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THE NETWORK ORIGINS OF AGGREGATE FLUCTUATIONS

BY DARON ACEMOGLU, VASCO M. CARVALHO,
ASUMAN OZDAGLAR, AND ALIREZA TAHBAZ-SALEHI1

This paper argues that, in the presence of intersectoral input–output linkages, mi-
croeconomic idiosyncratic shocks may lead to aggregate fluctuations. We show that, as
the economy becomes more disaggregated, the rate at which aggregate volatility decays
is determined by the structure of the network capturing such linkages. Our main results
provide a characterization of this relationship in terms of the importance of different
sectors as suppliers to their immediate customers, as well as their role as indirect sup-
pliers to chains of downstream sectors. Such higher-order interconnections capture the
possibility of “cascade effects” whereby productivity shocks to a sector propagate not
only to its immediate downstream customers, but also to the rest of the economy. Our
results highlight that sizable aggregate volatility is obtained from sectoral idiosyncratic
shocks only if there exists significant asymmetry in the roles that sectors play as suppli-
ers to others, and that the “sparseness” of the input–output matrix is unrelated to the
nature of aggregate fluctuations.

KEYWORDS: Business cycle, aggregate volatility, diversification, input–output link-
ages, intersectoral network, cascades.

1. INTRODUCTION

THE POSSIBILITY that significant aggregate fluctuations may originate from mi-
croeconomic shocks to firms or disaggregated sectors has long been discarded
in macroeconomics due to a “diversification argument.” As argued by Lucas
(1977), among others, such microeconomic shocks would average out, and
thus, would only have negligible aggregate effects. In particular, the argument
goes, aggregate output concentrates around its mean at a very rapid rate: in
an economy consisting of n sectors hit by independent shocks, aggregate fluc-
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tuations would have a magnitude proportional to 1/
√
n—a negligible effect at

high levels of disaggregation.2
This argument, however, ignores the presence of interconnections between

different firms and sectors, functioning as a potential propagation mecha-
nism of idiosyncratic shocks throughout the economy. The possible role of
such interconnections in propagation of shocks was highlighted during the de-
bate leading to the recent auto industry bailout. Appearing before the Senate
Banking Committee in November 2008, Alan R. Mulally, the chief executive
of Ford, requested emergency government support for General Motors and
Chrysler, Ford’s traditional rivals. Mulally argued that, given the significant
overlap in the suppliers and dealers of the three automakers, the collapse of
either GM or Chrysler would have a ripple effect across the industry, leading
to severe disruption of Ford’s production operations within days, if not hours
(Mulally (2008)). The possibility of such “cascade effects” due to interconnec-
tions was also a key argument for government bailouts of several large financial
institutions during the financial crisis of 2007–2008.

This paper shows that the types of interconnections emphasized by Mulally
indeed imply that the effects of microeconomic shocks may not remain con-
fined to where they originate. Rather, microeconomic shocks may propagate
throughout the economy, affect the output of other sectors, and generate siz-
able aggregate effects. Our main contribution is to provide a general mathe-
matical framework for the analysis of such propagations and to characterize
how the extent of propagations of idiosyncratic shocks and their role in ag-
gregate fluctuations depend on the structure of interactions between different
sectors.

The following simple example illustrates the standard diversification argu-
ment and why it may not apply in the presence of interconnections.

EXAMPLE 1: Consider the economy depicted in Figure 1(a) consisting of n
non-interacting sectors. As n increases and the economy becomes more dis-
aggregated, the diversification argument based on the law of large numbers
implies that independent sectoral shocks average out rapidly at the rate

√
n.

An identical reasoning is applicable to the economy depicted in Figure 1(b),
where each sector relies equally on the outputs of all other sectors. The sym-
metric structure of this economy ensures that aggregate output is a symmetric
function of the shocks to each sector, implying that the diversification argu-
ment remains applicable.

The diversification argument would not be valid, however, if intersectoral
input–output linkages exhibit no such symmetries. For instance, consider the
economy depicted in Figure 2, in which sector 1 is the sole input supplier to

2Gabaix (2011) showed that the diversification argument may not apply when the firm size
distribution is sufficiently heavy-tailed. See also Jovanovic (1987), Bak, Chen, Scheinkman, and
Woodford (1993), and Durlauf (1993).
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(a) (b)

FIGURE 1.—The network representations of two symmetric economies. (a) An economy in
which no sector relies on other sectors for production. (b) An economy in which each sector
relies equally on all other sectors.

all others. In this case, as n increases, sectoral shocks do not average out: even
when n is large, shocks to sector 1 propagate strongly to the rest of the econ-
omy, generating significant aggregate fluctuations.

Even though the “star network” in Figure 2 illustrates that, in the presence of
interconnections, sectoral shocks may not average out, it is also to some extent
an extreme example. A key question, therefore, is whether the effects of mi-
croeconomic shocks can be ignored in economies with more realistic patterns
of interconnections. The answer naturally depends on whether the intersec-
toral network structures of actual economies resemble the economies in Fig-
ure 1 or the star network structure in Figure 2. Figure 3 gives a first glimpse of
the answer by depicting the input–output linkages between 474 U.S. industries
in 1997. It suggests that even though the pattern of sectoral interconnections
is not represented by a star network, it is also significantly different from the
networks depicted in Figure 1. In fact, as our analysis in Section 4 shows, in
many ways the structure of the intersectoral input–output relations of the U.S.
economy resembles that of Figure 2, as a small number of sectors play a dis-
proportionately important role as input suppliers to others. Consequently, the
interplay of sectoral shocks and the intersectoral network structure may gen-
erate sizable aggregate fluctuations.

FIGURE 2.—An economy where one sector is the only supplier of all other sectors.
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FIGURE 3.—Intersectoral network corresponding to the U.S. input–output matrix in 1997.
(Source: Bureau of Economic Analysis. See Section 4 for more details on the data.) Each vertex
corresponds to a sector in the 1997 benchmark detailed commodity-by-commodity direct require-
ments table. For every input transaction above 5% of the total input purchases of a sector, a link
is drawn between that sector and the input supplier.

To develop these ideas more systematically, we consider a sequence of
economies {En}n∈N, corresponding to different levels of disaggregation.3 Each
economy En consists of n sectors whose input requirements are captured by
an n × n matrix Wn. Entry (i� j) of this matrix captures the share of sector j’s
product in sector i’s production technology. Its jth column sum, which we refer

3In our model economy, the total supply of labor is fixed. Therefore, an increase in the number
of sectors is equivalent to an increase in the level of disaggregation of the economy.
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to as the degree of sector j, corresponds to the share of j’s output in the input
supply of the entire economy. Given the sequence of economies {En}n∈N, we
investigate whether aggregate volatility, defined as the standard deviation of log
output, vanishes as n → ∞. We show that in certain cases, such as the star net-
work, the law of large numbers fails and aggregate output does not concentrate
around a constant value.

The main focus of our analysis, however, is on the more interesting cases
in which the law of large numbers holds, yet the structure of the intersectoral
network still has a defining effect on aggregate fluctuations. We show that sec-
toral interconnections may imply that aggregate output concentrates around its
mean at a rate significantly slower than

√
n. Such slower rates of decay mean

that sectoral shocks would have a more significant role in creating aggregate
fluctuations, even at high levels of disaggregation. Our results also establish
that slow rates of decay of aggregate volatility may have two related but dis-
tinct causes. First, they may be due to first-order interconnections: shocks to a
sector that is a supplier to a disproportionally large number of other sectors
propagate directly to those sectors. Second, they may be due to higher-order
interconnections: low productivity in one sector leads to a reduction in pro-
duction of not only its immediate downstream sectors but also a sequence of
sectors interconnected to one another, creating cascade effects.

In addition to illustrating the role of interconnections in creating aggregate
fluctuations from sectoral shocks, we prove three key theorems characterizing
the rate of decay of aggregate volatility, and hence quantifying the impact of
interconnections in terms of the structural properties of the intersectoral net-
work. Theorem 2 provides a lower bound in terms of the extent of asymmetry
across sectors captured by variations in their degrees. It shows that higher vari-
ations in the degrees of different sectors imply lower rates of decay for aggre-
gate volatility. A corollary to this result shows that if the empirical distribution
of degrees of the intersectoral network can be approximated by a power law
(Pareto distribution) with shape parameter β ∈ (1�2), then aggregate volatil-
ity decays at a rate slower than n(β−1)/β. Theorem 3 provides tighter lower
bounds in terms of a measure of second-order interconnectivity between dif-
ferent sectors. This characterization is important because two economies with
identical empirical degree distributions (first-order connections) may have sig-
nificantly different levels of aggregate volatility resulting from the roles that
some sectors play as indirect input suppliers to the economy through chains of
downstream sectors. We use this extended characterization to provide a bound
in terms of the empirical distribution of the second-order degrees of different
sectors within the economy, where the second-order degree of sector i is de-
fined as the weighted sum of the degrees of sectors that demand inputs from
i, with weights given by the input share of i in the production technologies of
these sectors. In particular, we show that if the empirical distribution of the
second-order degrees can be approximated by a power law with shape param-
eter ζ ∈ (1�2), then aggregate volatility decays at a rate slower than n(ζ−1)/ζ .
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Finally, Theorem 4 shows that the applicability of the diversification argument
to the economies depicted in Figure 1 is not a coincidence. In particular, it es-
tablishes that sectoral shocks average out at the rate

√
n for balanced networks

in which there is a uniform bound on the degree of every sector. This result
also underscores that, in contrast to a conjecture by Horvath (1998), the na-
ture of aggregate fluctuations resulting from sectoral shocks is not related to
the sparseness of the input–output matrix, but rather, to the extent of asymme-
try between different sectors.4

Our empirical exercise in Section 4 provides a summary of some of the rele-
vant structural properties of the intersectoral network of the U.S. economy. We
show that the empirical distributions of both first-order and second-order de-
grees appear to have Pareto tails, with the latter exhibiting a heavier tail with a
shape parameter of ζ = 1�18. Presuming that this shape parameter also charac-
terizes the second-order degree distribution for large n, our results imply that
aggregate volatility in the U.S. economy decays at a rate slower than n0�15. This
substantiates our claim above that the pattern in Figure 3 is more similar to a
star network than a complete network. Such a slow rate of decay—compared to
the

√
n convergence rate predicted by the standard diversification argument—

suggests that sizable aggregate fluctuations may originate from idiosyncratic
shocks to different sectors in the economy.

Our paper is most closely related to Gabaix (2011), who showed that firm-
level idiosyncratic shocks translate into aggregate fluctuations when the firm
size distribution is sufficiently heavy-tailed and the largest firms contribute
disproportionally to aggregate output. In particular, in the same vein as our
Corollaries 1 and 2, he showed that if the firm size distribution is power law,
aggregate volatility decays at the rate na, where n in this context is the number
of firms in the economy and a < 1/2. The intersectoral network in our model
plays the same role as the firm size distribution in Gabaix’s analysis: shocks to
sectors that take more central positions in the intersectoral network have a dis-
proportionate effect on aggregate output. Even though such central sectors are
also larger in equilibrium, there exist important distinctions between our work
and Gabaix (2011). First, in contrast to Gabaix, our focus is on the role played
by input–output linkages between (disaggregated) sectors in generating aggre-
gate fluctuations. Second, the intersectoral network in our model also shapes
the pattern of sectoral comovements. Thus, a network-based approach leads
to a potentially very different behavior than an economy consisting of firms of
unequal sizes—for example, by imposing a range of additional restrictions on
the interplay of aggregate and more micro-level data.5

4In the different but related context of financial contagion, Allen and Gale (2000) showed
that ring networks, which are naturally very sparse, are more prone to systemic failures than a
complete financial network.

5Foerster, Sarte, and Watson (2011) and Carvalho and Gabaix (2010) provide empirical evi-
dence pointing to the importance of the mechanisms emphasized here. Foerster, Sarte, and Wat-
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Our work is also closely related to the literature on the role of sectoral shocks
in macro fluctuations, such as Horvath (1998), Dupor (1999), and Shea (2002).
Like these papers, we build on Long and Plosser’s (1983) multisectoral model
of real business cycles. The debate between Horvath (1998, 2000) and Dupor
(1999) centered around whether sectoral shocks would translate into aggre-
gate fluctuations. Our results provide fairly complete answers to the questions
raised by these papers. This literature also presents a variety of empirical ev-
idence on the role of sectoral shocks, but does not provide a general mathe-
matical framework similar to the one developed here.6

Our work builds on Jovanovic (1987) and Durlauf (1993), who constructed
models with strong strategic complementarities across firms and showed that
such complementarities may translate firm level shocks into volatility at the
aggregate level. It is also related to Bak et al. (1993), which stressed the impor-
tance of supply chains in aggregate fluctuations. Our paper provides a more
comprehensive and tractable framework for the analysis of input–output in-
teractions and characterizes the extent to which such interactions translate id-
iosyncratic shocks into aggregate volatility.

The rest of the paper is organized as follows. Section 2 presents the basic
economic environment and characterizes the influence vector, which summa-
rizes the relevant features of the intersectoral network. Section 3 contains our
main results, characterizing the relationship between the structural properties
of the intersectoral network and the rate at which aggregate volatility vanishes.
Section 4 illustrates the implications of our results using information from the
U.S. input–output matrix. It also shows that second-order interconnections in-
deed appear to play an important role. Section 5 concludes. All proofs and
some additional mathematical details are presented in the Appendix.

Notation

Throughout the paper, unless otherwise noted, all vectors are assumed to be
column vectors. We denote the transpose of a matrix X by X ′. We write x ≥ y ,
if vector x is element-wise greater than or equal to vector y . Similarly, we write
x > y , if every element of x is strictly greater than the corresponding element
in y . We use 1 to denote the vector of all ones, the size of which is adjusted to
and clear from the context. We use ‖ · ‖p to denote the p-norm of a vector as
well as the induced p-norm of a matrix.

Given two sequences of positive real numbers {an}n∈N and {bn}n∈N, we
write an = O(bn) if they satisfy lim supn→∞ an/bn < ∞, and an = Ω(bn) if

son (2011), for example, find significant sectoral comovements consistent with the input–output
structure of the economy, suggesting that the network origins of aggregate fluctuations stressed
in this paper are likely to be present in practice, at least to some extent.

6Our model is also related to the smaller literature on the implications of input–output linkages
on economic growth and cross-country income differences. See, for example, Ciccone (2002) and
Jones (2011).
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lim infn→∞ an/bn > 0. Moreover, we write an = Θ(bn) if an = O(bn) and an =
Ω(bn) hold simultaneously. Finally, an = o(bn) means that limn→∞ an/bn = 0.

2. MODEL

We consider a static variant of the multisector model of Long and Plosser
(1983). The representative household is endowed with one unit of labor, sup-
plied inelastically, and has Cobb–Douglas preferences over n distinct goods;
that is,

u(c1� c2� � � � � cn)= A

n∏
i=1

(ci)
1/n�(1)

where ci is the consumption of good i and A is a normalization constant dis-
cussed below.

Each good in the economy is produced by a competitive sector and can be ei-
ther consumed or used by other sectors as an input for production. The sectors
use Cobb–Douglas technologies with constant returns to scale. In particular,
the output of sector i, denoted by xi, is

xi = zα
i 	

α
i

n∏
j=1

x
(1−α)wij

ij �(2)

where 	i is the amount of labor hired by the sector, α ∈ (0�1) is the share of
labor, xij is the amount of commodity j used in the production of good i, and
zi is the idiosyncratic productivity shock to sector i. We assume that productiv-
ity shocks {zi} are independent across sectors, and denote the distribution of
εi ≡ log(zi) by Fi. The exponent wij ≥ 0 designates the share of good j in the
total intermediate input use of firms in sector i. In particular, wij = 0 if sector
i does not use good j as input for production. In view of the Cobb–Douglas
technology in (2) and competitive factor markets, wij ’s also correspond to the
entries of input–output tables, measuring the value of spending on input j per
dollar of production of good i.7 The following assumption implies that the sec-
toral production functions exhibit constant returns to scale.8

ASSUMPTION 1: The input shares of all sectors add up to 1; that is,
∑n

j=1 wij = 1
for all i = 1�2� � � � � n.

7See Section 4 for more details.
8The constant returns to scale assumption can be relaxed without any bearing on our results.

In particular,
∑n

j=1 wij = η< 1 is equivalent to the presence of another fixed factor with exponent
(1 −η)(1 − α) in the production function of all sectors.
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We summarize the structure of intersectoral trade with the input–output ma-
trix W with entries wij . Thus, the economy is completely specified by the tuple
E = (I�W � {Fi}i∈I), where I = {1�2� � � � � n} denotes the set of sectors.

Input–output relationships between different sectors can be equivalently
represented by a directed weighted graph on n vertices, called the intersec-
toral network of the economy. Each vertex in this graph corresponds to a sector
in the economy, and a directed edge (j� i) with weight wij > 0 is present from
vertex j to vertex i if sector j is an input supplier to sector i. We use the no-
tions of the intersectoral network and input–output matrix interchangeably as
equivalent representations of the structure of intersectoral trades.

We also define the weighted outdegree, or simply the degree, of sector i as the
share of sector i’s output in the input supply of the entire economy normalized
by constant 1 − α; that is,

di ≡
n∑

j=1

wji�

Clearly, when all nonzero edge weights are identical, the outdegree of vertex
i is proportional to the number of sectors to which it is a supplier. Finally, we
refer to the collection {d1� d2� � � � � dn} as the degree sequence of economy E .9

As we show in the Appendix, in the competitive equilibrium of economy
E = (I�W � {Fi}i∈I), the logarithm of real value added is given by

y ≡ log(GDP)= v′ε�(3)

where ε ≡ [ε1� ε2� � � � � εn]′ and the n-dimensional vector v, called the influence
vector, is defined as

v ≡ α

n

[
I − (1 − α)W ′]−1

1�(4)

Thus, the logarithm of real value added, which for simplicity we refer to as
aggregate output, is a linear combination of log sectoral shocks with coeffi-
cients determined by the elements of the influence vector. Equation (4) shows
that aggregate output depends on the intersectoral network of the economy
through the Leontief inverse [I−(1−α)W ′]−1 (see Burress (1994)). It also cap-
tures how sectoral productivity shocks propagate downstream to other sectors
through the input–output matrix.10 Finally, note that without the normaliza-

9Similarly, one can define an indegree for any given sector. However, in view of Assumption 1,
the (weighted) indegrees of all sectors are equal to 1. We show in Section 4 that this is a good
approximation to the patterns we observe in the U.S. data.

10In general, sectoral shocks also affect upstream production through a price and a quantity
effect. For instance, with a negative shock to a sector, (i) its output price increases, raising its
demand for inputs; and (ii) its production decreases, reducing its demand for inputs. With Cobb–
Douglas production technologies, however, these two effects cancel out. See Shea (2002) for
more details.



1986 ACEMOGLU, CARVALHO, OZDAGLAR, AND TAHBAZ-SALEHI

tion constant A in (1), the logarithm of real value added would be y = μ+ v′ε,
where the expression for μ is provided in Appendix A. Clearly, this normal-
ization only changes the mean of aggregate output and has no effect on its
volatility or other distributional properties.

We note that the influence vector is closely related to the Bonacich central-
ity vector corresponding to the intersectoral network.11 Thus, sectors that take
more “central” positions in the network representation of the economy play
a more important role in determining aggregate output. This observation is
consistent with the intuition that productivity shocks to a sector with more di-
rect or indirect downstream customers should have more significant aggregate
effects.

The vector v is also the “sales vector” of the economy. In particular, as shown
in Appendix A, the ith element of the influence vector is equal to the equilib-
rium share of sales of sector i,

vi = pixi

n∑
j=1

pjxj

�(5)

with pi denoting the equilibrium price of good i. This is not surprising in view
of the results in Hulten (1978) and Gabaix (2011), relating aggregate total fac-
tor productivity (TFP) to firm- or sector-level TFPs weighted by sales.12 This
observation also implies that there exists a close connection between our re-
sults on the network origins of output fluctuations and Gabaix’s results on
their granular origins. A major difference is that the distribution of sales shares
across sectors (or other micro units) in our model is derived from input–output
interactions. This not only provides microfoundations for such size differences,
but also enables us to sharply characterize the role of important structural
properties of the network in shaping aggregate volatility. Furthermore, un-
like in Gabaix (2011), the structure of interconnections also determines the
comovements between different sectors, placing a range of additional restric-
tions on the interplay of aggregate and more micro-level data (see footnote 5).

Finally, note that rather than deriving (3) and (4) as the equilibrium of
a multisector economy, one could have started with a reduced form model
ỹ = W̃ ỹ + ε̃, where ỹ is the vector consisting of the output levels, value added,
or other actions (or the logarithms thereof) of n economic units, W̃ is a ma-
trix capturing the interactions between them, and ε̃ is a vector of independent

11For more on the Bonacich centrality measure, see Bonacich (1987) and Jackson (2008).
For another application of this notion in economics, see Ballester, Calvó-Armengol, and Zenou
(2006).

12Note that, in contrast to Hulten’s (1978) formula, the logarithms of sectoral shocks (i.e., the
ε’s) are multiplied by sales shares, and not by sales divided by value added. This is due to the fact
that shocks in our model correspond to Harrod-neutral changes in productivity (zi = exp(εi) is
raised to the power α), whereas Hulten considered Hicks-neutral changes in productivity.
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shocks to each unit. The results presented in the remainder of the paper are
applicable to any alternative model with such a representation.

3. NETWORK STRUCTURE AND AGGREGATE FLUCTUATIONS

In this section, we focus on a sequence of economies where the number of
sectors increases, and characterize how the structure of the intersectoral net-
work affects the nature of aggregate fluctuations. In particular, we consider a
sequence of economies {En}n∈N indexed by the number of sectors n. The econ-
omy indexed n is defined as En = (In�Wn� {Fin}i∈In), where In = {1�2� � � � � n}
is the set of sectors in the economy, Wn captures the corresponding input–
output matrix, and the collection {Fin}i∈In denotes the distributions of log sec-
toral shocks. Note that since the total supply of labor is normalized to 1 for
all n, an increase in the number of sectors corresponds to disaggregating the
structure of the economy.13

Given a sequence of economies {En}n∈N, we denote the corresponding se-
quence of aggregate outputs and influence vectors by {yn}n∈N and {vn}n∈N, re-
spectively. We use wn

ij and dn
i to denote a generic element of the intersectoral

matrix Wn and the degree of sector i, respectively. Finally, we denote the se-
quence of vectors of (log) idiosyncratic productivity shocks to the sectors by
{εn}n∈N, and impose the following assumption on their distributions.

ASSUMPTION 2: Given a sequence of economies {En}n∈N, for any sector i ∈ In

and all n ∈ N,
(a) Eεin = 0,
(b) var(εin)= σ2

in ∈ (σ2�σ2), where 0 <σ < σ are independent of n.

Assumption 2(a) is a normalization. Assumption 2(b) imposes the restriction
that log sectoral shock variances remain bounded as n → ∞. This assumption
enables us to isolate the effects of the intersectoral network structure on aggre-
gate fluctuations as the economy gets more disaggregated, from those of the
decay rate of idiosyncratic volatilities.

3.1. Aggregate Volatility

Recall that aggregate output of an economy can be characterized in terms
of its influence vector as yn = v′

nεn. Assumption 2(a) and independence of sec-

13The fact that higher values of n correspond to greater disaggregation does not put any rel-
evant restrictions on the behavior of the sequence of input–output matrices {Wn}n∈N for large n,
except that the largest, second largest, third largest, etc., entries of each row should be non-
increasing in n. This does not constrain the behavior of {vn}n∈N.
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toral productivity shocks imply that the standard deviation of aggregate output,
which we refer to as aggregate volatility, is given by

(var yn)1/2 =
√√√√ n∑

i=1

σ2
inv

2
in�

where vin denotes the ith element of vn. Thus, for any sequence of economies
{En}n∈N satisfying Assumption 2(b),

(var yn)1/2 =Θ
(‖vn‖2

)
�(6)

In other words, aggregate volatility scales with the Euclidean norm of the in-
fluence vector as our representation of the economy becomes more disaggre-
gated.14

Though simple, this relationship shows that the rate of decay of aggregate
volatility upon disaggregation may be distinct from

√
n—the rate predicted

by the standard diversification argument. Moreover, it also suggests that the
argument for the irrelevance of sectoral shocks need not hold in general. In
particular, in the extreme cases where ‖vn‖2 is bounded away from zero for
all values of n, aggregate volatility does not disappear even as n → ∞. This is
illustrated in the following example.

EXAMPLE 1—Continued: Recall the economy depicted in Figure 2, in which
sector 1 is the single input supplier of all other sectors. Using expression (4),
one can verify that the corresponding influence vector is given by v′

n = α
n
1′ +

[(1 − α)�0� � � � �0], implying that ‖vn‖2 = Θ(1). Thus, in view of (6), aggregate
volatility does not vanish even as n → ∞—an observation consistent with the
intuition discussed in the Introduction.

3.2. Asymptotic Distributions

Even though Example 1 shows that in the presence of strong intersectoral
input–output relations, the law of large numbers may not hold, one would ex-
pect that, in most realistic situations, aggregate volatility vanishes as n → ∞.15

14If, in violation of Assumption 2(b), sectoral volatilities change at some rate σn as n → ∞,
then (var yn)1/2 = Θ(σn‖vn‖2); that is, the rate at which aggregate volatility decays is determined
by σn as well as the Euclidean norm of the influence vector. This also makes it clear that As-
sumption 2(b) is implicitly imposed whenever the standard diversification argument is invoked;
otherwise, aggregate volatility averages out at the rate σn/

√
n rather than 1/

√
n.

15In particular, as Golub and Jackson (2010) showed in the context of information aggregation
in social networks, ‖vn‖2 → 0 if and only if ‖vn‖∞ → 0. That is, the law of large numbers fails only
if there exists some sector whose influence or sales share remains bounded away from zero even
as n→ 0.
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Nevertheless, even in such sequences of economies, the network structure may
have a defining effect on aggregate fluctuations. The next theorem takes a first
step toward characterizing these effects by determining the asymptotic distri-
bution of aggregate output.

THEOREM 1: Consider a sequence of economies {En}n∈N and assume that
Eε2

in = σ2 for all i ∈ In and all n ∈ N.

(a) If {εin} are normally distributed for all i and all n, then 1
‖vn‖2

yn
d−→

N (0�σ2).
(b) Suppose that there exist constant a > 0 and random variable ε with

bounded variance and cumulative distribution function F̄ , such that Fin(x) <
F̄(x) for all x < −a, and Fin(x) > F̄(x) for all x > a. Also suppose that
‖vn‖∞
‖vn‖2

−→ 0. Then 1
‖vn‖2

yn
d−→ N (0�σ2).

(c) Suppose that {εin} are identically, but not normally distributed for all i ∈ In

and all n. If ‖vn‖∞
‖vn‖2


−→ 0, then the asymptotic distribution of 1
‖vn‖2

yn, when it exists,
is nonnormal and has finite variance σ2.

Theorem 1 establishes that aggregate output normalized by the Euclidean
norm of the influence vector—which is a function of the economy’s intersec-
toral network—converges to a nondegenerate distribution. It is thus a natural
complement to, and strengthens, equation (6).

Theorem 1 also shows that, unless all shocks are normally distributed, the
intersectoral structure of the economy not only affects the convergence rate,
but also determines the asymptotic distribution of aggregate output: depending
on ‖vn‖∞—which captures the influence of the most central sector—aggregate
output (properly normalized) may converge to a nonnormal distribution. In
fact, if the conditions in part (c) of the theorem hold, the asymptotic distribu-
tion of aggregate output would necessarily depend on the specific distribution
of the sectoral-level productivity shocks. Part (b), on the other hand, shows that
if all distribution functions have tails that are dominated by a random variable
with a bounded variance and if ‖vn‖∞ converges to zero faster than ‖vn‖2, then
aggregate output converges to a normal distribution.16 In either case, the lim-
iting variance of yn/‖vn‖2 is finite and equal to σ2.

3.3. First-Order Interconnections

In the remainder of this section, we characterize the rate of decay of aggre-
gate volatility in terms of the structural properties of the intersectoral network,

16Note that part (c) is stated conditional on the existence of such an asymptotic distribution.
This is necessary, as we have not assumed any restriction on the sequence of economies, and thus,
‖vn‖∞ and ‖vn‖2 may not have well-behaved limits. No such assumption, beyond the dominance
condition, is required for part (b).
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properties that summarize relevant characteristics of the network without pro-
viding full details on all entries of matrix Wn.

We first focus on the effects of first-order interconnections on aggregate
volatility. In particular, we show that the extent of asymmetry between sec-
tors, measured in terms of the coefficient of variation of the degree sequence
of the intersectoral network, shapes the relationship between sectoral shocks
and aggregate volatility.

DEFINITION 1: Given an economy En with sectoral degrees {dn
1 � d

n
2 � � � � � d

n
n},

the coefficient of variation is

CVn ≡ 1

d̄n

[
1

n− 1

n∑
i=1

(
dn
i − d̄n

)2

]1/2

�

where d̄n = (
∑n

i=1 d
n
i )/n is the average degree.

THEOREM 2: Given a sequence of economies {En}n∈N, aggregate volatility satis-
fies

(var yn)1/2 =Ω

(
1
n

√√√√ n∑
i=1

(
dn
i

)2

)
(7)

and

(var yn)1/2 =Ω

(
1 + CVn√

n

)
�(8)

Theorem 2 states that if the degree sequence of the intersectoral network
exhibits high variability as measured by the coefficient of variation, then there
is also high variability in the effect of different sector-specific shocks on the
aggregate output. Such asymmetries in the roles of sectors imply that aggre-
gate volatility decays at a rate slower than

√
n. This result also shows that the

intersectoral network has a defining effect on aggregate volatility—even when
the law of large numbers holds. Intuitively, when the coefficient of variation
is high, only a small fraction of sectors are responsible for the majority of the
input supplies in the economy. Shocks to these sectors then propagate through
the entire economy as their low (resp., high) productivity leads to lower (resp.,
higher) production for all of their downstream sectors.

Theorem 2 also provides a more precise way of understanding the essence
of the results in Example 1.

EXAMPLE 1—Continued: Recall the economy with the star network repre-
sentation discussed in the Introduction and depicted in Figure 2. It is easy to
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verify that for such an economy, CVn = Θ(
√
n). Thus, by Theorem 2, aggre-

gate volatility is lower bounded by a constant for all values of n, implying that
the law of large numbers fails. More generally, the theorem implies that if the
economy contains a “dominant” sector whose degree grows linearly with n, ag-
gregate volatility remains bounded away from zero irrespective of the level of
disaggregation.

A complementary intuition for the results in Theorem 2 can be obtained
from equation (7), which can also be interpreted as a condition on the tail
of the empirical distribution of the degrees: aggregate volatility is higher in
economies whose corresponding degree sequences have a “heavier tails.” This
effect can be easily quantified for intersectoral networks with power law degree
sequences.

DEFINITION 2: A sequence of economies {En}n∈N has a power law degree se-
quence if there exist a constant β> 1, a slowly varying function L(·) satisfying
limt→∞ L(t)tδ = ∞ and limt→∞ L(t)t−δ = 0 for all δ > 0, and a sequence of
positive numbers cn = Θ(1) such that, for all n ∈ N and all k < dn

max = Θ(n1/β),
we have

Pn(k) = cnk
−βL(k)�

where Pn(k) ≡ 1
n
|{i ∈ In :dn

i > k}| is the empirical counter-cumulative distribu-
tion function and dn

max is the maximum degree of En.

This definition is consistent with the commonly used definition that a vari-
able has an empirical distribution with a power law tail if logP(x) � γ0 −β logx
for sufficiently large values of x. The shape parameter β> 1 captures the scal-
ing behavior of the tail of the (empirical) degree distribution: lower values of
β correspond to heavier tails and thus to larger variations in the degree se-
quence. Applying Theorem 2 to a sequence of economies with power law tails
leads to the following corollary.

COROLLARY 1: Consider a sequence of economies {En}n∈N with a power law
degree sequence and the corresponding shape parameter β ∈ (1�2). Then, aggre-
gate volatility satisfies

(var yn)1/2 =Ω
(
n−(β−1)/β−δ

)
�

where δ > 0 is arbitrary.

This corollary establishes that if the degree sequence of the intersectoral
network exhibits relatively heavy tails, aggregate volatility decreases at a much
slower rate than the one predicted by the standard diversification argument.
Note that Theorem 2 and Corollary 1 provide only a lower bound on the rate
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at which aggregate volatility vanishes. Thus, even if the shape parameter of the
power law structure is large, higher-order structural properties of the intersec-
toral network may still prevent the output volatility from decaying at rate

√
n,

as we show next.

3.4. Second-Order Interconnections and Cascades

First-order interconnections provide only partial information about the
structure of the input–output relationships between different sectors. In par-
ticular, as the next example demonstrates, two economies with identical degree
sequences may have significantly distinct structures, and thus, exhibit consid-
erably different levels of network-originated aggregate volatility.

EXAMPLE 2: Consider two sequences of economies {En}n∈N and {Ên}n∈N, with
corresponding intersectoral networks depicted in Figure 4, (a) and (b), respec-
tively. Each edge shown in the figures has weight 1 and all others have weight
zero. Clearly, the two network structures have identical degree sequences for
all n ∈ N. In particular, the economy indexed n in each sequence contains a
sector of degree dn (labeled sector 1), dn − 1 sectors of degree d̃n (labeled 2
through dn), with the rest of sectors having degree zero.17 However, the two
economies may exhibit very different levels of aggregate fluctuations.

(a) (b)

FIGURE 4.—The two structures have identical degree sequences for all values of n. However,
depending on the rates of dn and d̃n, aggregate output volatility may exhibit considerably different
behaviors for large values of n. (a) En: high degree sectors share a common supplier. (b) Ên: high
degree sectors do not share a common supplier.

17Since the total number of sectors in economy En is equal to n, it must be the case that (dn −
1)d̃n +dn = n. Such a decomposition in terms of positive integers dn and d̃n is not possible for all
n ∈ N. However, the main issue discussed in this example remains valid, as only the rates at which
dn and d̃n change as functions of n are relevant for our argument.
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The influence vector corresponding to the sequence {En}n∈N depicted in Fig-
ure 4(a) is given by

vin =

⎧⎪⎨⎪⎩
1/n+ v2n(1 − α)

(
dn − 1

)
/α� if i = 1,

α/n+ α(1 − α)d̃n/n� if 2 ≤ i ≤ dn,
α/n� otherwise,

implying that ‖vn‖2 =Θ(1); that is, aggregate volatility of En does not converge
to zero as n → ∞, regardless of the values of dn and d̃n.

On the other hand, the influence vector corresponding to the sequence
{Ên}n∈N in Figure 4(b) is given by

v̂in =

⎧⎪⎨⎪⎩
1/n+ (1 − α)

(
dn − 1

)
/n� if i = 1,

1/n+ (1 − α)
(
d̃n − 1

)
/n� if 2 ≤ i ≤ dn,

α/n� otherwise,

implying that ‖̂vn‖2 = Θ(dn/n+1/
√
dn). Thus, even though {En}n∈N and {Ên}n∈N

have identical degree sequences for all n, the rates of decay of ‖vn‖2 and ‖v̂n‖2

may be very different. For example, if dn = Θ(
√
n), then ‖̂vn‖2 = Θ(1/ 4

√
n),

whereas ‖vn‖2 =Θ(1).

As Example 2 suggests, first-order interconnections in the intersectoral net-
work provide little or no information on the extent of “cascade” effects,
whereby shocks to a sector affect not only its immediate downstream sectors
but also the downstream customers of those sectors, and so on. Our next result
provides a lower bound on the decay rate of aggregate volatility in terms of
second-order interconnections in the intersectoral network. The key concept
capturing the role of such interconnections is the following new statistic.

DEFINITION 3: The second-order interconnectivity coefficient of economy En

is

τ2(Wn)≡
n∑

i=1

∑
j 
=i

∑
k 
=i�j

wn
jiw

n
kid

n
j d

n
k�(9)

This coefficient measures the extent to which sectors with high degrees
(those that are major suppliers to other sectors) are interconnected to one
another through common suppliers. More specifically, τ2 takes higher values
when high-degree sectors share suppliers with other high-degree sectors, as op-
posed to low-degree ones.18 At an intuitive level, the example of Ford, General

18This observation is a consequence of the Rearrangement Inequality, which states that if a1 ≥
a2 ≥ · · · ≥ ar and b1 ≥ b2 ≥ · · · ≥ br , then, for any permutation (â1� â2� � � � � âr) of (a1� a2� � � � � ar),
we have

∑r
i=1 aibi ≥ ∑r

i=1 âibi . See, for example, Steele (2004, p. 78).
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Motors, and Chrysler discussed in the Introduction corresponds to a network
structure with a high second-order interconnectivity coefficient: not only are
all three automakers highly important firms, but also they rely on the same set
of suppliers. Finally, it is worth stressing that the information captured by τ2 is
fundamentally different from the information encoded in the degree sequence
of a network. We have the following result.

THEOREM 3: Given a sequence of economies {En}n∈N, aggregate volatility satis-
fies

(var yn)1/2 =Ω

(
1√
n

+ CVn√
n

+
√
τ2(Wn)

n

)
�(10)

Theorem 3 shows how second-order interconnections, captured by coeffi-
cient τ2, affect aggregate volatility. It also shows that even if the empirical
degree distributions of two sequences of economies are identical for all n, ag-
gregate volatilities may exhibit considerably different behaviors. In this sense,
Theorem 3 is a refinement of Theorem 2, taking both first- and second-order
relations between different sectors into account. It can also be considered to
be the economically more interesting result, as it captures not only the fact that
some sectors are “large” suppliers, but also the more subtle notion that there
is a clustering of significant sectors, caused by the fact that they have common
suppliers. Thus, in essence, Theorem 3 captures the possibility of cascade ef-
fects in the economy.

EXAMPLE 2 —Continued: Recall the sequences of economies {En}n∈N and
{Ên}n∈N depicted in Figure 4. As mentioned earlier, intersectoral networks
corresponding to the two sequences have identical empirical degree distri-
butions for all n ∈ N. On the other hand, it is straightforward to verify that
the second-order interconnectivity coefficients are very different; in particu-
lar, τ2(Wn) = Θ(n2), whereas τ2(Ŵn) = 0. This is the reason behind the stark
difference in the decay rate of aggregate volatility in the two sequences of
economies.

Similarly to the representation given in (7), we can also summarize the ef-
fects of second-order interconnection in terms of the tail of the second-order
degree sequence of the economy, where the second-order degree of sector i is
defined as the weighted sum of the degrees of the sectors that use sector i’s
product as inputs, with weights given by the corresponding input shares, that
is,

qn
i ≡

n∑
j=1

dn
j w

n
ji�(11)

We have the following counterpart to Corollary 1.
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COROLLARY 2: Suppose that {En}n∈N is a sequence of economies whose
second-order degree sequences have power law tails with shape parameter ζ ∈
(1�2) (cf. Definition 2). Then, aggregate volatility satisfies

(var yn)1/2 =Ω
(
n−(ζ−1)/ζ−δ

)
for any δ > 0.

The above corollary establishes that if the distributions of second-order de-
grees have relatively heavy tails, then aggregate volatility decreases at a much
slower rate than the one predicted by the standard diversification argument. As
Example 2 shows, second-order effects may dominate the first-order effect of
the degree distribution in determining the decay rate of aggregate volatility of
the economy. In particular, for a sequence of economies in which the empirical
distributions of both first- and second-order degrees have power law tails with
exponents β and ζ, the tighter bound for the decay rate of aggregate volatility
is determined by min{β�ζ}.

The results in Theorem 3 can be further strengthened to capture the effects
of higher-order interconnections and more complex patterns of cascades. We
provide such a characterization in Appendix D, corresponding to tighter lower
bounds on the decay rate of aggregate volatility.

3.5. Balanced Structures

Finally, we establish a partial converse to Theorem 2, showing that with lim-
ited variations in the degrees of different sectors, aggregate volatility decays at
rate

√
n—consistent with the standard diversification argument.

DEFINITION 4: A sequence of economies {En}n∈N is balanced if maxi∈In d
n
i =

Θ(1).

In balanced structures, there is a limit to the extent of asymmetry in the
importance of different sectors as suppliers, in the sense that the degree of no
sector increases unboundedly as n→ ∞. Thus, balanced structures can be con-
sidered as the polar opposites of network structures with “dominant” sectors—
sectors whose degrees grow linearly as n → ∞—such as the one in Figure 2.

THEOREM 4: Consider a sequence of balanced economies {En}n∈N. Then there
exists ᾱ ∈ (0�1) such that, for α≥ ᾱ, (var yn)1/2 = Θ(1/

√
n).

This theorem shows that when the intersectoral network has a balanced
structure and the role of the intermediate inputs in production is not too large,
volatility decays at rate

√
n, implying that other structural properties of the

network cannot contribute any further to aggregate volatility. Consequently,
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(a) (b)

FIGURE 5.—Economies with balanced intersectoral network structures: aggregate volatility
decays at rate

√
n. (a) The ring. (b) The binary tree.

in economies with balanced intersectoral network structures, aggregate fluctu-
ations do not have network origins.

A noteworthy corollary to this theorem is that many network structures that
are often considered to be “fragile,” such as the ring and the binary tree de-
picted in Figure 5, have exactly the same asymptotic behavior as the structures
in Figure 1 as far as aggregate volatility is concerned. In fact, the “sparseness”
of the input–output matrix has no impact on this asymptotic behavior. It is only
in network structures with asymmetric roles for different sectors—in terms of
either first-order or higher-order interconnections—that sectoral (or more mi-
cro) shocks can be the origins of aggregate fluctuations.

Theorem 4 is a generalization of the results of Dupor (1999). As noted by
Dupor (1999) and Horvath (1998), Theorem 4 is both an aggregation and an
irrelevance result for economies with balanced structures. As an aggregation
result, it suggests an observational equivalence between the one-sector econ-
omy and any multisector economy with a balanced structure. On the other
hand, as an irrelevance result, it shows that within the class of balanced struc-
tures, different input–output matrices generate roughly the same amount of
volatility. However, note that, in contrast to the claims in Lucas (1977) and
Dupor (1999), our earlier results clearly establish that neither the aggregation
nor the irrelevance interpretation may hold when the intersectoral network is
not balanced.

4. APPLICATION

In this section, we briefly look at the intersectoral network structure of the
U.S. economy and study its implications for aggregate fluctuations in light
of the results presented in Section 3. For this purpose, we use the detailed
benchmark input–output accounts spanning the 1972–2002 period, compiled
every five years by the Bureau of Economic Analysis. We use commodity-by-
commodity direct requirements tables, where the typical (i� j) entry captures
the value of spending on commodity i per dollar of production of commodity j
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(evaluated at current producer prices).19 These detailed input–output accounts
constitute the finest level of disaggregation available for the U.S. intersectoral
trade data, with most sectors (roughly) corresponding to four-digit SIC defi-
nitions.20 Even though we consider our results applicable at a finer level than
that available through the BEA tables, this exercise is useful to obtain a rough
empirical grounding for our results. Moreover, it enables us to perform back-
of-the-envelope calculations to get an impression of the role played by the U.S.
input–output structure in the relationship between sectoral shocks and aggre-
gate volatility.

We start by analyzing the variation in total intermediate input shares across
commodities, or equivalently, the variation in the (weighted) indegrees for
each sector. The first panel of Figure 6 shows the nonparametric estimate of
the empirical density of intermediate input shares for 2002. The second panel
displays the same densities for every detailed direct requirements table since
1972.21 In line with the previous estimates of Basu (1995) and Jones (2012), by
averaging across years and sectors we find an intermediate input share of 0.55.
This average share is stable over time, ranging between a minimum of 0.52
in 1987 and a maximum of 0.58 in 2002. Even though some sectors are more

FIGURE 6.—Empirical densities of intermediate input shares (indegrees).

19By slightly abusing terminology, we use the terms commodity and sector interchangeably
throughout this section.

20The BEA tables for the period 1972–1992 are based on an evolving SIC classification,
whereas the NAICS system was adopted from 1997 onward. While individual sectors are not
immediately comparable across SIC and NAICS classifications, the corresponding intersectoral
network structures—the objects of analysis in this paper—will be shown to be remarkably stable.

21We used the Gaussian distribution as the kernel smoothing function with a bandwidth of 0�3.
Additional details on the data and codes are available in the Supplemental Material to this paper
(Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012)).
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FIGURE 7.—Empirical densities of first- and second-order degrees.

(intermediate) input-intensive than others, the indegrees of most sectors are
concentrated around the mean: on average, 71% of the sectors are within one
standard deviation of the mean input share.22

Recall that in our model we assumed that the intermediate input share is the
same and equal to 1−α across all sectors. Thus, to obtain the data counterpart
of our W matrix, we renormalized each entry in the direct requirements tables
by the total input requirement of the corresponding sector and then computed
the corresponding first- and second-order degrees, di and qi, respectively.23

Figure 7 shows the nonparametric estimates of the corresponding empirical
densities in 2002.24

Unlike their indegree counterpart, the empirical distributions of both first-
and second-order (out)degrees are noticeably skewed, with heavy right tails.
Such skewed distributions are indicative of presence of commodities that are
(i) general purpose inputs used by many other sectors; (ii) major suppliers to
sectors that produce the general purpose inputs.25 In either case, the fraction of
commodities whose weighted first-order (resp., second-order) degrees are an

22This is again stable over different years, ranging from 0.74 in 1977 to 0.67 in 2002. Equiva-
lently, 95% of the sectors are within two standard deviations of the mean input share.

23We checked that all results below still apply when we do not perform this normalization.
24In Figure 7, we excluded commodities with zero outdegree, that is, those that do not enter as

intermediate inputs in the production of other commodities.
25The top five sectors with the highest first-order degrees are management of companies and

enterprises, wholesale trade, real estate, electric power generation, transmission, and distribu-
tion, and iron and steel mills and ferroalloy manufacturing. The top five sectors with the highest
second-order degrees are management of companies and enterprises, wholesale trade, real es-
tate, advertising and related services, and monetary authorities and depository credit intermedi-
ation.
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FIGURE 8.—Empirical counter-cumulative distribution function of first-order degrees.

order of magnitude above the mean first-order (resp., second-order) degree is
nonnegligible.26

To further characterize such heavy-tailed behaviors, Figures 8 and 9 plot the
empirical counter-cumulative distribution functions (i.e., 1 minus the empiri-
cal cumulative distribution functions) of the first-order and second-order de-
grees on a log–log scale. The first panels in both figures also show nonparamet-

FIGURE 9.—Empirical counter-cumulative distribution function of second-order degrees.

26Note that, given the normalization discussed above, the mean first-order and second-order
degrees are equal to 1.



2000 ACEMOGLU, CARVALHO, OZDAGLAR, AND TAHBAZ-SALEHI

ric estimates for the empirical counter-cumulative distributions in 2002 using
the Nadaraya–Watson kernel regression with a bandwidth selected using least
squares cross-validation (Nadaraya (1964) and Watson (1964)). The second
panels show the empirical counter-cumulative distributions for all other years.
In either case, the tail of the distribution is well-approximated by a power law
distribution, as shown by the approximate linear relationship.

An estimate for the shape parameters can, in principle, be obtained by run-
ning an ordinary least squares (OLS) regression of the empirical log-CCDF
on the log-outdegree sequence. However, as Gabaix and Ibragimov (2011)
pointed out, these simple OLS estimates are downward biased in small sam-
ples. Thus, to account for this bias, we implement the modified log rank–
log size regression suggested by Gabaix and Ibragimov. Throughout, we take
the tail of the counter-cumulative distributions to correspond to the top 20%
largest sectors in terms of d and q. The resulting estimates are shown in Ta-
ble I, along with the corresponding standard errors. Notice that the estimates
for the shape parameter of the first-order degree distribution are always above
the corresponding estimates for the second-order degree distribution. Averag-
ing the OLS estimates across years, we obtain β̂ = 1�38 and ζ̂ = 1�18 for the
first- and second-order degree distributions, respectively.

As a cross-check, we also calculated the average slope implied by the non-
parametric Nadaraya–Watson regression, while again taking the tail to corre-
spond to 20% of the samples in each year. Averaging over years, the absolute
values of the implied slopes are 1�28 and 1�17 for the first- and second-order
degree distributions, respectively, which are fairly close to the OLS estimates.
As yet another alternative, we also calculated Hill-type maximum likelihood
estimates of β and ζ. In particular, we followed Clauset, Shalizi, and Newman
(2009) in using all observations on or above some endogenously determined
cut-off point. Averaging across years, these ML estimates are β̂ = 1�39 and

TABLE I

OLS ESTIMATES OF β AND ζa

1972 1977 1982 1987 1992 1997 2002

β̂ 1.38 1.38 1.35 1.37 1.32 1.43 1.46
(0.20; 97) (0.19; 105) (0.18; 106) (0.19; 102) (0.19; 95) (0.21; 95) (0.23; 83)

ζ̂ 1.14 1.15 1.10 1.14 1.15 1.27 1.30
(0.16; 97) (0.16; 105) (0.15; 106) (0.16; 102) (0.17; 95) (0.18; 95) (0.20; 83)

n 483 524 529 510 476 474 417

aThe numbers in parentheses denote the associated standard errors (using Gabaix and Ibragimov (2011) correc-
tion) and the number of observations used in the estimation of the shape parameter (corresponding to the top 20%
of sectors). The last row shows the total number of sectors for that year.
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TABLE II

ESTIMATES FOR ‖vn‖2
a

1972 1977 1982 1987 1992 1997 2002

‖vnd‖2 0.098 0.091 0.088 0.088 0.093 0.090 0.094
(nd = 483) (nd = 524) (nd = 529) (nd = 510) (nd = 476) (nd = 474) (nd = 417)

‖vns‖2 0.139 0.137 0.149 0.133 0.137 0.115 0.119
(ns = 84) (ns = 84) (ns = 80) (ns = 89) (ns = 89) (ns = 127) (ns = 128)

‖vnd ‖2

‖vns ‖2
0�705 0�664 0�591 0�662 0�679 0�783 0�790

1/
√
nd

1/
√
ns

0.417 0�400 0�399 0�418 0�432 0�518 0�554

a‖vnd ‖2 denotes estimates obtained from the detailed level input–output BEA data. ‖vns ‖2 denotes estimates
obtained from the summary input–output BEA data. The numbers in parentheses denote the total number of sectors
implied by each level of disaggregation.

ζ̂ = 1�14, which are again very close to the baseline OLS estimates reported
above.27

These estimates imply that there exists a high degree of asymmetry in the
U.S. economy in terms of the roles that different sectors play as direct or in-
direct suppliers to others, consistent with the hypothesis that the interplay of
sectoral shocks and network effects leads to sizable aggregate fluctuations. We
next attempt to give preliminary estimates of the quantitative extent of these
network effects using two complementary approaches.

First, to estimate the aggregate effects of sectoral shocks, we compute ‖vn‖2

for the U.S. input–output matrix at different levels of aggregation and for dif-
ferent years. The first two rows of Table II present the estimates obtained from
the detailed level and summary level input–output BEA tables, with nd and
ns respectively denoting the number of sectors at the corresponding levels of
disaggregation.

As the first row of Table II shows, the estimates for ‖vnd‖2 at different years
are roughly twice as large as 1/

√
nd . This suggests that, at this level of disaggre-

gation, intersectoral linkages increase the impact of sectoral shocks by at least
twofold. Furthermore, as expected, the estimates for ‖vnd‖2 are smaller than
the ones obtained from the more aggregated data at the summary level, ‖vns‖2.

The more important quantity, however, is the ratio ‖vnd‖2/‖vns‖2, which cap-
tures the change in the aggregate effect of sectoral shocks as we go from more
to less aggregated data. If indeed taking intersectoral linkages into account
simply doubles the impact of sectoral shocks at all levels of disaggregation,
then this ratio would be approximately equal to 1/

√
nd

1/
√
ns

. If, on the other hand,

27The impact of normalizing the input shares is also negligible for these estimates. Using the
original direct requirements tables to compute first- and second-order degrees gives average OLS
estimates of β̂= 1�42 and ζ̂ = 1�23.
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network effects are more important at higher levels of disaggregation, then we
would expect ‖vnd‖2/‖vns‖2 to be larger than 1/

√
nd

1/
√
ns

. Table II clearly shows that
the latter is indeed the case for all years. For example, in 1972, as we move
from the more aggregated measurement at the level of 84 sectors (at two-digit
SIC) to an economy comprising 483 sectors (roughly at four-digit SIC), the
standard diversification argument would imply a decline of 58% in the role of
sectoral shocks, whereas the actual decline observed in the data (measured by
‖vnd‖2/‖vns‖2) is about 29%. In fact, as we will show next, the observed declines
across all years are much more in line with the predictions of Corollary 2 rather
than 1/

√
nd

1/
√
ns

implied by the standard diversification argument.
Our second approach is to extrapolate from the distributions of first-order

and second-order degrees in Figures 8 and 9 to infer the potential role of net-
work effects at finer levels of disaggregations than those provided by the BEA
tables. Clearly, we only observe the input–output matrix—the equivalent of
matrix W in our model—at the levels of disaggregation available through the
BEA tables. Therefore, such extrapolations are inevitably speculative. Never-
theless, the “scale-free” nature of the power law distribution, which appears to
be a good approximation to the data, suggests that the tail behavior of first-
order and second-order degrees may be informative about their behavior at
higher levels of disaggregation.

As suggested by the discussion following Corollary 2, the estimates in Ta-
ble I imply that the lower bound on the rate of decay of standard deviation
obtained from the second-order degrees is considerably tighter than that ob-
tained from the first-order degrees. In particular, the shape parameter ζ̂ = 1�18
implies that aggregate volatility decays no faster than n(ζ−1)/ζ = n0�15, whereas
the lower bound implied by the average shape parameter for the first-order
degrees, β̂ = 1�38, is n(β−1)/β = n0�28. It is noteworthy that this is not only a sig-
nificantly slower rate of decay than

√
n—the rate predicted by the standard

diversification argument—but is also consistent with the declines in ‖vn‖2 as
we go from less to more disaggregated data in Table II.

To gain a further understanding of the implications of this differential rate
of decay (due to network effects and the hypothesized scale-free behavior of
second-order degrees), we computed the (over-time) average standard devia-
tion of total factor productivity across 459 four-digit (SIC) manufacturing in-
dustries from the NBER productivity database between 1958 and 2005 (after
controlling for a linear time trend to account for the secular decline in several
manufacturing industries).28 This average standard deviation is estimated as

28To the extent that total factor productivity is measured correctly, it approximates the vari-
ability of idiosyncratic sectoral shocks. In contrast, the variability of sectoral value added is deter-
mined by idiosyncratic shocks as well as the sectoral linkages, as we emphasized throughout the
paper.
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0.058.29 On the other hand, over the same time period, the average of the U.S.
GDP accounted for by manufacturing is around 20%.30 Thus if, for the pur-
pose of our back-of-the-envelope calculations, we assume that the 459 four-
digit manufacturing sectors correspond to one-fifth of the GDP, we can con-
sider that the economy comprises 5 × 459 = 2295 sectors at the same level of
disaggregation as four-digit manufacturing industries.31 With a sectoral volatil-
ity of 0.06, if aggregate volatility decayed at the rate

√
n, as would have been

the case with a balanced structure, we would expect it to be approximately
around 0�058/

√
2295 � 0�001, clearly corresponding to a very small amount

of variability. This observation underscores the fact that, in a balanced struc-
ture with a reasonably large number of sectors, sector-specific shocks average
out and do not translate into a sizable amount of aggregate volatility. If, in-
stead, as suggested by our lower bound from the second-order degree distri-
bution, aggregate volatility decays at the rate n0�15, the same number would be
0�058/(2295)0�15 � 0�018. This corresponds to sizable aggregate fluctuations, in
the ballpark of the approximately 2% standard deviation of the U.S. GDP.

This extrapolation exercise thus suggests that the types of interconnec-
tions implied by the U.S. input–output structure may generate significant
aggregate fluctuations from sectoral shocks. Note that—as we have already
emphasized—these calculations are merely suggestive and are no substitute
for a systematic econometric and quantitative investigation of the implications
of the input–output linkages in the U.S. economy, which we leave for future
work.

5. CONCLUSION

The general consensus in macroeconomics has been that microeconomic
shocks to firms or disaggregated sectors cannot generate significant aggregate
fluctuations. This consensus, based on a “diversification argument,” has main-
tained that such “idiosyncratic” shocks would wash out as aggregate output
concentrates around its mean at the very rapid rate of

√
n.

This paper illustrates that, in the presence of intersectoral input–output link-
ages, such a diversification argument may not apply. Rather, propagation of
microeconomic idiosyncratic shocks due to the intersectoral linkages may in-
deed lead to aggregate fluctuations. In particular, the rate at which aggregate
volatility decays explicitly depends on the structure of the intersectoral network

29Alternatively, if we weigh different industries by the logarithm of their value added, so that
small industries do not receive disproportionate weights, the average becomes 0.054.

30Data from http://www.bea.gov/industry/gdpbyind_data.htm.
31One might be concerned that manufacturing is more volatile than nonmanufacturing. This

does not appear to be the case, however, at the three-digit level, where we can compare man-
ufacturing and nonmanufacturing industries. If anything, manufacturing industries appear to be
somewhat less volatile with or without controlling for industry size (though this difference is not
statistically significant in either case).

http://www.bea.gov/industry/gdpbyind_data.htm
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representing input–output linkages. Our results provide a characterization of
this relationship in terms of the importance of different sectors as direct or
indirect suppliers to the rest of the economy; in particular, high levels of vari-
ability in the degrees of different sectors (as captured by the corresponding
coefficient of variation), as well as the presence of high degree sectors that
share common suppliers (as measured by the second-order interconnectivity
coefficient), imply slower rates of decay for aggregate volatility.

The main insight suggested by this paper is that sizable aggregate fluctua-
tions may originate from microeconomic shocks only if there are significant
asymmetries in the roles that sectors play as direct or indirect suppliers to
others. This analysis provides a fairly complete answer to the debate between
Dupor (1999) and Horvath (1998, 2000). It shows that while Dupor’s critique
applies to economies with balanced structures, in general the sectoral structure
of the economy may have a defining impact on aggregate fluctuations.

Our analysis suggests a number of directions for future research. First,
a more systematic analysis to investigate the quantitative importance of the
mechanisms stressed in this paper is required. In this vein, Carvalho (2008)
extends our characterization to the class of dynamic multisector economies
considered by Long and Plosser (1983) and Horvath (2000), and conducts a de-
tailed calibration exercise to show that the intersectoral network structure can
account for a large fraction of observed sectoral comovement and aggregate
volatility of the U.S. economy. Such an investigation can be complemented
by systematic econometric analyses that build on Foerster, Sarte, and Watson
(2011) and exploit both the time-series and cross-sectoral implications of the
approach developed here.

Second, the characterization results provided here focus on the standard de-
viation of log value added, which captures the nature of fluctuations “near the
mean” of aggregate output. This can be supplemented by a systematic analysis
of large deviations of output from its mean. Acemoglu, Ozdaglar, and Tahbaz-
Salehi (2010) provide a first set of results relating the likelihood of tail events
to the structural properties of the intersectoral network.

Third, throughout the paper we assumed that the intersectoral network cap-
tures the exogenously given technological constraints of different sectors. In
practice, however, input–output linkages between different firms and disag-
gregated sectors are endogenously determined. For example, by making costly
investments in building relationships with several suppliers, firms may be able
to reduce their inputs’ volatilities, creating a trade-off. Part of this trade-off
will be shaped by how risky different suppliers are perceived to be and how
risk is evaluated and priced in the economy. Characterizing the implications of
such trade-offs is an important direction for future research.

Last but not least, another important area for future research is a systematic
analysis of the relationship between the structure of financial networks and the
extent of contagion and cascading failures (see, e.g., Acemoglu, Ozdaglar, and
Tahbaz-Salehi (2012)).
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APPENDIX A: COMPETITIVE EQUILIBRIUM

DEFINITION: A competitive equilibrium of economy E with n sectors con-
sists of prices (p1�p2� � � � �pn), wage h, consumption bundle (c1� c2� � � � � cn),
and quantities (	i� xi� (xij)) such that

(a) the representative consumer maximizes her utility,
(b) the representative firms in each sector maximize profits,
(c) labor and commodity markets clear, that is,

ci +
n∑

j=1

xji = xi ∀i = 1� � � � � n�

n∑
i=1

	i = 1�

Taking first-order conditions with respect to 	i and xij in firm i’s problem im-
plies 	i = αpixi/h and xij = (1 −α)piwijxi/pj , where h is the market wage and
pj denotes the price of good j. Substituting these values in firm i’s production
technology yields

α log(h) = αεi +B + log(pi)

− (1 − α)

n∑
j=1

wij log(pj)+ (1 − α)

n∑
j=1

wij log(wij)�

where B is a constant given by B = α log(α) + (1 − α) log(1 − α). Multi-
plying the above equation by the ith element of the influence vector v′ =
α
n
1′[I − (1 − α)W ]−1 and summing over all sectors i gives

log(h)= v′ε+μ�

where μ is a constant independent of the vector of shocks ε and is given by

μ= 1
n

n∑
i=1

log(pi)+B/α+ 1 − α

α

n∑
i=1

n∑
j=1

viwij log(wij)�

Finally, by setting

A= nexp

(
−B/α− (1 − α)

α

n∑
i=1

n∑
j=1

viwij log(wij)

)
(12)

and normalizing the ideal price index to 1, that is, n
A
(p1p2 · · ·pn)

1/n = 1, we
obtain

y = log(h)= v′ε�
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That is, the logarithm of real value added in a given economy—which we refer
to as aggregate output—is simply a weighted sum of sector-specific productiv-
ity shocks, where the weights are determined by the corresponding influence
vector.

We now show that the influence vector also captures the equilibrium share
of sales of different sectors. By plugging consumption levels and firms’ la-
bor and input demands into the market clearing condition for commod-
ity i, we obtain h/n + (1 − α)

∑n

j=1 wjipjxj = pixi. This implies that si =
h/n + (1 − α)

∑n

j=1 sjwji, where si = pixi is the equilibrium value of sales of
sector i. Thus, the vector of equilibrium sales is related to the influence vector
through s′ = (h/n)1′[I − (1 − α)W ]−1 = (h/α)v′. Therefore,

vi = pixi

n∑
j=1

pjxj

�

where we have used the fact that v′
n1 = 1.

The relationship between equilibrium shares of sales of different sectors and
the influence vector can also be derived directly by applying a variant of Hul-
ten’s (1978) theorem, which establishes that if the production functions are
given by xi = eαεif (xi1� � � � � xin� 	i), a productivity change of d(αεi) to sector i
causes an increase in GDP equal to

d(GDP)= pixi

GDP
d(αεi)�

Finally, the fact that h= α
∑n

i=1 pixi implies

vi = dh

dεi

= pixi

n∑
j=1

pjxj

�

APPENDIX B: CENTRAL LIMIT THEOREMS

The Lindeberg–Feller Theorem

The Lindeberg–Feller theorem (Durrett (2005, p. 114)) provides sufficient
conditions under which the distribution of sums of independent, but not nec-
essarily identically distributed, random variables converges to the normal law.

THEOREM A.1—Lindeberg–Feller: Consider the triangular array of indepen-
dent random variables ξin, 1 ≤ i ≤ n, with zero expectations and finite variances
such that

n∑
i=1

Eξ2
in = 1�
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Also suppose that Lindeberg’s condition holds, that is,

lim
n→∞

n∑
i=1

E
(
ξ2
inI{|ξin|>δ}

) = 0 for all δ > 0�(13)

where I denotes the indicator function. Then,

ξ1n + ξ2n + · · · + ξnn
d−→ N (0�1)�

Nonclassical Central Limit Theorems

To establish asymptotic normality for triangular arrays of random variables
{ξin} that do not satisfy Lindeberg’s condition (13), one needs to apply “non-
classical” generalizations of the central limit theorem. The following theorem
is from Rotar (1975). A detailed treatment of the subject can be found in Chap-
ter 9 of Linnik and Ostrovskĭı (1977).

THEOREM A.2: Consider a triangular array of independent random variables
ξin, 1 ≤ i ≤ n, with distributions Gin, zero expectations, and finite variances σ2

in,
such that

∑n

i=1 σ
2
in = 1. Then

∑n

i=1 ξin −→ N (0�1) in distribution, only if

lim
n→∞

n∑
i=1

∫
|t|>δ

|t|∣∣Gin(t)−�in(t)
∣∣dt = 0 for all δ > 0�(14)

where �in(t)= �(t/σin) and � denotes the standard normal distribution.

APPENDIX C: PROOFS

Throughout the proofs, for notational simplicity, we drop the index n when
denoting the degrees of different sectors and the elements of matrix Wn if no
confusion arises.

Before presenting the proof of Theorem 1, we state and prove a simple
lemma.

LEMMA A.3: If {εin} satisfy the assumptions of part (b) of Theorem 1, then, for
any constant b > a,

E
[
ε2
inI{|εin|>b}

]
< E

[
ε2

I{|ε|>b}
]
�

PROOF: First note that a simple application of integration by parts implies

E
[
ε2
inI{εin>b}

] =
∫ ∞

b

t2 dFin(t)

= b2
[
1 − Fin(b)

] + 2
∫ ∞

b

t
[
1 − Fin(t)

]
dt
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< b2
[
1 − F̄(b)

] + 2
∫ ∞

b

t
[
1 − F̄(t)

]
dt

= E
[
ε2

I{ε>b}
]
�

where the inequality in the third line is a consequence of the fact that
Fin(t) > F̄(t) for all t > a. Also note that the second equality relies on the
fact that limt→∞ t2[1 − F̄(t)] = 0, itself a consequence of the assumption that ε
has a bounded variance. A similar argument guarantees that

E
[
ε2
inI{εin<−b}

]
< E

[
ε2

I{ε<−b}
]
�

completing the proof. Q.E.D.

PROOF OF THEOREM 1: The proof of part (a) is trivial and is omitted.
To prove part (b), define the triangular array of real numbers {ξin}1≤i≤n as

ξin = vinεin/σ‖vn‖2, which implies 1
σ‖vn‖2

yn = ξ1n + · · · + ξnn. It is straightfor-
ward to verify that Eξin = 0 and

∑n

i=1 Eξ2
in = 1. Therefore, provided that Lin-

deberg’s condition (13) is satisfied, the Lindeberg–Feller theorem implies that
yn/σ‖vn‖2 converges in distribution to a standard normal distribution. To verify
that Lindeberg’s condition indeed holds, notice that, for large enough values
of n, we have

n∑
i=1

E
(
ξ2
inI{|ξin|>δ}

) = 1
σ2‖vn‖2

2

n∑
i=1

v2
inE

[
ε2
inI{|εin|>δσ‖vn‖2/|vin|}

]
≤ 1

σ2‖vn‖2
2

n∑
i=1

v2
inE

[
ε2
inI{|εin|>δσ‖vn‖2/‖vn‖∞}

]
<

1
σ2‖vn‖2

2

n∑
i=1

v2
inE

[
ε2

I{|ε|>δσ‖vn‖2/‖vn‖∞}
]

= 1
σ2

E
[
ε2

I{|ε|>δσ‖vn‖2/‖vn‖∞}
]
�

where the second inequality is a consequence of Lemma A.3. By the dominated
convergence theorem and the assumption that ‖vn‖∞ = o(‖vn‖2), the right-
hand side of the above equality converges to zero as n → ∞, and therefore,

lim
n→∞

n∑
i=1

E
(
ξ2
inI{|ξin|>δ}

) = 0 for all δ > 0�

completing the proof of part (b).



NETWORK ORIGINS OF AGGREGATE FLUCTUATIONS 2009

Finally, to prove part (c), we show that the triangular array of random vari-
ables ξin = εinvin/σ‖vn‖2 does not satisfy condition (14).32 The distribution
function of ξin is given by Gin(t)= F(tσ‖vn‖2/vin), where F denotes the distri-
bution of εin. Therefore,

n∑
i=1

∫
|t|>δ

|t|∣∣Gin(t)−�in(t)
∣∣dt

= 1
σ2‖vn‖2

2

n∑
i=1

v2
in

∫ ∞

−∞
|s|∣∣F(s)−�(s)

∣∣I{|s|>δσ‖vn‖2/|vin|} ds

≥
( ‖vn‖∞
σ‖vn‖2

)2 ∫ ∞

−∞
|s|∣∣F(s)−�(s)

∣∣I{|s|>δσ‖vn‖2/‖vn‖∞} ds�

Therefore, unless F = �, for small enough δ > 0, the right-hand side of the
above relation is bounded away from zero for infinitely many n. Hence, Theo-
rem A.2 implies that 1

‖vn‖2
yn is not normally distributed as n → ∞. Q.E.D.

PROOF OF THEOREM 2: Recall that aggregate volatility is of order ‖vn‖2. On
the other hand, the fact that all eigenvalues of (1 − α)Wn lie strictly inside the
unit circle means that vn can be expressed in terms of the convergent power
series

v′
n = α

n
1′

∞∑
k=0

[
(1 − α)Wn

]k
�(15)

implying

v′
n ≥ α

n
1′ + α(1 − α)

n
1′Wn�

Therefore,

‖vn‖2
2 ≥ α2

n2
1′1 + 2α2(1 − α)

n2
1′Wn1 + α2(1 − α)2

n2

∥∥W ′
n1

∥∥2

2
(16)

= α2(3 − 2α)
n

+ α2(1 − α)2

n2

∥∥W ′
n1

∥∥2

2

= Θ(1/n)+Θ

(
1
n2

n∑
i=1

d2
i

)
�

where we have used the fact that the ith column sum of Wn is the outdegree of
sector i, and that the sum of all its elements is equal to n. Given that inequality

32For a similar argument, see Christopeit and Werner (2001).
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√
n‖z‖2 ≥ ‖z‖1 holds for any n-dimensional vector z, we conclude that

n∑
i=1

d2
i ≥ 1

n

(
n∑

i=1

di

)2

= n�

Thus, the first term in (16) is always dominated by the second term. This estab-
lishes the first part of the theorem.

To prove the second part of the theorem, note that average outdegree d̄ is
equal to 1. Therefore,

1
n2

n∑
i=1

d2
i = n− 1

n2
[CVn]2 + 1

n
�

establishing that var(yn) =Ω( 1+(CVn)
2

n
). This completes the proof. Q.E.D.

PROOF OF COROLLARY 1: Define

P̂n(k) ≡ 1
n

∣∣{i ∈ In :d2
i > k

}∣∣
as the empirical counter-cumulative distribution function of the outdegrees-
squared. By definition, P̂n(k) = Pn(

√
k) for all k. Also define B = {b1� � � � � bm}

as the set of values that the outdegrees-squared of En take, where bk+1 > bk for
all k. Thus,

n∑
i=1

d2
i = n

m∑
k=1

bk

[
P̂n(bk−1)− P̂n(bk)

] = n

m−1∑
k=0

(bk+1 − bk)P̂n(bk)�

with the convention that b0 = 0. Therefore,

n∑
i=1

d2
i = n

∫ bm

0
P̂n(t)dt = 2n

∫ dnmax

0
tPn(t)dt�

where the last equality is due to a simple change of variables. The assump-
tion that L(·) is a slowly varying function, satisfying limt→∞ L(t)tδ = ∞ for any
positive δ > 0, implies that

n∑
i=1

d2
i ≥ nĉn

∫ dnmax

0
t(1−β−δ) dt�

where ĉn = Θ(1) is a sequence of positive numbers. Thus, from (7) in Theo-
rem 2 and since β ∈ (1�2), we have

(var yn)1/2 =Ω
(
n(1−β)/β−δ′)

�
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where δ′ = δ/(2β). Q.E.D.

PROOF OF THEOREM 3: Recall that the influence vector corresponding to
economy En can be written in terms of a power series of Wn specified by (15).
Given the fact that all terms in this infinite sum are nonnegative vectors, we
have

v′
n ≥ α

n
1′[I + (1 − α)Wn + (1 − α)2(Wn)

2
]
�

Therefore,

‖vn‖2
2 ≥ α2

n2
1′[I + (1 − α)Wn + (1 − α)2(Wn)

2
]

(17)

× [
I + (1 − α)Wn + (1 − α)2(Wn)

2
]′

1

= Θ

(
1
n2

∥∥1′Wn

∥∥2

2

)
+Θ

(
1
n2

1′(Wn)
2W ′

n1
)

+Θ

(
1
n2

∥∥1′(Wn)
2
∥∥2

2

)
�

where we have used the fact that 1
n2 ‖1′Wn‖2

2 = 1
n2

∑n

i=1 d
2
i dominates 1/n for

large values of n. For the second term on the right-hand side of (17), we have

1′(Wn)
2W ′

n1 =
n∑

i=1

n∑
j=1

wjididj

=
n∑

i=1

∑
j 
=i

wjididj +
n∑

i=1

wiid
2
i

= s(Wn)+ O
(

n∑
i=1

d2
i

)
�

where s(Wn)≡ ∑n

i=1

∑
j 
=i wjididj is known as the s-metric of the corresponding

intersectoral network. On the other hand, for the third term on the right-hand
side of (17), we have

∥∥1′(Wn)
2
∥∥2

2
=

n∑
i=1

[
n∑

j=1

wjidj

]2

=
n∑

i=1

[
wiidi +

∑
j 
=i

wjidj

]2

=
n∑

i=1

w2
iid

2
i + 2

n∑
i=1

∑
j 
=i

wiiwjididj +
n∑

i=1

[∑
j 
=i

wjidj

]2
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= O
(

n∑
i=1

d2
i

)
+ O

(
s(Wn)

)
+

n∑
i=1

∑
j 
=i

d2
j w

2
ji +

n∑
i=1

∑
j 
=i

∑
k 
=i�j

wjiwkidjdk

= O
(

n∑
i=1

d2
i

)
+ O

(
s(Wn)

) +Θ
(
τ2(Wn)

)
�

where in the next to the last equality we used the fact that wii ≤ 1 for all i.
The last equality holds because of the fact that

∑n

i=1 w
2
ji ≤ 1 for all j. Thus,

combining all the above leads to

‖vn‖2
2 =Ω

(
1
n2

[
n∑

i=1

d2
i + s(Wn)+ τ2(Wn)

])
�

Now, inequality

n∑
i=1

[
di −

∑
j 
=i

wjidj

]2

≥ 0

guarantees that

n∑
i=1

d2
i +

n∑
i=1

∑
j 
=i

d2
j w

2
ji + τ2(Wn)≥ 2s(Wn)�

implying that s(Wn)= O(
∑n

i=1 d
2
i +τ2(Wn)). Therefore, in highly disaggregated

economies, the effect captured by the s-metric is dominated by the sum of the
other two terms, and as a result

‖vn‖2 =Ω

(
1
n

√√√√ n∑
i=1

d2
i +

√
τ2(Wn)

n

)
�

completing the proof. Q.E.D.

PROOF OF COROLLARY 2: By equation (17), we have (var yn)1/2 =
Ω( 1

n
‖1′(Wn)

2‖2), which implies that

(var yn)1/2 =Ω

(
1
n

√√√√ n∑
i=1

q2
i

)
�
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The rest of the proof follows from an argument similar to the proof of Corol-
lary 1. Q.E.D.

PROOF OF THEOREM 4: First, note that ‖vn‖2 = Ω(1/
√
n) for any sequence

of economies. On the other hand, for a balanced sequence of economies, we
have ‖Wn‖1 = maxi∈In di =Θ(1). Therefore, rearranging equation (4) to

v′
n = α

n
1′ + (1 − α)v′

nWn

implies that

‖vn‖∞ ≤ α

n
+ (1 − α)‖Wn‖1‖vn‖∞ ≤ α

n
+C(1 − α)‖vn‖∞�

where C is a constant independent of n. Thus, for α> (C − 1)/C,

‖vn‖∞ ≤ α

n

[
1 − (1 − α)C

]−1
�

guaranteeing that ‖vn‖∞ = O(1/n). Finally, Hölder’s inequality, ‖vn‖2 ≤√‖vn‖1‖vn‖∞, and the fact that ‖vn‖1 = 1 imply that ‖vn‖2 = O(1/
√
n), com-

pleting the proof. Q.E.D.

APPENDIX D: HIGHER-ORDER INTERCONNECTIONS

As mentioned in Section 3.4, the results on second-order interconnections
can be extended even further so as to capture more complex patterns of
cascades due to higher-order interconnectivities in the intersectoral network.
Mathematically, these correspond to tighter lower bounds than the one we
provided in Theorem 3.

DEFINITION: Given an economy En = (In�Wn� {Fin}i∈In), the (m+1)th-order
interconnectivity coefficient is defined as

τm+1(Wn)≡
n∑

i=1

∑
j1�����jm
k1�����km
all distinct

(
dn
j1
dn
k1

)(
wn

jmiw
n
kmi

)m−1∏
s=1

wn
jsjs+1

m−1∏
r=1

wn
jr jr+1

�

This coefficient captures input–output relations between different sectors of
order m+1. For example, the third-order coefficient is high when the suppliers
of high-degree sectors share common suppliers. As in the case of the second-
order interconnectivity coefficient, the Rearrangement Inequality implies that
higher levels of τm correspond to higher interconnectivities among different
sectors. In particular, we have the following generalization of Theorem 3.
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THEOREM A.4: Consider a sequence of economies {En}n∈N. Then, for any inte-
ger m≥ 2, aggregate volatility satisfies

(var yn)1/2 =Ω

(
1√
n

+ CVn√
n

+
√
τ2(Wn)

n
+ · · · +

√
τm(Wn)

n

)
�

The proof follows a logic identical to the proof of Theorem 3. In particular,
it is easy to verify that, for any integer m ≥ 2, the influence vector satisfies the
following inequality, a consequence of equation (15):

vn ≥ α

n

m∑
k=0

(1 − α)k1′(Wn)
k�

leading to the following lower bound for the Euclidean norm of the influence
vector:

‖vn‖2
2 ≥ α2

n2

m∑
k=1

(1 − α)2k1′(Wn)
k
(
W ′

n

)k
1�

Writing the matrix powers in terms of the input–output weights, and upon some
simplification and rearrangement of terms, we obtain the result.
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