Introduction to Urban Economics Spatial Equilibrium within a City Urban Economics: Week 1

Giacomo A. M. Ponzetto

CREI – UPF – Barcelona GSE

9th and 10th January 2012

< 4 → <

3

Urban Economics

Cities

- A city is the absence of space between people
- What happens in cities?
- Why do cities exist?
- Economic geography: spatial equilibrium
 - Individuals and firms can move across space
 - All agents are in their respective preferred locations
 - Marginal agents are indifferent between locations
- Section 3 (and diseconomies) (and diseconomies)
 - Why is productivity higher in cities?
 - What is the balance of centripetal and centrifugal forces?
- Housing markets and real-estate prices
- Orban policy

くほと くほと くほと

Increasing Urbanization Rates

• More than half of the World's population now lives in cities

Source: UN World Urbanization Prospects, 2009 Revision, esa.un.org/unpd/wup

Giacomo Ponzetto (CREI)

3

Urban Concentration in Europe

Population density in 2005 by OECD TL3 region

Source: Kamal-Chaoui and Robert (2009) Competitive Cities and Climate Change

Giacomo Ponzetto (CREI)

9 - 10 January 2012 4 / 61

(日) (同) (三) (三)

Economic Concentration in Europe

GDP per km² in 2005 by OECD TL3 region

Giacomo Ponzetto (CREI)

Population Density in the United States

Source: 2000 Census; maps by Social Explorer, www.socialexplorer.com

▶ < ∃ >

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Average Household Income in the United States

Giacomo Ponzetto (CREI)

9 - 10 January 2012 7 / 61

Urbanization and Income Across Countries

Source: World Development Indicators 2010

3

イロト イヨト イヨト イヨト

The Largest Cities in the World

Rank	City	Country	Population
1	Tokyo	Japan	34,400,000
2	Guangzhou (Canton)	China	25,400,000
3	Seoul	S. Korea	25,200,000
4	Shanghai	China	24,900,000
5	Delhi	India	23,500,000
6	Mumbai (Bombay)	India	23,200,000
7	Mexico City	Mexico	23,000,000
8	New York	USA	22,000,000
17	Moscow	Russia	16,100,000
22	Istanbul	Turkey	13,200,000
23	London	UK	12,600,000
26	Paris	France	10,600,000
51	Madrid	Spain	6,550,000
81	Barcelona	Spain	4,525,000

Source: Brinkhoff (2011) The Principal Agglomerations of the World, www.citypopulation.de

The Largest City Economies in the World

Rank	City	Country	GDP (\$bn)	Pop. (mn)	GDP/person
-	-	Spain	1,512	44.45	\$33,201
1	Tokyo	Japan	1,479	35.83	\$41,300
2	New York	USA	1,406	19.18	\$73,300
3	Los Angeles	USA	792	12.59	\$62,900
4	Chicago	USA	574	9.07	\$63,300
5	London	UK	565	8.59	\$65,800
6	Paris	France	564	9.92	\$56,900
7	Osaka	Japan	417	11.31	\$36,900
8	Mexico City	Mexico	390	19.18	\$20,400
15	Moscow	Russia	321	10.47	\$30,700
26	Madrid	Spain	230	5.64	\$40,800
-	-	Ireland	189	4.41	\$42,810
35	Barcelona	Spain	177	4.98	\$35,500
-	-	Morocco	137	31.75	\$4,315

Sources: Hawksworth, Hoehn, Tiwari (2009) PricewaterhouseCoopers Economic Outlook; WDI

<u><u><u></u></u></u>	n	
L-LDCOMO	Ponzetto I	
Glacomo	ι υπζειίο ι	

Urban Preeminence

• Paris: the French metropolis

Variable	Paris	France	Share	
Surface (km ²)	12,012	543,965	2.21%	
Population (mn, 2008)	11.599	61.965	18.72%	
GDP (PPP \$bn, 2000)	587.70	2,113.97	27.80%	

In greater Paris, 55% of the land area is agricultural, another 25% green space

Japan's three main urban areas: Tokyo, Osaka, Nagoya (map)

Variable	Tokyo	Osaka	Nagoya	Japan	Share
Surface (km ²)	13,112	14,400	10,585	373,530	10.20%
Population (mn)	34.826	17.036	9.236	127.771	47.82%
GDP (PPP \$bn)	1,374.89	567.81	378.08	4,284.87	54.16%

Source: OECD StatExtracts 2007, stats.oecd.org

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Urban Concentration in Japan and Korea

Population density in 2005 by OECD TL3 region

Giacomo Ponzetto (CREI)

Economic Concentration in Japan and Korea

Three Key Features of Cities

Agglomeration

- Productivity increases with employment density Figure
- Innovation happens in dense urban clusters Figure
- Social formation of values and beliefs Figure
- 2 Bricks and mortar Figure
 - Real estate Figure
 - Transportation infrastructure
- Iccal policy

Density and Productivity

Output per efficiency unit of labor against instrumented density, by state Source: Ciccone and Hall (1996) Productivity and the Density of Economic Activity

Clusters of Innovation

Software establishments in Silicon Valley, 1997

Source: Rosenthal and Strange (2004) Evidence on the Nature and Sources of Agglomeration Economies

<ロ> (日) (日) (日) (日) (日)

Political Preferences

Voting patterns in the 2004 presidential election

Source: Robert J. Vanderbei, www.princeton.edu/ rvdb

City Lights

Source: NASA Visible Earth, visibleearth.nasa.gov

2

<ロ> (日) (日) (日) (日) (日)

Cityscape

Giacomo Ponzetto (CREI)

Three Classes of Definitions

Political or administrative

- City proper, core city, ...
- An area within clearly defined municipal boundaries
- Typically useful only for policy analysis
- Ø Morphological
 - Urban agglomeration, urban area, urban core, ...
 - A contiguous densely built-up area
 - Can be measured from satellite images (e.g., e-geopolis.eu)

Functional

- Metropolitan area, metropolitan region, larger urban zone, ...
- An urban labor market comprising its commuter belt
- The most interesting definition but practically the most difficult

▶ Back

A B F A B F

Unreliable Administrative Boundaries

Source: OECD (2011) Defining and Measuring Metropolitan Areas

- 3

・ロン ・四と ・ヨン ・ヨン

Morphological v. Functional Area

Source: OECD (2011) Defining and Measuring Metropolitan Areas

- 一司

A Babel of Definitions

- US Census: Metropolitan Statistical Area (MSA)
 - > The precise definition changes with almost every decennial census
- EU Urban Audit: Larger Urban Zone (LUZ)
 - Data available from Eurostat
 - An ongoing project, not fully complete yet
 - Different definitions for ESPON 2013, the European Observation Network for Territorial Development and Cohesion (www.espon.eu)
- OECD Metropolitan Databse: Metropolitan Region
 - Based on MSAs for North America
 - Aggregation of administrative districts for Europe and Asia
- UN World Urbanization Prospects: Urban Agglomeration
 - A contiguous territory inhabited at urban density levels
 - Morphological in principle, based on national data in practice

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• What is the largest city in Germany?

3

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- What is the largest city in Germany?
- Urban Audit LUZ Ruhrgebiet: 5,203,100

< 一型

3

- What is the largest city in Germany?
- Urban Audit LUZ Ruhrgebiet: 5,203,100
 - Urban Audit LUZ Berlin: 5,025,272

3

- 一司

- What is the largest city in Germany?
- Urban Audit LUZ Ruhrgebiet: 5,203,100
 - Urban Audit LUZ Berlin: 5,025,272
- OECD Metropolitan Region Düsseldorf-Ruhrgebiet: 7,917,172

- What is the largest city in Germany?
- Urban Audit LUZ Ruhrgebiet: 5,203,100
 - Urban Audit LUZ Berlin: 5,025,272
- OECD Metropolitan Region Düsseldorf-Ruhrgebiet: 7,917,172
 - OECD Metropolitan Region Berlin: 4,996,272

- What is the largest city in Germany?
- Urban Audit LUZ Ruhrgebiet: 5,203,100
 - Urban Audit LUZ Berlin: 5,025,272
- OECD Metropolitan Region Düsseldorf-Ruhrgebiet: 7,917,172
 - OECD Metropolitan Region Berlin: 4,996,272
- Metropolregion Rhein-Ruhr: 11,316,429

- What is the largest city in Germany?
- Urban Audit LUZ Ruhrgebiet: 5,203,100
 - Urban Audit LUZ Berlin: 5,025,272
- OECD Metropolitan Region Düsseldorf-Ruhrgebiet: 7,917,172
 - OECD Metropolitan Region Berlin: 4,996,272
- Metropolregion Rhein-Ruhr: 11,316,429
 - Ruhrgebiet + Düsseldorf + Köln–Bonn

- What is the largest city in Germany?
- Urban Audit LUZ Ruhrgebiet: 5,203,100
 - Urban Audit LUZ Berlin: 5,025,272
- OECD Metropolitan Region Düsseldorf-Ruhrgebiet: 7,917,172
 - OECD Metropolitan Region Berlin: 4,996,272
- Metropolregion Rhein-Ruhr: 11,316,429
 - Ruhrgebiet + Düsseldorf + Köln–Bonn
 - Metropolregion Berlin/Brandenburg: 4,429,847

The Rhein-Ruhr Metropolitan Region

3

イロト イヨト イヨト イヨト

How Large Is Barcelona?

Source	Population	Surface	Density
Ajuntament de Barcelona	1,619,337	102.2	15,851.0
EU Urban Audit: core city	1,615,908	98.2	16,453.6
Àrea Metropolitana de Barcelona $(AMB)^1$	3,225,058	636.0	5,071.0
IERMB: Aglomeració Metropolitana ²	4,613,839	1,722	2,679
EU Urban Audit: Larger Urban Zone	4,440,629	1,794.5	2,474.6
Thomas Brinkhoff (citypopulation.de)	4,525,000		
Àmbit Metropolità de Barcelona ³	5,029,181	3,242.2	1,551.2
UN World Urban Prospects	5,029,000		
Província de Barcelona	5,529,099	7,726.4	715.6
OECD Metropolitan Database	5,257,062	7,728	686
Catalunya	7,539,618	32,108.0	234.8

1. Administrative entity comprising municipalities, replacing since 2011 three older metropolitan entities.

2. Defined by the Institut d'Estudis Regionals i Metropolitans de Barcelona (IERMB): 102 municipalities.

3. Also known as Regió Metropolitana de Barcelona (RMB): a statistical and planning unit comprising 164 municipalities.

イロト イポト イヨト イヨト

Spatial Equilibrium

- As crucial a tool for urban economics as no arbitrage is for finance
- Wages, prices, population, and the housing stock are endogenous and jointly determined
- Indifference and compensating differentials
 - Firms: higher wages require higher productivity
 - Workers: higher real incomes require lower amenities
 - Builders: higher house values require higher building costs or restrictions to construction
- Sorting of heterogeneous agents
 - Firms: specialized cities
 - Workers: human capital
- How rapid and how costly is mobility?

글 > - + 글 >

Natural Advantages of Cities

• Are cities merely built around natural advantages?

Waterways

- Transportation, power, water supply and sewage
- Classical antiquity in the Mediterranean
- ▶ Until 1900, every big U.S. city is on a river and most on its mouth
- Parmland
 - ▶ the fertile crescent, Egypt, India, China
 - Chicago and the great plains
- O Mines
 - Coal and industrialization
 - Northern England, the Ruhr basin, Pittsburgh
 - Seats of political power

Agglomeration Economies

- Does productivity increase with population or population density?
- Empirical challenge: density is endogenous
- Reduced transport costs
 - Shared inputs and division of labor
 - Economies of scale
 - In production and in consumption
- 2 Labor-market pooling
 - Lower transaction costs
 - Insurance against idiosyncratic shocks
 - The marriage market
- Ideas and human capital
 - Marshall (1890): "the mysteries of the trade become no mystery but are, as it were, in the air"

Image: A match a ma
Agglomeration Diseconomies

Scarcity of real estate

- Smaller houses
- More expensive houses
- Longer commutes
- 2 Pollution
 - Density facilitates the spread of disease
 - Water supply and sewage
 - Public health and urban public services

Orime

- Enabled by density and anonimity
- The same forces help legal and illegal activities
- Poverty and urban distress
 - Segregation and ghettoes
 - Cities seem to attract the poor rather than create them
 - High poverty repels highly skilled people

Real Estate

- Crucial to any theory of location choices over space
- Population and the housing stock move almost perfectly together
- Housing prices are the main determinant of real wages
- Most households' main asset by a wide margin
- Finance tend to treat housing as just another asset, while
 - It reflects demand for a location, and particularly productivity differences across space.
 - It is a physical good supplied by builders.
- Extremely durable goods
- Enormous amount of regulation

Course Outline

Urban Policy

- National policy that affects cities and spatial equilibrium
- Local policy that varies across cities
- Does competition lead to better policies?
- Is local redistribution desirable? Possible?
 - Endogenous mobility
 - Segregation instead of redistribution
- Place-based or people-based policies
 - Infrastructure spending
 - Subsidies to specific cities
- Land-use planning

Thünen (1826) The Isolated State

• A single city at the center of a featureless agricultural region

- Homogeneous land productivity
- No roads, no rivers, no geography
- The city offers a wage w for workers and a price p for crops
- Crops are produced with a Leontieff technology:
 a farmer with a unit of land produces a unit of output
- The cost of transporting produce to the city is linear in distance d
- Let the rent of land at distance d be r(d)
- A farmer locating at *d* earns net income

$$y\left(d\right)=p-td-r\left(d\right)$$

★ 3 > < 3 >

The Thünen Rent

- If y(d) > w everyone prefers farming at d to working in the city
- If y(d) < w everyone prefers working in the city to farming at d
- Spatial equilibrium: $y\left(d
 ight)=w$ for $d\leqar{d}$
- Thünen rent:

$$r\left(d
ight)=p-w-td$$
 for $d\leqar{d}$

Rent decreases with distance to the market

Radius of farmland

$$\bar{d} = rac{p-w}{t}$$

• Higher p or lower t increase rents r and cultivation \overline{d}

Land Use

- Multiple products *i* such that $p_i > p_{i+1}$ and $t_i > t_{i+1}$
- Land is allocated efficiently to the most productive use
- Over the expensive products that are costlier to transport are produced closer to the city
 - Dairy and truck farming
- The Thünen rent is a convex function of distance
- Multiple technologies with different labor intensity
 - Equivalent to multiple products
 - The most labor-intensive production takes place closest to the city

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Land-Use Theory

Thünen Rings

R Residential

* City centre

3

<ロ> (日) (日) (日) (日) (日)

The Monocentric City

- Each city resident commutes to a job in the central business district
- Urban wage w, inelastic labor supply
- The city lies in a featureless space
- Commuting from a distance d has a cost t(d) with t'(d) > 0
 - Mostly time: we could define $t(d) = w\tau(d)$
- Utility function u(c, h)
 - c is consumption of a composite non-housing good
 - h is consumption of housing

- 4 同 6 4 日 6 4 日 6

The Simplest Model

- Each agent must consume exactly L units of land
- Individual optimization given rents r(d):

$$\max_{d\geq0}u\left(w-t\left(d\right)-Lr\left(d\right),L\right)$$

Spatial equilibrium:

$$u\left(w-t\left(d
ight)-Lr\left(d
ight)$$
, $L
ight)=\underline{u}$ for all $d\leq \overline{d}$

Indifference condition:

$$r'\left(d
ight)=-rac{1}{L}t'\left(d
ight)$$
 for all $d\leqar{d}$

• Alternative use of land providing rent $\underline{r} \ge 0$ yields the boundary condition

$$r(\bar{d}) = \underline{r}$$

Equilibrium rent

$$r(d) = \underline{r} + \frac{1}{L} \int_{d}^{\overline{d}} t'(\delta) \, d\delta$$

Commute Time: % 40 to 59 min to work

イロト イヨト イヨト イヨト

Average Rent

イロト イヨト イヨト イヨト

City Size

- Geographic relationship between size and population N
- The most efficient city shape on a featureless plane is the circle:

$$\bar{d} = \sqrt{\frac{LN}{\pi}}$$

• An even simpler assumption is the one-dimensional city:

$$\bar{d} = \frac{LN}{2}$$

Closed city

- Population N is exogenously given
- Urban welfare \underline{u} is endogenously determined
- Open city
 - Leaving the city yields an exogenous reservation utility \underline{u}
 - Urban population N is endogenously determined

Transportation Technologies

- The commuting cost function t(d) is the lower envelope of the commuting costs using each of the available technologies
- Linear technologies with costs

$$t_{i}\left(d\right)=k_{i}+t_{i}d$$

such that $k_i < k_{i+1}$ and $t_i > t_{i+1}$ for all i

- The technologies are used in successive Thünen rings
 - E.g., walking, then public transport, then cars
- Since t(d) becomes concave, r(d) is convex
- Greater congestion closer to the CBD has a similar effect

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Transportation: % Walked

イロト イヨト イヨト イヨト

Transportation: % Used Car/Truck/Van

イロト イヨト イヨト イヨト

Endogenous Density

• The amount of land consumed *L* is a choice variable:

$$\max_{d,L\geq 0}u\left(w-t\left(d\right)-r\left(d\right)L,L\right)$$

with first-order conditions

$$\begin{cases} t'(d) + r'(d) L = 0\\ u_h(c, L) - r(d) u_c(c, L) = 0 \end{cases}$$

Spatial equilibrium: r (d) and L (d) such that these hold for all d ≤ d

Differentiating totally the second condition

$$-r'u_{c}+\left(u_{ch}-ru_{cc}\right)\left(\frac{\partial c}{\partial d}+\frac{\partial c}{\partial L}L'\right)+\left(u_{hh}-ru_{ch}\right)L'=0$$

and plugging in the first

$$L' = -\frac{t'}{L}\frac{u_c}{r^2u_{cc} - 2ru_{ch} + u_{hh}} > 0$$

since the numerator must be negative at a maximum.

Comparative Statics

2

Comparative Statics

- Compensating changes for invariant utility <u>u</u>:
- Distance: $\partial r / \partial d < 0$ and $\partial L / \partial d > 0$
- 2 Commuting costs: $\partial r/\partial t < 0$ and $\partial L/\partial t > 0$
- Solution Wages: $\partial r / \partial w > 0$ and $\partial L / \partial w < 0$
 - This is true even if $t(d) = w\tau(d)$
- Outside option: $\partial r / \partial \underline{u} < 0$
 - If housing is normal, $\partial L/\partial \underline{u} > 0$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Population Density per Square Mile

イロト イヨト イヨト イヨト

Tractable Functional Forms

- Linear commute time $t(d) = w\tau d$ implies $w\tau + r'(d) L(d) = 0$
- 2 Cobb-Douglas utility

$$u(c, h) = (1 - \lambda) \log rac{c}{1 - \lambda} + \lambda \log rac{L}{\lambda}$$

implies

$$r(d) L(d) = \lambda w (1 - \tau d)$$

- Empirically reasonable assumption with $\lambda \approx 0.3$

• These jointly imply the ordinary differential equation

$$\frac{r'(d)}{r(d)} = -\frac{\tau}{\lambda (1 - \tau d)}$$

which has explicit solution

$$r(d) = (1 - \tau d)^{\frac{1}{\lambda}} r(0)$$

Explicit Solution

Lot size

$$L(d) = \frac{\lambda w}{r(0)} (1 - \tau d)^{-\frac{1 - \lambda}{\lambda}}$$

• Open city:

$$\log w - \lambda \log r \left(0 \right) = \underline{u} \Leftrightarrow r \left(0 \right) = e^{-\frac{\underline{u}}{\lambda}} w^{\frac{1}{\lambda}}$$

• Density gradient

$$\log \frac{1}{L} = \frac{1-\lambda}{\lambda} \left[\log \left(1 - \tau d \right) + \log w \right] - \frac{u}{\lambda} - \log \lambda$$

• City size

$$(1 - \tau \bar{d})^{\frac{1}{\lambda}} r(0) = \underline{r} \Leftrightarrow \bar{d} = \frac{1}{\tau} \left(1 - \frac{e^{\underline{u}} \underline{r}^{\lambda}}{w} \right)$$

• The city exists for $\log w - \lambda \log \underline{r} > \underline{u}$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Completing the Explicit Solution

Population

$$N = \int_{0}^{\bar{d}} \frac{2\pi\delta}{L(\delta)} d\delta$$

= $\frac{2\pi r(0)}{\lambda w} \int_{0}^{\bar{d}} \delta (1-\tau\delta)^{\frac{1-\lambda}{\lambda}} d\delta$
= $\frac{2\pi r(0)}{(1+\lambda)\tau^{2}w} \left[\lambda - (\lambda+\tau\bar{d})(1-\tau\bar{d})^{\frac{1}{\lambda}}\right]$
= $\frac{2\pi}{(1+\lambda)\tau^{2}w} \left[\lambda e^{-\frac{\mu}{\lambda}}w^{\frac{1}{\lambda}} + \frac{1}{w}e^{\frac{\mu}{L}t+\lambda} - (\lambda+1)\underline{r}\right]$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Building Housing

- Housing h is built on land L using capital K
- The price of housing is $p(d) \in /m^2$
- The consumer problem remains

$$\max_{d,h\geq0}u\left(w-t\left(d\right)-p\left(d\right)h,h\right)$$

with first-order conditions

$$\begin{cases} t'(d) + p'(d) h = 0\\ u_h(c, h) - p(d) u_c(c, h) = 0 \end{cases}$$

• Spatial equilibrium: $p\left(d
ight)$ and $h\left(d
ight)$ such that these hold for all $d\leq ar{d}$

- ▶ housing prices (€/m²) decline with distance: p'(d) < 0
- house sizes rise with distance: h'(d) > 0

The Construction Industry

- Neoclassical production function F(K, L)
- \Rightarrow Intensive form f(k) = F(kL, L) / L
 - Profit maximization

$$\max_{k,L} \left[p\left(d\right) f\left(k\right) - p_{K}k - r\left(d\right) \right] L$$

First-order condition

$$p(d) f'(k) = p_K$$

Zero-profit condition

$$p(d) f(k) = p_{K}k + r(d)$$

• Spatial equilibrium: $r\left(d
ight)$ and $k\left(d
ight)$ such that both hold for all $d\leq ar{d}$

3

(日) (同) (三) (三)

Land Usage and Land Rent

• Differentiating totally the first-order condition

$$k'(d) = -\frac{p'(d)}{p(d)}\frac{f'(k)}{f''(k)} < 0$$

Building height declines with distance

• Differentiating totally the zero-profit condition and using the f.o.c.

$$r'\left(d\right) = p'\left(d\right)f\left(k\right) < 0$$

Land as well as house prices decline with distance

Differentiating again

$$r''(d) = p''(d) f(k) + \underbrace{p'(d) f'(k) k'(d)}_{>0}$$

Endogenous construction flattens the land-rent gradient

(B)

Construction: % 1 Housing Unit

イロト イポト イヨト イヨト

Construction: % 50+ Housing Units

3

イロト イポト イヨト イヨト

- For higher opportunity cost of land <u>r</u>:
- For higher commuting costs *t*:

• For higher incomes w:

• For a higher outside option <u>u</u>:

3

- 一司

- For higher opportunity cost of land <u>r</u>:
 - The city shrinks: $\partial \bar{d} / \partial \underline{r} < 0$ and $\partial N / \partial \underline{r} < 0$
- For higher commuting costs *t*:

• For higher incomes w:

• For a higher outside option <u>u</u>:

3

< 一型

- For higher opportunity cost of land <u>r</u>:
 - The city shrinks: $\partial \bar{d} / \partial \underline{r} < 0$ and $\partial N / \partial \underline{r} < 0$
- For higher commuting costs *t*:
 - **1** House prices and density fall: $\partial p/\partial t < 0$, $\partial h/\partial t > 0$

• For higher incomes w:

• For a higher outside option <u>u</u>:

- For higher opportunity cost of land <u>r</u>:
 - The city shrinks: $\partial \bar{d} / \partial \underline{r} < 0$ and $\partial N / \partial \underline{r} < 0$
- For higher commuting costs *t*:
 - **1** House prices and density fall: $\partial p/\partial t < 0$, $\partial h/\partial t > 0$
 - 2 Land rents and building heights fall: $\partial r/\partial t < 0$, $\partial k/\partial t < 0$
- For higher incomes w:

• For a higher outside option <u>u</u>:

- For higher opportunity cost of land <u>r</u>:
 - The city shrinks: $\partial \bar{d} / \partial \underline{r} < 0$ and $\partial N / \partial \underline{r} < 0$
- For higher commuting costs *t*:
 - **1** House prices and density fall: $\partial p/\partial t < 0$, $\partial h/\partial t > 0$
 - 2 Land rents and building heights fall: $\partial r/\partial t < 0$, $\partial k/\partial t < 0$
 - The city contracts: $\partial \bar{d} / \partial w < 0$, $\partial N / \partial w < 0$
- For higher incomes w:

• For a higher outside option <u>u</u>:

- For higher opportunity cost of land <u>r</u>:
 - The city shrinks: $\partial \bar{d} / \partial \underline{r} < 0$ and $\partial N / \partial \underline{r} < 0$
- For higher commuting costs *t*:
 - **1** House prices and density fall: $\partial p/\partial t < 0$, $\partial h/\partial t > 0$
 - 2 Land rents and building heights fall: $\partial r/\partial t < 0$, $\partial k/\partial t < 0$
 - The city contracts: $\partial \bar{d} / \partial w < 0$, $\partial N / \partial w < 0$
- For higher incomes w:
 - **1** House prices and density rise: $\partial p/\partial w > 0$, $\partial h/\partial w < 0$

• For a higher outside option <u>u</u>:

3

A B M A B M

- ∢ ⊢⊒ →

- For higher opportunity cost of land <u>r</u>:
 - The city shrinks: $\partial \bar{d} / \partial \underline{r} < 0$ and $\partial N / \partial \underline{r} < 0$
- For higher commuting costs *t*:
 - **1** House prices and density fall: $\partial p/\partial t < 0$, $\partial h/\partial t > 0$
 - 2 Land rents and building heights fall: $\partial r/\partial t < 0$, $\partial k/\partial t < 0$
 - The city contracts: $\partial \bar{d} / \partial w < 0$, $\partial N / \partial w < 0$
- For higher incomes w:
 - **1** House prices and density rise: $\partial p / \partial w > 0$, $\partial h / \partial w < 0$
 - 2 Land rents and building heights rise: $\partial r / \partial w > 0$, $\partial k / \partial w > 0$
- For a higher outside option <u>u</u>:

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- For higher opportunity cost of land <u>r</u>:
 - The city shrinks: $\partial \bar{d} / \partial \underline{r} < 0$ and $\partial N / \partial \underline{r} < 0$
- For higher commuting costs *t*:
 - **1** House prices and density fall: $\partial p/\partial t < 0$, $\partial h/\partial t > 0$
 - 2 Land rents and building heights fall: $\partial r/\partial t < 0$, $\partial k/\partial t < 0$
 - The city contracts: $\partial \bar{d} / \partial w < 0$, $\partial N / \partial w < 0$
- For higher incomes w:
 - **1** House prices and density rise: $\partial p / \partial w > 0$, $\partial h / \partial w < 0$
 - 2 Land rents and building heights rise: $\partial r/\partial w > 0$, $\partial k/\partial w > 0$
 - **(3)** The city expands: $\partial \bar{d} / \partial w > 0$, $\partial N / \partial w > 0$
- For a higher outside option <u>u</u>:

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- For higher opportunity cost of land <u>r</u>:
 - The city shrinks: $\partial \bar{d} / \partial \underline{r} < 0$ and $\partial N / \partial \underline{r} < 0$
- For higher commuting costs *t*:
 - **1** House prices and density fall: $\partial p/\partial t < 0$, $\partial h/\partial t > 0$
 - 2 Land rents and building heights fall: $\partial r/\partial t < 0$, $\partial k/\partial t < 0$
 - The city contracts: $\partial \bar{d} / \partial w < 0$, $\partial N / \partial w < 0$
- For higher incomes w:
 - **1** House prices and density rise: $\partial p / \partial w > 0$, $\partial h / \partial w < 0$
 - 2 Land rents and building heights rise: $\partial r/\partial w > 0$, $\partial k/\partial w > 0$
 - **(3)** The city expands: $\partial \bar{d} / \partial w > 0$, $\partial N / \partial w > 0$
- For a higher outside option <u>u</u>:
 - **1** House prices and land rents fall: $\partial p / \partial \underline{u} < 0$, $\partial r / \partial \underline{u} < 0$

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Comparative Statics: Open City

- For higher opportunity cost of land <u>r</u>:
 - The city shrinks: $\partial \bar{d} / \partial \underline{r} < 0$ and $\partial N / \partial \underline{r} < 0$
- For higher commuting costs *t*:
 - **1** House prices and density fall: $\partial p/\partial t < 0$, $\partial h/\partial t > 0$
 - 2 Land rents and building heights fall: $\partial r/\partial t < 0$, $\partial k/\partial t < 0$
 - The city contracts: $\partial \bar{d} / \partial w < 0$, $\partial N / \partial w < 0$
- For higher incomes w:
 - **1** House prices and density rise: $\partial p / \partial w > 0$, $\partial h / \partial w < 0$
 - 2 Land rents and building heights rise: $\partial r/\partial w > 0$, $\partial k/\partial w > 0$
 - **(3)** The city expands: $\partial \bar{d} / \partial w > 0$, $\partial N / \partial w > 0$
- For a higher outside option <u>u</u>:
 - **1** House prices and land rents fall: $\partial p / \partial \underline{u} < 0$, $\partial r / \partial \underline{u} < 0$
 - 2) Building shrinks vertically and horizontally: $\partial k / \partial \underline{u} < 0$, $\partial \overline{d} / \partial \underline{u} < 0$

Comparative Statics: Open City

- For higher opportunity cost of land <u>r</u>:
 - The city shrinks: $\partial \bar{d} / \partial \underline{r} < 0$ and $\partial N / \partial \underline{r} < 0$
- For higher commuting costs *t*:
 - **1** House prices and density fall: $\partial p/\partial t < 0$, $\partial h/\partial t > 0$
 - 2 Land rents and building heights fall: $\partial r/\partial t < 0$, $\partial k/\partial t < 0$
 - The city contracts: $\partial \bar{d} / \partial w < 0$, $\partial N / \partial w < 0$
- For higher incomes w:
 - **1** House prices and density rise: $\partial p/\partial w > 0$, $\partial h/\partial w < 0$
 - 2 Land rents and building heights rise: $\partial r/\partial w > 0$, $\partial k/\partial w > 0$
 - **(3)** The city expands: $\partial \bar{d} / \partial w > 0$, $\partial N / \partial w > 0$
- For a higher outside option <u>u</u>:
 - **(**) House prices and land rents fall: $\partial p / \partial \underline{u} < 0$, $\partial r / \partial \underline{u} < 0$
 - 2) Building shrinks vertically and horizontally: $\partial k / \partial \underline{u} < 0$, $\partial \overline{d} / \partial \underline{u} < 0$
 - If housing is normal, density and population fall: $\partial h / \partial \underline{u} > 0$, $\partial N / \partial \underline{u} < 0$

• For higher population N:

• For higher opportunity cost of land <u>r</u>:

- ∢ ศ⊒ ▶

- For higher population N:
 - **(**) House prices and land rents are bid up: $\partial p/\partial N > 0$, $\partial r/\partial N > 0$

• For higher opportunity cost of land <u>r</u>:

< A

- For higher population N:
 - **(**) House prices and land rents are bid up: $\partial p/\partial N > 0$, $\partial r/\partial N > 0$
 - 2 House size and utility are reduced: $\partial h/\partial N < 0$, $\partial \underline{u}/\partial N < 0$
- For higher opportunity cost of land <u>r</u>:

- For higher population N:
 - **(**) House prices and land rents are bid up: $\partial p/\partial N > 0$, $\partial r/\partial N > 0$
 - 2) House size and utility are reduced: $\partial h / \partial N < 0$, $\partial \underline{u} / \partial N < 0$
 - Solution Building expands vertically and horizontally: $\partial k / \partial N > 0$, $\partial \bar{d} / \partial N > 0$
- For higher opportunity cost of land <u>r</u>:

- For higher population N:
 - **(**) House prices and land rents are bid up: $\partial p/\partial N > 0$, $\partial r/\partial N > 0$
 - 2) House size and utility are reduced: $\partial h / \partial N < 0$, $\partial \underline{u} / \partial N < 0$
 - Solution Building expands vertically and horizontally: $\partial k / \partial N > 0$, $\partial \bar{d} / \partial N > 0$
- For higher opportunity cost of land <u>r</u>:
 - **(**) Land rents are bid up and the city contracts: $\partial r / \partial \underline{r} > 0$, $\partial \overline{d} / \partial \underline{r} < 0$

- For higher population N:
 - **(**) House prices and land rents are bid up: $\partial p/\partial N > 0$, $\partial r/\partial N > 0$
 - 2) House size and utility are reduced: $\partial h / \partial N < 0$, $\partial \underline{u} / \partial N < 0$
 - Solution Building expands vertically and horizontally: $\partial k / \partial N > 0$, $\partial \bar{d} / \partial N > 0$
- For higher opportunity cost of land <u>r</u>:
 - **(**) Land rents are bid up and the city contracts: $\partial r / \partial \underline{r} > 0$, $\partial \overline{d} / \partial \underline{r} < 0$
 - 2 House prices and building heights rise: $\partial p / \partial \underline{r} > 0$, $\partial k / \partial \underline{r} > 0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- For higher population N:
 - **(**) House prices and land rents are bid up: $\partial p/\partial N > 0$, $\partial r/\partial N > 0$
 - 2) House size and utility are reduced: $\partial h/\partial N < 0$, $\partial \underline{u}/\partial N < 0$
 - **③** Building expands vertically and horizontally: $\partial k / \partial N > 0$, $\partial \bar{d} / \partial N > 0$
- For higher opportunity cost of land <u>r</u>:
 - **(**) Land rents are bid up and the city contracts: $\partial r / \partial \underline{r} > 0$, $\partial \overline{d} / \partial \underline{r} < 0$
 - 2) House prices and building heights rise: $\partial p / \partial \underline{r} > 0$, $\partial k / \partial \underline{r} > 0$
 - 3 House size and utility are reduced: $\partial h / \partial \underline{r} < 0$, $\partial \underline{u} / \partial \underline{r} < 0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• For higher commuting costs t

• For higher incomes w, keeping t(d) constant:

- ∢ 🗇 እ

- For higher commuting costs t
 - **(**) Utility declines and the city contracts: $\partial \underline{u}/\partial t < 0$, $\partial \overline{d}/\partial t < 0$

• For higher incomes w, keeping t(d) constant:

- For higher commuting costs t
 - **(**) Utility declines and the city contracts: $\partial \underline{u}/\partial t < 0$, $\partial \overline{d}/\partial t < 0$
 - **2** The gradients of house prices, land rents, and building height steepen: $\partial p/\partial w \ge 0 \Leftrightarrow \partial r/\partial w \ge 0 \Leftrightarrow \partial k/\partial w \ge 0 \Leftrightarrow d \le d_t$

• For higher incomes w, keeping t(d) constant:

- For higher commuting costs t
 - **(**) Utility declines and the city contracts: $\partial \underline{u}/\partial t < 0$, $\partial \overline{d}/\partial t < 0$
 - **2** The gradients of house prices, land rents, and building height steepen: $\partial p/\partial w \ge 0 \Leftrightarrow \partial r/\partial w \ge 0 \Leftrightarrow \partial k/\partial w \ge 0 \Leftrightarrow d \le d_t$
 - **(a)** House size decreases near the center: $d \leq d_w \Rightarrow \partial h / \partial t < 0$

• For higher incomes w, keeping t(d) constant:

- For higher commuting costs t
 - **(**) Utility declines and the city contracts: $\partial \underline{u}/\partial t < 0$, $\partial \overline{d}/\partial t < 0$
 - **2** The gradients of house prices, land rents, and building height steepen: $\partial p/\partial w \ge 0 \Leftrightarrow \partial r/\partial w \ge 0 \Leftrightarrow \partial k/\partial w \ge 0 \Leftrightarrow d \le d_t$
 - **(a)** House size decreases near the center: $d \le d_w \Rightarrow \partial h / \partial t < 0$
 - ★ The quantity response in the outskirts is ambiguous
- For higher incomes w, keeping t(d) constant:

- For higher commuting costs t
 - **(**) Utility declines and the city contracts: $\partial \underline{u}/\partial t < 0$, $\partial \overline{d}/\partial t < 0$
 - **2** The gradients of house prices, land rents, and building height steepen: $\partial p/\partial w \ge 0 \Leftrightarrow \partial r/\partial w \ge 0 \Leftrightarrow \partial k/\partial w \ge 0 \Leftrightarrow d \le d_t$
 - **(3)** House size decreases near the center: $d \le d_w \Rightarrow \partial h/\partial t < 0$

★ The quantity response in the outskirts is ambiguous

- For higher incomes w, keeping t(d) constant:
 - **1** Utility rises and the city expands: $\partial \underline{u}/\partial w > 0$, $\partial \overline{d}/\partial w > 0$

- For higher commuting costs t
 - **(**) Utility declines and the city contracts: $\partial \underline{u}/\partial t < 0$, $\partial \overline{d}/\partial t < 0$
 - **2** The gradients of house prices, land rents, and building height steepen: $\partial p/\partial w \ge 0 \Leftrightarrow \partial r/\partial w \ge 0 \Leftrightarrow \partial k/\partial w \ge 0 \Leftrightarrow d \le d_t$
 - (a) House size decreases near the center: $d \le d_w \Rightarrow \partial h/\partial t < 0$

★ The quantity response in the outskirts is ambiguous

- For higher incomes w, keeping t(d) constant:
 - **(**) Utility rises and the city expands: $\partial \underline{u}/\partial w > 0$, $\partial \overline{d}/\partial w > 0$
 - **2** The gradients of house prices, land rents, and building height flatten: $\partial p/\partial w \ge 0 \Leftrightarrow \partial r/\partial w \ge 0 \Leftrightarrow \partial k/\partial w \ge 0 \Leftrightarrow d \ge d_w$

イロト イポト イヨト イヨト 二日

- For higher commuting costs t
 - **(**) Utility declines and the city contracts: $\partial \underline{u}/\partial t < 0$, $\partial \overline{d}/\partial t < 0$
 - **2** The gradients of house prices, land rents, and building height steepen: $\partial p/\partial w \ge 0 \Leftrightarrow \partial r/\partial w \ge 0 \Leftrightarrow \partial k/\partial w \ge 0 \Leftrightarrow d \le d_t$
 - (a) House size decreases near the center: $d \le d_w \Rightarrow \partial h/\partial t < 0$

★ The quantity response in the outskirts is ambiguous

- For higher incomes w, keeping t(d) constant:
 - **(**) Utility rises and the city expands: $\partial \underline{u}/\partial w > 0$, $\partial \overline{d}/\partial w > 0$
 - **2** The gradients of house prices, land rents, and building height flatten: $\partial p/\partial w \ge 0 \Leftrightarrow \partial r/\partial w \ge 0 \Leftrightarrow \partial k/\partial w \ge 0 \Leftrightarrow d \ge d_w$
 - **(3)** House size increases near the center: $d \leq d_w \Rightarrow \partial h/\partial w > 0$

イロト 不得下 イヨト イヨト 二日

- For higher commuting costs t
 - **(**) Utility declines and the city contracts: $\partial \underline{u}/\partial t < 0$, $\partial \overline{d}/\partial t < 0$
 - **2** The gradients of house prices, land rents, and building height steepen: $\partial p/\partial w \ge 0 \Leftrightarrow \partial r/\partial w \ge 0 \Leftrightarrow \partial k/\partial w \ge 0 \Leftrightarrow d \le d_t$
 - **(a)** House size decreases near the center: $d \leq d_w \Rightarrow \partial h / \partial t < 0$

★ The quantity response in the outskirts is ambiguous

- For higher incomes w, keeping t(d) constant:
 - **(**) Utility rises and the city expands: $\partial \underline{u}/\partial w > 0$, $\partial \overline{d}/\partial w > 0$
 - **2** The gradients of house prices, land rents, and building height flatten: $\partial p/\partial w \ge 0 \Leftrightarrow \partial r/\partial w \ge 0 \Leftrightarrow \partial k/\partial w \ge 0 \Leftrightarrow d \ge d_w$
 - **(a)** House size increases near the center: $d \leq d_w \Rightarrow \partial h/\partial w > 0$

* The quantity response in the outskirts is ambiguous

Construction Costs: Theory

- Isomorphic formulations
- **(**) Construction function f(k) employing capital k

$$\max_{k} \left\{ pf\left(k\right) - p_{K}k \right\}$$

$$\max_{f} \left\{ pf - p_{K}k\left(f\right) \right\}$$

 \Rightarrow $k(.) = f^{-1}(.)$ is an increasing and convex cost function

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Construction Costs: Practice

- Actual data on construction costs are available for the U.S.
 - R.S. Means Reed Construction Data sells them to builders
 - Estimates by local market, building quality, unit size, no. of units, etc.
- Gyourko and Saiz (2006): differences across cities are explained by
 - Average wages
 - 2 Unionization of construction workers
 - Topography and particularly high hills
 - Regulation
- Real-world building costs are not very smooth
 - Single-family houses have convex costs of height
 - Average costs for multi-storey buildings are U-shaped
 - ★ 8 to 40 storeys seems to be the efficient range
 - ★ Taller building are efficient when the base is larger
 - Skyscrapers of 50+ storeys are very expensive

- 3

글 > - + 글 >