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This paper considers in-sample prediction and out-of-sample forecasting in regressions with

many exogenous predictors. We consider four dimension reduction devices: principal compo-

nents, Ridge, Landweber Fridman, and Partial Least Squares. We derive rates of convergence

for two representative models: an ill-posed model and an approximate factor model. The theory

is developed for a large cross-section and a large time-series. As all these methods depend on a

tuning parameter to be selected, we also propose data-driven selection methods based on cross-

validation and establish their optimality. Monte Carlo simulations and an empirical application

to forecasting in�ation and output growth in the U.S. show that data-reduction methods out-

perform conventional methods in several relevant settings, and might e¤ectively guard against

instabilities in predictors�forecasting ability.
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1 Introduction

In this paper, we consider a regression with a large dimensional set of exogenous predictors and we

are concerned with in-sample prediction and out-of-sample forecasting of the dependent variable.

That is, the set of potential predictors X has dimension (T �N), where N is the cross-section

dimension, T is the time-series dimension, and N is large relative to T . We consider four dimension

reduction devices: principal components, Ridge, Landweber Fridman and Partial Least Squares.

Principal components (PC) go back to Amemiya (1966) and are used in the factor model literature,

see e.g. Stock and Watson (2002a) and Bai and Ng (2002). Ridge regularization has its origin in the

work by Tikhonov (see Tikhonov and Arsenin, 1977). Landweber Fridman (LF) regularization is a

classical method in inverse problem literature, see Kress (1999) and Carrasco, Florens and Renault

(2007). Partial Least Squares (PLS) was introduced by Herman and Svante Wold; see Helland

(1988) and references therein; it has been used recently in econometrics by Groen and Kapetanios

(2008) and Kelly and Pruitt (2015).

All these methods involve a regularization or tuning parameter which needs to be selected.

For example, in the principal components approach, the regularization parameter is the number of

principal components used for prediction. An appropriate choice of the regularization parameter is

crucial. We propose a data-driven selection method based on generalized cross-validation (GCV; Li,

1986, 1987). Note that our criterion di¤ers from that used in traditional factor models, where the

number of factors is selected using Bai and Ng�s (2002) criteria, for two reasons: �rst, because we

do not impose any factor structure on the data; second, because the GCV criterion minimizes the

prediction error in forecasting the target variables as opposed to explaining the variability in the

regressors. In fact, we show that our criterion will perform better than Bai and Ng�s (2002) criterion

when there is no factor model or when the factors which are the most relevant for explaining the

variance of the regressors are not the ones which are the most relevant for forecasting the dependent

variable.

We study properties of our regularized estimators assuming two representative data generating

processes (DGP). The �rst DGP is referred to as a ill-posed model where the eigenvalues of the

matrix X 0X=T are bounded and decline to zero gradually. The second DGP is the popular factor
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model with a �nite number, r, of factors. In this model, the r largest eigenvalues of X 0X=T

grow with N while the remaining eigenvalues are bounded. In both DGP, the matrix X 0X=T is

ill-conditioned in the sense that the ratio of the largest over the smallest eigenvalue diverges and

regularization is needed to invert X 0X=T . We found that the convergence rates of our estimators

are quite di¤erent in the two DGPs. While, in the �rst DGP, the three main regularization methods

(Ridge, principal components, and Landweber Fridman) achieve the same rate in most cases, in

the second DGP, principal component and LF have a much faster rate than Ridge, which is due to

the factor structure. These are asymptotic results for large N and large T . When comparing PLS

and principal components in the �rst DGP, it is instead unclear which one is faster since there is

a bias and variance trade-o¤. We use our �ndings to draw useful guidelines for practitioners.

Simulations show that the dimension reduction methods that we consider outperform traditional

factor models in many relevant settings. We �nd substantial forecasting gains, in particular, when

there are a large number of relevant factors or when the predictors have a factor structure but the

factors are not related to the variable to be predicted. In both cases, the assumptions underlying the

usual factor models break down, either because the number of factors is not "small" or because the

factors are irrelevant for predicting the target variable (even though they can e¤ectively summarize

the information contained in the predictors).

Our paper is related to several contributions in the literature on forecasting using a large dataset

of predictors. When forecasting with a large dataset of predictors, estimating the parameters by

OLS has several drawbacks. A �rst issue is that, even if all predictors are relevant, the variance

of the mean-square forecast error is increasing in the dimension of the predictors; e.g., under

Gaussianity assumptions, Stock and Watson (2006) show that the distribution of the forecast given

the predictors is Normal, with a variance proportional to the size of the cross section dimension

divided by the size of the time series dimension: as the number of predictors grows, so does

the variance. Another issue is that most predictors are highly correlated, which makes inverting

the matrix of the second moments of the predictors very imprecise. A �nal issue is that not

every potentially important predictor is actually relevant: keeping weak predictors can introduce

unnecessary sampling variability to the forecast.

To improve upon OLS while continuing to enjoy the bene�ts of extracting information from

a large dataset of predictors, the literature has moved in the direction of either summarizing the

information from the large dataset of predictors into a low-dimensional vector of latent factors, or

using all the variables but imposing some kind of shrinkage.

The former route (that is, summarizing the information in a few latent factors) has led to the

popular factor models (Stock and Watson, 2002b; Forni et al., 2005), where the number of factors

has been typically estimated by Bai and Ng�s (2002) information criteria (IC). Stock and Watson

(2002a) perform Monte Carlo simulations to compare the forecasting performance of factor models
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where the number of factors is selected via AIC and BIC with that of factor models where the

number of factors is selected via Bai and Ng�s (2002) criteria. They �nd that the relative perfor-

mance depends on the DGP. Our contribution to this literature is to consider information criteria

and data reduction models other than Stock and Watson (2002a), as well as their performance in

more general DGPs; in addition, we study their theoretical properties and empirical performance.

Alternative ways to select factors for forecasting have been proposed by Bai and Ng (2008) and

Cheng and Hansen (2015). Bai and Ng (2008) propose a targeted predictors approach which �rst

selects subsets of regressors based on individual t-tests, then extract principal components from

this subset.2 In this paper we also consider factor models, but estimating the number of factors

using generalized cross-validation; also, di¤erently from the factor model literature, we consider

methodologies that extract information from all predictors using dimension reduction techniques.

Cheng and Hansen (2015) propose to select factors and lag structures for forecasting using Mal-

lows�(1973) IC and leave-one-out cross-validation. Relative to Cheng and Hansen (2015), we do

not assume a factor structure and compare the GCV criterion with Mallows�criterion in Monte

Carlo simulations.3

The second route (that is, using all the predictors but imposing some shrinkage) has led to

considering several distinct procedures. One avenue is to use Bayesian VARs; De Mol et al. (2008)

show that, with speci�c choice of priors, Bayesian VARs reduce to penalized Ridge (when using

a Gaussian prior, which gives decreasing weights to ordered eigenvalues of PC) or Lasso (when

using a double exponential prior, which gives zero weight to variables whose coe¢ cients are small,

thus enforcing sparsity). We contribute to this strand of the literature by considering an alternative

method to select the penalization in Ridge (via generalized cross-validation). We also include Lasso

in some of our Monte Carlo simulation results.

A second avenue is to consider forecast combinations, either using equal weight or Bayesian

model averaging (Wright, 2009). Cheng and Hansen (2015) also propose forecast combinations

for factor models based on Mallows�criterion. Di¤erently from these contributions, we investigate

generalized cross-validation criteria for factor model selection as well as other dimension reduction

techniques applicable in more general models. We also compare our techniques with BMA and

equal weight forecast combinations in the empirical analysis.4

2Giovannelli and Proietti (2015) propose an alternative way to choose the factors taking into account their corre-

lation with the target variable, and controlling for the error rate of the selection. See also Huang and Lee (2010) for

supervised factor models.
3Djogbenou (2015) also shows that leave-d-out cross-validation and a bootstrap method he proposes consistently

select the number of factors in factor-augmented models. Mao and Stevanovic (2014) show that the selection of factors

is very sensitive to the presence of structural instability. Gonçalves, McCracken, and Perron (2015) investigate the

predictive ability of factor-augmented models.
4Other techniques that have been considered in the literature include Bagging (e.g. Inoue and Kilian, 2008),

Boosting (e.g. Bai and Ng, 2009), combinations of OLS and PC (e.g. Hillebrand and Lee, 2012), independent
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An alternative avenue is to consider dimension reduction techniques, like we do. A few recent

contributions have investigated PLS. Groen and Kapetanios (2008) compare three regularization

methods (principal components, Ridge and PLS) and study their properties when the model has

a weak factor structure. Kelly and Pruitt (2015) propose a new forecasting method based on

the use of proxies; when the choice of proxies is automatic, their method boils down to PLS.

The main contributions of our paper relative to these works are that: (a) we consider a broader

class of methods including Landweber Fridman which has never been applied to forecasting so

far; (b) while these papers do not give any indication on how to select the tuning parameters in

practice, we provide a data-driven method for selecting the regularization parameter, making our

approach easily applicable by practitioners. Moreover, the methods we consider do not require

proxies. Finally, the data reduction methods we consider, like Kelly and Pruitt�s (2015) method,

have superior performance when "the factors dominating the forecast target�s variation contribute

only weakly to variance among the predictors."5

The remainder of the paper is organized as follows. Section 2 presents the four estimation

methods. Section 3 discusses the rates of convergence of the estimators in two di¤erent models: a

ill-posed model and a factor model. Section 4 presents data-driven methods for selecting the tuning

parameter involved in the regularization methods we consider, and establishes their optimality.

Section 5 presents Monte Carlo experiments results and Section 6 presents the empirical results.

Section 7 concludes. The proofs are collected in the Not-for-Publication Appendix (Carrasco and

Rossi, 2016).

2 Estimation Methods

The model is:

yt = x0t� + "t; t = 1; 2; :::; T;

where yt is a scalar, xt is a (N � 1) vector of predictors, and � is (N � 1) vector of unknown
parameters. In matrix notation, let y be a (T �1) vector, X be a (T �N) matrix and " be a (T �1)

component analysis and sparse PCA (Kim and Swanson, 2014b), combining forecast PC (Huang and Lee, 2010),

principal covariate regression (e.g. Tu and Lee, 2013). Stock and Watson (2012) show that IC, BMA and Bagging

produce forecasts equal to a weighted average of the predictors, where the weights are the OLS coe¢ cients times a

shrinkage factor that depends on t-statistic of that coe¢ cient. Kim and Swanson (2014a) provide a comprehensive

empirical analysis of the performance of several of these methods. Kim and Swanson (2015) discuss factor MIDAS

approaches for forecasting.
5Tu and Lee (2013), Barbarino (2014) and Fuentes, Poncela and Rodrigues (2015) also empirically investigate the

forecasting performance of PLS. Kelly and Pruitt (2013) show that a single-factor PLS is successful to forecast stock

market returns.
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vector such that:

y =

0BBBBB@
y1

y2
...

yT

1CCCCCA ; X =

0BBBBB@
x01

x02
...

x0T

1CCCCCA ; " =

0BBBBB@
"1

"2
...

"T

1CCCCCA :

Let �xx = E (xtx
0
t), �xy = E (xtyt) ; Sxx = X 0X=T; and Sxy = X 0y=T:

The estimation of � can be viewed as solving the equation y = X�, i.e. Sxy = Sxx�: When Sxx

is invertible, the OLS estimator of � is:

�̂ = (Sxx)
�1 Sxy: (1)

This estimate involves the inversion of the (N �N) matrix Sxx. However, when N is large, X 0X

may be ill-conditioned so that the resulting �̂ may have a large variance. Moreover, if N > T; this

estimate is not implementable. The population OLS estimator is � = ��1xx�xy. A good estimator

of � should rely on a good estimator of ��1xx . The data-reduction estimators we consider in this

paper involve a regularized inverse of Sxx denoted (S�xx)
�1 ; which depends on the regularization

parameter �.

Before introducing the various regularization techniques, it is useful to recast the problem

as an inverse problem. Let H be the Hilbert space corresponding to RN endowed with the norm

kuk2 = u0u with associated inner product hu1; u2i = u01u2. Let E be the Hilbert space corresponding
to RT endowed with the norm kvk2T = v0v=T with associated inner product hv1; v2i = v01v2=T: Let

H be the operator from H to E de�ned by Hu = Xu for all u 2 RN . Let H� be the operator from

E to H which is the adjoint of H. H� is such that H�v = X 0v=T for all v 2 RT . Observe that the
operator H�H = X 0X=T = Sxx.  ̂j are the (T � 1) orthonormalized eigenvectors of the (T � T )
matrix XX 0=T such that6

XX 0

T
 ̂j = �̂2j  ̂j :

By normalization,  ̂0j ̂j=T = 1 The system
n
�̂j ; b�j ;  ̂jo j = 1; 2; ::: is the singular value decom-

position of the operator H. We have H b�j = X b�j = �̂j ̂j and H� ̂j = X 0 ̂j=T = �̂j b�j : The
eigenfunctions  ̂j , j = 1; 2; :::T can be computed from  ̂j = X b�j=�̂j : Then �̂21 � �̂22 � :::�̂2N and �̂j ,

j = 1; 2; :::; N; are the eigenvalues and the corresponding orthonormalized eigenvectors of dimen-

sion (N � 1) of Sxx. Note that �̂0j�̂j = 1: See for instance Carrasco, Florens, and Renault (2007).
Note also that �̂2j are consistent estimators of the corresponding eigenvalues of �xx; �

2
j as T goes

to in�nity: We allow for multiple eigenvalues. In the sequence �21 � �22 � :::�2N , each eigenvalue is

repeated in regard to its multiplicity order.

6Note that the eigenvalues are denoted in this paper by b�2j , so that b�2j are the eigenvalues themselves and not the
eigenvalues squared.
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In this paper, we consider four regularizations which take the form:

(S�xx)
�1 v =

min(N;T )X
j=1

q̂j

�̂2j

D
v; b�jE b�j (2)

and the corresponding estimators:

�̂� = (S�xx)
�1 Sxy (3)

=

min(N;T )X
j=1

q̂j

�̂j

D
y;  ̂j

E
T

b�j (4)

where
D
y;  ̂j

E
T
= y0 ̂j=T and q̂j controls the amount of shrinkage, which di¤ers across the various

methods, and depends on a tuning parameter (� for all the methods except PLS, and k for PLS)

as well as �̂j. The predictor for y takes the form

ŷ = X�̂� =

min(N;T )X
j=1

q̂j

D
y;  ̂j

E
T
 ̂j �M�

T y;

where M�
T =

Pmin(N;T )
j=1 q̂j ̂j ̂

0
j=T and the division by T comes from the fact that  ̂0j ̂j=T = 1:

We consider four regularization schemes. The �rst three are traditionally applied to invert

integral equations (Kress, 1999) while the fourth was introduced by Wold in the seventies.

1) Ridge (R)

A �rst regularization scheme is closely related to the Ridge regression where

(S�xx)
�1 = (Sxx + �I)

�1 ; (5)

M�
T y = X (Sxx + �I)

�1 Sxy =

min(N;T )X
j=1

�̂2j

�̂2j + �

D
y;  ̂j

E
T
 ̂j (6)

where � > 0 is the tuning parameter, I is the (N �N) identity operator and bqj = �̂2j=
�
�̂2j + �

�
.

When implementing Ridge in practice, it is convenient to express it as follows:

M�
T y = X�̂�R (7)

�̂�R = (Sxx + �I)
�1 Sxy (8)

2) Landweber Fridman (LF)

LF is an iterative method. Let d be such that 0 < d < 1=�̂21 where �̂
2
1 is the largest eigenvalue

of Sxx: �̂ = (S�xx)
�1 Sxy can be computed iteratively from(

�̂l = (1� dSxx) �̂l�1 + dSxy, l = 1; 2; :::; 1=�� 1
�̂0 = dSxy
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where 1=� � 1 is some positive integer corresponding to the number of iterations. We see that �̂l
is a polynomial in Sxx. This estimator can be alternatively written in terms of the singular value

decomposition of X; �̂�LF =
Pmin(N;T )

j=1
bqjb�j
D
y;  ̂j

E
T
�̂j ; with bqj = 1��1� db�2j�1=� : Using �̂j = X0 ̂j

Tb�j ,
we obtain

�̂�LF =

min(N;T )X
j=1

�
1�

�
1� db�2j�1=��b�2j

D
y;  ̂j

E
T

X 0 ̂j
T

(9)

and one has M�
T y = X�̂�LF :

3) Spectral Cut-o¤ (SC) and Principal Components (PC)

The SC procedure selects the eigenvectors associated with the eigenvalues greater than some

threshold � > 0:

M�
T y =

X
�̂2j��

D
y;  ̂j

E
T
 ̂j : (10)

In fact, note that M�
T =

P
�̂2j��

 ̂j ̂
0
j=T , so that bqj = I

�b�2j � �
�
, where I (:) is the indicator

function. Alternatively, one can select the eigenvectors associated with the largest eigenvalues. If

the regressors are centered, �j correspond to the principal components and hence are consistent

estimators of the factors of X (up to a rotation, under the conditions of Bai and Ng (2006)). Using

the results in Carrasco, Florens and Renault (2007, p. 5694), and letting b	 =
h b 1j b 2j:::j b k(�)i

denote the matrix of the k (�) eigenvectors associated with the largest eigenvalues (
n
�2j

ok(�)
j=1

s.t.

�2j � �), then eq. (10) can be rewritten as: M�
T y =

b	�b	0b	��1 b	0y: Here, M�
T is the projection

matrix on the space spanned by  ̂j ; j = 1; :::; k (�) associated with the k (�) largest (positive)

eigenvalues.

Again, for practical purposes, one can de�ne:

�̂�PC =
�b	0b	��1 b	0y

M�
T y = b	�̂�PC :

So we call "principal component" the method which consists in projecting on the �rst k principal

components and we call "spectral cut-o¤" the method consisting in projecting on the eigenvectors

corresponding to the eigenvalues greater than some threshold �. Both methods are equivalent, only

the regularization parameters di¤er.

4) Partial Least Squares (PLS)

Let k be the number of steps of PLS, which is the tuning parameter in PLS. Assume X and

y are centered. PLS is an iterative method which looks for components which simultaneously
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explain X and y well. As it takes the prediction of y into account to select the components,

we say that it is a supervised method. The previous methods (R, LF, SC) are not supervised.

According to Helland (1988, p.596), see also Groen and Kapetanios (2008), the PLS estimator

can be written as:

�̂kPLS = Vk
�
V 0kX

0XVk
��1

V 0ky

where Vk =
�
X 0y; (X 0X)X 0y; ...., (X 0X)k�1X 0y

�
, and

M�
T y = XVk

�
V 0kX

0XVk
��1

V 0kX
0y: (11)

Let us denote Pl = X (X 0X)l�1X 0y the l�th PLS factor.7 Then M�
T is the projection matrix

on the �rst k PLS factors: P1; P2; :::; Pk: Note that Pl = XX 0Pl�1, j = 2; 3; :::This can be

conveniently written as power functions of Sxx; see Delaigle and Hall (2012):

�̂kPLS =

kX
l=1


̂jS
l�1
xx Sxy (12)

where 
̂ = (
̂1; :::; 
̂k)
0 satis�es 
̂ = Ĥ�1�̂ where Ĥ is a (k � k) matrix with (i; l) element

Ĥi;l = S0xyS
i+l�1
xx Sxy and �̂l = S0xyS

l�1
xx Sxy: As LF, PLS uses power functions of Sxx to

approximate �, however it is done in a supervised way.

Alternatively, PLS can be written in terms of the eigenvectors �̂j . By adapting the formulas

in Blazère, Gamboa, and Loubes (2014a, b) to our notation, the PLS estimator is:

�̂kPLS =

min(N;T )X
j=1

q̂kj

�̂j

D
y;  ̂j

E
T
�̂j

where

q̂kj =
X

(j1;:::;jk)2I+k

ŵj1:::jk

"
1�

kY
l=1

 
1�

�̂2j

�̂2jl

!#
; (13)

ŵj1:::jk =
p̂2j1 :::p̂

2
jk
�̂4j1 :::�̂

4
jk
V
�
�̂2j1 :::�̂

2
jk

�2
P
(j1;:::;jk)2I+k

p̂2j1 :::p̂
2
jk
�̂4j1 :::�̂

4
jk
V
�
�̂2j1 :::�̂

2
jk

�2 ;

p̂ji =
D
y;  ̂ji

E
T
;

I+k = f(j1; :::; jk) : min(N;T ) � j1 > ::: > jk � 1g ;
7There are various algorithms for PLS. This one is the simplest to present.
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and V (x1; :::; xk) is the Vandermonde determinant de�ned as

V (x1; :::; xk) =

�����������

1 x1 � � � xk�11

1 x2 � � � xk�12
...

...

1 xk � � � xk�1k

�����������
=

Y
1�i<j�k

(xj � xi) :

Note that

0 � ŵj1:::jk � 1

and X
(j1;:::;jk)2I+k

ŵj1:::jk = 1:

As a consequence,

1� q̂kj =
X

(j1;:::;jk)2I+k

ŵj1:::jk

kY
l=1

 
1�

�̂2j

�̂2jl

!
:

The weight ŵj1:::jk can be seen as probabilities but it should be remembered that they are random,

as they are functions of y.

2.1 Comparing the Degree of Regularization/Shrinkage Across Methods

To summarize, the four regularized inverses yield

ŷ =M�
T y =

min(N;T )X
j=1

q̂j

D
y;  ̂j

E
T
 ̂j =

1

T

min(N;T )X
j=1

q̂j ̂j ̂
0
jy (14)

where q̂j � q
�
�; �̂2j

�
with for R: q

�
�; �2j

�
=

�2j
�2j+�

; for SC: q
�
�; �2j

�
= I

�
�2j � �

�
; and for LF:

q
�
�; �2j

�
= 1 �

�
1� d�2j

�1=�
. For PC with k components: qj = q̂j = I (j � k). For PLS with k

PLS factors, q̂j = q̂kj given by (13). The matrix M�
T is idempotent for PC and PLS but not for LF

and R.

Note that, when using all regressors without regularization, the prediction is equivalent to that

obtained by eq.(14) where q̂j = 1 for all j, as using all regressors is equivalent to using all the

eigenvectors. For R, SC, and LF, clearly 0 � q̂j � 1, so that the shrinking property of these

regularization methods is obvious. For PLS, q̂kj may be negative and even greater than one. A

simple illustration of this property (see Blazère et al., 2014b) is given for k < N and j = 1: In that
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case, 1� �̂21
�̂2jl

< 0 for all jl and hence

kY
l=1

 
1� �̂21

�̂2jl

!
< 0 if k is odd,

kY
l=1

 
1� �̂21

�̂2jl

!
> 0 if k is even,

therefore q̂kj > 1 for k odd and q̂kj < 1 for k even. Moreover, q̂kj is random which makes the

analysis of the properties of PLS in the next section more di¢ cult.

3 Rate of Convergence

A good estimator of � has to rely on a good estimator of ��1xx . However, when N is large relative

to T , the number of terms in �xx is so large that there exists no consistent estimator unless one is

willing to impose some structure. In this section, we study the rate of convergence of x0t�̂
� � x0t�

2

in two interesting cases. In the �rst case (called "ill-posed model"), the eigenvalues of �xx are

bounded and decline to zero gradually. In the second case (the factor model), a few eigenvalues

dominate the others. We believe that these two cases can cover many relevant applications in

economics.

3.1 Ill-posed Model

First, we de�ne some notation and recall some results on norms, which will be very useful in

the sequel. For an arbitrary vector v = (v1; v2; :::; vL)
0, kvk denotes the Euclidean norm, kvk =qPL

i=1 v
2
i : For an arbitrary (N � T ) matrix A with elements ait, kAk denotes the matrix norm

de�ned as maxx kAxk = kxk =
p
�max (A0A) where �max (M) denotes the largest eigenvalue of M:

The Frobenius norm is de�ned as kAkF =
qPn

i=1

PT
t=1 a

2
it =

p
trace(A0A): For an arbitrary

matrix A and a conformable vector v, it holds that kAvk � kAk kvk. Moreover, as kAk � kAkF , it
also holds that kAvk � kAkF kvk

Assumption 1. Assume that yt = x0t�+"t; t = 1; :::; T; where the regressor xt is aN�dimensional
vector, k�k < D for some constant D, E (yt) = E (xt) = 0. "t is a stationary martingale di¤erence

sequence with respect to f"t�1; "t�2; :::; xit; xit�1; :::; i = 1; 2; :::; Ng, such that E (""0jX) = �2"I and

either (a) the N�vectors (xt) ; t = 1; :::; T are i.i.d. with mean 0 and E
h
kxtk4

i
< C for some

constant C; or (b) (xitxjt) ; t = 1; :::; T; i; j = 1; :::; N is a strong mixing stationary process for all

N with � coe¢ cient satisfying

9" > 0; 9d 2 2N; d � 2 :
1X
l=1

(l + 1)d�2 (�l)
"=(d+") <1

11



and
NX
i=1

NX
j=1

h
E
�
jxitxjtj2+"

�i2=(2+")
< C

for some constant C:

Remarks. The assumption that the observations are centered is a simplifying assumption which

could be relaxed at the cost of more complicated formulas. The homoskedasticity assumption is

not crucial and could be replaced by some high-level assumption. Assumption 1 imposes that xt

is either independent or weakly dependent. Many common processes are mixing (see Doukhan,

1994). The conditions in Assumption 1(b) permits to guarantee that Sxx is a consistent estimator

of �xx (see Lemma 1 below).

The condition E
h
kxtk4

i
< C implies that E kxtk2 =

PN
j=1E

�
x2jt

�
= trace (�xx) =

P
j �

2
j < C

where �2j are the eigenvalues of �xx: Therefore, �xx has a �nite trace. This implies two properties.

First the largest eigenvalue of �xx is bounded. Second, the smallest eigenvalues of �xx decline to

zero fast as N !1; which means that �xx becomes ill-posed.
By Cauchy-Schwarz, the condition E kxtk2 < C implies that

PN
i=1

PN
j=1 (�xx (i; j))

2 < C,

where �xx (i; j) is the (i; j) element of the matrix �xx: Consequently when N grows, the extra

covariances become negligible. This assumption is a kind of sparsity assumption on the matrix

�xx and may seem very strong but it is actually a common assumption in papers dealing with

functional regressions, namely regressions where the regressor is a curve in a Hilbert space. The

covariance matrix is then a covariance operator which is usually assumed to have a �nite trace,

see for instance Hall and Horowitz (2007) and Delaigle and Hall (2012). Under this assumption,

the covariance operator can be approximated by a �nite dimensional operator. The assumption

k�k < D implies that the importance of additional regressors is limited. It is again similar to

conditions found in nonparametric regressions.

Note that Assumption 1 does not impose any restriction on the growth rate of N . In particular,

N can be much larger than T:

Assumption 1 is not satis�ed in the case where the regressors X1, X2,..., XN are orthonormal.

In that case, the matrix X 0X=T is the identity matrix and its trace equals N . But we believe that

in economics, extra regressors tend to be very correlated to included regressors so that the extra

variance contributed by these regressors becomes negligible.

Our assumptions are such that kxtk = Op (1) and k�k = O (1). This may seem restrictive as

in many applications, kxtk = Op (N). This case can be handled by rescaling the variables. Let

~xt = xt=
p
N and ~� =

p
N�, then our model can be rewritten as

yt = ~x
0
t
~� + "t:

Now k~xtk = Op (1) and provided



~�


 = Op (1), our theory goes through and the rates of convergence

12



given in this section are valid. The condition



~�


 = Op (1) is equivalent to k�k = Op

�
1p
N

�
. This is

satis�ed for the factor model we will analyze in Section 3.2. and for the following model. Consider

a functional linear regression (see for instance Hall and Horowitz, 2007):

yt =

Z 1

0
b (s)xi (s) ds+ "i

where
R 1
0 b

2 (s) ds <1 and
R 1
0 x

2
i (s) ds <1 a.s. An example is given by a model with data sampled

at di¤erent frequencies. Let yt be the quarterly US output growth for a quarter t and xt(s) be

the interest rate at time s during that quarter. The interest rate is observed at a higher frequency

than the output growth. For instance, assume that it is observed at a daily frequency with dates

denoted s1, s2, ..., sN , so that the integral is approximated by an average and the estimated model

becomes:

yt =
1

N

NX
j=1

b (sj)xt (sj) + "i:

Now denote xt = (xt (s1) ; xt (s2) ; :::; xt (sN ))
0 and � = (b (s1) ; b (s2) ; :::; b (sN ))

0 =N , then we have

kxtk = Op

�p
N
�
and k�k = O

�
1=
p
N
�
: So, regularization provides an alternative to the MIDAS

regression proposed by Ghysels, Santa-Clara, and Valkanov (2005).

Note that our model di¤ers from the usual sparse models (see the survey by Fan, Lv and Qi,

2011), in particular we do not assume that the coe¢ cients �i are zero for all i except in a small

subset. Indeed, the elements of � may be all di¤erent from zero in our model. Our theory does not

cover the typical sparse model where kxtk = Op

�p
N
�
and k�k = O (1) :

When no structure is imposed to �xx; it is well-known that the sample covariance Sxx is not

a consistent estimator of �xx as N grows faster than T: More precisely, Ledoit and Wolf (2004,

Lemma 3.1) show that kSxx � �xxk2 = Op
�
N2=T

�
: Under Assumption 1, the rate of convergence

of Sxx to �xx does not depend on N :

Lemma 1 Under Assumption 1, kSxx � �xxk2F = Op (1=T ) :

To study the rate of the MSE, we need to impose an additional assumption which will be useful

to characterize the regularization bias.

Assumption 2. �xx is non singular and there exists � > 1 such thatX
j

h�; �ji2

�2��2j

<1: (15)

where
n
�j ; �

2
j

o
, j = 1; 2; :::; N are the eigenvectors and eigenvalues of �xx:

13



The fact that �xx is non singular means that there are no redundant regressors. As a result,

the population OLS parameter, � = ��1xx�xy, is well de�ned. We could relax this condition and

de�ne � as the population OLS with minimum norm, namely � = ��xx�xy where �
�
xx is the Moore

Penrose generalized inverse of �xx.

Condition (15) is a source condition and can be found in the papers on functional estimation

using inverse problem techniques (see Carrasco, Florens, and Renault, 2007). The elements h�; �ji
can be thought of as Fourier coe¢ cients in the decomposition of � on the basis f�j ; j = 1; 2; :::; Ng :
(15) relates the rate at which h�; �ji2 declines to zero relatively to that �2��2j : The larger � is, the

easier it is to recover the signal � from the basis f�j ; j = 1; 2; :::; Ng. Importantly, we will show
that the regularization bias is a function of �. The factor model is an example where the condition

(15) is satis�ed for � arbitrarily large (see Section 3.2).

Let �� be the regularized version of � de�ned as �� = (��xx)
�1�xy = (��xx)

�1�xx� using

Assumption 1. Then, we have

�� =
NX
j=1

qj
�2j
h�xx�; �ji�j

=

NX
j=1

qj h�; �ji�j

where qj = q
�
�; �2j

�
: The prediction error can be decomposed as the sum of two terms:

x0t�̂
� � x0t� = x0t�̂

� � x0t�� + x0t�� � x0t�:

The �rst term, x0t�̂
� � x0t�

�; captures the estimation error, whereas the second term, x0t�
� � x0t�;

captures the regularization bias. To derive the rate of convergence, we analyze these two terms

separately. The results are summarized in the following proposition.

Proposition 2 Under Assumptions 1 and 2, we have as N and T go to in�nity

x0t�̂
� � x0t� =

8<: Op

�
�min(

�
2
;1)
�
+Op

�
1

�
p
T

�
for R,

Op
�
��=2

�
+Op

�
1

�
p
T

�
for SC and LF,

:

where the �rst Op term corresponds to the regularization bias, x0t�
� � x0t�; and the second Op term

corresponds to the estimation error, x0t�̂
� � x0t��.

Remarks:

1. The strict exogeneity is not required to establish Proposition 2.

2. The rate of convergence of Ridge is not as fast as that of SC and LF when � > 2:8 It means

that if the model is easy to estimate (if, for instance, X� is explained by a few  ̂j) then SC and

8The rate could be improved by using iterated Tikhonov (see Engl, Hanke, and Neubauer, 2000).
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LF should be preferred to Ridge. This is a well-known property of Ridge called saturation. An

illustration of this phenomenon is given by the factor model in the next section.

3. To derive the � which minimizes the sum of the two rates, we look for the value of � which

equates the rate for the regularization bias and the rate for the estimation error. For SC and LF,

we obtain � = T�1=(�+2) and x0t�̂
��x0t� = Op

�
T��=(2(�+2))

�
. It follows that when � becomes large,

the rate approaches the parametric rate, T�1=2: This is not true for Ridge because of the saturation

property.

4. PC and SC are the same estimation method. They di¤er only in the way the regularization

parameter is de�ned. However, the rate of convergence of PC depends on the decay rate of the

eigenvalues as we will see in the next proposition where we analyze the conditional mean-square

error. The rate of convergence of PC (without conditioning) requires stronger assumptions on

the eigenvalues, in particular the di¤erence between subsequent eigenvalues �2j � �2j+1 should not

decrease to zero too fast when j goes to zero (see Cai and Hall (2006) and Hall and Horowitz (2007)

among others). As pointed out by Hall and Horowitz (2007), one advantage of Ridge is that it

does not require any restrictions on the spacing of eigenvalues. We see that, in our context, LF and

SC do not require extra restrictions either and are consistent even when multiple eigenvalues are

present. It should be noted that Hall and Horowitz (2007) derive an optimal rate for the estimation

of �, while here we focus on the estimation of the prediction X�. The presence of X induces a

smoothing which improves the rate of convergence.

To establish the optimality of the selection criteria used to determine �, we need results on the

conditional mean squared prediction error.

Proposition 3 Under Assumptions 1-2, E ("jX) = 0; we have as N and T go to in�nity

�
1

T
E

�


X�̂� �X�


2 jX��1=2 =
8>>><>>>:

Op

�
�min(

�
2
;1)
�
+Op

�
1p
�T

�
for R,

Op

�
�
�
2

�
+Op

�
1p
�T

�
for SC and LF,

Op

�
��k+1

�
+

q
k�2"
T for PC with k principal components

:

It is interesting to compare the results of Propositions 2 and 3. In Proposition 3, we assume

strict exogeneity. The proof of Proposition 2 accounts for the estimation error �xx � Sxx, while

in Proposition 3, the conditioning on X makes this unnecessary. This explains why the estimation

error is larger in Proposition 2 than in Proposition 3. The rate for PC will be used for comparison

with PLS later on.

For PLS, the population regularized estimator (denoted by �kPLS) has two expressions which

are equal to each other. One expression is based on the spectral decomposition of �xx :

�kPLS =

min(N;T )X
j=1

qkj h�; �ji�j
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where qkj is as in (13) with �̂jl replaced by �jl and p̂jl replaced by pjl = �jl h�; �jli. The other
expression is based on a non-orthogonal basis formed of �lxx

�kPLS =

kX
l=1


l�
l
xx�

where 
 = (
1; :::; 
k)
0 = H�1 (�1; :::; �k)

0 and H is the (k � k) matrix with (i; l) element

Hil = �
0
xy�

i+l�1
xx �xy (16)

and �l = �0xy�
l�1
xx �xy: We will use the �rst expression to study the bias, whereas we will use the

second expression to study the variance.

Proposition 4 Under Assumptions 1 and 2, we have as N and T go to in�nity

x0t�
k
PLS � x0t� = Op

�
��k+1

�
:

Moreover,

E

��
x0t�

k
PLS � x0t�

�2�
� E

��
x0t�

k
PC � x0t�

�2�
for all k:

In the special case where there is a constant C > 0 such that

1

C
j�2 � �2j � Cj�2 (17)

then x0t�
k
PLS � x0t� = Op

�
k�3�

�
= Op

�
�
3�=2
k

�
as k grows with min(T;N).

Assume moreover that (x0t; yt)
0, t = 1; 2; :::; T is an iid sample and the largest eigenvalue of �xx <

1. Let �H be the smallest eigenvalue of H de�ned in (16). Provided k is such that 1 � k � CT 1=2 for

an arbitrary constant C and diverges su¢ ciently slowly to ensure that T�1=2��1H k
k+T�1��3H ! 0,

then as N and T go to in�nity,

x0tb�kPLS � x0t�kPLS = Op

�
1 + k
k
T 1=2�H

+
1

T�3H

�
:

Remark 1. The rate we derived for the bias of PLS coincides with that of PC. It is only an upper

bound which can be improved in the special case where 1
C j

�2 � �2j � Cj�2. We also show that, for

the same number of components k, the squared bias of PLS is smaller than that of PC. It has been

established earlier that PLS �ts better than PC, in the sense that


y �X�kPLS

2 < 

y �X�kPC

2,

see De Jong (1993), Phatak and de Hoog (2002), and more recently Blazère et al. (2014a).

Remark 2. The assumption 1
C j

�2 � �2j � Cj�2 is often used in nonparametric estimation. For

instance, it was considered by Hall and Horowitz (2007) in the context of a functional regression.

Remark 3. Blazère et al. (2014a) study the empirical risk of PLS, namely E
�
1
T



y �X�kPLS

2�
and show that it decreases at an exponential rate as k goes to in�nity. Their results are not
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applicable here because they rely on the assumption that N is �xed and that the condition number

(�21=�
2
N ) of the matrix X

0X is bounded. Here, on the contrary, the number of regressors, N; is

growing with the number of observations, T; and the matrix X 0X is ill-posed so that the condition

number goes to in�nity. Note that the condition number is independent of the re-scaling of the

matrix X 0X:

Remark 4. The squared bias of PLS,


�kPLS � �

2 = Pj (1� qkj)

2 h�; �ji2, does not decrease
monotonically as it is the case for PC and other regularization methods. Indeed, qkj tend to

alternate between values greater and smaller than one, so that the bias of PLS may increase as k

increases.

Remark 5. The results on the estimation error follow from Delaigle and Hall (2012, (5.11)).

We imposed the same assumptions as they did. The rate of this term depends on the smallest

eigenvalue �H of H. H being a determinate Hankel matrix, �H will converge to zero exponentially

fast as k goes to in�nity, see Delaigle and Hall (2012, Section 5.3.4.) and Berg and Szwarc (2011,

Theorem 2.1). As a result, k has to grow su¢ ciently slowly for the estimation error to go to zero.

It is interesting to compare it with the estimation error of PC. Let b�kPC denote the PC estimator
with k components, and �kPC denote the population estimator regularized by PC. The estimation

error of PC increases linearly in k. So we see that, on the one hand, the bias of PLS is smaller

than that of PC; on the other hand, the estimation error of PLS maybe larger than that of PC. It

is not clear which one will result in the smallest MSE:

Summary of theoretical results for the ill-posed model. In summary, we found that

in cases where the signal is di¢ cult to recover (i.e. cases where � < 2), the convergence rates of

the prediction errors of Ridge, SC, and LF are the same whereas, for easy to recover signals (i.e.

cases with � > 2), Ridge is slower than the other two methods. When comparing PC with PLS,

we found that the bias of PLS is smaller than the bias of PC for the same number of components,

k, while its estimation error maybe larger for large k. As the MSE consists of both, it is not clear

which one will have the smaller MSE.

3.2 Approximate Factor Model

We consider a factor model as in De Mol, Giannone and Reichlin (2008). Here, we do not postulate

a linear relationship between yt and xt but assume that yt and xt depend on a small number of

common factors Ft. The aim is to estimate the linear projection of yt on xt using a large N , large

T asymptotics. The number of factors r is assumed to be �xed.

Assumption A. yt = �0Ft + vt, where vt is orthogonal to xt for all N and where the factors

Ft = (f1t; :::; frt)
0 are a r-dimensional stationary process with covariance E (FtF 0t) = Ir:

Assumption B. xt is such that xt = �Ft + �t where:
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(i) the residuals �t are a N -dimensional stationary process with covariance E (�t�0t) = 	 of full

rank for all N ;

(ii) the (N � r) matrix � is a non-random matrix and full rank r for each N ;

(iii) the residuals �t are orthogonal to the factors Ft:

Assumption B allows for the idiosyncratic errors �it to be cross-sectionally correlated as in the

"approximate factor model" of Chamberlain and Rothschild (1983) and serially correlated. It allows

also for the largest eigenvalue of 	 to grow with N . By Assumptions A and B, �xx = E (xtx
0
t) =

��0 +	 and �xy = E (xtyt) = ��: The population OLS regression coe¢ cient is

� = ��1xx�xy =
�
��0 +	

��1
��

and the linear projection of yt on xt is given by

x0t� = x0t
�
��0 +	

��1
��:

We need an extra condition to obtain the rates for the sample variance and covariance.

Assumption C. There exists a �nite constant K such that for all T 2 N and i; j 2 N

TE
�
e2xx;ij

�
< K and TE

�
e2xy;ij

�
< K

where exx;ij is the (i; j) element of the matrix �xx�Sxx and exy;ij is the (i; j) element of the matrix
�xy � Sxy:

Let �max (A) and �min (A) be the largest and smallest eigenvalues of A:

Proposition 5 Under Assumptions A, B, and C, we have as N and T go to in�nity,

x0t�
� � x0t� = Op

�
�
p
N

k�k
�min (�0�)

�
for R;

x0t�
� � x0t� = Op

 
��=2

p
N
k�k I (� > �min (�

0�))

�min (�0�)
�=2

!
for SC,

x0t�
� � x0t� = Op

 ��
d

��=2p
N

k�k
�min (�0�)

�=2

!
for LF,

for an arbitrary large � � 2 (independent of N and T ). Moreover,

x0t�̂
� � x0t�� = Op

�
N

�
p
T

h
1 +

p
N k�k

i�
for R and SC,

and

x0t�̂
� � x0t�� = Op

�
dN

�
p
T

h
1 +

p
N k�k

i�
for LF

where d refers to the term appearing in the Landweber-Fridman regularization (see Section 2).

Moreover, k�k = O

�p
�max(�0�)
�min(�0�)

�
:
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Remarks.

1. This result has been derived for Ridge by De Mol et al. (2008, Proposition 1) and is extended

here to LF and SC.

2. Compared to Proposition 2, we see that the rate depends of the number of regressors N . It

is due to the fact that kxtk = Op

�p
N
�
and k�k = O

�p
�max(�0�)
�min(�0�)

�
: In the ill-posed model, we

had kxtk = Op (1) and k�k = O (1) :

3. Our rates take into account the fact that the factors are not observed through the di¤erence

between �xx and Sxx:

Consider the following assumption which stipulates that all the eigenvalues of �0� grow linearly

with N:

Assumption D.

0 < lim inf
N!1

�min (�
0�)

N
� lim sup

N!1

�max (�
0�)

N
<1:

Under Assumption D, we have

x0t�̂
� � x0t� =

8>>><>>>:
Op
�
�
N

�
+Op

�
N
�
p
T

�
for R,

Op

��
�
N

��=2
I (� > �min (�

0�))
�
+Op

�
N
�
p
T

�
for SC,

Op
�
��=2

�
+Op

�
1

�
p
T

�
for LF

because d = O (1=N). The optimal � which minimizes the rate of the right-hand side is the value

of � which equates the rates for the regularization bias and the estimation error. Choosing this �,

we obtain the following results.

x0t�̂
� � x0t� =

8>>><>>>:
Op
�
T�1=4

�
with � = NT�1=4 for R,

Op

�p
T
��=(�+2)�

with � = NT
� 1
�+2 for SC,

Op

�p
T
��=(�+2)�

with � = T
� 1
�+2 for LF

for arbitrary large � > 2:We see that the rate for SC and LF is arbitrary close to T�1=2, and is much

faster than that obtained for Ridge. The good performance of SC makes sense because SC exploits

the factor structure of the model and predicts yt by projecting onto the �rst principal components.

On the other hand, Ridge and LF are omnibus regularization methods. So the performance of LF,

which is as good as SC, may seem surprising. However, it is consistent with the �ndings of Section

3.1. The factor model is an example of model where the source condition (15) holds for an arbitrary

large � because the signal belongs to the span of a �nite number, r; of principal components. Hence,

Ridge is clearly at a disadvantage.

To address the convergence to the optimal forecast, �0Ft, we add the following assumption.

Assumption E. There exists 0 < � � 1 such that

lim sup
n!1

1

N1�� �max (	) <1:
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When the errors are idiosyncratic, Assumption E holds with � = 1: De Mol et al. (2008) shows

that, under Assumptions D and E,

x0t� � �0Ft = Op

�
N��=2

�
:

We can deduct the rate of convergence of x0t�̂
� � �0Ft by using the decomposition

x0t�̂
� � �0Ft = x0t�̂

� � x0t� + x0t� � �0Ft

and Proposition 5.

Corollary 6 Under Assumptions A-E, as N and T go to in�nity, we have

�nT

�
x0t�̂

� � �0Ft
�
= Op (1)

with

�nT =

8<: min
�
N

�
2 ; T

1
4

�
for R,

min
�
N

�
2 ;
p
T
�
for SC and LF.

So, all three regularization methods converge to the optimal forecast but at di¤erent rates.

There is no restriction on the relative rate of N and T for the consistency. We see that LF and

SC reach the fastest possible rate. This result was previously established for SC by Bai (2003,

Theorem 3) in the case of idiosyncratic noise.

Now, we discuss properties of PC and PLS. We are not able to say anything about the variance

of PLS, so our comparison will focus on the bias. The bias of PC is zero for k � r: The bias of PLS

is also equal to zero for k = r. To see this, observe that h�; �ji = 0 for j > r because � belongs to

the range of �: Hence,


�kPLS � �

2 =Pr

j=1 (qkj � 1)
2 h�; �ji2 where

1� qkj =
X

(j1;:::;jk)2I�k

wj1:::jk

kY
l=1

 
1�

�2j
�2jl

!
;

wj1:::jk =
p2j1 :::p

2
jk
�4j1 :::�

4
jk
V
�
�2j1 :::�

2
jk

�2
P
(j1;:::;jk)2I+k

p2j1 :::p
2
jk
�4j1 :::�

4
jk
V
�
�2j1 :::�

2
jk

�2 ;
pji = �jl h�; �jli ;

and I+k is replaced by a restricted version denoted I
�
k :

I�k = f(j1; :::; jk) : r � j1 > ::: > jk � 1g :

For k = r, we have
rY
l=1

 
1�

�2j
�2jl

!
= 0;
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hence the bias is null.

Consider a special case where h�; �ji = 0 for all j 6= r: For k = 1; 2::; r � 1; PC has a bias:

�kPC � � = �
rX

j=k+1

h�; �ji�j = �h�; �ri�r = ��:

For PLS for k = 1, we have

q1j =

rX
l=1

wl

 
1�

rY
l=1

 
1�

�2j
�2l

!!
with

wl =
p2l �

2
l

rX
l=1

p2l �
2
l

= 0 if l 6= r;

= 1 if l = r:

Hence, q1j =
�2j
�2r
and the bias of PLS is given by

�kPLS � � = (qkr � 1) h�; �ri�r = 0

for k = 1: Hence, the bias of PLS is zero for k = 1; while it is di¤erent from zero for PC. In this

example, a single PLS factor permits to achieve a null bias while PC needs r factors.

4 Data-driven Selection of the Tuning Parameter via Cross-Validation

4.1 Criteria

The four regularization methods involve a regularization (or tuning) parameter, �. An important

practical issue if how to choose �. Ideally, we would like to select � for which



X�̂� �X�


2 is as

small as possible. However, this is not feasible because � is unknown.

Following Li (1986, 1987), we investigate the following cross-validation techniques:9

(i) Generalized cross-validation (GCV):

�̂ = arg min
�2AT

T�1 ky �M�
T yk

2�
1� T�1tr

�
M�
T

��2 ; (18)

(ii) Mallows�(1973) CL:

�̂ = arg min
�2AT

T�1 ky �M�
T yk

2 + 2b�2"T�1tr (M�
T ) (19)

9Li (1987) also considers delete-one cross-validation, which is less suitable for time series analysis; therefore, we

do not consider it.
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where b�2" is a consistent estimator of the variance of "t, �2" ; and AT is the set within which � is
selected.

Note that, for PC, tr (M�
T ) = k; where k is the number of factors retained. The trace is also a

measure of the e¤ective degrees of freedom of the �t, which guides the penalty in the cross-validation

procedure. In fact, usually, in a linear regression with p parameters, the penalty is a function the

number of parameters (i.e. k for PC); in Ridge estimation, even though all the coe¢ cients will be

non-zero, their �t is restricted and controlled by the parameter �; when there is no regularization,

� = 0 and the degree of freedom equals the total number of parameters in the regression, while

when the amount of regularization is very large � increases and the degree of freedom decreases.

The criteria we consider are di¤erent from those suggested by Bai and Ng (2002): it is therefore

important to compare them with theirs to point out their di¤erences and similarities. Bai and Ng

(2002) and Stock and Watson (2002a) assume that xt has r common latent factors:

xt = �Ft + �t:

For selecting the number of factors, Bai and Ng (2002) suggest the following criterion:

min
k

1

NT

NX
i=1

TX
t=1

�
xit � �k0i F̂ kt

�2
+ kg (N;T ) (20)

where F̂ kt is the vector of the �rst k principal components,
�
 ̂1; :::;  ̂k

�0
; and g (N;T ) is a penalty

which is function of N and T:

The di¤erences are as follows. First, the criterion described by eq. (20) is valid when there is

a factor model that explains the data, i.e. r is �nite. The criteria described in eqs. (18) and (19)

instead, do not assume a factor model and are valid regardless of whether the data are well-described

by a factor model or not.

In addition, the criterion described by eq. (20) aims at �nding the factors that best explain

the variability in the predictors, regardless of the way the predictors relate to the variable to be

predicted.

Furthermore, the penalty terms are also di¤erent: if the predictors, X, have a factor structure

with k factors then k̂ obtained from (20) is a consistent estimator of k (see Theorem 2 in Bai and

Ng, 2002); however, the number of factors relevant for y may be smaller than k, in which case eqs.

(18) and (19) may deliver a more accurate estimate of the number of factors. On the other hand, it

is important to note that criteria (18) and (19) are AIC-type criteria and do not deliver a consistent

estimate of the number of factors in y. This number may be over-estimated. However, this is not a

major issue, as in general the model is never correctly speci�ed. In their paper, Stock and Watson

(2002a) perform Monte Carlo simulations to compare the forecasting performance of factor models

where the number of factors is selected via AIC and BIC with that of factor models where the
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number of factors is selected via Bai and Ng�s (2002) criterion. For comparison, we therefore also

include AIC and BIC in our Monte Carlo simulation exercises.

Since GCV and Mallows CL are not justi�ed for PLS, we use leave-one-out cross-validation to

select the number of PLS components in the simulations.

4.2 Optimality of the Selection

In this section, we wish to establish the optimality of Mallows�CL and generalized cross-validation

(GCV) in the following sense

LT (�̂)

inf�2AT LT (�)
! 1 in probability (21)

as N and T go to in�nity where LT (�) = 1
T




X�̂� �X�


2 and �̂ is de�ned in eqs. (18) and (19).
A selection procedure which satis�es this condition is said to be asymptotically loss e¢ cient. This

property is weaker than the consistency of � to some true value. Instead, it establishes that using

�̂ in the criterion LT (�̂) delivers the same rate of convergence as if minimizing LT (�) directly.

For this analysis, we focus on the ill-posed model and on the following three regularizations:

SC, Ridge, and LF. For these three regularizations, the prediction of y is a linear function of y

denoted M�
T y; where M

�
T depends on X and the regularization parameter �. For these estimators,

Li�s (1986, 1987) optimality results apply. Our task will be to check Li�s (1986, 1987) conditions.

For PLS, the matrix M�
T depends on y also, therefore the prediction is not linear in y and Li�s

(1986, 1987) results do not apply.

To establish optimality, we need to replace the condition that "t is a martingale di¤erence

sequence by a stronger condition of independence and strict exogeneity. However, xt can be serially

correlated.

Assumption 3. (i) "tjX i.i.d.
�
0; �2"

�
and E

�
"8t
�
<1: (i�) "tjX i.i.d. N

�
0; �2"

�
:

(ii) �̂2"
P! �2" :

(iii) The eigenvalues �̂2j of XX
0=T are such that for any m such that m=T ! 0;�

1
T

PT
j=m+1 �̂

2
j

�2
1
T

PT
j=m+1 �̂

4
j

! 0:

Proposition 7 Under Assumptions 1, 2, and 3(i)(ii), Mallows� CL and the generalized cross-

validation criteria are asymptotically optimal in the sense of (21) for SC and LF with AT =

f� : � > C=Tg for some C > 1.

Under Assumptions 1, 2, and 3(i�)(ii), the Mallows CL is asymptotically optimal in the sense

of (21) for Ridge. Under Assumptions 1,2,3(i�)(ii)(iii), the generalized cross-validation is asymp-

totically optimal in the sense of (21) for Ridge.

23



Remarks. Many papers applying Li�s (1987) optimality results impose a high-level assumption

of the type:

inf
�2AT

TRT (�)!1

where RT (�) = E [LT (�) jX] : Given our Proposition 3, we know the rate of TRT (�) and we are
able to check this condition.

For the optimality of GCV for SC and LF, a restriction needs to be imposed on the set AT ,

namely AT = f� : � > C=Tg for some C > 1: This is not very restrictive since we need T� to go

to in�nity for the mean squared error to go to zero.

Note that Assumption 3(iii) is trivially satis�ed if N=T ! 0. Indeed, in that case �̂2j = 0 for

j > N . According to Lemma C.5 of Carrasco, Hu and Ploberger (2014), we have0@ NX
j=m+1

�̂2j

1A2 � (N �m)
NX

j=m+1

�̂4j :

Hence, �
1
T

PT
j=m+1 �̂

2
j

�2
1
T

PT
j=m+1 �̂

4
j

� (N �m)
T

! 0:

The proof of Proposition 7 is relegated to the Not-for-Publication Appendix (Carrasco and

Rossi, 2016). In the proof, we consider separately two cases: the case where the index set of the

regularization parameter is discrete and the case where it is continuous. SC and LF have both a

discrete index set. For SC, it comes from the fact that qj is a step function that jumps only at

�j . For LF, 1=� is the number of iterations which is countable. On the other hand, Ridge has a

continuous index set. We use the results of Li (1987) for SC and LF and the results of Li (1986)

for Ridge.

5 Monte Carlo Analysis

We analyze the performance of the data reduction approaches where the tuning parameter is

selected according to criteria (18) and (19) in both large and small samples via Monte Carlo

simulations.

5.1 Description of the Data Generating Process

Unless otherwise noted, we consider the following Data Generating Process (DGP):

xt = � Ft + �t;

(N � 1) (N � r) (r � 1) (N � 1)
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where Ft is an (r � 1) vector of iidN(0; I); �t is an (N � 1) vector of iidN(0; I) random variables,

and � is an (N � r) matrix of iidN (0; I); all these variables are uncorrelated with each other. In
addition,

yt = �0Ft + vt; t = 1; 2; :::; T; (22)

where � is (r � 1), vt � iidN(0; �2v); and �
2
v = 1: We consider two cases: the large sample case,

where N = 200 and T = 500, and the small sample case, where N = 100 and T = 50.

In matrix notation, let X � [x1; :::; xT ]
0 ; F � [F1; :::; FT ]

0 ; � � [�1; :::; �T ]
0 ; y = [y1; :::; yT ]

0 ;

v = [v1; :::; vT ]
0 : Also, let rmax be the maximum number of factors in our criteria. Then,

y = F � + v (23)

(T � 1) (T � r) (r � 1) (T � 1)

X = F �0 + � : (24)

(T �N) (T � r) (r �N) (T �N)

Equations (23), (24) encompass several interesting cases, ranging from typical factor models, where

the variability in X is explained by a few factors (i.e. r is small), to models where a large number

of predictors have information at the same time (e.g. r is large). We consider the following cases:

(DGP 1: Few Factors Structure) � is the (r � 1) vector of ones with r = 4; rmax = r + 10:10

(DGP 2: Many Factors Structure) � is the (r � 1) vector of ones with r = 50; rmax = min (N;T=2) :

(DGP 3: Five Factors but only One Relevant) r = 5; rmax = min (r + 10;min (N;T=2)) ; � =

(1; 01�4)0 so that yt depends only on the �rst factor while xt depends on �ve factors, F = [F1; F 02]
0,

where F1 is the relevant factor while F2 is the vector of four irrelevant factors. The factors are

uncorrelated; the �rst factor has unit variance while the four factors in F2 have a diagonal covariance

matrix with coe¢ cients 2, 3, 3, 4, which makes them dominant relative to the relevant factor (in

the sense of having a larger variance). The remaining factors have an identity covariance matrix

and are independent of the other factors. In this case, to achieve identi�cation of the factors, we

set y = bF �+ v, where bF are the estimated factors from the X generated in the same Monte Carlo

simulation, and we set �v = 0:1.

(DGP 4: xt Has a Factor Structure but Unrelated to yt) � is a vector of zeros of dimension

(r � 1) with r = 5; rmax = r + 10: The factors are uncorrelated and have a diagonal covariance

matrix with coe¢ cients 1, 2, 3, 3, 4, similarly to DGP 3.

10The minimum number of factors is zero for all methods.

25



(DGP 5: Eigenvalues Declining Slowly) r = N; rmax = min (N;T=2) ; � is an (N � 1) vector
of ones, � = M � �, where � is an (N � N) matrix of iidN(0; 1) random numbers and M is an

(N �N) matrix s.t. M =

2666664
1; 1; :::; 1

1=2; 1=2; :::; 1=2

::: :::

1=N 1=N 1=N

3777775 and � denotes the element-wise product.
(DGP 6: Near Factor Model) � = 1, r = 1; rmax = r + 10; �0 = N�1=21r�N .

DGP 1 describes a situation where the observed data for the i � th cross section unit at time

t, xi;t, is described by common factors, Ft, and an idiosyncratic component, �t. The number of

common factor is four; this is the same set-up as in Bai and Ng (2002), where factor analysis allows

substantial dimension reduction. DGP 2 is similar to DGP 1 except that the number of common

factors is �fty. DGP 3 describes a situation where the number of common factors of xi;t is �ve, but

only one factor is useful for forecasting yt.11 Note that this design is very di¤erent from Stock and

Watson (2002a), as the latter focus on a situation where the common factors of xi;t are all relevant

for forecasting yt. DGP 4 is similar to DGP 3 except that, although xi;t has �ve common factors,

none of them are relevant for forecasting yt. DGP 5 describes a situation where many factors

are relevant, although their strength is heterogeneous: their importance declines as the number of

factors increases. DGP 6 describes a near factor model situation, where the strength of the factors

is governed by the rate of decay in N; which we set to 1=2 (the faster the rate of decay, the smaller

the factor loading).

5.2 Description of the Methods

In the Monte Carlo experiments, we compare the methods that we propose with traditional factor

models, where the number of factors is selected using Bai and Ng�s (2002) criterion, eq. (20),

which we refer to as "traditional PC". In particular, we use Bai and Ng�s (2002) criterion PCp2

implemented with a maximum number of factors equal to rmax. All factors have been standardized

to have unit variance. We use traditional PC as the benchmark, that is, we report results on

in-sample mean square error (MSE) and out-of-sample root mean square forecast error (RMSFE)

of all the other methods relative to it.

Among the data reduction methods, we consider PC where the number of factors is chosen

either by generalized cross-validation (eq. 18), labeled "PC with Cross-Validation", or via Mallows�

criterion (eq. 19), labeled "PC with Mallows", where tr (M�
T ) = k. We also consider Ridge and LF,

where the tuning parameter � is chosen by either criteria. When implementing Mallow�s criterion

in Ridge and LF, we estimate �2v (that is, the error variance for the "largest" model
12) using the

11The design of the DGP follows Kelly and Pruitt (2015, p. 301).
12That is, �2" in eq. (19).
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in-sample errors obtained estimating k using cross-validation; this is because we need a consistent

estimate of �2v ; in PC we estimate �
2
v from the model with all regressors. PLS is implemented by

choosing k via leave-one-out cross-validation (see the discussion at the end of Section 4.1).

Forecasts based on principal components have been obtained as follows (Stock and Watson,

2002a): at each time t, we standardize the vector of predictors including observations from time 1

to t (for the recursive estimation method) or from time (t�R+ 1) to t (for the rolling estimation
method); we then determine the number of factors using the various criteria and extract the vector

of estimated factors over time, fFjgtj=1 for the recursive and fFjg
t
j=t�R+1 for the rolling estimation

methods, respectively. The lagged value of the factors are then used to estimate the parameter �

in eq. (22), including a constant (for the recursive estimation method, for example, we used the

factors dated at time 1 to (t� 1) and the corresponding y�s); then, the forecasts for the target
variable at time (t+ 1) are obtained by multiplying the estimated parameter value by Ft.

Forecasts based on Ridge and PLS are obtained similarly by estimating �̂� using in-sample data,

then forecasting by multiplying it by the regressors at time t. The range of values for � for Ridge

and LF was determined by plotting the shape of the GCV and Mallows�objective functions in one

Monte-Carlo simulation (note that researchers could choose the range of values in the same way,

in practice).13 When implementing LF, we choose d = 0:018=max
�
�2
�
.

When forecasting, the GCV criteria, the Mallows criteria, the information criteria and the

number of factors are estimated only once, in the �rst estimation window, to limit computations.

In all cases, we allow the number of factors to possibly equal zero.14

We also compare our methods with the case where all the variables X are used (labeled "All

Regressors") and the case where the number of factors is chosen by AIC or BIC (labeled "PC with

AIC" and "PC with BIC", respectively). Forecasts based on all the potential predictors are based

on parameter estimates obtained by OLS.15

We study both the in-sample �t as well as the forecasting performance of the methods. The

out-of-sample forecasts are obtained by using either a recursive window estimation method, starting

at time T=2, or a rolling estimation method, where the size of the window in the rolling estimation

scheme is T=2. In all experiments, the number of Monte Carlo replications is 1,000.

13The range is as follows: DGP 1: for Ridge, �=N=0:0.001:0.1; and for LF: �=N=0.000001:0.00002:0.0003;

DGP 2: for Ridge, �=N=0:0.0001:0.01; and for LF: �=N=0.00001:0.00001:0.0002; DGP 3: for Ridge,

�=N=0:0.0005:0.1; and for LF: �=N=0.000001:0.0000025:0.00005; DGP 4: for Ridge, �=N=0:0.001:0.1; and for LF:

�=N=0.000001:0.00001:0.0004; DGP 5: for Ridge, �=N=0:0.001:0.15; and for LF: �=N=0.000001:0.00002:0.0004;

DGP 6: for Ridge, �=N=0:0.001:0.1; and for LF: �=N=0.000001:0.001:0.016.

14That is, for example, in PC we choose the value of k that minimizes the criterion function:
T�1ky�M�

T yk2
(1�kT�1)2

,

allowing for the case k = 0, in which case the value of the criterion function is T�1y0y.
15Note that we do not report results based on all predictors for cases where N > T , as the OLS estimation would

not make sense.
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5.3 Discussion of the Results

Table 1 reports results for large samples, where N = 200 and T = 500. The �rst column in panel

A reports the DGP; the second reports the true number of factors, r; the third column reports the

number of factors estimated via traditional PC, labeled "Bai-Ng k". Then, for each of the dimension

reduction methods, the table reports: the average value (across Monte Carlo simulations) of the

tuning parameter, which di¤ers depending on the method; the in-sample MSE of each method

relative to traditional PC, labeled "MSER"; and the RMSFE relative to that of traditional PC,

labeled "MSFER", either implemented with a recursive ("rec") or a rolling scheme ("roll"). The

fourth to seventh columns refer to principal component estimation where the tuning parameter is

the number of factors (labeled "k") estimated via GCV. The next three columns report results for

PLS. Panel B has a similar structure, but reports results for Ridge and LF; the only di¤erence is

that, instead of reporting the number of components, it reports the degrees of freedom (labeled

"DoF"), calculated as the trace of M�
T (Hastie, Tibshirani and Friedman, 2009, p. 68). Panel C

reports results for the number of factors selected by AIC and BIC (labeled "k") as well as the MSE

and the RMSFE of the method relative to traditional PC; the last three columns of panel C report

results for the model that includes all regressors. Finally, Panel D reports results for Lasso (labeled

"Lasso"), implemented using 10-fold cross-validation (see e.g. Hastie et al., 2009, p. 69).

Table 1 shows that the GCV criterion correctly estimates the number of factors in both situa-

tions where the true number of factors is either large or small (DGPs 1 and 2). When the number

of factors is small (DGP 1), Bai and Ng�s (2002) method also correctly selects the number of factors

and the resulting MSE and MSFE are very similar to the ones obtained using GCV. LF improves

a lot relative to factor models, while Ridge and PLS perform only slightly worse. AIC and BIC

criteria perform similarly to the other information criteria, as it would be expected in the large

sample setup of this experiment.

When the number of factors is large but �nite (DGP 2), traditional PC selects too many

factors. This is due to the fact that the DGP does not satisfy Bai and Ng�s (2002) assumptions.

While the over-estimated number of factors results in an in-sample MSE that is lower than the

one obtained using GCV, it penalizes the forecasts and results in an out-of-sample MSFE that is

larger than the one obtained using GCV (or information criteria such as AIC and BIC). Among

the three information criteria, cross-validation performs the best, followed very closely by the BIC,

then AIC. LF performs even better than principal components with GCV, while PLS and Ridge

perform similarly to the latter. Clearly, using all regressors in DGP 2 results in forecasts that

perform similarly to traditional PC, as the latter selects the maximum number of factors � see

Panel C.

When the number of factors is small but not all factors are relevant predictors of yt (DGP 3),

Bai and Ng (2002) still correctly selects the number of factors in the data, although they include
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not only the relevant factors but also the irrelevant ones. Cross-validation slightly over-estimates

the number of relevant factors. Among the other data reduction techniques, LF performs quite

well in forecasting, while PLS and Ridge perform similarly to traditional PC. We conjecture that

the reason why principal components with GCV does not improve much relative to traditional PC

might be due to the fact that it is di¢ cult to distinguish the performance of models based on 1

or 5 factors in small samples. The di¤erence should become more visible either by considering

smaller sample sizes or by increasing the true number of factors or by decreasing the relevance of

the factors. The former will be considered in Table 2; the latter corresponds to DGP 4.

In DGP 4, none of the factors are relevant for explaining yt, and GCV selects fewer factors than

traditional PC. Clearly, �ve factors again improve in-sample �t but worsen of the out-of-sample

forecasting performance. Forecasts based on all regressors are always clearly dominated by data

reduction methods in terms of out-of-sample forecast performance. In this design, Ridge and PLS

perform similarly in terms of forecasting ability relative to traditional principal components, while

LF still performs better than the latter.

DGP 5 describes a situation where the eigenvalues "decline gradually". In this case, traditional

PC selects the maximum number of factors, and thus performs the same as a regression that

includes all the regressors; GCV, instead, selects on average between eleven and twelve factors, and

signi�cantly improves the out-of-sample forecasting performance relative to traditional PC. Similar

forecast improvements are obtained by Ridge, LF, PLS and the BIC, while AIC performs worse

(although better than traditional PC).

In DGP 6, the eigenvalues are small in magnitude; thus, the DGP too does not satisfy Bai

and Ng�s (2002) assumptions. This results in cross-validation performing better than Bai and Ng

(2002) in forecasting, and similarly to Ridge, AIC and BIC, while again LF performs the best and

PLS performs the worst.

Panel D in Table 1 shows that Lasso typically performs no better, and oftentimes worse, than

the other data reduction techniques across the simulation designs. Panels E and F instead show

that results using Mallows�criterion are similar to using GCV except for DGPs 2 and 5, where it

performs worse.

For each DGP, the second line in Table 1 reports the standard deviations; that is, square root of

the variance (across Monte Carlo replications) of the estimated number of factors, or the standard

deviation of the in-sample Mean Squared Error normalized by 100,
p
var(MSEin)=100, or the

square root of the out-of-sample RMSFE relative to traditional PC. Note that Bai and Ng�s (2002)

method seems to show little variability in selecting the number of factors in some cases; this is due

to the large sample size and the relatively small variance of the error term.

Table 2 reports the �nite sample performance of the methods we consider (N = 100; T = 50).

It is very interesting to see that, in small samples, forecast improvements provided by PC with
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GCV are much bigger relative to traditional PC selection methods for DGPs 3 and 4. LF again

performs very well. AIC performs poorly, while BIC performs worse than PC with GCV in DGPs

2 and 5, but similarly otherwise. Lasso is competitive when the true number of factors is large

(DGP 2 and 5), but performs worse than PC with GCV in several other settings.

INSERT TABLES 1-2 HERE

5.4 Summary

Overall, the main conclusions we draw from the large sample Monte Carlo analysis are that principal

components with cross-validation has the potential to improve over traditional PC in many relevant

settings, and that further improvements can be obtained by LF, which is a robust method that

performs very well across simulation designs. Traditional information criteria (AIC, BIC) perform

similarly to principal components with GCV in large samples, but are outperformed by the latter

in small samples.

6 Empirical Analysis: Forecasting US Output Growth and In�a-

tion Using Data-Reduction Methods

What are the advantages of forecasting using large datasets of predictors in practice? Clearly, one

advantage is that several predictors may simultaneously contain useful information, and using only

an ad-hoc subset of them might not extract all the available information. Another compelling reason

why forecasts based on large dimensional datasets might perform well is because they might be more

robust to instabilities. In fact, it is well-known that the forecasting ability of predictors changes

over time (see e.g. Stock and Watson, 2003, and in particular Rossi, 2013): some predictors might

be useful in some periods of time but may lose their predictive ability in other periods. Thus, using

models where, at each point in time, the forecasters can choose among a large dataset of potential

predictors might turn out to guard against instabilities in the predictors�forecasting ability.

We evaluate the empirical performance of data reduction methods for forecasting US real output

growth and in�ation h-period-ahead using a large dataset of predictors similar to those used in Stock

and Watson (2003). We collect quarterly data from January 1959. We use a �xed rolling window

estimation scheme with a window size of 40 observations (that is, ten years of data). The target

variable is either real GDP growth:

Y h
t+h = (400=h) ln(RGDPt+h=RGDPt);

where RGDPt is real GDP, or in�ation:

Y h
t+h = (400=h) ln(Pt+h=Pt)� 400 ln (Pt=Pt�1) ;
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where Pt is the price level at time t:

6.1 The Forecasting Models

We consider several competing forecasting models. The benchmark is an autoregressive model:

Y h
t+h = '0 + ' (L)Yt + u

h
t+h; t = 1; :::; T ,

where ' (L) =
Pp

j=0 'jL
j , and where the lag length, p, is estimated recursively by the BIC.

The alternative forecasting models based on regularization utilize additional macroeconomic

variables Zt, a (31x1) vector; the models include the following:

- Factor models, where the number of factors is chosen either by the Bai and Ng (2002) infor-

mation criterion, labeled "Bai and Ng", or by generalized cross-validation, eq. (18), labeled "Cross

V.", or by Mallows, eq. (19), labeled "Mallows";

- Ridge, eq. (6), where the tuning parameter is chosen via eqs. (18), (19) (labeled "Ridge");

- PLS, where the tuning parameter is chosen by leave-one-out cross-validation (labeled "PLS");

- LF, where the tuning parameter is chosen via eqs. (18), (19) (labeled "LF");

- We also include equal-weight forecast combinations based on the dimension reduction methods

implemented with either GCV or Mallows�criteria, that is Ridge, factor models and LF (labeled

"CV Comb." and "Mall. Comb.", respectively).16

For these alternative models, we consider two speci�cations that produce direct forecasts. The

�rst is a speci�cation where the pool of regressors contains only h-period lagged predictors (xt�h =

Zt�h); the second is a speci�cation where the pool of regressors contains additional two lags of the

predictors (xt�h includes Zt�h;Zt�h�1; and Zt�h�2).17 The gains from regularization techniques

are stronger when the predictors are correlated; thus, we expect the regularization techniques to

perform better (relative to traditional techniques) in the latter case.

The tuning parameters for all the methods are chosen recursively.

We also consider other techniques that have been proposed to deal with large dimensional

datasets, such as Bayesian Model Averaging (labeled "BMA") and equal weight forecast combi-

nations (labeled "Comb."). The performance of BMA has been investigated by Wright (2009) for

forecasting in�ation, while equal weight forecast combinations have been recently discussed by Tim-

mermann (2006) and Rossi (2013), who �nd that they are two of the toughest benchmarks to beat

when forecasting output growth and in�ation in the U.S. In implementing equal weight forecast

combinations, we estimate autoregressive distributed lag models using several economic explanatory

16The grid for the tuning parameter is chosen following the same criteria as in the Monte Carlo section; in particular,

the grid for LF is 0.00001:0.0001:0.005 and the grid for Ridge is �=N =0.0001:0.01:0.08. When implementing LF, we

choose d = 0:018=max
�
�2
�
. We do not consider Lasso given its relatively poor performance in the simulations.

17We only include two additional lags of the predictors as our sample is small.
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variables one-at-a-time (where the additional lags of the additional explanatory economic variables

are chosen by the BIC) �see Rossi and Sekhposyan (2014) for details on the estimation procedure

and the data.

6.2 Empirical Results

The empirical results for the techniques implemented with generalized cross-validation are reported

in Panel I in Tables 3 and 4, while those for Mallows�criterion are reported in Panel II in the same

tables. Table 3 reports results for the speci�cation that contains only h-period lagged predictors,

while table 4 reports results for the speci�cation that includes two additional lags. Panel A in the

tables reports results for one-quarter ahead forecasts, while panel B reports results for one-year-

ahead forecasts. The tables show the ratio of the RMSFE of the various regularization methods

relative to that of the autoregressive benchmark model; values less than unity favor the regulariza-

tion method relative to the benchmark. The p-value of the Diebold and Mariano (1995) and West

(1996) test of equal predictive ability is reported in parenthesis.

The results in Table 3, Panel A, show that BMA and equal weight forecast combinations are

the best models for one-month ahead forecasts; in particular, BMA is the best for in�ation and

forecast combination is the best for output growth. Note that two other models outperform the AR

benchmark: Ridge when forecasting output, and LF when forecasting in�ation. Thus, the empirical

evidence points to the fact that using only a few factors may not provide competitive forecasts, and

that potentially useful information is spread out among several predictors; this is also consistent

with the �nding that forecast combinations and BMA perform very well. When forecasting one-

year ahead, Ridge is the best model for forecasting output growth while BMA remains the best

model for forecasting in�ation.

When comparing factor models, selection based on generalized cross-validation typically per-

forms better than traditional factor models for output growth at both one and four quarters horizons

and for in�ation at the one-quarter horizon, although the BIC performs even better.

Interestingly, Table 3 also shows that equal weight forecast combinations among the dimension

reduction techniques ("CV Comb." and "Mall. Comb.") provide further gains. In particular,

forecast combinations implemented among dimension reduction methods where the parameter is

chosen via Mallows� criterion perform even better than BMA when forecasting in�ation at the

four quarter horizon. Such combinations across data reduction methods achieved via GCV further

improve upon Ridge (the best forecasting model) when forecasting GDP growth four quarters

ahead.

Table 4 shows that further gains are obtained by adding additional lags of the predictors, in

the sense that the RMSFE of dimension reduction techniques tends to decrease, sometimes sub-

stantially, especially when forecasting output growth. When forecasting output growth one-quarter
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ahead, the forecasting performance of the regularization methods improves substantially: the best

regularization method is Ridge, which improves signi�cantly (at the 10% level) on the autore-

gressive model, while still performing worse than forecast combinations. When forecasting output

growth one-year ahead, instead, augmenting the set of predictors with lags substantially improves

the performance of factor models selected via GCV, which performs better than forecast combi-

nations, and improves even further the performance of Ridge implemented with Mallows selection

criteria, which is the best forecasting model. There are no substantial improvements from adding

additional lags when forecasting in�ation at short horizons, however. Again, combining forecasts

based on regularization techniques generate further gains. In fact, when including additional lags,

forecasts based on combinations of regularization methods is the best for forecasting GDP growth

at short horizons and are quite competitive for forecasting in�ation at longer horizons as well.

Overall, regularization techniques help in forecasting output growth one-year-ahead, even rel-

ative to traditional forecast combinations, and Ridge provides signi�cant forecast improvements

that are close to those obtained via forecast combination. On the other hand, forecasting in�ation

is very di¢ cult; in a way, this result is not surprising, given the well-known result that in�ation,

during this period, was essentially unforecastable. While regularization techniques do not help too

much in forecasting in�ation when considered individually, they become very competitive at longer

horizons when combined.

INSERT TABLES 3-4 HERE

6.3 Can Large Datasets of Predictors E¤ectively Guard Against Instabilities?

As previously mentioned, one of the advantages of using a large dataset of predictors is to guard

against instabilities in speci�c predictors� forecasting ability. That is, data-reduction methods

produce forecasts that are robust to the fact that speci�c predictors might lose their forecasting

ability over time since they extract information on all potential predictors at each point in time.

We investigate the robustness of the forecasting performance of the data-reduction methods in

two ways. The �rst is by analyzing the stability of their forecasting performance relative to the

benchmark. In fact, if data-reduction methods forecast better because they guard against time

variation in predictors�forecasting ability, then they should perform better consistently over time.

We check whether this is the case by testing whether forecasts based on data reduction methods

perform better than the benchmark over time using Giacomini and Rossi�s (2010) Fluctuation

test. The second is by analyzing the stability of the properties of the forecasts themselves, such

as rationality. Again, the advantage of data reduction methods should result in forecasts that are

highly correlated with the actual realizations consistently over time. We can test whether this is

the case by using tests for forecast rationality robust to instabilities (Rossi and Sekhposyan, 2015).
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For brevity, we consider only the case of h-period lagged predictors (Xt�h = Zt�h).18

Figures 1-4 display the analysis of models�relative predictive ability over time. The �gures plot

Giacomini and Rossi�s (2010) Fluctuation test statistic, a test of equal predictive ability repeated

in rolling windows over the out-of-sample portion of the data. The size of the rolling window is

60 observations, that is �fteen years of data. The test statistic is denoted with a continuous line,

while the critical values are denoted by dotted lines. Negative values of the test statistic denote

situations in which the model forecasts better than the autoregressive benchmark, in the sense

that its RMSFEs are lower than those of an autoregressive model in the previous 60 observations.

On the other hand, positive values above the critical value line indicate that the model performs

signi�cantly worse than the autoregressive benchmark. The �gures indeed reveal that factor model

forecasts based on GCV are consistently better than those based on traditional factor models over

time. In fact, comparing the upper two panels in Figure 1, it is clear that forecasts based on

factor models selected via traditional criteria perform signi�cantly worse than the autoregressive

benchmark, while those selected via GCV do not; furthermore, the relative RMSFE of the latter

over time is constantly below that of the former. The �gures also show that BMA, LF, Ridge and

combinations can e¤ectively produce forecasts that often perform well consistently over time.

INSERT FIGURES 1-4 HERE

To summarize, the best performing models are forecast combinations, Ridge and BMA. How-

ever, while these models perform better than an autoregressive benchmark, nothing guarantees

that their forecasts are unbiased, nor that they satisfy some minimal requirements that typically

characterize rational forecasts. Tables 5 and 6 display results based on the traditional Mincer and

Zarnowitz (1969) test. We regress the forecast error onto a constant and the forecast; if both co-

e¢ cients are zero, forecasts are rational.19 The results are encouraging: forecasts based on Ridge,

LF, combinations based on data-reduction methods, traditional forecast combinations and BMA

are typically rational for output growth at all horizons. Only BMA and GCV-based forecast combi-

nations are rational for in�ation at all horizons, although several data-reduction methods produce

rational forecast at longer horizons.20

INSERT TABLE 5 AND 6 HERE

However, it is well-known that forecasts of output and in�ation are unstable over time (Stock

and Watson, 1996), and instabilities invalidate the Mincer and Zarnowitz (1969) test (Rossi, 2013).

18Results for the case with additional lags are reported in the Not-for-Publication Appendix.
19The test is implemented using a HAC robust covariance estimator based on Newey and West (1997) with four

lags.
20LF and forecast combinations are rational for in�ation only for four-quarter-ahead forecasts.
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In addition, we are particularly interested in evaluating whether forecasts based on data-reduction

techniques are rational systematically over time. This can be achieved by using Rossi and Sekh-

posyan�s (2015) Fluctuation Rationality test, which is a forecast rationality test repeated in rolling

windows over the out-of-sample portion of the data. Figures 5 to 8 display the Fluctuation Ra-

tionality test (solid line) together with its critical value (dotted line). When the test statistic is

above the critical value line, we conclude that the forecast is not rational. It is reassuring to see

that forecasts that are rational according to Tables 5 and 6 are also rational over time; this again

supports our conjecture that data reduction methods may e¤ectively guard against instabilities in

predictors�forecasting ability over time.

INSERT FIGURES 5-8 HERE

7 Conclusions

This paper investigates whether dimension reduction techniques such as principal components,

Ridge, Landweber-Fridman and partial least squares implemented with generalized cross-validation

and Mallows�s criteria have potential in forecasting. Theoretical results show that the three main

methods (R, LF and SC) have the same rate of convergence when the signal is di¢ cult to recover,

whereas LF and SC have a faster rate than R when the signal is easy to recover. Moreover, LF and

SC reach the fastest possible rate in the case of the factor model. Monte Carlo simulation results

show that these alternative data reduction techniques can be potentially useful in environments

where either the data do not have a factor structure, or where there is a factor structure but the

factors are not strong predictors for the target variable.

Empirical results show that, when forecasting output growth and in�ation in the US, forecasts of

output growth based on Ridge and LF are rational; furthermore, Ridge has the potential to improve

relative to an autoregressive benchmark and also, in some cases, relative to tougher benchmarks

such as forecast combination and BMA. It is reassuring to see that, when Ridge performs well, it

does so systematically over time. For in�ation, the best forecasting model remains BMA. However,

substantial forecast improvements can be obtained in some cases by combining data reduction

methods.

It might be possible that using other techniques to extract factors (such as Forni et al., 2015)

might guard against instabilities and perform well when forecasting in practice, although we leave

this issue for future research.21

21Onatski (2015) studied the quality of approximation of the principal component estimate when the number of

factors might be misspeci�ed. We are not interested in the quality of approximation of the principal component;

rather, we focus on the quality of approximation of the predicted target variable. In other words, Onatski (2015)

studies tr
h
(b� bF 0t � �F 0)(b� bF 0t � �F 0)0i =NT , while we study the mean square prediction error of y, 


X�̂� �X�


2 :
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Tables and Figures

Table 1 Panel A (GCV, N=200, T=500)
Bai-Ng PC with Cross-Validation PLS

r k k MSER RMSFER k MSER RMSFER
rec roll rec roll

DGP 1 4.00 4.00 4.83 1.00 1.01 1.02 3.16 0.93 1.05 1.06
(s.e.) � 0.00 1.90 1.00 1.33 1.74 0.40 1.45 1.28 1.35
DGP 2 50.00 200.00 50.96 1.50 0.49 0.25 8.99 1.44 0.48 0.25
(s.e.) � 0.00 2.59 1.35 0.68 0.32 0.61 1.26 0.48 0.19
DGP 3 5.00 5.61 1.93 1.00 1.00 0.99 2.12 0.99 1.01 1.01
(s.e.) � 0.71 2.11 1.02 0.99 1.00 0.47 1.08 1.06 1.10
DGP 4 5.00 5.61 0.86 1.01 0.99 0.98 1.36 0.99 1.01 1.01
(s.e.) � 0.75 1.90 1.02 1.00 0.99 0.89 1.20 1.12 1.18
DGP 5 200.00 200.00 11.94 1.70 0.45 0.21 2.38 1.57 0.46 0.22
(s.e.) � 0.00 8.27 1.54 0.40 0.16 0.80 2.12 0.44 0.20
DGP 6 1.00 0.00 6.51 0.81 0.86 0.89 2.00 0.50 1.04 1.09
(s.e.) � 0.00 3.38 0.84 0.87 0.91 0.00 0.60 1.23 1.37

Table 1 Panel B (GCV, N=200, T=500)
Bai-Ng Ridge LF

r k � DoF MSER RMSFER � DoF MSER RMSFER
rec roll rec roll

DGP 1 4.00 4 1.56 30.99 0.92 1.03 1.02 0.00 17.48 0.96 0.92 0.90
(s.e.) � 0.00 0.31 4.98 1.04 1.06 1.06 0.00 5.06 1.03 0.94 0.92
DGP 2 50.00 200 0.06 84.38 1.45 0.54 0.26 0.00 61.84 1.56 0.33 0.14
(s.e.) � 0.00 0.01 5.83 2.66 0.63 0.23 0.00 4.88 2.56 0.34 0.12
DGP 3 5.00 5.61 4.27 11.96 0.97 1.01 1.00 0.00 8.55 0.99 0.96 0.94
(s.e.) � 0.71 2.17 7.75 1.13 1.02 1.00 0.00 6.73 1.09 1.00 1.02
DGP 4 5.00 5.61 17.94 6.75 0.99 1.00 0.99 0.00 22.58 0.94 0.91 0.88
(s.e.) � 0.75 5.85 8.19 1.13 1.01 0.99 0.00 3.10 0.97 0.92 0.89
DGP 5 200.00 200 3.25 35.50 1.54 0.44 0.21 0.00 68.11 1.36 0.33 0.14
(s.e.) � 0.00 3.13 12.19 1.67 0.40 0.16 0.00 4.24 1.14 0.31 0.12
DGP 6 1.00 0 1.52 73.12 0.62 0.89 0.89 0.01 70.99 0.62 0.59 0.54
(s.e.) � 0.00 0.32 8.71 0.87 0.90 0.90 0.00 5.30 0.76 0.61 0.58

Table 1 Panel C (N=200, T=500)
Bai-Ng PC with AIC PC with BIC All Regressors

r k k MSER RMSFER k MSER RMSFER MSER RMSFER
rec roll rec roll rec roll

DGP 1 4.00 4.00 4.88 0.99 1.01 1.02 3.94 1.00 1.02 1.04 0.60 2.44 5.07
(s.e.) � 0.00 1.98 1.00 1.33 1.74 0.30 1.00 1.58 2.08 0.76 2.53 6.59
DGP 2 50.00 200.00 51.73 1.50 0.71 0.56 49.88 1.51 0.49 0.26 1.00 1.00 1.00
(s.e.) � 0.00 4.29 1.37 2.75 2.85 0.50 1.34 0.91 0.45 1.00 1.00 1.00
DGP 3 5.00 5.61 1.95 1.00 1.00 0.99 1.01 1.01 0.99 0.99 0.60 2.44 5.05
(s.e.) � 0.71 2.13 1.02 0.99 1.00 0.16 1.00 0.99 1.01 0.80 2.70 6.97
DGP 4 5.00 5.61 1.88 1.00 0.99 0.99 1.02 1.01 0.99 0.98 0.61 2.43 5.04
(s.e.) � 0.75 1.97 1.01 1.00 0.99 0.15 1.00 0.99 0.98 0.77 2.55 6.79
DGP 5 200.00 200.00 13.45 1.69 0.85 0.76 1.62 1.82 0.45 0.21 1.00 1.00 1.00
(s.e.) � 0.00 10.12 1.57 2.65 2.97 1.26 1.41 0.39 0.16 1.00 1.00 1.00
DGP 6 1.00 0.00 6.58 0.81 0.86 0.89 1.84 0.83 0.88 0.91 0.45 1.86 3.87
(s.e.) � 0.00 3.38 0.84 0.87 0.90 1.45 0.87 0.90 0.94 0.58 1.97 5.18
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Table 1 Panel D (N=200, T=500)
Bai-Ng LASSO

r k �V MSER RMSFER
rec roll

DGP 1 4.00 4.00 38.63 0.93 1.09 1.09
(s.e.) � 0.00 11.30 1.45 1.16 1.15
DGP 2 50.00 200.00 102.10 1.44 0.61 0.29
(s.e.) � 0.00 13.33 1.26 0.71 0.26
DGP 3 5.00 5.61 12.29 0.99 1.01 1.01
(s.e.) � 0.71 6.46 1.08 1.03 1.01
DGP 4 5.00 5.61 2.56 0.99 0.99 0.98
(s.e.) � 0.75 5.77 1.20 1.01 1.00
DGP 5 200.00 200.00 20.73 1.57 0.45 0.21
(s.e.) � 0.00 16.04 2.12 0.40 0.16
DGP 6 1.00 0.00 79.05 0.50 0.97 0.97
(s.e.) � 0.00 21.70 0.60 1.00 1.00

Table 1 Panel E (Mallows, N=200, T=500)
Bai-Ng PC with Mallows

r k k MSER RMSFER
rec roll

DGP 1 4.00 4.00 14.00 0.98 1.03 1.04
(s.e.) � 0.00 0.00 0.98 1.03 1.06
DGP 2 50.00 200.00 200.00 1.00 1.00 1.00
(s.e.) � 0.00 0.00 1.00 1.00 1.00
DGP 3 5.00 5.61 15.00 0.98 1.03 1.04
(s.e.) � 0.71 0.00 0.99 1.03 1.04
DGP 4 5.00 5.61 0.14 1.01 0.99 0.98
(s.e.) � 0.75 1.42 1.01 0.99 0.98
DGP 5 200.00 200.00 130.20 1.27 1.00 1.00
(s.e.) � 0.00 95.38 5.09 1.00 1.00
DGP 6 1.00 0.00 11.00 0.80 0.86 0.89
(s.e.) � 0.00 0.00 0.82 0.87 0.90

Table 1 Panel F (Mallows, N=200, T=500)
Bai-Ng Ridge LF

r k � DoF MSER RMSFER � DoF MSER RMSFER
rec roll rec roll

DGP 1 4.00 4.00 1.62 29.84 0.92 1.03 1.02 0.00 16.92 0.96 0.93 0.90
(s.e.) � 0.00 0.26 3.60 1.00 1.06 1.06 0.00 3.80 1.00 0.95 0.94
DGP 2 50.00 200.00 0.05 89.86 1.42 0.54 0.26 0.00 65.51 1.53 0.32 0.14
(s.e.) � 0.00 0.01 5.19 2.43 0.60 0.22 0.00 9.44 2.55 0.39 0.14
DGP 3 5.00 5.61 4.35 10.97 0.98 1.01 1.00 0.00 8.03 0.99 0.96 0.94
(s.e.) � 0.71 2.04 5.63 1.07 1.00 0.99 0.00 5.97 1.08 1.03 1.05
DGP 4 5.00 5.61 18.34 5.77 0.99 1.00 0.99 0.00 22.10 0.94 0.92 0.88
(s.e.) � 0.75 5.24 5.67 1.07 0.98 0.97 0.00 1.91 0.95 0.92 0.89
DGP 5 200.00 200.00 3.63 32.29 1.56 0.44 0.21 0.00 68.12 1.36 0.33 0.14
(s.e.) � 0.00 3.30 10.65 1.60 0.39 0.16 0.00 4.29 1.14 0.31 0.12
DGP 6 1.00 0.00 1.83 65.10 0.65 0.89 0.89 0.01 66.73 0.63 0.60 0.55
(s.e.) � 0.00 0.29 6.22 0.80 0.93 0.93 0.00 2.24 0.68 0.59 0.54
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Table 2 Panel A (GCV, N=100, T=50)
Bai-Ng PC with Cross-Validation PLS

r k k MSER RMSFER k MSER RMSFER
rec roll rec roll

DGP 1 4.00 6.18 4.57 1.01 0.75 0.58 4.29 0.62 0.77 0.55
(s.e.) � 0.74 1.81 1.07 0.92 0.65 3.58 1.52 0.81 0.50
DGP 2 50.00 24.00 17.47 1.49 0.05 0.01 21.95 0.04 0.01 0.00
(s.e.) � 0.07 6.49 2.92 0.03 0.01 12.48 0.27 0.00 0.00
DGP 3 5.00 8.54 1.97 1.12 0.61 0.45 3.22 0.93 0.67 0.46
(s.e.) � 0.85 2.21 1.17 0.63 0.46 3.67 1.77 0.67 0.38
DGP 4 5.00 8.61 1.02 1.15 0.58 0.40 1.99 0.99 0.63 0.44
(s.e.) � 0.88 2.32 1.19 0.65 0.46 2.96 1.68 0.68 0.38
DGP 5 100.00 17.64 2.49 1.49 0.34 0.03 2.59 0.95 0.00 0.00
(s.e.) � 0.82 3.83 1.57 0.69 0.02 3.58 2.08 0.00 0.00
DGP 6 1.00 0.01 3.23 0.79 0.96 0.89 2.46 0.18 0.98 0.85
(s.e.) � 0.10 3.14 1.02 1.01 0.95 3.38 0.64 1.05 0.83

Table 2 Panel B (GCV, N=100, T=50)
Bai-Ng Ridge LF

r k � DoF MSER RMSFER � DoF MSER RMSFER
rec roll rec roll

DGP 1 4.00 6.18 1.74 16.89 0.74 0.79 0.56 0.00 11.21 0.90 0.42 0.28
(s.e.) � 0.74 0.97 11.03 1.76 0.86 0.52 0.00 9.72 1.62 0.58 0.35
DGP 2 50.00 24.00 0.35 34.05 0.39 0.01 0.00 0.00 29.87 0.58 0.00 0.00
(s.e.) � 0.07 0.33 7.72 1.21 0.00 0.00 0.00 8.02 1.73 0.00 0.00
DGP 3 5.00 8.54 2.14 15.41 0.78 0.69 0.46 0.01 9.28 0.97 0.41 0.26
(s.e.) � 0.85 1.49 14.96 2.04 0.74 0.42 0.00 12.82 1.79 0.57 0.31
DGP 4 5.00 8.61 74.63 2.86 1.11 0.58 0.39 0.00 20.27 0.59 0.23 0.12
(s.e.) � 0.88 36.88 6.30 1.46 0.63 0.36 0.00 12.40 1.39 0.45 0.22
DGP 5 100.00 17.64 9.47 10.80 1.12 0.00 0.00 0.01 12.35 1.11 0.00 0.00
(s.e.) � 0.82 6.05 10.04 1.92 0.00 0.00 0.01 14.49 2.24 0.00 0.00
DGP 6 1.00 0.01 6.02 18.24 0.45 0.93 0.82 0.02 17.79 0.45 0.35 0.29
(s.e.) � 0.10 5.37 12.84 1.44 0.96 0.81 0.01 12.70 1.30 0.86 0.70

Table 2 Panel C (N=100, T=50)
Bai-Ng PC with AIC PC with BIC

r k k MSER RMSFER k MSER RMSFER
rec roll rec roll

DGP 1 4.00 6.18 5.17 0.98 0.79 0.64 3.83 1.05 0.78 0.60
(s.e.) � 0.74 2.59 1.09 0.98 0.80 0.75 1.05 1.04 0.72
DGP 2 50.00 24.00 21.27 1.12 0.88 0.05 9.07 2.93 0.81 0.01
(s.e.) � 0.07 4.09 1.66 0.99 0.04 8.39 5.32 0.99 0.01
DGP 3 5.00 8.54 2.51 1.10 0.69 0.54 1.11 1.17 0.60 0.45
(s.e.) � 0.85 3.15 1.22 0.87 0.74 0.47 1.10 0.63 0.46
DGP 4 5.00 8.61 2.63 1.10 0.69 0.54 1.09 1.18 0.57 0.40
(s.e.) � 0.88 3.20 1.22 0.90 0.80 0.45 1.10 0.61 0.45
DGP 5 100.00 17.64 6.78 1.29 0.93 0.06 1.37 1.60 0.82 0.05
(s.e.) � 0.82 7.66 1.85 1.00 0.03 1.00 1.35 0.97 0.02
DGP 6 1.00 0.01 4.30 0.76 1.01 0.96 1.58 0.87 0.94 0.86
(s.e.) � 0.10 3.32 0.98 1.09 1.10 1.22 0.97 0.97 0.88
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Table 2 Panel D (N=100, T=50)
Bai-Ng LASSO

r k �V MSER RMSFER
rec roll

DGP 1 4.00 6.18 17.14 0.62 0.91 0.64
(s.e.) � 0.74 8.39 1.52 1.03 0.63
DGP 2 50.00 24.00 38.66 0.04 0.02 0.00
(s.e.) � 0.07 8.59 0.27 0.00 0.00
DGP 3 5.00 8.54 11.52 0.93 0.73 0.48
(s.e.) � 0.85 7.74 1.77 0.79 0.45
DGP 4 5.00 8.61 3.60 0.99 0.58 0.39
(s.e.) � 0.88 8.00 1.68 0.73 0.41
DGP 5 100.00 17.64 6.24 0.95 0.00 0.00
(s.e.) � 0.82 9.15 2.08 0.00 0.00
DGP 6 1.00 0.01 9.96 0.18 0.96 0.84
(s.e.) � 0.10 12.17 0.64 1.05 0.88

Table 2 Panel E (Mallows, N=100, T=50)
Bai-Ng PC with Mallows

r k k MSER RMSFER
rec roll

DGP 1 4.00 6.18 14.00 0.81 1.03 1.04
(s.e.) � 0.74 0.00 0.89 1.12 1.07
DGP 2 50.00 24.00 24.00 1.00 1.00 1.00
(s.e.) � 0.07 0.00 1.00 1.00 1.00
DGP 3 5.00 8.54 15.00 0.84 1.00 1.00
(s.e.) � 0.85 0.00 0.93 1.01 1.00
DGP 4 5.00 8.61 2.50 1.12 0.85 0.76
(s.e.) � 0.88 5.60 1.38 1.15 1.15
DGP 5 100.00 17.64 14.45 1.08 1.00 1.00
(s.e.) � 0.82 11.75 2.16 1.00 1.00
DGP 6 1.00 0.01 5.92 0.77 1.08 1.12
(s.e.) � 0.10 5.49 1.23 1.24 1.45

Table 2 Panel F (Mallows, N=100, T=50)
Bai-Ng Ridge LF

r k � DoF MSER RMSFER � DoF MSER RMSFER
rec roll rec roll

DGP 1 4.00 6.18 1.69 13.65 0.80 0.75 0.53 0.00 9.55 0.92 0.43 0.28
(s.e.) � 0.74 0.43 2.20 1.12 0.80 0.49 0.00 2.58 1.19 0.49 0.29
DGP 2 50.00 24.00 0.54 28.73 0.55 0.01 0.00 0.00 26.85 0.77 0.00 0.00
(s.e.) � 0.07 0.29 3.95 0.99 0.00 0.00 0.00 7.01 2.15 0.00 0.00
DGP 3 5.00 8.54 2.49 8.24 0.95 0.63 0.42 0.01 5.32 1.06 0.45 0.29
(s.e.) � 0.85 0.96 2.80 1.16 0.56 0.32 0.00 2.15 1.12 0.43 0.24
DGP 4 5.00 8.61 74.91 2.16 1.14 0.55 0.37 0.00 14.57 0.72 0.31 0.17
(s.e.) � 0.88 36.61 3.86 1.26 0.50 0.28 0.00 1.47 0.76 0.29 0.14
DGP 5 100.00 17.64 11.00 7.56 1.25 0.00 0.00 0.01 6.79 1.30 0.00 0.00
(s.e.) � 0.82 5.22 5.37 1.54 0.00 0.00 0.01 5.49 1.61 0.00 0.00
DGP 6 1.00 0.01 8.62 10.58 0.60 0.88 0.78 0.03 10.98 0.58 0.52 0.43
(s.e.) � 0.10 4.81 4.88 0.99 0.89 0.75 0.01 4.01 0.89 0.68 0.56

Note to Tables 1 to 2. The tables report results for our proposed methods, traditional PC and a

regression including all regressors. For each DGP, the �rst line in the table reports the following: r is

the true number of factors; for PC (i.e. Bai-Ng, PC with Cross-Validation, PC with AIC or BIC and PC

with Mallows) k is the estimated number of factors on average across Monte Carlo replications, "MSER"

is the estimated in-sample Mean Squared Error of each method relative to traditional PC, "RMSFER" is

the square root of the estimated Mean Squared Forecast Error of each method relative to traditional PC,

44



obtained either via rolling ("Rol") or recursive ("Rec") estimation schemes. For Ridge and LF, the tables

report �(from eqs. (5) and (9) respectively) and the estimated number of degrees of freedom, "DoF",

equal to tr (M�
T ). For Lasso, the tables report the number kof non-zero components in the regression

coe¢ cient b�L = argmin� n 1
2T

PT
t=1 (yt�xt0�)

2+�
PN

j=1 j�j j
o
, where �j is the j-th component of � and

the value of � is associated with the minimum MSE for 10-fold cross-validation. The second line reports

the standard deviation (across Monte Carlo replications); for example, the standard deviation of the MSER

is
p
var(MSE)/100 relative to the respective standard deviation obtained using traditional PC. Table 1

reports results for GCV and Mallows�criterion in large samples (T=500, N=200). Table 2 reports similar

results for small samples (T=50, N=100).

Table 3 Panel A. Empirical Analysis (Forecast Horizon = 1 quarter)

RMSFE (relative to AR)

I. Cross-validation

Factor Models Ridge PLS LF CV Comb. BMA Comb.

Bai-Ng Cross V.

GDP Growth 1.1548 1.0599 0.9663 1.0909 1.0361 0.9711 0.9517 0.9196

(0.0935) (0.2521) (0.2502) (0.1100) (0.2148) (0.3105) (0.1743) (0.0025)

In�ation 1.1343 1.0888 1.0447 1.1419 0.9975 0.9919 0.9780 1.0001

(0.0122) (0.0474) (0.4850) (0.1045) (0.9432) (0.8066) (0.4968) (0.9909)

II. Mallows

Factor Models Ridge LF Mall. Comb.

BIC Mallows

GDP Growth 0.9795 1.1548 1.0259 1.0361 0.9858

(0.6656) (0.0935) (0.5388) (0.2148) (0.7016)

In�ation 1.0706 1.1028 1.0320 0.9975 0.9995

(0.0407) (0.0151) (0.4031) (0.9432) (0.9866)
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Table 3 Panel B. Empirical Analysis (Forecast Horizon = 4 quarters)

RMSFE (relative to AR)

A. Cross-validation

Factor Models Ridge PLS LF CV Comb. BMA Comb.

Bai and Ng Cross V.

GDP Growth 0.9320 0.9033 0.8370 0.9056 1.0295 0.8091 0.8847 0.8402

(0.4803) (0.3235) (0.0017) (0.3060) (0.2386) (0.0003) (0.0650) (0.0002)

In�ation 0.9705 0.9794 1.0394 1.4083 1.0231 0.9077 0.9068 0.9487

(0.7637) (0.8216) (0.8085) (0.2953) (0.6744) (0.3177) (0.0503) (0.0710)

B. Mallows

Factor Models Ridge LF Mall. Comb

BIC Mallows

GDP Growth 0.8512 0.9320 0.8069 1.0294 0.7854

(0.0423) (0.4803) (0.0096) (0.2394) (0.0006)

In�ation 0.9724 0.9705 1.0464 1.0231 0.9034

(0.7636) (0.7637) (0.7726) (0.6744) (0.2941)

Notes to Table 3. The table reports the RMSFE of the model listed in the columns relative to that of the

autoregressive model (i.e. RMSFE equals RMSFE of Model / RMSFE of Autoregression). In parentheses

we report p-values of the Diebold and Mariano (1995) test statistic for testing the null of equal predictive

ability against the alternative of unequal predictive ability using Newey and West�s (1987) HAC estimate of

the variance with 2 lags. The pool of regressors contains only h-period lagged predictors (xt�h= Zt�h).
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Table 4 Panel A. Empirical Analysis (Forecast Horizon = 1 quarter)

RMSFE (relative to AR)

I. Cross-validation

Factor Models Ridge PLS LF CV Comb BMA Comb.

Bai and Ng Cross V.

GDP Growth 1.1088 1.0225 0.9365 1.0884 1.0361 0.9312 0.9517 0.9321

(0.0886) (0.7128) (0.0614) (0.1769) (0.2144) (0.0490) (0.1743) (0.0505)

In�ation 1.3894 1.1570 1.2090 1.0924 0.9975 1.0486 0.9780 1.0001

(0.0018) (0.0174) (0.0072) (0.0616) (0.9433) (0.0842) (0.4968) (0.9909)

II. Mallows

Factor Models Ridge LF Mall. Comb

BIC Mallows

GDP Growth 0.9781 1.1101 0.9317 1.0361 0.9294

(0.6886) (0.0847) (0.1071) (0.2144) (0.0715)

In�ation 1.0458 1.2203 1.0549 0.9975 1.0271

(0.0640) (0.0511) (0.0732) (0.9433) (0.3400)
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Table 4 Panel B. Empirical Analysis (Forecast Horizon = 4 quarters)

RMSFE (relative to AR)

I. Cross-validation

Factor Models Ridge PLS LF CV Comb BMA Comb.

Bai and Ng Cross V.

GDP Growth 0.9090 0.8296 0.8392 1.0144 1.0295 0.7811 0.8847 0.8402

(0.2637) (0.0470) (0.0014) (0.8659) (0.2373) (0.0000) (0.0650) (0.0002)

In�ation 1.0818 1.0697 0.9909 1.2307 1.0231 0.9070 0.9068 0.9487

(0.4684) (0.6060) (0.9028) (0.0006) (0.6741) (0.2233) (0.0503) (0.0710)

II. Mallows

Factor Models Ridge LF Mall. Comb

BIC Mallows

GDP Growth 0.8728 0.9092 0.7596 1.0295 0.7391

(0.1101) (0.2648) (0.0022) (0.2374) (0.0001)

In�ation 1.0252 1.0824 1.0388 1.0231 0.9160

(0.8384) (0.4641) (0.5850) (0.6741) (0.2188)

Notes to Table 4. The table reports the RMSFE of the model listed in the columns relative to that of the

autoregressive model (i.e. RMSFE equals RMSFE of Model / RMSFE of Autoregression). In parentheses

we report p-values of the Diebold and Mariano (1995) test statistic for testing the null of equal predictive

ability against the alternative of unequal predictive ability using Newey and West�s (1987) HAC estimate of

the variance with 2 lags. The pool of regressors contains two additional lags of the predictors (xt�h includes

Zt�h, Zt�h�1, and Zt�h�2).
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Table 5. Empirical Analysis (Forecast Horizon = 1 quarter)

Forecast Rationality Regressions

Panel A. GDP Growth

Coe¢ cients Wald Test

Constant Slope Statistic P-value

Factor Models:

Bai and Ng 1.77 -0.67 58.5 0.00

Cross V. 1.36 -0.58 28.4 0.00

Ridge -0.35 0.01 1.03 0.60

PLS 1.72 -0.64 31.1 0.00

LF 3.85 -1.35 4.51 0.10

Comb. CV -0.06 -0.11 2.25 0.32

Comb. Mall. 0.87 -0.39 7.89 0.02

BMA 0.34 -0.26 6.00 0.05

Comb. 0.04 -0.07 0.61 0.74

Panel B. In�ation

Coe¢ cients Wald Test

Constant Slope Statistic P-value

Factor Models:

Bai and Ng -0.03 -0.76 73.33 0.00

Cross V. -0.03 -0.79 32.77 0.00

Ridge -0.02 -0.81 25.25 0.00

PLS -0.03 -0.93 54.33 0.00

LF -0.02 -3.41 9.01 0.01

Comb. CV -0.02 -0.59 5.13 0.08

Comb. Mall. -0.03 -0.63 8.82 0.01

BMA -0.01 -0.46 3.23 0.20

Comb. -0.04 -0.58 8.60 0.01
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Table 6. Empirical Analysis (Forecast Horizon = 4 quarter)

Forecast Rationality Regressions

Panel A. GDP Growth

Coe¢ cients Wald Test

Constant Slope Statistic P-value

Factor Models:

Bai and Ng 1.14 -0.44 24.74 0.00

Cross V. 0.95 -0.41 21.34 0.00

Ridge -0.97 0.22 1.99 0.37

PLS 0.93 -0.41 23.44 0.00

LF 2.87 -1.03 3.55 0.17

Comb. CV -1.18 0.27 3.23 0.20

Comb. Mall. -0.21 -0.02 1.47 0.48

BMA -0.08 -0.07 1.31 0.52

Comb. -0.55 0.14 0.77 0.68

Panel B. In�ation

Coe¢ cients Wald Test

Constant Slope Statistic P-value

Factor Models:

Bai and Ng -0.11 -0.45 18.08 0.00

Cross V. -0.08 -0.47 12.71 0.00

Ridge -0.13 -0.54 6.76 0.03

PLS -0.11 -0.80 19.47 0.00

LF -0.07 -1.13 2.08 0.35

Comb. CV -0.11 -0.17 1.20 0.55

Comb. Mall. -0.13 -0.18 1.90 0.39

BMA -0.01 -0.12 0.52 0.77

Comb. -0.10 -0.31 4.68 0.10

Notes to Tables 5 and 6. The pool of regressors contains only the lagged predictors (xt�h=Zt�h).
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Figure 1. Forecasting GDP, h=1. Forecast Performance Relative to the AR Model.
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Figure 2. Forecasting In�ation, h=1. Forecast Performance Relative to the AR Model.
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Figure 3. Forecasting GDP, h=4. Forecast Performance Relative to the AR Model.

Time
1975 1980 1985 1990 1995 2000 2005

Te
st

 S
ta

tis
tic

­5

0

5
Bai and Ng's Principal Components

Fluctuation Test
Critical Value

Time
1975 1980 1985 1990 1995 2000 2005

Te
st

 S
ta

tis
tic

­5

0

5
Principal Components with Cross Validation

Fluctuation Test
Critical Value

Time
1975 1980 1985 1990 1995 2000 2005

Te
st

 S
ta

tis
tic

­5

0

5
Ridge with Cross Validation

Fluctuation Test
Critical Value

Time
1975 1980 1985 1990 1995 2000 2005

Te
st

 S
ta

tis
tic

­5

0

5
PLS with Cross Validation

Fluctuation Test
Critical Value

Time
1975 1980 1985 1990 1995 2000 2005

Te
st

 S
ta

tis
tic

­5

0

5
LF

Fluctuation Test
Critical Value

Time
1975 1980 1985 1990 1995 2000 2005

Te
st

 S
ta

tis
tic

­5

0

5
CV Comb.

Fluctuation Test
Critical Value

Time
1975 1980 1985 1990 1995 2000 2005

Te
st

 S
ta

tis
tic

­5

0

5
BMA

Fluctuation Test
Critical Value

Time
1975 1980 1985 1990 1995 2000 2005

Te
st

 S
ta

tis
tic

­5

0

5
Forecast Combinations

Fluctuation Test
Critical Value

Figure 4. Forecasting In�ation, h=4. Forecast Performance Relative to the AR Model.
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Figure 5. Forecasting GDP, h=1. Forecast Rationality.
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Figure 6. Forecasting In�ation, h=1. Forecast Rationality.
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Figure 7. Forecasting GDP, h=4. Forecast Rationality.
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Figure 8. Forecasting In�ation, h=4. Forecast Rationality
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Notes to Figures 1-4. The �gures report Giacomini and Rossi�s (2010) Fluctuation test (solid line) and

critical values (dotted lines) for the forecasting models listed in the title. Figures 1-2 focus on forecasting
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output growth and in�ation in the short-run, while �gures 3-4 focus on the long-run. The pool of regressors

contains one lag of the predictors (xt�h includes Zt�h).

Notes to Figures 5-8. The �gures report Rossi and Sekhposyan�s (2015) Fluctuation Rationality test

(solid line) and critical values (dotted lines) for the forecasting models listed in the title. Figures 5-6 focus

on forecasting output growth and in�ation in the short-run, while �gures 7-8 focus on the long-run. The

pool of regressors contains one lag of the predictors (xt�h includes Zt�h).
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