
Chapter 4: VAR Models

This chapter describes a set of techniques which stand apart from those considered in the
next three chapters, in the sense that economic theory is only minimally used in the infer-
ential process. VAR models, pioneered by Chris Sims about 25 years ago, have acquired
a permanent place in the toolkit of applied macroeconomists both to summarize the infor-
mation contained in the data and to conduct certain types of policy experiments. VAR are
well suited for the first purpose: the Wold theorem insures that any vector of time series
has a VAR representation under mild regularity conditions and this makes them the natural
starting point for empirical analyses. We discuss the Wold theorem, and the issues con-
nected with non-uniqueness, non-fundamentalness and non-orthogonality of the innovation
vector in the first section. The Wold theorem is generic but imposes important restrictions;
for example, the lag length of the model should go to infinity for the approximation to
be ”good”. Section 2 deals with specification issues, describes methods to verify some of
the restrictions imposed by the Wold theorem and to test other related implications (e.g.
white noise residuals, linearity, stability, etc.). Section 3 presents alternative formulations
of a VAR(q). These are useful when computing moments or spectral densities, and in de-
riving estimators for the parameters and for the covariance matrix of the shocks. Section
4 presents statistics commonly used to summarize the informational content of VARs and
methods to compute their standard errors. Here we also discuss generalized impulse re-
sponse functions, which are useful in dealing with time varying coefficients VAR models
analyzed in chapter 10. Section 5 deals with identification, i.e with the process of trans-
forming the information content of reduced form dynamics into structural ones. Up to this
point economic theory has played no role. However, to give a structural interpretation to
the estimated relationships, economic theory needs to be used. Contrary to what we will be
doing in the next three chapters, only a minimalist set of restrictions, loosely related to the
classes of models presented in chapter 2, are employed to obtain structural relationships.
We describe identification methods which rely on conventional short run, on long run and
on a sign restrictions. In the latter two cases (weak) restrictions derived from DSGE mod-
els are employed and the structural link between the theory and the data explicitly made.
Section 6 describes problems which may distort the interpretation of structural VAR re-
sults. Time aggregation, omission of variables and shocks and non-fundamentalness should
always be in the back of the mind of applied researchers when conducting policy analyses
with VAR. Section 7 proposes a way to validate a class of DSGE models using structural
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VARs. Log-linearized DSGE models have a restricted VAR representation. When a re-
searcher is confident in the theory, a set of quantitative restrictions can be considered, in
which case the methods described in chapters 5 to 7 could be used. When theory only pro-
vides qualitative implications or when its exact details are doubtful, one can still validate a
model conditioning on its qualitative implications. Since DSGE models provide a wealth of
robust sign restrictions, one can take the ideas of section 5 one step further, and use them
to identify structural shocks. Model evaluation then consists in examining the qualitative
(and quantitative) features of the dynamic responses to identified structural shocks. In this
sense, VAR identified with sign restrictions offer a natural setting to validate incompletely
specified (and possibly false) DSGE models.

4.1 The Wold theorem

The use of VAR models can be justified in many ways. Here we employ the Wold repre-
sentation theorem as major building block. While the theory of Hilbert spaces is needed
to make the arguments sound, we keep the presentation simple and invite the reader to
consult Rozanov (1967) or Brockwell and Davis (1991) for precise statements.

TheWold theorem decomposes anym×1 vector stochastic process y†t into two orthogonal
components: one linearly predictable and one linearly unpredictable (linearly regular). To
show what the theorem involves let Ft be the time t information set; Ft = Ft−1⊕Et, where
Ft−1 contains time t − 1 information and Et the news at t. Here Et is orthogonal to Ft−1
(written Et⊥Ft−1) and ⊕ indicates direct sum, that is Ft = {y†t−1+et, y†t−1 ∈ Ft−1, et ∈ Et}.

Exercise 4.1 Show that Et⊥Ft−1 implies Et⊥Et−1 so that Et−j is orthogonal to Et−j0 , j0 < j.

Since the decomposition of Ft can be repeated for each t, iterating backwards we have

Ft = Ft−1 ⊕ Et = . . . = F−∞ ⊕
∞X
j=0

Et−j (4.1)

where F−∞ =
T
j Ft−j . Since y†t is known at time t (this condition is sometimes referred

as adaptability of y†t to Ft), we can write y†t ≡ E[y†t |Ft] where E[.|Ft] is the conditional
expectations operator. Orthogonality of the news with past information then implies:

y†t = E[y
†
t |Ft] = E[y†t |F−∞ ⊕

X
j

Et−j ] = E[y†t |F−∞] +
∞X
j=0

E[y†t |Et−j] (4.2)

We make two assumptions. First, we consider linear representations, that is, we substi-
tute the expectations operator with a linear projection operator. Then (4.2) becomes

y†t = aty−∞ +
∞X
j=0

Djtet−j (4.3)
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where et−j ∈ Et−j and y−∞ ∈ F−∞. The sequence {et}∞t=0, defined by et = y†t −E[y†t |Ft−1],
is a white noise process (i.e. E(et) = 0; E(ete

0
t−j) = Σt if j = 0 and zero otherwise).

Second, we assume that at = a; Djt = Dj; ∀t. This implies

y†t = ay−∞ +
∞X
j=0

Djet−j (4.4)

Exercise 4.2 Show that if y†t is covariance stationary, at = a, Djt = Dj.

The term ay−∞ on the right hand side of (4.4) is the linearly deterministic component

of y†t and can be perfectly predicted given the infinite past. The term
P
jDjet−j is the

linearly regular component, that is, the component produced by the news at each t. We
say that y†t is deterministic if and only if y

†
t ∈ F−∞ and regular if and only if F−∞ = {0}.

Three important points need to be highlighted. First, for (4.2) to hold, no assumptions

about y†t are required: we only need that new information is orthogonal to the existing
one. Second, both linearity and stationary are unnecessary for the theorem to hold. For
example, if stationarity is not assumed there will still be a linearly regular and a linearly
deterministic component even though each will have time varying coefficients (see (4.3)).

Third, if we insist on requiring covariance stationary, preliminary transformations of y†t may
be needed to produce the representation (4.4).

The Wold theorem is a powerful tool but is too generic to guide empirical analysis. To
impose some more structure, we assume first that the data is a mean zero process, possibly
after deseasonalization (with deterministic periodic functions), removal of constants, etc.
and let yt = y†−ay−∞. Using the lag operator we write

P∞
j=0Djet−j =

P
jDj`

jet = D(`)et
so that yt = D(`)et is the MA representation for yt where Dj is a m ×m matrix of rank
m, for each j. MA representations are not unique: in fact, for any nonsingular matrix H(`)
satisfying H(`)H(`−1)0 = I such that H(z) has no singularities for |z| ≤ 1, where H(`−1)0
is the transpose (and possibly complex conjugate) of H(`), we can write yt = D̃(`)ẽt with
D̃(`) = D(`)H(`), ẽt = H(`−1)0et.
Exercise 4.3 Show that E(ẽtẽ

0
t−j) = E(ete

0
t−j). Conclude that if et is covariance station-

ary, the two representation produce equivalent autocovariance functions for yt.

Matrices likeH(`) are called Blaschke factors and are of the formH(`) =Qm
i=1 %iH†(di, `)

where di are the roots of D(`), |di| < 1, %i%0i = I and, for each i, H†(di, `) is given by:

H†(di, `) =


1 0 . . . 0
. . . . . . . . . . . .

0 `−di
1−d−1

i `
. . . 0

0 0 . . . 1

 (4.5)

Exercise 4.4 Suppose

µ
y1t
y2t

¶
=

µ
(1+ 4`) 0
0 (1+ 10`)

¶µ
y1t
y2t

¶
. Find the Blaashke

factors of D(`). Construct two alternative moving average representations for yt.
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Example 4.1 Consider y1t = et−0.5et−1 and y2t = ẽt−2ẽt−1. It is easy to verify that the
roots of D(z) are 2 in the first case, and 0.5 in the second. Since the roots are one the inverse
of the other, the two processes span the same information space as long as the variance of
innovations is appropriately adjusted. In fact, using the covariance generating function
to have CGFy1(z) = (1 − 0.5z)(1 − 0.5z−1)σ21 and CGFy2(z) = (1 − 2z)(1 − 2z−1)σ22 =
(1− 0.5z)(1− 0.5z−1)(4σ22). Hence, if σ21 = 4σ22 the CGF of the two processes is the same.

Exercise 4.5 Let y1t = et − 4et−1, et ∼ (0,σ2). Set y2t = (1− 0.25`)−1y1t. Show that the
CGF(z) of y2t is a constant for all z. Show that y2t = ẽt − 0.25ẽt−1 where ẽt ∼ (0, 16σ2) is
equivalent to y1t in terms of the covariance generating function.

Among the class of equivalent MA representations, it is typical to choose the ”funda-
mental” one. The following two definitions are equivalent.

Definition 4.1 (Fundamentalness)
1) A MA is fundamental if det(D0E(ete

0
t)D

0
0) > det(DjE(et−je0t−j)D

0
j), ∀j 6= 0.

2) A MA is fundamental if the roots of D(z) are all greater than one in modulus.

The roots of D(z) are related to the eigenvalues of the companion matrix of the system
(see section 3). Fundamental representations, also termed Wold representations, could
also be identified by the requirement that the completion of the space spanned by linear
combinations of the yt’s has the same information as the completion of the space spanned
by linear combinations of et’s. In this sense Wold representations are invertible: knowing
yt is the same as knowing et.

As it is shown in the next example, construction of a fundamental representation requires
”flipping” all roots that are less than one in absolute value.

Example 4.2 Suppose yt =

·
1.0 0
0.2 0.9

¸
et+

·
2.0 0
0 0.7

¸
et−1 where et ∼ iid (0, I). Here

det(D0) = 0.9 < det(D1) = 1.4 so the representation is not fundamental. To find a funda-
mental one we compute the roots of D0 +D1z = 0; their absolute values are 0.5 and 1.26
(these are the diagonal elements of −D−11 D0). The problematic root is 0.5 which we flip to
1.0/0.5=2.0. The fundamental MA is then yt =

·
1.0 0
0.2 0.9

¸
et +

·
0.5 0
0 0.7

¸
et−1.

Exercise 4.6 Determine which of the following polynomial produces fundamental repre-
sentations when applied to a white noise innovation:(i) D(`) = 1 + 2` + 3`2 + 4`3, (ii)

D(`) = 1 + 2` + 3`2 + 2`3 + `4, (iii) D(`) = I +

·
.8 −.7
.7 .8

¸
`, (iv) D(`) =

·
1 1
3 4

¸
+·

3 2
4 1

¸
`+

·
4 3
2 1

¸
`2.
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Exercise 4.7 Show that yt = et +

·
1.0 0
0 0.8

¸
et−1 where var(et) =

·
2.0 1.0
1.0 1.0

¸
and

yt = et +

·
0.9091 0.1909
0 0.8

¸
et−1 where var(et) =

·
2.21 1.0
1.0 1.0

¸
generate the same ACF

for yt. Which representation is fundamental?

Exercise 4.8 Let

µ
y1t
y2t

¶
=

µ
(1+ 4`) 1+ 0.5`
0 (1+ 5`)

¶µ
e1t
e2t

¶
where et = (e1t, e2t) has uni-

tary variance. Is the space spanned by linear combinations of the yt and et the same? If
the MA is not fundamental, find a fundamental one.

While it is typical to use Wold representations in applied work, there are economic
models that do not generate a fundamental format. Two are presented in the next examples.

Example 4.3 Consider a RBC model where households maximize E0
P
t β

t(ln(ct)−ϑNNt)
subject to ct + invt ≤ GDPt; Kt+1 = (1 − δ)Kt + invt; ct ≥ 0; invt ≥ 0; 0 ≤ Nt ≤ 1
where 0 < β < 1 and δ,ϑn are parameters and assume that the production function is
GDPt = k

1−η
t Nη

t ζt where ln ζt = ln ζt−1+0.1²1t+0.2²1t−1+0.4²1t−2+0.2²1t−3+0.1²1t−4. Such
a diffusion of technological innovations is appropriate when e.g., only the most advanced
sector employs the new technology (say, a new computer chips) and it takes some time for
the innovation to spread to the economy. If ²1t = 1, ²1t+τ = 0,∀τ 6= 0 ζt looks like in figure
1. Clearly, a process with this shape does not satisfy the restrictions given in definition 4.1.

Example 4.4 Consider a model where fiscal shocks drive economic fluctuations. Typically,
fiscal policy changes take time to have effects: between the programming, the legislation and
the implementation of, say, a change in income tax rates several months may elapse. If
agents are rational they may react to tax changes before the policy is implemented and,
conversely, no behavioral changes may be visible when the changes actually take place. Since
the information contained in tax changes may have a different timing than the information
contained, say, in the income process, fiscal shocks may produce non-Wold representations.

Whenever economic theory requires non-fundamental MAs, one could use Blaaske fac-
tors to flip the representations provided by standard packages, as e.g. in Lippi and Reichlin
(1994). In what follows we will consider only fundamental structures and take yt = D(`)et
be such a representation.

The ”innovations” et play an important role in VAR analyses. Since E(et|Ft−1) = 0
and E(ete

0
t|Ft−1) = Σe, et are serially uncorrelated but contemporaneously correlated. This

means that we cannot attach a ”name” to the disturbances. To do so we need an orthogonal
representation for the innovations. Let Σe be the covariance matrix of et, let Σe = PVP 0 =
P̃P̃ 0 where V is a diagonal matrix and P̃ = PV0.5. Then yt = D(`)et is equivalent to

yt = D̃(`)ẽt (4.6)
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Figure 4.1: Non fundamental technological progress

for D̃(`) = D(`)P̃ and ẽt = P̃−1et. There are many ways of generating (4.6). One is a
Choleski factorization, i.e. V = I and P is a lower triangular matrix. Another is obtained
when P contains the eigenvectors and V the eigenvalues of Σe.
Example 4.5 If et is a 2 × 1 vector with correlated entries, orthogonal innovations are
ẽ1t = e1t − be2t and ẽ2t = e2t where b = cov(e1te2t)

var(e2t)
and var(ẽ1t) = σ21 − b2σ22, var(ẽ2t) = σ22.

It is important to stress that orthogonalization devices are void of economic content:
they only transform the MA representation in a form which is more useful when tracing out
the effect of a particular shock. To attach economic interpretations to the representation,
these orthogonalizations ought to be linked to economic theory. Note also that while with
the Choleski decomposition P has zero restrictions placed on the upper triangular part, no
such restrictions are present when an eigenvalue-eigenvector decomposition is performed.

As mentioned, when the polynomial D(z) has all its roots greater than one in modulus
(and this condition holds if, e.g.,

P∞
j=0D

2
j <∞ (see Rozanov (1967)) the MA representation

is invertible and we can express et as a linear combination of current and past yt’s, i.e.
[A0−A(`)]yt = et where [A0−A(`)] = (D(`))−1. Moving lagged yt’s on the right hand side
and setting A0 = I a vector autoregressive (VAR) representation is obtained

yt = A(`)yt−1 + et (4.7)

In general, A(`) will be of infinite length for any reasonable specification of D(`).
There is an important relationship between the concept of invertibility and the one of

stability of the system which we highlight next.
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Definition 4.2 (Stability) A VAR(1) is stable if det(Im−Az) 6= 0, ∀|z| ≤ 1 and a VAR(q)
is stable if det(Im −A1z − . . .−Aqzq) 6= 0 ∀|z| ≤ 1.

Definition 4.2 implies that all eigenvalues of A have modulus less or equal than 1 (or
that the matrix A has no roots inside or on the complex unit circle). Hence, if yt has an
invertible MA representation, it also has a stable VAR structure. Therefore, one could start
from stable processes to motivate VAR analyses (as, e.g. it is done in Lutkepohl (1991)).
Our derivation shows the primitive restrictions needed to obtain stable VARs.

Example 4.6 Suppose yt =

·
0.5 0.1
0.0 0.2

¸
yt−1 + et. Here det(I2 − Az) = (1 − 0.5z)(1 −

0.2z) = 0 and |z1| = 2 > 1, |z2| = 5 > 1. Hence, the system is stable.

Exercise 4.9 Check if yt =

·
0.6 0.4
0.5 0.2

¸
yt−1 +

·
0.1 0.3
0.2 0.6

¸
yt−2 + et is stable or not.

To summarize, any vector of time series can be represented with a constant coefficient
VAR(∞) under linearity, stationarity and invertibility. Hence, one can interchangeably
think of data or the VAR for the data. Also, with a finite stretch of data only a VAR(q),
q finite, can be used. For a VAR(q) to approximate any yt sufficiently well, we need Dj to
converge to zero repidly as j increases.

Exercise 4.10 Consider yt = et+0.9et−1 and yt = et+0.3et−1. Compute the AR represen-
tations. What lag length is needed to approximate the two processes? What if yt = et+et−1?

Two concepts which are of some use are in applied work are those of Granger non-
causality and Sims (econometric) exogeneity. It is important to stress that they refer to
the ability of one variable to predict another one and do not imply any sort of economic
causality (e.g. the government takes an action, the exchange rate will move). Let (y1t, y2t)
be a partition of a covariance stationary yt with fundamental innovations e1t and e2t; let
Σe be diagonal and let Di,i0(`) be the i, i

0 block of D(`).

Definition 4.3 (Granger causality) y2t fails to Granger cause y1t if and only if D12(`) = 0.

Definition 4.4 (Sims Exogeneity) We can write y2t = Q(`)y1t + ²2t with Et[²2ty1t−τ ] =
0, ∀τ ≥ 0 and Q(`) = Q0 + Q1` + . . . if and only if y2t fails to Granger cause y1t and
D21(`) 6= 0.

Exercise 4.11 Show what Granger non-causality of y2t for y1t implies in a trivariate VAR.

We conclude examining cases where the data deviates from the setup considered so far.
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Exercise 4.12 (i) Suppose that yt = D(`)et where D(`) = (1− `)D†(`). Derive a VAR for
yt. Show that if D

†(`) = 1, there is no convergent VAR representation for yt.
(ii) Suppose that y†t = a0 + a1t+D(`)et if t ≤ T̄ and y†t = a0 + a2t+D(`)et if t > T̄ . How
would you derive a VAR representation for yt?
(iii) Suppose that yt = D(`)et and var(et) ∝ y2t−1 Find a VAR for yt.
(iv) Suppose that yt = D(`)et, var(et) = b var(et−1) + σ2. Find a VAR for yt.

4.2 Specification

In section 4.1 we showed that a constant coefficient VAR is a good approximation to any
vector of time series. Here we examine how to verify the restrictions needed for the ap-
proximation to hold. The model we consider is (4.7) where A(`) = A1`+ . . .+Aq`

q, yt is
a m × 1 vector, and et ∼ (0,Σe). VARs with econometrically exogenous variables can be
obtained via restrictions on A(`) as indicated in definition 4.4. We let A01 = (A01, . . . , A0q)0
be a (mq ×m) matrix and set α = vec(A1) where vec(A1) stacks the columns of A1 (so α
is a m2q × 1 vector).

4.2.1 Lag Length 1

There are several methods to select the lag length of a VAR. The simplest is based on a
likelihood ratio (LR) test. . Here the model with a smaller number of lags is treated as a
restricted version of a larger dimensional model. Since the two models are nested, under
the null that the restricted model is correct, differences in the likelihoods should be small.
Let R(α) = 0 be a set of restrictions and L(α,Σe) the likelihood function. Then:

LR = 2[lnL(αun,Σune )− lnL(αre,Σree )] (4.8)

= (R(αun))0[
∂R

∂αun
(Σree ⊗ (X 0X)−1)(

∂R

∂αun
)0]−1(R(αun)) (4.9)

= T (ln |Σree |− ln |Σune |) D→ χ2(ν) (4.10)

where Xt = (y0t−1, . . . , y0t−q)0, and X 0 = (X0, . . . , XT−1) is a mq × T matrix and ν the
number of restrictions. (4.8)-(4.9)-(4.10) are equivalent formulations of the likelihood ratio
test. The first is the standard one. (4.9) is obtained maximizing the likelihood function
with respect to α subject to R(α) = 0. (4.10) is convenient for computing actual test values
and to compare LR results with those of other testing procedures.

Exercise 4.13 Derive (4.9) using a Lagrangian multiplier approach.

Four important features of LR tests need to be highlighted. First, a LR test is valid when
yt is stationary and ergodic and if the residuals are white noise under the null. Second, it
can be computed without explicit distributional assumptions on the yt’s. What is required
is that et is a sequence of independent white noises with bounded fourth moments and
that T is sufficiently large - in which case αun,Σune ,α

re,Σree are pseudo maximum likelihood
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estimators. Third, a likelihood ratio test is biased against the null in small samples. Hence
it is common to use LRc = (T−qm)(ln |Σre|−ln |Σun|) where qm is the number of estimated
parameters in each equation of the unrestricted system. Finally, one should remember that
the distribution of the LR test is only asymptotically valid. That is, significance levels only
approximate probabilities of Type I errors.

In practice, an estimate of q is obtained sequentially as the next algorithm shows:

Algorithm 4.1

1) Choose an upper bound q̄.

2) Test a VAR(q̄−1) against VAR(q̄) using a LR test. If the null hypothesis is not rejected
3) Test a VAR(q̄ − 2) against VAR(q̄ − 1) using an LR test. Continue until rejection.

Clearly, q̄ depends on the frequency of the data. For annual data q̄ = 3; for quarterly
data q̄ = 8; and for monthly data q̄ = 18 are typical choices. Note that with a sequential
approach each null hypothesis is tested conditional on all the previous ones being true
and that the chosen q crucially depends on the significance level. Furthermore, when a
sequential procedure is used it is important to distinguish between the significance level of
individual tests and the significance level of the procedure as a whole - in fact, rejection of
a VAR(q̄ − j) implies that all VAR(q̄ − j0) will also be rejected, ∀j0 > j.

Example 4.7 Choose as a significance level 0.05 and set q̄ = 6. Then a likelihood ratio
test for q=5 vs. q=6 has significance level 1− 0.95 = 0.05. Conditional on choosing q=5, a
test for q=4 vs. q=5 has a significance level 1− (0.95)2 = 0.17 and the significance level at
the j − th stage is 1− (1− .05)j. Hence, if we expect the model to have three or four lags,
we better adjust the significance level so that at the second or third stage of the testing, the
significance is around 0.05.

Exercise 4.14 A LR test restricts each equation to have the same number of lags. Is it
possible to choose different lag lengths in different equations? How would you do this in a
bivariate VAR?

While popular, LR tests are unsatisfactory lag selection approaches when the VAR is
used for forecasting. This is because LR tests look at the in-sample fit of models (see
equation 4.10). When forecasting one would like to have lag selection methods which
minimize the (out-of-sample) forecast error. Let yt+τ − yt(τ) be the τ -step ahead forecast
error based on time t information and let Σy(τ) = E[yt+τ −yt(τ)][yt+τ −yt(τ)]0 be its mean
square error (MSE). When τ = 1, Σy(1) ≈ T+mq

T Σe where Σe is the variance covariance
matrix of the innovations (see e.g. Lutkepohl (1991, p.88)). The next three information
criteria choose lag length using transformations of Σy(1).

• Akaike Information criterion (AIC) : minq AIC(q) = ln |Σy(1)|(q) + 2qm2

T .
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• Hannan and Quinn criterion (HQC): minqHQC(q) = ln |Σy(1)|(q) + 2qm2

T ln(lnT ).

• Schwarz criterion (SWC): minq SC(q) = ln |Σy(1)|(q) + 2qm2

T lnT .

All criteria add a penalty to the one-step ahead MSE which depends on the sample
size T , the number of variables m and the number of lags q. While for large T penalty
differences are unimportant, this is not the case when T is small, as shown in table 4.1.

Criterion T=40, m=4 T=80, m=4 T=120, m=4 T=120, m=4
q=2 q=4 q=6 q=2 q=4 q=6 q=2 q=4 q=6 q=2 q=4 q=6

AIC 0.4 3.2 4.8 0.8 1.6 2.4 0.53 1.06 1.6 0.32 0.64 0.96
HQC 0.52 4.17 6.26 1.18 2.36 3.54 0.83 1.67 2.50 0.53 1.06 1.6
SWC 2.95 5.9 8.85 1.75 3.5 5.25 1.27 2.55 3.83 0.84 1.69 2.52

Table 4.1: Penalties of Akaike, Hannan and Quinn and Schwarz criteria

In general, for T ≥ 20 SWC and HQC will always choose smaller models than AIC.
The three criteria have different asymptotic properties. AIC is inconsistent (in fact, it

overestimates the true order with positive probability) while HQC and SWC are consistent
and when m > 1, they are both strongly consistent (i.e. they will choose the correct model
almost surely). Intuitively, AIC is inconsistent because the penalty function used does not
simultaneously goes to infinity as T → ∞ and to zero when scaled by T . Consistency
however, it is not the only yardstick to use since consistent methods may have poor small
sample properties. Ivanov and Kilian (2001) extensively study the small sample properties
of these three criteria using a variety of data generating processes and data frequencies
and found that HQC is best for quarterly and monthly data, both when yt is covariance
stationary and when it is a near-unit root process.

Example 4.8 Consider a quarterly VAR model for the Euro area for the sample 1980:1-
1999:4 (T=80); restrict m = 4 and use output, prices, interest rates and money (M3) as
variables. A constant is eliminated previous to the search. We set q̄ = 7. Table 4.2 reports
the sequential p-values of basic and modified LR tests (first two columns) and the values of
the AIC, HQC, SWC criteria (other three columns).

Different tests select somewhat different lag length. The LR tests select 7 lags but the
p-values are non-monotonic and it matters what q̄ is. For example, if q̄ = 6, LRc selects two
lags. Nonmonotonicity appears also for the other three criteria. In general, SWC, which
uses the harshest penalty, has a minimum at 1; HQC and AIC have a minimum at 2. Based
on these outcomes, we tentatively select a VAR(2).

4.2.2 Lag Length 2

The Wold theorem implies, among other things, that VAR residuals must be white noise.
A LR test can therefore be interpreted as a diagnostic to check whether residuals satisfy
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Hypothesis LR LRc AIC HQC SWC

q=6 vs. q=7 2.9314e-05 0.0447 -7.5560 -6.3350 -4.4828
q=5 vs. q=6 3.6400e-04 0.1171 -7.4139 -6.3942 -4.8514
q=4 vs. q=5 0.0509 0.5833 -7.4940 -6.6758 -5.4378
q=3 vs. q=4 0.0182 0.4374 -7.5225 -6.9056 -5.9726
q=2 vs. q=3 0.0919 0.6770 -7.6350 -7.2196 -6.5914
q=1 vs. q=2 3.0242e-07 6.8182e-03 -7.2266 -7.0126 -6.6893

Table 4.2: Lag length of a VAR

this property. Similarly, AIC, HQC and SWC can be seen as trading-off the white noise
assumption on the residuals with the best possible out-of-sample forecasting performance.

Another class of tests to lag selection directly examines the properties of VAR residuals.
Let ACRFe(τ)i,i

0
denote the cross correlation of eit and ei0t at lag τ = . . . ,−1, 0, 1, . . ..

Then , under the null of white noise ACRFe(τ)
i,i0 = ACFe(τ)i,i

0
√
ACFe(0)i,iACFe(0)i

0,i0 → N(0, 1T ) for
each τ (see e.g. Lutkepohl (1991, p.141).

Exercise 4.15 Design a test for the joint hypothesis that ACRFe(τ) = 0 ∀i, i0, τ fixed.
Care must be exercised in implementing white noise tests sequentially - say, starting

from an upper q̄, checking if the residual are white noise and, if they are, decrease q̄ by one
value at the time until the null hypothesis is rejected. Since serial correlation is present in
incorrectly specified VARs, one must choose a q̄ for which the null hypothesis is satisfied.

Exercise 4.16 Provide a test statistic for the null that ACRFe(τ)
i,i0 = 0, ∀τ which is

robust to the presence of heteroschedasticity in VAR residuals.

In implementing white noise tests, one should remember that since VAR residuals are
estimated, the asymptotic covariance matrix of the ACRF must include parameter un-
certainty. Contrary to what one would expect, the covariance matrix of the estimated
residuals is smaller than the one based on the true ones (see e.g. Lutkepohl (1991, p.142-
148)). Hence, 1T is conservative in the sense that the null hypothesis will be rejected less
often than indicated by the significance level.

Portmanteau or Q-tests for the whiteness of the residuals can also be used to choose
the lag length of a VAR. Both Portmanteau and Q-tests are designed to verify the
null that ACRF τe = (ACRFe(1), . . . , ACRFe(τ)) = 0, (the alternative is ACRF τe 6= 0).

The Portmanteau statistic is PS(τ) = T
Pτ
i=1 tr(ACF (i)

0ACF (0)−10ACF (i)ACF (0)−1) D→
χ2(m2(τ − q)) for τ > q under the null. The Q-statistic is QS(τ) = T (T + 2)

Pτ
i=1

1
T−i

tr(ACF (i)0ACF (0)−10ACF (i)ACF (0)−1). For large T , it has the same asymptotic distri-
bution as PS(τ).

Exercise 4.17 Use US quarterly data from 1960:1 to 2002:4 to optimally select the lag
length of a VAR with output, prices, nominal interest rate and money. Use modified LR,
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AIC, HQC, SWC and white noise tests. Does it make a difference if the sample is 1970-2003
or 1980-2003? How do you interpret differences across tests and/or samples?

4.2.3 Nonlinearities and nonnormalities

So far we have focused on linear specifications. Since time aggregation washes most of the
nonlinearities out, the focus is hardly restrictive, at least for quarterly data. However, with
monthly data nonlinearities could be important (especially if financial data is used). Fur-
thermore, time variations in the coefficients (see chapter 10), outliers or structural breaks
may also generate (in a reduced form sense) nonlinearities and nonnormalities in the resid-
uals of a constant coefficient VAR. Hence, one wants methods to detect departures from
nonlinearities and nonnormalities if they exist.

In deriving the MA representation we have used linear projections. Since omitted non-
linear terms will end up in the error term, the same ideas employed in testing for white
noise residuals can be used to check if nonlinear effects are present.

Two ways of formally testing for nonlinearities are the following: i) run a regression
of estimated VAR residuals on nonlinear functions of the lagged dependent variables and
examine the significance of estimated coefficients adjusting standard errors for the fact that
et is proxied by estimated residuals. ii) Directly insert high order terms in the VAR and
examine their significance. Graphical techniques, e.g. a scatter plot of estimated residuals
against nonlinear functions of the regressors, could also be used as diagnostics.

There is also an indirect approach to check for nonlinearities which builds on the idea
that whenever nonlinear terms are important, the moments of the residuals have a special
structure. In particular, their distribution will be non-normal, even in large samples.

Testing for nonnormalities is simple: a normal white noise process with unit variance
has zero skewness (third moment) and kurthosis (the forth moment) equal to 3. Hence, an
asymptotic test for nonnormalities is as follows. Let êt = yt−

P
j Âjyt−j ; Σe =

1
T−1

P
t êtê

0
t;

ẽt = P̃−1êt; P̃P̃ 0 = Σe where Âj is an estimator of Aj . Define S1i =
1
T

P
t ẽ
3
it; S2i =

1
T

P
t ẽ
4
it, i = 1, . . . ,m, Sj = (Sj1, . . . ,Sjm)0, j = 1, 2 and let 3m be a m× 1 vector with 3

in each entry. Then
√
T

·
S1

S2 − 3m
¸
D→ N(0,

·
6× Im 0
0 24× Im

¸
).

4.2.4 Stationarity

Covariance stationarity is crucial to derive a VAR representation with constant coefficients.
However, a time varying MA representation for a nonstationary yt always exists if the other
assumptions used in the Wold theorem hold. If

P
j D

2
jt < ∞ for all t, a non-stationary

VAR representation can be derived. Hence, time varying coefficient VAR models, which we
examine in chapter 10, are the natural alternative to covariance stationary structures.

While covariance stationarity is unnecessary, it is a convenient property to have when
estimating VAR models. Also, although models with smooth changes in the coefficients
may be the natural extensions of covariance stationary models, the literature has focused
on a more extreme form of nonstationarity: unit root processes. Unit root models are
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less natural for two reasons: they imply drastically different dynamic properties; classical
statistics has difficulties in testing this null hypothesis in the presence of a near-unit root
alternative (see e.g. Watson (1995)). Despite these problems, contrasting stationary vs.
unit root behavior has become a rule, the common wisdom being that macroeconomic time
series are characterized by near-unit root behavior, i.e. they are in the grey area where the
tests have low power. Hence, it will take a long time for a randomly perturbed series to
revert back to the original (steady) state.

Unit root tests are somewhat tangential to the scope of the book. Favero (2001) pro-
vides an excellent review of this literature. Hence, we limit attention to the implications
that nonstationary (or near nonstationary) has for the specification of the VAR, for the
estimation of the parameters and for the identification of structural shocks.

If a test has detected one or more unit roots, how should one proceed in specifying a
VAR? Suppose we are confident in the testing results and that all variables are either sta-
tionary or integrated, but no cointegration is detected. Then one would difference unit-root
variables until covariance stationary is obtained and estimate the VAR using transformed
variables. For example, if all variables are I(1), a VAR in growth rates is appropriate.

Specification is simple also when there are some cointegrating relationships. For ex-
ample, both prices and money may display unit root behavior but real balances may be
stationary. In this case, one typically transforms the VAR into a vector error correction
model (VECM) and either imposes the cointegrating relationships (using the theoretical
or the estimated restrictions) or jointly estimates short run and long run coefficients from
the data. VECMs are preferable here to differenced VARs because the latters throw away
information about the long run properties of the data. Plugging-in estimates of the long run
relationships is justified since estimates of the long run relationships are super-consistent,
i.e. they asymptotically converge at the rate T (estimates of short run relationships con-
verge asymptotically at the rate T 0.5). Since a VECM is a reparametrization of the VAR in
levels, the latter is appropriate if all variables are cointegrated, even though some (or all)
of its components are not covariance stationary.

Despite two decades of work in the area, unit root tests still have poor small sample
properties. Furthermore, barring exceptional circumstances, neither explosive nor unit root
behavior has been observed in long stretches of OECD macroeconomic data. Both reasons
may cast doubts about the non-stationarities detected and the usefulness of such tests.

When doubts about the tests exist, one can indirectly check the reasonableness of the
stationarity assumption by studying estimated residuals. In fact, if yt is nonstationary and
no cointegration emerges, the estimated residuals are likely to display nonstationary path.
Hence a plot of the VAR residuals may indicate a problem if it exists. Practical experience
suggests that VAR residuals show breaks and outliers but they rarely display unit root type
behavior. Hence, a level VAR could be appropriate even when yt looks nonstationary. It is
also important to remember that the properties of yt are important in testing hypotheses
about the coefficients since classical distribution theory is different when unit roots are
present. Consistent estimates of VAR coefficients obtain with classical methods even when
unit roots are present (see Sims, Stock and Watson (1990)).
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A final argument against the use of specification tests for stationarity comes from a
Bayesian perspective. In Bayesian analysis the posterior distribution of the quantities of
interest is all that matters. While Bayesian and classical analyses have many common
aspects, they dramatically differ when unit roots are present. In particular, while the
classical asymptotic distribution of coefficients estimates under unit roots is nonstandard,
the posterior distribution is unchanged. Therefore, if one takes a Bayesian perspective to
testing, no adjustment for nonstationarity is required.

Finally, one should remember that pretesting has consequences for the distribution of
parameters estimates since incorrect choices produce inconsistent estimates of the quantities
of interest. To minimize pretesting problems, we recommend to start assuming covariance
stationarity and deviate from it only if the data overwhelmingly suggests the opposite.

4.2.5 Breaks

While exact unit root behavior is unlikely to be relevant in macroeconomics, changes in
the intercept, in the dynamics or in the covariance matrix of a vector of time series are
quite common. A time series with breaks is neither stationary nor covariance stationary.
To avoid problems, applied researchers typically focus attention on subsamples which are
(assumed to be) homogenous. However, this is not always possible: the break may occur
at the end of the sample (e.g. creation of the Euro); there maybe several of them; or they
may be linked to expansions and contractions and it may be unwise to throw away runs
with these characteristics.

While structural breaks with dramatic changing dynamics may sometimes occur (e.g.
breakdown or unification of a country), it is more often the case that time series display
slowly evolving features with no abrupt changes at one specific point - a pattern which would
be more consistent with a time varying coefficient specifications. Nevertheless, it may be
useful to have tools to test for structural breaks if visual inspection suggests that such a
pattern may be present. If the break date is known, Chow tests can be used. Let Σree be the
covariance matrix of the VAR residuals with no breaks and Σune = Σune (1, t̄)+Σ

un
e (t̄+ 1, T )

is the covariance matrix when a break is allowed at t̄. Then CS(t̄) = |Σree |−|Σune |)/ν
|Σune |/T−ν ∼

F (ν, T − ν) where ν is the number of regressors in the model. When t̄ is unknown but
suspected to occur within an interval, one could run Chow tests for all t̄ ∈ [t1, t2], take
maxt̄CT (t̄) and compare it with a modified F-distribution (critical values are e.g. in Stock
and Watson (2002, p. 111)).

An alternative testing approach can be obtained by noting that if no break occurs the τ -
steps ahead forecast error of yt+τ , et(τ) = yt+τ−yt(τ), should be similar to sample residuals.
Then, under the null of no breaks at forecasting horizon τ , τ large et(τ)

D→ N(0,Σe(τ)).

Exercise 4.18 Show that an appropriate statistic to check for breaks over τ forecasting

horizons is FT (τ) = etΣ
−1
e et

D→ χ2(τ) under the null of no breaks, T large, where et =
(et(1), . . . et(τ)). (The alternative here is that the DGP for yt differs before and after t).
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As usual these tests may be biased in small samples. A small sample version of the

forecasting test is obtained using Σce(τ) = Σe(τ) +
1
TE[

∂yt(τ)
∂α0 Σα

∂yt(τ)
∂α

0
] in place of Σe(τ).

4.3 Alternative Representations of VAR(q)

There are two alternative representations for a V AR(q) which are easier to manipulate than
(4.7) and are of use when deriving estimators of the unknown parameters of the model.

4.3.1 Companion form representation

The companion form representation transforms a VAR(q) model in a larger scale VAR(1)
model and it is useful when one needs to compute moments or derive parameter estimates.

Let Yt =


yt
yt−1
. . .
yt−q+1

 ; Et = [

 et0
. . .

 0; A =


A1 A2 . . . Aq
Im 0 . . . 0
. . . . . . . . . . . .
0 . . . Im 0

. Then (4.7) is
Yt = AYt−1 + Et Et ∼ (0,ΣE) (4.11)

where Yt,Et are mq × 1 vectors and A is mq ×mq matrix.
Example 4.9 Consider a bivariate VAR(2) model. Here Yt = [yt, yt−1]0 Et = [et, 0]0, are a

4× 1 vectors, and A =
·
A1 A2
I2 0

¸
is a 4× 4 matrix.

Moments of yt can be immediately calculated from (4.11).

Example 4.10 The unconditional mean of yt can be computed using E(Yt) = [(I−A`)−1]
E(Et) = 0 and a selection matrix which picks the first m elements out of E(Yt). To calculate
the unconditional variance notice that, because of covariance stationarity

E[(Yt −E(Yt))(Yt −E(Yt))0] = AEt[(Yt−1 −E(Yt−1))(Yt−1 −E(Yt−1)0]A0 +ΣE
ΣY = AΣY A0 +ΣE (4.12)

To solve (4.12) for ΣY we will make use of the following result.

Result 4.1 If T, V,R are conformable matrices, vec(TV R) = (R0 ⊗ T )vec(V ).
Then vec(ΣY ) = [Imq − (A⊗A)]−1vec(ΣE) where Imq is a mq ×mq identity matrix.
Unconditional covariances and correlations can also be easily computed. In fact

ACFY (τ) = E[(Yt −E(Yt))(Yt−τ −E(Yt−τ )0]
= AEt[(Yt−1 −E(Yt−1))(Yt−τ −E(Yt−τ ))0] +E[Et(Yt−τ −E(Yt−τ ))0]
= AACFY (τ − 1) = AτΣY τ = 1, 2, . . . (4.13)
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The companion form could also be used to obtain the spectral density matrix of yt. Let
ACFE(τ) = cov(Et,Et−τ ). Then the spectral density of Et is SE(ω) = 1

2π

P∞
τ=−∞ e

−iωτ

ACFE(τ) and vec[SY (ω)] = [I(ω) − A(ω)A(−ω)0]vec[SE(ω)] where I(ω) =
P
j e
−iωjI,

A(ω) =
P
j e
−iωjAj and A(−ω)0 is the complex conjugate of A(ω).

Exercise 4.19 Suppose a VAR(2) has been fitted to unemployment and inflation data and

Â1 =

·
0.95 0.23
0.21 0.88

¸
, Â2 =

· −0.05 0.13
−0.11 0.03

¸
and Σ̂e =

·
0.05 0.01
0.01 0.06

¸
have been obtained.

Calculate the spectral density matrix of yt. What is the value of SY (ω = 0)?

A companion form representation has also computational advantages when deriving
estimators of the unknown parameters of the model. We first consider estimators obtained
when no constraints (lag restrictions, zero restrictions, etc.) are imposed on the VAR; when
y−q+1, . . . y0 are fixed and et are normally distributed with covariance matrix Σe.

Given the VAR structure, (yt|yt−1, . . . , y0, y−1, . . . , y−q+1) ∼ N(A1Yt−1,Σe) where A1 is
am×mqmatrix containing the firstm rows ofA. The density of yt is f(yt|yt−1, . . . ,A1,Σe) =
(2π)0.5m|Σe|−0.5exp[−0.5(yt −A1Yt−1)0Σ−1e (yt −A1Yt−1)]. Hence f(yt, yt−1, . . . , |A1,Σe) =QT
t=1 f(yt|yt−1, . . . ,A1,Σe) and the log likelihood is

L(A1,Σe|yt) = −T
2
(m log(2π)− log |Σe|)− 1

2

X
t

(yt −A1Yt−1)0Σ−1e (yt −A1Yt−1)] (4.14)

Taking the first order conditions with respect to vec(A1) leads to

A01,ML = [
TX
t=1

Yt−1Y0t−1]−1[
TX
t=1

Yt−1y0t] = A01,OLS (4.15)

Hence, when no restrictions are imposed, ML and OLS estimators of the first m rows of
the companion matrix A coincide. Note that an estimator of the j-th row of A1 (an 1×mq
vector) is A01j = [

P
tYt−1Y0t−1]−1[

PT
t=1Yt−1yjt].

Exercise 4.20 Provide conditions for A1,ML to be consistent. Is it efficient?

Exercise 4.21 Show that if there are no restrictions on the VAR, OLS estimation of the
parameters, equation by equation, is consistent and efficient.

The result of exercise 4.21 is important: as long as all variables appear with the same
lags in every equation, single equation OLS estimation is sufficient. Intuitively, such a VAR
is a seemingly unrelated regression (SUR) model and for such models single equation and
system wide methods are equally efficient (see e.g. Hamilton (1994, p.315)).

Using A1,ML into the log likelihood we obtain lnL(Σe|yt) = −Tm2 ln(2π)− T
2 ln |Σe|)−

1
2

PT
t=1 e

0
t,MLΣ

−1
e et,ML where et,ML = (yt − A1,MLYt−1). Taking the first order conditions
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with respect to vech(Σe), where vech(Σe) vectorizes the symmetric matrix Σe, and using

the fact that ∂(b
0Qb)
∂Q = b0b; ∂ log |Q|∂Q = (Q0)−1 we have T2Σ0e − 1

2

PT
t=1 et,MLe

0
t,ML = 0 or

Σ0ML =
1

T

TX
t=1

et,MLe
0
t,ML (4.16)

and the ML estimate of the (i, i0) element of Σe is σi,i0 = 1
T

PT
t=1 eit,MLe

0
i0t,ML.

Exercise 4.22 Show that ΣML is biased but consistent.

4.3.2 Simultaneous equations format

Two other useful transformations of a VAR are obtained using the format of a simultaneous
equations system. The first is obtained setting xt = [yt−1, yt−2, . . .]; X = [x1, . . . , xT ]

0 (a
T ×mq matrix), Y = [y1, . . . , yT ]

0 (a T ×m matrix) and letting A = [A01, . . . A0q]0 = A01 be
a mq ×m matrix to have

Y = XA0 +E (4.17)

The second transformation is obtained from (4.17). The equation for variable i in fact
is Yi = XAi +Ei. Stacking the columns of Yi,Ei into mT × 1 vectors we have

y = (Im ⊗X)α+ e ≡ Xα+ e (4.18)

Note that in (4.17) all variables are grouped together for each t; in (4.18) all time periods
for one variable are grouped together. As shown in chapter 10, (4.18) is useful to decompose
the likelihood function of a VAR(q) into the product of a normal density, conditional on
the OLS estimates of the VAR parameters, and a Wishart density for Σ−1e .

Using these representations it is immediate to compute moments of yt.

Example 4.11 The unconditional mean of yt is E(Y) = E(X)A
0 or E(y) = E(Im⊗X)α.

The unconditional variance is E[Y] ≡ ΣY = E{[X − E(X)]A0 − E}2 or ΣY = E{[(Im ⊗
X)−E(Im ⊗X)]α+ e}2.

Exercise 4.23 Using (4.18), assuming that Σxx = p lim X0X
T exists and is non-singular

and 1√
T
vec(Xe)

D→ N(0,Σxx ⊗ Σe) show: (i)p limT→∞ αOLS = α; (ii)
√
T (αOLS − α) D→

N(0,Σ−1xx ⊗Σe); (iii) Σe,OLS = (y−Xα)(y−Xα)0
T−mq is such that p lim

√
T (Σe,OLS − ee0

T ) = 0.

Estimators of the VAR parameters can also be obtained via the Yule-Walker equations.
From (4.7) we have that E[(yt −E(yt))(yt−τ − E(yt−τ ))] = A(`)E[(yt−1 −E(yt−1))(yt−τ −
E(yt−τ ))] + E[et(yt−τ − E(yt−τ ))] for all τ ≥ 0. Hence, letting ACFy(τ) = E[(yt −
E(yt))(yt−τ −E(yt−τ ))] we have

ACFy(τ ) = A1ACFy(τ − 1) +A2ACFy(τ − 2) + . . .+AqACFy(τ − q) (4.19)
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Example 4.12 If q = 1 (4.19) reduces to ACFy(τ) = A1ACFy(τ − 1). Given estimates of
A1 and Σe, we have that ACFy(0) ≡ Σy = A1ΣyA01+Σe so vec(Σy) = (I−A1⊗A1)vec(Σe)
and ACFy(1) = A1ACFy(0), ACFy(2) = A1ACFy(1), etc.

Equation (4.19) can also be more compactly written asACFy = A1ACF ∗y whereACFy =

[ACFy(1), . . . ACFy(q)]; and ACF ∗y =

 ACFy(0) . . . ACFy(q − 1)
. . . . . . . . .
ACFy(−q + 1) . . . ACFy(0)

. Then an
estimate of A1 is A1,Y W = ACFy(ACF

∗
y )
−1.

Exercise 4.24 Show that A1,Y W = A1,ML. Conclude that Yule-Walker and ML estimators
have the same asymptotic properties.

Exercise 4.25 Show how to modify the Yule-Walker estimator when E(yt) is unknown.
Show that the resulting estimator is asymptotically equivalent to A1,Y W .

It is interesting to study what happens when a VAR is estimated under some restrictions
(exogeneity, cointegration, lag elimination, etc.). Suppose restrictions are of the form α =
Rθ + r where R is mk × k1 matrix of rank k1; r is a mk × 1 vector; θ a k1 × 1 vector.
Example 4.13 i) Consider the restriction Aq = 0. Here k1 = m2(q − 1), r = 0, and
R = [Ik1 , 0]
ii) Suppose that y2t is exogenous for y1t in a bivariate VAR(2). Here R = blockdiag[R1, R2]
where Ri, i = 1, 2 is upper triangular.

Using (4.18) we have y = (Im ⊗X)α+ e = (Im ⊗X)(Rθ + r) + e or y − (Im ⊗X)r =
(Im ⊗X)Rθ + e. Since ∂ lnL

∂θ = R∂ lnL∂α then

θML = [R0(Σ−1e ⊗X0X)R]−1R0[Σ−1e ⊗X](y − (Im ⊗X)r) (4.20)

αML = R θML + r (4.21)

Σe =
1

T

X
t

eMLe
0
ML (4.22)

Exercise 4.26 Verify that when a VAR is estimated under some restrictions:
i) ML estimates are different from OLS estimates.
ii) ML estimates are consistent and efficient if the restrictions are true but inconsistent if
the restrictions are false.
iii) OLS is consistent when stationarity is incorrectly assumed but t-tests are incorrect.
iv) OLS is inconsistent if lag restrictions are incorrect.

4.4 Reporting VAR results

It is rare to report estimated VAR coefficients. Since the number of parameters is large
presenting all of them is cumbersome. Furthermore, they are poorly estimated: except
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for the first own lag, in general, they are all insignificant. It is therefore typical to report
functions of the VAR coefficients which summarize information better, have some economic
meaning and, hopefully, are more precisely estimated. Among the many possible functions,
three are typically used: impulse responses, variance and historical decompositions. Impulse
responses trace out the MA of the system, i.e. they describe how yit+τ responds to a shock
in ei0t; the variance decomposition measures the contribution of ei0t to the variability of
yit+τ ; the historical decomposition describes the contribution of shock ei0t to the deviations
of yit+τ from its baseline forecasted path.

4.4.1 Impulse responses

There are three ways to calculate impulse responses which roughly correspond to recursive,
nonrecursive (companion form) and forecast revision approaches. In the recursive approach,

the impulse response matrix at horizon τ is Dτ =
Pmax[τ,q]
j=1 Dτ−jAj where D0 = I, Aj =

0 ∀ τ ≥ q. Clearly, a consistent estimate is obtained if a consistent Âj is used in place of
Aj .

Example 4.14 Consider a VAR(2) with yt = A0+A1yt−1+A2yt−2+et. Then the response
matrices are: D0 = I, D1 = D0A1, D2 = D1A1 +D0A2, . . . ,Dτ = Dτ−1A1 +Dτ−2A2.

Calculation of meaningful impulse responses requires orthogonal disturbances. Let P̃
be a square matrix such that P̃P̃ 0 = Σe. Then the impulse response matrix to orthogonal
shocks ẽt = P̃−1et at horizon τ is D̃τ = Dτ P̃.

Exercise 4.27 Provide the first 5 elements of the MA representation of a bivariate VAR(3)
with orthogonal shocks.

When the VAR is in a companion form, we can compute impulse responses in a different
way. Using (4.11) and repeatedly substituting for Yt−τ , τ = 1, 2, . . . we have:

Yt = AtY0 +
t−1X
τ=0

AτEt−τ (4.23)

= AtY0 +
t−1X
τ=0

Ãτ Ẽt−τ (4.24)

where Ãτ = Aτ P̃, Ẽt−τ = P̃−1Et, P̃P̃0 = ΣE. (4.23) is used with non-orthogonal residuals,
(4.24) with orthogonal ones. The first m rows of Aτ provide the required responses.

Exercise 4.28 Using the companion form of a bivariate VAR(2) show the first 4 elements
of Aτ .

A final way to compute impulse responses uses forecast revisions of future yts. We
will use the companion form representation to illustrate the point but the argument goes
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through with any representation. Let Yt(τ) = AτYt and Yt−1(τ) = Aτ+1Yt−1 be the τ -steps
and τ + 1-steps ahead forecast of Yt. Hence the forecast revision is

Revt(τ) = Yt(τ)−Yt−1(τ) = Aτ [Yt −AYt−1] = AτEt (4.25)

Example 4.15 Suppose we shock the i’-th component of et once at time t, i.e. ei0t =
1; ei0τ = 0, τ > t; eit = 0 ∀i 6= i0, ∀t. Then Revt,i0(1) = Ai0,.; Revt,i0(2) = A2i0,.; Revt,i0(τ) =
Aτi0,. where Ai0,. is the i-th column of A. Therefore, the response of yi,t+τ to a shock in ei0t
can be read off the τ-step ahead forecast revisions.

Example 4.16 At times cumulative multipliers are required. For example, in examining
the effects of fiscal disturbances on output one may want to measure the cumulative dis-
placement produced by a shock up to horizon τ . Alternatively, in examining the relationship
between money growth and inflation one may want to know whether an increase in the for-
mer translates in an increase in the latter in the long run of the same amount. In the first
case one computes

Pτ
j=0Dj, in the second limj→∞

Pτ
j=0Dj.

4.4.2 Variance decomposition

To derive the variance decomposition we use (4.7). The τ -step ahead forecast error is
yt+τ − yt(τ) =

Pτ−1
j=0 D̃j ẽt+τ−j where D0 = I and ẽt = P̃−1et = P̃−11 e1t + . . .+ P̃−1m emt are

orthogonal disturbances. Hence Σẽ = P̃−11 P̃−101 Σe + . . . + P̃−1m P̃−10m Σe. The MSE of the
forecast is

MSE(τ) = E[yt+τ − yt(τ)]2 = Σe +D1ΣeD01 + . . .+Dτ−1ΣeD0τ−1
=

mX
i=1

Σẽ(P̃−1i P̃−10i + D̃1P̃−1i P̃−10i D̃01 + . . .+ D̃τ−1P̃−1i P̃−10i D̃0τ−1) (4.26)

Hence the percentage of the variance in yi,t+τ due to ei0,t

VDi,i0(τ) =
Σẽ(P̃−1i0 P̃−1

0
i0 + D̃1iP̃−1i0 P̃−1

0
i0 D̃01i + . . .+ D̃τ−1,iP̃−1i0 P̃−1

0
i0 D̃0τ−1,i)

MSE(τ)
(4.27)

A compact way to rewrite (4.27)is V D(τ) = Σ−1Dτ
Pτ−1
j=0 Dj

J
Dj whereΣDτ = diag[ΣDτ,11 , . . . ,

ΣDτ,mm ] =
Pτ−1
j=0 DjD

0
j and where Dj

J
Dj is a matrix with D

i,i0
j ∗Di,i0j in the i, i0 position

(
J
is called Hadamman product (see e.g. Mittnick and Zadrozky(1993)).

4.4.3 Historical decomposition

Let ei,t(τ) = yi,t+τ − yi,t(τ) be the τ -steps ahead forecast error in the i-th variable of the
VAR. The historical decomposition of ei,t(τ) can be calculated using

ei,t(τ) =
mX
i0=1

D̃i
0
(`)ẽi0t+τ (4.28)
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Example 4.17 Consider a bivariate VAR(1). At horizon τ we have yt+τ = Ayt+τ−1 +
et+τ = . . . = Aτyt +

Pτ−1
j=0 A

jet+τ−j so that et(τ) =
Pτ−1
j=0 A

jet+τ−j = A(`)et+τ . Hence,
deviations from the baseline forecasts of the first variable from t to t+τ due to, say, structural
supply shocks are Ã11(`)ẽ1,t+τ and to, say, structural demand shocks are Ã12(`)ẽ2,t+τ .

From (4.27) and (4.28) it is immediate to notice that the ingredients needed to compute
impulse responses, variance and historical decompositions are the same. Therefore, these
statistics package the same information in a different way.

Exercise 4.29 Using the estimate obtained in exercise 4.19, compute the variance and the
historical decomposition for the two variables at horizons 1,2 and 3.

4.4.4 Distribution of Impulse Responses

To assess the statistical (and the economic) significance of the effect of certain shocks, we
need standard errors. As we have shown, impulse responses, variance and historical decom-
positions are complicated functions of the estimated VAR coefficients and of the covariance
matrix of the shocks. Therefore, even when the distribution of the latters is known, it is not
easy to find their distribution. In this subsection we describe three approaches to compute
standard errors: one based on asymptotic theory and two based on resampling methods.
All procedures are easy to implement when orthogonal shocks are generated by Choleski
factorizations, i.e. if P̃ is lower triangular and need minor modification when the system
is not contemporaneously recursive (but just-identified). In the other cases, resampling
methods have a slight computational hedge.

Since impulse responses, variance and historical decompositions all use the same infor-
mation we only discuss how to compute standard errors for impulse responses. The reader
will be asked to derive the corresponding expressions for the other two statistics.

•The δ-method

The method pioneered by (Lutkepohl (1991)) and Mittnick and Zadrozky (1993) uses

asymptotic approximations and works as follows. Suppose that α
D→ N(0,Σα). Then any dif-

ferentiable function f(α) will have asymptotically the distribution N(0, ∂f∂αΣα
∂f
∂α

0
) provided

that ∂f
∂α 6= 0. Since impulse responses are differentiable functions of the VAR parameters

and of the covariance matrix, their asymptotic distribution can be easily obtained.

Let S = [I, 0, . . . , 0] be a m × mq selection matrix so that yt = SYt and Et = S0et,
consider the revision of the forecast at step τ and let

revt(τ) = SRevt(τ) = S[Yt(τ)−Yt−1(τ)] = S[AτS0Et] ≡ ψτet (4.29)

We want the asymptotic distribution of the m×m matrix ψτ . Taking total differentials

dψτ = S[IdAAτ−1 +AdAAτ−2 + . . .+Aτ−1dAI]S0 (4.30)
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Since var(Yt+τ ) = Aτvar(Et+k)(Aτ )0, using the fact that dZ =
·
dZ1
0

¸
= S0dZ1 and result

4.1, we have that vec(SAj(dA)Aτ−(j+1)S0) = vec(SAj(S0dA1)Aτ−(j+1)S0) = [S(Aτ−(j+1))0 ⊗
SAjS0]vec(dA1) = [S(Aτ−(j+1))0 ⊗ ψj ]vec(dA1). Hence

vec(dψτ )

vec(dA1)
=
τ−1X
j=0

[S(A0)τ−(j+1) ⊗ ψj ] ≡ ∂vec(ψτ )

∂vec(A1)
(4.31)

Given (4.31), it is immediate to find the distribution of ψτ .

Exercise 4.30 Derive the asymptotic distribution of ψτ .

The above formulas, which use the companion form, may be computationally cumber-
some when m or q are large. In these cases, the following recursive formula may be useful

∂Dτ
∂α

=

max[τ,q]X
j=1

[(D0τ−j ⊗ Im)
∂Aj
∂α

+ (Im ⊗Aj)∂Dτ−j
∂α

)] (4.32)

Exercise 4.31 Derive the distribution of VD(τ) for orthogonal shocks.

Standard error bands computed with the δ-method have three problems. First, they tend
to have poor properties in experimental designs featuring small scale VARs and samples of
100-120 observations. Second, the asymptotic coverage is also poor when near unit roots or
near singularities are present. Third, since estimated VAR coefficients have large standard
errors, impulse responses have large standard errors as well resulting, in many cases, in
insignificant responses at all horizons. For these reasons, methods which employ the small
sample properties of the VAR coefficients might be preferred.

Exercise 4.32 Derive the asymptotic distribution of the τ-th term of a historical decom-
position.

• Bootstrap methods

Bootstrap standard errors, first employed in VARs by Runkle (1987), are easy to com-
pute. Using equation (4.7) one proceeds as follows:

Algorithm 4.2

1) Obtain A(`)OLS and et,OLS = yt −A(`)OLSyt−1.
2) Obtain elt,OLS via bootstrap and construct y

l
t = A(`)OLSy

l
t−1 + elt,OLS , l = 1, 2, . . . , L.

3) Estimate A(`)lOLS using data constructed in 2). Compute D
l
j, (D̃

l
j), j = 1, . . . , τ.
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4) Report percentiles of the distribution of Dj, (D̃j) (i.e. 16-84% or 2.5-97.5%), or the
simulated mean and the standard deviation of Dj , (D̃j), j = 1, . . . , τ .

Algorithm 4.2 is easily modified to produce confidence bands for other statistics.

Example 4.18 To compute standard error bands for the variance decomposition one would
insert the calculation of VDi,i0(τ)

l as suggested in (4.27) after step 3) of algorithm 4.2.
VDi,i0(τ)

l is the percentage of the variance of yi,t explained by ei0,t at horizon τ in replication
l. Then in 4) order VDi,i0(τ)

l and report percentiles or the first two moments.

Few remarks are in order. First, bootstrapping is appropriate when et is a white noise
with constant variance. Therefore, the approach yields poor standard error band estimates
when the lag length of the VAR is misspecified or when heteroschedasticy is present.

Since conditional heteroschedasticity is less likely to emerge with low frequency data,
one possible solution is to time aggregate the data before a VAR is run and standard errors
are computed.

Second, estimates of the VAR coefficients are typically biased downward in small sam-
ples. For example, in a VAR(1) with the largest root around 0.95, a downward bias of
about 30 percent is to be expected even when T = 80− 100. Biasedness of A(`) is a prob-
lem because in step 2) we are generating biased yt series. Hence, the resulting distribution
is likely to be centered around an incorrect estimate of the true VAR coefficients.
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Figure 4.2: Bootstrap responses

Third, the bootstrap distribution of Dj(D̃j) is not scale invariant. In particular, units
matter. This implies that standard error bands may not include, point estimates of the
impulse responses. Such a problem emerges e.g. in figure 4.2, where we report one standard
error bands for log output (right panel) or log linearly detrended level of output (left panel)
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in response to an orthogonal price shock in a bivariate VAR(4) system together with the
point estimate of the responses. Clearly, the size and the shape of the band depend on
the units. Furthermore, in the right panel there are horizons where the point estimate is
outside the computed standard error band.

Finally, while it is common to report the mean and construct confidence bands using
numerical standard deviations (across replications), this approach is unsatisfactory since it
assumes symmetric distributions. Since simulated distributions of impulse responses tend to
be highly skewed when T < 100, we recommend the use of simulated distribution percentiles
in constructing confidence intervals (i.e extract the relevant band directly from the ordered
replications at each horizon).

To solve the biasedness and the lack of scale invariance, Kilian (1998) has suggested a
bootstrap-after-the-bootstrap procedure. The approach can be summarized as follows:

Algorithm 4.3

1) Given A(`)OLS, obtain e
l
t,OLS and construct y

l
t = A(`)OLSy

l
t−1 + elt,OLS , l = 1, 2, . . . , L.

2) Estimate A(`)lOLS for each l. If the bias is approximately constant in a neighbor of
A(`)OLS, Bias(`) = E[A(`)OLS −A(`)] ≈ E[A(`)lOLS −A(`)OLS ].

3) Calculate the largest root of the system. If it is greater or equal than one, set Ã(`) =
A(`)OLS - here the bias is irrelevant since estimates are superconsistent. Otherwise
set Ã(`) = A(`)OLS −Bias(`)OLS, where Bias(`)OLS = 1

L

PL
l=1[A(`)

l
OLS −A(`)OLS ].

4) Repeat 1)-3) of algorithm 4.2, L1 times using Ã(`) in place of A(`)OLS.

Kilian shows that the procedure of eliminating the bias, assuming that it is constant
in a neighborhood of A(`)OLS , has an asymptotic justification and that the bias correction
becomes negligible asymptotically. It also shows that such an approach has a better small
sample coverage properties than a simple bootstrap. However, when the bias is not constant
in the neighborhood of A(`)OLS , the properties of the bands produced from algorithm 4.3
may still be poor.

• Monte Carlo methods
Monte Carlo methods will be described in details in the last three chapters of this book.

Here we describe a simple approach which allows the computation of standard error bands
using the simultaneous equation representation of an unrestricted VAR(q).

As mentioned, the likelihood function of a VAR(q), L(α,Σe|yt), can be decomposed
into a Normal portion for α, conditional on Σe, and a Wishart portion for Σ−1e . Assuming
that no prior information for α,Σe is available, i.e. g(α,Σe) ∝ |Σe|

−(m+1)
2 , the posterior

distribution (which is proportional to the product of the likelihood and the prior) will have
a form which is identical to the likelihood. Furthermore, the posterior for (α,Σe) will
be proportional to the product of the posterior of (α|Σe, yt) and of (Σe|yt). As detailed in
chapter 10, the posterior for Σ−1e has a Wishart form with T −mq degrees of freedom .
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The posterior of (α|Σe, yt) is normal centered at αOLS with variance equals to var(αOLS).
Hence, standard error bands for impulse responses can be constructed as follows:

Algorithm 4.4

1) Generate T −mq iid draws for e−1t from a N(0, (Y−XAOLS)
0(Y−XAOLS)). Compute

Σle = (
1

T−mq
PT−mq
t=1 (e−1t − 1

T−mq
PT−mq
t=1 e−1t )2)−1.

2) Draw αl = αOLS + ²
l
t, where ²

l
t ∼ N(0,Σle). Compute Dlj(D̃lj), j = 1, . . . τ .

3) Repeat 1)-2) L times and report percentiles.

Three features of algorithm 4.4 are important. First, the posterior distribution is exact
and conditional on the OLS estimator - which summarizes the information contained in
the data. Therefore, biasedness of A(`)OLS is not an issue. Second, given the exact small
sample nature of the posterior distribution, standard error bands are likely to be skewed
and, possibly, leptokurtic. Therefore, bands extracted from percentiles are preferable to 1
or 2 standard error bands around mean. Third, algorithm 4.4 is appropriate only for just
identified systems (both of semi-structural or of structural types). When the VAR system
is overidentified, the technique described in section 3 of chapter 10 should be used.

Exercise 4.33 Show how to use algorithm 4.4 to compute confidence bands for variance
and historical decompositions.

All three approaches we have described produce standard error bands estimates which
are correlated. This is because responses at each step are correlated (see e.g. the recursive
computation of impulse responses). Hence, plots connecting the points at each horizon are
likely to misrepresent the true uncertainty. Sims and Zha (1999) propose a transformation
which eliminates this correlation. Their approach relies on the following result.

Result 4.2 If D̃1, . . . , D̃τ are normally distributed with covariance matrix ΣD̃, the best
coordinate system is given by the projection on the principal components of ΣD̃.

Intuitively, we need to orthogonalize the covariance matrix of the impulse responses to
break down the correlation of its elements. To implement such an orthogonalization, for
structural coefficients, steps 1) to 3) of algorithm 4.4 remain unchanged, but we need to
add the following two steps

4) Let the τ × τ covariance matrix of D̃ be decomposed as PD̃VD̃P 0D̃ = ΣD̃, where VD̃ =
diag{vj} PD̃ = col{pp., j}, j = 1, . . . , τ , PD̃P 0D̃ = I.

5) For each (i, i0) report D̃∗(i, i0)±Pτ
j=1 %jpp.,j, where D̃

∗(i, i0) is the mean of D̃(i, i0) and
%j = ppj,.D̃(i, i

0).



128

In practice, it is often sufficient to use the largest eigenvalue of ΣD̃ to have a good idea of

the existing uncertainty. Then standard error bands are D̃∗(i, i0)± pp.,j√vsup (symmetric)
and [(D̃∗(i, i0)−%sup,.16; D̃∗(i, i0)+%sup,.84] (asymmetric), where %sup,.r is the r-th percentile
of %j computed using the largest eigenvalue of ΣD̃ and vsup = supj vj

Exercise 4.34 Show how to apply the Sims and Zha approach to orthogonalize standard
error bands computed with the δ-method.

Given that the asymptotic approach has poor small sample properties, which of the
two resampling methods should one prefer? A-priori the choice is difficult: the bootstrap
method does not require distributional assumptions but it requires homoschedasticity. Also,
unless Kilian method is used, bands may have little meaning. The MC approach works even
with heteroschedasticity but normality of the errors or a large sample are required. The
question is therefore empirical. Sims and Zha (1999) show that, in specific experiments, the
MC approach outperforms the bootstrap approach but not uniformly so.

4.4.5 Generalized Impulse Responses

This subsection discusses the computation of impulse responses for nonlinear structures.
Since VARs with time varying coefficients fit well into this class, it is worthwhile to study
how impulse responses for these models can be constructed. The discussion here is basic;
more details are in Gallant, Tauchen and Rossi (1993) and Koop, Pesaran and Potter (1995).

In linear models impulse responses do not depend on the sign or the size of shocks nor
on their history. This simplifies the computations but prevents researchers from studying
interesting economic questions such as: do shocks which occur in a recession produce dif-
ferent dynamics than those in an expansion? Are large shocks different than small ones? In
nonlinear models, responses do depend on the sign, the size and the history of the shocks
up to the point where they are computed.

Let Ft−1 be the history of yt−1 up to t − 1. In general, yt+τ depends on Ft−1, the
parameters α of the model and the innovations et+j , j = 0, . . . , τ . Let Rev(τ,Ft−1,α, e∗) =
E(yt+τ |α, Ft−1, et = e∗, et+j = 0, j ≥ 1)−E(yt+τ |α,Ft−1, et+j = 0, j ≥ 0).
Example 4.19 Consider yt = Ayt−1+et, let τ = 2 and assume |A| < 1. Then E(yt+2|A,Ft−1,
et+j = 0, j ≥ 0) = A3yt−1 and E(yt+2|A,Ft−1, et = e∗, et+j = 0, j ≥ 1) = A3yt−1 +A2e∗
and Revy(τ,Ft−1, A, e∗) = A2e∗ which is independent of history and of the size of the shock
(hence set e∗ = 1 or e∗ = σe) and symmetric in the sign of e∗ (hence set e∗ > 0).

Exercise 4.35 Consider the model ∆yt = A∆yt−1 + et; |A| < 1. Calculate the impulse
response function at a generic τ . Show it is independent of the history and that the size of
e∗ scales the whole impulse response function. Consider an ARIMA(d1, 1, d2): D1(`)∆yt =
D2(`)et. Show that Rev(τ,Ft−1,D2(`),D1(`), e∗) is history and size independent.

Example 4.20 Consider the model∆yt = A1∆yt−1+A2∆yt−1I[∆yt−1≥0]+et, where I[∆yt−1≥0]
= 1 if ∆yt−1 ≥ 0 and zero otherwise. Let 0 < A = A1 + A2 < 1. Then, for et = e∗



Methods for Applied Macro Research 4: VAR Models 129

Rev(τ,∆yt−1, A, e∗) = 1−Aτ+1

1−A e∗ if ∆yt−1 ≥ 0 and Rev(τ,∆yt−1, A, e∗) =
1−Aτ+1

1
1−A1

e∗ if
∆yt−1 < 0. Here Rev(τ,∆yt−1, A, e∗) depends on the history of ∆yt−1.

Exercise 4.36 Consider the logistic map ỹt = aỹt−1(1− ỹt−1) + vt where 0 ≤ a ≤ 4. This
model can be transformed into a nonlinear AR(1) model: yt = A1yt−1 − A2y2t−1 + et for
A2 6= 0, −2 ≤ A1 ≤ 2, A1 = 2−a, et = 2−A1

A2
vt, yt =

A1−1
A2

+ 2−A1
A2

ỹt. Simulate the impulse
response function. Does the sign and the size of e∗ matter?

In impulse responses computed from linear models et+j = 0, ∀j ≥ 1. This is inappropri-
ate in nonlinear models since it may violate bounds for et. In exercise 4.36 the bounds occur
because the logistic map is unstable if yt−1 passes a threshold. These bounds depend on the
realizations of vt−τ and therefore vary over time. Also, when parameters are estimated, we
either need to condition on a particular α (e.g. αOLS) or integrate α out to compute forecast
revisions. Generalized impulse (GI) responses are designed to meet all these requirements:
in fact we condition on the size, the sign, the history of the shocks and, if required, on a
particular estimate of α and integrate out all future shocks.

Definition 4.5 Generalized impulse responses conditional on a shock et, a history Ft−1
and a vector α are GIy(τ,Ft−1,α, et) = E(yt+τ |α, et, Ft−1)−E(yt+τ |α, Ft−1) .

Responses produced by definition 4.5 have three important properties. FirstE(GIy) = 0.
Second, E(GIy|Ft−1) = 0. Third, E(GIy|et) = E(yt+τ |et)−E(yt+τ ).

Example 4.21 Three interesting cases where definition 4.5 is useful are the following:

• (Impulse responses in recession): GI conditional only on a history Ft−1 in a region:
GIy(τ,Ft−1 ∈ F1,α, et) = E(yt+τ |α, Ft−1 ∈ F1, et)−E(yt+τ |α, Ft−1 ∈ F1).

• (Impulse responses on average over histories): We have two options. GI conditional
only on α: GIy(τ,α, et) = E(yt+τ |α, et) − E(yt+τ |α) and GI unconditional on α :
GIy(τ, et) = E(yt+τ |et)−E(yt+τ ).

• (Impulse responses if oil prices go above 40 dollars a barrel) GI conditional on a shock
in a region: GIy(τ,Ft−1,α, et) = E(yt+τ |Ft−1,α, et ∈ E1)−E(yt+τ |Ft−1,α)

Definition 4.5 conditions on a particular value of α. In some situations we may want to
treat parameters as random variables. This is important in applications where symmetric
shocks may have asymmetric impact on yt depending on the value of α. Alternatively, we
may want to average α out of GI. As an alternative to definition 4.5 one could use:

Definition 4.6 Generalized impulse responses, conditional on a shock et and a history
Ft−1, are GIy(τ,Ft−1, et) = E(yt+τ |Ft−1, et)−E(yt+τ |Ft−1).

Exercise 4.37 Extend definitions 4.5-4.6 to condition on the size and the sign of et.
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In practice, GI are computed numerically using Monte Carlo methods. We show how
to do this conditional a on history and a set of parameters in the next algorithm.

Algorithm 4.5

1) Fix yt−1 = ŷt−1, . . . , yt−τ = ŷt−τ ; α = α̂.

2) Draw elt+j, j = 0, 1, . . . , from N(0,Σe), l = 1, . . . L and compute GI l = (ylt+τ |ŷt−1, . . . ŷt−τ ,
α̂, et, e

l
t+j , j > 1)− (ylt+τ |ŷt−1, . . . ŷt−τ , α̂, et = 0, elt+j , j > 1).

3) Compute GI = 1
L

PL
l=1GI

l, E(GI l −GI)2 and/or the percentiles of the distribution.

Note that in algorithm 4.5 the history (yt−1, . . . , yt−τ ) could be a recession or expansion
and α̂ an OLS or a posterior estimator. In practice, when the model is multivariate we
need to orthogonalize the shocks so as to be able to measure the effect of a shock. When
et is normal, its response to a shock in ei0t is E(et|ei0t = e∗i0) = E(etei0t)σ

−2
i0 e

∗
i0 where

σ2i = E(ei0t)
2 and this can be inserted in step 2) of algorithm 4.5 to compute GI. For

example, for a linear VAR GI(τ,Ft−1, eit) = (AτE(et,ei0t)σi
) e

∗
σi
and the generalized impulse of

variable i equals SiGI(τ,Ft−1, eit) where Si is a selection vector with one in the i-th position
and zero everywhere else. Here the term e∗

σi
is a scale factor and the first term measures

the effect of a one standard error shock in the i0 − th variable. Note also, that (AτE(et,ei0t)σi
)

corresponds to the effect obtained when the variables are assumed to have a Wold causal
chain. Hence meaningful interpretations are possible only if the orthogonalization is derived
from relevant economic restrictions.

Exercise 4.38 Describe a Monte Carlo method to compute GI without conditioning on a
particular history or a particular α.

Example 4.22 Consider the model∆yt = A1∆yt−1+A2∆yt−1I[∆yt−1≥0]+et, where I[∆yt−1≥0]
is an indicator function. Then:
• GI responses allowing for randomness in et can be computed by fixing yt−1, A1, A2 and
drawing elt+j , j ≥ 0, l = 1, . . . L.
• GI responses allowing for randomness in history can be computed fixing et+j j ≥ 0, A1, A2
and drawing ylt−1.
• GI responses allowing for randomness in the parameters can be computed fixing yt−1, et+j , j ≥
0 and drawing Al1, A

l
2 from some distribution (e.g. the asymptotic one).

• GI responses allowing for randomness in the size of et can be computed fixing yt−1, A1, A2,
et+j j > 1 and keeping those e

l
t that satisfy e

l
t ≥ e∗ or elt < e∗. If the process is multivariate

apply the above to e.g. e1t, after averaging over draws of (e2t, . . . , emt).

Exercise 4.39 Consider a bivariate model with inflation π and unemployment UN, yt =
A1yt−1+A2yt−1I[π≥0]+ et where I[π>0] is an indicator function. Calculate GI at steps 1 to
3 for an orthogonal shock in π when π ≥ 0 and when π < 0. Does the size of et matter?
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Exercise 4.40 Consider a switching bivariate AR(1) model with money and output:

∆yt =

½
α01 + α11∆yt−1 + e1t if ∆yt−1 ≤ ∆ȳ, e1t ∼ N(0,σ21)
α02 + α12∆yt−1 + e2t if ∆yt−1 > ∆ȳ, e2t ∼ N(0,σ22)

Fix the size of the shock and the parameters and compute GI as a function of history. Fix
the size of shocks and the history and compute GI as function of the parameters.

We defer further discussion on the computation of impulse responses for a particular
type of non-linear model to chapter 10.

4.5 Identification

So far in this chapter, economic theory has played no role. Projections methods are used
to derive the Wold theorem; statistical and numerical analysis are used to estimate the
parameters and the distributions of interesting functions of the parameters. Since VARs
are reduced form models it is impossible to structurally interpret the dynamics induced by
their disturbances unless economic theory comes into play. As seen in chapter 2, Markovian
DSGE models when approximated linearly or log linearly around the steady state typically
deliver VAR(1) solutions. The reduced form parameters are complicated functions of the
structural ones and the resulting set of extensive cross equations restrictions could be used to
disentangle the latters if one is willing to take the model seriously as the process generating
the data. When doubts about the quality of the model exists, one can still conduct inference
as long as a subset of the model restrictions are credible or uncontroversial. Typical restric-
tions employed in the literature include constraints on the short run or long run impact of
certain shocks on variables or informational delays (e.g. output is not contemporaneously
observed by Central Banks when deciding interest rates). As we will argue later on, these
restrictions are rarely produced by DSGE models. Restrictions involving lag responses or
the dynamics are generally ignored being perceived as non robust or controversial.

To conduct structural analyses, one therefore starts from an unrestricted VAR(q) where
all variables appear with the same lags in each equation, estimates the parameters of the
VAR by OLS, imposes a minimal set of ”structural” restrictions, possibly consistent with a
variety of behavioral theories, and constructs impulse responses, historical decomposition,
etc. to structural shocks. In this sense, VARs are at the antipodes of maximum likelihood
or generalized method of moments approaches: the majority of the theoretical restrictions
are disregarded; there is no interest in estimating preference and technology parameters;
and only a structural interpretation of the shocks is sought.

We first examine identification in stationary and non-stationary VAR using zero-type
(or constant-type) restrictions. Afterward, we discuss identification via sign restrictions.

4.5.1 Stationary VARs

Let the reduced form VAR be

yt = A(`)yt−1 + et et ∼ iid (0,Σe) (4.33)
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We assume that associated with (4.33) there is a structural model of the form

yt = A(`)yt−1 +A0²t ²t ∼ iid (0,Σ² = diag{σ2²i}) (4.34)

Equation (4.34) generically defines a class of models but it is easy to show that it is non-
empty. For example, many of the log-linearized DSGE models of chapter 2, produce so-
lutions like (4.34) with A(`) = A(θ) and A0 = A0(θ) where θ are structural parameters.
Matching contemporaneous coefficients in (4.33) and (4.34) implies et = A0²t or

A0Σ²A00 = Σe (4.35)

To compute responses to structural shocks we can proceed in two steps. First, we can
estimate A(`) and Σe from (4.33) using the techniques described in section 3. Second, from
(4.35) and given identification restrictions, we estimate Σ², free parameters of A0 and the
structural dynamics A(`). This two-step approach resembles the indirect least square (ILS)
technique used in a system of (static) structural equations (see Hamilton (1994, p. 244)).
The main difference lies in the fact that here restrictions are imposed on the covariance
matrix of reduced form residuals and not on the lags of the VAR or on the exogenous
variables. This is convenient: had we imposed restrictions on the lags of the VAR, joint
estimation of A(`), Σe, Σ² and of free parameters of A0 would be required.

As in simultaneous equation systems there are necessary and sufficient conditions that
need to be satisfied for identification. An order condition can be calculated as follows. On
the left hand side of (4.35) there are m2 free parameters, while given the symmetry of Σe,
the right hand side has only (m(m + 1)/2) free parameters. Hence, to go from reduced
form to structural shocks we need, at least, m(m−1)/2 restrictions (with more restrictions
structural shocks are overidentified).

Example 4.23 Consider a trivariate model with hours, productivity, and interest rates.
Suppose that A0 is lower triangular, that is, suppose that shocks to hours enter contempo-
raneously in the productivity and interest rate equations and that productivity shocks enter
only contemporaneously in the interest rate equation. This obtains, e.g. if interest rate
shocks take time to produce effects and if hours are predetermined with respect to productiv-
ity. If structural shocks are independent, A0 has m(m−1)/2 = 3 zeros restrictions. Hence,
the order condition is satisfied.

Example 4.24 Consider VAR with includes output, prices, nominal interest rates and
money, yt = [GDPt, pt, it,Mt]. Suppose that a class of models suggests that output contem-
poraneously reacts only to its own shocks; that prices respond contemporaneously to output
and money shocks; that interest rates respond contemporaneously only to money shocks,

while money contemporaneously responds to all shocks. Then A0 =


1 0 0 0
a012 1 0 a022
0 0 1 a031
a041 a042 a043 1

.
Since there are six (zero) restrictions, structural shocks are identifiable.
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Exercise 4.41 Suppose we have extraneous information which allows us to pin down some
of the parameters of A0. For example, suppose in a trivariate system with output, hours
and taxes, we can obtain estimates of the elasticity of hours with respect to taxes. How
many restrictions do you need to identify the shocks? Does it make a difference if zero or
constant restriction is used?

Exercise 4.42 Specify and estimate a bivariate VAR using Euro area GDP and M3 growth.
Using the restriction that output growth is not contemporaneously affected by money growth
shocks, trace out impulse responses and evaluate the claim that money has no medium-
long run effect on output. Repeat the exercise assuming that the contemporaneous effect
of money growth on output growth is in the interval [-0.5, 1,5] (do this in increments of
0.1 each). What can you say about the medium-long run effect of money growth on output
growth in general?

There is one additional (rank) condition one should typically check: i.e. rank(Σe) =
rank(A0Σ²A0) (see Hamilton (1994) for a formal derivation). Intuitively, this restriction
rules out that any column of A0 can be expressed as linear combination of the others. While
the rank condition is typically important in large scale SES, it is almost automatically
satisfied in small scale VAR identified with economic theory restrictions. When other types
of restrictions are employed, the condition should be always checked.

Rank and order conditions are only valid for ”local identification”. That is, the system
may not be identified even though m(m − 1)/2 restrictions are imposed. This requires
experimenting with different initial conditions when estimating the parameters of A0.

Example 4.25 Suppose Σ² = I and that A10 =
·
1 4
0 3

¸
. It is immediate to verify that the

likelihood obtained with these two matrices and any positive definite Σe is equivalent to the

one obtained with the same Σ² and Σe and A20 =
·
5 0.8
0 0.6

¸
. Clearly the two decompositions

have different economic interpretations. Depending on the initial conditions, the maximum
can be reached at A20 or A10.

To estimate the free parameters in (4.35) one typically has two options. The first is to
write down the likelihood function of (4.35) (conditional on Σe), that is

lnL = 2 ln |A0|+ ln |Σ²|+ trace(Σ−1² A−10 ΣeA−1
0

0 ) (4.36)

Maximizing (4.36) with respect to Σ² and concentrating it out we obtain 2 ln |A0|+
Pm
i=1

ln(A−10 ΣeA−100 )ii. An estimate of the parameters can be found maximizing this expression
with respect to the free entries of A0. Since the concentrated likelihood is nonstandard,
maximization is typically difficult. Therefore, it is advisable to get some estimates with a
simple method (e.g. a simplex algorithm) and then use these as initial conditions in other
algorithms (see chapter 6) to find a global maximum.

A likelihood approach is general and works with both just-identified and overidentified
systems. For a just identified system one could also use instrumental variables, as suggested,
e.g. by Shapiro and Watson (1988). We describe in a example how this can be done.
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Example 4.26 Consider a bivariate VAR model with inflation and unemployment. Sup-
pose that theory tells us that the structural system (4.34) is·

πt
UNt

¸
=

· A11(`) A12(`)
A21(`) A22(`)

¸·
πt−1
UNt−1

¸
+

·
1 0
α01 1

¸·
²1t
²2t

¸
Since ²1t = e1t is predetermined with respect to ²2t it can used as an instrument to estimate
α01. Therefore choosing as a vector of instruments zt = [e1t, e1t−1, . . . , e2t−1, . . .] joint
estimates of the α and A(`) can be obtained, applying the IV techniques described in chapter
5.

4.5.2 Nonstationary VARs

The identification process in non-stationary VAR models is similar but additional identi-
fication restrictions are available. Furthermore, the presence of cointegration constraints
may change the nature of the order condition.

Let the MA representations of the VAR and of the structure be

∆yt = D(`)et = D(1)et +D
∗(`)∆et (4.37)

∆yt = D(`)A0²t = D(`)(1)A0²t +D∗(`)A0∆²t (4.38)

where D∗(`) ≡ D(`)−D(1)
1−` , D∗(`) ≡ D(`)−D(1)

1−` and ∆ = (1− `).
In (4.37)-(4.38) we have rewritten the system in two ways: the first is a standard MA; the

second exploits the multivariate BN decomposition (see chapter 3). Matching coefficients
we have D(`)A0²t = D(`)et. Separating permanent and transitory components and using
in the latter case only contemporaneous restrictions we have

D(1)A0²t = D(1)et (4.39)

A0∆²t = ∆et (4.40)

When yt is stationary, D(1) = D(1) = 0, (4.39) is vacuous and only (4.40) is available.
However, if yt is integrated the restrictions linking the permanent components of the reduced
and of the structural form could also be used for identification. (4.39) is the basis, e.g., for
the Blanchard and Quah’s decomposition discussed in chapter 3. To obtain estimates of
structural parameters we need the same order and rank restrictions. However, the m(m−
1)/2 constraints could be placed either on (4.39) or (4.40) or both. In this latter case
iterative approaches are needed to estimate the free parameters of A0 and the structural
shocks ²t.

Example 4.27 In a bivariate VAR system imposing (4.39) is simple since only one restric-
tion is needed. Suppose that D(1)12 = 0 (i.e. ²2t has no long run effect on y1t). If Σ² = I
the three elements of D(1)A0Σ²A00D(1)0 can be obtained from the Choleski factorization of
D(1)ΣeD(1)

0.
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Exercise 4.43 Consider the model of example 4.24 and assume that all variables are in-
tegrated. Suppose we impose the same 6 restrictions via the long run multipliers D(1)A0.
Describe how to undertake maximum likelihood estimation of the free parameters.

Exercise 4.44 (Gali) Consider a structural model of the form

yt = α0 + ²
S
t − α1(it −Et∆pt+1) + ²ISt (4.41)

Mt − pt = α2yt − α3it + ²MDt (4.42)

∆Mt = ²MSt (4.43)

∆pt = ∆pt−1 + α4(yt − ²St ) (4.44)

where ²St is a supply shock; ²
IS
t is an IS shock; ²MSt is a money supply shock and ²MDt is

a money demand shock, GDPt is output, Pt prices, it the nominal interest rate and Mt

money. Identify these shocks from a VAR with (∆GDPt, ∆it, it−∆pt, ∆Mt−∆pt) using
Euro area data and the following restrictions: (i) only supply shocks have long run effects
on output, (ii) money demand and money supply shocks have no contemporaneous effects
on ∆GDP , (iii) money demand shocks have no contemporaneous effect on the real interest
rate. Trace out the effects of a money supply shock on interest rates and output.

When some of the variables of the system are cointegrated, the number of permanent
structural shocks is lower than m. Therefore, if long run restrictions are used, one only
needs (m−m1)(m−m1−1)/2 constraints to identify all m shocks where m1 is the number
of common trends (rank of D(1) =m−m1).

Example 4.28 As shown in exercise 3.4 of chapter 3, a RBC model driven by integrated
technology shocks implies that all variables are integrated but Ct

GDPt
and Invt

GDPt
are stationary.

Consider a trivariate VAR with ∆gdpt, ct−gdpt, invt−gdpt where lower case letters indicate
logarithms of the variables. Since the system has two cointegrating vectors, there is one
permanent shocks and two transitory ones and (1, 1, 1)0²t = D(1)et identifies the permanent
shock. If all structural shocks are orthogonal we need one extra restriction to identify the
two transitory disturbances - for example, we could assume a Choleski structure.

Exercise 4.45 (Shapiro and Watson) Consider a bivariate system ∆yt = D(`)et where
et ∼ (0,Σe) and let the structural model be ∆yt = D(`)²t where ²t ∼ (0, I) and D(1) is
lower triangular. Show that D(1) = D(1)Σ0.5e is lower triangular. Show that to estimate
D(1) and D0 one could normalize the system ∆y∗t = Σ−0.5e ∆yt and run a regression of
∆y∗1t on q lags of ∆y∗1t and the current and q − 1 lags of ∆y∗2t and a regression of ∆y∗2t
on q lags of ∆y∗1t and ∆y∗2t, instrumenting current values with ∆y∗t−j , j = 1, 2, . . ..

4.5.3 Alternative identification schemes

The identification of structural shocks is, in general, a highly controversial enterprise because
researchers imposing different identifying assumptions may reach different conclusions about
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interesting economic questions (e.g. the sources of business cycle fluctuations). However,
an embarrassing uniformity has emerged over the last 10 years since identifying restrictions
have become largely conventional and unrelated to the class of DSGE models described in
section 2. Criticisms to the nature of identification process have repeatedly appeared in the
literature. For example, Cooley and LeRoy (1985) criticize Choleski decompositions because
contemporaneous recursive structures are hard to obtain in general equilibrium models.
Faust and Leeper (1997) argue that long run restrictions are unsatisfactory as they may
exclude structures which generate perfectly reasonable short run dynamics but fail to satisfy
long run constraints by infinitesimal amounts. Cooley and Dwyer (1998) indicate that
long restrictions may also incompletely disentangle permanent and transitory disturbances.
Canova and Pina (2004) show that standard DSGE models almost never provide the zero
restrictions employed to identify monetary disturbances in structural VAR systems and that
misspecification of the features of the underlying economy can be substantial.

Figure 4.3 shows the extent of the problem when a working capital model, similar to
the one presented in chapter 2, with either a partial accommodative (PA) or a Taylor type
(FB) rule for monetary policy is used to generate data and monetary shocks are identified
in the VAR for simulated data either with a Choleski scheme (CEE), with variables in the
order (GDPt, pt, it,

Mt
pt
) or via an overidentified structure (SZ) where it responds only to

Mt
pt
.

The straight line is the response produced by the model, the dotted ones one standard error
bands produced by the VAR. Note that a Choleski system correctly recognizes the policy
input when a Taylor rule is used, while the overidentified model correctly characterizes the
policy rule in the partial accommodative case. Misspecification is pervasive even when one
correctly selects the inputs of the monetary policy rule. For example, a Choleski scheme fails
to capture the persistent response of real balances to interest rate increases and produces
perverse output responses (first box, first column) while a price puzzle is produced (second
row, first and third boxes).

We would like to stress that the patterns presented in figure 4.3 are not obtained be-
cause the model is unrealistic or the parametrization ”crazy”. As shown in Canova and
Pina (2004) a sticky price, sticky wage model, parametrized in a standard way, produces
similar outcomes. The problem is that a large class of DSGE structures do not display the
zero restrictions imposed by the two identification schemes (in particular, that output and
prices have a Wold causal structure and do not respond instantaneously to policy shocks).
Therefore, misspecification results even when the policy rule is correctly identified.

To produce a more solid bridge between DSGE models and VARs, a new set of identifica-
tion approaches have emerged. Although justified with different arguments, the procedures
of Faust (1998), Uhlig (2003) and Canova and De Nicoló (2002) have one feature in common:
they do not use zero-type of restrictions. Instead, they achieve identification restricting the
sign (and/or shape) of structural responses. Restrictions of this type are often used by ap-
plied researchers informally: for example, monetary shocks which do not generate a liquidity
effect (e.g. opposite comovements in interest rate and money) are typically discarded and
the zero restrictions reshuffled in the hope to produce the required outcome. One advantage
of these approaches is to make restrictions of this type explicit.
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Figure 4.3: Impulse responses to monetary shocks, Working capital model
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Sign restrictions are enticing. While (log)-linearized versions of DSGE models seldomly
deliver the m(m− 1)/2 set of zero restrictions needed to recover m structural shocks, they
contain a large number of sign restrictions usable for identification purposes.

Example 4.29 (Technology shocks) All RBC-type models examined in chapter 2 have the
feature that positive technology disturbances increase output, consumption, and investment
either instantaneously or with a short lag, while prices and interest rates decline as the
aggregate supply curve shifts to the right. Therefore, such a class of models suggests that
technology disturbances can be identified via the restriction that in response to positive shocks
real variables increase and prices decrease, either contemporaneously or with a lag.

Example 4.30 (Monetary shocks) Several of the models of chapter 2 have the feature that
policy driven increases in the nominal interest rates reduce real balances instantaneously and
induce a fall in prices. Hence, contemporaneous (and lagged) comovements of real balances,
prices and nominal interest rates can be used to identify monetary disturbances.

The restrictions of examples 4.29 and 4.30 could be imposed on two or more variables,
at one or more horizons. In other words, we can ”weakly” or ”strongly” identify the shocks.
To maintain comparability with other structural VARs, weak forms of identification will
be typically preferred. However, one should be aware that restrictions which are too weak
may be unable to distinguish shocks with somewhat similar features, i.e. labor supply and
technology shocks.

It is relatively complicated to impose sign restrictions directly on the coefficients of the
VAR, as this requires maximum likelihood estimation of the full system under inequal-
ity constraints. However, it is relatively easy to do it ex-post on impulse responses. For
example, as in Canova De Nicolo’(2002), one could estimate A(`) and Σe from the data
using OLS and orthogonalize the reduced form shocks using, e.g. an eigenvalue-eigenvector
decomposition, Σe = PVP 0 = P̃P̃ 0 where P is a matrix of eigenvectors and V is a diag-
onal matrix of eigenvalues. This decomposition does not have any economic content, but
produces uncorrelated shocks without employing zero restrictions. For each of the orthogo-
nalized shocks one can check if the identifying restrictions are satisfied. If there is one such
a shock, the process terminates. If there is more than one shock satisfying the restrictions,
one may want to increase the number of restrictions (either across variables or across leads
and lags) until one candidate remains or take an average. Practical experience suggests
that contemporaneous and/or one lag restrictions suffice to produce a unique set of shocks.

If no shock satisfies the restrictions, the non-uniqueness of the MA representation can
be used to provide alternative structural shocks. In fact, for any H with HH0 = I, Σe =
P̃P̃ 0 = P̃HH0P̃ 0. Hence, one can construct a new decomposition using P̃H and examine if
the shocks produce the required pattern.

The only remaining practical question is how to choose H and how to systematically
explore the space of MA representations, which is infinite dimensional, if this is of interest.
Canova and de Nicoló choose H = H(ω), ω ∈ (0, 2π) and search the space of H by varying
ω on a grid. Here H are matrices which rotate the columns of P by an angle ω.
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Example 4.31 Consider a bivariate system with unemployment and inflation and sup-
pose that a basic eigenvector-eigenvalue decomposition has not produced a shock which
produced contemporaneously negative comovements in inflation and unemployment. Set

H(ω) =
·
cos(ω) −sin(ω)
sin(ω) cos(ω)

¸
. Then we can trace out all possible MA representations for

the bivariate system, varying ω ∈ (0, 2π).

In larger scale systems, rotation matrices are more complex.

Exercise 4.46 Consider a four variable VAR. How many matrices rotating two or pairs
of two columns exist? How would you explore the space of rotations simultaneously flipping
the first and the second column together with the third and the fourth?

When m is of medium size, the matrix H has the following form

Hi,i0(ω) =



1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 cos(ω) . . . − sin(ω) 0
...

...
... 1

...
...

0 0 sin(ω) . . . cos(ω) 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 0 1


0 < ω ≤ 2π where the index (i, i0) indicates that columns i and i0 are rotated by the
angle ω. Let Z(Hi,i0(ω) be the space of ortonormal rotation matrices where, given ω, each
i, i0 element has proability 2

m(m−1) . Then the following search algorithm could be used to
explore the space of identifications.

Algorithm 4.6

1) Draw ωl from (0, 2π). Draw Hi,i0(ωl) from Z(Hi,i0(ωl).
2) Used H(i, i0)(ωl) to compute ²t and A(`). Check whether restrictions are satisfied in

response to ²it, i = 1, . . .m. If they are keep the draw, if they are not, drop the draw.

3) Repeat 1) and 2) unless L draws satisfying the restrictions are found. Report percentile
response bands.

Note that, by continuity, it is typical to find an interval (ω1,ω2) which produces a shock
with the required characteristics. Since within this interval the dynamics produced by
structural shocks are similar, one can average statistics for all the shocks in the interval or
choose, say, the shock corresponding to the median point of the interval or keep all of them,
as we have done in algorithm 4.6. We have already discussed what to do if more than one ²it
satisfies the restrictions for a given ωl and Hi,i0(ωl). At times one may find disjoint intervals
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where one or more shocks satisfy the restrictions. In this case it is a good idea to graphically
inspect the outcome since responses may not be economically meaningful (for example, a
shock may imply an output elasticity of 50). When visual inspection fails, increasing the
number of restrictions is typically sufficient to eliminate ”unreasonable” intervals.

Exercise 4.47 Provide a Monte Carlo algorithm to construct standard error bands for
structural impulse responses identified with sign restrictions which takes into account pa-
rameter uncertainty.

Example 4.32 Figure 4.4 presents the responses of industrial output, prices and M1 in
the US in response to a monetary policy shock. In the right column are the 68% impulse
response bands obtained requiring that a nominal interest rate increase must be accompanied
by a liquidity effect - a contemporaneous decline in M1. In the left column are the 68%
impulse response bands obtained with the Choleski system where the interest rate is assumed
to contemporaneously react to industrial output and prices but not to money.

Clearly, the standard identification has unpleasant outcomes: point estimates of money,
output and prices are all positive after the shock even though the increase is not significant.
With sign restrictions, output and prices significantly decline after a contractionary shock
and they do so for about 5 months. Note that in both systems no measure of commodity
prices is used.

4.6 Problems

While popular among applied researchers, VARs are not free of problems and a number of
common pitfalls should be avoided when interpreting the results.

First, one should be aware of time aggregation problems. As Sargent and Hansen (1991),
Marcet (1991) and others have shown time aggregation may make inference difficult. In
fact, if agents take decisions every τ periods but an econometrician observes data only every
jτ, j > 1, the statistical model used by the econometrician (with data sampled at every
jτ) may have little to do with the one produced by agents’ decisions. For example, the MA
traced out by the econometrician is not necessarily the MA of the model sampled every j
period, but a complex function of all MA coefficients from that point on to infinity.

Example 4.33 Marcet (1991) showed that if agents’ decisions are taken in continuous
time, continuous and discrete time MA representations are related via Dj = [d ¦ v0−j ][v ¦ v0]
where d is the moving average in continuous time, ¦ indicates the convolution operator and
vj = dj− b× (dj |D) is the forecast error in predicting dj using the information contained in
the discrete time MA coefficients, b is a constant and j = 1, 2, . . . , τ . Hence a humped-shaped
monthly response can easily be transformed into a smoothly declining quarterly response (see
figure 4.5).

One important special case obtains when agents’ decisions generate a VAR(1) for the
endogenous variables. In that case, the MA coefficients of, say, a quarterly model are
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the same as the quarterly sampled version of MA coefficients of a monthly model. While
log-linear or quadratic approximate solutions to many DSGE models do deliver VAR(1)
models, one should be aware that models with e.g. habit in consumption or quadratic costs
of adjustment to investments, produce more complicated dynamics and therefore may face
important aggregation problems.

Exercise 4.48 Consider a RBC model perturbed by technology and government expenditure
disturbances. Suppose that gt = Tt where Tt are lump-sum taxes and that the utility function
depends on current and lagged leisure, i.e. U(ct,Nt,Nt−1) = ln ct + (Nt − γNt−1)ϕn .
i) Calculate the linearized decision rules after you have appropriately parametrized the model
at quarterly and annual frequencies. Compare the MA coefficients of the annual model with
the annual sampling of the MA of the quarterly model.
ii) Simulate consumption and output for the two specifications. Sample at annual frequencies
the quarterly data and compare the autocovariance functions. Does aggregation hold?
iii) Set γ = 0 and assume that both capital and its utilization enter in the production function
as in exercise 2.10 of chapter 2. Repeat steps i)- ii) and comment on the results.

Exercise 4.48 suggests that one way to detect possible aggregation problems is to run
VARs at different frequencies and compare their ACF or their MA representations. If dif-
ferences are detected, given the same amount of data, aggregation is likely to be a problem.

A second important problem has to with the dimensionality of the VAR. Small scale
VAR models are typically preferred by applied researchers since parameter estimates are
more precise (and impulse response bands are tighter) and because identification of the
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structural shocks is easier. However, small scale VARs are prone to misspecification. For
example, there may be important omitted variables and shocks may be confounded or
misaggregated. As Braun and Mittnik (1993), Cooley and Dwyer (1998), Canova and
Pina (2004) have shown, important biases may result. To illustrate the effects of omitting
variables we make use of the following result:

Result 4.3 In a bivariate VAR(q):

·
A11(`) A12(`)
A21(`) A22(`)

¸·
y1t
y2t

¸
=

·
e1t
e2t

¸
, the univariate

representation for y1t is [A11(`)−A12(`)A22(`)−1A21(`)]y1t = e1t−A12(`)A22(`)−1e2t ≡ υt

Example 4.34 Suppose the true DGP has m = 4 variables but an investigator incorrectly
estimates a bivariate VAR (there are three of these models). Using result 4.3 it is immediate

to see that the system with, e.g., variables 1 and 3, has errors of the form

·
υ1t
υ2t

¸
≡
·
e1t
e3t

¸
−

Q1(`)Q−1
2 (`)

·
e2t
e4t

¸
where Q1(`) =

·
A12(`) A14(`)
A32(`) A34(`)

¸
Q2(`) =

·
A22(`) A24(`)
A42(`) A44(`)

¸
.

From this one can verify that:

• If the true system is a VAR(1), a model with m1 < m variables is a VAR(∞).
• If et’s are contemporaneously and serially uncorrelated, υt’s are typically contempora-

neously and serially correlated.

• Two small scale VAR, both with m1 < m variables, may have different innovations.

• υt is a linear combination of current and past et. The timing of innovations is preserved
if the m1 included variables are Granger causally prior to the m−m1 omitted ones (i.e. if
Q1(`) = 0).

Several implications one can draw from example 4.34. First, if relevant variables are
omitted a long lag length is needed to whiten the residuals. While long lags do not always
indicate misspecification (for example, if yt is nearly non-stationary long lags are necessary
to approximate its autocovariance function), care should be exercised in drawing inference in
such models. Second, two researchers estimating small scale models with different variables
may obtain different structural innovations, even if the same identification restrictions are
used. Finally, innovation accounting exercises when variables are omitted may misrepresent
the timing of the responses to structural shocks.

Exercise 4.49 (Giordani) Consider a sticky price model composed of an output gap (gapt =
gdpt−gdpPt ) equation, a potential output (gdpPt ) equation, a backward looking Phillips curve
(normalized on πt) and a Taylor rule of the type

gapt+1 = a1gapt − a2(it − πt) + ²ADt+1 (4.45)

gdpPt+1 = a3gdp
P
t + ²

P
t+1 (4.46)

πt+1 = πt + a4gdp
g
t + ²

CP
t+1 (4.47)

it = a5πt + a6gdp
g
t + ²

MP
t+1 (4.48)
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The last equation has an error term (monetary policy shock) since the central bank may not
always follow the optimal solution to its minimization problem. Let var(²it+1) = σ2i , i =
AD, P, CP, MP and assume that the four shocks are uncorrelated with each other.
(i) Argue that contractionary monetary policy shocks have one period lagged (negative) ef-
fects on output and two periods lagged (negative) effects on inflation. Show that monetary
policy actions do not Granger cause gdpPt for all t.
(ii) Derive a VAR for [gdpt, gdp

P
t , πt, it]. Display the matrix of impact coefficients.

(iii) Derive a representation for a three variable system [gdpt, πt, it] (Careful: when you
solve out potential output from the system the remaining variables do not follow a VAR any
longer). Label the three associated shocks et = [e

AD
t , eCPt , eMPt ] and their covariance matrix

Σe. Show the matrix of impact coefficients in this case.
(iv) Show that var(eADt ) >var(²ADt ); var(eMPt ) > 0 even when ²MPt = 0 ∀t and that
corr(eMPt , ²Pt ) < 0. Show that in a trivariate system, contractionary monetary policy
shocks produce positive price responses (compare this with what you have in i))
(v) Intuitively explain why the omission of potential output from the VAR causes problems.

It is worthwhile to look at omitted variable problems from another perspective. Suppose
the structural MA for a partition with m1 < m variables of the true DGP is

yt = D(`)²t (4.49)

where ²t is an m × 1 vector, so that D(`) is m1 × m matrix ∀`. Suppose a researcher
specifies a VAR with m1 < m variables and obtains an MA of the form:

yt = D̃(`)et (4.50)

where et is an m1 × 1, and D̃(`) is a m1 ×m1 matrix ∀`. Matching (4.49) and (4.50) one
obtains D̃(`)et = D(`)²t or letting D‡(`) be a m1 ×m matrix

D‡(`)²t = et (4.51)

As shown by Faust and Leeper (1997) (4.51) teaches us an important lesson. Assume that
there are ma shocks of one type and mb shocks of another, ma+mb = m, and that m1 = 2.
Then eit, i = 1, 2 recovers a linear combination of shocks of type i

0 = a, b only if D‡(`) is
block diagonal and only correct current shocks if D‡(`) = D‡, ∀` and block diagonal. In all
other cases, true innovations are mixed up in estimated structural shocks.

Note that these problems have nothing to do with estimation or identification. Mis-
specification occurs because a VAR(q) is transformed in a VARMA(∞) whenever a variable
is omitted and this occurs even when the MA representation of the small scale model is
known.

Example 4.35 Suppose the true structural model has m = 4 shocks, that there are two
supply and two demand shocks, and that an investigator estimates a bivarate VAR. When
would the two estimated structural shocks correctly aggregate shocks of the same type? Using
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(4.51) we have

"
D‡11(`) D‡12(`) D‡13(`) D‡14(`)
D‡21(`) D‡22(`) D‡23(`) D‡24(`)

#
²1t
²2t
²3t
²4t

 =

·
e1t
e2t

¸
. Hence, e1t will

recover only type 1 shocks if D‡13(`) = D‡14(`) = 0 and e2t will recover type 2 shocks if

D‡21(`) = D
‡
22(`) = 0. Furthermore, e1t recovers current type 1 shocks if D

‡
13(`) = D

‡
14(`) = 0

and D‡ii0(`) = D
‡
ii0 , ∀`.

The conditions required for correct aggregation are therefore somewhat strong. As it is
shown in the next example, they are not satisfied in at least one type of DSGE model. It
is likely that such a problem also appears in other models macroeconomists currently use.

Example 4.36 We simulate data from a version of the working capital economy of example
2.14 of chapter 2 with a permanent (technology) disturbance and temporary labor supply,
monetary and government expenditure shocks. Monetary policy is characterized by a Taylor
rule. Using output and employment data we estimate a bivariate VAR and extract a per-
manent and a transitory shock where the latter is identified by the requirement that it has
no long run effects on output. Table 4.3 presents the estimated coefficients of a distributed
lag regression of two of the theoretical shocks on the estimated ones. In parenthesis are
t-statistics. The last column presents the p-value of a F-test excluding monetary distur-
bances from the first equation and technological disturbances from the second. Estimated
supply shocks mix both current and lagged monetary and technology disturbances while for
estimated demand shocks current and lagged monetary disturbances matter but only current
technology disturbances are important. This pattern is independent of the sample size.

Technology Shocks Monetary Shocks P-value
0 -1 -2 0 -1 -2

Estimated 1.20 0.10 0.04 0.62 -0.01 -0.11
Supply Shocks (80.75) (6.71) (3.05) (45.73) (-0.81) (-8.22) 0.000

Estimated -0.80 0.007 0.08 0.92 -0.48 -0.20
Demand Shocks (-15.27) (0.13) (1.59) (19.16) (-10.03) (-4.11) 0.000

Table 4.3: Regressions on simulated data

Exercise 4.50 (Cooley and Dwyer) Simulate data from a CIA model where a representative
agent maximizes E0

P
t β

t[a ln c1t+(1−a) ln c2t−ϑNNt] subject to ptc1t ≤Mt+(1+ it)Bt+

Tt −Bt−1 and c1t + c2t + invt + Mt+1

pt
+ Bt+1

pt
≤ wtNt + rtKt + Mt

pt
+ (1+ it)

Bt
pt
+ Tt

pt
where

Kt+1 = (1− δ)Kt + invt, yt = ζtK1−η
t Nη

t , ln ζt = ρζ ln ζt−1 + ²1t, lnMs
t+1 = lnM

s
t + lnM

g
t ,

Mg
t is a constant and ρζ = 0.99 (you are free to choose the other parameters, but motivate

your choices). Consider a bivariate system with output and hours and verify that output
has a unit root but hours does not. Using the restriction that demand shocks have no long
run effects on output, plot output and hours responses in theory and in the VAR. Is there
any feature of the theoretical economy which is distorted?
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In section 5 we have seen that for a just identified structural model, a two-step esti-
mation approach is equivalent to a direct 2SLS approach on the structural system. Since
structural shocks depend on the identification restrictions, we may have situations where a
2SLS approach produces ”good’ estimators, in the sense that they nicely correlate with the
structural shocks they instrument for, and situations where they are bad. Cooley and Dwyer
(1998) present an example where, by changing the identifying restrictions, the correlation
of the instruments with the structural shocks go from high to very low, therefore resulting
in instrumental variables failures (see chapter 5). Hence, if such a problem is suspected, a
maximum likelihood approach should be preferred.

Finally, we would like to mention once again that there are several economic models
which generate non-Wold decompositions, see e.g. Leeper (1991), Quah (1990), Hansen
and Sargent (1991). Hence examining these models with Wold decompositions is meaning-
less. When a researcher suspects that this is a problem Blaascke factors should be used to
construct non-fundamental structural MA representations. Results do depend on the rep-
resentations used. For example, Lippi and Reichlin (1993) present a non-Wold version of
Blanchard and Quah (1989)’s model which gives opposite conclusions regarding the relative
importance of demand and supply shocks in generating business cycle fluctuations.

Exercise 4.51 (Quah) Consider a three equations permanent income model

ct = rWet

Wet = sat + [(1+ r)
−1X

j

(1+ r)−jEtGDPt+j

sat+1 = (1+ r)sat +GDPt − ct (4.52)

where ct is consumption, Wet is wealth, r is the (constant) real rate, sat are savings and
∆GDPt = D(`)²t is the labor income. Show that a bivariate representation for consump-

tion and output is

·
∆GDPt
∆ct

¸
=

·
A1(`) (1− `)A0(`)
A1(β) (1− β)A0(β)

¸ ·
e1t
e0t

¸
where β = (1 + r)−1,

e1t is a permanent shock and e0t a transitory shock. Find A1(`) and A0(`). Show that

if ∆Yt = ²t, the representation collapses to

·
∆GDPt
∆ct

¸
=

·
1 (1− `)
1 (1− β)

¸·
e1t
e0t

¸
. Show

that the determinant of the matrix vanishes at ` = β < 1 so that the MA representa-
tion for consumption and income is non-fundamental. Show that the fundamental MA is·
∆GDPt
∆ct

¸
= b(β)−1

"
(2− β)(1− 1−β

2−β `) (1− β`)
1+ (1− β)2 0

#·
ẽ1t
ẽ0t

¸
, var(ẽ0t)=var(ẽ1t) = 1.

4.7 Validating DSGE models with VARs

VARs are extensively used to summarize those conditional and unconditional moments that
”good” models should be able to replicate. Generally, informal comparisons between the
models and the data are performed. At times, the model’s statistics are compared with
68 or 95% bands for the statistics of the data (see e.g. Christiano Eichenbaum and Evans
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(2001)). There conclusions about the quality of the model rest on whether model’s statistics
are inside or outside these bands for a number of variables. If parameter uncertainty is
allowed for, comparison of posterior distributions is possible (see chapters 7 and 11).

However, DSGE theories can be more directly tested via VARs. For example, in Canova,
Pagan and Finn (1994) theoretical cointegration restrictions coming from a RBC model
driven by permanent technology shocks are imposed on a VAR and tested using standard
statistical tools. Their point of view can be generalized and the applicability of their idea
extended if qualitative implications, which are more robust than quantitative ones, are used
to restrict the data and if restrictions are used for identification rather than for estimation.

DSGE models are misspecified in the sense that they are too simple to capture the com-
plex probabilistic nature of the data. Hence, it may be senseless to compare their outcomes
with the data: if one looks hard enough and data is abundant, statistically or economically
large deviations can always be found. Both academic economists and policymakers use
DSGE models to tell stories about how the economy responds to unexpected movements
in exogenous variables. Hence, there may be substantial consensus in expecting output to
decline after an unexpected interest rate increase but considerable uncertainty about the
size of the impact and the timing of the output responses. The techniques described in
chapter 5 to 7 have hard time to deal with this uncertainty. Estimation and testing with
maximum likelihood requires the whole model to be the correct DGP (up to uncorrelated
measurement errors), at least under the null. Generalized methods of moments and sim-
ulation estimators can be tailored to focus only on those aspects where misspecification
could be smaller (e.g. the Euler equation, or the great ratios). However, estimation and
validation still requires that these aspects of the model are quantitatively correct under the
null. When one feels comfortable only with the qualitative implications of a model and is
not willing to (quantitatively) entertain a part or the whole of it as a null hypothesis, the
approach described in section 5.3 can be used to formally evaluate the fit of any model or
the relative merit of two competitor models.

The method agrees with the minimalist identification philosophy underlying VARs. In
fact, one can use some of the least controversial qualitative implications of a model to
identify structural shocks in the data. Once shocks in data and the model are forced to have
qualitatively similar features, the dynamic discrepancy between the two in the dimensions
of interest can be easily examined. We summarize the main features of the approach in the
next algorithm.

Algorithm 4.7

1) Find qualitative, robust implications of a class of models.

2) Use (a subset of ) these implications to identify shocks in the actual data. Stop validation
if data does not conform to the qualitative robust restrictions of the model.

3) If theoretical restrictions have a data counterpart, qualitatively evaluate the model (use
e.g. sign and shape of responses to shocks, the pattern of peak responses, etc.)
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4) Validate qualitatively across models if more than one candidate is available.

5) If results in 3) and 4) are satisfactory, and policy analyses need to be performed, compare
model and data quantitatively.

6) Repeat 2)-5) using other robust implications of the model(s), if needed.

7) If mismatch between theory and data is relevant, alter the model so as to maintain re-
strictions in 1) satisfied and repeat 3) and/or 5) to evaluate improvements. Otherwise,
proceed to policy analyses.

Few comments on algorithm 4.7 are in order. In 1) we require theoretical restrictions
to be robust, that is independent of parametrization and/or of the functional forms of
primitives. The idea is avoid restrictions which emerge only in special cases of the theory.
In the second step we force certain shocks in the data and in the model to be qualitatively
similar. In steps 2) to 7) evaluation is conducted at different levels: first, we examine
whether the restrictions are satisfied in the data; second, we evaluate qualitative dynamic
features of the model; finally, quantitative properties are considered. Qualitative evaluation
should be considered a prerequisite to a quantitative one: many models can be discarded
using the former alone. Also, to make the evaluation meaningful economic measures of
discrepancy, as opposed to statistical ones, should be used.

The algorithm is simple, easily reproducible, and computationally affordable, particu-
larly in comparison to ML or the Bayesian methods we discuss in Chapter 11; it can be used
when models are very simplified descriptions of the actual data; and can be employed to
evaluate one or more dimensions of the model. In this sense, it provides a flexible, limited
information criteria which can be made more or less demanding, depending on the desires
of the investigator. We illustrate the use of algorithm 4.7 in an example.

Example 4.37 We take a working capital (WK) and a sticky price (SP) model, with the
idea of studying the welfare costs of employing different monetary rules. We concentrate on
the first step of the exercise, i.e. in examing which model is more appropriate to answer the
policy question.

Canova (2002) shows that these two models produce a number of robust sign restrictions
in response to technology and monetary policy shocks. For example, in response to a policy
disturbance the WK economy generates negative comovements of inflation and output, of
inflation and real balances, and of inflation and the slope of the term structure and positive
comovements of output and real balances. In the SP economy, the correlation between infla-
tion and output is positive contemporaneously and for lags of output and negative for leads
of output. The one between inflation and real balances is negative everywhere, the one of
output and real balances is positive for lags of real balances and negative contemporaneously
and for leads of real balances. Finally, the correlation of the slope of the term structure
with inflation is negative everywhere. One could use some or all of these restrictions to
characterize monetary shocks in the two models. Here we select restrictions on the con-
temporaneous cross correlation of output, inflation and the slope of the term structure for
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the WK model and on the cross correlation of output, inflation and real balances in the SP
model and impose them in a VAR composed of output, inflation, real balances, the slope
of the term structure and labor productivity using US, UK and EURO data from 1980:1 to
1998:4.

We find that WK sign restrictions fail to recover monetary shocks in the UK, while SP
sign restrictions do not produce monetary shocks in the Euro land. That is to say, out of
10000 draws for ω and Hi,i0(ω) we are able to find less than 0.1% of teh cases where the
restrictions are satisfied. Since no combination of reduced form residuals produces cross
correlations for output, inflation and the slope (or real balances) with the required sign, both
models are at odds with the dynamic comovements in response to monetary shocks in at
least one data set. One may stop here and try to respecify the models, or proceed with the
data sets where restrictions hold and evaluation can continue examining e.g. the dynamic
responses of the two other VAR variables to identified monetary shocks.

There are at least two reasons for why a comparison based on real balances (or the
slope) and labor productivity may be informative of the quality of the model’s approximation
to the data. First, we would like to know if identified monetary shocks produce liquidity
effects, a feature present in both models and a simple ”test” often used to decide whether a
particular identification schemes is meaningful or not (see e.g. Leeper and Gordon (1994)).
Second, it is common to use the dynamics of labor productivity to discriminate between
flexible price real business cycle and sticky price demand driven explanations of economic
fluctuations (see Gali (1999)). Since the dynamics of labor productivity in response to
contractionary monetary shocks are similar in the two models (since employment declines
more than output, labor productivity increases), it is interesting to check if the identified
data qualitative conforms to these predictions.

Figure 4.6 plots the responses of these two variables for each data set (straight lines)
together with the responses obtained in the two models (dotted lines), scaled so that the vari-
ance of the monetary policy innovation is the same. Two conclusions can be drawn. First,
the WK identification scheme cannot account for the sign and the shape of the responses
of labor productivity in US and Euro area and generates monetary disturbances in the Euro
area which lack liquidity effects. Second, with the SP identification scheme monetary shocks
generate instantaneous responses of the slope of the term structure which have the wrong
sign in the US and lack persistence with UK data.

Given that the two theories produce dynamics which are qualitatively at odds with the
data, it is not surprising to find that quantitative predictions are also unsatisfactory. For
example, the percentage of output variance accounted for by monetary shocks in US at the 24
step horizon is between 11 and 43% with the WK scheme and 3 and 34% with the SP scheme.
In comparison, and regardless of the parametrization used, monetary disturbances account
for 1% of output variance in both models. Hence, both models lack internal propagation.

Given the mismatch of the models and the data one should probably go back to the
drawing board before answering any policy question. Canova (2001) shows that adding
capacity utilization and/or labor hoarding to the models is not enough to enhance at least
the qualitative match. Whether other frictions will change this outcome is an open question.
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Figure 4.6: Responses to Monetary Shocks
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Until a better match is found, it is probably unhealthy to try to answer any policy question
with any of the two models.

Exercise 4.52 (Dedola and Neri) Take a standard RBC model with habit persistence in
consumption and highly persistent but stationary technology shocks. Examine whether ro-
bust sign restrictions for the correlation of output, hours and labor productivity exist when
the extent of habit (γ), the power of utility parameter (ϕ), the share of hours in production
(η), the depreciation rate (δ), and the persistence of technology shocks (ρζ) are varied within
reasonable ranges. Using a VAR with labor productivity, real wages, hours, investment, con-
sumption and output examine whether the model fits the data, when robust sign restrictions
are used to identify technology shocks in the data.

Exercise 4.53 (Pappa) In a sticky price model with monopolistic competitive firms any-
thing that moves aggregate demand (e.g. goverment shocks) induces a shift in the labor
demand curve and therefore induces positive comovements of hours and real wages. In a
flexible price RBC model, on the other hand, goverment expenditure shocks shift both the
aggregate supply and the aggregate demand curve. For many parametrizations movements
in the former are larger than movements in the latter and therefore negative comovements
of hours and real wages are generated. Using a VAR with labor productivity, hours, real
wages, investment, consumption and output, verify whether a RBC style model fits the data
better than a sticky price, monopolistic competitive model.
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