Comparative Politics
 Political Economics: Week 4

Giacomo A. M. Ponzetto

CREI - UPF - Barcelona GSE
29th January and 1st February 2010

Agenda Manipulation

- Majority voting within a committee or legislature.
- No Condorcet winner: how are cycles resolved?
- Our definition of majority rule included an open agenda
- With a restricted agenda any alternative in the Pareto set may be an eventual outcome.
- An agenda setter can pre-select the eventual outcome by controlling which policies are voted on an in which order.

A Chaos Theorem

- I members of the legislature.
- Multidimensional policy $\mathbf{q} \in Q \subseteq \mathbb{R}^{N}$
- Euclidean preferences: $W_{i}(\mathbf{q})=-\left\|\mathbf{q}-\mathbf{q}^{i}\right\| \approx-\sum_{n=1}^{N}\left(q_{n}-q_{n}^{i}\right)^{2}$.

Theorem (McKelvey, 1976)

Assume $N \geq 2, I \geq 3$ and all voters have Euclidean preferences. If there is no Condorcet winner, then for any $q, q^{\prime} \in Q$, it is possible to find a sequence of alternatives $\left\{\mathbf{q}^{0}, \mathbf{q}^{1}, \ldots, \mathbf{q}^{\prime}\right\}$ with $\mathbf{q}^{0}=\mathbf{q}$ and $\mathbf{q}^{\prime}=q^{\prime}$, such that for all $0 \leq k \leq I-1, \mathbf{q}^{k+1}$ is preferred to \mathbf{q}^{k} by a majority of members.

- Anything goes with sincere voting. Similar results with different assumptions.

Agenda Manipulation with Strategic Voting

- Three agents $i \in\{1,2,3\}$ and three choices $\left\{q_{A}, q_{B}, q_{C}\right\}$.
- Preferences $q_{A} \succ_{1} q_{B} \succ_{1} q_{C}, q_{B} \succ_{2} q_{C} \succ_{2} q_{A}$, and $q_{C} \succ_{3} q_{A} \succ_{3} q_{B}$.
- As the agenda-setter, agent 1 can get q_{A} enacted through the following pairwise elimination procedure:
(1) Vote over the pair $\left(q_{A}, q_{C}\right)$.
(2) The winner of the first vote is compared to q_{B}; the winner of the second vote is enacted.
- In the final vote, everyone votes sincerely.
- If the second comparison is $\left(q_{A}, q_{B}\right), q_{A}$ is enacted.
- If the second comparison is $\left(q_{B}, q_{C}\right), q_{B}$ is enacted.
- In the first round, agent 3 strategically votes for q_{A} over his ideal policy q_{C}, to avoid the eventual victory of his least preferred alternative q_{B}.

Legislative Bargaining

- The preferences $W_{i}(q)$ of each member are taken as given.
- One interpretation is that each member represents a homogeneous district.
- Equivalent to a bargaining game, but with $I \geq 3$ players.
- One member is randomly selected as the agenda setter a and makes a proposal.
- If a majority supports the proposal, it is enacted.
- In equilibrium, the first proposal is such that it is accepted.
- In the full-fledged version of the model, bargaining can go on indefinitely, but delays are costly.
- Following Persson and Tabellini (2000) we will consider finite-horizon simplifications, which convey the same fundamental insights.

One-Round Bargaining

- If the first proposal q^{a} is not approved, a default policy \bar{q} is implemented.
- The default gives each member utility $\bar{W}_{i}=W_{i}(\bar{q})$.
- The agenda setter needs to form a minimum winning coalition, i.e., to identify the other members whose support he can gain by deviating as little as possible from his ideal policy:

$$
q^{a}=\arg \max W_{a}(q) \text { s.t. } \#\left(i: W_{i}(q) \geq \bar{W}_{i}\right) \geq \frac{1}{2}
$$

- Each agenda-setter includes those members whose preferences are closest to his own.
\Rightarrow The identity of the minimum winning coalition is uncertain ex ante.
- Agenda setting is the more valuable, the worse the default \bar{q} is (for others).

The Power of the Middle Ground

- A one-dimensional policy and single-peaked preferences.
- Three members with bliss point $q_{L}<q_{M}<q_{R}$.
- If M is the agenda setter, he can get q_{M} by the median-voter theorem.
- If L is the agenda setter his minimum winning coalition is certainly (L, M):

$$
q^{L}=\arg \max W_{L}(q) \text { s.t. } W_{M}(q) \geq W_{M}(\bar{q})
$$

- Letting

$$
\tilde{q}_{M}: W_{M}\left(\tilde{q}_{M}\right)=W_{M}(\bar{q}),
$$

L's optimal policy proposal is

$$
q^{L}=\left\{\begin{array}{lll}
q_{L} & \text { if } \bar{q} \leq q_{L} \\
\bar{q} & \text { if } \bar{q} \in\left(q_{L}, q_{M}\right] \\
\max \left\{q_{L}, \tilde{q}_{M}\right\} & \text { if } \bar{q}>q_{M}
\end{array}\right.
$$

Two-Round Bargaining

(1) The first agenda setter a_{1} makes a proposal, which is implemented if a majority supports it.
(2) If the first proposal has been rejected, each member has probability π_{i} of becoming an agenda setter. The second agenda setter a_{2} makes a proposal, which is implemented if a majority supports it.
(3) If both proposals have been rejected, the default \bar{g} is implemented.

- Each agent derives utility $W_{i}(q)$ from a policy implemented in the first round, and $\beta_{i} W_{i}(q)$ from a policy implemented in the second round, with $\beta_{i} \leq 1$
- The second-stage game is identical to the one-period model considered before. Expected payoffs are:

$$
\mathbb{E} W_{i}\left(q_{2}^{a_{2}}\right)=\sum_{j=1}^{l} \pi_{j} W_{i}\left(q_{2}^{j}\right)
$$

Backwards Induction

- If $\bar{q} \leq q_{L}$ or $\bar{q} \geq q_{R}$, then $q_{2}^{a_{2}}=q_{a_{2}}$.
- If $L=a_{1}$, he can form a coalition with M by proposing

$$
q_{1}^{L}=\arg \max W_{L}(q) \text { s.t. } W_{M}(q) \geq \beta_{M} \sum_{j=1}^{l} \pi_{j} W_{M}\left(q_{j}\right)
$$

- The Condorcet winner is implemented if and only if $\beta_{M} \pi_{M}=1$, i.e., if M is guaranteed of being the agenda-setter.
- For all $\beta_{M} \pi_{M}<1$, if $L=a_{1}$ then $q_{1}^{L} \in\left[q_{L}, q_{M}\right)$ is implemented.
- q_{1}^{L} is increasing in β_{M} and π_{M} and decreasing in q_{R}.
- If $\beta_{R} \pi_{R} \ll \beta_{M} \pi_{M}$, L's minimum winning coalition can be with R.

Bargaining over Local Public Goods

- An odd number $I \geq 3$ of districts.
- Residents of district i have homogeneous utility

$$
W_{i}(g)=1-\sum_{j=1}^{l} \lambda_{j} g_{j}+H\left(g_{i}\right)
$$

- One-round bargaining with a closed rule.
(1) Representative a makes a policy proposal g, which is implemented if it is supported by at least $(I-1) / 2$ other members of the legislature.
(2) If a's proposal g is rejected, a default \bar{g} is implemented instead.
- The identity of a is not microfounded.
- Each legislator i is willing to support any g such that

$$
W_{i}(g) \geq W_{i}(\bar{g}) \Leftrightarrow H\left(g_{i}\right)-H\left(\bar{g}_{i}\right)-\sum_{j=1}^{l} \lambda_{j}\left(g_{j}-\bar{g}_{j}\right) \geq 0
$$

Forming a Minimum Winning Coalition

- The agenda setter's problem coincides with the choice of a minimum winning coalition \mathcal{M}.
(1) The size of the coalition is sufficient for the proposal to be implemented by majority rule:

$$
\# \mathcal{M}=\frac{I-1}{2}
$$

(2) Public goods are not provided to any district outside the coalition:

$$
g_{i}=0 \text { for all } i \notin \mathcal{M} \cup\{a\} .
$$

(3) Each coalition member is just as well off with the proposal as with the default:

$$
H\left(g_{i}\right)-H\left(\bar{g}_{i}\right)=\sum_{j \in \mathcal{M} \cup\{a\}} \lambda_{j}\left(g_{j}-\bar{g}_{j}\right) \text { for all } i \in \mathcal{M} .
$$

(9) The agenda setter gets all the surplus.

Satisfying a Minimum Winning Coalition

- For a given coalition \mathcal{M}, a's optimal proposal solves

$$
\max _{\mathbf{g} \gg \mathbf{0}}\left\{H\left(g_{a}\right)-\sum_{j \in \mathcal{M} \cup\{a\}} \lambda_{j} g_{j}\right\}
$$

subject to

$$
H\left(g_{i}\right)-H\left(\bar{g}_{i}\right)=\sum_{j \in \mathcal{M} \cup\{a\}} \lambda_{j}\left(g_{j}-\bar{g}_{j}\right) \text { for all } i \in \mathcal{M} .
$$

- Let μ_{i} be the Lagrange multiplier for each member $i \in \mathcal{M}$. The first-order conditions are

$$
\left\{\begin{array}{l}
H^{\prime}\left(g_{a}\right)-\lambda_{a}\left(1+\sum_{j \in \mathcal{M}} \mu_{j}\right)=0 \\
\mu_{i} H^{\prime}\left(g_{i}\right)-\lambda_{i}\left(1+\sum_{j \in \mathcal{M}} \mu_{j}\right)=0 \text { for all } i \in \mathcal{M}
\end{array}\right.
$$

Satisfying a Minimum Winning Coalition

- The first-order conditions can be solved for

$$
\mu_{i}=\frac{\lambda_{i} H^{\prime}\left(g_{a}\right)}{\lambda_{a} H^{\prime}\left(g_{i}\right)} \text { for all } i \in \mathcal{M}
$$

- The optimality condition is therefore

$$
H^{\prime}\left(g_{a}\right)=\frac{\lambda_{a}}{1-\sum_{j \in \mathcal{M}} \frac{\lambda_{j}}{H^{\prime}\left(g_{j}\right)}} .
$$

- The right-hand side is the minimum tax rate that a can set in a proposal that delivers g_{a} while convincing \mathcal{M} to support it against \bar{g}.
- a's optimal proposal to \mathcal{M} is fully described by the last equation and the $(I-1) / 2$ participation constraints.

Choosing a Minimum Winning Coalition

- a chooses the $(I-1) / 2$ cheapest coalition members, who are characterized by:
(1) A smaller district population λ_{i}, so any amount of public goods per capita they desire is cheaper to provide.
(2) A lower default level \bar{g}_{i}, so they are satisfied by a less generous proposal because they dislike the outside option.
- In two-player bargaining, a higher outside option means more bargaining power. That remains locally true for the members of \mathcal{M}; but globally a higher \bar{g}_{i} tends to imply that a district remains outside the coalition and has zero bargaining power.
- In a more general model, members of \mathcal{M} would also be more impatient, have a lower chance of becoming agenda setters, and care more about public consumption.

Inefficiency of Legislative Bargaining

- Excluded districts get no public goods, which is grossly suboptimal.
- Included districts get more than the optimum on average:

$$
\sum_{j \in \mathcal{M} \cup\{a\}} \lambda_{j}\left[1-\frac{1}{H^{\prime}\left(g_{j}\right)}\right]=-\sum_{j \notin \mathcal{M} \cup\{a\}} \lambda_{j}<0 .
$$

- The average disparity is the greater, the fewer voters are represented by a winning coalition (the larger $\sum_{j \notin \mathcal{M} \cup\{a\}} \lambda_{j}$).
- The distribution of surplus within $\mathcal{M} \cup\{a\}$ depends on the curvature of $H($.$) and on parameters, most obviously on \bar{g}$.
- The agenda setter a gets a greater share of the surplus for infrastructure projects ($\bar{g}=0$) than entitlement projects ($\bar{g}>0$).
- No unambiguous bias to the overall level of spending.
- If $H^{\prime}(0)=\infty$ the average marginal distortion is nil: $\sum_{i=1}^{l} \frac{\lambda_{i}}{H^{\prime}\left(g_{i}\right)}=1$.
- If $H(g)=\alpha \log g$ the average level of spending is optimal too.

The Value of Proposal Power

Knight (2005) investigates earmarked transportation projects.

- $\$ 5$ billion in 1991 and $\$ 8$ billion in 1998, allocated to specific projects in electoral districts through a highly political process.
- U.S. House members sitting on the Transportation and Infrastructure committee secure higher spending in their own districts: \$55 v. \$6 million in 1991 and $\$ 38$ v. \$14 million in 1998.
- Controlling for
(1) District characteristics: more urban districts get fewer funds.
(2) Partisan affiliation: belonging to the majority party does not matter.
(3) Information: belonging to the Surface Transportation subcommittee does not matter.
(9) Turf wars: belonging to the Transportation Appropriations subcommittee does not matter.
- Addressing the potential endogeneity of committee members:
(1) Fixed effects at the state or at the district level
(2) IV: newly elected members are more likely to sit on the committee.

Elections and Legislative Bargaining

- The default allocation is $\bar{g}=0$.
- All districts have identical size $\lambda_{i}=1 / I$ and a representative voter with utility

$$
W_{i}(g)=H\left(g_{i}\right)-\frac{1}{l} \sum_{j=1}^{l} g_{j}
$$

- Every district simultaneously elects a representative.
- Voters can choose among candidates with no commitment device and heterogeneous preferences

$$
W_{i, \alpha}(g)=\alpha H\left(g_{i}\right)-\frac{1}{l} \sum_{j=1}^{l} g_{j}
$$

for $\alpha \in\left[\alpha_{L}, \alpha_{U}\right]$.

- Each of the elected representatives has an equal probability of being the agenda setter.

Strategic Delegation

- Any agenda setter will form a coalition of the $(I-1) / 2$ representatives with the highest value of α, because their keenness on public goods makes them easy to please.
- In a subgame-perfect Nash equilibrium, all districts elect the most spendthrift candidate α_{U}.
- This gives them a 50% chance of receiving public goods when their representative is not the agenda setter.
- If a district elected any other candidate, its chance of being included in a minimum winning coalition would drop to zero.
- There is a price to pay: with probability $1 / I$, the district's own spendthrift representative is the agenda setter and sets taxes higher than its constituents would like.
- The spendthrift equilibrium is assured if the number of districts $/$ is high enough.

Lobbying and Legislative Bargaining

- The same symmetric model as before.
- Rent-seeking representatives instead of policy-seeking representatives.
(1) The agenda setter a is randomly chosen.
(2) Each district acts as a lobby that offers to its own district's representative two contribution schedules: $C_{i}^{y}(g)$ if he supports proposal g and $C_{i}^{n}(g)$ if he opposes it.
(3) Legislator a makes a proposal, which is adopted if a majority supports it; otherwise the default $\bar{g}=0$ is implemented.
- Strong, crucial, arbitrary assumption: each group can only lobby the representative from its own district.

Bertrand Competition

Theorem (Helpman and Persson 2001)

In every equilibrium the allocation equals the agenda setter's proposal

$$
g_{a}^{a}: H^{\prime}\left(g_{a}^{a}\right)=\frac{1}{l} \text { and } g_{i}^{a}=0 \text { for all } i \neq a
$$

and all contributions equal zero $\left(C_{i}^{y}\left(g^{a}\right)=C_{i}^{n}\left(g^{a}\right)=0\right)$.

- Suppose a group were paying non-zero contributions in equilibrium: then it could shift down its entire schedule, leaving marginal incentives unchanged while saving money.
- Suppose any lobby induced its representative to demand $g_{i}>0$ for its support. Then a would form a coalition of the $(I-1) / 2$ representatives with the lowest demand g_{i}.
- The groups compete to be included in the minimum winning coalition by lowering their demands, and in equilibrium all accept $g_{i}^{a}=0$.

Electoral Systems and Electoral Districts

- There is wide-ranging diversity in the methods used to elect politicians in different times, in different countries, and to different offices in the same country at the same time.
- One non-mathematical characteristic of a system is the drawing of its electoral districts.
- Districting is a typical feature of legislative elections:
- In the United Kingdom: 646 districts electing a single MP each.
- In the Netherlands: a single districts electing 150 representatives.
- In Spain: 52 districts electing from 1 to 35 deputies each.
- Districting schemes affect representativeness, sometimes notoriously:
- British "rotten boroughs" until 1832.
- Prussian three-class franchise until 1918.
- U.S. gerrymandering today.
- The U.S. also elect the President through a multi-district Electoral College (cf. Strömberg 2008).

Single-Winner Voting Systems

- By far the most widespread single-winner method is simple plurality.
- Two common twists to this system involve sequential voting:
(1) Primaries can be used to select the candidates that will contest the general election.
(2) A run-off election may be held to choose between the top candidates if none obtained a majority of votes in the first round.
- The more complex method of ranked voting requires each voter to submit an ordering of all the candidates.
- The Borda count is used to fill two seats in the Slovenian parliament reserved for ethnic minorities.
- Instant-runoff voting is used more commonly, e.g., for the Australian House of Representatives and for the President of Ireland.
- In rated voting methods electors give each candidate a score. No political election currently uses such a method.

Multiple-Winner Voting Systems: Proportional

- Multiple-seat electoral districts are commonly associated with party-list proportional representation, in which votes are cast for a party instead of a candidate.
- The actual allocation of seats is never exactly proportional, and there are several ways of dealing with remainders.
- Minimum thresholds are common; other complications are rarer.
- A closed list ranks candidates in the order selected by the party.
- An open list ranks candidates in the order selected by the voters.
- There are several ways of implementing open lists.
- The single transferable vote is a ranked voting procedure that nests instant runoff. It is prevalent in Ireland, Malta, and Australia.
- The implementation requires specifying the exact quota of votes needed for election, and a mechanism for transferring leftover votes. Various choices exist, especially for the latter.

Multiple-Winner Voting Systems: Non Proportional

- The opposite of proportional representation is block voting, in which each voter selects as many candidates as there are seats, and the candidates with the most votes win. It is used for the Polish Senate.
\Rightarrow Each district normally selects a homogeneous slate of candidates.
- An intermediate solution is partial block voting: to fill n seats, each voter gets $m<n$ votes. This is used for the Spanish Senate.
- Each party can field m candidates. What can happen otherwise?
- A closed-list version of this system is used for the Argentine Senate: 2 seats go to the plurality party and 1 to the runner-up.
- The single non-transferable vote is the case $m=1$.
- This method was characteristic of Japan and Taiwan, but has been largely abandoned. It is used in Afghanistan.
- It offers especially high and obvious rewards to strategic voting.
- The coordination problem allegedly promotes clientelism.

Electoral Systems and Economic Policy

- Three groups of voters $j \in\{1,2,3\}$ with mass $1 / 3$ each and preferences

$$
W_{j}=1-\tau+f_{j}+H(g)
$$

- Government budget constraint

$$
\tau=\sum_{j=1}^{3} f_{j}+g+r .
$$

- $f_{j} \geq 0$ is a group-specific transfer.
- $g \geq 0$ is the supply of a global public good.
- $r \geq 0$ is a rent that yields utility γr to the rent-seeking politician.
- The first best is

$$
r^{*}=0 \text { and } g^{*}: H^{\prime}\left(g^{*}\right)=1
$$

Probabilistic Voting

- Two parties A and B contest an election by committing to platforms q^{A} and q^{B}.
- Voter i in group j votes for party A if

$$
W_{j}\left(q^{A}\right)>W_{j}\left(q^{B}\right)+\delta+\sigma_{i, j}
$$

- The common popularity shock is

$$
\delta \sim U\left[-\frac{1}{2 \psi}, \frac{1}{2 \psi}\right]
$$

- Individual ideology has group-specific distribution

$$
\sigma_{i, j} \sim U\left[\bar{\sigma}_{j}-\frac{1}{2 \phi_{j}}, \bar{\sigma}_{j}+\frac{1}{2 \phi_{j}}\right]
$$

Ideological Differences

- Group 1 is ideologically biased towards party A and group 3 towards party B :

$$
\bar{\sigma}_{1}<\bar{\sigma}_{2}=0<\bar{\sigma}_{3} .
$$

- The ideologically neutral group 2 also has less ideological members:

$$
\phi_{2}>\max \left\{\phi_{1}, \phi_{3}\right\} .
$$

- This setup replicates with uniform distributions our natural intuition based on bell-shaped densities.
- There is no average ideological bias:

$$
\bar{\sigma}_{1} \phi_{1}+\bar{\sigma}_{3} \phi_{3}=0 .
$$

From Votes to Victory

- Given δ, candidate A^{\prime} share of the vote in group j is

$$
\pi_{A, j}(\delta)=\frac{1}{2}+\phi_{j}\left[W_{j}\left(q^{A}\right)-W_{j}\left(q^{B}\right)-\bar{\sigma}_{j}-\delta\right] .
$$

- Politician $P \in\{A, B\}$ maximizes

$$
\mathbb{E} W_{P}=p_{P}\left(R+\gamma r_{P}\right) .
$$

- The electoral system determines how p_{A} depends on the $\mathbb{E} \pi_{A, j}(\delta)$.
(1) Proportional representation, or single-district presidential election.
(2) First-past-the-post, or the U.S. Electoral College.

Single-District Elections

- A party wins by obtaining a majority of the popular vote

$$
p_{A}=\operatorname{Pr}\left(\frac{1}{3} \sum_{j=1}^{3} \pi_{A, j}(\delta)>\frac{1}{2}\right) .
$$

- With a uniform distribution of δ and no average partisan bias

$$
p_{A}=\frac{1}{2}+\psi \sum_{j=1}^{3} \frac{1}{3} \frac{\phi_{j}}{\bar{\phi}}\left[W_{j}\left(q^{A}\right)-W_{j}\left(q^{B}\right)\right],
$$

where $\bar{\phi}$ as usual denotes the average value of ϕ_{j}.

- Our general model of probabilistic voting: for any group sizes λ_{j}, lobbying abilities ξ_{j}, and information $\theta_{j}^{A}=\theta_{j}^{B}=\theta_{j}$,

$$
p_{A}=\frac{1}{2}+\psi \sum_{j=1}^{J} \lambda_{j}\left(\frac{\phi_{j}}{\bar{\phi}} \theta_{j}+\xi_{j}\right)\left[W_{j}\left(q^{A}\right)-W_{j}\left(q^{B}\right)\right] .
$$

Linear Programming

- The problem is symmetric, so $q^{A}=q^{B}$.
- The availability of non-distortionary taxes and transfers implies $\tau=1$.
- In general, a group's political influence is

$$
\Phi_{j}=\frac{\phi_{j}}{\bar{\phi}} \theta_{j}+\xi_{j}
$$

- Quasi-linear utility and uniformly distributed $\sigma_{i, j}$ imply a corner solution for transfers:

$$
\Phi_{2}>\max \left\{\Phi_{1}, \Phi_{3}\right\} \Rightarrow f_{2}>0 \text { and } f_{1}=f_{3}=0
$$

- Transfers to the influential group crowd-out global public goods:

$$
\Phi_{2}>\max \left\{\Phi_{1}, \Phi_{3}\right\} \Rightarrow H^{\prime}(g)=\frac{\Phi_{2}}{\sum_{j=1}^{J} \lambda_{j} \Phi_{j}}>1
$$

Rent Extraction in a Single District

- Each politician sets

$$
\frac{\partial \mathbb{E} W_{P}}{\partial r_{P}}=\left(R+\gamma r_{P}\right) \frac{\partial p_{P}}{\partial r_{P}}+\gamma p_{P}=0 .
$$

- By symmetry ($\left.\mathbb{E} \delta=0, \sum_{j} \lambda_{j} \phi_{j} \bar{\sigma}_{j}=0, \theta_{j}^{A}=\theta_{j}^{B}\right)$: $q^{A}=q^{B} \Longleftrightarrow p_{P}=\frac{1}{2}$.
- Raising r requires reducing f_{2}, so the first-order condition is

$$
\frac{1}{2} \gamma-(R+\gamma r) \psi \Phi_{2}=0
$$

- In an interior equilibrium rent extraction is

$$
r=\frac{1}{2 \psi \Phi_{2}}-\frac{R}{\gamma}
$$

- A more powerful group is better both at constraining the politician and at squeezing the other groups.

Multiple-District Elections

- A party wins by obtaining a majority of votes in a majority of districts.
- Each district coincides with one of the groups.
- $\left|\bar{\sigma}_{1}\right|$ and $\bar{\sigma}_{3}$ are large enough for districts 1 and 3 to be "safe" for parties A and B respectively.
- Electoral competition focuses exclusively on the competitive district

$$
p_{A}=\operatorname{Pr}\left(\pi_{A, 2}(\delta)>\frac{1}{2}\right)=\frac{1}{2}+\psi\left[W_{2}\left(q^{A}\right)-W_{2}\left(q^{B}\right)\right] .
$$

- Group 2 becomes even more pivotal, and thus even more powerful.
(1) It squeezes other groups even more. Again $\tau=1, f_{2}>0$ and $f_{1}=f_{3}=0$, but the supply of global public goods is further reduced:

$$
H^{\prime}(g)=3>\frac{\phi_{2}}{\bar{\phi}} .
$$

(2) It constrains politicians even more:

$$
r=\frac{1}{6 \psi}-\frac{R}{\gamma} \leq \frac{\bar{\phi}}{2 \psi \phi_{2}}-\frac{R}{\gamma} .
$$

Beyond Pivotal Voters

- If we introduce imperfect information and lobbying

$$
\begin{aligned}
p_{A}= & \frac{1}{2}+\psi \theta_{2}\left[W_{2}\left(q^{A}\right)-W_{2}\left(q^{B}\right)\right] \\
& +\psi \sum_{j=1}^{J} \frac{1}{3} \xi_{j}\left[W_{j}\left(q^{A}\right)-W_{j}\left(q^{B}\right)\right] .
\end{aligned}
$$

- Imperfect information makes politicians less accountable:

$$
r=\frac{1}{6 \theta_{2} \psi}-\frac{R}{\gamma}
$$

- Lobbying by group 2 reduces rent extraction:

$$
r=\frac{\gamma}{2 \psi\left(3 \theta_{2}+\xi_{2}\right)}-\frac{R}{\gamma}
$$

- Lobbying by groups 1 and 3 increases provision of public goods:

$$
H^{\prime}(g)=3 \frac{3 \theta_{2}+\xi_{2}}{3 \theta_{2}+\sum_{j=1}^{J} \xi_{j}}<3 \text { for all } \xi_{1}+\xi_{3}>0
$$

Another Route to Analogous Results

- Lizzeri and Persico (2001) give different definitions:
(1) With proportional representation politicians maximize their share of the vote.
(2) With majority rule politicians maximize the probability of winning 50% of the vote.
(3) With the electoral college politicians maximize the probability of winning 50% of the vote in 50% of the districts.
- Politicians provide a global public good or voter-specific transfers.
- Downsian competition with two office-seeking parties and a continuum of non-ideological voters.
\Rightarrow No Condorcet winner: mixed-strategy equilibria.
- When the public good is valuable, proportional representation is more likely to provide it.
- Majority rule is always better than the electoral college.

Empirical Evidence on Electoral Rules

- Elections by plurality rule correlate with lower corruption, controlling for other known correlates of corruption.
- Persson, Tabellini and Trebbi (2003): cross-section analysis of 85 democracies; average values for the 1990s.
- More controversial results on open and closed lists: inter-party competition decreasing corruption, but intra-party competition may increase it (Golden and Chang 2001).
- Plurality rule is associated with electoral cycles: taxes and spending are cut during election years.
- Persson and Tabellini (2003): panel data for 60 democracies, 1960-1998.
- In parliamentary democracies, proportional representation is associated with higher spending on social security and welfare by up to 8% of GDP (Milesi-Ferretti, Perotti, and Rostagno 2002).
- Persson and Tabellini (2003) estimate a marginal impact of 2% of GDP for a random country.

A Richer Model of Proportional Representation

Baron and Diermeier (2001) consider in greater detail the operation of a parliamentary system.

- Two-dimensional policy space with Euclidean preferences.
- Three parties with equidistant bliss points

Three-stage game:
(1) Election with proportional representation and strategic voting.
(2) Government formation with efficient bargaining.
(3) The government's agenda is implemented if it has the support of a parliamentary majority.

- The status quo is the pre-existing policy.
- Policy-making as in one-round legislative bargaining.

Government Formation and Legislation

- A random member of parliament becomes the formateur. I.e., the probability that a party forms the government is equal to its share of seats (but not of votes, with a threshold for representation).
- The formateur builds a coalition, bargaining over policies and office-holding benefits that parliament can allocated at will.
- With any efficient bargaining process, policy is the centroid of coalition members' bliss points.
- The distribution of perks instead depends on the status quo.
- Each formateur's minimal winning government includes the other party that most dislikes the status quo.
- A formateur forms a centrist consensus government instead of a minimal winning government only if both the other parties substantially dislike the status quo.
- Even a majority party chooses not to govern alone if some other parties dislikes the status quo enough.

Electoral Equilibria

- No policy commitment: voters see parties as instruments to determine bargaining positions in parliament.
(1) Representation: which parties have seats?
(2) Selection: how likely is each party to be the formateur?
(3) Coalition: which coalitions have a majority of seats?
- For every status quo there is a unique (mixed-strategy) strong Nash equilibrium, i.e., a unique policy that is robust to deviations by groups of voters.
- All three parties are represented in parliament, but representation does not reflect voters preferences because some voters do not vote for the party closest to their bliss point.
- Pre-election coalitions may emerge without a commitment mechanism.
- If parties and voters are myopic, only minimal winning governments form, and every election brings a change in government.

Parliamentary and Presidential Regimes

- Many-sided principal-agent problem:
- Voters with conflicting interests elect politicians.
- Politicians with conflicting interests determine policies.
- U.S. presidential-congressional regime:
- Proposal power rests with multiple congressional committees.
- The executive has a separate popular mandate.
- European parliamentary regime:
- Proposal power rests with the cabinet.
- The government needs the continuous confidence of parliament
\Rightarrow The parliamentary system has more legislative cohesion.

Retrospective Voting

- Three groups of voters $j \in\{1,2,3\}$ with unit mass each and preferences

$$
W_{j}(q)=y-\tau+f_{j}+H(g)
$$

- Each group is represented by one legislator. Voters within the group coordinate on a voting strategy that depends only on their realized utility:

$$
p_{j}\left(q, \omega_{j}\right)=\left\{\begin{array}{lll}
1 & \text { if } \quad W_{j}(q) \geq \omega_{j} \\
0 & \text { if } \quad W_{j}(q)<\omega_{j}
\end{array}\right.
$$

- Legislator j extracts rent r_{j} and has utility

$$
V_{j}\left(q, \omega_{j}\right)=\gamma r_{j}+p_{j}\left(q, \omega_{j}\right) R
$$

- Government budget constraint:

$$
3 \tau=\sum_{j=1}^{3} f_{j}+g+\sum_{j=1}^{3} r_{j}
$$

- The first best is

$$
r_{j}^{*}=0 \text { for all } j, \text { and } g^{*}: H^{\prime}\left(g^{*}\right)=1 / 3
$$

A Simple Legislature

- A simplified, unrealistic policy-making process.
(1) An agenda setter a is randomly selected.
(2) Groups simultaneously and non-cooperatively set ω_{j}.
- Identically, ω_{j} could be set first, but with a different level if the representative is selected as the agenda setter.
(3) a proposes a policy vector q.
(9) The legislature votes: q is enacted if at least two legislators support it; otherwise the status quo \bar{q} persists, with $r_{j}=\bar{r} \in[0, R / \gamma]$ and $f_{j}=g=0$ for all j.
(5) Elections are held.

Equilibrium Conditions

(1) For all ω, a's proposal $q(\omega)$ satisfies the participation constraint $V_{j}\left(q(\omega), \omega_{j}\right) \geq V_{j}\left(\bar{q}, \omega_{j}\right)$ for at least one legislator $j \neq a$.
(2) For all $\omega, q(\omega)$ solves $\max _{q} V_{a}\left(q, \omega_{a}\right)$ subject to the constraint above.
(3) ω_{j} is optimal for the voters in group j, given the strategies of the other groups and the constraints above.

- Voters coordinate within a group but not across groups.
- Unique subgame-perfect Nash equilibrium.

Equilibrium Policy

- Taxes are maximal: $\tau=y$.
- With non-distortionary instruments, transfers dominate tax cuts.
- All legislators are re-elected.
- If a group set ω_{j} so high that the legislator chooses not to be re-elected, it would lose its only way of influencing equilibrium policy.
- Only the agenda setter's district gets a transfer: $f_{j}=0$ for all $j \neq a$.
- The two groups engage in Bertrand competition to be included in a's minimum winning coalition.
- The public good is under-provided: $H^{\prime}(g)=1$.
- Since re-election depends only on voters' total utility, a funds public goods and transfers to his own district so that their marginal utility to voters is equalized.
- Assume that $H^{\prime-1}(1)<R / \gamma+\bar{r}$ to avoid corner solutions.
\Rightarrow The voting strategy is $\omega_{j}=H(g)$ for $j \neq a$.

Limited Accountability

If the legislature does not seek reappointment:

- one coalition partner m gets \bar{r};
- the agenda setter a gets $3 y-\bar{r}$;
- the voters get $f_{j}=g=0$ for all j.

If the legislature seeks reappointment:

- one coalition partner m gets $r_{m}=\max \{0, \bar{r}-R / \gamma\}$;
- the agenda setter a gets r_{a};
- a's district gets $g=H^{\prime-1}(1)$ and $f_{a}=3 y-g-r_{a}-r_{m}$.

The minimum rent that voters must let a extract is

$$
r_{a}=\max \{0,3 y-R / \gamma-\bar{r}\}
$$

Rent Sharing

- For $\gamma \bar{r} \leq R$, the coalition partner m gets no equilibrium rent:

$$
r_{j}=0 \text { for all } j \neq a
$$

- For $3 y>R / \gamma+\bar{r}$, then agenda setter a gets a positive rent

$$
r_{a}=3 y-R / \gamma-\bar{r}
$$

which constitutes a waste or resources

- For $H^{\prime-1}(1)<R / \gamma+\bar{r}$, the equilibrium transfer to a's district is

$$
f_{a}=R / \gamma+\bar{r}-g,
$$

which represents redistribution to politically powerful minorities.

- Under-provision of the public good completes the picture of inefficiency.

The Congressional Regime

- Separation of agenda-setting powers.
(1) Committee chairs a_{τ} and a_{g} are randomly selected.
(2) Groups simultaneously and non-cooperatively set ω_{j}.
(3) a_{τ} proposes a tax rate τ.
(9) Congress votes: τ is enacted if at least two legislators support it; otherwise the status quo $\bar{\tau}>0$ persists.
(6) α_{g} proposes expenditures subject to the budget constraint $3 \tau=\sum_{j=1}^{3} f_{j}+g+\sum_{j=1}^{3} r_{j}$.
(0) Congress votes: if the proposal is not approved, the status quo is $r_{j}=\bar{r}>0$ and $f_{j}=\bar{\tau}-\bar{r} \geq 0$ for all j.
(0) Elections are held.

Perfect Accountability

- Several results from the simple legislature are retained:
- all legislators are re-elected;
- only a_{g} 's district gets a transfer: $f_{j}=0$ for all $j \neq a_{g}$;
- the public good is under-provided: $H^{\prime}(g)=1$.
- Once τ has been approved, α_{g} seeks re-election so long as he is given the minimum rent

$$
r_{a_{g}}(\tau)=\max \{0,3 \tau-R / \gamma-\bar{r}, \bar{r}-R / \gamma\} .
$$

- For $\gamma \bar{r} \leq R$, all politicians are held to $r_{j}=0$ provided that

$$
3 \tau \leq R / \gamma+\bar{r}
$$

- In equilibrium, a_{τ} 's voters demand such a low tax rate and no rent extraction occurs.

Multiple Equilibria

- Since a_{g} 's and a_{τ} 's districts set their demands simultaneously, there are multiple equilibria
- At one extreme, a_{τ} 's voters prefer the equilibrium with

$$
3 \tau=H^{\prime-1}(1) \text { and } r_{j}=f_{j}=0 \text { for all } j .
$$

- At the opposite extreme, a_{g} 's voter prefer the equilibrium with

$$
3 \tau=R / \gamma+\bar{r} \text { and } f_{a g}=R / \gamma+\bar{r}-H^{\prime-1}(1) .
$$

- There is a continuum of equilibria with a size of government

$$
3 \tau \in\left[H^{\prime-1}(1), R / \gamma+\bar{r}\right]
$$

and redistribution to an influential minority

$$
f_{a_{g}} \in\left[0, R / \gamma+\bar{r}-H^{\prime-1}(1)\right] .
$$

The Parliamentary Regime

- Necessity of a stable coalition.
(1) Cabinet ministers a_{τ} and a_{g} are randomly selected.
(2) Groups simultaneously and non-cooperatively set ω_{j}.
(3) a_{τ} proposes a tax rate τ.
(9) α_{g} proposes expenditures subject to the budget constraint $3 \tau=\sum_{j=1}^{3} f_{j}+g+\sum_{j=1}^{3} r_{j}$.
(6) Either minister can trigger a government crisis; then a subgame leads to the default outcome

$$
\bar{g}=H^{\prime-1}(1), f_{j}=0, \bar{r}_{j}=\frac{1}{3}(3 y-R / \gamma-\bar{r}) \text { for all } j
$$

and re-election of the entire legislature.
(6) If no crisis has occurred, government policy is implemented and then elections are held.

Rent-Seeking by a Coalition

- The identity of the coalition is known since the beginning.
- Different results from the simple legislature are retained:
- all legislators are re-elected;
- taxes are maximal: $\tau=y$.
- If the government foregoes re-election, a_{g} distributes rents

$$
\tilde{r}_{a_{\tau}}=R / \gamma+\bar{r}_{j} \text { and } \tilde{r}_{a_{g}}=3 y-R / \gamma-\bar{r}_{j}
$$

- The minimal rents consistent with the government seeking re-election are

$$
r_{a_{\tau}}=\bar{r}_{j} \text { and } r_{a_{g}}=3 y-2 R / \gamma-\bar{r}_{j}
$$

- For $\gamma \bar{r} \leq R$, total rent extraction is lower than in the simple legislature, but it is always positive.

Broad-Based Government

- Again, multiple equilibria due to simultaneous moves.
- Typically, a majority of citizens shares transfers:

$$
f_{\mathrm{a}_{g}}>0 \text { and } f_{\mathrm{a}_{\tau}}>0 \text { such that } f_{\mathrm{ag}_{g}}+f_{\mathrm{a}_{\tau}}=2 \frac{R}{\gamma}-g .
$$

- Public goods are then provided to benefit the majority:

$$
2 H^{\prime}(g)=1
$$

- There exist equilibria in which only one district receives transfers

$$
f_{\mathrm{ag}} f_{\mathrm{a}_{\tau}}=0 \text { and } f_{\mathrm{ag}}+f_{\mathrm{a}_{\tau}}=2 \frac{R}{\gamma}-g .
$$

- Then the weaker district must be at least as satisfied as with a government crisis. Since taxes are higher under the coalition, provision of public goods is unambiguously higher too:

$$
H^{\prime}(g) \in[1 / 2,1) .
$$

Empirical Evidence on Forms of Government

Mixed evidence on accountability (Persson and Tabellini 2003):

- In "good" democracies, presidential regimes are associated with less corruption.
- In "bad" democracies, the result does not hold.
- The sample of "good" presidential regimes is small.
- Different classifications get more corruption in presidential regimes.

Stronger evidence on spending:

- Proportional systems with coalition governments increase expenditure by 5\% of GDP (Persson, Roland, and Tabellini 2003) and budget deficits by 2% of GDP (Persson and Tabellini 2003).
- Presidential-congressional systems decrease spending by 5\% of GDP.
- The form of government also correlates with the prevalence of left-wing governments (Ticchi and Vindigni 2003).

