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Abstract

Does industrial concentration shape the life and death of cities? We identify set-

tlements from historical maps of England and Wales (1790–1820), isolate exogenous

variation in their late 19th-century size and industrial concentration, and estimate

the causal impact of size and concentration on later dynamics. Industrial concentra-

tion has a negative effect on long-run productivity—independent of industry trends

and consistent with cross-industry Jacobs externalities. A spatial model quanti-

fies the role of fundamentals, industry trends, and Jacobs externalities in shaping

industry-city dynamics and isolates a new, dynamic trade-off in the design of place-

based policies
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Many of the cities and regions that drove the industrial transformation of the nine-

teenth century have since declined in the twentieth century. The formerly thriving

towns of Lancashire, the rust belt cities in the northeastern United States, or the Ruhr

valley in Germany grew rapidly and employed generations of workers but have strug-

gled to find continued economic success in the longer run. Both the rise of those cities

and their reversal of fortune may be tied to the particular dynamics of their industries.

One explanation is external to the cities: macroeconomic factors of demand and tech-

nological change drive the dynamics of industries within a country. The dynamics of

cities are then simply tied to the aggregate dynamics of industries in which they have

a comparative advantage. A second force relates to factors that are internal to the city:

a city’s industrial portfolio affects its long-run development, even when accounting for

external industry trends. For instance, Glaeser et al. (1992) discusses the role of long-

run, between-industry externalities in driving city growth—as motivated by the seminal

work of Jacobs (1961, 1969) on The Death and Life of Great American Cities.
This paper focuses on internal drivers within cities and studies whether industrial

structure shapes their life and death. We rely on unique data which characterizes the

evolving spatial distribution of employment and industries in England and Wales over

the course of two centuries. More specifically, (i) we identify settlements in the early

nineteenth century from historical maps, isolate clusters of built-up areas, and delin-

eate the footprint of potential cities; (ii) we follow the composition of these settlements

during the period of rapid urban and industrial expansion in the nineteenth century us-

ing the first near-exhaustive picture of industries across Britain (a quasi-census based

on baptism records, around 1817) and a micro-census when the structure of cities stabi-

lizes (1881); and (iii) we measure their long-run economic performance using an array

of high-quality contemporary data, including firm-level production information. We

find a strong, negative effect of industrial concentration in 1881 on later city productiv-

ity, irrespective of secular industrial trends. We use this empirical evidence to motivate

and estimate a quantitative spatial model of industries and cities, where heterogeneous

cities produce and trade goods. Dynamics in the model arise from both city-specific

externalities (à la Jacobs) and aggregate, exogenous industry trends. We find that the in-

teraction of these dynamic forces with the early specialization of British cities explains

a large share of current spatial inequalities. The present-day North/South productivity

gap would be 40% lower in the absence of Jacobs externalities. The industrial concen-

tration of British cities that arose during the nineteenth century plays a powerful role in

long-term regional disparities because of these long-run externalities.

Britain provides the ideal setting to study this question. Through the course of the

nineteenth century, significant macroeconomic changes included the adoption of labor-
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saving technologies, the shift to large-scale, steam-powered production, and the rapid

rise in domestic and international trade. These factors transformed the scale of cities and

industries which in turn underpinned a sustained increase in economic growth. Along-

side this growth, the (mostly) small settlements of the early nineteenth century gave

way to a dense network of larger cities. By the end of the nineteenth century, the cities

of England and Wales had emerged into markedly different economic structures: some

cities had developed a diverse industrial base, while others had specialized in a narrow

set of industries; some cities had grown larger, while others had not.

To make progress, we need: the early (pre-expansion) settlements and their economic

composition; a way to understand what drives the heterogeneity in the manner of the

settlement growth and industrial concentration up to the end of the nineteenth century;

and modern data on productivity of those places up to the present day. The first empir-

ical challenge is to locate and delineate potential cities of the early nineteenth century.

We collect unique historical maps from around 1790–1820, develop a machine-learning

algorithm to identify buildings, and use a delineation procedure to select urban settle-

ments as sufficiently large clusters of built-up areas (De Bellefon et al., 2021). The output

is a new dataset of early nineteenth century settlements and their boundaries that each

had the potential to develop into cities by the late nineteenth century.1

Having established the early nineteenth century settlements, a second challenge is

to isolate exogenous variation in the nature of their rise during the nineteenth century.

Doing so will permit us to identify the causal impact of late nineteenth century industrial

diversity and size on the long-run dynamics of cities. To predict industrial concentration,

we rely on a measure of initial location advantages—the 2-digit industrial composition of

early settlements in 1817—and create a “shift-share industrial Herfindahl index” which

combines the initial city-sectoral shares with the aggregate growth of each sector. To pre-

dict late-nineteenth century city size, we borrow insights from the historical literature

and conjecture that the fragmentation of land ownership in the immediate fringe of cities

affected the pace at which they could grow in response to industrialization. The underly-

ing argument is at the heart of the land assembly problem (see, e.g., Eckart, 1985; Strange,

1995): a higher degree of land ownership fragmentation in the city’s fringe makes nego-

tiations to acquire additional land for urban use more costly. We develop an algorithm

to predict natural fault lines—multidimensional breaks in elevation, ruggedness, persis-

tent soil attributes and water bodies—between potential agricultural land parcels, and

1A related challenge is to define the geography of cities over time and nest economic activity within
these geographies. In our baseline strategy, we expand city boundaries uniformly (across cities, and across
directions for each city) to match the average city growth over the nineteenth century, and we nest eco-
nomic characteristics from the end of the nineteenth century onward at this level. An alternative proce-
dure would consist in using the actual, “endogenous” city boundaries, e.g., as measured by historical maps
around 1890–1900 and recent built-up data—such a procedure does not affect our empirical findings.
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we compute the distribution of “natural farms” over England and Wales.2 We use the

density of such “farms” around each of the early settlements as an exogenous proxy for

land ownership fragmentation (controlling for the average ruggedness and soil quality

around city boundaries, see Saiz, 2010; Harari, 2020).3

We find that cities which specialize in a smaller number of industries at the end of

the nineteenth century experience a decline in the long run. An additional 0.10 in the

2-digit industrial Herfindahl index in 1881—about 60% of a standard deviation—causes:

an additional 3.7 percentage points in unskilled employment; 27% lower returns to la-

bor; and a 24% lower firm productivity around 2010-2020, conditional on 4-digit industry

fixed effects, the local share of turnover in the firm industry, and firm-specific factor use.

By contrast, we find that a city’s size in 1881 is less economically significant in the long-

run—consistent with Gibrat’s law. These results are obtained in a baseline specification

which already controls for: aggregate industry dynamics; the composition of industrial

employment around 1820; topography and the geography of development in these early

times; transportation infrastructure, and access to resources and markets; agricultural

productivity and exposure to the Grain Invasion (Coeurdacier et al., 2022; Heblich et al.,

2024); the marginal land supply from the end of the nineteenth century onward; and

initial built-up density at the city fringe. We subject these results to an array of ro-

bustness checks that include: adding controls for historical agricultural production, land

values, and parliamentary enclosures (Heldring et al., 2022); controlling for the (endoge-

nous) employment shares in agriculture, services, and manufacturing in 1881 to show

that our findings are not driven by structural transformation; excluding 2-digit indus-

tries from our industrial concentration indices to show that our results are not driven

by any sub-sectors in particular; providing alternative shift-share designs (e.g., leaving

out the surrounding of the city to derive the “shifts”); showing that Jacobs externalities

are local and operate within a 20 kilometer buffer; and assessing the extent of treatment

2We validate the predictive power of this measure of land fragmentation by comparing it with the ac-
tual concentration of ownership from micro-census records where land acreage is reported by landowners.

3Identification requires the two instruments to be relevant (H1) and exogenous (H2). (H1) Relevance
justifies our effort to find independent sources of variation with sufficient explanatory power for our two
endogenous variables: industrial concentration; and city size. Indeed, we show that geography is mostly
predictive of city size, while industrial concentration is mostly explained by the nature of initial cottage
industries. Our first stage reflects this observation: local topography constrains city growth without any
effect on industrial diversity; and our predicted Herfindahl index mostly predicts industrial concentration.
(H2) To support the exogeneity assumption, our empirical analysis controls for a large set of variables
capturing: first-nature geography (e.g., initial area, elevation, slope, bulk density, agricultural productivity,
soil characteristics); second-nature geography (e.g., latitude, market access, travel time to main cities,
travel time to resources, waterways, transportation infrastructure); baseline city composition (deciles of
employment, industrial concentration, agricultural employment shares in 1817); “fringe” variables (e.g.,
built-up density and predicted land ownership fragmentation within the contours of the settlement around
1800 and within a large 10 kilometer buffer); an industry-based (linear) shift-share or industry fixed-effects
to clean for the later, aggregate evolution of industries; and fixed effects at the level of 39 counties.
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heterogeneity—the interacted effect of industrial concentration and city size remains

limited, and cities with higher share of services are slightly less affected by industrial

concentration. The negative effect of industrial concentration is robust and very stable.

To interpret these empirical findings, we develop a multi-sector dynamic spatial

model and study the mechanisms behind the evolution of industries across cities and

over time. The model features a finite set of cities that trade the products of a finite set

of industries. At any point in time, cities can differ in their sectoral productivities, their

amenities, their land supply elasticities, and their trade costs with other cities. While the

model can theoretically accommodate for a flexible structure in how employment and

industrial structure influence productivity, e.g., agglomeration externalities, Marshall-

Arrow-Romer externalities, and long-run Jacobs externalities (see Carlino and Kerr, 2015,

for a review about important determinants of city growth), our model quantification will

only be able to credibly parametrize agglomeration externalities and estimate long-run

Jacobs externalities while conditioning on contemporaneous Marshall-Arrow-Romer ex-

ternalities.4 First, the model rationalizes the distribution of economic activity at the end

of the nineteenth century: trade costs are low, leading to a specialization of cities in

their comparative advantage sectors; and the availability of land disciplines the degree to

which population reallocates towards these cities. Second, (a) aggregate industry trends

and (b) long-run externalities imply that this late nineteenth century distribution of em-

ployment across industries and cities leads to markedly different city dynamics into the

twentieth century. (a) Some industries that were successful enter a period of decline

over their life-cycle, e.g., because of structural change (Ngai and Pissarides, 2007) or in-

ternational competition (Pierce and Schott, 2016), and cities with a location advantage

in originally flourishing but later floundering industries simply suffer by dint of their

reliance in that sector. (b) Long-run Jacobs externalities generate productivity gains in

historically more diverse cities. This force directs economic activity away from cities

that were specialized in the past, irrespective of the aggregate trends in each particular

sector. Both forces (a) and (b) may rationalize the decline of a place, but they have very

different implications and it is crucial to separately identify their contributions.

In the final part of the paper, we estimate our quantitative model using several key

inputs: city-industry employment data; trade costs and industry-specific factor shares

in production; elasticities estimated by previous literature, including elasticities of sub-

stitution within and across industries, static agglomeration externalities, and migration

elasticities; city-specific land supply elasticities (Drayton et al., 2024); and our empiri-

cal, exogenous variation to identify long-run Jacobs externalities. We use the estimated

4Jacobs externalities operate across industries and benefit all industries within cities with a diverse
industrial base. By contrast, Marshall-Arrow-Romer externalities operate within industry.
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model to perform two counterfactual experiments that quantify the roles of location fun-

damentals, industry life-cycles, and local externalities in shaping urban dynamics. First,

we assess the contribution of long-run Jacobs externalities to current regional inequal-

ity in England and Wales: Eliminating these externalities would reduce the North-South

productivity gap by nearly half—from about 35% to 20%. This spatial inequality reflects

the interaction of persistent Jacobs externalities and the historically high industrial con-

centration of the nineteenth century, driven by trade openness and transportation im-

provements. Second, we evaluate stylized place-based industrial policies that alter the

degree of industrial diversity—representing specialization-inducing or diversification-

promoting local interventions—and quantify their normative implications.5 This exer-

cise makes salient the existence of a dynamic trade-off faced by local policymakers: while

specialization yields short-term productivity gains by reinforcing comparative advan-

tages, it may harm long-run outcomes by reducing industrial diversity. In a range of

reasonable discount factors, both diversification and specialization policies may appeal

to policymakers, but the latter are preferable to impatient ones. In practice, many place-

based policies promote specialization—reflecting the preferences of policymakers who

effectively assign lower weight to future generations.

The main contributions of our study are to estimate Jacobs externalities, to isolate

their role in driving regional inequalities, and to discuss a novel trade-off in allocating

economic activity across space—a dynamic trade-off based on industrial composition

(in stark contrast with the static trade-off between agglomeration benefits and crowd-

ing costs discussed, among others, in Henderson, 1974; Ahlfeldt et al., 2015; Brinkman,

2016). These findings have direct implications for the design of place-based policies,

which must weigh not only static efficiency considerations but also long-run conse-

quences tied to local industrial structure. In their study of the Tennessee Valley Au-

thority, Kline and Moretti (2014a) show that place-based interventions may be justified

on efficiency grounds if they correct meaningful local market failures; otherwise, they

risk being distortionary, with local gains offset by national losses. We complement this

view by introducing an intertemporal dimension and show that more patient planners

would favor diversification policies, while less patient ones would prefer specialization.6

5Our theory abstracts from formally modeling innovation or other possible interactions between firms
of similar or different industries. For this reason, we cannot properly evaluate existing place-based in-
dustrial policies such as the “Smart Specialisation Strategy” implemented by the European Union or the
innovation clusters (or hubs) in the United States.

6Our focus on the long-run impact of industrial structure entails a few limitations. First, our theo-
retical framework abstracts from detailed firm-level interactions and thus does not capture the full range
of contemporary agglomeration effects. This reflects a deliberate emphasis on long-term structural trade-
offs, rather than within-period market dynamics. Second, our empirical analysis identifies a reduced-form,
causal relationship between industrial concentration and long-run productivity. While multiple channels
may drive this relationship, their separate identification is left for future work.
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We relate to several strands of existing research. First, our study adds to the litera-

ture discussing industries as drivers of urban growth (Duranton, 2007; Hanlon and Mis-

cio, 2017), and specifically to research on the negative effects of industrial concentration

(Glaeser et al., 1992; Duranton and Puga, 2001; Lin, 2011; Faggio et al., 2017; Heblich et

al., 2019). The closest paper to ours is Henderson et al. (1995), which discusses the in-

terconnected life-cycle of industries and cities. One feature of our model, responsible

for the negative effect of industrial concentration, is the role played by externalities à la

Jacobs (1969) as drivers of knowledge development in the long run. These dynamics bear

directly on the normative evaluation of place-based policies, where the spatial allocation

of activity is shaped by local spillovers and long-run externalities (e.g., Fajgelbaum and

Gaubert, 2025; Kline and Moretti, 2014b; Gaubert et al., 2025). In a related application,

Glaeser (2005) studies Boston over nearly four centuries and points to the role of human

capital in reinventing the city after periods of crisis and decline; distortion to the acquisi-

tion of human capital is also a key mechanism behind the rise and fall of cities in Franck

and Galor (2021). Relative to these earlier contributions, an advantage of our empiri-

cal design is to causally identify the long-run causal impact of industrial concentration,

while also accounting for the life cycle of nationwide industries themselves.

Second, our work is inspired by theories of agglomeration economies—recently re-

formulated as sharing, matching, and learning effects, operating through production

linkages, labor markets or knowledge creation (Duranton and Puga, 2004)—but mostly

relates to their empirics (Combes and Gobillon, 2015). Our empirical approach focusing

on Jacobs externalities borrows from previous literature in its measurement of industrial

concentration, but markedly differs in its time horizon: we relate contemporary produc-

tivity to industrial structure at the end of the nineteenth century, thus capturing the

long-run effects of localized knowledge spillovers (Carlino and Kerr, 2015).

Third, we connect to a quantitative literature studying the dynamic evolution of eco-

nomic activity across space. The closest contributions in this literature are Allen and

Donaldson (2020), Berkes et al. (2021), Caliendo et al. (2019), Nagy (2023), Eckert and Pe-

ters (2023) and Fajgelbaum and Redding (2022).7 Our main contribution to this literature

lies in proposing a multi-sector dynamic model with various dimensions of heterogene-

ity that can be taken to the data in a computationally tractable way.

Finally, our period of interest includes a key transformation of Britain—the industrial

revolution—accompanied by urbanization, trade, and structural transformation. Trade

has been discussed as a key mechanism behind the industrial revolution in a number of

contributions, notably Stokey (2001) or Allen (2009); it accelerated the transition to large-

7We refer the interested reader to Redding and Rossi-Hansberg (2017) for a comprehensive survey of
the quantitative spatial literature and to Nagy (2022) for their use in addressing historical questions.
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scale, export-oriented (urban) growth, and induced the invention of the labor-saving

technologies that underpinned Britain’s transformation. In our model, external demand

reallocates economic activity and industries across cities (thus relating to Heblich et al.,

2024, about the Grain Invasion and the resulting heterogeneous structural transforma-

tion across space). Lastly, a macroeconomic literature, summarized in Herrendorf et al.

(2014), studies growth and structural transformation. Our quantitative spatial model

abstracts away from the mechanisms discussed in theories of structural change and con-

siders relative prices across industries as given (in contrast with Eckert and Peters, 2023).

The remainder of the paper is organized as follows. Section 1 presents some histor-

ical context. Section 2 describes our data. Section 3 establishes empirical facts which

motivate the structure of the model, described in Section 4. Finally, Section 5 takes the

model to the data and discusses mechanisms behind the long-run dynamics of cities.

1 Context

This section provides a brief overview of the context in which cities of our sample grow

over the course of the nineteenth century: the industrial revolution in Britain, its early

cottage industries, and the rise of urban agglomerations from early settlements.

The industrial revolution in Britain The industrial revolution can be broadly char-

acterized by four stylized facts: (a) the emergence of new technologies in key sectors

leading to sustained increases in growth rates of income per capita; (b) a declining share

of employment in agriculture; (c) the growth in domestic and international trade; and (d)

an increasing share of the population living in cities. How each of these fit together, and

what are the factors that caused Britain to industrialize first, is not completely settled

(see, e.g., the survey in Clark, 2014).8

Figure 1 depicts trends of these four dimensions. While many key industrial tech-

nologies emerge in the mid-eighteenth century, growth in output per capita accelerates

particularly in the early nineteenth century (panel a), at a time when overall population

8Two highly influential hypotheses on the causes of the industrial revolution are formulated in Mokyr
(2009) and Allen (2009). In Mokyr (2009), the industrial revolution is driven by the emergence of “attitudes”
(a respect for entrepreneurs and inventors) and “aptitudes” (the growth of useful human capital, see Mokyr,
2021). Kelly et al. (2023) and Hanlon (2022) corroborate this view with a focus on mechanical workers and
the professionalization of invention through the emergence of engineers. By contrast, in Allen (2009),
(openness to) trade changes demand for the manufactured output, causing a shift in modes of produc-
tion away from rural, low-scale, domestic-oriented and water-powered production to urban, specialized,
export-oriented and large-scale factories in which steam power dominates (a change discussed in Crafts,
1989). More specifically, high wages due to external demand drive capital-biased, labor-saving technical
change which fosters the growth in export-oriented industries (Allen, 2021). Stokey (2001) finds that trade
explains all the decline in agricultural production, and a significant share of the increase in manufacturing
and real wages (a finding qualitatively supported by Harley and Crafts, 2000; Clark et al., 2014).
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Figure 1. The industrial revolution in Britain.
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Notes: Panel (a) provides data on real GDP per capita from Broadberry et al. (2015) and national accounts, collated in Thomas and
Dimsdale (2018). In panel (b), employment shares are classified according to the PST system—primary, secondary, tertiary—described
in Wrigley (2010), which are respectively (and very broadly) agriculture, manufacturing/construction and services; we also separate
out mining. We report the available data for male adults in England and Wales (Shaw-Taylor and Wrigley, 2014). In panel (c),
openness is defined as the sum of imports and exports as a share of GDP, using Hills et al. (2010) and Broadberry et al. (2015). In
panel (d), urbanization is defined as the share of total population in cities over 5,000 inhabitants (Bairoch and Goertz, 1986).

was also growing rapidly. The share of employment in the secondary sector reaches a

peak around 1871, having only marginally grown since 1710; and structural transforma-

tion then materializes in a swift rise in tertiary employment (panel b). Most striking and

less commonly known are the dramatic changes in trade openness, which accelerates

after 1820 (panel c), and urbanization, which grows by nearly fifty percentage points

between 1820–1900 (panel d). During the nineteenth century, Britain grows from be-

ing a relatively rural economy to urbanization levels that are higher than its European

comparators. We shed light on the patterns of such urbanization in the next section.
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Figure 2. The urbanization of Oldham.

Notes: The underlying map is a county map of Lancashire around 1820 where built-up is indicated by darker blue rectangles (see
Section 2 for a description of the built-up extraction process). The lighter blue area shows the urban boundaries of Oldham around
1880–1900, as defined by areas of contiguous built-up.

Proto-industrialization, the urbanization of Britain, and the rise of cities The

shift of industrial production from a rural to an urban setting, and the concomitant

growth in agglomerations, has been studied extensively. In the early eighteenth century,

the low-scale artisanal home-production of finished manufactures gave way to well-

organized rural industries, some of which exported beyond the locality (Hudson, 2004;

Goose, 2014). This phenomenon is sometimes labeled “proto-industrialization” (Mendels,

1972; Ogilvie, 2008). The existence of extensive proto-industries rationalizes high em-

ployment shares in the secondary sector between 1700–1820 in spite of low urbaniza-

tion levels (Figure 1). Factory production is, at that time, frequently rural, relying on

water power and with rural workers housed by entrepreneurs around production facili-

ties (Trinder, 2000). While steam engines begin to proliferate in the eighteenth century

(Nuvolari et al., 2011), the transition to steam engines as the predominant motive power,

and the associated large-scale, city-centered factory production, is not complete until the

mid-nineteenth century (Musson, 1976). One illustration of the swift concentration of

manufacturing production in urban centers is Oldham, in the North-East of Manchester.

At the end of the eighteenth century, Oldham does not exist yet as a town: there are

numerous hamlets where cottage industry takes place, including one called Oldham. By

the end of the nineteenth century, Oldham is a factory town of about 140,000 inhabitants

which produces a significant share of the whole country’s textile output (almost a quar-

ter of cotton production in 1911). Figure 2 provides the geographical illustration of such

10



rapid urbanization: the underlying map is from around 1820, with the 1820 built-up areas

(dark blue polygons) overlaid with the urban boundary of Oldham around 1880–1900.

Figure 3. The geography of employment and growth in Britain.

(a) Employment density (1817) (b) Employment growth (1817–1881)

Notes: These two maps represent employment density in 1817 (panel a, as computed from a quasi-census of baptism records con-
ducted between 1813–1820, and in number of recorded workers per square kilometers) and employment growth between 1817–1881
(panel b, where population in 1881 is calculated using micro-census records). The geographic unit is a parish (see Section 2).

The example of Oldham is typical of a phenomenon whereby smaller settlements

consolidate into towns, and small towns grow into cities with high concentration of

manufactures. Stoke-on-Trent is another example: early potteries became boroughs,

boroughs grew into towns, which would be amalgamated into Stoke-on-Trent—a lead-

ing producer of ceramics. This pattern is visible within each county of England and

Wales. There is, however, a more aggregate geography of employment and growth that

is worth discussing. As shown in panel (a) of Figure 3, employment is highly concen-

trated in a few regions in the early nineteenth century: Lancashire, North Yorkshire, the

West Midlands, Northumberland, London and a few isolated cities (e.g., Bristol). The

geography of employment growth is slightly more balanced across space (panel b).9

Settlements of the early nineteenth century give way to a dense network of cities

by the end of the century. We shed some light on the extent and nature of this growth

in Figure 4. In panel (a), we show the distribution of employment across cities in 1817

and in 1881, and we see that there is a massive population increase: cities grow by a

9While Lancashire, North Yorkshire, the West Midlands, Northumberland and London grow into large,
densely populated regions, the South of Wales also grows significantly (due to a location advantage and
proximity to coal). In other regions, growth is more unevenly distributed with a few cities concentrating
most of the (new) workforce.
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factor of 4 on average (while overall population increases by about 80% during the same

period). In panel (b), we show the distribution of industrial concentration, as captured

by a 2-digit industry-based Herfindahl index of employment. Cities are mechanically

more specialized than the overall economy, but there exists large variation in the degree

to which they specialize. We will see later that this variation is tied to the portfolio of

location advantages that they hold across the different industries. In particular, trade

induced a specialization in industries where cities hold a comparative advantage.

Figure 4. Specialization and growth in cities.

(a) Employment (b) Herfindahl index

Notes: These two figures represent the distribution of employment (panel a) and industrial concentration (panel b) across 435 po-
tential cities of England and Wales (see Section 2 for a definition of these potential cities and their boundaries). The distributions are
shown in 1817 (blue) and in 1881 (orange). Specialization is captured by a Herfindahl index calculated as the difference between the
city-specific Herfindahl index and a national one, ℎ̃𝑐 = ∑𝑗 𝑠2𝑗𝑐 −∑𝑗 𝑠2𝑗 , where 𝑠𝑖𝑐 is the employment share in city 𝑐 and industry 𝑖 and
𝑠𝑖 is the nationwide employment share in industry 𝑖. Industries are captured at the 2-digit level, based on the PST system—primary,
secondary, tertiary—described in Wrigley (2010).

Land supply and the local geography of urban sprawl So far, we have described

the determinants of urbanization and growth without discussing possible geographic

constraints. During the nineteenth century, industrialization leads to rising demand for

space within, then around, cities.10 While factory production using new technologies

concentrates in growing cities (see, e.g., Trew, 2014), some locations face difficulties in

meeting the accelerating external demand after the 1820s, because of land constraints.

Such constraints could be geographic but they could also be the remnants of histori-

cal property rights that present a land assembly-type problem (Denman, 1958; Hoskins,

1988; Eckart, 1985; Strange, 1995; Neeson, 1996; Hudson, 2004; Heldring et al., 2022). As

Trinder (2000) notes, the “pattern of urban industrial growth in Britain before 1840 was

10“Land inside the older towns was acquiring a scarcity value [...] Open spaces inside the older towns
vanished rapidly...” (Hoskins, 1988, p.185); “Manufactures ran up their mills, factories and works on the
edge of existing towns[...]” (Hoskins, 1988, p.183).
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untidy” (p.827). Where it was possible, towns were laid out in a grid pattern and experi-

enced rapid growth. Where it was not, “[p]atterns of housing were dispersed, following

patterns set by pre-existing fields and property boundaries rather than those of order

and convenience” (p.820). We rationalize this observation next and explore how land

ownership patterns at the city’s fringe shape the potential for urban expansion.

2 Data

This paper combines data on the evolving economic geography of England and Wales

over 200 years. In this section, we present our data sources and describe the identification

of early urban settlements.

2.1 Data sources

Census of England and Wales The main data source for population and employment

is the Census of England and Wales, which provides a highly detailed characterization

of population and industrial composition at the level of about 11,500 parishes over the

course of two centuries (1801–1911, 1971–2011). The census provides population counts

from 1801 onward, but a precise decomposition of the labor force across occupations

only after 1851 (when the micro-census records become available). We thus rely on a

quasi-census based on (adult male) Anglican baptism records collected between 1813

and 1820 (referred to below as 1817) in order to retrieve consistent 2-digit industrial

composition at the parish level before the time of rapid industrialization (Shaw-Taylor

and Wrigley, 2014). One issue with census data is that the smallest administrative units—

the parishes—are regularly redefined, merged or split over the course of the nineteenth

century. We thus apply an “envelope” algorithm which considers the transitive closure

of the different parishes covering the same points over time (see Appendix A.1).

Firm data We access, through a secure server, high-quality contemporary data, most

notably firm-level production information: the Annual Business Survey (ABS), which

reports turnover, purchases, employment costs, capital expenditure, stocks, and, value

added for a representative selection of firms (about 2.5% of all firms); the Business Reg-

ister and Employment Survey (BRES), which reports detailed employment for a repre-

sentative selection of firms (about 4% of all firms); and, the Business Structure Database

(BSD), which reports aggregate employment and turnover for all businesses. A challenge

is that these firms are nested within geographies (NUTS-3 or local authority) and indus-

tries (4-digit SIC) which differ from the nineteenth century data. A corollary is that we

will lose some geographic granularity in analyzing firm productivity and that we will not
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be able to map industrial codes in earlier censuses with later industry classifications—

which does not prevent us from controlling for 4-digit industry-fixed effects.

Geography, land ownership, and transportation To characterize the immediate

neighborhood of cities and the local, temporary drivers of urban land supply, we gather

high-quality raster maps at a disaggregated level: elevation (Open Land Map, 30m res-

olution); soil organic carbon content (Open Land Map, 250m); soil bulk density (Open

Land Map, 250m); a detailed soil classification (National Soil Resources Institute); and a

dataset of all rivers and smaller streams in England and Wales (OS Open Rivers).

A crucial component of the empirical analysis consists in the construction of an ex-

ogenous measure of land fragmentation based on topography and soil characteristics

(i.e., natural breaks between possible agricultural land parcels). One channel through

which exogenous land fragmentation might put a strain on city growth is that it might

contribute to fragmented land ownership and thus make the land harder to assemble. To

validate this channel, we collect actual measures of land ownership fragmentation from

micro-census records (in 1851 and 1861) where land acreage is reported by landowners.

Note that inferring land ownership fragmentation from micro-census records requires

textual analysis as the information has not been coded by the I-CeM project.11

We complement the previous data on population, occupation and geography with

the transportation infrastructure (main roads, navigable waterways, train lines and train

stations), as provided by the Cambridge Group for the History of Population and Social

Structure (Shaw-Taylor et al., 2024). This dynamic characterization of transportation

allows us to measure access to resources through the transportation network and trading

costs across different cities over time (see Appendix A.1).

Urban settlements at the onset of industrialization In the early nineteenth cen-

tury, the population of Britain mostly lives in rural settlements or small towns. That

starting point allows for a significant reshaping of the urban network, with the rise of

new cities sprawling around existing hamlets. This also represents a challenge: how can

we identify potential cities and their boundaries?

Our approach exploits early county maps and Ordnance Survey drawings, mostly

produced between 1790–1830, that cover the whole territory of England and Wales. We

digitize, geo-reference and process these maps through computer vision.12 We provide

11The occupational category in micro-censuses provided by I-CeM is extracted and inferred from a free
text entry detailing occupation; one example for agricultural occupations would be “Farmer, 5 acres, 4 men,
2 boys”. We use such free text entry to systematically collect information about acres and employment.

12We rely on about 350 Ordnance Survey drawings (covering Southern England and Wales) and
10 larger county maps (covering Chester, Cumberland, Derbyshire, Durham, Lancashire, Lincolnshire
Northumberland, Nottinghamshire, Westmoreland, and Yorkshire). These collections markedly differ in
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Figure 5. A rich set of Ordnance Survey drawings and county maps (1790–1830).

(a) South Molton (Devon) (b) York (Yorkshire)

Note: Panel (a) displays the surroundings of South Molton in Devon, a typical example of Ordnance Survey drawings (2 inches to
the mile, 1804). Panel (b) displays the surroundings of York in Yorkshire, a typical example of county maps (4/5-inches to the mile,
1828). While built-up tends to be indicated with red in Ordnance Survey drawings, it is typically represented as dark rectangles and
gray blocks in county maps. See Appendix A.1 for a description of these maps.

illustrations in Figure 5 centered around South Molton (Devon, Ordnance Survey draw-

ing) and York (Yorkshire, county map). Identifying objects of interest on these maps is

challenging (see, e.g., Combes et al., 2022, for a discussion of map digitization through

machine learning). In what follows, we briefly describe our approach to identifying built-

up areas, and we leave details to Appendix A.1.

To identify built-up areas, we use a U-Net—a neural network commonly used to de-

tect objects of interest within images. We train the model by manually labeling built-up

areas across the different map tiles and drawings, and validate it through the use of a vali-

dation sample. Due to the very large sample of labeled buildings and their heterogeneity,

overfitting is a second-order concern; we however apply various transformations (i.e.,

flipping, zooms, rotations) to each training batch, which allows us to impose invariance

properties to these transformations. Our procedure leads to a good classification of built-

up areas (our main object of interest), with a precision of about 0.96.

At that time, however, isolated built-up areas and small settlements are a frequent

occurrence. The settlements that would later consolidate into towns and grow into cities

are large, dense or spread across contiguous hamlets. To identify future cities, we develop

a procedure to select urban settlements as sufficiently large clusters of built-up areas.

Figure 6 illustrates our approach with the city of Blackburn. We first detect built-

up areas on the raw map with the previous algorithm (panel a). We then follow the

procedure developed in De Bellefon et al. (2021) to identify a nucleus of high density and

contiguous areas of excess building density. We illustrate the outcome of this procedure

their display of built-up areas; they also use different symbols and colors within collections.
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Figure 6. Clustering procedure.

(a) Detecting built-up areas (b) Clusters and city boundaries (c) Predicted sprawl

Notes: The underlying map is the county map of Lancashire drawn by G. Hennet. The blue rectangles are built-up areas detected by
our algorithm; the blue area in panel (b) is the outcome of our clustering algorithm adapting De Bellefon et al. (2021). In panel (c),
the lighter blue area is predicted urban sprawl based on average urban sprawl across all towns. While these areas can overlap, at
least in principle, we record no such overlaps for our baseline sample of 435 cities.

in panel (b) of Figure 6.13 We then construct predicted boundaries for these cities at

the end of the nineteenth century by assuming that towns and cities all grow at the

same proportional rate across the country and do so homogeneously in any direction

(panel c). In practice, towns and cities all expand to some degree, but this expansion is

not homogeneous across all directions and not homogenous across cities. We discuss

in Section 2.2 how we predict the extent of such expansion, and therefore cities’ late-

nineteenth century population, with land ownership fragmentation.

2.2 Predicting population and industrial concentration

Late-nineteenth century population and industrial concentration are primarily explained

by geography, and the pre-expansion distribution of location advantages.

The heterogeneous rise of Great British cities Our procedure to detect urban set-

tlements around 1790–1820 identifies more than 800 clusters and their initial boundaries.

Throughout the paper, we consider a sample of settlements excluding those with an agri-

cultural share of employment in the top quartile (above 60%) and a population below

3,000 inhabitants in 1817.14 We are left with 435 potential cities, 7 of those being isolated

13An alternative procedure is described in Arribas-Bel et al. (2021).
14We provide robustness checks showing that this selection does not affect our headline estimates for

the long-run impact of industrial concentration. Note that boundaries of urban settlements change during
the period, and they do so endogenously. To strike a balance between comparing employment numbers
within similar areas across time and dealing with endogenous urban sprawl, we associate employment
within each 2-digit industry in 1817 and in 1851–1911 (and in 1971–2020) to a city 𝑐 by intersecting the
predicted boundaries around 1880–1900 with parish boundaries, allocating employment using the area
share of the intersection. Predicted boundaries are calculated by assuming a homogenous, proportional
growth of all urban areas in every direction between 1817–1881. In summary, we construct all our em-
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in their ceremonial county. By the end of the nineteenth century in Britain, as urbaniza-

tion slows, some of these cities are specialized in a few industries while others are more

diverse. This process is disciplined by geography, trade and the distribution of location

advantages. We now provide a few descriptive statistics illustrating the heterogeneous

rise of Great British cities.15

Table 1. The role of initial industries and geography.

Adjusted R-squared Herfindahl index (1881) Employment (1881)

Initial industrial mix (1817) 0.782 0.453

+ Geography 0.838 0.724

Observations 435 435
Notes: The Herfindahl index (1881) is constructed from industrial employment shares (𝑠81𝑖𝑐 for city 𝑐 and industry 𝑖) in 1881 as
∑𝑗 (𝑠81𝑗𝑐 )

2
. Employment (1881) is the (log) employment growth between 1817 and 1881, ln (𝐿81𝑐 ) − ln (𝐿17𝑐 ). Initial industrial mix

(1817) includes: dummies corresponding to deciles of employment in 1817, deciles of industrial concentration in 1817, and deciles of
agricultural employment share in 1817; (log) population density in 1821; and the industry-based shift-shares, 𝑔𝑐 and 𝜒𝑐 , later described
in this Section 2.2. Geography includes: (log) area of the initial city outline; minimum, maximum, and average elevation; slope, bulk
density, latitude; travel time to the closest city, to the closest market town, to each major port (London, Liverpool, Plymouth), and
to coal; density of roads (1830), train lines (1851), and waterways; share of arable agriculture; suitability to grow wheat, oat, grass,
and rye; share of heavy soil (NSRI); built-up density (within the contours of the settlement around 1800 and within 1, 2, 3, 5, 10
kms); and the predicted land ownership fragmentation within the contours of the settlement around 1800 and within a 10-kilometer
buffer. Note that the Adjusted R-squared with only geographic variables are respectively 0.700 (Herfindahl index, 1881) and 0.654
(Employment, 1881).

To quantify the respective role of initial industrial mix and geography in predict-

ing urban dynamics across urban settlements, we conduct a simple variance decomposi-

tion exercise explaining industrial concentration in 1881—constructed from employment

shares in 1881, 𝑠81𝑖𝑐 , in city 𝑐 and 2-digit industry 𝑖, as ∑𝑗 (𝑠81𝑗𝑐 )
2
—and employment growth

between 1817 and 1881. We first control for initial industries; we then add a large set of

geographic indicators (topography, market access, transportation, agricultural potential,

built-up density at the city fringe). Table 1 shows that initial industries are important in

explaining the heterogeneous rise of Great British cities. However, they are much more

important in explaining industrial concentration than growth: the set of “initial indus-

tries” variables explains 78% of the variation in industrial concentration across cities in

1881. By contrast, the same set of variables only explains 45% of the variation in growth

across cities. The crucial factor to explain urban growth throughout the nineteenth cen-

tury is geography: adding geographic factors to the previous regressions raises the ad-

ployment/population variables within predicted expanded cities as of the end of the nineteenth century.
15In Appendix A.3, we illustrate the role of initial industries in shaping the industrial structure of cities,

and we discuss two empirical regularities of urban development: the Gibrat’s law, and the Zipf law.
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justed R-squared from 0.45 to 0.72. There are two types of geographic factors which

predict urban development: (i) market access and connectivity; and (ii) topography and

factors which influence land supply at the fringe of existing urban settlements, e.g., local

agricultural conditions.16

In summary, the nineteenth century sees the rise of different cities. Our previous evi-

dence hints at pre-expansion comparative advantages as a strong predictor for industrial

concentration while urban growth is partly driven by geography.

An exogenous predictor for industrial concentration To predict industrial con-

centration in city 𝑐, ∑𝑗 (𝑠81𝑗𝑐 )
2
, we combine city-specific employment shares across 2-digit

sectors 𝑖 ∈ {1,… , 𝐼 } in 1817, 𝑠17𝑖𝑐 , with aggregate sectoral employment growth between

1817–1881 across 2-digit sectors 𝑖, 𝑔𝑖 > 0, into a predicted Herfindahl index of industrial

concentration:

𝜒𝑐 =
∑𝑗 (𝜎81

𝑗𝑐 )
2

(∑𝑗 𝜎81
𝑗𝑐 )

2

where 𝜎81
𝑖𝑐 = 𝑠17𝑖𝑐 ⋅ 𝑔𝑖. This prediction, relying on the initial nature of cottage indus-

tries and the differential expansion of 2-digit sectors, constitutes the first building block

of our empirical approach. We construct a more standard, linear shift-share predictor,

𝑔𝑐 = ∑𝑗 𝜎81
𝑗𝑐 = ∑𝑗 𝑠17𝑗𝑐 𝑔𝑗 , based on aggregate shifts and the initial composition of employ-

ment within the predicted urban area, which will be used as a control in our empirical

specification. Our exogenous prediction for city size will indeed rely on local geography.

Following the recent advances in identification and inference in shift-share designs,

we also consider a “purer” shift-share instrument for industrial concentration. First, we

consider 𝜒𝑐 = ∑𝑗 (𝑠17𝑗𝑐 𝑔𝑖)
2
/∑𝑗 (𝑠17𝑗𝑐 )

2
, thus verifying the property that city-specific shares{

(𝑠17𝑖𝑐 )
2
/∑𝑗 (𝑠17𝑗𝑐 )

2
}

𝑖
sum up to 1 (Adão et al., 2019; Borusyak et al., 2022). Identification

then requires the shifts—functions of 2-digit sectoral growth at the national level—to be

sufficiently numerous and quasi-random. Second, we also consider a leave-out approach,

excluding a buffer of 10 kilometers around the city, to construct shifts that are only

related to aggregate demand, rather than local supply factors.

An exogenous predictor for city size based on land fragmentation We now de-

scribe how we construct a predictor 𝜁𝑐 for the population of city 𝑐 that is exogenous to

later city dynamics. The idea is to identify land fragmentation as induced by local gradi-

ents in soil conditions, around the historical boundaries of an urban settlement (before

the time of rapid industrialization).

16The role of agricultural hinterlands in fueling urban growth has been discussed in Matsuyama (1992),
Coeurdacier et al. (2022), Heblich et al. (2024) and Nagy (2023). Our instrument will rely on another
theoretical mechanism, the land assembly problem, and we will control for local agricultural productivity.
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Land ownership fragmentation across different parts of England and Wales was not

only instrumental to the development of agriculture, as illustrated by the effect of enclo-

sures (Heldring et al., 2022), but it was also crucial in disciplining city growth during the

era of rapid industrialization. Indeed, when land markets are not perfectly competitive

and land parcels and their rights of use cannot be split arbitrarily, developing land at the

fringe of cities may be a challenge. For instance, a textile mill requires a large parcel of

flat land to construct a factory, but also possible access to water sources. When a suitable

location spans multiple land parcels, the possible buyer needs to engage in multilateral

bargaining in which the value of the marginal parcel increases as the buyer acquires the

rights to use other parcels. The number of different parties then matters. This issue is

a “standard” hold-up problem, which has been labeled as the land assembly problem in

this specific context (see, e.g., Eckart, 1985; Strange, 1995). The consequences for city

growth are straightforward: high land fragmentation at the fringe of the city makes ne-

gotiations to develop the land for urban use costly. As a result, cities with fragmented

ownership in their immediate fringe have a less elastic land supply in the short run and

may be worse at responding to sudden bursts in land demand. The rapid industrializa-

tion induced by technological progress and subsequent surge in external trade in the

mid-nineteenth century, as evidenced in Section 1, is one such shock.

A major issue with land ownership fragmentation in the immediate fringe of cities is

that it may be influenced by future city dynamics. The relationship between land own-

ership fragmentation and city growth may be “contaminated” by omitted variation—the

relative productivity of land between urban and rural use inducing different ownership

structure—but also reverse causality—land owners being more or less willing to own

large plots around cities most likely to expand.17 For these reasons, we would like to

consider a measure of fragmentation with the following characteristics: (i) the measure,

as evaluated within a neighborhood of city boundaries at the beginning of the nineteenth

century, should predict city growth in the subsequent decades; (ii) the measure should

not directly affect the later evolution of cities during the twentieth century, when con-

ditioned on the right control variables (e.g., the elasticity of land supply in later periods,

once cities have expanded and are subject to another topography at their borders).

We construct a plausibly exogenous measure of land fragmentation by exploiting

fine-grained terrain characteristics including elevation, ruggedness, time-invariant soil

attributes, and water bodies. We leave the details of the procedure to Appendix A.2 and

only summarize its main steps below. First, we combine these different dimensions of

characteristics into a multi-band raster covering England and Wales at a resolution of

17A recent contribution discusses the role of enclosure acts on crop yields and land inequality (Heldring
et al., 2022). Our source of variation to explain land fragmentation will be, in essence, orthogonal to the
one used in their analysis. However, we do control for the specific role of enclosures in a robustness check.
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30m (elevation, slope, bulk, soil classes, zones delineated by waterways). Second, we use

an unsupervised segmentation algorithm which isolates homogeneous (and contiguous)

“color zones” or superpixels. In the present application, the raster contains more than

three bands, but the principle is the same as color segmentation: the algorithm maxi-

mizes a weighted sum of target distances within constituted superpixels, with a weight

allocated to physical distance relative to the “value distance.” A superpixel with similar

values is, here, a patch of land with homogeneous topography and soil characteristics: a

typical agricultural parcel, e.g., as delineated by enclosures in some parts of England and

Wales. Third, we compute the density of predicted farms (or superpixels) in the fringe of

cities by drawing buffers of fixed (e.g., 1, 2, 3, 5, 10 kms) and relative widths (e.g., propor-

tional to the initial area and calibrated on the average city growth over the period, used

for our baseline measure 𝜁𝑐) around city boundaries at the onset of rapid industrializa-

tion. One can think of the narrow, relative rings as predicting the propensity for cities

to grow over the nineteenth century and of the wider rings as controlling for later land

supply elasticities. The quantitative model developed in Section 4 will allow for cities to

face varying land supply elasticities over time, in part to capture the previous intuition.

Figure 7. Validation of the predicted measure of land fragmentation.

(a) Density (b) Land concentration

Notes: The left panel displays the measure of predicted fragmentation computed at the parish level, 𝜁𝑝 , versus actual farm density
as collected from micro-census records in 1851 across 11,500 parishes of England and Wales. We create about 20 bins of density and
the dots represent the average actual farm density within each bin. The lines are locally weighted regressions on all observations.
Note that the conditional correlation between the two measures is 0.25 (once conditioned on the separate topographic and soil
characteristics). The right panel repeats the same exercise with the predicted and actual Herfindahl concentrations of farm ownership
based on reported acres across parishes of England and Wales.

The predicted measure of land fragmentation, 𝜁𝑐, should be correlated with the actual

fragmentation of land ownership. We validate the predicted measure of land fragmenta-

tion by comparing it with actual farm density and farm concentration as collected from
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micro-census records in 1851 across all parishes of England and Wales (see Figure 7.18

3 Empirical facts

In this section, we derive motivating facts about the long-run dynamics of cities.

3.1 Empirical strategy

A general formulation for Jacobs externalities A traditional explanation for the

interconnected dynamics of industries and cities is based on the nature of comparative

advantages. Consider an industry 𝑖 in city 𝑐 at time 𝑡, and let 𝑖𝑐𝑡 denote its total factor

productivity. Ignoring local externalities and assuming a constant location advantage

𝑖𝑐, (revenue-based) total factor productivity can be written as,

𝑖𝑐𝑡 = 𝑖𝑐 ⋅ 𝑖𝑡 ,

where 𝑖𝑡 captures macroeconomic factors of demand (and technological change) affect-

ing the dynamics of industries within the country. Under this formulation, the dynamics

of cities, as disciplined by their portfolio of productivity across industries
{
𝑗𝑐

}
𝑗∈𝐼 , re-

flects the dynamics of industries in which they have a comparative advantage. We will

modify the previous framework by introducing static and long-run externalities,

𝑖𝑐𝑡 = 𝑖𝑐 ⋅ 𝑖𝑡 ⋅ 𝑓𝑖 (
{
𝐿𝑗𝑐,𝑡

}
𝑗∈𝐼) ⋅ 𝑔𝑖 (

{
𝐿𝑗𝑐,𝑡−1

}
𝑗∈𝐼) ,

where the function 𝑓𝑖 capture static spillovers and 𝑔𝑖 map the local industrial structure

in 𝑡 − 1 to the distribution of productivity in period 𝑡. In practice, the data will not allow

us to keep such level of generality, and we will consider externalities of the form,

𝑓 (
{
𝐿𝑗𝑐1

}
𝑗∈𝐼) = 𝐿𝜇𝑖𝑐1, 𝑔 (

{
𝐿𝑗𝑐0

}
𝑗∈𝐼) = 𝐿𝜌𝑐0 ⋅ [

∑
𝑗∈𝐼

(
𝐿𝑗𝑐0
𝐿𝑐0 )

2

]

−𝜄

,

where: period 0 will be the year 1881 and period 1 will be contemporaneous outcomes;

𝐿𝜇𝑖𝑐1 will capture static Marshall-Arrow-Romer externalities operating within industries;

and 𝐿𝜌𝑐0 will be long-run agglomeration spillovers while the term between brackets will

measure the impact of long-run Jacobs externalities.

18This exercise shows that our measure of land fragmentation does predict land ownership fragmenta-
tion; however, it does not rule out that the measure is related to city dynamics before industrialization. We
further validate the land fragmentation measure by comparing urban settlements with different degrees
of land fragmentation in their “external crusts,” as calculated at the onset of the nineteenth century (1817),
in Appendix A.3. We do not find evidence that settlements with different degrees of land fragmentation
were different in their population and industrial concentration before the era of rapid industrialization.
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Identification The estimation of the previous relationship presents challenges, e.g.,

because of omitted variation correlated with long-run productivity and the historical

portfolio of industries. Our main empirical strategy will be to consider the following

empirical (log) equivalent,

ln (𝑖𝑐1) = 𝜇𝑙𝑖𝑐1 + 𝜌𝑙𝑐 − 𝜄ℎ𝑐 + 𝜂𝑖 + 𝛾𝐗𝑐 + 𝜀𝑖𝑐1, (1)

where: measures of population (𝑙𝑐) and industrial concentration (ℎ𝑐) in period 0 are in-

strumented by our geological predictor of city size (𝜁𝑐) and historical determinants of

industries before the swift changes in aggregate demand (𝜒𝑐); 𝜂𝑖 = ln(𝑖1) captures in-

dustry trends; and our approach to properly isolating the fundamentals of city 𝑐, ln𝑖𝑐,

will consist in conditioning the specification on a rich set of controls capturing first-

nature geography, second geography, and the baseline industrial composition in 1817.

Identification of the long-run parameters (𝜌, 𝜄) relies on the assumptions that (𝜁𝑐, 𝜒𝑐)
predict population and industrial concentration, and that they do not have a direct effect

on later productivity. The latter requires conditioning specification (1) on: granular con-

trols for initial industries in 1817 to ensure that the variation induced by the predictor

for industrial concentration (𝜒𝑐) comes from the shifts, i.e., the differential dynamics of

sectors during the time of rapid industrialization and market expansion; and land supply

factors relevant to cities after 1881.

In practice, we will estimate Equation (1) in its “most structural form” in the quanti-

tative exercise of Section 5, and consider different variations of the previous equation in

this section. One reason is that a few illustrative outcomes will be at the city level, thus

changing our approach to controlling for industry-specific factors.

Measurement and sensitivity to alternative choices The previous estimation of

externalities relies on a few choices, e.g., related to the spatial extent of such spillovers,

to treatment heterogeneity and to the (log) linear nature of the estimated relationship

(Combes and Gobillon, 2015).19 In the baseline specification(s), we will assume a (log)

linear relationship, that the spillovers are homogenous, and that they exclusively operate

within cities (motivated by the localized nature of Jacobs externalities, see, e.g., Carlino

and Kerr, 2015)—assumptions that we will relax in a sensitivity analysis.

The literature also discusses measurement issues: (i) how to construct an industrial

concentration or diversity index; and (ii) which outcomes to consider. Our baseline mea-

19The empirics of agglomeration externalities usually distinguishes static and dynamic externalities.
Our approach differs from that of the literature in that we consider long-run externalities, thus relating
industrial structure at the end of the nineteenth century to contemporary outcomes—only relying on
earlier measures for identification purposes.
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sure is a Herfindahl industrial concentration index constructed from the shares of local

employment within industries; we will consider alternative measures and associated in-

struments in robustness checks, e.g., measures of local distance to the national industrial

portfolio. Regarding the latter issue, our approach will rely on (i) city-level proxies for

economic development including wages, (ii) an empirical measure of total factor pro-

ductivity at the firm level, and (iii) a model-inferred measure of total factor productivity

at the city/industry level (relying on the structure of the model and the distribution of

employment and wages across cities and industries).

3.2 Motivating facts

The (exogenous) rise of different cities To establish a causal link between popula-

tion, industrial concentration and the subsequent dynamics of cities, we need to isolate

exogenous variation among the numerous factors shaping their transformation during

the nineteenth century. Our empirical strategy relies on a specification with two instru-

ments: land ownership fragmentation at the fringe of urban settlements (𝜁𝑐), intuitively

predicting (log) population when the structure of cities stabilizes; and our “shift-share”

Herfindahl index (𝜒𝑐), predicting industrial concentration.

We report the main estimates of the first stage in Table 2. First, predicted industrial

concentration does induce more industrial concentration in 1881. The pass-through be-

tween the predicted Herfindahl index (𝜒𝑐) and the actual one (ℎ𝑐) is around 0.51, i.e., a

0.10 higher predicted Herfindahl index translates into a 0.051 higher Herfindahl index in

1881. Second, we find that predicted land fragmentation impacts the capacity of cities

to grow during the era of industrialization, and hence their population in the late nine-

teenth century. We find that one standard deviation in land fragmentation (about 0.5)

decreases employment by about 6% (0.5 × 0.12). Importantly, the instrument for urban

growth does not predict industrial concentration in any significant way, conditional on

our set of controls: we need some (conditional) orthogonality between the two sources

of variation, given that our objective is to untangle as much as possible an effect passing

through industrial concentration from an effect of city size. In that spirit, we will report

the conditional F-statistics following Sanderson and Windmeijer (2016), and condition-

ing on the other endogenous variable(s).

Industrial concentration causes long-run decline The concentration of industries

appears to be detrimental in the longer run. Figure 8 shows how industrial concentra-

tion in 1881 correlates with a measure of urban deprivation in the longer run, i.e., the

share of low-skilled workers in 1971 (derived following Heblich et al., 2021, see panel a),

before the swift decline in manufacturing employment. Panel (b) shows how industrial
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Table 2. Predicting late-nineteenth century industrial concentration and population.

Herfindahl index (1881) Employment (1881)
(1) (2)

Predicted Herfindahl index (𝜒𝑐) 0.512 -1.910
(0.059) (0.587)
[0.390] [-0.221]

Land fragmentation (𝜁𝑐) -0.004 -0.122
(0.004) (0.035)
[-0.019] [-0.090]

Observations 428 428
Notes: A unit of observation is a cluster of settlements around 1790-1820—identified following our clustering procedure described in
Section 2.2. Standard errors are reported between parentheses and are clustered at the level of the closest city as of 2015 (there are
55 cities with a formal city status in England). Standardized effects are reported in square brackets. The dependent variables are the
Herfindahl index of industrial concentration in 1881 (ℎ𝑐 , column 1) and (log) employment in 1881 (𝑙𝑐 , column 2). The set of baseline
controls include: dummies corresponding to deciles of employment in 1817, deciles of industrial concentration in 1817, and deciles of
agricultural employment share in 1817; (log) population density in 1821; the industry-based shift-share, 𝑔𝑐 , described in Section 2.2;
(log) area of the initial city outline; minimum, maximum and average elevation; slope, bulk density, and latitude; travel time to the
closest city, to the closest market town, to each major port (London, Liverpool, Plymouth), to coal; density of roads (1830), train lines
(1851), and waterways; share of arable agriculture (Tithe survey); suitability to grow wheat, oat, grass, and rye; share of heavy soil
(NSRI); built-up density (within the contours of the settlement around 1800 and within 1, 2, 3, 5, 10 kms); and the predicted land
ownership fragmentation within the contours of the settlement around 1800 and within a 10-kilometer buffer. The specification also
adds fixed-effects at the level of 39 ceremonial counties and a shift-share control based on employment shares in 1881 and aggregate
employment growth between 1881–1971. The two instruments are the “shift-share” predictor of industrial concentration (𝜒𝑐) defined
in Section 2.2 and the land ownership fragmentation in the immediate fringe of urban settlements, 𝜁𝑐 .

Figure 8. Industrial concentration appears to be detrimental in the longer run.

(a) Unskilled employment (1971) (b) Wage (2020)

Notes: Panel (a) displays the relationship between industrial concentration in 1881 and the share of unskilled workers in 1971 (fol-
lowing the definition used in Heblich et al., 2021) across our 435 cities; both measures are cleaned for all controls used in Table 2. The
dots represent the average residualized share of unskilled workers in 1971 within each of 20 bins grouping residualized Herfindahl
index across cities, and the line is a locally weighted regression on all observations. Panel (b) displays the relationship between
residualized industrial concentration in 1881 and residualized (log) wage in 2020.
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concentration in 1881 correlates with a more recent measure of wage—labor income es-

timates for small areas based on the Family Resources Survey in 2020. The estimated

gradients imply that less specialized cities in 1881, with a Herfindahl index around 0.05,

would have about 2 percentage points fewer unskilled workers in 1971 and 5% higher

wages, compared to specialized cities with an index of 0.10.

Table 3. The long-run effect of industrial concentration and city population.

Unskilled employment (1971) Wage (2020)
(1) (2)

Herfindahl index (1881, ℎ𝑐) 0.369 -2.656
(0.148) (0.888)

Employment (1881, 𝑙𝑐) 0.038 -0.307
(0.030) (0.177)

Observations 428 428
F-stat (ℎ𝑐) 15.30 15.30
F-stat (𝑙𝑐) 14.94 14.94
Notes: A unit of observation is a cluster of settlements around 1790-1820—identified following our clustering procedure described
in Section 2.2. Standard errors are reported between parentheses and are clustered at the level of the closest city as of 2015 (there
are 55 cities with a formal city status in England). In column (1), the dependent variable is the share of unskilled workers in 1971
(following the definition used in Heblich et al., 2021); in column (2), the dependent variable is a measure of (log) wages in 2020. The
main endogenous variables are the Herfindahl index of industrial concentration in 1881 (ℎ𝑐) and (log) employment in 1881 (𝑙𝑐). The
set of baseline controls is the same as in Table 2. Note that we control for a shift-share control based on employment shares in 1881
and aggregate employment growth between 1881–1971, to clean for sector-specific trends. The two instruments are the “shift-share”
predictor of industrial concentration (𝜒𝑐) defined in Section 2.2 and the land ownership fragmentation in the immediate fringe of
urban settlements, 𝜁𝑐 . F-statistics are derived using the weak instrument F-test proposed in Sanderson and Windmeijer (2016).

We now use the exogenous variation in economic structure at the end of the nine-

teenth century to provide causal evidence on how patterns of urban development influ-

ence long-run city dynamics. We first shed light on the long-run dynamics of cities by re-

gressing contemporary outcomes in city 𝑐, 𝑦1
𝑐 , on urban development in 1881, 𝐱0𝑐 = (ℎ𝑐, 𝑙𝑐),

𝑦1
𝑐 = 𝛼 + 𝛽𝐱0𝑐 + 𝛾𝐗𝑐 + 𝜀𝑐,

while instrumenting 𝐱0𝑐 with our exogenous predictors 𝐩𝑐 = (𝜒𝑐, 𝜁𝑐) and conditioning on

a large set of covariates 𝐗𝑐. This specification differs from specification (1) and its later

structural estimation in two main dimensions. First, and for the sake of interpretation,

we consider a linear specification in industrial concentration, with ℎ𝑐 = ∑𝑗∈𝐼 (
𝐿𝑗𝑐0
𝐿𝑐0 )

2
.

Second, the equation is specified at the city level, implying that we cannot properly

control for static Marshall-Arrow-Romer externalities and for industry fixed effects—a

caveat that we will address in firm- or industry-level specifications. The effect of in-

dustrial concentration on long-run city performance might indeed reflect two distinct
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forces: nationwide industry decline might hurt cities specialized in the declining indus-

tries; and industrial concentration might have a direct effect on future city productivity,

à la Jacobs (1969). We aim at cleaning our estimates from the former effect by controlling

for aggregate industry trends from 1881 to the recent period in a shift-share design.

Table 3 shows that industrial concentration is detrimental in the long run: cities with

a 0.10 higher Herfindahl index in 1881 have a 0.037 higher share of unskilled workers in

1971—about 80% of a standard deviation (column 1), and wages are 26.5% lower in 2020

(column 2). City size has some predictive power, but its effect is one order of magnitude

smaller and not statistically significant: a 20% larger city in 1881 has a 0.008 higher share

of unskilled workers in 1971 and 6% lower wages in 2020.

Table 4. The long-run effect of industrial concentration and city population—firm-level data.

Turnover (ABS) (1) (2)

Herfindahl index (1881, ℎ𝑐) -3.378 -2.376
(1.716) (1.176)

Employment (1881, 𝑙𝑐) -0.311 -0.213
(0.043) (0.029)

Observations 2,192,591 2,192,591
Local industrial share No Yes
Notes: A unit of observation is a firm/year in the Annual Business Survey (ABS). Standard errors are reported between parentheses
and are clustered at the NUTS-3 level. The dependent variable is (log) annual sales/turnover. The main endogenous variables are the
Herfindahl index of industrial concentration in 1881 (ℎ𝑐) and (log) employment in 1881 (𝑙𝑐). The two instruments are the “shift-share”
predictor of industrial concentration (𝜒𝑐) and the land ownership fragmentation in the immediate fringe of urban settlements, 𝜁𝑐 .
The baseline controls are the same as in Table 3. In columns (1) and (2), we control for year fixed effects, and (log) production factors
(material, employment, capital). In column (2), we control for SIC-4 fixed effects and the local share of turnover/employment in the
firm industry.

In Table 4, we exploit firm-level data between 2008–2018, nest all our geographic

variables at the NUTS-3 level (local administrative units), and replicate our previous em-

pirical strategy in a stacked regression setting with (log) sales as the dependent variable

while controlling for year fixed effects, production factors, 4-digit industry fixed effects

(𝜂𝑖, see column 2), and the local share of turnover/employment in the firm industry (to

account for Marshall-Arrow-Romer externalities, see column 2). The estimate of interest

can thus be interpreted as an effect on “real” total factor productivity, orthogonal to the

firm industry. We find that cities with a 0.10 higher Herfindahl index in 1881 are 24%

less productive, when a 20% larger city in 1881 is 4% less productive.

Our empirical identification of long-run externalities relies on strong assumptions

about their “extent” across space and across industries. First, in our baseline strategy,
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we ignore the importance of linkage intensity across different sectors. For instance, a

few sectors might be intrinsically much more connected to other sectors, which could

alleviate the long-run impact of industrial concentration. Second, we limit the spatial

extent of externalities to cities and ignore the industrial structure of nearby cities in the

estimation of such externalities. The main reasons for doing so are the limits imposed

by our causal identification strategy: causally estimating spillovers across industries or

across cities is challenging. We however shed some light on these issues next.

Robustness checks Industrial concentration is a key driver of the long run under-

performance of British cities. We now provide a series of robustness checks to support

this empirical finding. This section summarizes a lengthier discussion in Appendix A.4.

First, we provide a series of robustness checks to support our identification hypoth-

esis. Our identification narrative is that land fragmentation affects urban development

through land supply at the fringe of early urban settlements; this narrative rules out the

existence of competing mechanisms arising, e.g., from agricultural productivity (Coeur-

dacier et al., 2022), agricultural mechanization at the fringe of cities (Caprettini and Voth,

2020) or from the emergence of different informal institutions in places with different

structure of land ownership (Heldring et al., 2022). To alleviate concerns about these

competing channels, we control in our baseline specification for: the marginal land sup-

ply from the end of the nineteenth century onward; the share of arable in local pro-

duction (which defines the exposure to the Grain Invasion; see Heblich et al., 2024); the

potential yield of the most common crops; and access to resources (to reduce concerns

that energy is the main factor explaining the rise and then fall of Great British cities).20 In

Appendix A.4, we further control for agricultural productivity, land market prices before

1817, and parliamentary enclosures.

Our argument is that the industrial concentration effect operates through intertem-

poral externalities à la Jacobs. In Appendix A.4, we show that our findings are orthogonal

to the secular process of structural transformation and the reallocation of labor across

wider sectors (e.g., between agriculture and manufacturing, or towards services), we test

that the results are not driven by any of the nineteenth-century 2-digit industries, and

we adopt a specification accounting for linkages across sectors (measured using occupa-

tional transitions for employed males in the micro-censuses of 1851 and 1861). We also

provide support for our shift-share design by: considering an exogenous predictor for

industrial concentration based on a “pure” shift-share formula; constructing an instru-

ment by omitting the city and its surrounding from the derivation of the “shifts”; and

20In unreported checks, we further show that the vast majority of cities grow out of this narrow ring
by the end of the nineteenth century, and that there are no differential zoning policies at the fringe of
cities—depending on their initial land fragmentation (e.g., green belts, or social housing policies).
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adopting other specifications considered in the literature (e.g., using the logarithms of

the Herfindahl index of industrial concentration or its inverse as discussed in Combes

and Gobillon, 2015, or controlling for the number of active industries).

Second, we quantify the spatial extent of Jacobs externalities in a specification with

three endogenous variables—population, local industrial concentration and nearby in-

dustrial concentration—where nearby industrial concentration and its instrument incor-

porate nearby settlements within 10, 20, and 40 kilometers. We find support for our

baseline strategy, which ignores the industrial structure of nearby cities in estimating

dynamic externalities: spatial spillovers appear limited beyond 10 kilometers.

Third, the previous evidence ignores treatment heterogeneity. In Appendix A.4, we

document: the interacted effect of industrial concentration and size; treatment hetero-

geneity in the incidence of services, manufacturing, transportation—cities that are highly

service-intensive are slightly less prone to a specialization curse; and treatment hetero-

geneity in the “potential” of the historical industry portfolio (evaluated through the more

recent dynamics of industries). Treatment heterogeneity is limited.

Fourth, we conduct a sensitivity analysis around the baseline specification(s): with a

different specification for the land fragmentation instrument (with a fixed buffer, drop-

ping bulk density from the algorithm delineating parcels, using SLIC rather than Quick-

shift to segment space into potential agricultural parcels); with different inference to

account for spatial correlation; with different cut-offs to define urban settlements; and

with outcomes computed at other dates.

These robustness checks leave our headline empirical finding—the detrimental long-

run effect of industrial concentration—unchanged. The stylized facts presented in this

section provide evidence about the joint dynamics of urbanization and industrial diver-

sity in cities, showing that the fate of cities is tightly related to that of their industrial

structure. The next section provides a more structural approach, by developing a quan-

titative model of cities and their industries over time which captures both the spatial

linkages across cities and their industries in a given period, as well as possible intertem-

poral externalities.

4 A multi-sector dynamic spatial model

In this section, we develop a spatial, multi-sector, dynamic model of cities.

4.1 Setup

The model involves a finite number of cities, 𝑐 ∈ {1,… , 𝐶}, and industries, 𝑖 ∈ {1,… , 𝐼 }.
Time is discrete and is indexed by 𝑡. Within each industry, every city produces its own
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variety that consumers view as different from varieties produced in other cities. There is

an exogenous number of workers in the economy, 𝐿. Each worker lives for one period,

is endowed with one unit of labor, and maximizes her utility from the consumption of

varieties.21 The worker decides which industry to work for and which city to live in.

In what follows, we describe the four main building blocks of the model: workers’

preferences, the production technology, the equilibrium within a time period 𝑡, and the

dynamic process that links subsequent periods to each other.

Preferences If a worker 𝑚 who lives at time 𝑡 decides to work in industry 𝑖 and to

reside in city 𝑐, she chooses her consumption levels to maximize her utility,

𝑈𝑚
𝑖𝑐𝑡 = max

{𝑞𝑚𝑗𝑑𝑡 }𝑗

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑎𝑚𝑐𝑡
⎡
⎢
⎢
⎣

𝐼

∑
𝑗=1 (

𝐶

∑
𝑑=1

(𝑞𝑚𝑗𝑑𝑡)
𝜖−1
𝜖

)

𝜖
𝜖−1

𝜎−1
𝜎 ⎤
⎥
⎥
⎦

𝜎
𝜎−1
⎫⎪⎪⎪
⎬⎪⎪⎪⎭

, (2)

subject to the budget constraint,

𝐼

∑
𝑗=1

𝐶

∑
𝑑=1

𝑝𝑗𝑑𝑡𝑞𝑚𝑗𝑑𝑡 ≤ 𝑤𝑖𝑐𝑡 + 𝑅𝑐𝑡 , (3)

where 𝑎𝑚𝑐𝑡 denotes the level of amenities enjoyed by the worker in city 𝑐, while the rest of

the worker’s utility is drawn from her consumption of varieties. More precisely, 𝑞𝑚𝑗𝑑𝑡 de-

notes the worker’s consumption of the city-𝑑 variety in industry 𝑗 , 𝑝𝑗𝑑𝑡 denotes the price

of this variety, 𝑤𝑖𝑐𝑡 is the wage that prevails in the city-industry, and 𝑅𝑐𝑡 is the worker’s

share of land rents. When choosing her city, industry and consumption, the worker takes

amenities, prices and wages as given. We assume that varieties are substitutes, and they

are more substitutable within than across industries, implying 1 < 𝜎 < 𝜖.

Amenities are a combination of three factors,

𝑎𝑚𝑐𝑡 = 𝑎𝑐𝐿−𝜆𝑐𝑡 𝜀
𝑚
𝑐𝑡 , (4)

where: 𝑎𝑐 is the fundamental amenity level of city 𝑐, stemming from natural charac-

teristics such as climate; 𝐿−𝜆𝑐𝑡 is a congestion externality that makes cities with a larger

population 𝐿𝑐𝑡 less pleasant places to live; and 𝜀𝑚𝑐𝑡 is an idiosyncratic taste shock for city

𝑐 that is drawn from the following Fréchet distribution,

𝑃𝑟 [𝜀𝑚𝑐𝑡 ≤ 𝑧] = 𝑒−𝑧
−1/𝜂

, (5)

21In light of each period corresponding to a century in the quantification, we view this as a realistic
assumption. We present a version of the model with infinitely lived, forward-looking workers in Ap-
pendix B.1.
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and independently so across workers, cities and time periods. If 𝜂 is high, then workers’

utility is influenced to a large extent by their idiosyncratic tastes for cities; they are

likely to settle in a city that they like, rather than in a city that offers them economic

opportunities. The same would be true if workers faced high costs of moving across

cities: 𝜂 can also be interpreted as a parameter driving the severity of mobility frictions

across cities.

Technology Varieties are produced by perfectly competitive firms. The representative

firm produces the city-𝑐 variety in industry 𝑖 at time 𝑡 by combining workers (𝐿𝑖𝑐𝑡) and

land (𝐻𝑖𝑐𝑡) as follows,

𝑌𝑖𝑐𝑡 = Γ𝑖𝑐𝑡𝐿𝛾𝑖𝑐𝑡𝐻
1−𝛾
𝑖𝑐𝑡 , (6)

where 𝑖𝑐𝑡 is the Total Factor Productivity (TFP) of industry 𝑖 in city 𝑐 at time 𝑡. The

constant Γ = 𝛾−𝛾 (1 − 𝛾)−(1−𝛾) is introduced to simplify the subsequent formulas.

Varieties can be traded across cities, but they are subject to iceberg trade costs. We

denote the iceberg trade cost prevailing between cities 𝑐 and 𝑑 in industry 𝑖 at time 𝑡 by

𝜏𝑖𝑐𝑑𝑡 . We assume that trade costs are non-negative, which amounts to 𝜏𝑖𝑐𝑑𝑡 ≥ 1.

Land is supplied in each city according to the supply function,

𝐻𝑐𝑡 = 𝑟 𝜁𝑐𝑡−1𝑐𝑡 , (7)

where 𝑟𝑐𝑡 is the rent and 𝜁𝑐𝑡 −1 is the land supply elasticity. We let the exogenous param-

eter driving this elasticity, 𝜁𝑐𝑡 , vary both across cities and over time in order to mirror the

heterogeneity across cities uncovered in the empirical analysis. It is natural to assume

that 𝜁𝑐𝑡 ≥ 1, i.e., the supply function is never downward-sloping. Land rents are fully

redistributed to workers who live in the city.

Within-period equilibrium Before we turn to presenting the dynamic evolution of

TFP, we set up the equilibrium within a given time period 𝑡 for a given distribution of

TFP in that period. In this within-period equilibrium, we impose that the labor market

clears in each city, the land market clears in each city,

𝐼

∑
𝑗=1

1 − 𝛾
𝛾

𝑤𝑗𝑐𝑡𝐿𝑗𝑐𝑡 = 𝑟𝑐𝑡𝐻𝑐𝑡 , (8)

markets clear for each variety,

(𝑤𝑖𝑐𝑡 + 𝑅𝑐𝑡) 𝐿𝑖𝑐𝑡 =
𝐶

∑
𝑑=1

(
𝑃𝑖𝑑𝑡
𝑃𝑑𝑡 )

1−𝜎

(
𝑝𝑖𝑐𝑡𝜏𝑖𝑐𝑑𝑡
𝑃𝑖𝑑𝑡 )

1−𝜖 𝐼

∑
𝑗=1

(𝑤𝑗𝑑𝑡 + 𝑅𝑑𝑡) 𝐿𝑗𝑑𝑡 , (9)
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where 𝑃𝑖𝑑𝑡 is the price index of industry-𝑖 varieties in city 𝑑,

𝑃𝑖𝑑𝑡 = [

𝐶

∑
𝑐=1

𝑝1−𝜖
𝑖𝑐𝑡 𝜏

1−𝜖
𝑖𝑐𝑑𝑡 ]

1
1−𝜖

, (10)

𝑃𝑑𝑡 is the price index across all goods in city 𝑑,

𝑃𝑑𝑡 = [

𝐼

∑
𝑗=1

𝑃 1−𝜎
𝑗𝑑𝑡 ]

1
1−𝜎

, (11)

and each worker chooses the city and industry that offers them the highest utility.

Dynamic evolution of productivity We now describe how the distribution of pro-

ductivity evolves over time. We allow the productivity of each industry to be influenced

by agglomeration externalities of the form,

𝑖𝑐𝑡 = 𝑇𝑖𝑐𝑡𝐿𝛼𝑐𝑡𝑔𝑖 (𝐿𝑐,𝑡−1,
{
𝐿𝑗𝑐,𝑡−1

}
𝑗∈𝐼) , (12)

where 𝑇𝑖𝑐𝑡 is the exogenous fundamental productivity of industry 𝑖 in city 𝑐 at time 𝑡.
Agglomeration externalities depend on the current population of city 𝑐, as standard in

the literature, past population (as in Allen and Donaldson, 2020), but also (past) sectoral

composition. This process, which links the productivity of city-industries to the spatial

and sectoral distribution of employment in the previous period, is responsible for the dy-

namics of the model and, crucially, underlies the joint evolution of cities and industries.

Equation (12) is a flexible formulation of externalities that generalizes the process

described in the one-sector model of Allen and Donaldson (2020).

4.2 Solving the model

In this section, we propose an algorithm to solve for the equilibrium of the model. This

algorithm relies on reducing the within-period equilibrium conditions to a system of

3 × 𝐼 × 𝐶 equations (as shown in Appendix B.2),

𝑥1
𝑖𝑐𝑡 =

𝐼

∑
𝑗=1

𝐶

∑
𝑑=1

(𝑥2
𝑗𝑑𝑡)

𝛼+𝛾
𝜅𝑑𝑡

𝜖−1
𝜎−1 (𝑥3

𝑗𝑑𝑡)
−(1−

1+𝜆+𝜂
𝜅𝑑𝑡 ) 𝐾 1

𝑖𝑐𝑗𝑑𝑡

𝑥2
𝑖𝑐𝑡 =

𝐼

∑
𝑗=1

𝐶

∑
𝑑=1

(𝑥1
𝑗𝑑𝑡)

𝜎−1
𝜖−1 𝐾 2

𝑖𝑐𝑗𝑑𝑡

𝑥3
𝑖𝑐𝑡 =

𝐼

∑
𝑗=1

𝐶

∑
𝑑=1

(𝑥1
𝑗𝑑𝑡)

− 𝜖−𝜎
𝜖−1 (𝑥2

𝑗𝑑𝑡)
−(1−

𝛼+𝛾
𝜅𝑑𝑡

𝜖−1
𝜎−1) (𝑥3

𝑗𝑑𝑡)
1+𝜆+𝜂
𝜅𝑑𝑡 𝐾 3

𝑖𝑐𝑗𝑑𝑡

(13)
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where

𝜅𝑑𝑡 = 1 + 𝜆 + 𝜂 + [
1 − 𝛾
𝜁𝑑𝑡

− 𝛼 +(𝛾 +
1 − 𝛾
𝜁𝑑𝑡 ) (𝜆 + 𝜂)] (𝜖 − 1) (14)

is a combination of structural parameters, and the 3× 𝐼 ×𝐶 unknowns 𝑥1
𝑖𝑐𝑡 , 𝑥2

𝑖𝑐𝑡 and 𝑥3
𝑖𝑐𝑡 can

be obtained from equilibrium prices, wages and population levels through the following

change in variables:

𝑥1
𝑖𝑐𝑡 = 𝑃 1−𝜖

𝑖𝑐𝑡

𝑥2
𝑖𝑐𝑡 = 𝑤1−𝜎

𝑖𝑐𝑡 𝐿(𝜆+𝜂)(𝜎−1)𝑐𝑡

𝑥3
𝑖𝑐𝑡 = 𝑤

1+(𝛾+
1−𝛾
𝜁𝑐𝑡 )(𝜖−1)

𝑖𝑐𝑡 𝐿
1+(

1−𝛾
𝜁𝑐𝑡

−𝛼)(𝜖−1)
𝑐𝑡

(15)

Finally, 𝐾 1
𝑖𝑐𝑗𝑑𝑡 , 𝐾 2

𝑖𝑐𝑗𝑑𝑡 and 𝐾 3
𝑖𝑐𝑗𝑑𝑡 are the following functions of exogenous variables:

𝐾 1
𝑖𝑐𝑗𝑑𝑡 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

(
1−𝛾
𝛾 )

− 1−𝛾
𝜁𝑑𝑡

(𝜖−1)
𝑇 𝜖−1
𝑗𝑑𝑡 𝜏1−𝜖𝑗𝑑𝑐𝑡 if 𝑖 = 𝑗

0 otherwise

𝐾 2
𝑖𝑐𝑗𝑑𝑡 =

⎧⎪⎪
⎨⎪⎪⎩

(𝛾𝑈 𝑡)
1−𝜎

𝑎𝜎−1𝑐 if 𝑐 = 𝑑

0 otherwise

𝐾 3
𝑖𝑐𝑗𝑑𝑡 = (𝛾𝑈 𝑡)

1−𝜎

(
1 − 𝛾
𝛾 )

− 1−𝛾
𝜁𝑑𝑡

(𝜖−1)

𝑇 𝜖−1
𝑗𝑐𝑡 𝑎

𝜎−1
𝑑 𝜏1−𝜖𝑗𝑐𝑑𝑡

where,

𝑇 𝑖𝑐𝑡 = 𝑇𝑖𝑐𝑡𝑔𝑖 (𝐿𝑐,𝑡−1,
{
𝐿𝑗𝑐,𝑡−1

}
𝑗∈𝐼) (16)

is the productivity component which is exogenous in period 𝑡.
The solution algorithm consists of guessing an initial distribution of 𝑥1

𝑖𝑐0, 𝑥2
𝑖𝑐0 and

𝑥3
𝑖𝑐0 in period 0. This is followed by inserting the guesses on the right-hand side of sys-

tem (13), obtaining an updated guess of 𝑥1
𝑖𝑐0, 𝑥2

𝑖𝑐0 and 𝑥3
𝑖𝑐0, and iterating on system (13) until

convergence. With the equilibrium values of 𝑥1
𝑖𝑐0, 𝑥2

𝑖𝑐0 and 𝑥3
𝑖𝑐0 in hand, one can express

period-0 price indices, wages, population and sectoral employment levels by inverting

the system (15). Finally, one can obtain period-1 TFP from Equation (16) and repeat the

procedure for subsequent periods, if any.

4.3 An illustration in a linear economy

In this section, we simulate the model on a simple geography to illustrate how it can

rationalize: (i) the rise of (different) cities as influenced by trade and comparative advan-

tages; and (ii) the long-run dynamics of cities, as documented in Section 3.
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A linear economy We consider a country with 200 cities uniformly arranged on a

line and two industries: in period 0, the 100 cities to the West of the country centroid

have a TFP of 1.2 in industry 1, and a TFP of 0.8 in industry 2; the pattern is reversed for

the 100 Eastern cities (panel a of Figure 9).

Figure 9. The linear economy under trade in period 0.
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(b) Industrial concentration
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Notes: The values for the structural parameters are set as follows: 𝛼 = 0.06; 𝛾 = 0.65; 𝜖 = 5; 𝜙 = 0.25; 𝜎 = 4; 𝐿 = 10, 000, 000; 𝜁𝑐𝑡 = 2.
Panel (a) displays productivity as a function of longitude and across the two industries. Panels (b) and (c) display: a Herfindahl index
of industrial concentration; and total employment, respectively.

Using the algorithm proposed in Section 4.2, we simulate this stylized economy both

under autarky and under trade. In either scenario, we simulate the economy for two

subsequent time periods, period 0 and period 1. Under autarky, we assume that trade

costs between cities are infinitely high. Under trade, we assume that the cost of trading

between cities 𝑐 and 𝑑 takes the following form,

𝜏𝑖𝑐𝑑𝑡 = (1 + 𝑑𝑐𝑑)𝜙 ,

in both industries and time periods, where 𝑑𝑐𝑑 denotes the Euclidean distance between

cities 𝑐 and 𝑑. We set the values of structural parameters to central values used in the

literature (𝛼 = 0.06, 𝛾 = 0.65, 𝜖 = 5, 𝜙 = 0.25, 𝜎 = 4). We set the total population to

10 million, which roughly equals the working population of England and Wales at the

beginning of the 19th century. Finally, we set 𝜁𝑐𝑡 = 2 for every city and time period for

simplicity, i.e., a land supply elasticity of 1 in each city.

The rise of (different) cities We first look at the patterns of industrial concentration

and the distribution of population in period 0. Panel (b) of Figure 9 shows how cities spe-

cialize under trade, as measured by their Herfindahl index across industries. Cities that

are near the center—with the best access to trade with other cities and the largest room

for specializing according to their comparative advantage—specialize more. Population

also reallocates towards these central cities as they benefit from trade through their in-

creased industrial concentration (panel c). This stands in stark contrast with the autarky
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scenario in which industrial diversity and population would remain evenly distributed

across cities, due to their symmetric fundamentals.

Figure 10. The linear economy in period 1 (A: differential industry trends, B: dynamic Jacobs externalities).
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(c) Productivity (B)
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Notes: In both scenarios, the values of structural parameters are set to: 𝛼 = 0.06; 𝛾 = 0.65; 𝜖 = 5; 𝜙 = 0.25; 𝜎 = 4; 𝐿 = 10, 000, 000;
𝜁𝑐𝑡 = 2. Panel (a) and (c) display productivity as a function of longitude and across the two industries. Panels (b) and (d) display
total employment as a function of longitude. The left panels are associated with scenario (A), featuring differential industry trends.
The right panels are associated with scenario (B), featuring long-run Jacobs externalities. We provide complements to the analysis
in Appendix B.4.

The long-run dynamics of cities We study the distribution of economic activity in

the long run (period 1) under two scenarios. The first scenario assumes that industries

differ in the evolution of aggregate productivity for exogenous reasons: the TFP of in-

dustry 1 uniformly decreases by 0.2 across cities, while the TFP of industry 2 remains

the same as in period 0. Such differential industry trends may be due to nationwide

productivity trends associated with structural transformation, as in Ngai and Pissarides

(2007), or increased international competition, as in Pierce and Schott (2016). We ab-

stract from long-run externalities by setting 𝑔𝑖 (⋅) = 1 in Equation (12). The left panels

of Figure 10 show that population reallocates from the affected Western cities towards

the East as a result of differential industry trends. Central, formerly specialized cities in

their respective regions are however larger than others.

The second scenario conversely abstracts from differential industry trends and allows

for long-run agglomeration externalities of the form,

𝑔𝑖 (⋅) = [
∑
𝑗
(
𝐿𝑗𝑐,𝑡−1
𝐿𝑐,𝑡−1 )

2

]

−1

This formulation implies that less specialized cities, with a lower Herfindahl index, ex-

perience higher TFP in period 1 as shown in the bottom panels of Figure 10. In this

example, Jacobs externalities lead to a stark reversal of fortune: central cities, which

specialize heavily in period 0 and gain from such specialization, would lose in period 1

due to the dynamic consequences of their extreme industrial concentration.

How to tell apart differential industry trends from Jacobs externalities? Both of them
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have the ability to rationalize the death of (some) specialized cities. However, differen-

tial industry trends imply that cities with a comparative advantage in declining sectors
suffer in the long-run; by contrast, long-run Jacobs externalities induce an industrial

concentration penalty, irrespective of the nature of comparative advantage.

5 Quantitative analysis

We now use the previous spatial model to quantify the role of local long-run externalities

and their distributional consequences on the allocation of economic activity across space.

5.1 Parametrization, model inversion, and estimation

The quantification of our model requires: (i) a parametrization of key model elasticities;

(ii) using its structure to recover unobserved city-specific fundamentals that rationalize

the observed employment by city-industry and wages by city (a model inversion); and

(iii) introducing the recovered productivities within a similar empirical framework as

the one discussed in Section 3.1 to estimate Equation (12), i.e., the equation that drives

the dynamic evolution of productivity.

Given its recursive structure, the model can be taken to the data in any period, and

independently so. For reasons that will become clear later in this section, we primarily

use contemporary data—covering the “long-run” or period 1—to estimate the model.

Parametrization and observable data We parametrize key elasticities of the model

from the empirical literature—focusing primarily on recent times (i.e., period 1). We

set the elasticity of substitution across sectors, 𝜎, to be equal to 4 (Bernard et al., 2003)

and an elasticity of substitution across varieties, 𝜖, equal to 5 (Simonovska and Waugh,

2014). Our modeling of productivity features a static agglomeration externality, as usual

in quantitative models fitting a distribution of workers across cities of very different sizes

(e.g., discussed as scale economies in Henderson, 1974). We consider a static agglomera-

tion externality, 𝛼, of 0.07 (following Graham and Gibbons, 2019, which reports the latest

available agglomeration-productivity elasticity estimates for the United Kingdom). The

dispersion parameter of idiosyncratic location tastes, 𝜂, and the congestion parameter,

𝜆, are tied together in the equilibrium conditions (see, for instance, Equations 13 or 14);

they both serve as mitigation forces to limit differences in city sizes. We thus set 𝜆+ 𝜂 to

match an average migration elasticity of 0.5 (Head and Mayer, 2021). We use granular

elasticities of housing supply at the Middle Layer Super Output Area (MSOA) level from

Drayton et al. (2024) and map these estimates to the expanded urban area around our

435 cities in order to parametrize 𝜁𝑐1 in each city 𝑐. These elasticities, obtained from a
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similar procedure as in Baum-Snow and Han (2024), are quite low, around 1.2 on average,

illustrating the (recent) institutional constraints to development in cities of England and

Wales. We calibrate trade costs using data on the evolving transportation infrastructure

within a procedure that is best described in Appendix B.5.

Finally, our quantitative exercise requires a labor share in production, data on em-

ployment per industry and per city (𝐿𝑖𝑐𝑡), and data on wages at the city level 𝑤𝑐𝑡 . We

rely on Feinstein (1972) and set a labor share of production at 0.77, arguably in the high

range of such estimates. As for employment by 2-digit industry (88 categories), we use

the Business Register and Employment Survey in 2020 at the ward level and nest these

estimates within our own geographies.22 Finally, while we do observe productivity, pro-

duction factors, and wages at the firm level (as exploited in Section 3.2), we do so within

a secure server where we cannot properly invert our very demanding model. For this

reason, we rely on labor income estimates for small areas (Middle Layer Super Output

Area, provided by the Office for National Statistics in 2020 and based on the Family Re-

sources Survey), which we nest within our geographies to measure wages at the city

level. These quantities are key to recovering unobserved endogenous variables that will

be the inputs of our counterfactual: amenities and city-industry productivities.

Model inversion In this step, we recover the distribution of city amenities, {𝑎𝑐}𝑐∈{1,…,𝐶},
and city-industry productivities,

{
𝑇 𝑖𝑐1

}
𝑐,𝑖, that rationalize observed data on wages (𝑤𝑐1)

and employment by city-industry in period 1 (𝐿𝑖𝑐1). The following theorem states that,

given wages and employment per industry, there is a unique set of fundamentals that

rationalize the data.

Theorem 1. In each period and given the values of structural parameters, trade costs, and
data on wages 𝑤𝑐1 and employment by city-industry 𝐿𝑖𝑐1, one can uniquely recover Total
Factor Productivity levels 𝑇 𝑖𝑐1 (up to scale) and amenities (relative to aggregate welfare,
𝑎𝑐/𝑈 1).

Proof. See Appendix B.3.

Intuitively, the uniqueness result of Theorem 1 stems from the fact that the system

of equations characterizing the equilibrium—Equations (B.9) to (B.11) in Appendix B.2—

can be inverted to recover the values of fundamentals. The output of this procedure is

a set of amenities  = {𝑎𝑐}𝑐 and city-industry productivities  =
{
𝑇 𝑖𝑐1

}
𝑖,𝑐 across 435

cities (and 88 industries for the latter).23

22Employment by 2-digit industry and city in the nineteenth century are available from the quasi-
census of Anglican baptism records collected around 1813–1820 and the micro-census records, e.g., in
1881, which we exploit in our empirical analysis.

23To implement the inversion procedure, we invert the system of equations (B.9) to (B.11) using an
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Estimating long-run productivity spillovers Armed with the distribution of pro-

ductivities,
{
𝑇 𝑖𝑐1

}
𝑖,𝑐, we estimate the last block of our model, i.e., the equation charac-

terizing the evolution of city-industry productivities:

𝑇 𝑖𝑐1 = 𝑖1 ⋅ 𝐿
𝜌
𝑐0 ⋅ [

∑
𝑗
(
𝐿𝑗𝑐0
𝐿𝑐0 )

2

]

−𝜄

⋅ 𝐿𝜇𝑖𝑐1 ⋅ 𝜀𝑖𝑐1. (17)

Equation (17) is a special case of Equation (12) characterizing the evolution of produc-

tivity in the model. In particular, Equation (17) restricts long-run externalities to be a

function of two objects: past population (𝐿𝑐0) and the past Herfindahl index, ∑𝑗 (
𝐿𝑗𝑐0
𝐿𝑐0 )

2
.

This restriction is motivated by the reduced-form evidence of Section 3.2, which points

to the importance of these two variables—especially the latter—in explaining long-run

city outcomes.

Equation (17) can be estimated within an empirical setting that mirrors the one de-

scribed in Section 3.1. Specifically, one can use exogenous land fragmentation 𝜁𝑐 and the

(log) predicted Herfindahl 𝜒𝑐 as instruments for period-0 (log) population and (log) in-

dustrial concentration. Equation (17) corresponds to the second stage of this two-stage

procedure. Note that we split the term 𝑇𝑖𝑐1 of Equation (12) into two components in

Equation (17): an aggregate industry trend 𝑖1 and a structural error term 𝜀𝑖𝑐1. In effect,

the term 𝑖1 can be estimated as an industry fixed effect in Equation (17). Isolating these

industry trends allows us to disentangle them from the long-run externalities, in line

with the logic discussed at the end of Section 4.3.

In practice, we estimate the following specification,

ln 𝑇 𝑖𝑐1 = 𝜂𝑖 + 𝜌 ln 𝐿𝑐0 − 𝜄 ln
[
∑
𝑗
(
𝐿𝑗𝑐0
𝐿𝑐0 )

2

]
+ 𝜇 ln 𝐿𝑖𝑐1 + 𝛾𝐗𝑐 + 𝜀𝑖𝑐,

while instrumenting ln 𝐿𝑐0 and ln [∑𝑗 (
𝐿𝑗𝑐0
𝐿𝑐0 )

2

] by our exogenous predictors 𝐩𝑐, controlling

for 𝐗𝑐, used in Table 2, as well as county-level fixed effects and industry-level fixed

effects, and clustering standard errors at the level of the closest city as of 2015. Table 5

shows that 𝜌 is not statistically different from 0, consistent with the Gibrat’s law. By

contrast, 𝜄 is statistically different from 0 and quite large: a 20% increase in the Herfindahl

index, about half of a standard deviation on average, reduces overall productivity in a city

by 15-16% (see column 2 in which we control for Marshall-Arrow-Romer externalities).

We provide some visual evidence for this negative relationship in Appendix B.5 and

Appendix Figure B2. We also show that industrial concentration is not related to the

recovered amenities—which we will assume to be fixed across periods and across our

algorithm that we detail in Appendix B.5.
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Table 5. The structural estimates for long-run externalities.

Productivity (ln 𝑇 𝑖𝑐1) (1) (2)

Herfindahl index (ℎ𝑐 = ln∑𝑗 (
𝐿𝑗𝑐0
𝐿𝑐0 )

2
) -0.675 -0.788

(0.273) (0.318)

Employment (𝑙𝑐 = ln 𝐿𝑐0) 0.300 -0.234
(0.389) (0.409)

Observations 38,280 21,330
F-stat (ℎ𝑐) 23.26 19.94
F-stat (𝑙𝑐) 17.80 17.09
Local industrial employment No Yes
Notes: A unit of observation is a city/industry where a city is identified following our clustering procedure described in Section 2.2
and an industry is one of the 88 industrial categories (2-digit) present in the Business Register and Employment Survey. In column (2),
we control for the (log) local employment in the industry to account for Marshall-Arrow-Romer externalities when such employment
is not equal to zero. Standard errors are reported between parentheses and are clustered at the level of the closest city as of 2015
(there are 55 cities with a formal city status in England). The specifications include the same controls as in column (2) of Table 3, as
well as 2-digit industry-level fixed effects.

counterfactual experiments.

5.2 Counterfactuals

We next use the estimated model to conduct counterfactual experiments. First, we assess

the role of long-run Jacobs externalities in explaining the distribution of population and

income across British cities. Second, we consider a stylized policy experiment in order

to shed light on the arbitrage faced by a local planner willing to balance the short-run

gains from specialization in a city’s comparative advantage(s) against the subsequent

productivity losses in the longer run.

Neutralizing Jacobs externalities In this counterfactual, we offset long-run Jacobs

externalities by changing the city-industry productivity levels of period 1 to,

𝑇𝑖𝑐1 = 𝑇 𝑖𝑐1 [
∑
𝑗
(
𝐿𝑗𝑐0
𝐿𝑐0 )

2

]

𝜄

,

which amounts to eliminating the Herfindahl index from Equation (17) and simulating

the evolution of an economy where industrial concentration does not negatively affect

productivity in the subsequent “generation”. Note that we solve for the equilibrium of

counterfactual economies by using the procedure laid out in Section 4.2.
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How does neutralizing Jacobs externalities affect the distribution of employment and

income across cities? In the top panels of Figure 11, we show how employment (panel a)

and wages (panel b) change as a function of their 19th-century industrial concentration.

Unsurprisingly, we find that cities with a lower degree of initial concentration lose, while

cities with a higher degree of specialization gain. The effects are sizable. A city at the

20th percentile of the 19th-century Herfindahl distribution (with a Herfindahl index of

0.06) loses 25% of its employment and 20% of its wages, while a city at the 80th percentile

(with a Herfindahl index of 0.13) would markedly grow and gain 12% in wages.

Figure 11. Neutralizing long-run Jacobs externalities.

(a) Employment (past concentration) (b) Wages (past concentration)

(c) Employment (north/south) (d) Wages (north/south)

Notes: Panel (a) displays the relationship between industrial concentration in 1881 and the change in total employment from the
period-1 data to the counterfactual equilibrium across our 435 cities. Panel (b) displays the same relationship between industrial
concentration in 1881 and the change in nominal wages (per capita). Panels (c) and (d) nest cities along the “Northing” level in the
British National Grid and display the best non-linear fit between average population density/wage against “Northing”. For the sake
of exposition, we display the Northing levels of London and Manchester as dashed (orange) lines. The baseline is represented by the
green line; the counterfactual is the purple line.

These redistributive effects are substantial, but best illustrated in space or in mean-

ingful measures of (regional) inequalities. One would not care so much about a city

A exchanging its advantage and giving it to city B if it leaves spatial inequalities un-
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changed. A marker of regional inequalities in Britain is the North/South divide, or how

London, its hinterlands, and a few other Southern cities like Bristol, are richer than the

great Northern cities of the past (e.g., Liverpool, Manchester, Sheffield, Newcastle or

Bradford). We use this north-south divide as a way to benchmark the redistributive ef-

fects of our counterfactual experiment. In the bottom panel, we nest cities using their

Northing in the British National Grid (kilometers relative to a referential point within

the projected coordinate system) and show the average population density and average

wage along this latitude. For the sake of exposition, we display two lines corresponding

to London (and Bristol) and Manchester (and thus Liverpool or Leeds). One can see that

there is indeed a north-south divide—with a productivity gap of about 35% between Lon-

don and Manchester (panel d). Neutralizing long-run Jacobs externalities does not only

reshuffle productivity gains (and employment) across cities; it does so along a (most) rel-

evant north/south divide: the productivity gap is about 60% as large in the counterfactual

experiment (20% between London and Manchester). A substantial part of contempora-

neous regional inequalities in Britain is the legacy of past industrial concentration.24

Another “fundamental” trade-off? The preceding discussion of Jacobs externali-

ties highlights a trade-off faced by local planners. A city may benefit from specializing

according to its comparative advantage(s)—an insight at the heart of many place-based

industrial policies, such as the European Union’s “Smart Specialisation Strategy”, in-

novation clusters in the United States, or the numerous hubs promoted in the United

Kingdom.25 While such specialization may yield short-term gains, these gains might be

obscured by long-term scars à la Jacobs.

Modeling place-based industrial policy in full is beyond the scope of our framework,

which provides a careful representation of geography but a crude characterization of

firm interactions. To capture the key trade-off, we introduce a stylized representation in

which local policymakers can costlessly redistribute revenue-based total factor produc-

tivity across industries in their city according to:

log (𝑇 ∗
𝑖𝑐1) = log (𝑇 𝑖𝑐1) + 𝑘 [log (𝑇 𝑖𝑐1) − log (𝑇 𝑐1)] ,

where 𝑇 𝑖𝑐1 denotes productivity in industry 𝑖, city 𝑐, and period 1, and 𝑇 𝑐1 is the un-

weighted average (log) productivity across all industries in city 𝑐. A policy with 𝑘 > 0
24The remainder might be partly explained by the distribution of amenities and connectedness; it is

however essentially the outcome of location-specific productivities interacted with the life cycles of in-
dustries. In short, Northern cities also have a comparative advantage in the wrong industries.

25There is no direct motivation for such policies in our “frictionless” model that takes sectoral produc-
tivities as given. In practice, however, these policies may help overcome coordination failures or relocation
frictions.
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increases the productivity of industries in which the city has a comparative advantage—

thus mimicking the effect of policies that promote industrial concentration.

All local planners implement this costless policy, and we evaluate outcomes using

data for present-day England and Wales as the initial state. We then simulate the contem-

poraneous and long-term (period-2) distribution of economic activity—90 years later—

keeping other city fundamentals, such as amenities, fixed. Welfare is measured across

two generations of workers using expected indirect utilities, 𝑈𝑔 , as:

(𝛽) = 𝑈1 + 𝛽90 ⋅ 𝑈2,

where 𝛽 ∈ (0, 1) is the planners’ annual discount rate, and the economy grows at a

constant rate of 2.1% per year (the annual growth rate of the British economy between

1950 and 2015).

Figure 12. Policies affecting local industrial concentration.

(a) Increasing industrial concentration (b) Specializing/diversifying

Notes: Panel (a) displays the discounted indirect utilities across the two generations of workers, (𝛽), in the baseline (blue line) and
in a counterfactual economy where 𝑘 = 0.10 redistributes productive gains towards the most productive industries within each city 𝑐
(red line). We highlight the range of discount factors 𝛽 in which such a policy would generate gains relative to the baseline economy
with a vertical dashed line separating the low discount factors where it is desirable (also displaying a plain red line in this desirable
region). Panel (b) reports the discounted indirect utilities across the two generations of workers in logarithmic terms relative to the
baseline, log𝑓 (𝛽) − log(𝛽), such that it approximately represents welfare gains in percentage points (i.e., a value of 0.05 would
correspond to a welfare increase of about 5%). Panel (b) reports: (i) a counterfactual economy where 𝑘 = 0.10 redistributes productive
gains towards the most productive industries (in red); and (ii) a counterfactual economy where 𝑘 = −0.10 redistributes productive
gains towards the least productive industries (in green). We highlight the range of discount factors 𝛽 in which such policies would
generate gains relative to the baseline economy by displaying a blue line corresponding to 𝑦 = 0 (and dots in green and in red); the
vertical dashed line separates the range of discount factors where the specializing/diversifying are preferred by the planner.

Figure 12 illustrates the trade-off between short-run gains from boosting compar-

ative advantages and long-run losses from the resulting local industrial concentration.

Panel (a) shows that a place-based industrial policy fostering industrial concentration

across all cities is welfare-enhancing when the planner places relatively little weight on

future generations. This could help explain the widespread adoption of such policies,
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particularly when planners are relatively impatient. For example, the UK government

has recently used social discount rates of 2.5% for projects at over a 75 year horizon—

a rate that is typically much higher in the United States. Panel (b) complements this

insight by (i) providing a quantification of welfare gains relative to the baseline and

(ii) showing the impact of a diversification policy (𝑘 = −0.10), in which productivi-

ties are redistributed away from stronger industries and towards weaker sectors in each

city. In line with the previous insight, the diversification policy appeals more to patient

planners, while the specialization policy is preferred by impatient ones. Interestingly,

both policies improve welfare relative to the baseline within a range of discount factors,

𝛽 ∈ [0.96, 0.984], with minimum gains just under 4.5% at the point where the planner is

indifferent between them.

6 Concluding remarks

A large literature discusses the rise and fall of cities, often in light of former industrial

localities (e.g., Detroit or Manchester) or factory towns. Another literature focuses on

the source of regional inequalities. Our research discusses the inter-temporal allocation

of economic activity across space and highlights one factor which shapes (i) the rise and

fall of cities and (ii) contemporaneous spatial inequalities: the extent to which (industrial

concentration and) long-run externalities à la Jacobs affect future productivity.

Our present research however abstracts from modeling the exact mechanics of Jacobs

externalities. Do they operate through the process of technological innovation and the

useful transfer of knowledge across industries? Do they operate through the accumu-

lation of human capital (technical aptitudes and entrepreneurial attitudes)? Would we

expect them to operate irrespective of the nature of industrial concentration and their

associated skills? We leave these questions for future research.
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A Data appendix

This section provides complements to Sections 2 and 3: we present our data sources,

with a detailed description of our map digitization procedure; we discuss the land frag-

mentation algorithm underlying our exogenous predictor of city growth; we provide

descriptive statistics about the rise of cities and their subsequent dynamics; and we dis-

cuss a series of robustness checks.

A.1 Data sources and construction

A large collection of county maps and Ordnance drawings We first collect and

digitize early county maps from the North of England. Please find below the covered

counties, with the map resolution, its date and its author(s): Northumberland, 1-inch

map, 1769 (Andrew and Mostyn Armstrong); Durham, 1-inch map, 1768 (Thomas Jef-

ferys and Andrew Armstrong), 1-inch map, 1820 (Christopher Greenwood); Cumber-

land, 1/2-inch map, 1773 (Joseph Hodskinson and Thomas Donald), 1-inch map, 1823

(Christopher and John Greenwood); Westmorland, 1-inch map, 1771 (Thomas Jefferys);

Yorkshire, ca 4/5 inch, 1828 (Christopher Greenwood, et al.); Lancashire, not stated, 1768

(William Yates), 1 inch, 1818 (Christopher Greenwood, et al.), 4/5 inch, 1830 (G. Hennet);

Cheshire, 3/4 inch, 1830 (William Swire and W.F. Hutchings), 5/4 inch, 1831 (Andrew

Bryant); Derbyshire, 1-inch map, 1767/1791 (Peter Burdett); Nottinghamshire, not stated,

1794 (John Chapman), not stated, 1826 (Christopher and John Greenwood); Lincolnshire,

ca. 1 inch, 1828 (Andrew Bryant), ca. 1 inch, 1830 (Christopher and John Greenwood).

We carefully project these flat map tiles, which gives us an exhaustive coverage of the

North of England, albeit at different dates and resolution between 1790–1830. To cover

Southern England and Wales, we rely on about 350 Ordnance Survey drawings that were

produced by the Ordnance Survey at the beginning of the nineteenth century and are

usually referred to as the Old Series 1-inch maps. We keep the latest series when maps

fully or partially overlap, leaving us with about 360 different map tiles produced between

1790–1820 for most of them.

Recognizing built-up from county maps and Ordnance drawings These differ-

ent maps employ different annotations, symbols, colors, etc. For instance, county maps

typically display built-up with dark rectangles, sometimes with dotted areas, but are

otherwise quite clear and organized (see Figure 5, for instance). The challenge is then

to distinguish built-up from letters or dashed lines representing administrative bound-

aries. In stark contrast, Ordnance Survey drawings typically display built-up with red

marks, but the drawings also contain the delineation of farms and topography (which is
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not represented using contour lines of similar altitude, but rather “slope lines”, i.e., the

orthogonal lines indicating the typical course of water along the slope). In summary,

our main object of interest (a building) is displayed across all maps, but with varying

symbols. For these reasons, we identify built-up using supervised deep learning with a

large training sample.

To recognize built-up and other land uses in historical maps, we develop a convo-

lutional neural network frequently used in the biomedical literature to detect zones of

interest within images (a “U-Net”).26 We train the algorithm using a simple manual label-

ing procedure with research assistants annotating images with contours, and we comple-

ment our training sample with previous training data from French historical maps. We

add basic transformations (i.e., flipping, zooms, rotations) to each training batch, such as

to avoid overfitting and ensure invariance to the orientation and resolution of maps.

Figure A1. Recognizing roads.

(a) “Travel” cost (b) Paths

Note: Panel (a) displays the input of the least cost path procedure to detect roads on a historical county map. Panel (b) displays the
simulated least cost paths drawn between random departure and arrival points.

To identify roads, we develop a less standard approach: thin, non-straight lines are

notoriously difficult to detect using computer vision. Our approach relies on the nature

of roads: they are black lines on the map, but, in practice, they are designed to best

facilitate transportation across space. In that respect, they markedly differ from all other

black lines on the maps, e.g., the text or gradient lines in mountainous terrain. We exploit

this discriminatory feature as follows: (i) we create a “stylized travel cost” matrix for

each map, penalizing travel outside of darker, black pixels; (ii) we draw many random

departure points from black pixels on the image and compute the least cost paths to

26Two remarks in order: Litvine et al. (2023) employ a similar approach to extract urban footprints
in Britain from these Ordnance Survey drawings and individual county maps; an alternative method is
to consider an object-based classification which is standard in remote sensing but less common in map
digitization (see, e.g., Combes et al., 2022, for a discussion of these methods).
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each other pixels of the image for each draw; (iii) for each draw, we then randomize

many arrival points and start drawing the actual minimum paths between departure

and arrival pixels.27

Figure A2. Consistent parishes across England and Wales.

Notes: This Figure displays the output of the transitive closure algorithm implemented by the Cambridge Group for History of
Population and Social Structure. Consistent mappable units based on parishes are displayed in gray; registration districts or poor
law unions are displayed with black borders.

Consistent administrative units Our analysis relies on various levels of administra-

tion, spanning a long period. Section 2.2 describes how we identify and delineate cities
27Our approach relies on the nature of roads: roads are contiguous (impervious) areas which are de-

signed to minimize travel cost between locations of interest. In practice, we can design a procedure to
detect black lines, but we would then typically end up with many false positives (i.e., black lines that are
not roads). Many of these black lines would, however, not fulfill the previous travel-cost minimization
requirement: letters, gradient lines in mountainous terrain or farms are very inefficient patches of black
pixels on which to travel between locations of interest. Others may be better suited, e.g., rivers, county
boundaries, or railway tracks. We exploit the previous discriminatory feature as follows. We first trans-
form the color map into a gray “travel cost” matrix by (i) filtering out non-gray colors, (ii) thickening black
areas to create continuous lines from dashed lines, (iii) simplifying images by interpolating across pixels,
and (iv) transforming the gray intensity through a power function in order to best calibrate the “cost” of
traveling across pixels of different black intensity (with travel cost over a perfectly black pixel being 1, and
travel cost over a perfectly white pixel being as high as possible). The output is the left panel of Figure A1.
Second, we draw many random departure points from the subsample of black pixels on the image (as a
proxy for the unobserved locations of interest) and we compute the least cost paths to all other pixels of
the image for each draw. Roads are already more salient on this matrix. However, roads are designed to be
used as “the” minimum cost path between locations: we randomize many arrival points for each departure
point and start drawing the actual minimum paths between departure and arrival pixels on a black image.
The output is a distribution of many minimum cost paths highlighting the most traveled roads more than
the others (right panel of Figure A1). As shown by Figure A1, this algorithm not only identifies roads very
well, but also their respective importance within the transportation network.
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of the nineteenth century, a city shape that we use to nest economic outcomes in the

recent period. These cities are the core administrative units of our study.

They are, however, not the only administrative divisions underlying our empirical

analysis. First, our main specification (see, e.g., Tables 2 or 3) includes fixed-effects at

the level of 48 ceremonial counties whose delineation is set in recent times. Second,

in most of the empirical analysis, we report standard errors that are clustered at the

level of the closest city as of 2015, a formal status attributed to only 55 cities. In this

instance and in the previous one, we use recent geography to better control for spatial

auto-correlation within contemporary administrative divisions. Third, while we nest

most economic outcomes within the borders of our cities and expanded cities, census

data and baptism records are originally provided at the parish level, and parishes are

regularly redefined, merged or split over the course of the nineteenth century. To limit

the importance of differential measurement error over time, we apply a preliminary “en-

velope” algorithm which considers the union of the different parishes covering the same

points over time. For instance, if a parish is split into two parishes in 1891, we would

group the two sub-parishes from 1891 onward to create a consistent, unique parish from

1801 to the current day. This grouping is less relevant at the level of higher administrative

divisions, as none of these re-compositions of lowest administrative units significantly

affect the allocation of administrative units across higher divisions. The output of the

procedure is shown in Figure A2, with about 11,500 consistent parishes across England

and Wales.

Transportation, travel time, and trading costs Both the derivation of stylized facts

and the quantification of our model rely on transportation infrastructure in the nine-

teenth century and in recent times. Our dynamic characterization of historical trans-

portation relies on transportation infrastructure from the Cambridge Group for the His-

tory of Population and Social Structure (including the roads in 1830, density of train

lines in 1851, and waterways around 1820, all used to condition the main empirical spec-

ification). The data is best described in Alvarez-Palau et al. (2013). The transportation

infrastructure is integrated into a transportation network in order to derive a few im-

portant controls used, e.g., in Tables 2 or 3: the travel times to the closest city, the closest

market town, major ports (London, Liverpool, Plymouth, Portsmouth), and resources

(i.e., coal).

The transportation network is also important to derive the trading costs in the quan-

titative model. We describe this derivation in greater detail in Appendix B.5.
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Figure A3. Travel cost and distance to coal across England and Wales, as computed around 1817.

(a) Travel cost (b) Distance to coal

Notes: The left panel displays the raster of transport costs as calculated using the transport network at the beginning of the 19th
century, and a penalization accounting for the local elevation gradient (yellow: low, green: medium, blue: high). The right panel
displays the minimum travel time from the nearest coal field (red: low, blue/green: high).

Other geographic variables The derivation of stylized facts and the identification of

dynamic Jacobs externalities hinge on numerous geographic factors, either to extract ex-

ogenous variation in city growth or to condition the analysis on important confounders.

First, we consider the following topographic characteristics: elevation (Open Land Map,

30m resolution), used as a main control and as input in the land fragmentation algorithm

together with the derived slope; soil organic carbon content (Open Land Map, 250m res-

olution), used as a main control; soil bulk density (Open Land Map, 250m resolution),

used as a main control; a detailed soil classification (from The National Soil Map and

Soil Classification, produced by the National Soil Resources Institute); and a dataset of

all rivers and smaller streams in England and Wales (OS Open Rivers). Second, we com-

bine our city identification and delineation (Section 2.2) with geographic characteristics

to derive the area/latitude/longitude of the initial city outline, the predicted expanded

area in 1881, and the built-up density within 1, 2, 3, 5, 10 kms of the initial city outline.

Third, we measure agricultural productivity around our cities by extracting the suitabil-

ity to grow wheat, oat, grass, and rye from the Global Agro-Ecological Zones produced

by the Food and Agriculture Organization of the United Nations—we use the rain-fed,

high-input model specification. Fourth, we use a measure of baseline share of arable agri-

culture (extracted from the Tithe survey, see Heblich et al., 2024) for a similar purpose,
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i.e., controlling for initial agricultural production within the city hinterlands. Fifth, we

collect information on historical factors possibly anchoring human settlements and the

distribution of land ownership across space, most notably the presence of Domesday set-

tlements (1086) extracted from the revision of the Phillimore edition of Domesday Book

(1975–1986) and enclosures within 1, 2, 3, 5, 10 kms of the initial city outline (Satchell et

al., 2017).

A.2 Land fragmentation

Our land fragmentation algorithm consists of the following steps. In a first step, we ex-

tract fine-grained terrain characteristics including elevation, ruggedness, time-invariant

soil attributes and water bodies from Google Earth Engine. We then store these char-

acteristics in an “image”, i.e., a 2D array where the value at each pixel (𝑥, 𝑦) is a vector

of attributes (𝑎1,… , 𝑎𝑚)—a standard color image is often stored as a 2D array where the

value at each pixel is a triplet RGB. We then normalize the different attributes to be be-

tween 0 (minimum) and 1 (maximum). The output is a multi-band raster covering Eng-

land and Wales at a resolution of 30m (bands: normalized elevation, normalized slope,

normalized bulk, discrete soil classes, discrete zones delineated by waterways).

Figure A4. Topography, agricultural parcels and land fragmentation.

Notes: This figure displays the Ordnance Survey drawing around the small village of Lymington—between the New Forest National
Park and the Isle of Wight. Red rectangles indicate our detected built-up; dashed lines show the identified gradient breaks in soil
conditions and topography.

The second step produces superpixels to isolate contiguous zones of the image that

are homogeneous in their attributes. There are several image segmentation algorithms,
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e.g., SLIC, Quickshift, Felzenszwalb or watershed.28 We opt for Quickshift, which allows

for a grouping of pixels that is more flexible in their proximity in actual space (i.e., along

the physical distance) versus the color space. Applied to this peculiar setting, the algo-

rithm relies on a standard “orthogonal” distance between the n-dimensional vectors that

are stored in every pixel as the “distance in the color space” or “value distance.” The

algorithm maximizes a weighted sum of the two target distances within constituted su-

perpixels, with a weight allocated to physical distance relative to the previously-defined

“value distance.” We parametrize the algorithm by choosing the scale parameter, the

maximum physical distance, and the relative weight between distance in the color-space

and physical distance in order to best capture the shape of agricultural parcels. A su-

perpixel with similar values is, here, a reasonably-compact patch of land with homo-

geneous topography and soil characteristics: a typical agricultural parcel. For illustra-

tion, we show in Figure A4 the output of such an algorithm around the small village of

Lymington—between the New Forest National Park and the Isle of Wight.

Figure A5. Predicted land fragmentation.

Note: This Figure displays an interpolated, aggregated raster map of predicted land fragmentation. The color scheme is an elevation
color scheme: from green (low) to yellow, red and white (high). One can see that mountainous areas are typically more fragmented,
but the low-lying hills of Cornwall or Cotswold, or the soil heterogeneity in Norfolk also generates significant land fragmentation.

In a third step, we construct the centroids of all superpixels, and we use these cen-

troids to calculate the predicted density of farms at the fringe of each city—a measure

of predicted land fragmentation. The variation in predicted land fragmentation is very

local; we do however see aggregate patterns due to overall topography (mountainous
28See, e.g., a description of these segmentation algorithms.
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terrain in Central England or Wales, hilly terrain in Cornwall) or soil composition (e.g.,

in Norfolk). We illustrate these aggregate patterns in Figure A5 and validate the measure

against actual measures of land ownership in Figure 7 of the paper.

A.3 Descriptive statistics

In this section, we provide complements to Section 2.2 by focusing on the (nature of the)

rise of cities.

Figure A6. Growth, industrial concentration, and the role of the initial industrial mix.

(a) Employment growth (b) Herfindahl index

(c) Predicted employment growth (d) Predicted Herfindahl index

Notes: panel (a) displays the distribution of employment growth, 𝐿81𝑐 −𝐿17𝑐
𝐿17𝑐

, within the (larger) boundaries of 435 potential cities.
The top decile of growing settlements between 1817–1881 is highlighted in purple. In panel (b), we show the relationship between
employment growth and the evolution of industrial concentration, ∑𝑗 (𝑠81𝑗𝑐 )

2 −∑𝑗 (𝑠81𝑗 )
2
, across urban areas—where 𝑠81𝑖𝑐 is the em-

ployment share in industry 𝑖 and city 𝑐, and 𝑠81𝑖 is the aggregate employment share in industry 𝑖. Panel (c) displays the measure of
predicted employment growth, 𝑔𝑐 , against the actual employment growth across our 435 potential cities. The top decile of growing
settlements are highlighted in purple. The line is a locally weighted regression on all observations, with the weight being the level
of employment in 1817. Panel (d) repeats the same exercise with the actual and predicted industrial Herfindahl index, 𝜒𝑐 .

The rise of (different) cities Figure A6 shows the distribution of employment growth

and industrial concentration across our urban settlements. We see that the median set-
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tlement grows by a factor of about 3. The growth rate for the top decile (in purple) is

above 300% (panel a). The large heterogeneity in employment growth is also reflected

in a large heterogeneity in industrial concentration. Most of the fastest-growing cities

become more specialized (panel b), an effect which is explained by the fact that fast-

growing cities are initially specialized across the few key sectors that flourish over the

course of the nineteenth century. Importantly, most cities of similar size in 1817 have

Herfindahl indices that could differ by up to 0.20 in 1881—equivalent to the difference

between a city with employment equally distributed across 3 (2-digit) sectors and a city

with employment equally distributed across 10 such sectors.

We illustrate the role of initial industries, as proxies for initial location advantages,

in panels (c) and (d) of Figure A6 where we compare the actual employment growth and

industrial concentration in 1881 with their predictions, 𝑔𝑐 and 𝜒𝑐, as computed using a

“shift-share” design based on initial industries in 1817, described above. We find that the

initial industrial mix does predict employment growth within urban areas but also, and

more significantly, industrial concentration.

Figure A7. The role of the initial industrial mix—robustness checks.

(a) Herfindahl index (1881, 1-digit) (b) Herfindahl index (1881, residual)

Notes: The left panel displays the measure of predicted industrial concentration computed at the 1-digit level against the actual
industrial concentration. The top decile of growing settlements are highlighted in purple. The line is a locally weighted regression
on all observations. The right panel repeats the same exercise with a residualized measure of predicted industrial concentration that
is (i) computed at the 2-digit level and (ii) cleaned for the role of the previous 1-digit measure of predicted industrial concentration.
The slope is about 60% to that of Figure A6 (panel d).

Both our actual and predicted indices of industrial concentration are based on 2-digit

industries. We now shed additional light on the role of 1-digit sectors in cities’ changing

industrial composition as opposed to the more granular variation within these 1-digit

sectors. In Figure A6, we display the relationship between the 1881 Herfindahl index

of industrial concentration computed at the 2-digit level and a predicted measure, also

computed at the 2-digit level. In Figure A7, we decompose this relationship into (i) the
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part explained by predicted industrial concentration at the 1-digit level (panel a) and

(ii) the residual of the 1-digit prediction, thus exploiting within-sector variation only

(panel b). We can see that the relationship remains strong in panel (b); the slope is about

60% to that of Figure A6.

Figure A8. Specialization of cities—prediction and residual Herfindahl.

(a) Predicted Herfindahl index (b) Residual Herfindahl index

Notes: This Figure shows the distribution of predicted industrial concentration 𝜒𝑐 (see Section 2.2, left panel) and residual industrial
concentration ℎ𝑐 − 𝜒𝑐 (right panel). The top decile of growing settlements are highlighted in purple.

The previous evidence shows that fast-growing cities become more specialized. We

better qualify this observation in Figure A8 where we decompose industrial concentra-

tion ℎ𝑐 (as shown in Figure A6) into predicted industrial concentration 𝜒𝑐 (see Section 2.2)

and residual industrial concentration ℎ𝑐 − 𝜒𝑐. We then plot the distribution of these two

objects for the top quartile in terms of employment growth during 1817–1881 (in purple)

and the rest (in teal). We see that the specialization of fast-growing cities is entirely pre-

dicted from their initial industry mix: fast-growing cities are initially specialized across

a few key sectors that flourish over the course of the nineteenth century.

Exogenous variation in city size To isolate exogenous variation in late nineteenth

century population, we use a proxy for land ownership fragmentation in the immediate

fringe of urban settlements. In this appendix, we provide a balance test by illustrating

the correlation between settlement characteristics at the beginning of the nineteenth

century and predicted land fragmentation in these settlements’ immediate fringe. We

find that settlements with above- (red) and below-median (blue) predicted land frag-

mentation are very similar in population density and industrial concentration in 1817

(see Figure A9).
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Figure A9. A balance test for urban settlements with different land fragmentation in their immediate
fringe.

(a) Employment (1817) (b) Herfindahl index (1817)

Notes: This Figure displays the distribution of population density (left panel) and industrial concentration (calculated as a Herfindahl
index across 2-digit occupations, right panel) for cities with above- (red) and below-median (blue) predicted land fragmentation in
their immediate fringe.

Figure A10. Gibrat’s law.

(a) Gibrat’s law, 1817–1881 (b) Gibrat’s law, 1881–1971

Notes: This Figure shows the relationship between cities’ (log) initial employment and subsequent yearly growth. Panel (a) conducts
the analysis for the period 1817–1881, while panel (b) conducts it for the period 1881–1971.

City population and city growth This section presents additional evidence about

the distribution of city populations and growth over time. In Figure A10, we display

the relationship between cities’ average yearly growth and initial employment. Panel (a)

shows this relationship in the nineteenth century. Initially large cities grow slightly

faster during this period. Panel (b) repeats the analysis for the twentieth century. Over

this period, the relationship becomes flat, even slightly negative: that is, large cities lose

their advantage in terms of growth. This is in line with the empirical findings of Sec-
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tion 3.2: larger population does not confer a significant advantage in terms of long-run

growth. It is also in line with the urban literature documenting a typically flat relation-

ship between city size and growth (Gibrat’s Law).

Figure A11. Zipf’s law.

Notes: This Figure shows the relationship between cities’ (log) rank in 1817 (blue), 1881 (orange) and 1971 (purple) and their (log)
employment. The estimated slope is -1.20 in 1817, -0.95 in 1881, and -1.03 in 1971.

We also provide support for another empirical regularity characterizing the distribu-

tion of city size: the Zipf law relating the rank of cities to their size. In Figure A11, we

plot the relationship between the (log) rank and the (log) employment across our cities

in 1817 (blue), 1881 (orange) and 1971 (purple). One can see that the relationship is close

to linear in all years; and the estimated slope is -1.20 in 1817, -0.95 in 1881, and -1.03 in

1971. In summary, we find that the Zipf’s law of city size holds reasonably well over the

course of two centuries for Great British cities.

A.4 Robustness checks

In this section, we provide a sensitivity analysis for our main finding of Section 3.2.

Identification hypothesis In our baseline specification, we provide evidence that

land fragmentation affects urban growth even when controlling for competing mech-

anisms, more specifically: general agricultural productivity (Coeurdacier et al., 2022);

and the exposure to the repeal of the Corn Laws (Heblich et al., 2024). Table A1 reports a

sensitivity analysis around our baseline specification (Table 3, column 2). In column (1),

we consider a more parsimonious specification with fewer (geographic) controls. In col-
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Table A1. The long-run effect of industrial concentration and population—sensitivity to a parsimonious
specification and to additional geographic controls.

Wage (2020) (1) (2) (3) (4) (5)

Herfindahl index (1881, ℎ𝑐) -2.852 -2.794 -2.293 -2.624 -2.624
(1.020) (1.078) (0.911) (0.889) (0.833)

Employment (1881, 𝑙𝑐) -0.278 -0.338 -0.232 -0.309 -0.219
(0.169) (0.226) (0.204) (0.176) (0.200)

Observations 428 428 422 428 428
F-stat (ℎ𝑐) 14.16 9.00 13.85 14.89 13.61
F-stat (𝑙𝑐) 11.98 8.74 12.12 14.83 11.75
Controls Parsimonious Longitude Agr. prod. Land value Enclosures
Notes: A unit of observation is a cluster of settlements around 1790-1820—identified following our clustering procedure described
in Section 2.2. Standard errors are reported between parentheses and are clustered at the level of the closest city as of 2015 (there
are 55 cities with a formal city status in England). The dependent variable is the (log) wage in 2020 (labor income estimates for small
areas based on the Family Resources Survey). Column (1) reports the estimates of a more parsimonious specification with: dummies
corresponding to deciles of employment in 1817, deciles of industrial concentration in 1817, and deciles of agricultural employment
share in 1817; (log) population density in 1821; the industry-based shift-share, 𝑔𝑐 , described in Section 2.2; a shift-share control based
on employment shares in 1881 and aggregate employment growth between 1881–1971; (log) area of the initial city outline; average
elevation; slope, bulk density, and latitude; travel time to the closest city, to each major port (London, Liverpool, Plymouth), to coal;
density of roads (1830), train lines (1851), and waterways; share of arable agriculture (Tithe survey); suitability to grow wheat, grass;
share of heavy soil (NSRI); and the predicted land ownership fragmentation within the contours of the settlement around 1800 and
within a 10-kilometer buffer. The following columns use the baseline controls (Table 3), but: column (2) adds a control for longitude;
column (3) adds controls for agricultural productivity within the expanded city fringe (caloric potential, and bulk density); column (4)
adds a control for land prices in 1815 (see Heblich et al., 2024); and column (5) adds a control for the presence of agricultural buildings
in 1750, the number of Domesday buildings and the incidence of parliamentary enclosures within the contours of the settlement
around 1800 and within 1, 2, 3, 5, 10 kms (Heldring et al., 2022). The two instruments are the “shift-share” predictor of industrial
concentration (𝜒𝑐) defined in Section 2.2 and the land ownership fragmentation in the immediate fringe of urban settlements, 𝜁𝑐 .
F-statistics are derived using the weak instrument F-test proposed in Sanderson and Windmeijer (2016).

umn (2), we control for longitude. In column (3), we control for the average Caloric

Suitability Index (Galor and Özak, 2016) and for carbon content—both calculated within

the expanded city fringe. In column (4), we control for land prices in 1815 (see Heblich

et al., 2024). In column (5), we control for the presence of agricultural buildings in 1750,

the number of Domesday buildings and the role of local institutions through the preva-

lence of parliamentary enclosures (Heldring et al., 2022). Across these specifications, the

estimates for the Herfindahl index (1881) and employment (1881) are stable.

Our argument is that the industrial concentration effect operates through intertem-

poral externalities à la Jacobs, i.e., through the (lack of) diversity of geographically prox-

imate industries, rather than secular trends in agricultural employment or manufactur-

ing. In Table A2, we show that our findings are orthogonal to the process of structural

transformation and the reallocation of labor across wider sectors (e.g., between agricul-

ture and manufacturing, or towards services). More specifically, we add to our baseline

specification: a Herfindahl index predicted as in Section 2.2, but with 1-digit sectors
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Table A2. The long-run effect of industrial concentration and population—sensitivity to industry controls.

Wage (2020) (1) (2) (3) (4) (5)

Herfindahl index (1881, ℎ𝑐) -3.111 -2.824 -2.639 -2.688 -2.912
(1.060) (0.908) (0.903) (0.788) (0.961)

Employment (1881, 𝑙𝑐) -0.357 -0.223 -0.309 -0.225 -0.204
(0.191) (0.190) (0.178) (0.183) (0.204)

Observations 428 428 428 428 428
F-stat (ℎ𝑐) 12.43 16.82 16.41 14.03 11.56
F-stat (𝑙𝑐) 12.98 14.65 13.69 10.33 8.84
Additional controls Herf. (1d) Agri. Service Manu. All
Notes: A unit of observation is a cluster of settlements around 1790-1820—identified following our clustering procedure described
in Section 2.2. Standard errors are reported between parentheses and are clustered at the level of the closest city as of 2015 (there
are 55 cities with a formal city status in England). The dependent variable is the (log) wage in 2020 (labor income estimates for
small areas based on the Family Resources Survey). The specifications include the same controls as in Table 3. The two instruments
are the “shift-share” predictor of industrial concentration (𝜒𝑐) defined in Section 2.2 and the land ownership fragmentation in the
immediate fringe of urban settlements, 𝜁𝑐 . Column (1) adds a control for a Herfindahl index predicted as in Section 2.2, but with
1-digit sectors (agriculture, manufacturing, services, transport, public); column (2) adds a control for the agricultural employment
share in 1881; column (3) adds a control for the service employment share in 1881; column (4) adds a control for the manufacturing
employment share in 1881; and column (5) adds all previous controls. F-statistics are derived using the weak instrument F-test
proposed in Sanderson and Windmeijer (2016).

(agriculture, manufacturing, services, transport, public); a control for the agricultural

employment share in 1881; a control for the service employment share in 1881; a control

for the manufacturing share in 1881; and all these controls altogether.

Figure A12. The long-run effect of industrial concentration—dropping industries one by one.

Notes: This Figure shows the estimated effect of 1881 industrial concentration on the 2020 (log) wage in specifications in which we
drop each of the 16 major nineteenth-century industries one by one from the actual and predicted Herfindahl indices.

Next, we examine whether our main empirical finding is driven by any one of the

major nineteenth-century industries. To this end, we re-run the baseline specification

of Table 3, column (2), after dropping each of the 16 major industries, one by one. Fig-
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ure A12 shows that the estimated effect of industrial concentration on the long-run wage

remains negative and stable in all of these specifications. This suggests that none of the

major industries are driving our headline empirical result.

Table A3. The long-run effect of industrial concentration and population—alternative instruments (and
indices) for industrial concentration.

Wage (2020) (1) (2) (3) (4)

Herfindahl index (1881, ℎ𝑐) -2.583 -3.443 -2.463 -1.551
(0.788) (1.572) (0.894) (0.791)

Employment (1881, 𝑙𝑐) -0.311 -0.263 -0.340 -0.406
(0.182) (0.164) (0.176) (0.212)

Observations 428 428 428 428
F-stat (ℎ𝑐) 17.56 9.26 14.13 31.23
F-stat (𝑙𝑐) 14.60 10.94 14.80 12.33
Instrument (𝜒𝑐) Leave-out Shift-share Buffer Linkages
Notes: A unit of observation is a cluster of settlements around 1790-1820—identified following our clustering procedure described in
Section 2.2. Standard errors are reported between parentheses and are clustered at the level of the closest city as of 2015 (there are 55
cities with a formal city status in England). The dependent variable is the (log) wage in 2020 (labor income estimates for small areas
based on the Family Resources Survey). The specifications include the same controls as in Table 3. The two instruments are the “shift-
share” predictor of industrial concentration (𝜒𝑐) defined in Section 2.2 and the land ownership fragmentation in the immediate fringe
of urban settlements, 𝜁𝑐 . Column (1) relies on an instrument for industrial concentration (𝜒𝑐) using a leave-out approach for the shifts
(sectoral growth outside of a buffer of 10 kilometers around the city); column (2) uses an instrument for industrial concentration (𝜒𝑐)
in a purer shift-share design (∑𝑖 (𝑠𝑖𝑐𝑔𝑖)

2 /∑𝑖 𝑠2𝑖𝑐); column (3) constructs the baseline instrument for industrial concentration using
a buffer of 10 kilometers around the city (industrial concentration, ℎ𝑐 , is then also constructed within this buffer); and column (4)
constructs a weighted Herfindahl index where cross-sectoral weights are parametrized on the occupational transitions for employed
males in the micro-censuses of 1851 and 1861. In column (4), we add the weighted Herfindahl index in 1817 as a control. F-statistics
are derived using the weak instrument F-test proposed in Sanderson and Windmeijer (2016).

Alternative indices and instruments of industrial concentration In Table A3, we

probe the robustness of our results to alternative instruments and indices of industrial

concentration: using a leave-out approach for the shifts (sectoral growth outside of a 10-

km buffer around the city, column 1); using a purer shift-share design ∑𝑗 (𝑠𝑗𝑐𝑔𝑗)
2
/∑𝑗 𝑠2𝑗𝑐

in column (2); using a buffer of 10 kilometers around the city to define local indus-

trial concentration and local predicted industrial concentration (column 3); and using

Herfindahl indices (actual and predicted) with cross-sectoral weights in column (4). More

specifically, letting 𝛼𝑖𝑗 denote the symmetric transition probability between sectors 𝑖 and

𝑗 for employed males linked through the micro-censuses in 1851 and in 1861, one can

define a Herfindahl index as ℎ𝑐 = ∑𝑖,𝑗 𝛼𝑖𝑗𝑠𝑖𝑐𝑠𝑗𝑐, both in 1881 and in 1817, or based on

predicted shares for the instrument. Intuitively, this measure coincides with our base-

line measure when the matrix 𝐀 = (𝛼𝑖𝑗)𝑖,𝑗 is the identity matrix. The main take-away

messages are that the negative effect of industrial concentration resists these alternative
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specifications for the indices/instruments of industrial concentration.

Table A4. The long-run effect of industrial concentration and population—alternative specifications for
industrial concentration.

Wage (2020) (1) (2) (3) (4)

Herfindahl index (1881, ℎ𝑐) -0.496 0.132 -0.576 -4.464
(0.158) (0.042) (0.657) (1.325)

Employment (1881, 𝑙𝑐) -0.354 -0.393 -0.414 -0.103
(0.195) (0.204) (0.300) (0.209)

Observations 428 428 428 428
F-stat (ℎ𝑐) 17.74 21.65 4.74 12.94
F-stat (𝑙𝑐) 13.57 12.87 6.38 12.76
Specification (ℎ𝑐 , 𝜒𝑐) Logarithm Inverse Distance Baseline
Additional controls – – – Active ind.
Notes: A unit of observation is a cluster of settlements around 1790-1820—identified following our clustering procedure described
in Section 2.2. Standard errors are reported between parentheses and are clustered at the level of the closest city as of 2015 (there
are 55 cities with a formal city status in England). The dependent variable is the (log) wage in 2020 (labor income estimates for small
areas based on the Family Resources Survey). The specifications include the same controls as in Table 3. The two instruments are the
“shift-share” predictor of industrial concentration (𝜒𝑐) defined in Section 2.2 and the land ownership fragmentation in the immediate
fringe of urban settlements, 𝜁𝑐 . Column (1) uses the logarithms of the Herfindahl index (1881, ℎ𝑐) and its instrument; column (2)
transforms the Herfindahl index (1881, ℎ𝑐) and its instrument through an inverse (𝑓 (𝑥) = 1/(0.05 + 𝑥)); column (3) uses instead an
indicator of distance to the average national portfolio (∑𝑗 |𝑠𝑗𝑐 − 𝑠𝑗 |); and column (4) uses the baseline specification but controls for
the number of active industries in 1817 and in 1881. F-statistics are derived using the weak instrument F-test proposed in Sanderson
and Windmeijer (2016).

Table A4 further probes the robustness of our estimates to the exact specification,

e.g., using the logarithms of the Herfindahl index (1881, ℎ𝑐) or its inverse (as discussed in

Combes and Gobillon, 2015). We perform these robustness checks in column (1) and (2):

a 50% higher Herfindahl index is associated with a 25% lower wage; and a 1.8 higher value

for the index of industrial diversity (a standard deviation in the inverse transformation

of the Herfindahl index) is associated with a 26% higher wage. Column (3) considers an

alternative measure of local industrial “specialization”, measuring the industrial shares

against those of the country-wide portfolio: ℎ𝑐 = ∑𝑗 |𝑠𝑗𝑐 − 𝑠𝑗 | (and its associated instru-

ment based on predicted shares). A 0.1 higher specialization index—about one standard

deviation—is associated with a 6% lower wage, but the estimate is noisy due to a weak

first stage. Finally, column (4) uses the baseline specification but controls for the number

of active industries in 1817 and in 1881.

Spatial spillovers and the effect of specialization in nearby cities While our

quantitative model allows for spatial linkages between cities in terms of factor mobility

and the trade of varieties produced in each sector, it does not allow for Jacobs externali-

ties to operate across cities. In Table A5, we provide support for this hypothesis by adding
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Table A5. The long-run effect of industrial concentration and population—spatial spillovers.

Wage (2020) (1) (2) (3)

Herfindahl index (1881, ℎ𝑐) -2.954 -2.902 -2.716
(1.252) (1.250) (1.130)

Herfindahl index in nearby cities (1881, ℎ𝑑𝑐 ) 0.406 0.568 0.173
(1.098) (1.227) (0.942)

Employment (1881, 𝑙𝑐) -0.309 -0.311 -0.319
(0.179) (0.187) (0.229)

Observations 428 428 428
F-stat (ℎ𝑐) 31.71 13.03 9.89
F-stat (ℎ𝑑𝑐 ) 48.15 14.38 11.10
F-stat (𝑙𝑐) 15.79 12.60 9.54
Nearby instrument (𝜒 𝑑

𝑐 ) Buffer-10 Buffer-20 Buffer-40
Notes: A unit of observation is a cluster of settlements around 1790-1820—identified following our clustering procedure described in
Section 2.2. Standard errors are reported between parentheses and are clustered at the level of the closest city as of 2015 (there are 55
cities with a formal city status in England). The dependent variable is the (log) wage in 2020 (labor income estimates for small areas
based on the Family Resources Survey). The specifications include the same controls as in Table 3. The three instruments are the
“shift-share” predictor of industrial concentration (𝜒𝑐) defined in Section 2.2, the “shift-share” predictor of industrial concentration
using buffers of 10, 20, and 40 kilometers around the city, and the land ownership fragmentation in the immediate fringe of urban
settlements, 𝜁𝑐 . The variables ℎ𝑑𝑐 are industrial concentration indices using buffers of 10, 20, and 40 kilometers around the city.
F-statistics are derived using the weak instrument F-test proposed in Sanderson and Windmeijer (2016).

a measure of industrial concentration within 10, 20, and 40 kilometers around each city,

and instrumenting the latter with a “shift-share” predictor of industrial concentration

based on initial employment within the same buffers. We find that Jacobs externalities

operate within 10 kilometers around each city—we have 435 cities in our baseline dis-

tributed over more than 100,000 square kilometers such that a limited number of those

cities fall into 10-kilometer buffers around other cities.

Treatment heterogeneity In Table A6, we document treatment heterogeneity in the

incidence of services (in 1881, column 1), manufacturing (in 1881, column 2), transporta-

tion (in 1881, column 3), and the success of the industry portfolio during the twentieth

century (a shift-share control based on employment shares in 1881 and aggregate em-

ployment growth between 1881–1971, column 4). The interacted variables are standard-

ized such that the estimate in front of the interaction can be understood as the extent to

which one standard deviation in the interacted variable affects the treatment effect. We

mostly find that cities that are service-intensive are slightly less prone to a specializa-

tion curse, and conversely, manufacturing intensity increases the treatment effect. This

heterogeneity in treatment remains however very limited.

In Table A7, we look at the interacted effect of industrial concentration and size: we
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Table A6. The long-run effect of industrial concentration and population—treatment heterogeneity.

Interaction with ... Serv. (1881) Manu. (1881) Tra. (1881) Manu. (1971)
Wage (2020) (1) (2) (3) (4)

Herfindahl index (1881, ℎ𝑐) -2.805 -3.281 -2.956 -2.615
(1.027) (1.270) (0.925) (0.856)

Employment (1881, 𝑙𝑐) -0.338 -0.314 -0.299 -0.263
(0.192) (0.243) (0.176) (0.169)

Herfindahl (1881) × Int. -0.171 -1.056 -0.464 -0.325
(0.348) (0.819) (0.294) (0.474)

Observations 428 428 428 428
F-stat (ℎ𝑐) 15.96 6.03 20.22 18.36
F-stat (𝑙𝑐) 13.11 5.03 14.29 17.55
F-stat (Int.) 48.82 5.18 62.56 42.46
Notes: A unit of observation is a cluster of settlements around 1790-1820—identified following our clustering procedure described
in Section 2.2. Standard errors are reported between parentheses and are clustered at the level of the closest city as of 2015 (there
are 55 cities with a formal city status in England). The dependent variable is the (log) wage in 2020 (labor income estimates for
small areas based on the Family Resources Survey). The specifications include the same controls as in Table 3 (in addition to the
interacted variable). The three instruments are the “shift-share” predictor of industrial concentration (𝜒𝑐) defined in Section 2.2,
the land ownership fragmentation in the immediate fringe of urban settlements, 𝜁𝑐 and its interaction with the different interacted
variables. F-statistics are derived using the weak instrument F-test proposed in Sanderson and Windmeijer (2016).

find that larger cities, e.g., 50% as large, are able to mitigate the industrial concentration

effect—which becomes around 25% smaller, whether we consider the share of unskilled

workers in 1971 or the 2020 (log) wage. Again, this heterogeneity in treatment is limited.

Sensitivity analysis We consider a sensitivity analysis around our baseline specifica-

tion changing: the land fragmentation instrument, computed with a fixed buffer (1 kilo-

meter), dropping bulk density from the algorithm delineating parcels, using SLIC rather

than Quickshift to segment space into potential agricultural parcels (see Figure A5); with

different inference to account for spatial correlation (clustering at the level of registra-

tion districts or poor law unions, at the level of counties, at the level of Travel-to-Work

Area, see Figure A13); with different cut-offs to define urban settlements (4000, 5000,

6000 inhabitants around 1820, see Figure A13).

Finally, our baseline specification uses an outcome in 1971, before the deregulation

policies implemented by Margaret Thatcher. In Table A8, we conduct a sensitivity anal-

ysis with outcomes computed in 1981 and 1991 and we show similar standardized effects

over time, with a slight inflection after 1991.
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Table A7. The long-run effect of industrial concentration, population, and their interaction.

Unskilled employment (1971) Wage (2020)
(1) (2)

Herfindahl index (1881, ℎ𝑐) 0.447 -3.979
(0.197) (1.462)

Employment (1881, 𝑙𝑐) 0.060 -0.668
(0.049) (0.339)

Herfindahl × Employment -0.157 2.663
(0.262) (2.072)

Observations 428 428
F-stat (ℎ𝑐) 14.12 14.12
F-stat (𝑙𝑐) 13.67 13.67
F-stat (Interaction) 7.49 7.49
Notes: A unit of observation is a cluster of settlements around 1790-1820—identified following our clustering procedure described
in Section 2.2. Standard errors are reported between parentheses and are clustered at the level of the closest city as of 2015 (there
are 55 cities with a formal city status in England). In column (1), the dependent variable is the share of unskilled workers in 1971
(following the definition used in Heblich et al., 2021); in column (2), the dependent variable is a measure of (log) wages in 2020.
The main endogenous variables are the Herfindahl index of industrial concentration in 1881 (ℎ𝑐), (log) employment in 1881 (𝑙𝑐), and
their interaction. The set of baseline controls are the same as in Table 2. The three instruments are the “shift-share” predictor of
industrial concentration (𝜒𝑐) defined in Section 2.2, the land ownership fragmentation in the immediate fringe of urban settlements,
𝜁𝑐 , and their interaction. We also control for a shift-share control based on employment shares in 1881 and aggregate employment
growth between 1881–1971, to clean for sector-specific trends. F-statistics are derived using the weak instrument F-test proposed in
Sanderson and Windmeijer (2016).

Figure A13. The long-run effect of industrial concentration—instrument, city selection, and clustering.

Notes: This Figure shows the estimated effect of 1881 industrial concentration on the 2020 (log) wage in the following robustness
checks: we consider a sensitivity analysis around our baseline specification changing the land fragmentation instrument, computed
with a fixed buffer (1 kilometer, “buffer”), dropping bulk density from the algorithm delineating parcels (“faults”), using SLIC rather
than Quickshift to segment space into potential agricultural parcels (“SLIC”); with different cut-offs to define urban settlements (4000,
5000, 6000 inhabitants around 1820); with different inference to account for spatial correlation (clustering at the level of registration
districts or poor law unions, at the level of counties, at the level of Travel-to-Work Area.
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Table A8. The long-run effect of population and industrial concentration—sensitivity to other years.

1971 1981 1991
Unskilled employment (1) (2) (3)

Herfindahl index (1881, ℎ𝑐) 0.369 0.570 1.025
(0.148) (0.215) (0.315)
[9.47] [10.18] [12.37]

Employment (1881, 𝑙𝑐) 0.038 0.065 0.099
(0.030) (0.042) (0.066)
[0.98] [1.16] [1.20]

Observations 428 428 428
F-stat (ℎ𝑐) 15.30 15.30 15.30
F-stat (𝑙𝑐) 14.94 14.94 14.94
Notes: A unit of observation is a cluster of settlements around 1790-1820—identified following our clustering procedure described in
Section 2.2. Standard errors are reported between parentheses and are clustered at the level of the closest city as of 2015 (there are
55 cities with a formal city status in England). Standardized effects are reported in square brackets. The dependent variables are the
shares of unskilled workers in 1971, 1981 and 1991 (following the definition used in Heblich et al., 2021). The specifications include
the same controls as in column (2) of Table 3. The two instruments are the “shift-share” predictor of industrial concentration (𝜒𝑐)
defined in Section 2.2 and the land ownership fragmentation in the immediate fringe of urban settlements, 𝜁𝑐 . F-statistics are derived
using the weak instrument F-test proposed in Sanderson and Windmeijer (2016).
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B Theory appendix

B.1 A model with infinitely-lived workers

In this appendix, we present a version of the model in which workers are infinitely lived

and make forward-looking decisions about their locations, subject to migration costs

across periods.

We assume that a worker 𝑚 who resided in city 𝑐𝑡−1 at the end of period 𝑡 −1 chooses

her city 𝑐𝑡 for the next period to maximize her total discounted stream of future utilities.

This implies that her value function is given by,

𝑣𝑚𝑐𝑡−1,𝑡 = max
𝑐𝑡

{
max

𝑖𝑡
ln𝑈𝑚

𝑖𝑡 ,𝑐𝑡 ,𝑡 − ln𝑚𝑐𝑡−1,𝑐𝑡 + 𝛽𝐄𝑡 [𝑣𝑚𝑐𝑡 ,𝑡+1]

}
,

where 𝑈𝑚
𝑖𝑡 ,𝑐𝑡 ,𝑡 is the amenity-adjusted real income in period 𝑡, given by Equation (2), and

𝑚𝑐𝑡−1,𝑐𝑡 is the cost of moving from city 𝑐𝑡−1 to city 𝑐𝑡 . The last term, 𝐄𝑡 [𝑣𝑚𝑐𝑡 ,𝑡+1], is the

worker’s continuation value, which is discounted by a factor 𝛽 ∈ [0, 1). The continu-

ation value includes an expectation because the future taste shocks for cities, given by

Equation (5), are not yet realized in period 𝑡. The model presented in Section 4 can be

viewed as a special case of this more general model, with 𝛽 = 0 and 𝑚𝑐𝑑 = 0 for all cities

𝑐 and 𝑑.

Given the Fréchet distribution of idiosyncratic city tastes, it can be shown that the

expected value of a city 𝑐 at time 𝑡, 𝑉𝑐𝑡 = 𝑒𝐄𝑡[𝑣𝑚𝑐,𝑡+1], evolves according to the equation,

𝑉𝑐𝑡 =
𝐶

∑
𝑑=1

(𝑎𝑑
𝑤𝑑,𝑡+1 + 𝑅𝑑,𝑡+1

𝑃𝑑,𝑡+1
𝐿−𝜆𝑑,𝑡+1𝑚

−1
𝑐𝑑 𝑉

𝛽
𝑑,𝑡+1)

1/𝜂

, (B.1)

while the fraction of workers who choose to move from city 𝑐 to city 𝑑 between periods

𝑡 − 1 and 𝑡 equals,

𝜇𝑐,𝑑,𝑡−1 =
(𝑎𝑑

𝑤𝑑𝑡+𝑅𝑑𝑡
𝑃𝑑𝑡

𝐿−𝜆𝑑𝑡 𝑚−1
𝑐𝑑 𝑉

𝛽
𝑑𝑡)

1/𝜂

∑𝐶
𝑑′=1 (𝑎𝑑′

𝑤𝑑′ ,𝑡+𝑅𝑑′ ,𝑡
𝑃𝑑′ ,𝑡

𝐿−𝜆𝑑′,𝑡𝑚−1
𝑐,𝑑′𝑉

𝛽
𝑑′,𝑡)

1/𝜂 .

As a consequence, the population of a city 𝑑 evolves according to the equation,

𝐿𝑑𝑡 =
𝐶

∑
𝑐=1

(𝑎𝑑
𝑤𝑑𝑡+𝑅𝑑𝑡

𝑃𝑑𝑡
𝐿−𝜆𝑑𝑡 𝑚−1

𝑐𝑑 𝑉
𝛽
𝑑𝑡)

1/𝜂

∑𝐶
𝑑′=1 (𝑎𝑑′

𝑤𝑑′ ,𝑡+𝑅𝑑′ ,𝑡
𝑃𝑑′ ,𝑡

𝐿−𝜆𝑑′,𝑡𝑚−1
𝑐,𝑑′𝑉

𝛽
𝑑′,𝑡)

1/𝜂𝐿𝑐,𝑡−1. (B.2)

Equations (B.1) and (B.2), together with Equations (9), (11) and (12), determine the equi-
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librium of the model with infinitely-lived workers. Note that Equation (12), which we

use to estimate the strength of dynamic externalities, is unchanged in this more general

model.

B.2 Derivation of Equation (13)

Given that workers are freely mobile across industries, nominal wages equalize across

industries within each city:

𝑤𝑖𝑐𝑡 = 𝑤𝑐𝑡 .

Plugging this result into Equation (8), we obtain total land rents in city 𝑐 as,

𝑅𝑐𝑡𝐿𝑐𝑡 = 𝑟𝑐𝑡𝐻𝑐𝑡 =
1 − 𝛾
𝛾

𝑤𝑐𝑡𝐿𝑐𝑡 ,

from which we obtain,

𝑤𝑐𝑡 + 𝑅𝑐𝑡 =
1
𝛾
𝑤𝑐𝑡 . (B.3)

Also, from Equation (7), we get

𝑟𝑐𝑡 = (
1 − 𝛾
𝛾 )

1/𝜁𝑐𝑡

𝑤1/𝜁𝑐𝑡
𝑐𝑡 𝐿1/𝜁𝑐𝑡𝑐𝑡 . (B.4)

Given perfect competition, the price of each variety 𝑐 in industry 𝑖 at the factory gate

is equal to its marginal cost of production in equilibrium,

𝑝𝑖𝑐𝑡 =  −1
𝑖𝑐𝑡 𝑤

𝛾
𝑐𝑡𝑟

1−𝛾
𝑐𝑡 = (

1 − 𝛾
𝛾 )

1−𝛾
𝜁𝑐𝑡

 −1
𝑖𝑐𝑡 𝐿

1−𝛾
𝜁𝑐𝑡
𝑐𝑡 𝑤

𝛾+ 1−𝛾
𝜁𝑐𝑡

𝑐𝑡 , (B.5)

where we used Equation (B.4). As a result, we can write the price index of industry 𝑖,
Equation (10), as,

𝑃𝑖𝑑𝑡 = [

𝐶

∑
𝑐=1

(
1 − 𝛾
𝛾 )

− 1−𝛾
𝜁𝑐𝑡

(𝜖−1)

 𝜖−1
𝑖𝑐𝑡 𝐿

− 1−𝛾
𝜁𝑐𝑡

(𝜖−1)
𝑐𝑡 𝑤

−(𝛾+
1−𝛾
𝜁𝑐𝑡 )(𝜖−1)

𝑐𝑡 𝜏1−𝜖𝑖𝑐𝑑𝑡 ]

1
1−𝜖

, (B.6)

and market clearing condition (9) as,

𝑤𝑐𝑡𝐿𝑖𝑐𝑡 = (
1 − 𝛾
𝛾 )

− 1−𝛾
𝜁𝑐𝑡

(𝜖−1)

𝑇 𝜖−1
𝑖𝑐𝑡 𝐿

− 1−𝛾
𝜁𝑐𝑡

(𝜖−1)
𝑐𝑡 𝑤

−(𝛾+
1−𝛾
𝜁𝑐𝑡 )(𝜖−1)

𝑐𝑡

𝐶

∑
𝑑=1

𝑃𝜎−1
𝑑𝑡 𝑃 𝜖−𝜎

𝑖𝑑𝑡 𝑤𝑑𝑡𝐿𝑑𝑡𝜏1−𝜖𝑖𝑐𝑑𝑡 , (B.7)

where we also use Equation (B.3).

By the Fréchet distribution of idiosyncratic city tastes, the probability that a worker
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chooses city 𝑐 equals,

𝑃𝑟 [𝑈𝑚
𝑐𝑡 ≥ 𝑈𝑚

𝑑𝑡 , ∀𝑑] =
(𝑎𝑐 𝑤𝑐𝑡+𝑅𝑐𝑡

𝑃𝑐𝑡
𝐿−𝜆𝑐𝑡 )

1/𝜂

∑𝐶
𝑑=1 (𝑎𝑑

𝑤𝑑𝑡+𝑅𝑑𝑡
𝑃𝑑𝑡

𝐿−𝜆𝑑𝑡 )
1/𝜂 = (

1
𝛾 𝑎𝑐

𝑤𝑐𝑡
𝑃𝑐𝑡
𝐿−𝜆𝑐𝑡 )

1/𝜂

∑𝐶
𝑑=1 (

1
𝛾 𝑎𝑑

𝑤𝑑𝑡
𝑃𝑑𝑡
𝐿−𝜆𝑑𝑡 )

1/𝜂 .

In equilibrium, the fraction of workers choosing to live in 𝑐 becomes equal to this prob-

ability:

𝐿𝑐𝑡
�̄�

= (
1
𝛾 𝑎𝑐

𝑤𝑐𝑡
𝑃𝑐𝑡
𝐿−𝜆𝑐𝑡 )

1/𝜂

∑𝐶
𝑑=1 (

1
𝛾 𝑎𝑑

𝑤𝑑𝑡
𝑃𝑑𝑡
𝐿−𝜆𝑑𝑡 )

1/𝜂 ,

from which:

𝑃𝑐𝑡 = (𝛾𝑈 𝑡)
−1
𝑎𝑐𝑤𝑐𝑡𝐿

−(𝜆+𝜂)
𝑐𝑡 , (B.8)

where:

𝑈 𝑡 =
⎡
⎢
⎢
⎢
⎣

∑𝐶
𝑑=1 (

1
𝛾 𝑎𝑑

𝑤𝑑𝑡
𝑃𝑑𝑡
𝐿−𝜆𝑑𝑡 )

1/𝜂

𝐿

⎤
⎥
⎥
⎥
⎦

𝜂

.

Plugging this result into Equations (11) and (B.7) and rearranging Equation (B.6), we

obtain the following system of equations:

𝑃 1−𝜖
𝑖𝑐𝑡 =

𝐶

∑
𝑑=1

(
1 − 𝛾
𝛾 )

− 1−𝛾
𝜁𝑑𝑡

(𝜖−1)

𝑇 𝜖−1
𝑖𝑑𝑡 𝐿

−(
1−𝛾
𝜁𝑑𝑡

−𝛼)(𝜖−1)
𝑑𝑡 𝑤

−(𝛾+
1−𝛾
𝜁𝑑𝑡 )(𝜖−1)

𝑑𝑡 𝜏1−𝜖𝑖𝑑𝑐𝑡 (B.9)

𝑎1−𝜎𝑐 𝑤1−𝜎
𝑐𝑡 𝐿(𝜆+𝜂)(𝜎−1)𝑐𝑡 = (𝛾𝑈 𝑡)

1−𝜎
𝐼

∑
𝑖=1

𝑃 1−𝜎
𝑖𝑐𝑡 (B.10)

(
1 − 𝛾
𝛾 )

1−𝛾
𝜁𝑐𝑡

(𝜖−1)

𝑤
1+(𝛾+

1−𝛾
𝜁𝑐𝑡 )(𝜖−1)

𝑐𝑡 𝐿
1+(

1−𝛾
𝜁𝑐𝑡

−𝛼)(𝜖−1)
𝑐𝑡 =

(𝛾𝑈 𝑡)
1−𝜎

𝐼

∑
𝑖=1

𝐶

∑
𝑑=1

𝑇 𝜖−1
𝑖𝑐𝑡 𝑃

𝜖−𝜎
𝑖𝑑𝑡 �̄�𝜎−1𝑑 𝑤𝜎

𝑑𝑡𝐿
1−(𝜆+𝜂)(𝜎−1)
𝑑𝑡 𝜏1−𝜖𝑖𝑐𝑑𝑡

(B.11)

where:

𝑇 𝑖𝑐𝑡 = 𝑇𝑖𝑐𝑡𝑓𝑖 (𝐿𝑐,𝑡−1,
{
𝐿𝑗𝑐,𝑡−1

}
𝑗∈𝐼) ,

is the part of Total Factor Productivity that is exogenous in period 𝑡. Applying the change

in variables in Equation (15) and recalling that 𝑤𝑖𝑐𝑡 = 𝑤𝑐𝑡 , Equation (13) immediately

follows from Equations (B.9), (B.10) and (B.11).
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B.3 Proof of Theorem 1

Rearranging the period-1 version of Equations (B.9) to (B.11) yields:

𝑃 1−𝜖
𝑖𝑐1 =

𝐶

∑
𝑑=1

(
1 − 𝛾
𝛾 )

− 1−𝛾
𝜉𝑑1

(𝜖−1)

𝑇 𝜖−1
𝑖𝑑1 𝐿

−(
1−𝛾
𝜉𝑑1

−𝛼)(𝜖−1)
𝑑1 𝑤

−(𝛾+
1−𝛾
𝜉𝑑1 )(𝜖−1)

𝑑1 𝜏1−𝜖𝑖𝑑𝑐1 (B.12)

(
𝑎𝑐
𝑈 1)

1−𝜎

𝑤1−𝜎
𝑐1 𝐿(𝜆+𝜂)(𝜎−1)𝑐1 = 𝛾1−𝜎

𝐼

∑
𝑖=1

𝑃 1−𝜎
𝑖𝑐1 (B.13)
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(B.14)

from which we obtain the following system of 3𝐼𝐶 equations:

𝑥1
𝑖𝑐 =

𝐼

∑
𝑗=1

𝐶

∑
𝑑=1

(𝑥3
𝑗𝑑)

−1
𝐾 1
𝑖𝑐𝑗𝑑

𝑥2
𝑖𝑐 =

𝐼

∑
𝑗=1

𝐶

∑
𝑑=1

(𝑥1
𝑗𝑑)

𝜎−1
𝜖−1 𝐾 2

𝑖𝑐𝑗𝑑

𝑥3
𝑖𝑐 =

𝐼

∑
𝑗=1

𝐶

∑
𝑑=1

(𝑥1
𝑗𝑑)

− 𝜖−𝜎
𝜖−1 (�̂�2

𝑗𝑑)
−1
𝐾 3
𝑖𝑐𝑗𝑑

where 𝑥1
𝑖𝑐 = 𝑃 1−𝜖

𝑖𝑐1 , 𝑥2
𝑖𝑐 = ( �̄�𝑐

𝑈 1 )
1−𝜎

, and 𝑥3
𝑖𝑐 = 𝑇 1−𝜖

𝑖𝑐1 .

The solution to this system exists and is unique if the largest eigenvalue of matrix 𝐀
is less or equal to one in absolute value (Allen et al., 2020), where 𝐀 is:

𝐀 =
⎡
⎢
⎢
⎢
⎣

0 0 1
||
𝜎−1
𝜖−1

|| 0 0
||
𝜖−𝜎
𝜖−1

|| 1 0

⎤
⎥
⎥
⎥
⎦

.

One can easily verify that, under the assumption 𝜖 > 𝜎 > 1, the largest eigenvalue of 𝐀
is equal to 1.

B.4 Complements to the linear economy

This section provides complements to our illustrative exercise of Section 4.3. More

specifically, the top panels of Figure B1 presents the spatial distribution of industrial

concentration and population in a world in which cities are in autarky. In particular,

panel (a) sheds some light on the absolute and relative impact of trade on industrial con-
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centration. The bottom panels of Figure B1 presents the same outcomes in a world in

which the land supply elasticity of Western cities is decreased to zero.

Figure B1. The linear economy under autarky in period 0.
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(b) Employment
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Notes: The values for the structural parameters are set as follows: 𝛼 = 0.06; 𝛾 = 0.65; 𝜖 = 5; 𝜙 = 0.25; 𝜎 = 4; �̄� = 10, 000, 000; 𝜁𝑐𝑡 = 2.

B.5 Complements to the model parameterization and estimation

Trading costs over time To compute trading costs over time, we follow Alvarez-

Palau et al. (2013) and combine the main transport modes at the time. Specifically, we

combine information on: (i) the road network that was represented by turnpike roads; (ii)

waterways consisting of rivers, canals and coastal routes; and (iii) the railway network

and railway stations observed in 1880 (Cobb, 2003) in a multi-modal transport network

and calculate the least cost path between all city-centroids of our sample. We connect

the different transport modes and city-centroids with direct linear routes. Straight-line

distances between points are calculated using the Manhattan distance metric, which

reflects the reality that roads typically do not follow direct, ‘as-the-crow-flies’ paths. We

consider the following straight-line connections:

• Every city-centroid located within a 15km radius is interconnected through direct

linear routes. These direct links bypass the need for detours along the actual road

network for short distances.

• Every city-centroid located within 10km from the nearest river is interconnected

through linear routes.

• Every city-centroid located within 10km from the nearest turnpike road to the east,

south, west and north is interconnected through linear routes.

• Every city-centroid located within 10km from the nearest port is interconnected

through linear routes.

• Every city-centroid located within 10km from the nearest 1880 railway station is

interconnected through linear routes.
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• Every seaport located within 10km from the nearest river is connected through

linear routes.

• Every seaport located within 10km from the nearest turnpike road is intercon-

nected through linear routes.

• Every seaport located within 10km from the nearest railway station is intercon-

nected through linear routes.

• Every railway station located within 10km from the nearest river is interconnected

through linear routes.

• Every railway station located within 10km from the nearest turnpike road is in-

terconnected through linear routes.

All other distances are calculated along the specific transport network path. To trans-

late distances into costs, we consider the following transport costs in ascending order: (i)

cost of shipping goods on coastal waterways: 0.003 per mile; (ii) cost of shipping goods

on rail: 0.027 per mile; (iii) cost of shipping goods on rivers or canals: 0.036 per mile; (iv)

cost of shipping goods on roads: 0.213 per mile. In addition, we assume fixed transship-

ment costs between road and railway, waterways, or coastal routes of 1.895. Lastly, we

assume that transport between the city-centroid and the nearest sea or river port, railway

station or turnpike road is not distance dependent, i.e., we assume that actual production

locations within cities are directly connected to relevant transport modes. This is on line

with reality where we see that canals meander through Manchester, connecting different

production locations, and we also see railways branching out to industrial districts.

Numerical procedure to invert the model The challenge involved in solving Equa-

tions (B.12) to (B.14) is that the system is homogenous of degree one in unobserved

fundamentals. While iteration can be proven to work in similar systems if the degree of

homogeneity is below one (Allen et al., 2020), this is no longer necessarily true if it is

equal to one.

To circumvent this issue, we borrow from Desmet et al. (2018) and approximate the

system in the following way:

𝑃 1−𝜖
𝑖𝑐1 =

𝐶

∑
𝑑=1

(
1 − 𝛾
𝛾 )

− 1−𝛾
𝜉𝑑1

(𝜖−1)

𝑇 (𝜖−1)(1−𝛿)
𝑖𝑑1 𝐿

−(
1−𝛾
𝜉𝑑1

−𝛼)(𝜖−1)
𝑑1 𝑤

−(𝛾+
1−𝛾
𝜉𝑑1 )(𝜖−1)

𝑑1 𝜏1−𝜖𝑖𝑑𝑐1 (B.15)

(
𝑎𝑐
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𝐼

∑
𝑖=1

𝑃 1−𝜎
𝑖𝑐1 (B.16)

27



(
1 − 𝛾
𝛾 )

1−𝛾
𝜉𝑐1

(𝜖−1)

𝑤
1+(𝛾+

1−𝛾
𝜉𝑐1 )(𝜖−1)

𝑐1 𝐿(
1−𝛾
𝜉𝑐1

−𝛼)(𝜖−1)
𝑐1 𝑇 1−𝜖

𝑖𝑐1 𝐿𝑖𝑐1 =

𝛾1−𝜎
𝐶

∑
𝑑=1

𝑃 𝜖−𝜎−𝛿
𝑖𝑑1 (

𝑎𝑑
𝑈 1)

𝜎−1

𝑤𝜎
𝑑1𝐿

1−(𝜆+𝜂)(𝜎−1)
𝑑1 𝜏1−𝜖𝑖𝑐𝑑1

(B.17)

where the only difference relative to Equations (B.12) to (B.14) is that the parameter 𝛿
appears in Equations (B.15) and (B.17). As 𝛿 → 0, this system becomes identical to (B.12)

to (B.14).

Intuitively, for any small but positive 𝛿, the system (B.15) and (B.17) is homogenous

to a degree below one. Therefore, it can be solved by iteration. In practice, we start with

a 𝛿 = 0.128 and gradually lower 𝛿 to get closer and closer to the original system. We

stop when 𝛿 is low enough that the solution of the model under the recovered amenities

{𝑎𝑐}𝑐 and city-industry productivities
{
𝑇 𝑖𝑐1

}
𝑖,𝑐, computed as in Section 4.2, is sufficiently

close to the data.

The structural estimates for dynamic spillovers Section 5.1 describes (i) how we

recover the distribution of city amenities 𝑎𝑐 and city-industry productivities 𝑇 𝑖𝑐 around

2020 from wages𝑤𝑐 and employment by city-industry 𝐿𝑖𝑐 and (ii) the empirical estimation

of Equation (17) (see, e.g., Table 5).

Figure B2. The structural estimates for dynamic spillovers—an illustration.

(a) Productivity (b) Amenity

Notes: Panel (a) displays the relationship between industrial concentration in 1881 and standardized productivities 𝑇 𝑖𝑐 across our
435 cities and 88 industries; both measures are cleaned for all controls used in Table 2 and industry fixed effects. Panel (b) displays
the relationship between industrial concentration in 1881 and standardized amenities 𝑎𝑐 ; the x-axis and y-axis variables are then
cleaned for all controls used in Table 2.

In this Appendix, we provide an illustration of the effect of dynamic spillovers in

the spirit of Figure 8: we residualize city-industry (standardized) productivities 𝑇 𝑖𝑐 and

(standardized) amenities 𝑎𝑐, and we show their dependence on industrial concentration

in 1881. One can see that industrial concentration is negatively associated with future
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city productivity, but not with the estimated city amenities—consistent with the assump-

tions underlying our counterfactual experiments.
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