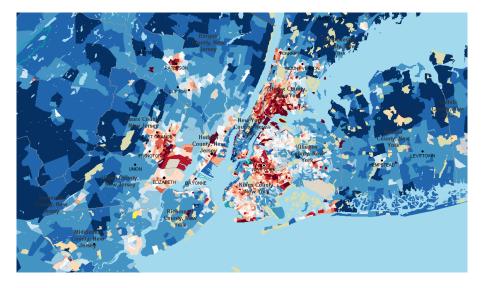
Income Heterogeneity, Transportation, and City Structure Urban Economics: Week 2


Giacomo A. M. Ponzetto

CREI – UPF – Barcelona GSE

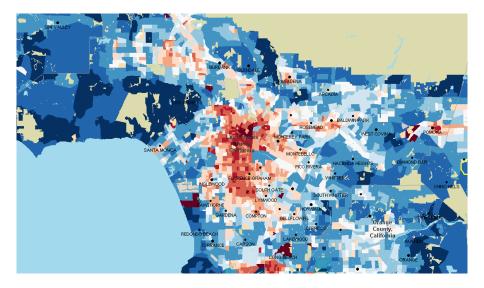
16th and 17th January 2012

3

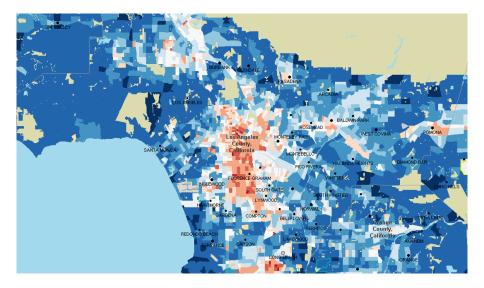
Median Household Income in New York

Giacomo Ponzetto (CREI)

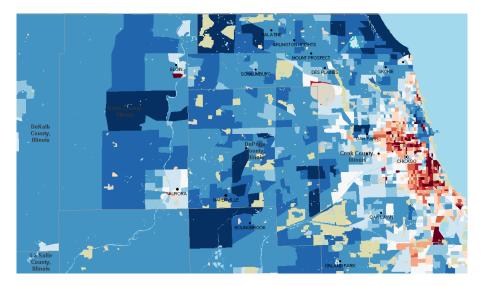
3


(日) (周) (三) (三)

% Living in Poverty in New York

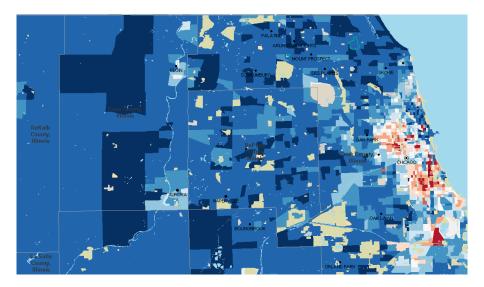

(日) (同) (三) (三)

Median Household Income in Los Angeles



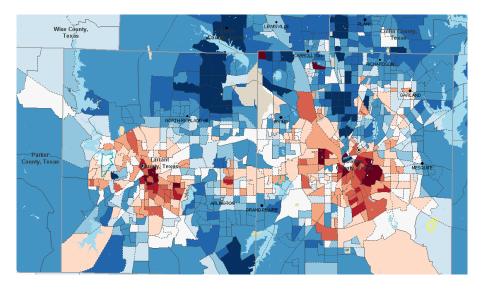
(日) (同) (三) (三)

% Living in Poverty in Los Angeles



Median Household Income in Chicago

イロト イヨト イヨト イヨト

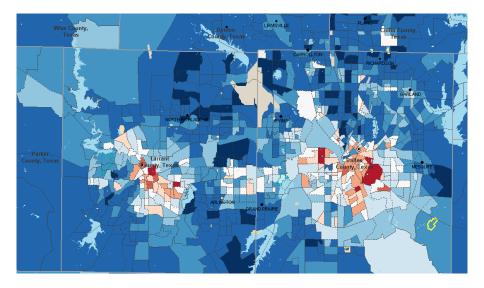

% Living in Poverty in Chicago

イロト イヨト イヨト イヨト

Income Heterogeneity

Median Household Income in Dallas - Fort Worth

Giacomo Ponzetto (CREI)


Urban Economics

16 -17 January 2012 8 / 66

3

<ロ> (日) (日) (日) (日) (日)

% Living in Poverty in Dallas – Fort Worth

Giacomo Ponzetto (CREI)

- 34

イロン イヨン イヨン イヨン

Basic Intuition

- Heterogeneous agents have heterogeneous bid rents
- Housing is efficiently allocated to the residents with the highest bid rent at any distance *d*
- Residents with the steepest bid rent live closer to the center
- Suppose an agent with income y has
 - Commuting costs dt(y)
 - 2 An exogenous consumption of housing h(y)
- The bid rent has

$$\frac{\partial p}{\partial d} = -\frac{t}{h} \Rightarrow \frac{\partial^2 p}{\partial d \partial y} = \frac{t}{hy} \left(\frac{yh'}{h} - \frac{yt'}{t} \right)$$

• The rich live in the suburbs if h is more income-elastic than t

The Bid Rent in an Open City

- The bid rent p is defined by $\max_{h} u (w td ph, h) = \underline{u}$
- By the envelope theorem

$$rac{\partial p}{\partial d} = -rac{t}{h} < 0, \ rac{\partial p}{\partial t} = -rac{d}{h}, \ rac{\partial p}{\partial w} = rac{1}{h} > 0, \ ext{and} \ rac{\partial p}{\partial \underline{u}} = -rac{1}{hu_c} < 0$$

- The first-order condition is $u_h pu_c = 0$
- The second-order condition is $s = -\left(u_{hh} 2pu_{ch} + p^2 u_{cc}\right) > 0$
- The implicit-function theorem and the derivatives of p imply

$$\frac{\partial h}{\partial d} = \frac{tu_c}{hs} > 0, \ \frac{\partial h}{\partial t} = \frac{du_c}{hs} > 0, \ \frac{\partial h}{\partial w} = -\frac{u_c}{hs} < 0$$

and

$$rac{\partial h}{\partial \underline{u}} = rac{1}{hs} + rac{u_{ch} - pu_{cc}}{su_c}$$

which is positive if (but not only if) housing is a normal good

Comparative Statics for Real Income

- A change in w and \underline{u} proportional to the unit vector $\Delta = (\Delta_w, \Delta_{\underline{u}})$
- The directional derivative of the bid rent p is

$$rac{\partial p}{\partial \Delta} = rac{1}{h} \left(\Delta_w - rac{\Delta_{\underline{u}}}{u_c}
ight)$$

• The directional derivative of its slope $\partial p/\partial d = -t/h$ is

$$\frac{\partial^2 p}{\partial d \partial \Delta} = \frac{t}{h^2} \left(\frac{\partial h}{\partial w} \Delta_w + \frac{\partial h}{\partial \underline{u}} \Delta_{\underline{u}} \right) = \frac{t}{h^2} \left(\frac{u_{ch} - p u_{cc}}{s u_c} \Delta_{\underline{u}} - \frac{u_c}{s} \frac{\partial p}{\partial \Delta} \right)$$

such that

$$rac{\partial p}{\partial \Delta} = 0 \Rightarrow rac{\partial^2 p}{\partial d \partial \Delta} = rac{u_{ch} - p u_{cc}}{s} rac{t \Delta_{\underline{u}}}{h^2 u_c}$$

which is positive if and only if housing is a normal good

• Then there is a distance d_{Δ} such that

$$\frac{\partial p}{\partial \Delta} \lessapprox 0 \Leftrightarrow d \gneqq d_{\Delta}$$

Sorting by Income

If agents with $(w_i, \underline{u}_i) \neq (w_j, \underline{u}_j)$ live in the same city

- **()** The rich have higher wages and higher utility: $w_i < w_j \Leftrightarrow \underline{u}_i < \underline{u}_i$
- If (w_i, <u>u</u>_i) < (w_j, <u>u</u>_j) and housing is a normal good, there is a distance d_{ij} ∈ [0, d̄] such that the poor live in [0, d_{ij}] and the rich in [d_{ij}, d̄]
 - When housing is a normal good the rich consume more of it
 - Heavy consumers of housing prefer to live where it is cheaper
 - The rich have big houses in the suburbs, the poor small ones in the city center
 - The sorting would be reversed if house size were an inferior good
 - A theoretical curiosity

Heterogeneous Commuting Costs

- Since commuting costs are largely opportunity costs of time, *t* is likely to rise with *w*.
- Consider changes proportional to the unit vector $\Delta = (\Delta_t, \Delta_w, \Delta_u)$
- The directional derivative of the bid rent is

$$\frac{\partial p}{\partial \Delta} = \frac{1}{h} \left(\Delta_{w} - d\Delta_{t} - \frac{\Delta_{\underline{u}}}{u_{c}} \right)$$

so that

$$\frac{\partial p}{\partial \Delta} = 0 \Rightarrow \frac{\partial^2 p}{\partial d \partial \Delta} = \frac{t}{h} \left(\frac{u_{ch} - pu_{cc}}{s} \frac{\Delta_{\underline{u}}}{hu_c} - \frac{\Delta_t}{t} \right)$$

 In equilibrium there is monotonic sorting if the last term has an unambiguous sign

A B F A B F

Image: Image:

Income Elasticities

• The income elasticity of housing demand for utility u(c, h) is

$$\eta_{h,y} = \frac{u_{ch} - pu_{cc}}{s} \frac{y}{h}$$

• Define income net of commuting costs by y = w - td

1 Its directional derivative with respect to Δ is

$$\frac{\partial y}{\partial \Delta} = \Delta_w - d\Delta_t$$

2 The elasticity of t to y for changes proportional to Δ is

$$\eta_{t,y} = \frac{\Delta_t}{t} \frac{y}{\partial y / \partial \Delta}$$

• We can rewrite

$$\frac{\partial p}{\partial \Delta} = 0 \Rightarrow \frac{\partial^2 p}{\partial d \partial \Delta} = \frac{t}{hy} \left(\eta_{h,y} - \eta_{t,y} \right) \frac{\Delta_{\underline{u}}}{u_c}$$

Sorting in an Open City

- If $\eta_{\,h,y}>\eta_{\,t,y}$ the rich live in the suburbs and the poor in the center
- If $\eta_{\,h,y} < \eta_{\,t,y}$ the rich live in the center and the poor in the suburbs
- If commuting has linear cash and time costs

$$t = \underline{t} + \tau w$$

then $\Delta_t = \tau \Delta_w$ and

$$\eta_{t,y} = 1 - \frac{\underline{t}}{\left(1 - \tau d\right)\left(\underline{t} + \tau w\right)} \in [0, 1]$$

- If u(c, h) is Cobb-Douglas and $\underline{t} > 0$ then $\eta_{h,y} = 1 > \eta_{t,y}$
- In practice $\eta_{\,t,y} < 1$ is persuasive, but $\eta_{\,h,y} \geq 1$ less so
- Housing expenditure is a roughly constant share of income, but quality is a factor in addition to size and location

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Alternative Transportation Technologies

- Two transportation technologies: cars a and public transport b
- Transport costs

$$t_{m}\left(d\right)=T_{m}+\left(t_{m}+\tau_{m}w\right)d$$

• The car is faster but more expensive

$$T_a > T_b$$
, $t_a > t_b$, and $\tau_a < \tau_b$

An agent with wage

$$w > rac{t_a-t_b}{ au_b- au_a}$$

prefers the car iff he lives at a distance greater than

$$d_{ab}(w) = \frac{T_a - T_b}{t_b + \tau_b w - t_a - \tau_a w}$$

Transport Choice and the Bid Rent

• The cost of commuting is

$$\begin{aligned} t\left(d,w\right) &= \min_{m \in \{a,b\}} T_m + \left(t_m + \tau_m w\right) d \\ &= \begin{cases} T_b + \left(t_b + \tau_b w\right) d & \text{if } d \leq d_{ab}\left(w\right) \\ T_a + \left(t_a + \tau_a w\right) d & \text{if } d \geq d_{ab}\left(w\right) \end{cases} \end{aligned}$$

• The bid rent $p(d, w, \underline{u})$ is defined by

$$\max_{h\geq 0} u\left(w - t\left(d, w\right) - ph, h\right) = \underline{u}$$

Its gradient is

$$\frac{\partial p}{\partial d} = \begin{cases} -\frac{t_b + \tau_b w}{h} & \text{if } d < d_{ab} (w) \\ -\frac{t_a + \tau_a w}{h} & \text{if } d > d_{ab} (w) \end{cases}$$

with a convex kink at $d_{ab}(w)$

Sorting by Income

- The poor *i* and the rich *j* live in the same city
- There is a threshold d_{ij} separating them
- Around the threshold, either group g ∈ {i, j} consumes housing h_g and chooses a transportation technology g ∈ {a, b}
- The rich live on the suburban side of the threshold iff

$$rac{t_{j}+ au_{i}w_{i}}{h_{i}\left(d_{ij}
ight)}>rac{t_{j}+ au_{j}w_{j}}{h_{j}\left(d_{ij}
ight)}$$

- If the arc elasticity of housing consumption is low, this does not hold when both groups use the same technology, whether car or public transport
- But it may hold if the rich use a and the poor b

(日) (周) (三) (三)

Transportation Choice and Non-Monotonic Sorting

Without fixed costs $(T_a = 0)$ sorting is monotonic:

- Rich in the center and poor in the suburbs using the same technology
- 2 Poor in the center using b, rich in the suburbs using a

Fixed costs $T_a > 0$ can induce multiple concentric rings

- Intering the second second
- A middle ring is inhabited by the poor using b
- The suburbs are inhabited by the rich using a
- The fringes of the city can be inhabited by the poor using a
- New York City has a bagel of poverty around the rich center
 - But how many rich city dwellers don't own a car?

- 31

イロト イポト イヨト イヨト

Exogenous Amenities

- The utility function u(c, h, a) includes local amenities a
 - Natural amenities: hills, bodies of water, etc.
 - Istorical amenities: buildings, monuments, etc.
- The bid rent p is defined by $\max_{h} u \left(w t \left(d\right) ph, h, a\right) = \underline{u}$
 - First-order condition $u_h pu_c = 0$
 - Second-order condition $s = -(u_{hh} 2pu_{ch} + p^2u_{cc}) > 0$
- By the envelope theorem

$$\frac{\partial p}{\partial a} = \frac{u_a}{hu_c} > 0$$

• If amenities vary with distance according to a(d), then

$$p'(d) = \frac{1}{h(d)} \left[\frac{u_a}{u_c} a'(d) - t'(d) \right]$$

イロト 不得 トイヨト イヨト 二日

Amenities and Housing Consumption

• By the implicit-function theorem

$$\frac{\partial h}{\partial a} = -u_a \left(\frac{1}{sh} + \frac{u_{ch} - pu_{cc}}{su_c} \right) + \frac{u_{ah} - pu_{ac}}{s}$$
$$= -u_a \frac{\partial h}{\partial \underline{u}} + \frac{u_h}{s} \left(\frac{u_{ah}}{u_h} - \frac{u_{ac}}{u_c} \right)$$

• The sign of the last term is ambiguous

- Amenities might be strong complements to house size
- Amenities might be substitutes to non-housing consumption
- Most likely ∂h/∂a < 0: in high-amenity areas people have smaller houses and pay higher prices per square metre.
- An empirical pitfall when trying to estimate the value of amenities
 - Using housing expenditure is not enough
 - 2 Using median housing values is not enough

Amenities and Income Heterogeneity

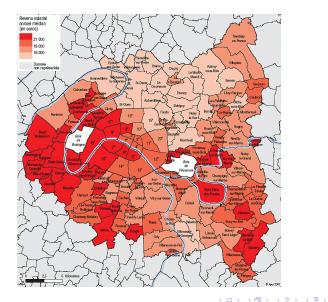
- Suppose that t(d) = td and that a(d) is monotonic
- Rich and poor with $(t_i, w_i, \underline{u}_i) < (t_j, w_j, \underline{u}_j)$
- A boundary at *d_{ij}* separates the two groups
- The rich live on the suburban side iff at d_{ij}

$$\frac{t_{i}}{h_{i}\left(d_{ij}\right)} - \frac{t_{j}}{h_{j}\left(d_{ij}\right)} > \left[\frac{\partial p_{i}}{\partial a}\left(d_{ij}\right) - \frac{\partial p_{j}}{\partial a}\left(d_{ij}\right)\right] a'\left(d_{ij}\right)$$

- Take the standard perspective that $t_i/h_i > t_j/h_j$
 - The arc elasticity of transport cost is smaller than that of housing
 - Possibly because of endogenous transport mode
- If $a'(d) \approx 0$ the usual logic makes the rich live in the suburbs

- 3

(日) (周) (三) (三)


Why Is Central Paris Rich?

- **()** Amenities decline rapidly with distance from the center: $a'(d) \ll 0$
 - Historical amenities are concentrated in the center
 - The historical residents of the city liked natural amenities
- The rich have a higher marginal willingness to pay for amenities: $\frac{\partial p_i}{\partial a} < \frac{\partial p_j}{\partial a}$
 - The latter property is neither obvious nor trivial because h adjusts
 - If h were fixed, u_a/u_c would unambiguously increase with income
 - 2 Presumably u_a/u_c increases with income even when h does
 - **3** But does u_a/u_c increase faster than h?
 - The assumption in terms of arc elasticities

$$\frac{\partial \log \left(u_a / u_c \right)}{\partial \log y} > \frac{\partial \log h}{\partial \log y} > \frac{\partial \log t}{\partial \log y}$$

- 4 週 ト - 4 三 ト - 4 三 ト

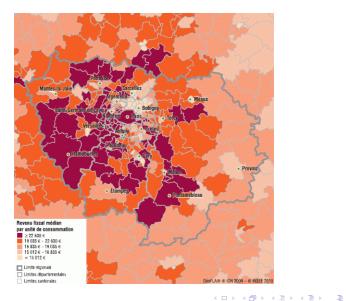
Median Household Income in Paris

Giacomo Ponzetto (CREI)

16 -17 January 2012 25 / 66

- 2

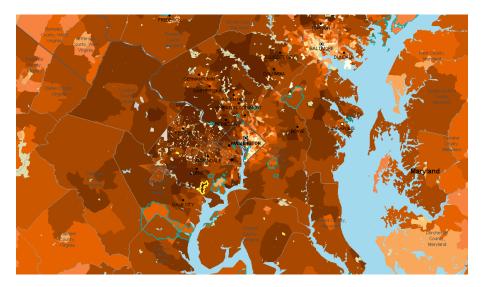
Amenities


Median Household Income in Washington, D.C.

イロト イ団ト イヨト イヨト

Amenities

Median Household Income in Île-de-France


Giacomo Ponzetto (CREI)

Urban Economics

16 -17 January 2012 27 / 66

Amenities

Median Household Income around Washington – Baltimore

イロト イヨト イヨト イヨト

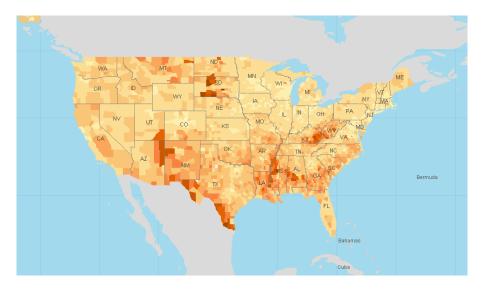
Endogenous Amenities

- Residents' wealth brings amenities to a neighborhood
 - ► Nicer buildings, better public services, less petty criminality
- Some amenities may be such only for the rich
 - Prestigious addresses, upscale shops, proximity to the rich

Endogenous segregation:

- The rich like living with the rich, the poor with the poor
 - Consumption goods appropriate to their income
 - Neighborliness, class loyalty
 - Pares autem vetere proverbio cum paribus facillime congregantur
- Everyone likes wealth-induced amenities, but the rich have a higher willingness to pay
 - Complementarity between private consumption and amenities
 - Decreasing marginal utility of income
- S Everyone likes living with the poor, but the poor more so
 - Social networks substitute for market goods
 - Seemingly less realistic than 1 and 2

3 K K 3 K


Multiple Equilibria

Endogenous amenities may create multiple equilibria

- The rich live in the suburbs
 - The bid-rent gradient is relatively flat
 - Prices underestimate the value of proximity to the CBD
- 2 The rich live in the center
 - The bid-rent gradient is extremely steep
 - Neighborhood spillovers alone explain segregation but not its pattern
 - Is "white flight" $(2 \rightarrow 1)$ easier than gentrification $(1 \rightarrow 2)$?
 - First movers always lose proximity to the rich
 - Early gentrification means moving close to the poor
 - Early suburbanization can mean having few neighbors
 - If poverty has a worse impact in urban centers, 2 is more efficient
 - Then property developers have market incentives to achieve 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Poverty in the United States

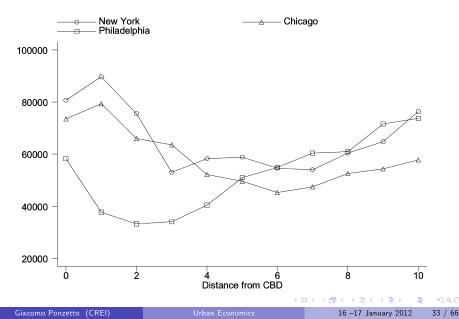
Giacomo Ponzetto (CREI)

16 -17 January 2012 31 / 66

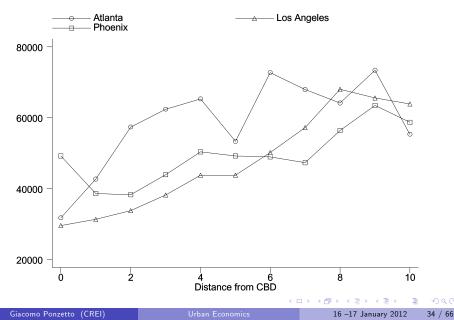
3

イロト イヨト イヨト イヨト

Poverty in U.S. Cities and Suburbs


Row		Center city resident	Suburban resident	Metropolitan area resident center city status unknown	Non-metro area resident
1	All	0.1990	0.0753	0.1195	0.1290
2	Northeast	0.2089	0.0599	0.1184	0.0914
3	Midwest	0.1984	0.0565	0.0988	0.1036
4	South	0.1865	0.0744	0.1282	0.1546
5	West	0.1895	0.1031	0.1247	0.1403
6	Changed house in the last 5 years	0.2166	0.0974	0.1453	0.1626
7	Changed house within the same MSA in the last 5 years	0.2186	0.0941	0.1399	
8	Changed house and MSA in the last 5 years	0.2130	0.1004	0.1519	
9	Stayed in same house for the last 5 years	0.1695	0.0538	0.0846	0.0947
10	Blacks	0.2768	0.1364	0.2375	0.2863
11	Non-blacks	0.1677	0.0690	0.1013	0.1142
12	Age 18–39	0.1911	0.0814	0.1300	0.1478
13	Age 40–65	0.1395	0.0494	0.0752	0.0849
14	Not in the labor force	0.2724	0.1180	0.1728	0.1852
15	In the labor force	0.1030	0.0403	0.0663	0.0748
16	Male	0.1835	0.0682	0.1092	0.1149
17	MSA's percent black is 10% or less	0.1821	0.0857	0.1234	

Note. This table reports sample means based on micro data from the 2000 IPUMS 1% sample.


3

イロト イポト イヨト イヨト

The Income Gradient in Older U.S. Cities

The Income Gradient in Newer U.S. Cities

Why Do the Urban Poor Live in the Inner City in the U.S.?

- Within U.S. metropolitan areas, the poor live closer to the center
 - \blacksquare In 2000, the poverty rate within 10 miles of the CBD is 14.5%
 - Por people living 10 to 25 miles of the CBD it is 8.3%
- This is a spatial equilibrium phenomenon
 - It is true for newcomers as much as for long-time residents
- It is hugely correlated with race, but it is present within races too
- It is particularly true in the older U.S. cities
 - Strongest in the Northeast, weakest in the West
- Concentrated poverty is quite natural; but why in the center?

A 12 N A 12 N

Estimating the Income Elasticity of Demand for Land

Glaeser, Kahn, and Rappaport (2008)

- Actual data on lot size for single-family homes
- Price is not observed
 - If AMM is right the coefficient is biased upward as the rich face lower prices
 - Minimum lot size regulation would also induce an upward bias
- Q Current income is a noisy measure of permanent income
 - Attenuation bias: instrument income with education
- I having a single family home by itself means consuming more land
 - Impute the land demand for an apartment of known floor area
- \Rightarrow Estimated range: $\eta_{h,y} \in [0.25, 0.55] \ll 1$

- 31

- 4 同 6 4 日 6 4 日 6

The Income Elasticity of Demand for Space

	Log of land per h	nousehold				Log(Age of Unit)	
	Single detached	Single detached	Single detached	Apartment and single detached	Apartment and single detached		
	OLS	OLS	IV	OLS	IV	OLS	IV
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Log of household income	0.0807	0.0783	0.2570	0.3442	0.5484	-0.0514	-0.2283
	(0.0075)	(0.0078)	(0.0263)	(0.0944)	(0.0294)	(0.0382)	(0.0121)
Constant	8.3144	7.8943	5.5720	4.5643	0.5608	4.1780	6.2523
	(0.0809)	(0.0934)	(0.3304)	(0.1005)	(0.3871)	(0.0382)	(0.1615)
Demographic controls included	no	yes	yes	no	yes	no	no
MSA fixed effects included	yes	yes	yes	yes	yes	yes	yes
Observations	13,081	13,081	13,081	21,154	21154	24,076	24,076
Adjusted R-squared	0.0960	0.1060		0.1560		0.1292	

Notes. Numbers in parentheses are standard errors. The dependent variable in columns (1)–(3) is the log of lot size for people who live in single detached dwellings. For apartment dwellers the dependent variable is the log of (unit's interior square footage * 1.5/(floors in their building)). In columns (2), (3), and (5) the demographic controls include the head of household's age, race, number of people in the household and whether children are present. In columns (3), (5) and (7), head of household's education is used as an instrumental variable for income. The data source is the 2003 American Housing Survey. The unit of analysis is a household.

• The last two columns are our brief encounter with "filtering"

イロト 不得 トイヨト イヨト

A Brief Aside: Filtering

- The housing stock as a cause (rather than a consequence) of location
- I High-quality new housing is built for the rich
 - The rich leave the old city center for the new suburbs
- In the second second
 - The location of the poor lags that of the rich
- The oldest housing is eventually redeveloped
 - Gentrification brings the rich back to the center Bruckner and Rosenthal (2009)
 - Empirically, very new and very old houses are the most valued

Travel Times by Mode and Location

Reasonable parameter estimates support LeRoy and Sonstelie (1983)

• Those earning \$10/h use public transport, those earning \$20/h a car

	Travel time to work (minutes)					
	Walking (1)	Car (2)	Bus (3)	Subway (4)		
Intercept	4.0731	5.6182	22.1610	18.4106		
•	(0.3170)	(0.1055)	(1.3015)	(1.9547)		
Miles to work	10.2305	1.5881	2.9472	3.3228		
	(0.3585)	(0.0180)	(0.2580)	(0.3132)		
Observations	899	14,792	602	352		
Adjusted R-squared	0.5680	0.3570	0.4161	0.2507		

Notes. The unit of analysis is a person. The data source is the 2001 National Household Transportation Survey. In column (1), the sample is the set of commuters who live within 3 miles from work. MSA fixed effects are included in each specification. In columns (2)–(4), the sample includes all workers who live within 10 miles of where they work. Numbers in parentheses are standard errors.

(日) (周) (三) (三)

The Effects of Public Transportation

- The location of rail and subway lines predicts the location of the poor
 - It reduces significantly the explanatory power of raw distance
- In cities with little public transport the rich live closer to the center
- Within 3 miles of the CBD in older cities with a subway
 - Income falls with distance from the CBD
 - 2 The correlation between income and public transport usage is 0.26
 - 3 The correlation between income and walking to work is 0.162
- \Rightarrow Cities built before the car fit the three-mode pattern to this day

4 2 5 4 2 5

The Defining Characteristics of Sprawl

Decentralization

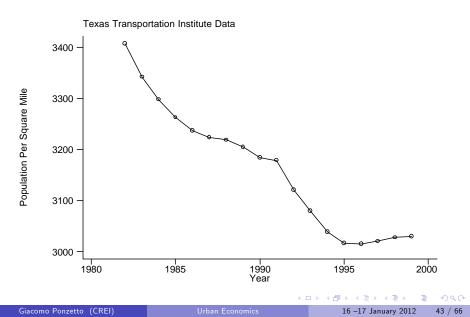
- Employment is no longer concentrated in the CBD
- Associated decentralization of population
- 2 Low density
 - We have models of polycentric cities
 - But sprawl replaces the dense CBD with diffuse employment
 - Both can be measured in many ways
 - All are correlated, but sometimes very weakly
 - The ranking of cities varies according to the measure

Sprawling U.S. Cities

			10th	90th
MSA Measure for 150 Major MSAs	mean	s.d	Percentile	Percentile
Percentage of Population Within Inner 3 Mile Ring	18.26	10.82	5.78	32.9
Percentage of Population Within Inner 5 Mile Ring	34.72	15.71	17.54	55.94
Percentage of Population Within Inner 10 Mile Ring	63.95	16.51	40.17	86.13
Percentage of Employment Within Inner 3 Mile Ring	25.71	12.33	10.94	43.76
Percentage of Employment Within Inner 5 Mile Ring	42.59	18.09	19.29	66.67
Percentage of Employment Within Inner 10 Mile Ring	70.18	18.53	43.1	91.5
MSA Average Population Density	2952	3969	917	4971
MSA Average Employment Density	3900	9867	624	6519
Overall MSA Population Density	1008	1782	230	2031
Median Person's Distance in Miles from CBD	7.88	2.97	4.55	11.72
Median Worker's Distance in Miles from CBD	6.93	3.27	3.54	12.05
Average Population Density and Average Employment Density	are defined as the v	weighted av	erage of	
of zip code density where the weight is the zip code's share of t	otal MSA activity.			

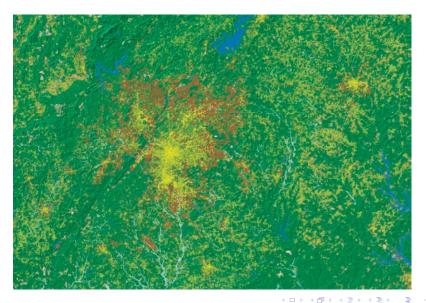
Inner Rings refer to distance from the Central Business District.

Median Distance is the location such that 50Percentage of economic activity in the MSA is beyond that distance.


3

(日) (同) (三) (三)

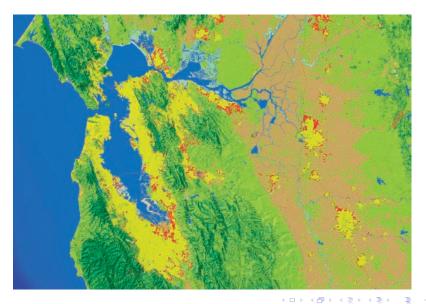
Sprawl


Characterization

The Evolution of Urban Population Density in the U.S.

Characterization

Atlanta: The Epitome of Sprawl



Giacomo Ponzetto (CREI)

Urban Economics

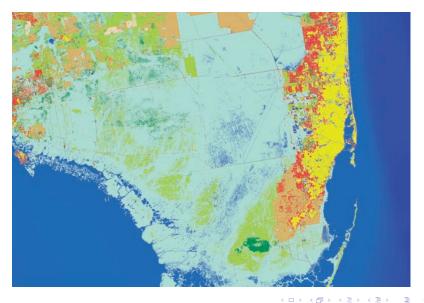
16 -17 January 2012 44 / 66

San Francisco: A Compact City

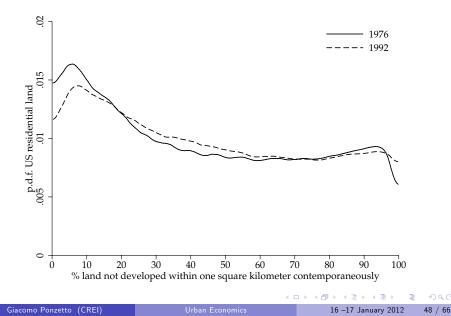
Giacomo Ponzetto (CREI)

16 -17 January 2012 45 / 66

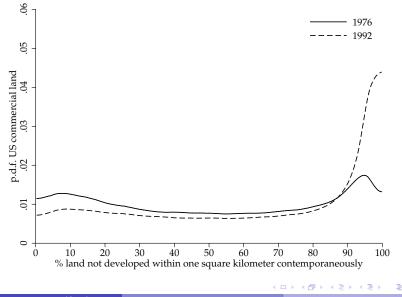
Boston: Compact Core, Scattered Development



Giacomo Ponzetto (CREI)


16 -17 January 2012 46 / 66

Characterization


Miami: Contiguous Growth

Residential sprawl in the U.S., 1976–1992

Employment Sprawl in the U.S., 1976–1992

Giacomo Ponzetto (CREI)

Urban Economics

16 –17 January 2012 49 / 66

Theories of Sprawl

In a monocentric city, sprawl can result from

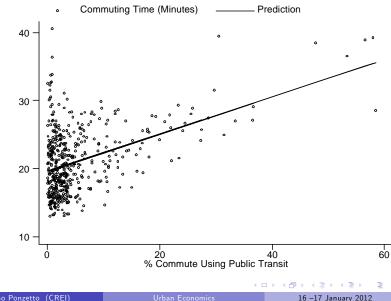
- Lower transport costs
- 2 Lower opportunity cost of land
- An increased desire or subsidy for large houses
- ▷ Greater demand for the city makes it bigger but denser
- A polycentric city is more decentralized for
 - Lower costs of creating a new employment subcenter
 - Smaller productivity advantage of proximity to the center
 - Greater demand for the city: e.g., better climate

Non-contiguous development is more likely if

- City growth is slower
- ② City growth is more uncertain

3

Transport Technology Shapes Urban Form


Old ports: New York

- Goods are shipped on waterways
- People walk around the city
- High density city
- 2 Railroads and streetcars: Chicago
 - Large capital investments
 - Hub and spoke network
 - High density center
- Oars and Trucks: Los Angeles
 - Point to point transportation
 - Manufacturing can decentralize
 - Cars not only enable but require lower densities

Sprawl

Causes

Cars and Commute Times across U.S. Cities

Commuting Time (Minutes)

52 / 66

Causes

Transportation Modes and Sprawl in the U.S.

Variable	Whole Sample	Sprawled MSAs	Centralized MSAs	Centralized MSA in Northeast
Percentage of Trips by Private Vehicle	86.34	91.55	81.82	72.54
Percentage of Trips Walked	7.39	4.65	10.19	17.53
Percentage of 1 mile or shorter trips by private vehicle	68.47	77.6	62.27	51.07
Percentage of Shopping Trips by Private Vehicle	87.06	92.93	81.8	72.25
Percentage Went Out to Eat by Private Vehicle	84	90.36	77.95	69.16
	Whole Sample	Sprawled MSAs	Centralized MSAs	Centralized MSA
Average Trip Time in Minutes				in Northeast
All Trips	16.76	16.48	17	17.72
1 mile or shorter trips by private vehicle	4.7	4.52	4.85	4.86
Shopping Trips	12.07	12.29	11.87	11.75
Eating Trips	13.25	13.5	13.02	13.18
Non-Car Trips	19	17.2	19.93	21.15
Walking Trips	10.59	9.68	11.01	10.67
Bus Trips				35.57
Subway Trips				39.04
The data source is the 1995 National Personal Transportation	Survey Day Trip File.			
The unit of analysis is a trip. The NPTS Sample covers 46 MS				
Centralized MSAs are those above the median of the Smart G		dall and Chen (2002)	L	
Sprawled MSAs have an index score below this median.			•	

3

・ロン ・四と ・ヨン ・ヨン

International Evidence on Transportation and Density

	Lo	og of Urban D	ensity	V	/ehicles Per-C	apita	Log of Gasoline Price Regime
Regression	(1)	(2)	(3)	(4)	(5)	(6)	(7)
vehicles per-capita	-0.0047 (0.0006)		-0.0075 (0.0010)	-0.0052 (0.0013)			
gasoline price regime		0.0134 (0.0016)			-1.7861 (0.2547)	-2.1069 (0.4545)	
real GDP per-capita	0.0001 (0.0006)	-0.0002 (0.0000)	0.0002 (0.0000)	0.0001 (0.0001)	0.0445 (0.0019)	0.0436 (0.0025)	0.0000 (0.0000)
French Legal Origin Dummy							0.5592 (0.1772)
constant	9.1510 (0.1358)	8.4910 (0.1709)	8.9717 (0.1642)	9.0864 (0.1775)	64.2527 (27.2768)	95.7327 (44.3699)	4.2110 (0.1536)
observations R2	70 0.776	70 0.7902	70	62	70 0.8907	62	62 0.1632
Estimation	OLS	OLS	IV	IV	OLS	IV	OLS
The Data source is the Ingram a In regression (3), the gasoline p In regression (4), legal origin d In regression (6), legal origin d Vehicles per 1000 has a mean Gasoline price regime has a mea real GDP per-capita has a mea	price regime is us ummies are used ummies are used of 294 and a stat ean of 70.2 and a	sed as an inst d as an instrur d as an instrur ndard deviation a standard de	trument for ve ment for vehic ment for gas p on of 207.4. eviation of 33.1	hicles per-cap les per-capita price regime. 14.	pita.		
The cities in the sample include Brussels, Chicago, Copenhage Jakata, Los Angeles, London, M Phoenix, San Francisco, Seoul,	en, Denver, Detro Manila, Melbourn	it, Frankfurt, (ie, Munich, N	Guangzhou, H YC, Osaka, Pa	Hamburg, Hor aris, Perth	5 5		

and West Berlin.

э

< ∃→

Other Causes of Sprawl

Rising incomes lead to higher demand for land

- Complementary to car ownership
- Sprawl is not greater in richer U.S. cities
- White flight
 - Sprawl is modestly correlated with inner-city poverty in the U.S.
- U.S. government subsidies
 - Federal highway spending
 - O Low (sub-Pigovian) gasoline taxation
 - Mortgage interest deduction
- Local government policy
 - Tiebout competition
 - 2 Rich people fleeing redistribution
 - Soning and building restrictions

Causes

Which Cities Have More Sprawl?

			on results			y statistics
	(1)	(2)	(3)	(4)	Mean	St. dev.
Centralized-sector employment 1977	-1.270 (0.517)**	-1.194 (0.526)**	-0.922 (0.599)	-0.462 (0.489)	22.65	1.14
Streetcar passengers per capita 1902	-1.723 (0.507)***	-1.918 (0.553)***	-1.762 (0.520)***	-1.822 (0.535)***	21.53	62.54
Mean decennial % population growth 1920-70	-6.072 (1.854)***	-5.528 (1.839)***	-6.241 (2.187)***	-4.686 (1.367)***	24.54	22.42
Std. dev. decennial % population growth 1920-70	3.169 (1.315)**	3.208	3.419 (1.424)**	2.482	15.72	23.42
% of urban fringe overlaying aquifers	1.222	1.090	0.945	1.720	30.43	37.96
Elevation range in urban fringe (m.)	-1.609 (0.946)*	-1.166	0.914 (1.117)	-1.731 (0.815)**	542.43	737.02
Terrain ruggedness index in urban fringe (m.)	1.252 (0.746)*	1.267 (0.746)*	1.108 (0.767)	2.195 (0.741)***	8.84	10.10
Mean cooling degree-days	-6.512 (1.562)***	-5.415 (1.657)***	-6.440 (2.359)***	-6.157 (1.564)***	1348.43	923.13
Mean heating degree-days	-4.986 (1.341)***	-4.768 (1.381)***	-3.051 (2.632)	-6.966 (1.360)***	4580.79	2235.66
% of urban fringe incorporated 1980	-1.363	-1.558 (0.451)***	-1.708	-1.629 (0.422)***	5.21	5.05
Intergov. transfers as % of local revenues 1967	1.075 (0.633)*	1.070 (0.682)	1.136 (0.679)*	2.206	37.17	10.65
Bars and restaurants per thousand people		0.176 (0.783)			1.51	0.41
Major road density in urban fringe (m./ha.)		-0.179 (0.698)			0.87	0.36
% population growth 1970-90		-1.916			35.29	45.46
Herfindahl index of incorporated place sizes		-0.274 (0.652)			0.32	0.26
Latitude			-2.083 (2.731)		37.57	5.22
Longitude			-5.221		-91.18	13.52
Census division fixed effects			1.000			
Constant	111.375	108.895	90.467 (21.441)***	75.050		
Observations R ²	275 0.405	275 0.418	275 0.469	275 0.404		

Notes: The dependent variable in columns (1), (2) and (2) is our spravil index for 1976-92 development, which has mean 6,5; and a standard deviation 10.20. The dependent variable in column (4) is our spravil notes for 1970 development, which has mean 6,5; and standard deviation 10.20. The regressions are nut for all 257 metropolltan areas in the conterminous United States. Coefficients give the impact on the index of a one standard deviation in 20. The regressions areas in the former states in the accompany of the index of a one standard deviation in 20. The regressions areas in the states in the index of a one standard deviation in 20. The regressions areas in the states in the index of a one standard deviation in 20. The index of the index of a one standard deviation in 20. The index of the index of a one standard deviation in 20. The index of a state index of a one standard deviation in 20. The index of a state index of a one standard deviation in 20. The index of a state index of a one standard deviation in 20. The index of a state index of a one standard deviation in 20. The index of a state index of a one standard deviation in 20. The index of a state index of a one standard deviation in 20. The index of a state index of a one standard deviation in 20. The index of a state index of a one standard deviation in 20. The index of a state index of a one standard deviation in 20. The index of a state index of a one standard deviation in 20. The index of a state index of a one standard deviation in 20. The index of a state index of a one standard deviation in 20. The index of a state index of a one standard deviation in 20. The index of a state index of a state

(日) (周) (三) (三)

Highways and Suburbanization

Baum-Snow (2007): the interstate highway system

- Authorized in 1944, grid planned in 1947
- 2 Designed to link distant hubs, not to shorten local commutes
- \Rightarrow The 1947 plan is a plausibly exogenous source of identification
 - Actual construction and its timing was endogenous

Highway construction shapes city growth


- The metropolitan area spreads out along new highways
- **②** Central city population declines with the number of radial highways
 - ► Each highway ray reduces central city population by .09 log points
 - \blacktriangleright The highway system overall turned growth from +8% to -17%
- \triangleright The effects are stronger for cities in a featureless space
 - Borders and bodies of water exogenously restrict sprawl

E SQA

(日) (周) (三) (三)

Causes

Development Patterns in Austin, TX

Note: Each shaded region is a separate census tract.

(日) (同) (三) (三)

Sprawl (

Causes

Spatial Distribution of Metropolitan Area Population

Panel A: 1970 and 1990 Cross-Sections

	Log Popula	tion Density	
Sample	1970	1990	
Large MSAs in 1950	Distance to CBD	-0.132	-0.114
		(0.001)**	(0.001)**
	Distance to Highway	-0.014	-0.019
(36,250 tracts, 139 MSAs)		(0.002)**	(0.002)**
Large MSAs in 1950 With	Distance to CBD	-0.134	-0.117
Central Cities at least		(0.002)**	(0.001)**
20 Miles from a Coast or Border	Distance to Highway	-0.055	-0.054
(17,336 tracts, 100 MSAs)		(0.003)**	(0.003)**

Panel B: Evolution Between 1970 and 1990

Sample		∆Log Population Density
Large MSAs in 1950	Distance to CBD	0.021
		(0.000)**
	∆Distance to Highway	-0.015
(36,250 tracts, 139 MSAs)		(0.002)**
Large MSAs in 1950 With	Distance to CBD	0.021
Central Cities at least		(0.001)**
20 Miles from a Coast or Border	∆Distance to Highway	-0.008
(17,336 tracts, 100 MSAs)		(0.003)**

3

イロト イポト イヨト イヨト

Causes

Determinants of Central City Population Growth

Large MSAs in 1950

	Change in Log Population in Constant Geography Central Cities					
	OLS3	IV1	IV2	IV3	IV4	IV5
Change in Number	-0.059	-0.030	-0.106	-0.123	-0.114	-0.101
of Rays	(0.014)**	(0.022)	(0.032)**	(0.029)**	(0.026)**	(0.046)*
1950 Central City Radius	0.080		0.111	0.113	0.106	0.125
	(0.014)**		(0.023)**	(0.023)**	(0.023)**	(0.021)**
Change in Simulated	0.084			0.048	-6.247	-0.137
Log Income	(0.378)			(0.417)	(6.174)	(0.480)
Change in Log of MSA	0.363			0.424	0.374	0.405
Population	(0.082)**			(0.094)**	(0.079)**	(0.108)**
Change in Gini Coeff					-23.416	
of Simulated Income					(23.266)	
Log 1950 MSA Population						-0.062
						(0.062)
Constant	-0.640	-0.203	-0.359	-0.588	4.580	-0.611
	(0.260)*	(0.078)*	(0.076)**	(0.281)*	(5.091)	(0.265)*
Observations	139	139	139	139	139	139
R-squared	0.39	0.00	0.01	0.30	0.33	0.37

Notes: In columns IV1-IV5, the number of rays in the 1947 plan instruments for the change in the number of rays. Standard errors are clustered by state of the MSA central city. Standard errors are in parentheses. ** indicates significant at the 1% level, * indicates significant at 5% level. Summary statistics are in the Appendix Table. First stage results are in Table II.

(日) (周) (三) (三)

Advantages and Disadvantages of the Car

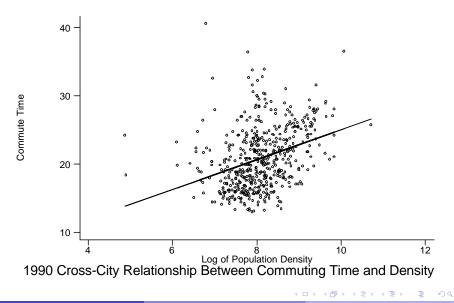
The benefits that motivate sprawl

- Larger homes
- Shorter commutes

Negative externalities of car driving

- Traffic congestion
 - Not so much if employment is decentralized
 - Commutes are shorter in cities with greater sprawl
 - But there isn't only the commute to work
 - $\star\,$ The average American spends 161 min/d in a car
- Pollution
 - Greenhouse gases and local smog
 - Improvements over time despite increases in sprawl
 - Unsustainable on a world scale

 \triangleright Both externalities can and should be priced: somewhere they are


Urban and Suburban Housing Consumption

	Major MSAs	Major MSAs	Entir	e AHS Sample	
	Center City	Suburb	Center City	Suburb	
Housing Measure Means by Cell					
Unit square feet	1755.30	2139.71	1726.96	1964.42	
Jnit square feet per person	496.34	570.21	485.42	539.12	
Bedrooms	2.56	3.03	2.68	3.00	
Bathrooms	1.32	1.61	1.41	1.64	
% Living in a Single Family House	0.35	0.70	0.51	0.69	
House price	165029.20	196013.30	144321.60	175868.90	
House Price per unit square foot	142.19	104.00	96.55	92.87	
Annual rent	8432.23	9668.27	7935.59	9074.82	
Year built	1947.80	1958.61	1953.47	1961.64	

and household income is greater than \$10,000. The Major MSAs include: Atlanta, Boston, Chicago, Dallas, Detroit, Houston, Los Angeles, NYC, Philadelphia, San Francisco Iand Washington D.C.

3

Density and Commuting Time

The Fundamental Law of Road Congestion

Vehicle-km travelled increase proportionally to highway km built

- Endogeneity problem: demand for travel induces road building
- Duranton and Turner (2011): historical IV strategy
 - 1947 interstate highway plan
 - 2 Railroad km in the metropolitan area in 1898
 - Source and exploration routes, 1835–1850
 - > Exogeneity relies on appropriate controls: e.g., population
- Increased provision of bus services does not relieve congestion
- All margins of utilization react to highway construction
 - Long-haul trucking increases: 19 29%
 - ② Driving by existing residents increases: 9-39%
 - **③** Population increases: 5 21%
 - Traffic is diverted from other roads: 0 10%

- 3

Congestion as a Function of Road Provision

	[1]	[2]	[3]	[4]	[5]
Panel A (TSLS). Dependent va	riable: ln VK	T for intersta	te highways	s, entire MSA	s.
Instruments: In 1835 explorati	on routes, ln	1898 railroa	ds, and In 19	947 planned i	interstates
ln(IH lane km)	1.32^{a}	0.92^{a}	1.03^{a}	1.01^{a}	1.04^{a}
. ,	(0.04)	(0.10)	(0.11)	(0.12)	(0.13)
ln(population)		0.40^{a}	0.30^{a}	0.34^{a}	0.23 ^c
41 ,		(0.07)	(0.09)	(0.10)	(0.12)
Geography			Y	Y	Y
Census divisions			Y	Y	Y
Socio-econ. charac.				Y	Y
Past populations					Y
Overidentification p-value	0.60	0.11	0.26	0.24	0.29
First stage Statistic	42.8	16.5	11.8	11.5	8.84

3

・ロン ・四と ・ヨン ・ヨン

Other Consequences of Sprawl

Changes in agglomeration economies

- Productivity could fall as density decreases
- What is the required density?
 - Walking in New York or Tokyo
 - Driving around Los Angeles or Silicon Valley

Social impact of sprawl

- Income-based segregation increases
- ② Racial segregation seems to decrease
- \triangleright The poor may well be the losers