficult. The modified Newton-Raphson method uses the fact that ∂gr(φ)

∂φ ≈
∂2L(φ)
∂φ∂φ0 and guesses the shape of

∂2L(φ)
∂φ∂φ0 at the existing estimate using the derivative

of the gradient. Let Σl be an estimate of [∂
2L(φ)
∂φ∂φ0 ]

−1 at iteration l. Then the
method updates estimates of φ using (6.24) where

(Σl) = (Σl−1) +
(−ρlΣl−1grl−1)(−ρlΣl−1grl−1)0

(−ρlΣl−1grl−1)∆grl − Σ
l−1∆grl(∆grl)0(Σl−1)−1

(∆grl)0Σl−1∆grl

and ∆φl = φl−φl−1, ∆gr(φl) = gr(φl)− gr(φl−1). If likelihood is quadratic and
the number of iterations large, liml→∞ φl = φML and liml→∞Σl = (

∂2L(φ)
∂φ∂φ0 |φ=φML

)−1.
Standard errors of the estimate can be read off the diagonal elements of Σl eval-
uated at φML.

d) Scoring Method.

This method uses the information matrix E ∂2L(φ)
∂φ∂φ0 in place of

∂2L(φ)
∂φ∂φ0 in the calcu-

lation where the expectation is evaluated at φ = φl−1. The information matrix
approximation is convenient since it typically has a simpler expression than the
Hessian.

e) Gauss-Newton-scoring method.
The Gauss-Newton method uses a function of ( ∂e∂φ |φ=φl)0( ∂e∂φ |φ=φl) as an approx-
imation to ∂2L(φ)

∂φ∂φ0 , where φ
l
0 is the value of φ at iteration l and et is the vector

of errors in the model. In the case of constant state space models, the approx-
imation is proportional to the vector of regressors constructed using the right
hand side variables of both the state and the measurement equations. When the
model is linear, Gauss-Newton and scoring approximations are identical.
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6.4 ML estimation of DSGE models

Maximum likelihood estimation of the parameters of a DSGE model is a straightforward
application of the methods we have described so far. As we have already seen in chapter 2,
the log linearized solution of a DSGE model is of the form:

y2t = A22(θ)y2t−1 +A23(θ)y3t (6.25)

y1t = A12(θ)y2t−1 +A13(θ)y3t (6.26)

where y2t includes the states and the driving forces, y1t all other endogenous variables and y3t
the shocks of the model. Here Aii0(θ), i, i0 = 1, 2 are time invariant (reduced form) matrices
which depend on θ = (θ1, . . . , θk), the structural parameters of preferences, technologies
and government policies. Note also that there are cross equation restrictions in the sense
that some θj , j = 1, . . . , k may appear in more than one entry of these matrices.

Example 6.15 In the working capital model considered in exercise 1.14 of chapter 2, set-
ting Kt = 1, ∀t, y2t includes lagged real balances Mt−1

pt−1 and lagged deposits dept−1; y3t in-
cludes shocks to the technology ζt and to the monetary rule M

g
t , while y1t includes all

the remaining endogenous variables (hours (nt), output (GDPt), the nominal interest rate
(it) and the inflation rate (πt)). Setting N

ss = 0.33, η = 0.65, πss = 1.005, β = 0.99,
( c
GDP )

ss = 0.8, the persistence of the shocks to 0.95 and the parameters of the policy rule
to a2 = −1.0; a1 = 0.5; a3 = 0.1, a0 = 0, the log-linearizing solution has the following state
space representation:

cMt

ptddept
\GDP tbntbitbΠt


=


−0.4960 0.3990
−1.0039 0.8075
−0.3968 0.3192
0.9713 −0.7813
2.0219 −1.6264


" [Mt−1

pt−1ddept−1

#
+


1.3034 −0.1941
1.1459 −1.4786
1.0427 −0.1552
−0.3545 0.3800
−0.9175 −1.2089


" bζtdMg

t

#

While in example 6.15 we have chosen a log-linear approximation, DSGE models with
quadratic preferences and linear constraints also fit into this structure (see e.g. Hansen
and Sargent (1998)). In fact, (6.25)-(6.26) are very general, do not require any certainty
equivalence principle to obtain and need not be the solution to the model, as the next
example shows.

Example 6.16 (Watson) Suppose a model delivers the condition Etyt+1 = αyt + xt where
xt = ρxt−1 + ext , x0 given. This could be, e.g., a New-Keynesian Phillips curve, in which
case xt are marginal costs, or stock price relationship, in which case xt are dividends.
Using the innovation representation we have xt = Et−1xt + ext , yt = Et−1yt + eyt where
Etxt+1 = ρxt = ρ(Et−1xt + ext ) and Etyt+1 = αyt + xt = α(Et−1yt + e

y
t ) + (Et−1xt + ext ).

Letting y1t = [xt, yt], y2t = [Etxt+1, Etyt+1], y3t = [ext , vt], where vt = eyt − E(eyt |ext ) =
eyt − κext , A11(θ) = I, A12(θ) =

·
1 0
κ 1

¸
,A22(θ) =

·
ρ 0
1 α

¸
,A21(θ) =

·
ρ 0

1 + ακ α

¸
,
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it is immediate to see that the model fits into (6.25)-(6.26). Here the parameters to be
estimated are θ = (α, ρ,κ,σ2e ,σ

2
v).

In general, one has two alternatives to derive a representation which fits (6.25)-(6.26):
solve the model, as we have done in example 6.15, or use the rational expectations assump-
tion, as we have done in example 6.16,

Exercise 6.19 Consider a version of a consumption-saving problem where consumers are
endowed with utility of the form u(c) = c1−ϕ

1−ϕ , the economy is small relative to the rest of
world and the resource constraint is ct +Bt ≤ GDPt + (1 + rt)Bt−1 where Bt are interna-
tionally traded bonds and rt is the net real interest rate, taken as given by the agents.
(i) Derive a log linearized version of the Euler equation and show how to map it into the
framework described in example 6.16.
(ii) Show the entries of the matrices in the state space representation.
(iii) How would you include a borrowing constraint Bt < B̄ in the setup?

Exercise 6.20 Consider the labor hoarding model studied in exercise 4.1 of chapter 5 where
agents have preferences over consumption, leisure and effort and firms distinguish between
labor and effort in the production function. Cast the log-linearized Euler conditions into a
state space framework using an innovation representation.

Clearly, (6.25)-(6.26) are in a format estimable with the Kalman filter. In fact, recursive
estimates of y2t can be obtained, given some initial conditions y20, if Aii0(θ), σ2y3 are known.
Given these recursive estimates forecast errors can be computed. Hence, for each choice
of θ, we can calculate the likelihood function via the prediction error decomposition and
update estimates using one of the algorithms described in section 3. Standard errors for
the estimated parameters can be read off the Hessian, evaluated at maximum likelihood
estimates, or any approximation to it.

Despite the simplicity of this procedure, there are several issues, specific to DSGE mod-
els, one must deal with when using ML to estimate structural parameters. The first has to
do with the number of series used in the estimation. As it is clear from (6.25)-(6.26), the
covariance matrix of the vector [y1t, y2t] is singular, a restriction unlikely to hold in the data.
This singularity was also present in the innovation representation (6.11). Two options are
available to the applied investigator: she can either select as many variables as there are
shocks or artificially augment the space of shocks with measurement errors. For example,
if the model is driven by a technology and a government expenditure shock, one selects two
of (the many) series belonging to [y1t, y2t] to estimate parameters. Kim (2000) and Ireland
(2000) use such an approach in estimating versions of sticky price models. While this leaves
some arbitrariness in the procedure, some variables may have little information about the
parameters. Although a-priori it may hard to know which equations carry information, one
could try to select variables so has to maximize the identifiability of the parameters. Alter-
natively, since some variables may not satisfy the assumptions needed to obtain consistent
estimates (for example, they display structural breaks), one could choose the variables that
are more likely to satisfy these assumptions.
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Example 6.17 In a standard RBC model driven by technology disturbances we have that
[N̂t,dgdpt, ĉt] are statically related to the states [K̂t, ζ̂t] via a matrix A12(θ) where .̂ refers
to deviations from the steady state. Since the number of shocks is less than the number
of endogenous variables, there are linear combinations of the controls which are perfectly
predictable. For example, using equation (6.25) into (6.26) we have that α1N̂t + α2dgdpt +
α3ĉt = 0 where α1 = A111 A321 −A121 A311 , α2 = A221 A311 − A211 A321 , α3 = A221 A111 − A311 A211 .
Similarly, using the equations fordgdpt, ĉt and the law of motion of the capital stock we have
α4ĉt+α5ĉt−1−α6dgdpt−α7dgdpt−1 = 0 where α4 = A121 +δ[1−δ(KN )η](A121 A311 −A111 A321 /[1−
δ(KN )

η], α5 = (1 − δ)A121 α6 = A321 − δ(A121 A311 − A121 A321 )/[1 − δ(KN )η], α7 = (1 − δ)A321 .
This implies that the system is stochastically singular and for any sample size the covariance
matrix of the data is postulated to be of reduced rank.

Attaching measurement errors to (6.26) is the option taken by Sargent (1979), Altug
(1989) or McGrattan, Rogerson and Wright (1997). The logic is straightforward: by adding
a vector of serially and contemporaneously uncorrelated measurement errors, we complete
the probability space of the model (the theoretical covariance matrix of [y1t, y2t] is no
longer singular). Since actual variables typically fail to match their model counterparts (e.g.
actual savings are typically different from model based measures of savings), the addition of
measurement errors is easily justifiable. Note that, if this route is taken, a simple diagnostic
on the quality of the model can be obtained by comparing the size of the estimated standard
deviation of the measurement errors and of the structural shocks. Standard deviations for
the former much larger than for the latters suggest that misspecification is likely to be
present.

Example 6.18 In example 6.15, if we wish to complete the probability space of the model,
we need to add five measurement errors to the vector of shocks. Alternatively, we could
use, e.g., real balances and deposits to estimate the parameters of the model. However, it is
unlikely that these two series have information to estimate the share of labor in production
function η. Hence, identification of the parameters may be a problem when using a subset
of the variables of the model

The introduction of a vector of serially and contemporaneously uncorrelated measure-
ment errors does not alter the dynamics of the model. Therefore, the quality of the model’s
approximation to the data is left unchanged. Ireland (2004), guessing that both dynamic
and contemporaneous misspecifications are likely to be present in simple DSGE models,
instead adds a VAR(1) vector of measurement errors. The importance of these dynamics
for the resulting hybrid model can be used to gauge how far the model is from the data,
much in the spirit of Watson (1993), and an analysis of the properties of the estimated VAR
may help in respecifying the model (see chapter 7). However, is important to note that the
hybrid model can no longer be considered ”structural”: the additional dynamics play the
same role as distributed lags which were added in the past to specifications derived from
static economic theory when confronted with the (dynamics of the) data.
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The second issue concerns the quality of the model’s approximation to the data. It is
clear that to estimate the parameters with ML and to validate model, one must assume
that it ”correctly” represents the process generating the data up to a set of unknown
parameters. Some form of misspecification regarding e.g. the distribution of the errors (see
White (1982)) or the parametrization (see Hansen and Sargent (1998)), can be handled using
the quasi-maximum likelihood approach discussed in section 6.2. However, as we will argue
in chapter 7, the misspecification that a DSGE model typically displays is of different type.
Adding contemporaneous uncorrelated measurement errors avoids singularities but it does
not necessarily reduce misspecification. Moreover, while with GMM one is free to choose
the relationships used to estimate the parameters of interest, this is not the case with ML
since joint estimation of all the relationships produced by the model is generally performed.
Under these conditions, maximum likelihood estimates of the parameters are unlikely to
be consistent and economic exercises conducted conditional on these estimates may be
meaningless. In other words, credible maximum likelihood estimation of the parameters of
a DSGE model requires strong beliefs about the nature of the model.

Third, for parameters to be estimable they need to be identifiable. For example, if θ1
and θ2 are parameters and only θ1 + θ2 or θ1θ2 are identifiable, they can not be estimated
separately. Besides this generic problem, thoroughly discussed in Hamilton (1994), DSGE
models often face partial identifiability problems in the sense that the series used may have
little information about the parameters of interest. This is not surprising: estimating,
say, parameters of a monetary policy rule out of export or the trade balance is unlikely
to be successful even if these parameters appear in the relevant equations. Furthermore,
certain parameters affect only the steady state and therefore cannot be estimated when
the model is written in deviations from the steady states or when variables are entered in
log differences. In this situation two approaches are possible. The first one, which is more
standard, is to calibrate nonestimable parameters (say θ1) and provide ML estimates for
the remaining free parameters (say θ2) conditional on the chosen θ1. As argued in chapter
7, such a choice may generate consistency problems and distort the asymptotic distribution
of θ2. The alternative is to use other moment conditions were these parameters appear and
jointly estimate θ1 and θ2 using the scores of the likelihood and these moment conditions.
Since the score of the likelihood has the format of moment conditions, this mixed approach
will produce, under regularity conditions, consistent and asymptotically normal estimates.
When this last alternative is unfeasible, local sensitivity analysis in a neighborhood of the
calibrated parameters is advisable to explore the shape of the likelihood function around
the maximum for θ2 one finds.

Note also the similarities between this and the GMM approach described in chapter 5.
Two main differences should be noted. First, the construction of the scores requires the
solution of the model (or the rational expectation assumption), which was not necessary
to estimate parameters with GMM. Second, if no misspecification is present, ML estimates
will, by construction, be more efficient than GMM estimates.

Once parameter estimates are obtained one can proceed to validate the model and/or
examine the properties of the implied system. Statistical validation can be conducted in
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many ways. For example, if interesting economic hypotheses involve restrictions on a subset
of the parameters of the model, standard t-tests or likelihood ratio tests using the restricted
and the unrestricted versions of the model can be performed.

Example 6.19 (Money demand equation) Consider a representative agent maximizing
E0
P
t β

t [ 1
1−ϕc c

1−ϕc
t + ϑM

1−ϕM (
Mt+1

pt
)1−ϕM ] by choice of (ct, Bt+1,Mt+1) subject to ct+

Bt+1
pt
+

Mt+1

pt
+ b1

2
(Mt+1−Mt)2

pt
+ b2

2
(Mt−Mt−1)2

pt
≤ wt + Mt

pt
+ (1 + it)

Bt
pt
, where b1, b2 are parameters,

wt is an exogenous labor income and Bt are nominal one-period bonds. The two optimality
conditions are c−ϕt = βEt[c

−ϕ
t+1

pt
pt+1

(1 + it+1)] and ϑM(
Mt+1

pt
)−ϕM cϕct = Et[1− 1

1+it+1
+ (b1 +

b2
1+it+1

)∆Mt+1− 1
1+it+1

(b1+
b2

1+it+2
)∆Mt+2] where ∆Mt+1 =Mt+1−Mt. Log linearizing the

two conditions, solving out for ı̂t+1 and using the budget constraint we have that φcŵt −
φM(M̂t+1 − p̂t) = α1d∆M t+1 + α2d∆M t+2 + α3d∆wt+1 + α4d∆wt+2 + α5c∆pt+1 + α6c∆pt+2
where αj are functions of the deep parameters of the model (b1, b2) and of the steady states
iss,∆Mss. If we assume that the Central bank chooses it+1 so that ∆p̂t = 0, that bonds are
in zero net supply, the above equation can be solved for ∆Mt as a function of the current
and future exogenous labor income ŵt and the current and future levels of real balances
M̂t+1 − p̂t.

The parameters of this model can be estimated in a number of ways. One is GMM.
For example, using as instruments lagged values of money growth, real balances and labor
income, one could estimate (ϕM ,ϕc, b1, b2, i

ss,∆Mss,β) from the above equation. Alterna-
tively, one could use ML. To do so the above equation needs to solved forward in order to
express current growth rate of money as a function of current and future consumption and
current money holdings. As we will see in example 6.20, this is easier to do if we represent
the available data with a VAR.

Since there is only one shock (the exogenous labor income) and the system of equations
determining the solution is singular. There are three alternatives to deal with this problem.
The one we have used expresses the solution of ∆Mt in terms of current and future labor
income and real balances. Then estimates of the parameters can be found maximizing the
likelihood of the resulting equation. The second is to attach to the policy equation an error,
∆p̂t = ²3t. This is easily justifiable if inflation targeting is only pursued on average over
some period of time. The third is to assume that labor income is measured with error. In
the latter two alternatives, the joint likelihood function of the money demand equation and
of the consumption Euler equation can be used to find estimates of the parameters. Note
also that not all the parameters may be identifiable from the first setup - the forward looking
solution requires elimination of the unstable roots which may have important information
about, e.g., the adjustment cost parameters.

Restricted and unrestricted specifications can also be compared in an out-of-sample
forecasting race; for example, using the MSE of the forecasts, or the record of turning point
predictions.

Exercise 6.21 Consider two versions of a RBC model, one with capacity utilization and
one without. Describe a Monte Carlo procedure to verify which model matches turning
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points of US output growth better. How would you compare models which are not nested
(say, one with capacity utilization and one with adjustment costs to capital)?

The stability of the estimates over subsamples can be examined in a standard way.
For example, one can split the sample in two and construct a distance test of the form
S = (θ1 − θ2)(Σθ1 + Σθ2)−1(θ1 − θ2) where θ1 is the ML estimate obtained in the first
sample and Σθ1 its estimated covariance matrix and θ

2 is the ML estimate obtained in the
second sample and Σθ2 the corresponding estimated covariance matrix. Recursive tests of
this type can also be used to determine when a structural break occurs. That is, for each
1 < τ < T , we can construct Sτ by estimating the model over two samples [1, τ ], [τ +1, T ].
Then one would compare supτ Sτ to a χ

2(dim(θ)), much in the same spirit as structural
stability tests described in chapter 4.

We have seen that the solution of DSGE models can be alternatively written in a state
space or restricted VAR(1) format. This latter offers an alternative framework to compare
the model to the data. The restrictions that DSGE imposes on VARs are of two types.
First, log-linearized DSGE models are typically VAR(1) models. Therefore, the methods
described in chapter 4 can be used to examine whether the actual data can be modelled as an
VAR(1). Second, it is well known, at least since Sargent (1979), that rational expectations
models impose an extensive set of cross equations restrictions on the VAR of the data.
These restrictions can be used to identify and estimate the free parameters and to test the
validity of the model. We discuss how this can be done next.

Example 6.20 (Kurmann) Consider an hybrid Phillips curve, πt = α1Etπt+1 + α2πt−1 +
α3mct + et which can be obtained from a standard sticky price model once a fraction of the
producers fix the price using a rule of thumb and adding some measurement error et. The
rule necessary to produce such an expression is that the new price is set to an average of
last period’s price, updated with last period’s inflation rate (as in Gali and Gertler (1999)).
Assume mct is exogenous and let Ft represents the information set available at each t.
For any zt ∈ Ft, Et(Et[yt+τ |Ft]|zt) = Et(yt+τ |zt), by the law of iterated expectations.
Let Yt = AYt−1 + Et be the companion form representation of the model where Yt is of
dimension mq × 1 (m variables with q lags each). Since Et(mct+τ |Yt) = S1AτYt and
E(πt+τ |Yt) = S2AτYt where S1 and S2 are selection matrices, a hybrid Phillips curve
implies S2[A−α1A2−α2I] = α3S1A which produce mq restrictions. For example, if q = 1,
Yt includes only the labor share and inflation and Aii0 are the parameters of the VAR we
have

A12 − α1A12A11 − α1A22A12 − α2 = α3A11

A22 − α1A21A12 − α1A222 − α2 = α3A21 (6.27)

(6.27) requires that expectations of real marginal costs and inflation produced by a VAR
are consistent with the dynamics of the model. One way to impose these restrictions is to
express the coefficients of the inflation equation in the VAR as a function of the remaining
(m − 1)mq VAR coefficients and the parameters of the theory. Here, since there are four
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unknowns and two equations, the system can be solved for, e.g., A21 and A22 as a function of
A11 and A12. The likelihood function for the restricted VAR system can then be constructed
using the prediction error decomposition and tests of the restrictions obtained comparing the
likelihood of restricted and unrestricted VARs.

Exercise 6.22 Consider an endowment economy where agents receive a random income yt
and may either consume or save it. Suppose that stocks St+1 are the only asset, that their
price is pst and that the budget constraint is ct + p

s
tSt+1 = yt + (p

s
t + sdt)St where sdt are

dividends. Assume u(c) = c1−ϕ
1−ϕ and that agents discount the future at the rate β.

i) Derive a log-linearized expression for the price of stocks as a function of future dividends,
future prices and current and future consumption.
ii) Assume that data on stock prices and stock dividends are available and that an econo-
metrician specifies the process for the data as a VAR of order 2. Derive the cross-equation
restrictions that the model imposes on the bivariate representation of prices and dividends
(Hint: use the equilibrium conditions to express consumption as a function of dividends).
iii) Assume that also data on consumption is available. Does your answer in ii) change?

Exercise 6.23 Continuing with example 6.19, consider the log-linearized money demand
equation alone. Assume that ∆Xt = [∆pt,∆wt,∆it] is exogenous and follows a VAR(q)
model which we write in the companion form Yt = AYt−1 + Et and ∆Xt = SYt, where S is
a selection matrix. Show that the forward solution can be written as ∆ lnMt =

M0
1−λ1 − (1−

1+iss

λ1
(lnMt−1− φ̃0SYt−1)+ λ1−1−(1+iss)

λ1−1 φ̃S(1− A
λ1
)−1Yt+vt where φ = [1, φcφM ,− 1

issφM
], φ̃ =

issϕM
Mss(b1+b2/(1+iss))(λ1−(1+iss−1)φ, λ1 is the stable solution of λ

2−(1+(1+iss)+( issϕM
M(b1+b2/(1+iss)

)
λ + 1 = 0, and vt is a measurement error, which appears because the econometrician in-
formation may be different from the one of the agents. Give the structure of vt. Show the
format of the solution when q = 2 and there is no constant in the VAR for ∆Xt. What
parameters can you estimate? Write down the likelihood function you want to maximize
and show the implied cross equations restrictions.

Statistical validation is usually insufficient for economic purposes, since it offers scarce
indications on the reasons why the model fails and provides very little information about
the properties of the estimated model. Therefore, as we have done in chapter 5, one would
also like to compare the predictions of the model for a set of interesting statistics of the
data. Several statistics can be used. For example, given ML estimates, one could com-
pute unconditional moments such as variability, cross correlations, spectra or cross spectra
and compared them with those in the data. To learn about the dynamic properties of
the estimated model one could compute impulse responses, variance and historical decom-
positions. Informal comparisons are typically performed but there is no reason to do so,

especially in a ML context. In fact, since
√
T (θML − θ0) D→ N(0,Σθ), we can compute the

asymptotic distribution of any continuous function of θ using the δ-method i.e. if h(θ) is

continuously differentiable,
√
T (h(θML) − h(θ0)) D→ N(0,Σh =

∂h(θ)
∂θ Σθ

∂h(θ)
∂θ

0
). If an esti-

mate hT is available in the data, a formal measure of distance between the model and the
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data is (h(θML)− hT )(Σh + ΣhT )−1(h(θML)− hT ), which is asymptotically distributed as
a χ2(dim(h)). Small sample versions of such tests are also easily designed.

Exercise 6.24 Suppose that
√
T (θML − θ0) D→ N(0,Σθ) and suppose that, for the statistic

h(θ) of interest, both hT and its standard error are available. Describe how to perform a
small sample test of the fit of the model.

Once the model is found to be adequate in capturing the statistical and the economic
features of the data, welfare measures can be calculated and policy exercises performed.

Exercise 6.25 (Blanchard and Quah) The model described in section 3.1 of chapter 3
produces a solution of the form

∆GDPt = ²3t − ²3t−1 + (1 + a)²1t − a²1t−1
UNt = −²3t − a²1t (6.28)

where ∆GDPt = GDPt − GDPt−1 and UNt = Nt − Nfe where Nfe is full employment
equilibrium, ²1t is a technology shock and ²3t a money shock.
i) Transform (6.28) into a state space model
ii) Using data for output growth and appropriately detrended unemployment provide a max-
imum likelihood estimate of α and test three hypotheses, α = 0 and α± 1.
iii) Provide impulse responses to technology and money shocks using αML. Compare them
with those obtained with a structural VAR identified using long run restrictions.

Exercise 6.26 (Habit persistence) Consider a basic RBC model driven by technology dis-
turbances and three separate specifications for preferences. The first one assumes intertem-

poral separability of consumption and leisure, that is u(ct, ct−1,Nt,Nt−1) =
c1−ϕt
1−ϕ +ln(1−Nt).

The second that there is habit persistence in consumption, that is u(ct, ct−1, Nt, Nt−1) =
(ct+γct−1)1−ϕ

1−ϕ + ln(1 − Nt). The third that there is habit persistence in leisure so that

u(ct, ct−1,Nt,Nt−1) =
c1−ϕt
1−ϕ +ln(1−Nt+γ(1−Nt−1)). The resource constraint is ct+Kt+1 =

ζtK
1−η
t Nη

t + (1 − δ)Kt where ln ζt is an AR(1) process. Using US data on consumption,
hours, output and investment estimate the free parameters of the three models assuming
that consumption, investment and output are measured with error and that each of these
errors is a contemporaneously uncorrelated martingale difference process. Test the hypothe-
ses that habit persistence either in consumption or in leisure is unnecessary to match the
data. Compare the responses of the three models to technology shocks. What is the role of
habit persistence in propagating technology disturbances? (Hint: Nest the three models in
one general specification and test the restrictions).

Exercise 6.27 (Woodford) Suppose agents maximize E0
P
t β

t²4t[u1(ct + Gt) + u2(
Mt
pt
) −

²2tu3(Nt)] where Gt is government expenditure,
Mt
pt
are real balances, Nt is hours, ct =

(
R
c

1
ςp+1

it di)ςp+1 and pt = (
R
p
− 1
ςp

it dj)−ςp . Here ²4t is a aggregate demand shock and ²2t
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a labor supply shock and ςp the elasticity of substitution across consumption goods. Let

aggregate demand for good i be cit = ct(
pit
pt
)
− 1+ςp

ςp . The budget constraint of consumers

is ct +
Mt
pt
+ Bt

pt
+ Tt = wtNt +

Mt−1
pt

+ (1+it−1)
πt

Bt−1
pt−1 , where

Bt
pt
are real bonds and πt

the inflation rate. Suppose cit = Nit and that the price index evolves according to pt =

(ζpp
− 1
ςp

t−1 + (1 − ζp)p̃
− 1
ςp

t )−ςp, where p̃t is the optimal price in a Calvo style setting and ζp
the fraction of firms not changing prices. Finally, assume that the monetary authority sets
interest rates according to 1+ it = a1+a2πt+(1+ iss)M

g
t , where i

ss is the steady state net

interest rate and the fiscal authorities sets Tt according to Tt = a3 + a4
Bt−1
pt−1 + T

ssT gt where
T ss are steady state lump sum taxes.
i) Derive the log linearized first order conditions (around the steady states) of the model.
ii) Derive a state space representation for the conditions in i) in terms of ²̂t = [²̂4t, ²̂2t, M̂

g
t , T̂

g
t ].

iii) Assuming that ²̂t is an AR(1) with diagonal persistence matrix and that output and in-
flation are measured with error, provide ML estimates of the parameters of the model using
US data for debt, real balances, inflation, output, nominal interest rate and real deficit. Test
the hypothesis a4 <

1−β
β and a2 <

1
β , which corresponds to passive fiscal policy and active

monetary policy in the terminology of Leeper (1991). What is the effect of shocks to T gt in
the economy?

6.5 Estimating a sticky price model: an example

The model we consider is the same as in exercise 3.2 of chapter 3. Our task is to estimate
its structural parameters, test interesting economic hypotheses concerning the magnitude
of the coefficients, compare the forecasting performance relative to an unrestricted VAR
and, finally, compare some conditional moment implications of the model and of the data.

For convenience we repeat the basic setup: the representative household maximizes

E0
P
t β

t[ln ct + ϑM ln(
Mt
pt
) − ϑN

1−ϕnN
1−ϕn
t − ϑef

1−ϕefEf
1−ϕef
t ] where ct = (

R
c

1
ςp+1

it di)ςp+1 is

aggregate consumption, ςp is the elasticity of substitution among consumption goods, pt =

(
R
p
− 1
ςp

it dj)−ςp is the aggregate price index, Mt
pt
are real balances, Nt is hours worked and Eft

is effort. The budget constraint is
R 1
0 pitcitdi+Mt =WNtNt +WetEft +Mt−1 + Tt + Prft

where Tt are monetary transfers, Prft profits distributed by the firms and WNt,Wet are
the reward to working and to effort. A continuum of firms produce differentiated good
using cit = ζt(N

η2
it Ef

1−η2
it )η1 where Nη2

it Ef
1−η2
it is the quantity of effective input and ζt

an aggregate non-stationary technology shock, ∆ζt = ²1t where ln ²1t ∼ iid N (0,σ2ζ ).
Firms set prices one period in advance, taking as given the aggregate price level and not
knowing the current realization of the shocks. Once shocks are realized, firms optimally
choose employment and effort. So long as marginal costs are below the predetermined
price, firms will meet the demand for their product and choose an output level equal to
cit = (

pit
pt
)−1−ς

−1
p ct. Optimal price setting implies Et−1[ 1ct ((η1η2)pitcit−(ςp+1)WNtNit)] = 0

which, in the absence of uncertainty, reduces to the standard that condition that the price
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is a markup over marginal costs. We assume that the monetary authority controls the
quantity of money and sets ∆Mt = ²3t + aM²1t where ln ²3t ∼ iid N (0,σ2M) and aM is a
parameter. Letting lower case letters denote natural logs, the model implies the following
equilibrium conditions for inflation (∆pt), output growth (∆gdp), employment (nt) and
labor productivity growth (∆npt)

∆pt = ²3t−1 − (1− aM)²1t−1 (6.29)

∆gdpt = ∆²3t + aM²1t + (1− aM)²1t−1 (6.30)

nt =
1

η
²3t − 1− aM

η
²1t (6.31)

∆npt = (1− 1
η
)∆²3t + (

1− aM
η

+ aM)²1t + (1− aM)(1− 1
η
)²1t−1 (6.32)

where npt = gdpt − nt and η = η1(η2 + (1− η2) 1+ϕn1+ϕef
).

The model therefore has two shocks (a technology and a monetary one) and impli-
cations for at least four variables (∆pt,∆gdpt,∆npt, nt). There are 11 free parameters
(η1, η2,ϕn,ϕef ,β,σ

2
ζ ,σ

2
M , aM ϑM ,ϑn,ϑef ), but many of them are do not appear in or are

not identifiable from (6.29)-(6.32). In fact it is easy to verify that only aM and η indepen-
dently enter the four conditions and therefore, together with σ2ζ and σ

2
M , are the only ones

estimable with likelihood methods.

Since there are only two shocks the covariance matrix produced by the model is singular
and we are free to choose which two variables to use to estimate the parameters. In the
baseline case we select productivity and hours. As a robustness check, we repeat estimation
using both output and hours, and prices and output. Note that, in this latter case, also η
is non-identifiable. As an alternative, we estimate the model adding serially uncorrelated
measurement errors to output and productivity. In this case we estimate six parameters:
the four structural ones and the variances of the two measurement errors.

We examine both the statistical and economic fit of the model. First, we study several
specifications which restrict aM and/or η to some prespecified value. A Likelihood ratio
test is performed in each case and the statistics compared to a χ2 distribution. For the
specification with measurement errors, we also perform a forecasting exercise comparing the
one step ahead MSE of the model to the MSE produced by a four variable VAR(1) model,
which has 20 parameters (four constants and 16 autoregressive coefficients). Since the
number of coefficients in the two specifications differs, we also compare the two specifications
with a Schwarz criterion (see chapter 4). In this latter case, the VAR model is penalized
since it has a larger number of parameters. We also compute tests of forecasting accuracy,
as detailed in section 6.2. Conditional on the estimated parameters, we compute impulse
responses, to examine the sign of the dynamics of the variables to technology and monetary
shocks, and compare few elements of the unconditional autocovariance function for the four
variables in the model and in the data.

We use CPI, GDP (constant in 1992 prices) and total hours (equal to average weekly
hours multiplied by civilian employment) for Canada for the period 1981:2-2002:3. All
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variables are logged and first differences of the log are used to compute growth rates. Total
hours are detrended using a linear trend.

(6.29)-(6.32) has a state space representation for α = [²1t, ²1t−1, ²3t, ²3t−1, v1t, v2t], where

vit, i = 1, 2 are measurement errors, x1t =


0 aM − 1 0 1 0 0
aM 1− aM 1 −1 1 0
aM−1
η 0 1

η 0 0 0
1−aM
η + aM

(1−aM )(η−1)
η

η−1
η −η−1η 0 1

,

D1 =


0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , D2 =

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , Σv1 = 0 with the appropriate adjust-
ments if no measurement error is included. The Kalman filter is initialized using α1|0 = 0
and Ω1|0 = I. The likelihood function is computed recursively and a simplex method is
used to locate the maximum. We use this approach instead of a one based on the gradient
because the likelihood is flat, the maximum is around the boundary of the parameter space
and convergence is hard to achieve. The cost is that no standard errors for the estimates
are available. Table 6.1 reports parameter estimates, together with the p-values of various
likelihood ratio tests.

Table 6.1: ML estimates

Data set aM η σ2
ζ σ2

M Log Likelihood

(∆npt, nt) 0.5533 0.9998 1.06e-4 6.69e-4 704.00
(∆gdpt, nt) -7.7336 0.7440 6.22e-6 1.05e-4 752.16
(∆gdpt,∆pt) 3.2007 1.26e-5 1.57e-4 847.12

aM η σ2
ζ σ2

M σ2
v1 σ2

v2 Log Likelihood

(nt,∆npt,∆gdpt,∆pt) -0.9041 1.2423 5.82e-6 4.82e-6 0.0236 0.0072 1336

Restrictions aM = 0 η = 1 η = 1 η = 1.2
aM = −1.0

(∆npt, nt), p-value 0.03 0.97 0.01 0.00
(∆gdpt, nt), p-value 0.00 0.00 0.00 0.00
(nt,∆npt,∆gdpt,∆pt) p-value 0.00 0.001 0.00 0.87

Restrictions aM = 0 aM = 1 aM = −1.0
(∆yt,∆pt), p-value 0.00 0.00 0.00

Several features of the table deserve comments. First, using bivariate specifications the
estimated value of η is less then one. Since for ϕef = ϕN , η = η1, this implies that there is no
evidence of short run increasing returns to scale. The lack of increasing returns is formally
confirmed by likelihood ratio tests: conditioning on values of η ≥ 1 reduces the likelihood.
However, when measurement errors are included, mild short run increasing returns to scale
obtain. Second, the estimated value of aM depends on the data set: it is positive and
moderate when productivity and hours are used; positive and large when output and prices
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are used, strongly negative when output and hours are used and moderately negative when
the four series are used. The reason for this large variety of estimates is that the likelihood
function is very flat in the aM dimension. Figure 6.1 illustrates this fact using the first data
set. It is easy to see that aM = 0, or aM = −0.5 are not extremely unlikely.
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Figure 6.1: Likelihood surface

Note that, at face value, these estimates imply that monetary policy is countercyclical
in two specifications and mildly accommodative in the two others. Third, the likelihood
function is also relatively flat in the σ2ζ ,σ

2
M space and achieves the maximum around the

boundary of the parameter space. Note that with all bivariate data sets, and somewhat
counterintuitively, the variance of monetary shocks is estimated to be larger than the vari-
ance of the technology shocks. Fourth, the size of the estimated variance of measurement
errors is several orders of magnitude larger than the estimated variance of structural shocks,
suggesting that misspecification is likely to be present.

Forecasts produced by the model are poor. In fact, the one-step ahead MSEs for hours,
productivity growth, output growth and inflation are 30, 12, 7, 15 times larger than the
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ones produced by a VAR(1). A test for forecasting accuracy confirms that the forecasts of
the model are different from those produced by a VAR(1). The picture improves when a
penalty for the larger number of parameters is used. In this case, the value of the Schwartz
criterion for the model is ”only” twice as large as the one of the VAR(1).

Impulse responses to unitary positive technology and money shocks are in figure 6.2.
We report responses obtained with the parameters estimated using productivity and hours
data (DATA 1) and output and hours data (DATA 2). Several features are worth dis-
cussing. First, estimates of aM do not affect the responses to monetary shocks. Second,
qualitatively speaking, and excluding the responses of output to technology disturbances,
the dynamics induced by the shocks are similar across parametrizations. Third, the shape of
the responses to technology and monetary shocks looks very similar (up to a sign change)
when productivity and hours data are used. Hence, it would be hard to distinguish the
two type of shocks by looking at the comovements of these two variables only. Fourth, as
expected, the response of productivity to technology shocks is permanent (there is an initial
overshooting) and the response of hours is temporarily negative.

Table 6.2 reports cross covariances in the model and in the data. A few features of
the table stand out. First, the model estimated with measurement errors fails to capture,
both quantitatively and qualitatively, the cross covariance of the data: the magnitude of
the estimated covariances is 10 times smaller than the one in the data and the signs of the
contemporaneous covariance of (nt,∆npt), (∆gdpt,∆pt) and (∆npt,∆npt−1) are wrong.

Second, cross covariances obtained when the model is estimated using productivity and
hours data are still somewhat poor. For example, the estimated covariances of (∆gdpt,∆gdpt−1)
and (∆npt,∆npt−1) are ten times larger than in the data and a distance test rejects the
hypothesis that the two set of cross covariances are indistinguishable. Despite these failures,
the model estimated using hours and productivity data, captures two important qualitative
features of the data: the negative contemporaneous covariance between hours and produc-
tivity and the negative lagged covariance of productivity.

Finally, note that neither of the two specifications can reproduce the negative covariance
between output growth and inflation found in the data.

Moments/Data (∆npt, nt) (∆npt, nt,∆pt,∆gdpt) Actual data

cov(∆gdpt, nt) 6.96e-04 4.00e-06 1.07e-05
cov(∆gdpt,∆npt) 5.86e-05 1.56e-06 1.36e-05
cov(∆npt, nt) -4.77e-05 1.80e-06 -4.95e-05
cov(∆gdpt,∆pt) 6.48e-04 2.67e-06 -2.48e-05
cov(∆gdpt,∆gdpt−1) 6.91e-04 3.80e-06 3.443-05
cov(∆npt,∆npt−1) -1.51e-04 1.07e-06 -2.41e-05

Table 6.1: Cross covariances
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Figure 6.2: Impulse responses
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