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1 Introduction

Capital irreversibility, stemming from a wedge between buying and selling prices of capital, is a

pervasive friction in firms’ investment decisions. This wedge reflects factors like asset specificity

(Ramey and Shapiro, 2001; Lanteri, 2018; Kermani and Ma, 2023), adverse selection and asym-

metric information (Akerlof, 1970; Kurlat, 2013; Bigio, 2015; Li and Whited, 2015), intermediary

fees (Nosal and Rocheteau, 2011), and obsolescence costs (Caunedo and Keller, 2020).

Exposed to a price wedge, firms adopt cautious investment strategies. During periods of high

productivity, firms do not fully scale up their capital stock, fearing future adverse shocks that would

force them to sell at a discount and instead make a sequence of gradual purchases. Conversely,

during low productivity, firms avoid large sell-offs to limit capital losses and thus sell capital

sequentially. The step-by-step nature of the investment process introduces path dependence:

Positive investments beget future positive investments; negative investments beget future negative

investments. At the aggregate level, investment becomes less responsive to productivity shocks,

and business cycle fluctuations persist longer (Pindyck, 1991; Bertola and Caballero, 1994; Abel

and Eberly, 1996).

We propose a new perspective for analyzing irreversibility’s role in shaping macroeconomic

dynamics. Our innovation is leveraging the Cumulative Impulse Response (CIR)—a measure of

how firms’ capital-productivity ratios respond to aggregate shocks—as both a diagnostic tool and a

calibration target. Unlike traditional approaches, which focus on matching steady-state moments

of investment rates (Cooper and Haltiwanger, 2006) and treat the CIR as an outcome, we use it as

a lens to study irreversibility and as an input for disciplining investment frictions. Applying this

framework to Chilean manufacturing data, we estimate a price wedge of 12%, which is necessary

to simultaneously match both the CIR and the distribution of investment rates. The calibrated

CIR is approximately 2, meaning a 1% aggregate productivity shock generates a 2% cumulative

deviation in average capital-productivity ratios. Without irreversibility, the CIR collapses to 1,

underscoring the wedge’s role in amplifying the persistence of aggregate fluctuations.

To establish this framework, we begin with a parsimonious investment model with idiosyncratic

productivity shocks, fixed capital adjustment costs, and a capital price wedge. The optimal

investment policy consists of an inaction region and distinct reset points—levels to which firms

reset their capital-productivity ratio after adjustments. This ratio would remain constant in a

frictionless world, as capital perfectly tracks productivity. Fixed adjustment costs allow the ratio

to drift during inaction, but firms reset to the same optimal ratio upon adjustment, erasing the

history of shocks. In contrast, a price wedge creates two reset ratios: one for upsizing capital at the

buying price and another for downsizing at the selling price. This dual-reset structure introduces

persistent heterogeneity, as firms’ timing and direction of their future investments differ based

on their previous adjustment. We encode this heterogeneity in a tractable way by conditioning

behavior on the previous reset point and characterizing a Markov chain across reset points.
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Using this theoretical foundation, we define the CIR as the cumulative deviation of average

capital-productivity ratios following an aggregate productivity shock. Two challenges arise in its

characterization. The first challenge revolves around path dependence, as tracking firms until their

first adjustment after an aggregate shock is insufficient. We resolve this by discovering a recursive

formulation that splits the CIR into deviations before and after the first adjustment. With restored

tractability, we characterize the CIR through three sufficient statistics: (i) the dispersion of capital-

productivity ratios, (ii) the covariance of capital-productivity ratios and their age (i.e., the time

elapsed since the last adjustment), and (iii) the covariance of the changes in capital-productivity

ratios and the expected cumulative deviations when completing the first inaction spell.

The power of sufficient statistics lies in that responsiveness to idiosyncratic shocks, encoded

in steady-state moments, informs about responsiveness to aggregate shocks, encoded in the CIR.

The first two sufficient statistics describe steady-state behavior during periods of inaction and

up to the first adjustment after an aggregate shock, extending insights from Baley and Blanco

(2021). The dispersion of capital-productivity ratios reflects how far firms allow their capital to

drift from its ideal level; the covariance of these ratios with their age captures how misalignment

worsens the longer firms delay action. Irreversibility increases both statistics as firms tolerate

larger misalignments and exhibit more significant delays when selling capital. The third statistic,

unique to irreversibility, reflects whether firms ultimately choose to buy or sell and how that

terminal behavior changes in response to aggregate shocks. For instance, after a negative shock to

aggregate productivity, the mass of downsizing firms increases, and due to their sequential selling

strategy, the shock’s aggregate effects are significantly prolonged.

A second challenge is that capital-productivity distributions are unobservable, making it dif-

ficult to compute the CIR directly. To address this, we derive mappings from observable firm

actions—such as the size and frequency of adjustments, conditioned on the direction of the previ-

ous adjustment—to the reset points and the CIR’s sufficient statistics. We then extend the model

to a generalized hazard framework, inspired by Caballero and Engel (1999) and Lippi and Os-

kolkov (2023), incorporating stochastic and asymmetric fixed costs for purchases and sales. This

extension enhances the model’s ability to replicate the observed investment rate distribution while

preserving consistency with the CIR. Crucially, the generalized hazard with irreversibility captures

all sufficient statistics, whereas without irreversibility, it fails to generate the second and third.

Our contributions go beyond investment. The CIR, its sufficient statistics, and its measure-

ment in microdata provide a versatile framework for studying lumpy adjustments and path de-

pendence in contexts like inventory management, durable goods consumption, and labor markets

with sticky wages. We build on methodologies by Alvarez, Le Bihan and Lippi (2016) and Ba-

ley and Blanco (2021), incorporating path dependence (i.e., reinjection). By linking micro-level

frictions to macroeconomic fluctuations, our framework provides a foundation for analyzing and

quantifying irreversibility’s impact on aggregate dynamics.
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2 A Parsimonious Investment Model

We study a parsimonious investment model with idiosyncratic productivity shocks, a fixed capital

adjustment cost, a wedge between capital purchase and resale prices, and a constant interest rate.

We use this model to analyze how irreversibility shapes firms’ optimal investment, derive sufficient

statistics for aggregate capital dynamics (Section 3), and construct mappings from microdata

to parameters and macro outcomes (Section 4). In the quantitative application (Section 5), we

consider an extension with a general adjustment cost structure that matches the entire distribution

of investment rates in the data that the baseline model misses.

2.1 Firm Investment Problem

Time is continuous, extends forever, and is denoted by s. The future is discounted at a rate of

r > 0. For any stochastic process xs, we use the notation xs− ≡ limz↑s xz to denote the limit

from the left. We first present the problem of an individual firm and then consider a continuum

of ex-ante identical firms to characterize the aggregate behavior of the economy.

Technology and shocks The firm produces output ys using capital ks according to a production

function with decreasing returns to scale

(1) ys = u1−α
s kα

s , α < 1.

Idiosyncratic productivity us follows a geometric Brownian motion with drift µ > 0 and volatility

σ > 0,

(2) log us = log u0 + µs+ σWs, Ws ∼ Wiener.

The capital stock, if uncontrolled, depreciates at a constant rate ξ > 0.

Fixed adjustment cost The firm controls its capital stock by buying and selling investment

goods. For every active investment, is ≡ ∆ks = ks − ks− ̸= 0, the firm must pay a fixed cost θs

proportional to its productivity and measured in output units:

(3) θs = θus,

where θ > 0 is a deterministic fixed cost equal for positive and negative investments. The fixed

cost rationalizes establishment-level data on infrequent and sizeable investment spikes (Doms and

Dunne, 1998) and reflects disruptions from installing or uninstalling capital, learning, time-to-

build, and other factors independent of the investment size (Cooper and Haltiwanger, 2006).
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Price wedge Capital is bought at price p and sold at a discount p(1− ω). We call ω the price

wedge or 1− ω the recovery rate. To simplify notation, we define the pricing function

(4) p (∆ks) ≡ p1{∆ks>0} + p(1− ω)1{∆ks<0}.

To the extent that ω is a linear asymmetric cost, the price wedge allows for alternative interpreta-

tions, such as installation, transaction, or other fees that scale with the investment size and differ

for capital purchases and sales. Moreover, setting ω = 1 eliminates the possibility of disinvesting

(Sargent, 1980; Bertola and Caballero, 1994).

Investment problem Let V (k, u) denote the value of a firm with capital stock k and produc-

tivity u. Given initial conditions (k0, u0), the firm chooses a sequence of adjustment dates {Th}∞h=1

and investments {iTh
}∞h=1, where h counts the number of adjustments, to maximize its expected

discounted stream of profits. The sequential problem is

(5) V (k0, u0) = max
{Th,iTh}∞h=1

E

[∫ ∞

0

e−rsys ds−
∞∑
h=1

e−rTh (θTh
+ p (iTh

) iTh
)

]
,

subject to the production technology (1), the idiosyncratic productivity shocks (2), the fixed cost

(3), the investment price function (4), and the law of motion for the capital stock

log ks = log k0 − ξs+
∑

h:Th≤s

log
(
1 + iTh

/kT−
h

)
,(6)

which describes a period’s capital as a function of its initial value k0, the physical depreciation

rate ξ, and the sum of all adjustments made at prior adjustment dates.

2.2 Capital-Productivity Ratio

To characterize the investment decision, we reduce the state space and recast the firm’s problem

using a new state variable, the (log) capital-productivity ratio:

(7) k̂s ≡ log (ks/us) .

Without investment frictions, k̂s is a constant because firms are always at their optimal scale,

which is proportional to productivity. Instead, investment frictions lead to prolonged misalignment

between firms’ capital and productivity levels. Between any two consecutive adjustment dates

[Th−1, Th], the capital-productivity ratio k̂s follows a stochastic process

(8) dk̂s = −ν ds+ σ dWs.
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The drift ν ≡ ξ + µ includes the depreciation and productivity growth rates, and the volatility σ

is inherited from productivity (the Wiener process is symmetric). At any adjustment date Th, the

capital-productivity ratio changes by the amount

∆k̂Th
= log

(
1 + iTh

/kT−
h

)
,(9)

where we use the continuity of the productivity process (uTh
= uT−

h
).

2.3 Tobin’s q and Optimal Investment Policy

We characterize the optimal investment policy through Tobin’s marginal q—the shadow value of

installed capital. By definition, q is the marginal valuation of an extra unit of installed capital

(the derivative of (5) to k0) relative to the replacement cost (its purchase price p):

(10) q(k̂) ≡ 1

p

∂V (k, u)

∂k
.

We pose that q is a function of the capital-productivity ratio k̂, defined in (7), not of capital

and productivity separately. The reason is that the derivative of the value function is a present

discounted value of marginal products—as shown below—and the marginal product of capital can

be written as αelog(k/u)
α−1

= αek̂(α−1). The problem admits this reformulation because the produc-

tion function is homothetic, adjustment costs are proportional to productivity, and idiosyncratic

shocks follow a Brownian motion.

Four numbers characterize the optimal investment policy: {k̂− ≤ k̂∗− ≤ k̂∗+ ≤ k+}. The
smallest and largest numbers determine an inaction region R ≡ (k̂−, k̂+), which dictates a firm to

leave its capital uncontrolled if k̂ lies within this region. The two intermediate numbers k̂∗− < k̂∗+

are the reset points to which a firm sets k̂ after hitting the corresponding border of inaction.

Proposition 1 characterizes q and the optimal policy, defining the user cost of capital U ≡ r + ξ.1

Proposition 1. (Optimal policy) Marginal q(k̂) and the optimal policy {k̂−, k̂∗−, k̂∗+, k̂+} is

characterized by the following sufficient optimality conditions:

(i) Inside the inaction region R, q(k̂) solves the Hamilton-Jacobini-Bellman (HJB) equation:

(11) Uq(k̂) = αe(α−1)k̂

p
− νq′(k̂) +

σ2

2
q′′(k̂), ∀ k̂ ∈ (k̂−, k̂+).

1Proofs appear in Appendix A, B, and C. All theoretical results are proven for the generalized hazard model
introduced in Section 5.
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(ii) In the outer inaction regions, q(k̂) satisfies the value-matching conditions:

θ

p
=

∫ k̂∗−

k̂−
ek̂
(
q(k̂)− 1

)
dk̂, ∀ k̂ ∈ [k̂−, k̂∗−],(12)

θ

p
=

∫ k̂+

k̂∗+
ek̂
(
(1− ω)− q(k̂)

)
dk̂ ∀ k̂ ∈ [k̂∗+, k̂+].(13)

(iii) At the borders of the inaction region and reset points, q(k̂) satisfies the optimality conditions:

q(k̂) = 1, k̂ ∈
{
k̂−, k̂∗−

}
,(14)

q(k̂) = 1− ω, k̂ ∈
{
k̂∗+, k̂+

}
.(15)

From these conditions, q’s stopping-time formulation is given by

(16) q(k̂) = E

[∫ τ

0

αe−Us+(α−1)k̂s

p
ds + e−Uτq(k̂τ )

]
.

The optimal policy satisfies (i) the HJB equation in (11) that describes q’s evolution during

inaction as the flow marginal product of capital expressed in capital units; (ii) two value-matching

conditions in (12) and (13) that equalize the value of adjusting to the value of not adjusting; and

(iii) four optimality conditions in (14) and (15) at the borders of inaction region and reset points.2

Later, we use the stopping-time formulation in (16) to estimate the reset points from the data.

Figure I illustrates q(k̂) (solid black line) and the optimal investment policy (four values of k̂

in the x-axis). Let us first consider the environment without frictions (θ = ω = 0). Since firms

always have their optimal capital-productivity ratio, then q(k̂) = 1 and q′(k̂) = q′′(k̂) = 0 for all

k̂. Substituting these values into the HJB in (11), we get that capital’s marginal product equals

the user cost, and the frictionless optimal capital k̂∗ is given by

(17)
αe(α−1)k̂∗

p
= U · 1 ⇐⇒ k̂∗ =

1

1− α
log

(
α

pU

)
,

as in the neoclassical investment theory.

Next, consider an environment with a price wedge (ω > 0) but zero fixed costs (θ = 0). The

price wedge gives rise to an “inner” inaction region [k̂∗−, k̂∗+] where the borders of inaction and

reset points coincide, k̂∗+ = k̂+ and k̂∗− = k̂−. Inside this region, q(k̂) lies between the two prices,

2Given our assumption that the fixed cost scales with productivity (θs = θus), the decision to invest or not
encoded in the value matching conditions (12) and (13) depends only on the value of θ. If the fixed cost were
scaled with the capital stock θs = θks, as in Miao (2019), an appropriate rescaling of the fixed costs would generate

a similar investment policy. The appropriate scaling requires defining θ+ ≡ θek̂
+

and θ− ≡ θek̂
−

and letting
θs(is) = θ−us1{is>0} + θ−us1{is<0}. See Baley and Blanco (2021) for the analysis of asymmetric fixed costs.
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Figure I: Tobin’s q(k̂) and Optimal Investment Policy

q(k̂)

k̂− k̂∗− k̂∗+ k̂+

1

1− ω

outer
inaction

outer
inaction

inner
inaction

buy sell

θ/p

θ/p

1

Notes: This figure illustrates a firm’s marginal q(k̂) (solid line) and the investment policy {k̂−, k̂∗−, k̂∗+, k̂+},
expressed in terms of capital to productivity ratios, for ω > 0 and θ > 0. For illustration purposes, we do not

rescale q by ek̂ in the shaded areas (as the value matching conditions require).

and it falls with k̂ due to the decreasing marginal product of capital (α < 1); thus, it is optimal

to remain inactive. From (14) and (15), a firm purchases capital if q(k̂) ≥ 1 (or k̂ ≤ k̂∗−) and sells

capital if q(k̂) ≤ 1− ω (or k̂ ≥ k̂∗+) without any delay.

Finally, consider an environment with fixed costs (θ > 0) and zero price wedge (ω = 0).

Without the price wedge, the “inner” inaction region collapses to a unique reset point k∗. However,

the fixed cost creates an “outer” inaction region [k̂−, k̂+] that prevents firms from adjusting, even

if q(k̂) lies above the purchase price or below the selling price. From (12) and (13), firms adjust to

k̂∗ if the value of adjusting (paying the fixed cost in capital units θ/p) is larger than the value of

not adjusting (the cumulative deviations of q from one, weighted by capital-productivity ratios).

Investment and duration of inaction When both frictions are active, the investment policy

features the “outer” and the “inner” inaction regions, two reset points, and a non-monotonic q

function.3 The firm purchases capital to bring k̂ up to k̂∗− after hitting the lower border k̂− and

sells capital to bring k̂ down to k̂∗+ after hitting the upper border k̂+. Thus, adjustments occur

at dates where the state falls outside the outer inaction region: Th = inf
{
s ≥ Th−1 : k̂s /∈ R

}
,

with T0 = 0. The duration of a complete inaction spell is the difference between consecutive

adjustment dates τh = Th − Th−1. Capital’s age is the time elapsed since the last adjustment (the

duration of an incomplete spell) as = s − max {Th : Th ≤ s}. Since the problem is recursive, we

3Although q monotonically decreases in the inner inaction region, it bends as it approaches the inaction thresh-
olds because firms anticipate large adjustments. As k̂ approaches the lower threshold k̂−, firms anticipate that a
tiny reduction in the state dk̂ < 0 would trigger a large positive investment ∆k̂ > 0, lowering future and current
q(k̂) and bending the function down. A similar argument explains why q(k̂) bends up as k̂ approaches k̂+.
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renormalize dates to 0 after each adjustment so that τ is both the subsequent random adjustment

date and the duration of inaction and k̂τ− the stopped capital-productivity ratio (immediately

before adjusting).

For any τ , adjustments equal ∆k̂ = k̂∗(k̂τ−)− k̂τ− , where reset points depend on the stopped

capital, denoted with k̂τ− :

k̂∗(k̂τ−) =

k̂∗− if k̂τ− = k̂−

k̂∗+ if k̂τ− = k̂+.
(18)

Crucially, optimal investment features a positive serial correlation in the adjustment sign. A

firm is more likely to buy capital if it bought recently and is more likely to sell capital if it sold

recently. Positive investments beget future positive investments; negative investments beget future

negative investments. The positive serial correlation arises because the price wedge widens the

distance between the two borders of inaction but shrinks the distance between each border of

inaction and its corresponding reset point. Thus, it is more likely to reach k̂− from the nearby

k̂∗− than from the further k̂∗+. Next, we will condition behavior on the previous reset point (i.e.,

if the last adjustment was up or down) to handle this path dependence.

2.4 Distribution of Capital-Productivity Ratios

To analyze the macroeconomic effects of irreversibility, we consider an economy populated by a

continuum of ex-ante identical firms facing the same investment problem, in which idiosyncratic

productivity shocks Ws are independent across firms. The economy has stationary cross-sectional

distributions of capital-productivity ratios k̂, adjustments ∆k̂, and durations of inaction τ .

Let g(k̂) be the stationary density of firms’ capital-productivity ratios. Also, let N−, N+,

and N = N− + N+ be the frequencies of upward, downward, and non-zero adjustments in the

population, which are equal to the mass of firms that upsize to k̂∗−, downsize to k̂∗+, or adjust to

either point. To avoid confusion with our notation, we emphasize that the sign in the exponent

of an object refers to the previous reset point, not to the sign of the adjustment.

The density g(k̂) and adjustment frequencies N− and N+ solve the system that includes:

(i) A Kolmogorov forward equation (KFE) that describes the evolution of g(k̂) in the interior

of k̂’s inaction region

(19) νg′(k̂) +
σ2

2
g′′(k̂) = 0, for all k̂ ∈ (k̂−, k̂+) \ {k̂∗−, k̂∗+};

(ii) Two border conditions that set the mass of firms at the inaction thresholds equal to zero

9
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Figure II: Densities of k̂, τ and ∆k̂

(A) Densities of k̂

g(k̂) g+(k̂) g−(k̂)

k̂− k̂∗− k̂∗+ k̂+ τ

(B) Densities of τ

h(τ) h+(τ) h−(τ)

(C) Densities of ∆k̂

h(∆k̂) h+(∆k̂) h−(∆k̂)

k̂∗− − k̂−k̂∗+ − k̂+k̂∗+ − k̂+ 0

1

Notes: These figures plot the conditional and unconditional densities of capital-productivity ratios k̂ (Panel A),

duration of inaction τ (Panel B), and adjustments ∆k̂ (Panel C) for an illustrative parametrization.

and a condition ensuring that g(k̂) is a density:

g(k̂−) = g(k̂+) = 0,(20) ∫ k̂+

k̂−
g(k̂) dk̂ = 1;(21)

(iii) Two resetting or reinjection conditions that relate the masses of upward and downward

adjustments to the discontinuities in the derivative of g at the reset points:4

N− =
σ2

2
lim
k̂↓k̂−

g′(k̂) =
σ2

2

[
lim
k̂↑k̂∗−

g′(k̂)− lim
k̂↓k̂∗−

g′(k̂)

]
,(22)

N+ = −σ2

2
lim
k̂↑k̂+

g′(k̂) =
σ2

2

[
lim
k̂↑k̂∗+

g′(k̂)− lim
k̂↓k̂∗+

g′(k̂)

]
,(23)

and two continuity conditions at the reset points.

As anticipated, we study behavior conditional on the previous reset point throughout our

analysis. We consider densities conditional on the previous reset point, after upsizing g−(k̂) and

after downsizing g+(k̂), which satisfy the same KFE as g(k̂) in (19), except that they only have

one kink at the corresponding reset point. Panel A in Figure II plots the three densities g, g−, and

g+; these are all proper densities and integrate to 1. We denote expectations computed with these

distributions as E, E−, and E+. Recall that the three distributions would be the same without

irreversibility, as there would be a unique reset point and no dependence on past adjustments.

4In a small period ds, the mass N− that “exits” the inaction region by hitting the lower threshold—equal to
σ2

2 limk̂↓k̂− g′(k̂)—must coincide with the mass of firms that “enters” at the reset point k̂∗−—equal to the jump in
σ2

2 g
′. This argument is analogous for N+.
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It is important to note that, in the steady state, the average capital-productivity ratio of firms

that last purchased capital is below the economy’s average E−
s [k̂] − E[k̂] < 0 (i.e., they don’t

purchase enough); similarly, the average capital-productivity ratio of firms that last sold capital is

above the economy’s average E+
s [k̂]−E[k̂] > 0 (they do not sell enough). This fact will be critical

for understanding why irreversibility amplifies aggregate capital fluctuations in Section 3.

2.5 Distributions of Actions

We denote the joint density over adjustments ∆k̂ and duration of inaction spells τ with h(∆k̂, τ),

and the densities conditional on the previous reset point with h− and h+, respectively. We also

use h and h± to denote the marginal densities of τ and ∆k̂. Expectations conditional on taking

action are denoted with bars: E, E−
, and E+

.

Panel B in Figure II plots the three densities of the duration of inaction.5 We observe that

h−(τ) is more skewed toward shorter durations than h+(τ), which is due to the negative drift.

Panel C of Figure II plots the three distributions of adjustments ∆k̂.6 The simple model generates

almost no dispersion of investment rates—h(∆k̂) only takes two values. However, the distributions

conditional on the previous adjustment showcase the serial correlation of the adjustment sign. For

instance, h−(k̂∗− − k̂−) > h+(k̂∗− − k̂−) means that the probability of upsizing is higher after a

previous upsize. Again, we emphasize that, without irreversibility, the three densities of τ and ∆k̂

would be identical. Figure VI in Section 4.3 plots their empirical counterparts.

2.6 Relationship Between Unconditional and Conditional Densities

Unconditional and conditional densities of capital-productivity ratios and adjustments relate in

different ways.

Weighing with shares Adjusters’ unconditional and conditional densities are related through

a simple average using the relative shares of upward N−/N and downward N+/N adjustments:

h(∆k̂, τ) = N−

N h−(∆k̂, τ) + N+

N h+(∆k̂, τ). Thus unconditional and conditional expectations of

adjustments relate according to

(24) E[y] =
N−

N E−
[y] +

N+

N E+
[y], y ∈ {∆k̂, τ}.

Weighing with adjusted shares In contrast, the unconditional density of capital-productivity

ratios is a weighted sum of the conditional distributions g(k̂) = r−g−(k̂) + r+g+(k̂), where the

5Let h(τ |k̂) be the stationary density of the duration of inaction given current k̂. Using the formulas by
Kolkiewicz (2002) evaluated at the two reset points, we obtain the densities of duration conditional on the previous

reset point: h−(τ) = h(τ |k̂∗−) and h+(τ) = h(τ |k̂∗+).
6Since ∆k̂ only takes two values, its distribution consists of two mass points.
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renewal weights r− and r+ rescale the shares by their relative average duration:

(25) r− ≡ N−

N
E−

[τ ]

E[τ ]
, and r+ ≡ N+

N
E+

[τ ]

E[τ ]
.

Thus, unconditional and conditional expectations of capital-productivity ratios relate as follows:

(26) E[k̂] = r−E−[k̂] + r+E+[k̂].

Why do we rescale conditional densities by the duration of inaction? The answer is the fundamental

renewal property: The average behavior in the economy is attributable to firms with more extended

periods of inaction (which are observed less frequently). Adjusting the shares with their relative

duration corrects this observational bias. Appendix A.5 illustrates the correction with an example.

2.7 A Markov Chain Between Reset Points

We define the remaining objects needed to handle irreversibility. Given a current k̂0, let P−(k̂0) be

the probability of a subsequent purchase (k̂τ = k̂∗−) and P+(k̂0) the probability of a subsequent

sale (k̂τ = k̂∗+):

(27) P−(k̂0) = Pr[k̂τ = k̂∗−|k̂0] and P+(k̂0) = Pr[k̂τ = k̂∗+|k̂0].

Using these probabilities, we define the transition probability matrix between reset points.7 Given

a current purchase (k̂0 = k̂∗−), the probability of making a subsequent purchase is P−− ≡ P−(k̂∗−);

and given a current sale (k̂0 = k̂∗+), the probability of making a subsequent sale is P++ ≡ P+(k̂∗+).

Analogously, we define the off-diagonal elements of the transition matrix between reset points P−+

and P−+. The transition matrix P has the following four entries:8

P−− = Pr[k̂τ = k̂∗−|k̂0 = k̂∗−], P−+ = Pr[k̂τ = k̂∗+|k̂0 = k̂∗−],(28)

P+− = Pr[k̂τ = k̂∗−|k̂0 = k̂∗+], P++ = Pr[k̂τ = k̂∗+|k̂0 = k̂∗+].(29)

The following section characterizes aggregate capital fluctuations with irreversibility by condi-

tioning behavior on the previous reset point, which requires the following objects: the conditional

densities g−(k̂) and g+(k̂), the adjusting shares N− and N+ in (22) and (23), the renewal weights

r− and r+ in (25), the upsizing and downsizing conditional probabilities P−(k̂) and P+(k̂) in (27),

and the Markov chain between reset points P−−,P−+,P+− and P++ in (28) and (29).

7Our approach complements methodologies by Caballero and Engel (2007) and Lanteri (2018), which diagnose
irreversibility through transitions between marginal products of capital.

8The adjustment shares in (22) and (23) can also be obtained from the eigenvector of the transition matrix P.
The share of current positive investments equals the probability of a future positive investment (analogously for

negative investments): N−

N = N−

N P−− + N+

N (1− P++).
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3 Aggregate Fluctuations with Irreversibility

This section theoretically studies how irreversibility affects aggregate fluctuations. Our analysis

has four steps. First, we define our notions of capital fluctuations: the impulse response (IRF)

and the cumulative impulse response (CIR) of average capital-productivity ratios to an aggregate

productivity shock. Second, we analyze the IRF from a time-series perspective, which shows how

irreversibility affects aggregate fluctuations by changing the shares of upsizing and downsizing

firms. This shift has a persistent effect because of the differential behavior conditional on the

previous reset point. Third, we analyze the CIR from a cross-sectional perspective, a preliminary

step in finding sufficient statistics for capital fluctuations. In particular, it establishes three groups

of firms whose behavior should be tracked: inactive firms until their first adjustment, upsizers, and

downsizers. In the fourth and last step, we derive sufficient statistics for the CIR and investigate

special cases that illustrate how irreversibility impacts these sufficient statistics.

3.1 Capital Fluctuations

We measure capital fluctuations as the transitional dynamics of the average capital-productivity

ratio that follow an aggregate productivity shock. Starting from the steady state at date s = 0, we

introduce a small, permanent, and unanticipated decrease in the (log) level of productivity of size

δ > 0 to all firms. All firms’ productivity falls, and capital-productivity ratios increase relative to

their pre-shock levels u0− and k̂0− , as follows:

(30) log(u0) = log(u0−)− δ; log(k̂0) = log(k̂0−) + δ.

Panel A in Figure III plots the steady-state unconditional density g(k̂) and the initial density

following the productivity shock g0 = g(k̂ − δ). Panels B and C plot the steady-state densities

conditional on the previous reset point g±(k̂) and after the shock g±0 = g±(k̂ − δ). The negative

productivity shock displaces all the steady-state distributions to the right. Without investment

frictions, firms would immediately downsize their capital stock to restore their optimal capital-

productivity ratio. With frictions, firms take time to absorb the shock, and the distribution of

capital-productivity ratios remains away from the steady state distribution for some time. Until all

firms have downsized their capital stock, there will still be positive deviations from the steady-state

and persistent effects of the productivity shock. The thick circle in panels A and C corresponds

to the mass of firms crossing k̂+ on the shock’s impact and downsizing to reach k̂∗+. Panel B has

no thick circle in g−(k̂), as no mass of firms purchase capital after the shock.

Throughout the transition, the interest rate remains constant, and the steady-state investment

policies hold, so there is no feedback from distributional changes in policies. Thus, our analysis
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Figure III: Cross-Sectional Densities Before and After the Aggregate Shock

k̂

(A) Cross-Sectional Density g(k̂)

steady state

after δ-shock

E[k̂]
E0[k̂]

k̂

(B) Cross-Sectional Density g−(k̂)

E[k̂]
E−[k̂] E−

0 [k̂]

k̂

(C) Cross-Sectional Density g+(k̂)

E[k̂]
E+[k̂] E+

0 [k̂]

1

Notes: This figure illustrates the effects of an aggregate shock. Panel A shows the steady-state distribution g(k̂)

and the initial distribution following a productivity shock g0(k̂) = g(k̂− δ). Panels B and C show analogous figures

for the distributions conditional on the previous reset point, g−(k̂) and g+(k̂). Probability masses corresponding

to entry points are shown in thick circles.

measures the strength of the partial equilibrium response to aggregate shock.9

IRF and CIR We define two measures of capital fluctuations. First, we define the impulse-

response function, IRF(δ, s), as the deviation of the mean of k̂ after s periods of the arrival of the

aggregate productivity shock and the steady-state mean

(31) IRF(δ, s) ≡ Es[k̂]− E[k̂],

where Es[·] denotes expectations with the time-s distribution. Second, we define the cumulative

impulse response of the mean of k̂, CIR(δ), as the area under the IRFs(δ) across all dates s ∈
(0,∞):

(32) CIR(δ) ≡
∫ ∞

0

IRF(δ, s) ds =

∫ ∞

0

(
Es[k̂]− E[k̂]

)
ds.

The CIR is a helpful metric of aggregate fluctuations, and it lies at the core of our strategy to

discipline the price wedge and the aggregate effects of irreversibility. It summarizes the impact and

persistence of the response in one scalar and eases comparison across different models.10 Without

investment frictions, firms respond instantly to the aggregate shock, and the CIR is zero. With

investment frictions, the larger the CIR, the longer firms take to respond to the aggregate shock

9Appendix D presents a general equilibrium model that delivers constant prices as an equilibrium outcome.
10Alvarez, Le Bihan and Lippi (2016), Baley and Blanco (2019); Alvarez, Lippi and Oskolkov (2022); and

Alexandrov (2021) use the CIR in the context of price-setting models to assess the real effects of monetary shocks.
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Figure IV: Cumulative Impulse Response and Its Components

CIR

Time

(A) Cumulative Impulse-Response

IRFs = Es[k̂]− E[k̂]

Time

(B) Renewal weights

r−s − r− r+s − r+

Time

(C) Mean Deviations

E−
s [k̂]− E[k̂] E+

s [k̂]− E[k̂]

1

Notes: The figure shows paths after an aggregate productivity shock for an illustrative parametrization. Panel A

shows the IRF(δ, s) and the CIR (area under the curve). Panel B shows the evolution of renewal weights r− and

r+, relative to their steady-state values. Panel C shows average deviations from the steady-state mean, conditional

on the previous reset point. In B and C, the lighter lines correspond to upsizing firms (previous reset to k̂∗−); the

darker lines correspond to downsizing firms (previous reset to k̂∗+).

and the slower the transitional dynamics. Panel A in Figure IV plots the IRF (solid line) and the

CIR (the area underneath the IRF).

3.2 The Time-Series Perspective

We begin analyzing aggregate fluctuations from a time-series perspective. This viewpoint teaches

us that irreversibility’s main contribution to aggregate fluctuations following a negative produc-

tivity shock is increasing the share of downsizing firms during the transition to the new steady

state, precisely the set of firms that contribute most to persistent deviations from the steady state.

Conditional deviations and renewal weights We decompose deviations from the steady

state into deviations conditional on the previous reset point. To do this, we use expectations

conditional on the last rest point E−
s and E+

s and the renewal weights r−s and r+s in (25) to rewrite

the IRF in (31) as:

(33) IRF(δ, s) = r−s

(
E−
s [k̂]− E[k̂]

)
+ r+s

(
E+

s [k̂]− E[k̂]
)
.

Figure IV tracks the various components that give rise to deviations from the steady state.

Panel B shows the path of the renewal weights r−s and r+s relative to their steady-state values, which

tell us the number of adjustments stemming from each reset point. After the negative aggregate

productivity shock, the share of downsizing firms r+s increases (darker line), whereas the share
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of upsizing firms r−s falls (lighter line).11 Panel C shows the path of average capital-productivity

ratios conditional on the last rest point relative to the economy’s average (E±
s [k̂] − E[k̂]). Both

means go up after the shock.

The time-series decomposition in (33) highlights two channels that slow the shock absorption

and increase the CIR. First, keeping the mean deviations at their steady-state values (E−
s [k̂] =

E−[k̂] < E+[k̂] = E+
s [k̂] for all s), consider the change in renewal weights. The population tilts

toward more downsizing firms, which enter their typical persistent downsizing phase with capital-

productivity ratios above the economy’s average (E+[k̂] − E[k̂] > 0). These firms, which are

now dominant, increase deviations above the steady state and slow convergence. Upsizing firms

also enter their typical upsizing phase with average capital-productivity ratios below the average

(E−[k̂] − E[k̂] < 0). However, since there are fewer of them, they also contribute to slowing the

convergence back to the steady state. Thus, the change in renewal weights generates persistence

even if the mean deviations remain at their steady-state values.

Second, besides the changes in weights, positive deviations E+
s [k̂] − E[k̂] become larger and

converge slower, and negative deviations E−
s [k̂] − E[k̂] become smaller (and even positive on the

shock’s impact) and converge faster. This change in means brings an additional kick. In sum, the

evolution in shares and conditional means following an aggregate shock increases the persistence

of aggregate capital fluctuations when capital is partially irreversible.

3.3 The Cross-Sectional Perspective

Next, we formally analyze capital fluctuations from a cross-sectional perspective. The central

insight is to express the aggregate dynamic response to the shock as the cross-sectional average of

the expected cumulative deviations from the mean. Three steps lie behind this characterization: (i)

exchanging the integrals over time and over firms, (ii) decomposing average cumulative deviations

between the first and subsequent adjustments, and (iii) summarizing subsequent adjustments with

two numbers reflecting upsizing and downsizing behavior.

Exchanging integrals Let us start from the CIR’s definition in (32), which tracks the economy’s

average investment behavior along the transition, that is, integrating first over firms and then over

time. We exchange orders of integration (i.e., integrating first over time and then over firms) to

track each firm’s investment and then average across them. The analytical gain stemming from

exchanging the orders of integration arises because we can decompose the infinite horizon [0,∞]

into two intervals: from the arrival of the aggregate shock to the (random) first adjustment [0, τ ],

and the first adjustment onward [τ,∞].

11Naturally, the change in shares also happens without a price wedge and inaction purely generated by fixed
costs; however, in that case, firms become identical after their first adjustment (E−

s [k̂] = E+
s [k̂]), deviations from

the economy’s average can be ignored and there is no additional persistence (Baley and Blanco, 2021).
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To implement this decomposition, in the first step, we use the law of iterated expectations to

condition on the initial capital-productivity ratio k̂0 (right after the δ shock) and integrate over

the initial distribution of agents g0 = g(k̂ − δ). Then, we exchange the order of integration over

agents and over time:

CIR(δ) = Eg0

[∫ ∞

0

Es

[
(k̂ − E[k̂])

]
ds
∣∣∣k̂0] = Eg0

[
E
[∫ ∞

0

(k̂s − E[k̂]) ds
∣∣∣k̂0]]+ C.(34)

The constant C arises because Fubini’s theorem fails (the double integral of the absolute value of

deviations is infinite); thus, exchanging the order of integration does not give the same result.12

First and subsequent adjustments In the second step, we define m(k̂0) as the expected

cumulative deviations from the steady-state mean for a firm with current k̂0 as

(35) m(k̂0) ≡ E
[∫ ∞

0

(k̂s − E[k̂]) ds
∣∣∣k̂0] + C.

We decompose m(k̂0) into two intervals [0, τ ] and [τ,∞], where τ is the firm’s first stopping time

after the aggregate shock:

(36) m(k̂0) = E
[∫ τ

0

(k̂s − E[k̂]) ds
∣∣∣k̂0]︸ ︷︷ ︸

up to first adjustment

+ E
[∫ ∞

τ

(k̂s − E[k̂]) ds
∣∣∣k̂0] + C.︸ ︷︷ ︸

subsequent adjustments

Without irreversibility, firms fully incorporate the aggregate productivity shock with the first

adjustment (to a unique reset point k̂∗) and then return to their “steady-state behavior”; this

implies that the second term in (36) is independent of k̂0 and thus also independent of δ (Alvarez,

Le Bihan and Lippi, 2016; Baley and Blanco, 2021). This is no longer the case with irreversibility,

as the initial state k̂0 affects subsequent adjustments. The second term in (36) differs from zero

because firms only partially adjust to the aggregate shock. In principle, one should keep track of

firms until they fully incorporate the aggregate shock. This is a problem “with reinjection”, as

labeled by Alvarez and Lippi (2021). Nevertheless, it is enough to remember the first reset point

and then condition future behavior because the first adjustment cleans from all heterogeneity

except for the adjustment sign.

Summarizing subsequent adjustments In the third step, we summarize investment behavior

after the first adjustment (the second term in (36)) with two numbers: average behavior after

12The constant C does not affect the sufficient statistics’ characterization of the CIR in the next section because
we make a first-order approximation for small shocks δ ≈ 0, and it drops out. Alexandrov (2021) considers large
shocks where the constant becomes relevant.
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upsizing m(k̂∗−) and average behavior after downsizing m(k̂∗+):

(37)

E
[
E
[ ∫ ∞

τ

(k̂s − E[k̂]) ds
∣∣∣k̂τ]∣∣∣k̂0] = E

[
m(k̂∗(k̂τ ))

∣∣∣k̂0]− C = P−(k̂0)m(k̂∗−) + P+(k̂0)m(k̂∗+)− C.

where the probabilities P−(k̂0) and P+(k̂0), defined in (27), depend on initial conditions after

the aggregate shock. This expression shows that steady-state behavior is restored after the first

adjustment—once a firm completes its first inaction spell.

Last, we join all results by substituting (37) into (36) and then into (34) and write the CIR as

a cross-sectional average of cumulative deviations computed with the initial distribution g0:

(38) CIR(δ) = Eg0 [m(k̂0)],

where m(k̂0) is defined recursively as follows:13

(39) m(k̂0) ≡ E
[∫ τ

0

(k̂s − E[k̂]) ds
∣∣∣k̂0]︸ ︷︷ ︸

incomplete spells

+ P−(k̂0)m(k̂∗−)︸ ︷︷ ︸
complete upsizing spell

+ P+(k̂0)m(k̂∗+)︸ ︷︷ ︸
complete downsizing spell

.

Proposition 2 organizes the previous results.

Proposition 2. (CIR) Up to the first order, the CIR equals

(40)
CIR(δ)

δ
= −

∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂ + o(δ),

where m(k̂) is a continuously differentiable function equal to the average cumulative deviations of

the capital-productivity ratio k̂ from the economy’s mean E[k̂], satisfying the HJB

(41) 0 = k̂ − E[k̂] − νm′(k̂) +
σ2

2
m′′(k̂) ∀k̂ ∈ (k̂−, k̂+),

with two boundary conditions

(42) m(k̂−) = m(k̂∗−), and m(k̂+) = m(k̂∗+),

and a stationarity condition

(43)

∫ k̂+

k̂−
m(k̂)g(k̂) dk̂ = 0.

Expression (40) reexpresses the CIR in (38) using a first-order approximation to the initial

13C disappears as it is inside m.

18

Electronic copy available at: https://ssrn.com/abstract=5077479



distribution around a small shock δ, g0 = g(k̂− δ) ≈ g(k̂)− δg′(k̂), and the stationarity condition

(43) which sets Eg[m(k̂0)] = 0. We reexpress m(k̂) in (39) recursively through the HJB in (41),

inherited from k̂’s law of motion, together the border conditions in (42). Due to continuity, the

two boundary conditions equalize cumulative deviations at the inaction thresholds to their value

at the corresponding reset point.

The astute reader will notice that equations (41) and (42) have infinite solutions: for any

candidate solution m(k̂), m(k̂)+a is a solution ∀a ∈ R. The stationarity condition (43) pins down

the unique solution by requiring no fluctuations without shocks (i.e., CIR(0) = 0). Effectively, it

imposes a linear relationship between the terminal values m(k̂∗−) and m(k̂∗+). Stationarity lies

at the core of the steady state and plays a crucial role in the CIR’s characterization with partial

irreversibility. Next, we explain this condition in detail.

3.4 Stationarity: Balancing Complete and Incomplete Spells

The stationarity condition (43) sets the cross-sectional average of m(k̂) in (39) to zero.14 It implies

that average deviations that follow a complete inaction spell (from upsizing or downsizing firms)

should “balance” the average deviations from incomplete spells (from inactive firms):

(44) Cov[k̂, a]︸ ︷︷ ︸
avg. incomplete spells

+ E[P−(k̂)]m(k̂∗−)︸ ︷︷ ︸
avg. complete upsizing spells

+ E[P+(k̂)]m(k̂∗+)︸ ︷︷ ︸
avg. complete downsizing spells

= 0.

Let us discuss this condition in incrementally complex environments.

Symmetric environments With zero drift, symmetric inaction region, and zero price wedge,

the unique reset point k̂∗ equals the economy’s average E[k̂] and deviations above and below the

mean for any age cancel out. The covariance between capital-productivity ratios and age is zero

Cov[k̂, a] = 0, and consequently, stationarity requires m(k̂∗) = 0.

Asymmetric environment without irreversibility In asymmetric environments (with non-

zero drift or asymmetric fixed costs), the unique reset point differs from the economy’s average.

Deviations above and below do not cancel out and Cov[k̂, a] ̸= 0. Stationarity requires:

(45) m(k̂∗) + Cov[k̂, a] = 0.

Deviations after complete inaction spells,m(k̂∗), and deviations during incomplete spells, Cov[k̂, a],
must sum up to zero in a steady state. For example, with negative drift −ν, inactive firms have, on

14The integral of incomplete spells (the first term in (39)) equals the covariance between capital-productivity

ratios and capital age:
∫ k̂+

k̂− E
[∫ τ

0
(k̂s − E[k̂]) ds

∣∣∣k̂0] g(k̂0) dk̂0 = Cov[k̂, a]. The integral of the complete spells (the

second term in (39)) becomes the sum of average probabilities times deviations.
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average, capital-productivity ratios below the economy’s mean, and more so the older their capital.

In the inactive cross-section, Cov[k̂, a] < 0. Completed spells must revert this force to deliver zero

deviations in steady-state, and thus, adjusting firms will overshoot their capital-productivity ratio:

m(k̂∗) = −Cov[k̂, a] > 0.

With irreversibility With irreversibility, the balancing argument is similar, but now we must

consider two types of complete spells. We rewrite (44) as the weighted average of two numbers:

(46) (m(k̂∗−) + Cov[k̂, a])︸ ︷︷ ︸
≡ M(k̂∗−) < 0

E[P−(k̂)] + (m(k̂∗+) + Cov[k̂, a]))︸ ︷︷ ︸
≡ M(k̂∗+) > 0

(1− E[P−(k̂)]) = 0,

where E[P+(k̂)] = 1−E[P−(k̂)]. Recall that Cov[k̂, a] reflects the deviations of inactive firms. For

inaction spells ending in upsizing (with probability E[P−(k̂)]), we have that average deviations are

negative, M(k̂∗−) ≡ m(k̂−)+Cov[k̂, a] < 0, since resets fall short of the average. For inaction spells

ending in downsizing (with probability 1−E[P−(k̂)]), we have instead that average deviations are

positive, M(k̂∗+) ≡ m(k̂+) + Cov[k̂, a] > 0, since resets succeed the average. The adjustments of

upsizing and downsizing firms, weighted by their occurrence, must compensate for the deviations

of inactive firms to ensure stationarity.

To better understand what M(k̂∗−) and M(k̂∗+) reflect, Proposition 3 provides alternative

expressions, as a triple product of conditional deviations (E±[k̂] − E[k̂]), the average duration of

those deviations E±
[τ ], and switching probabilities between reset points. These relationships will

be exploited in Section 4 to recover sufficient statistics in the microdata, as m’s are not observed,

but the objects on the right-hand side are.

Proposition 3. (Expected sum of deviations) The expected sum of deviations after upsizing

M(k̂∗−) ≡ m(k̂∗−) + Cov[k̂, a] and after downsizing M(k̂∗+) ≡ m(k̂∗+) + Cov[k̂, a] are equal to

M(k̂∗−) = (E−[k̂]− E[k̂]) E−
[τ ]

E[P+(k̂)]

P−+
< 0(47)

M(k̂∗+) = (E+[k̂]− E[k̂]) E+
[τ ]

E[P−(k̂)]

P+− > 0,(48)

where the average downsizing and upsizing probabilities are equal to

(49) E[P−(k̂)] =
E
[
τ ′1{k̂τ ′=k̂−}

]
E[τ ]

, E[P+(k̂)] =
E
[
τ ′1{k̂τ ′=k̂+}

]
E[τ ]

.

Relative to inactive firms, upsizing firms (47) expect a negative deviation of size E−[k̂]− E[k̂]
during the next inaction spell, which is expected to last E−

[τ ] periods. Since the investment

sign is serially correlated, upsizing firms remain in an upsizing phase and contribute to negative
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deviations for several periods; they would only leave this phase after a series of adverse shocks

cause them to downsize. The ratio E[P+(k̂)]/P−+ precisely reflects the expected time spent in the

transient upsizing phase, where E[P+(k̂)] is the expected probability of downsizing and P−+ in (28)

is the probability of switching phase from upsizing to downsizing. If they switch, they will enter

a persistent downsizing phase with positive deviations as in (48). The explanation for downsizing

firms is analogous, mutatis mutandis. The mappings in (49) show that average probabilities of

upsizing and downsizing equal truncated expectations of durations.

3.5 Latent Deviations

Finally, we state the last ingredient needed to derive the CIR’s sufficient statistics. The two

numbers, M(k̂∗−) in (47) and M(k̂∗+) in (48), summarize the behavior of adjusting firms. How-

ever, to study the effects of aggregate shocks, we must consider that some firms will switch their

investment strategy after the aggregate shock, from purchasing to selling or vice versa. To do

that, we construct a new function M(k̂) that takes these two values in the outer inaction regions

(where irreversibility plays no role) and then extends it to the inner inaction (where irreversibility

plays a significant role) by imposing continuity. Concretely, we consider M(k̂) ∈ C2 to be any

twice continuously differentiable function in the domain [k̂+, k̂−] that takes two values in the outer

inaction regions:

(50) M(k̂) ≡

m(k̂∗−) + Cov(k̂, a) < 0 if k̂ ∈ [k̂−, k̂∗−]

m(k̂∗+) + Cov(k̂, a) > 0 if k̂ ∈ [k̂∗+, k̂+].

In the inner inaction region, M(k̂) takes values that ensure continuity up to the second derivative.

3.6 The CIR’s Sufficient Statistics

To recap, we have transformed the CIR of capital-productivity ratios following an aggregate pro-

ductivity shock in an environment with irreversibility—a complicated dynamic object—into a

steady-state cross-sectional average of the recursive function m(k̂)—a static object. We have also

discussed how active and inactive firms must balance in a steady state and defined the function

M(k̂) that reflects latent deviations. With all these elements, Proposition 4 derives sufficient

statistics—cross-sectional steady-state moments of k̂ and a—that characterize the CIR.

Proposition 4. (Sufficient statistics) Up to the first order, the CIR of average capital-

productivity ratios equals the sum of three steady-state cross-sectional moments:

(51)
CIR(δ)

δ
=

Var[k̂]
σ2

+
νCov[k̂, a]

σ2︸ ︷︷ ︸
up to first adjustment

+
1

σ2
E
[
1

ds
Es[d(k̂sM(k̂s))]

]
︸ ︷︷ ︸

subsequent adjustments

+ o(δ).
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According to (51), three sufficient statistics determine the CIR: (i) the cross-sectional variance

of capital-productivity ratios Var[k̂], (ii) the covariance of capital-productivity ratios and age

Cov[k̂, a], and (iii) the average local drift of the product M(k̂)k̂, all divided by the idiosyncratic

volatility σ2. These cross-sectional moments are indeed sufficient statistics because an econome-

trician equipped with the joint distribution of (k̂, a) could back out the CIR from it.15

The three sufficient statistics reflect how, in a steady state, idiosyncratic productivity shocks

shape incomplete spells and complete spells. Since idiosyncratic shocks dWs and aggregate shocks

δ enter dk̂ symmetrically, responsiveness to idiosyncratic shocks, encoded in steady-state mo-

ments, informs about responsiveness to aggregate shocks, encoded in the CIR. We apply this

“responsiveness” principle to dissect the sufficient statistics.

Insensitivity of incomplete spells to productivity shocks The first two statistics indicate

firms’ willingness to tolerate deviations from their frictionless optimum and thus remain inactive.

We follow Baley and Blanco (2021) to explain why this is the case. At any date s, consider the

cumulative productivity shock (sum of innovations) received by a firm while inactive, normalized

by volatility W̃s ≡ (Ws−Ws−as)/σ. Define the economy’s insensitivity of incomplete spells to pro-

ductivity shocks as the covariance of capital-productivity ratios and cumulative shocks: Cov[k̂, W̃ ].

Intuitively, if firms are extremely sensitive to productivity shocks, they continuously adjust their

capital-productivity ratio to the reset points, yielding Cov[k̂, W̃ ] = 0 in the cross-section. In-

stead, if firms are insensitive, they allow k̂ to move with shocks W̃ , and this covariance becomes

prominent.

Let us link the insensitivity to productivity shocks to the CIR. For simplicity, let us assume

away the price wedge. The capital-productivity ratio of any firm at date s can be written as

k̂s = k̂∗ − νas + σ2W̃s. Subtracting the mean E[k̂] on both sides, multiplying by (k̂s − E[k̂]), and
taking the cross-sectional average, we obtain Var[k̂] = −νCov[k̂, a] + σ2Cov[k̂, W̃ ]. Rearranging

yields Cov[k̂, W̃ ] = (Var[k̂]− (−νCov[k̂, a]))/σ2, which is exactly the expression for the CIR’s first

two statistics.

It is tempting to claim that the variance of capital-productivity ratios is a sufficient indication

of pervasive investment frictions and insensitivity to productivity shocks. But there is a caveat.

The variance also reflects dispersion in capital-productivity ratios generated by the drift, which

is unrelated to productivity shocks. The second statistic, the covariance of capital-productivity

ratios and age, is, in effect, a bias correction term that ensures we accurately measure the reaction

to the Brownian shocks by eliminating the drift effects (clearly, when ν = 0, there is no need for

correction and the first statistic is sufficient.)

How does the price wedge affect these two statistics? The price wedge ω increases Var[k̂] by
15Importantly, k̂ is not directly observable since it depends on productivity, but under certain assumptions over

the production technology, it can be recovered using revenue data (Hsieh and Klenow, 2009). Section 4 proposes
an alternative to measure these statistics by exploiting exclusively investment data.
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introducing a new layer of heterogeneity linked to the distinct reset points, and it may dramatically

change Cov[k̂, a]. By imposing a downward rigidity, unproductive firms tend to have older capital

stock and have capital-productivity ratios above the average, which pushes Cov[k̂, a] to be positive.
The sign of the covariance eventually depends on the relative size of the drift (a negative drift

favors Cov[k̂, a] < 0) and the price wedge (a positive wedge favors Cov[k̂, a] > 0). When the price

wedge dominates, Cov[k̂, a] > 0, the CIR rises, and aggregate fluctuations persist longer.16

Insensitivity of complete spells to productivity shocks The third sufficient statistic, exclu-

sive to the irreversibility case, indicates how productivity shocks change the anticipated ending of

a complete spell. In other words, if firms anticipated ending their inaction by purchasing M(k̂∗−)

or selling M(k̂∗+) and then a shock makes them anticipate a different ending. If idiosyncratic

shocks do not change the anticipated ending in a steady state, then an aggregate shock wouldn’t

either, and we wouldn’t see the dynamics of renewal weights shown in Panel B of Figure IV.

While the expression for the third statistic appears complicated at first sight, we shed light on it

by mirroring the explanation of the first two. At any date s, consider a firm’s anticipated terminal

condition Es[M(k̂τ )]. We define the economy’s insensitivity of complete spells to productivity

shocks as the covariance between the change in capital-to-productivity ratios dk̂s and the change

in anticipated terminal conditions normalized by volatility and averaged across the population:

(1/σ2)E
[
Covs

[
dk̂s, dEs[M(k̂τ )]

]
/ ds

]
. At the individual level, the covariance is time-varying as

it depends on the state. Intuitively, if terminal values are insensitive (e.g., firms always expect

to end up buying), productivity shocks do not alter the spell’s ending, and this covariance is

zero. In contrast, if terminal values are very sensitive, a small dk̂ triggers a big change in the

anticipated ending. In such sensitive cases, the renewal weights react strongly to an aggregate

shock, generating additional persistence.

As before, there is a caveat. We must be careful in only capturing sensitivity to productiv-

ity shocks, not mechanical drift effects. The drift affects both variables, as it reduces capital-

productivity ratios and makes upsizing endings at M(k̂∗−) more likely. To account for this, we

must correct our definition of insensitivity. Let Ds ≡ Es[Mτ ]−Ms be the expected change in Ms

until the next adjustment. Subtracting the drift of the product d(k̂sDs) from the covariance, which

includes k̂’s drift ν and Ds’s drift, and rearranging, we can express the third sufficient statistic as

the unbiased insensitivity of complete spells to productivity shocks in the population:

1

σ2
E

[
Es[d(k̂sM(k̂s))]

ds

]
= E

[
Covs[dk̂s, dEs[Mτ ]]− Es[d(k̂sDs)]

Vars[dk̂s]

]
.(52)

16In Baley and Blanco (2021), we showed that higher fixed costs for downward than upward adjustments also
generate a positive covariance and hence increase the CIR. However, asymmetric fixed costs imply one reset point,
and the third sufficient statistic remains zero.
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Finally, if we write idiosyncratic volatility in the denominator as σ2 ds = Vars[dk̂s], expression
(52) is just the coefficient of an OLS regression of dEs[Mτ ] onto dk̂s, with a bias correction.

3.7 Irreversibility’s Role for Sufficient Statistics

Before shifting gears to empirical and quantitative applications, we discuss how irreversibility

shapes the CIR’s sufficient statistics and establish connections with the literature. Irreversibility

plays two different roles in the propagation of aggregate shocks. First, it directly impacts the CIR

by shifting the masses of upward and downward adjustments, affecting investment behavior after

the first adjustment captured by the third sufficient statistic. Second, as a source of downward

rigidity, irreversibility indirectly impacts the CIR by turning positive the covariance of capital-

productivity ratios and age, affecting investment behavior before the first adjustment captured by

the first sufficient statistics. We highlight each channel by exploring extreme cases.

Irreversibility’s direct effect To showcase irreversibility’s direct impact on the CIR, Propo-

sition 5 considers a zero-drift environment where the direct impact is maximal (the covariance is

inherently zero in cases (i) and (ii) below) and an infinite-drift limit where the direct impact is

minimal (the covariance is negative and largest in absolute value in case (iii)). We derive analyt-

ical expressions for the CIR in terms of investment frictions rescaled by the user cost U and other

parameters.

Proposition 5. (Extreme cases) Up to the first order, the CIR’s sufficient statistics as a

function of investment frictions are as follows.

(i) No drift and only fixed cost: If ν = ω = 0 and θ > 0, then

(53)
CIR(δ)

δ
=

Var[k̂]
σ2

=

(
12θ̃

(1− α)σ6

)1/4

, where θ̃ =
θ

α

(
pU
α

) α
1−α

.

(ii) No drift and only partial irreversibility: If ν = θ = 0 and ω > 0, then

CIR(δ)

δ
= 2× Var[k̂]

σ2
=

(
12ω̃

(1− α)σ4

)1/3

, where w̃ =
ω/2

U(1− ω/2)
.(54)

(iii) Large drift: If σ2 > 0 and ν → ∞, then the price wedge is irrelevant and

E

[
Es[d(k̂sM(k̂s))]

ds

]
= 0, νCov[k̂, a] = −Var[k̂],

CIR(δ)

δ
= 0.(55)

As a baseline, case (i) assumes no drift and only a fixed cost so that the only sufficient statistic

is the ratio Var[k̂]/σ2. Expression (53) shows that the rescaled fixed cost θ̃ increases the inaction
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region, the cross-sectional variance, and the CIR with an elasticity of 1/4, resembling the results

by Barro (1972) and Dixit (1991).

Case (ii) assumes no drift and only a price wedge. Expression (54) shows that the rescaled

price wedge ω̃ affects aggregate fluctuations with an elasticity of 1/3, as in Abel and Eberly (1999)

and Miao (2019). The CIR equals two times the ratio Var[k̂]/σ2—obtained in case (i)—since the

first and third sufficient statistics in (51) are identical. This means that irreversibility doubles the

persistence of aggregate fluctuations for a given cross-sectional dispersion Var[k̂]. In other words,

the source of inaction (fixed costs vs. price wedge) matters for aggregate fluctuations.

At the other extreme, case (iii) considers a huge drift. As the drift unwaveringly depletes

capital relative to productivity, firms exclusively make and anticipate positive investments. The

price wedge becomes irrelevant as firms never face it and have no bite in the aggregate. This case

was first studied by Caplin and Spulber (1987) in a price-setting context. In our framework, this

mechanism gets captured in (55), where the covariance becomes so negative that it completely

unwinds the variance, and the local drift is zero. Aggregate shocks are immediately absorbed,

there are no deviations from the steady state, and the CIR equals zero.17

Irreversibility’s indirect effect The extreme cases above highlight that irreversibility’s direct

effect on the CIR depends on the drift. However, irreversibility’s indirect impact on the CIR is

muted in those cases. Next, we numerically explore cases with a moderate drift of ν = 0.07 and

price wedges in the range ω ∈ [0.0, 0.25] to showcase both the direct and indirect effects.18 For

a consistent comparison across economies, in the spirit of Hsieh and Klenow (2009), we fix the

cross-sectional dispersion of capital-productivity ratios Var[k̂] to the value obtained for θ = 0 and

ω = 0.25. Then, for other values of the wedge, we find the fixed cost θ that delivers the same

level of dispersion. Fixing Var[k̂] implicitly fixes the adjustment frequency and the dispersion of

adjustments across configurations.19

Panel A of Figure V plots the (θ, ω)-isoquant, which is convex. Going from left to right

increases the relative importance of the price wedge vis-à-vis the fixed cost while delivering the

same cross-sectional dispersion Var[k̂]. Panel B of Figure V plots the CIR and its three sufficient

statistics against the price wedge ω, computed along the isoquant. The CIR (solid black line)

increases as the price wedge dominates—capital fluctuations are more persistent. Since Var[k̂]/σ2

remains fixed (flat dotted line), changes in the other two sufficient statistics generate all the action.

The covariance Cov[k̂, a] (gray dotted line) starts negative at ω = 0 (as case (iii) of Proposition

5) as the drift makes old capital-productivity ratios negative. It becomes positive for ω > 0.08

as the downsizing constraints imposed by the price wedge kick in (recall the discussion in Section

17Baley and Blanco (2021) shows an analogous result for asymmetric fixed costs and zero price wedge.
18Miao (2019) studies the case with full irreversibility (ω = 1) for any drift ν ∈ R.
19In the quantitative model of Section 5, we match the empirical distribution of investment for each choice of ω.

However, the key messages from this section continue to hold.
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Figure V: Sufficient Statistics for Different Price Wedges and Fixed Allocation
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Notes: Panel A shows the (θ, ω) isoquant, and Panel B the CIR and its components for an illustrative calibration.

3.4). The local drift (dotted gray line) neatly encapsulates the direct irreversibility effect, which is

non-monotonic. The local drift dominates the (negative) covariance for low wedges; the (positive)

covariance dominates the local drift for high wedges. Overall, we see that the price wedge impacts

the CIR’s level and the relative contribution of each sufficient statistic. In Section 5 we exploit

this result to calibrate the price wedge.

4 Measuring Sufficient Statistics with Microdata

The challenge to analyzing the role of irreversibility on the CIR’s sufficient statistics stems from the

fact that these moments cannot be directly computed from the data as the distributions of capital-

productivity ratios g(k̂) and g±(k̂) are not directly observed. As economists, however, we have

available detailed panel data with information on the actions of adjusters: the size of adjustments

(∆k̂) and the duration of complete (τ) and incomplete (a) inaction spells. In this section, we derive

mappings from microdata to parameters, optimal investment policies, and sufficient statistics,

assuming the price wedge ω as given. Section 5 combines these mappings with a fully-fledged

quantitative investment model to discipline the price wedge.

Two-state strategy To measure sufficient statistics from panel microdata, we proceed in two

steps. In Stage I, we assume we know the two reset points. We then apply structural relationships

to the data linking the behavior of adjusting and non-adjusting firms to reverse-engineer the
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parameters of the productivity process and steady-state cross-sectional moments.

In Stage II, we use the data and the model’s structure to reverse-engineer the reset points. To

obtain these mappings, we condition adjusters’ behavior on the direction of the previous adjust-

ment so that their actions remain Markovian. Throughout, we exploit the properties of Markov

processes and the fact that the two reset points are constant.

4.1 Stage I: Mappings Given the Reset Points

We take the two reset points {k̂∗−, k̂∗+} as given and use the adjusters’ expectations conditional

on the previous reset point E±
[·] to back out parameters and cross-sectional moments. For this, we

require information on consecutive inaction spells {(∆k̂, τ), (∆k̂′, τ ′)} to condition future behavior

on the previous reset point.

For each firm’s completed inaction spell (∆k̂, τ), if the firm upsized its capital stock ∆k̂ > 0

we record the reset point as k̂∗ = k̂∗− and construct the stopped capital as k̂τ = k̂∗− −∆k̂; if the

firm downsized its capital stock ∆k̂ < 0, we record the reset point as k̂∗ = k̂∗+ and the stopped

capital as k̂τ = k̂∗+ −∆k̂. Similarly, we record the future reset point k̂∗′ and the future stopped

capital k̂τ ′ using the information from the subsequent spell (∆k̂′, τ ′).

We recover the parameters of the capital-productivity process in Proposition 6. Proposition

7 recovers conditional and unconditional means of k̂. Proposition 8 recovers the cross-sectional

variance of k̂ and their covariance with age. Finally, Proposition 9 recovers the irreversibility’s

term in the CIR. We present the mappings for these objects separately to facilitate exposition, but

they should be recovered simultaneously through a non-linear system of equations (details below).

Throughout, we exploit the relationship between conditional and unconditional moments of

adjustments presented in (24): E[y] = N−

N E−
[y] + N+

N E+
[y], where y ∈ {k̂τ ′ , τ ′}.

Proposition 6. (Recovering parameters) The drift ν and volatility σ2 of capital-productivity

ratios implied by investment microdata are recovered through the following mappings:

ν =
E[∆k̂]

E[τ ]
,(56)

σ2 =
E[(k̂τ ′ + ντ ′)2 − (k̂∗)2]

E[τ ]
.(57)

Expression (56) recovers the drift ν = ξ+µ using the average adjustment size E[∆k̂] times the

adjustment frequency—the inverse of the expected duration of inaction E[τ ] = N−1. It uses the

fact that, in a stationary environment, the average adjustment size E[∆k̂] must compensate for the

average drift between adjustments, i.e., νE[τ ]. Expression (57) recovers idiosyncratic risk σ2 from

the difference in future and past resets squared, also scaled by the adjustment frequency. This
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difference reflects dispersion in adjustment size, accounting for potential shifts in reset points.20 In

Baley and Blanco (2021), we obtained related mappings from the data to the parameters without

irreversibility. Irreversibility does not change the drift mapping, but it changes the volatility

mapping because it affects transitions across reset points.

Proposition 7. (Recovering means) Let r± be the adjusted shares in (25). The unconditional

mean E[k̂] and means conditional on the previous reset E±[k̂] are recovered as:

E[k̂] = r−E−[k̂] + r+E+[k̂],(58)

E±[k̂] = E±
[(

k̂∗± + k̂τ ′

2

)(
k̂∗± − k̂τ ′

E±
[k̂∗± − k̂τ ′ ]

)]
+

σ2

2ν
.(59)

The unconditional mean in (58) is the weighted average of the conditional means using adjusted

shares r±. The conditional means E±[k̂] in (59) are recovered from the middle point between the

departing and the ending points of an inaction spell (k̂∗±+ k̂τ ′)/2, weighed by relative adjustment

size.21 The term σ2/2ν corrects for the accumulated drift between adjustments.

Proposition 8. (Recovering the variance and covariance) The variance Var[k̂] and the

covariance Cov[k̂, a] are recovered from the microdata as:

Var[k̂] =
1

3

E
[
(k̂∗ − E[k̂])3

]
− E

[
(k̂τ ′ − E[k̂])3

]
k̂∗ − E[k̂τ ′ ]

.(60)

Cov[k̂, a] =
1

2ν

Var[k̂] + σ2E[a] −
E
[
(k̂τ ′ − E[k̂])2τ ′

]
E[τ ]

 .(61)

The variance in (60) is recovered from the difference in the cubes of the departing and the

ending points of an inaction spell, which reflects skewness in adjustments, divided by the difference

between departing and ending points to express it in variance units. The covariance Cov[k̂, a] in
(61) is recovered from the sum of the variance Var[k̂], average age E[a], and the product between

stopped capital squared and stopping times. We stress that, for a model to match the covariance,

it must match that latter dynamic moment, which is critical to correctly identifying the dynamic

effects of irreversibility.

20Note that E[(k̂∗)2] = N−

N (k̂∗−)2 + N+

N (k̂∗+)2.
21The second term in the product inside the expectation relates to the renewal measure again. Without irre-

versibility, this term collapses to ∆k′/E[∆k̂′], the adjustment size relative to the average adjustment. Midpoints of
firms with larger adjustments receive a more prominent weight. With irreversibility, the numerator and denominator
consider the different reset points, but effectively, it increases the weight on larger adjustments.
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Proposition 9. (Recovering the irreversibility term) The CIR’s irreversibility term is re-

covered from the microdata as

(62) E
[
1

ds
Es

[
d(k̂sM(k̂s))

]]
=

E[k̂τ ′M(k̂τ ′)]− E[k̂∗M(k̂∗)]

E[τ ]
,

where departing deviations M(k̂∗±) and ending deviations M(k̂τ ′) are recovered in Proposition 3.

According to (62), the third sufficient statistic equals the difference in the expected deviations

between departing and ending points. If there was one reset point, both numbers equal E[k̂∗M(k̂∗)]

and the statistic is zero. If there were no fixed costs, then k̂τ ′ = k̂∗′ , the numerator becomes

E[k̂∗′M(k̂∗′)] − E[k̂∗M(k̂∗)], and only consecutive adjustments that switch their ending point

(from upsizing to downsizing or vice versa) matter. The larger the difference in resets, transition

probabilities, or deviations, the more irreversible the investment, and the larger this statistic.

4.2 Stage II: Recovering the Reset Points

In Stage II, we recover the two reset points. We still take the price wedge ω as given. Evaluating

q’s stopping-time formulation in (16) at the reset points, we obtain the following conditions linking

the optimal stopping policy τ ∗ and the optimal reset points {k̂∗−, k̂∗+}:

p = E−
[∫ τ∗

0

αe−Us−(1−α)k̂s ds + p(∆k̂′) e−Uτ∗
]
,(63)

p(1− ω) = E+

[∫ τ∗

0

αe−Us−(1−α)k̂s ds + p(∆k̂′) e−Uτ∗

]
.(64)

These expressions say that adjusting firms reset their capital-productivity ratios to equalize

marginal costs and expected marginal benefits. The marginal cost is the investment price, ei-

ther p if buying or (1 − ω)p if selling. The expected marginal benefit is the cumulative marginal

product of capital generated during the inaction spell (between date 0 and τ ∗) plus the expected

value of undepreciated capital upon adjustment. Expectations depend on the past reset. Propo-

sition 10 uses these expressions to derive mappings from microdata to reset points. It extends the

formula for the frictionless case in (17) to include a fixed cost and a price wedge.

Proposition 10. (Recovering reset points) Let Φ ≡ log (α/(U − (1− α)ν − (1− α)2σ2/2)).

The two reset points {k̂∗−, k̂∗+} are recovered from the microdata as:
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k̂∗− =
1

1− α

Φ − log p + log
1− E− [

e−Uτ∗ + (1−α)(k̂∗−−k̂τ ′ )
]

1− E− [p(∆k̂′)
p

e−Uτ∗
]

 ,(65)

k̂∗+ =
1

1− α

Φ − log p(1− ω) + log
1− E+

[
e−Uτ∗ + (1−α)(k̂∗+−k̂τ ′ )

]
1− E+

[
p(∆k̂′)
p(1−ω)

e−Uτ∗
]

 .(66)

Recalling U = r+ ξ and ν = µ+ ξ, the first constant term Φ reveals that reset points increase

with productivity growth µ but decrease with the discount factor r and the depreciation rate ξ.

Higher idiosyncratic risk σ2 shifts reset points to the right, implying a larger average investment.

This effect highlights the fact that firms can expand to exploit good outcomes and contract to

insure against bad outcomes, making them potentially risk-loving (Oi, 1961; Hartman, 1972; Abel,

1983). The second term shows that reset points decrease with the corresponding investment price:

Firms invest more the lower the purchasing price p and disinvest less the lower the selling price

p(1 − ω). Lastly, the third term reflects how irreversibility shapes the reset points through the

expected marginal profits accrued during periods of inaction (in the numerator) and the expected

user cost U (in the denominator).

As a measure of irreversibility, consider the difference between reset points: (k̂∗+ − k̂∗−):

(67)
1

1− α

(
log

1

1− ω︸ ︷︷ ︸
exogenous

+ log
1− E+

[
e−Uτ∗ + (1−α)(k̂∗+−k̂′τ )

]
1− E− [

e−Uτ∗ + (1−α)(k̂∗−−k̂′τ )
] − log

1− E+
[
p(∆k̂′)
p(1−ω)

e−Uτ∗
]

1− E− [p(∆k̂′)
p

e−Uτ∗
]

︸ ︷︷ ︸
endogenous irreversibility

)
.

The constant Φ and the price p cancel out in the difference. The difference naturally increases in

the exogenous price wedge ω, further amplified by the output-capital elasticity α.22 The other two

ratios reflect history dependence on the expected marginal product and the user cost. As long as

the optimal policy depends on the previous reset, endogenous irreversibility arises.

4.3 Establishment-Level Manufacturing Data

We apply the mappings using yearly investment data on manufacturing establishments in Chile.

Data sources Data comes from the Annual National Manufacturing Survey (Encuesta Nacional

Industrial Anual) for the period 1980 to 2011. We use information on depreciation rates and price

deflators from national accounts and Penn World Tables to construct the capital series. The

sample considers plants that appear in the sample for at least ten years (more than 60% of the

22In the quantitative section, we discuss the challenge of identifying ω from α.
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sample) and have more than ten workers. We keep all pairs of consecutive adjustments (∆k, τ)

and (∆k′, τ ′) for each firm. Appendix E presents all the data details.

Capital stock and investment rates We construct the capital stock series using the perpetual

inventory method. We include structures, machinery, equipment, and vehicles. A plant’s capital

stock in year s evolves as

(68) ks = (1− ξ)ks−1 +
Is

p(Is)Ds

,

where ξ is the physical depreciation rate; Is is the nominal value of the investment; p(Is) is the

investment pricing function, which considers different prices for capital purchases p and sales

p(1− ω), for a given wedge ω; Ds is the gross fixed capital formation deflator; and k0 is a plant’s

self-reported nominal capital stock at current prices for the first year in which it is nonnegative.

Note that the ratio Is/(p(Is)Ds) is the real investment in capital units (the data counterpart to

is = ∆ks in the model), and it is affected by the price wedge.

Constructing investment rates We construct the gross nominal investment is with informa-

tion on purchases, reforms, improvements, and fixed asset sales. We define the investment rate ιs

as the ratio of real gross investment to the capital stock:23

(69) ιs ≡ Is/(p(Is)Ds)

ks−1

.

For each plant and each inaction spell h, we record the change in the capital-productivity ratio

upon action ∆k̂h and the spell’s duration τh. We construct ∆k̂h with investment rates from (69):

(70) ∆k̂h =

log (1 + ιh) if |ιh| > ι,

0 if |ιh| < ι.

The threshold ι > 0 reflects the idea that small maintenance investments should be excluded.

Following Cooper and Haltiwanger (2006), we set ι = 0.01, such that all investment rates below

1% in absolute value are considered inaction. We define an adjustment date Th using ∆k̂Th
̸= 0 and

compute a spell’s duration as the difference between two adjacent adjustment dates: τh = Th−Th−1.

Finally, we truncate the investment distribution at the 2nd and 98th percentiles to eliminate outliers.

23The investment rate equals ιTh
≡ iTh

/kT−
h

= (kTh
− kT−

h
)/kT−

h
, where kT−

h
= lims↑Th

ks. In contrast to

the continuous-time model, in which investment is computed as the difference in the capital stock between two
consecutive instants, in the data, we compute it as the difference between two consecutive years. Potentially, a bias
could arise from time aggregation as we take a continuous time model to annual data. We leave the assessment of
this bias for further research.
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Figure VI: Empirical Densities of Observable Actions
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Notes: Panel A plots the distribution of non-zero changes in capital-productivity ratios, and Panel B plots the

duration of inaction spells. Light bars = conditional on previous purchase (k̂τ = k̂∗−); Dark bars = conditional on

previous sale (k̂τ = k̂∗+). Sample: Firms with at least ten years of data, truncation at the 2nd and 98th percentiles

of investment rate distribution, and inaction threshold of ι = 0.01.

Figure VI plots the empirical cross-sectional distribution of non-zero changes in the capital-

productivity ratios ∆k̂ in Panel A and completed inaction spells τ in Panel B, conditional on a

past sale or purchase. We obtain an inaction rate of 40%.24 The data shows the same qualitative

patterns as in Section 2.5, consistent with irreversibility. Investment distributions have few nega-

tive investments, plenty of small positive investments, and few large positive investments, and are

convex as they move away from zero. Moreover, the density of investment rates conditional on a

sale h+(∆k) is more tilted toward negative values than h−(∆k), which means that the probability

of a sale is higher after a sale, and vice versa. The expected duration of inaction is longer after a

previous sale than after a purchase. The conditional durations are E−[τ ] = 1.72 and E+[τ ] = 1.98.

4.4 Putting the Theory to Work

Before applying the mappings, we need values for a few standard parameters and a price wedge.

One period is a year. We set the real interest rate to 6.6% (r = 0.066) to match the average real

interest rate in Chile reported by the IMF. The productivity growth rate is 2.0% (µ = 0.02). To set

the returns to scale α, we consider a Cobb-Douglas production function with frictionless labor input

ℓ: y = u1−ηα̃
(
kα̃ℓ1−α̃

)η
. Static maximization over labor implies y ∝ k

ηα̃
1−(1−α̃)η . Assuming standard

values η = 0.90 and α̃ = 0.4, the output-capital elasticity is α = (ηα̃)/(1− (1− α̃)η) = 0.85.25 We

24Table E.1 in Appendix E.6 presents additional investment rate statistics.
25For robustness, we conduct comparative statics on α in Appendix E.7.
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normalize the price level to p = 6. Finally, we set the price wedge to our preferred value ω = 0.12,

disciplined in the next section.

We apply the mappings to the Chilean investment data to recover the productivity parameters,

the two reset points, and the cross-sectional moments behind the CIR’s sufficient statistics. Since

all these objects are simultaneously determined, we develop an iterative method to solve the non-

linear system of mappings in (56), (57), (65) and (66), substituting the population moments with

their sample counterparts. Appendix E.4 provides a step-by-step guide to recovering these objects.

Table I: Mappings from microdata for ω = 0.12

Inputs from microdata

Size, Duration and Age

Avg. Size E[∆k̂] 0.200
Avg. Duration E[τ ] 1.733
Avg. Age E[a] 1.677
Dynamic covariances

Covariance I E[(k̂τ ′ + ντ ′)2] 0.801

Covariance II E
[
(k̂τ ′ − E[k̂])2τ ′

]
0.275

Probabilities
Adjustment frequency N 0.482
Purchase frequency N− 0.464
Sale frequency N+ 0.018

Purchase renewal weight r− 0.952
Sale renewal weight r+ 0.047
Purchase – purchase P−− 0.958
Sale – sale P++ 0.124

Avg. purchase prob. E[P−(k̂)] 0.947

Avg. selling prob. E[P+(k̂)] 0.052

Outputs from mappings

Parameters
Drift ν 0.115
Volatility σ2 0.057
Depreciation ξ 0.095
User cost U 0.161
Reset points

Reset after purchase k̂∗− −0.854

Reset after sale k̂∗+ −0.041

Inner inaction k̂∗+ − k̂∗− 0.813

Moments of k̂

Average E[k̂] −0.841

Avg. cond on purchase E−[k̂] −0.977

Avg. cond on sale E+[k̂] −0.336

Variance Var[k̂] 0.097

Covariance with age Cov[k̂, a] 0.152

Local drift E
[
Es[d(k̂sM(k̂s))]

ds

]
0.035

Notes: Mappings assume a price wedge ω = 0.12, output-capital elasticity α = 0.85, real interest rate r = 0.066,
productivity growth µ = 0.02 and purchase price p = 6.

Data inputs The left part of Table I reports the cross-sectional moments of adjusting firms

in the microdata, which are inputs into the theory mappings. The average inaction period lasts

E[τ ] = 1.733 years and ends with an average adjustment of E[∆k̂] = 0.200. Capital has an average

age of 1.677 years.

We also report key dynamic moments, shares, renewal weights, transition probabilities, and

average probabilities. On average, half of firms adjust every period (N = 0.482), from which more

than 96% of firms upsize and less than 4% downsize. Upsizing is quite persistent, as the likelihood

of upsizing after an upsize is P−− = 0.958, whereas the probability of downsizing following a

downsize is only P++ = 0.124.

Theory outputs The right part of Table I reports the values of various model objects. Regard-

ing the productivity process, investment data implies a drift of ν = 0.115, which includes capital
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depreciation and productivity growth. Given values for µ and r, the implied capital depreciation

rate is ξ = ν−µ = 0.095 and the user cost is U = r+ξ = 0.161. We recover idiosyncratic volatility

of σ2 = 0.058, consistent with the volatility of productivity used in quantitative models.26

The reset points are k̂∗− = −0.854 < −0.041 = k̂∗+ and the average capital-productivity ratio

is E[k̂] = −0.841. They imply that firms’ capital fluctuates between 0.42 and 0.96 times their

idiosyncratic productivity, with an average ratio of 0.43. Conditional on upsizing, on average,

firms reset their capital to 0.37 times their productivity (E−[k̂] = −0.986), and conditional on

downsizing, they do it to 0.75 times productivity (E+[k̂] = −0.287). The width of the inner

inaction region—a direct measure of irreversibility—is given by the difference k̂∗+ − k̂∗− = 0.813,

out of which 45% is generated by the exogenous price wedge and the remaining 55% is generated

by the endogenous response to the wedge, according to equation (67).

The dispersion of capital-productivity ratios is Var[k̂] = 0.097. In turn, the covariance of

capital-productivity ratios with capital age is positive Cov[k̂, a] = 0.152 > 0, which means that

the price wedge’s positive impact on the covariance dominates the drift’s negative effects. Finally,

the local drift that captures history dependence equals 0.035. The positive covariance and the

positive local drift amplify aggregate fluctuations.

Autocorrelation in adjustment sign We assess the serial correlation in the adjustment sign in

the data as additional evidence of the effect of irreversibility on plants’ investment, complementing

the transition probabilities across reset points. Since the adjustment sign is a binary variable,

computing a simple correlation is not recommended. The standard Pearson correlation coefficient

fails to capture the degree of association between two binary variables meaningfully. Instead, we

run a logistic regression of sign(∆k̂′) on sign(∆k̂), which yields an odds ratio of 3.3. This ratio

suggests it is more than three times more likely to purchase after a previous purchase than after

an earlier sale.

5 A Quantitative Investment Model

In this section, we extend the adjustment cost structure of the parsimonious model introduced

in Section 2 to better match the empirical investment rate distribution, specifically its dispersion

and the coexistence of both large and small investment rates. To achieve this, we incorporate

a generalized adjustment hazard, initially proposed by Caballero and Engel (1999, 2007) and

further developed in the price-setting context by Alvarez, Lippi and Oskolkov (2022) and in the

investment context by Lippi and Oskolkov (2023). By recovering the generalized hazard directly

from the data, we discipline the price wedge and quantitatively evaluate the role of irreversibility.

As noted earlier, the sufficient statistics outlined in Section 3 and the data mappings discussed in

26Irreversibility increases the recovered volatility σ2 from 0.049 (see Table I in Baley and Blanco (2021)) to 0.058.
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Section 4 are valid within this generalized hazard framework.

5.1 The Generalized Hazard Model

The generalization focuses solely on the structure of fixed adjustment costs while preserving the

assumptions regarding production technology, the productivity process, and the price wedge.27 For

every non-zero investment, ∆ks ̸= 0, firms incur a stochastic fixed adjustment cost, θs, proportional

to productivity:

(71) θs = Θs(∆k̂)us.

The function Θs(∆k̂) follows a compound Poisson process, allowing for distributions of fixed

costs and free adjustment opportunities (i.e., mass points at zero cost), which may differ between

positive and negative adjustments. This adjustment cost structure can alternatively be expressed

using an adjustment hazard function, Λ(k̂), such that for a given capital-productivity ratio, k̂, the

probability of adjusting within a small interval dt is Λ(k̂)dt in the outer inaction region and zero

in the inner inaction region. Unlike the baseline model, which assumes zero adjustments inside

the inaction region, this extended model introduces a positive probability of adjustment within

that domain.

The extended Kolmogorov Forward Equation characterizing the stationary distribution of k̂

includes an additional term, absent in the baseline KFE from (19),

(72) Λ(k̂)g(k̂) = νg′(k̂) +
σ2

2
g′′(k̂), ∀k̂ ∈ (k̂−, k̂+) \ {k̂∗−, k̂∗+},

together with the boundary and reinjection conditions that depend on the price wedge, ω.

Our generalized hazard model with irreversibility nests several existing investment models: the

standard fixed-cost model (Scarf, 1959); random fixed costs, including those of Thomas (2002),

Gourio and Kashyap (2007), and Khan and Thomas (2008); asymmetric fixed costs and time

dependent adjustments (Baley and Blanco, 2021); and the generalized hazard model without

irreversibility (Lippi and Oskolkov, 2023).

5.2 Recovering the Adjustment Hazard

To recover the hazard function that generates the empirical investment rate distribution shown in

Figure VI, we follow the methodology outlined by Lippi and Oskolkov (2023).28

27See Baley and Blanco (2021) for an analysis of ex-ante heterogeneity in firms’ production and adjustment
technologies.

28Lippi and Oskolkov (2023) propose a detailed framework to recover the underlying distribution of fixed ad-
justment costs responsible for the observed investment patterns. This approach is critical for understanding het-
erogeneity and the origins of inaction. For our purposes, it suffices to recover the hazard function to compute the
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First, we exploit the relationship between the model’s hazard rate Λ(k̂) and the density of

capital-productivity ratios g(k̂), and the data’s adjustment frequency N and investment density

h(∆k̂). Specifically, for any k̂, these objects satisfy the following relationship:

(73) Λ(k̂)g(k̂)︸ ︷︷ ︸
model

= Nh(∆k̂)︸ ︷︷ ︸
data

, where ∆k̂ = k̂∗(k̂)− k̂.

Second, we parameterize the investment density, h(∆k̂), using a Gamma distribution that accounts

for asymmetries between positive and negative adjustments. This is achieved by introducing

separate frequency (Υ), shape (ϱ−, ϱ+), and scale (ς−, ς+) parameters for positive and negative

adjustments:

(74) h(∆k̂ | Υ, ϱ−, ϱ+, ς−, ς+) =


Υ

Γ(ϱ−)(ς−)ϱ−
(∆k̂)ϱ

−−1 exp
(
−∆k̂

ς−

)
if ∆k̂ > 0,

1−Υ

Γ(ϱ+)(ς+)ϱ+
(−∆k̂)ϱ

+−1 exp
(

∆k̂
ς+

)
if ∆k̂ < 0.

We estimate these five parameters (Υ, ϱ−, ϱ+, ς−, ς+) using a simulated method of moments.

Using the estimated values, we substitute the investment density, h(∆k̂), into the KFE. We then

solve the resulting system of equations for g(k̂) at each k̂, employing finite differences and incor-

porating the boundary conditions: g(k̂−) = g(k̂+) = 0 and
∫ k̂+

k̂−
g(k̂) dk̂ = 1, where the boundaries

depend on the price wedge ω. By varying the price wedge, we compute the corresponding hazards

and distributions.29

Finally, with the estimated density g(k̂), we recover the hazard function as:

(75) Λ(k̂) =


Nh(k̂∗−−k̂)

g(k̂)
if k̂ < k̂∗−,

Nh(k̂∗+−k̂)

g(k̂)
if k̂ > k̂∗+.

Panel A of Figure VII displays the yearly adjustment probability, 1 − e−Λ(k̂), derived as a

transformation of the hazard function. Panel B shows the capital-productivity distribution, g(k̂).

The x-axes plot capital-productivity ratios relative to the lower reset point k̂ − k̂∗−. We analyze

three different wedges, ω ∈ {0, 0.12, 0.18}. Notably, all three specifications align with the empirical

investment distribution in Figure VI, despite substantial variations in adjustment probabilities and

distributions across price wedges. In essence, given the adjustment frequency N , the generalized

hazard approach ensures the existence of an adjustment hazard Λ(k̂) and a capital-productivity

distribution g(k̂) such that their product rationalizes the data, Nh(∆k̂). However, as illustrated in

Figure VII, these components can differ significantly, resulting in distinct implications for aggregate

fluctuations.

CIR’s sufficient statistics.
29See Appendix E.5 for additional technical details.
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Figure VII: Adjustment Probability and Capital-Productivity Distribution
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Notes: Panel A plots the yearly adjustment probability 1− exp(−Λ(k̂)) and Panel B plots the capital-productivity

distribution g(k̂) for price wedges ω ∈ {0, 0.12, 0.18}. In both figures, the x-axis shows capital-productivity ratios

relative to the lower reset point k̂ − k̂∗−.

Through the lens of a model without irreversibility (ω = 0, solid black line), the few negative

investments arise by limiting k̂’s growth and immediately correcting positive capital-productivity

ratios through disinvestment. The large mass of small positive investment rates and the convexity

of the investment distribution are driven by a decreasing hazard function: firms are more likely to

adjust when k̂ deviates slightly from the reset point than when the deviation is more considerable.

As a result, the adjustment probability is non-monotonic, and the capital-productivity distribution

is skewed toward lower ratios.

In contrast, a model with irreversibility (ω > 0, gray lines) introduces an inner inaction region,

breaking away from the single reset point. This allows capital-productivity ratios to grow and

positively covary with firm age. In this case, firms with high capital-productivity ratios account

for the few negative investments observed. The large mass of small positive investment rates and

the convexity of the investment distribution is explained by an increasing hazard function, which

is the natural outcome under profit optimization: the likelihood of adjustment rises as k̂ deviates

further from the optimal point.

The adjustment hazard is also higher under irreversibility than without for all k̂ in the outer

inaction region. Consequently, the density of capital-productivity ratios in these regions is lower,

ensuring that the product of the hazard function and the capital-productivity distribution delivers

consistent values. This mechanism highlights the distinct dynamics introduced by irreversibility

in the model and its implications for micro-level investment behavior.
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Table II: CIR’s Sufficient Statistics: Data vs. Model

ω = 0.00 ω = 0.12 ω = 0.18
Data Model Data Model Data Model

CIR 2.54 0.92 2.60 1.93 2.33 2.39

Suff. statistics:
(i) Variance term 1.88 (74) 1.73 (188) 1.68 (65) 1.40 (72) 1.38 (56) 1.58 (66)
(ii) Covariance term 0.65 (26) −0.81 (−88) 0.30 (11) 0.19 (10) −0.13 (−5) 0.50 (21)
(iii) Irreversibility term 0.00 (0) 0.00 (0) 0.61 (23) 0.34 (18) 1.20 (49) 0.31 (13)

Notes: CIR computed using Chilean data and calibrated model. The relative importance of each sufficient statistic,
expressed in %, is reported in parenthesis. Variance term: Var[k̂]/σ2, Covariance term: νCov[k̂, a]/σ2, and Irre-

versibility term: E
[

1
dsEs[d(k̂sM(k̂s))]

]
/σ2.

This analysis demonstrates that fully capturing micro-level investment dynamics requires more

than just matching the investment distribution. As the figures show, capital-productivity distribu-

tion changes with the price wedge. Extra information is necessary to identify the correct parameter

configuration. The CIR provides this critical information. Next, we exploit the CIR’s sufficient

statistics as model discrimination tools to discipline the price wedge.

5.3 Sufficient Statistics for Aggregate Capital Fluctuations

With the adjustment hazard function recovered, we compute the CIR’s sufficient statistics to

evaluate aggregate capital fluctuations. Table II reports the CIR and its sufficient statistics for

Chilean manufacturing plants between 1980 and 2011. We consider three price wedges: ω = 0,

ω = 0.12, and ω = 0.18. These wedges illustrate the model’s performance across different degrees

of irreversibility and provide a basis for selecting the value of ω that best matches the data.

The first case, ω = 0, represents the baseline scenario where irreversibility is absent. While

this is a valuable benchmark, it fails to match the CIR’s level and decomposition into sufficient

statistics. Specifically, the variance term is overstated, the covariance term is negative instead

of positive, and the irreversibility term is absent. These discrepancies highlight the necessity of

introducing irreversibility to explain the dynamics of aggregate capital fluctuations.30

At the other extreme, ω = 0.18 achieves a CIR level (2.39) that matches the data (2.33)

remarkably well. However, the decomposition into sufficient statistics diverges significantly from

the observed contributions. The variance term dominates excessively, while the covariance and

irreversibility terms deviate from their empirical counterparts. Although this wedge captures the

overall CIR level, it fails to reflect the actual economic channels driving capital adjustment, making

30(Baley and Blanco, 2021) show that even with a zero wedge, an extremely high fixed cost for downward
adjustments can revert the sign of the covariance to positive. Nevertheless, that parametrization does not generate
the observed investment rate distribution.
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it unsuitable for accurately representing the underlying dynamics.

The wedge ω = 0.12 represents the intermediate case and provides the best balance. While the

CIR level (1.93) is slightly below the observed value, the decomposition into sufficient statistics

aligns closely with the data. The variance term accounts for 72%, followed by irreversibility

and covariance, mirroring the empirical structure. This wedge correctly captures the mechanisms

driving aggregate fluctuations, making it the preferred choice.

5.4 Disciplining the Price Wedge

We select ω = 0.12 as the preferred value for the price wedge because it maximizes consistency

between the model and the data regarding sufficient statistics. While it does not perfectly match

the CIR level, it accurately captures the decomposition, reflecting the relative importance of

variance, covariance, and irreversibility in driving aggregate capital fluctuations. Prioritizing

mechanisms over level ensures the model represents the actual economic dynamics.

At ω = 0.12, we recover a CIR of 1.93, meaning a 1% decrease in aggregate productivity leads

to a nearly 2% deviation of average capital-productivity ratios from their steady-state value. The

first sufficient statistic, Var[k̂]/σ2, accounts for 72% of the CIR, highlighting the dominant role of

variance. The second statistic, −νCov[k̂, a]/σ2, captures the covariance channel, which represents

10% of the CIR. Lastly, the third statistic, E
[
Es

[
d(M(k̂s)k̂s)

]
/ds
]
/σ2, measures the contribution

of irreversibility which is 18% of the CIR. Together, these statistics provide a clear decomposition of

the CIR and validate ω = 0.12 as the most reliable representation of capital adjustment dynamics.

Besides the CIR, these sufficient statistics match the distribution of investment rates.

5.5 Price Wedges in the Literature

We compare our preferred price wedge value, ω = 0.12, with estimates from existing literature and

discuss alternative approaches. To express values in the same units, the price wedge is calculated

as one minus the recovery rate—the liquidation value over replacement cost net of depreciation.31

Empirical studies provide direct evidence of price wedges, often based on observed recovery

rates. Ramey and Shapiro (2001) analyze capital reallocation from closing aerospace plants in

the United States, estimating a price wedge of 0.72, which reflects significant discounts during

liquidation. Kermani and Ma (2023) document industry-level wedges of around 0.65 for plant,

property, and equipment, consistent with the high levels of asset specificity in these sectors. These

estimates are likely upward biased due to selection effects, as they are based on liquidating firms

subject to fire-sale dynamics. Surveys offer complementary insights. Dibiasi, Mikosch and Sarferaz

(2021) survey Swiss CEOs and CFOs and find an average price wedge of approximately 0.47.

31Appendix F summarizes the values reported in the literature.
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Structural quantitative models estimate wedges by calibrating them to static features of the

investment rate distribution. For instance, Bloom (2009) calibrates a wedge of 0.34, while Fang

(2023) and Senga and Varotto (2024) report values between 0.30 and 0.41. These larger wedges

typically reflect settings with substantial capital specificity or adjustment frictions. In contrast,

models such as Cooper and Haltiwanger (2006), Khan and Thomas (2013), and Lanteri (2018)

rely on smaller wedges, ranging from 0.025 to 0.07, indicating less severe frictions or more fluid

capital adjustment.

Our estimate of ω = 0.12, which relies on matching the CIR and the micro-dynamic mo-

ments, lies in between. This value likely captures heterogeneity across sectors and capital types

and the effects of internal capital transfers, such as mergers and acquisitions, that may mitigate

irreversibility for some firms (Bhandari, Martellini and McGrattan, 2024).

6 Final Thoughts

We investigate how partially irreversible investment shapes aggregate fluctuations. Our approach

innovates by characterizing fluctuations with lumpy adjustments across two reset points, using

(i) conditioning on prior resets, (ii) transition probabilities across resets, and (iii) microdata to

discipline those transitions. Our flexible methodology can accommodate a finite number of reset

points and applies broadly wherever sufficient microdata exist to discipline transitions. Extensions

of our framework could study financial frictions by linking reset points to fund availability through

firm-level financial data.

We outline four directions for future research. First, while we focus on aggregate productivity

as a source of fluctuations, our framework applies to other aggregate shocks, such as changes in

profitability, capital prices, or interest rates.32 This opens avenues for studying corporate tax

reforms (Altug, Demers and Demers, 2009; Winberry, 2021; Chen, Jiang, Liu, Suárez-Serrato and

Xu, 2023) or monetary policy and their interaction with investment frictions (Fang, 2023; Baley,

Blanco and Oviedo, 2024).

Second, our analysis assumes fixed price wedges and interest rates suited to small open economies.

However, ample evidence shows that wedges vary across the business cycle and are endogenously

determined in secondary markets (Lanteri, 2018; Gavazza and Lanteri, 2021). Incorporating time-

variation in price wedges and interest rates are natural extensions in this direction, allowing the

assessment of general equilibrium effects (Veracierto, 2002; Gourio and Kashyap, 2007).

Third, while we focus on first-moment shifts in the capital-productivity distribution, our

methodology can analyze higher-order moments, such as dispersion or skewness, by adapting

the CIR’s sufficient statistics framework. We characterize the CIR for any continuous function

32Shocks to the price wedge or the stochastic process of capital-productivity ratios would entail changes in the
sufficient statics, so we leave them for future study.
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f(k̂); thus, setting f(k̂) = k̂m allows characterizations of cross-sectional moments (m = 2 for

variance, m = 3 for skewness), while f(k̂) = eαk̂ can characterize aggregate output.33

Finally, we focus on small aggregate shocks (δ) and first-order perturbations, potentially ig-

noring nonlinearities and the response to large shocks. Appendix G studies numerically the

non-linearities in the generalized hazard model regarding the sign and magnitude of aggregate

productivity shocks. We find tiny non-linearities and asymmetries for productivity shocks below

δ = 5%.
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A Proofs

A.1 Auxiliary Theorems

Auxiliary Theorem 1 (Optional Sampling Theorem, OST). Let k̂ be a martingale on the filtered space

(Ω,P,F) and let τ be a stopping time. If ({k̂t}t, τ) is a well-defined stopping process, then

(A.1) E[k̂τ ] = E[k̂0].

See Theorem 4.4 in Stokey (2009). This result establishes that, under certain conditions, the expected value of

a martingale at a stopping time is equal to its initial expected value. We use this result to derive the mappings

between the cross-sectional moments of adjusters and non-adjusters.

Auxiliary Theorem 2 (Occupancy Measure Theorem, OMT). Let k̂t be a Brownian motion, τ a stopping

time, and k̂τ = k̂∗ a constant reset state. Let G be the ergodic distribution of k̂. Consider a real-valued function

f(k̂) such that
∫
f(k̂) dG(k̂) = limT→∞ T−1

∫ T

0
f(k̂t) dt for all initial k̂0. Then the following relationship holds:

(A.2) E
[∫ τ

0

f(k̂t) dt
∣∣∣k̂0 = k̂∗

]
︸ ︷︷ ︸

occupancy measure

=

∫
f(k̂) dG(k̂)︸ ︷︷ ︸

steady-state mass

E
[
τ
∣∣∣k̂0 = k̂∗

]
.︸ ︷︷ ︸

proportionality constant

See Stokey (2009) and the Green measure in Chapter 9 of Oksendal (2007)). This result establishes the equivalence

between the occupancy measure—the average time an agent’s state spends at a given value—and the stationary mass

of agents at that particular state, with a proportionality constant equal to the expected time between adjustments.

E.g., if f(k̂) = k̂m, then E
[∫ τ

0
k̂mt dt|k̂0 = k̂∗

]
= E[k̂m]E[τ |k̂0 = k̂∗]. We use this theorem to convert occupancy

measures, scaled by frequency, into steady-state cross-sectional moments. We use E[·] = E[·|k̂0 = k̂∗].

Auxiliary Theorem 3 (Equivalence between sequential and recursive formulations). Let k̂s be a Brow-

nian motion (dk̂s = −ν ds + σ dWs) inside a continuation region R. Let g(k̂) be the flow payoff and ϕ(k̂s) be the

terminal payoff(s). Define a (non-optimal) value w(k̂) using a sequential formulation as follows:

(A.3) w(k̂) ≡ E
[∫ τR

0

e−ρτRg(k̂s) ds
∣∣∣k̂0 = k̂

]
+ E

[
e−ρτRϕ(k̂τR)

∣∣∣k̂0 = k̂
]
, ∀k̂ ∈ R,

where τR is any stopping time. Under certain regularity conditions over R, g(k̂), and ϕ(k̂), we have that ∀k̂ ∈ R:

(HJB) ρw(k̂) = g(k̂) − νw′(k̂) +
σ2

2
w′′(k̂),(A.4)

(Value Matching) lim
t↑τR

w(k̂t) = ϕ(k̂τR), a.s.(A.5)

If τR is an optimal stopping time then the smooth-pasting condition also holds:

(Smooth Pasting) lim
t↑τR

w′(k̂t) = ϕ(k̂τR), a.s.(A.6)

If there exist a function w1 ∈ C2(R) and w1 satisfies (A.4) and (A.5) (and (A.6) if optimal), then w1 = w.

See Chapters 9 and 10 in Oksendal (2007). These results allow us to go back and forth between w’s sequential

formulation—given by the cumulative flow payoff during inaction plus the value at termination—and the recursive

formulations—with an HJB in the interior of the inaction region, value-matching conditions when stopping, and

smooth pasting conditions if the stopping policy is optimal.
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A.2 Proof of Proposition 1

Proposition 1. (Optimal policy) Marginal q(k̂) and the optimal policy {k̂−, k̂∗−, k̂∗+, k̂+} is characterized by

the following sufficient optimality conditions:

(i) Inside the inaction region R, q(k̂) solves the Hamilton-Jacobini-Bellman (HJB) equation:

(11) Uq(k̂) = αe(α−1)k̂

p
− νq′(k̂) +

σ2

2
q′′(k̂), ∀ k̂ ∈ (k̂−, k̂+).

(ii) In the outer inaction regions, q(k̂) satisfies the value-matching conditions:

θ

p
=

∫ k̂∗−

k̂−
ek̂
(
q(k̂)− 1

)
dk̂, ∀ k̂ ∈ [k̂−, k̂∗−],(12)

θ

p
=

∫ k̂+

k̂∗+
ek̂
(
(1− ω)− q(k̂)

)
dk̂ ∀ k̂ ∈ [k̂∗+, k̂+].(13)

(iii) At the borders of the inaction region and reset points, q(k̂) satisfies the optimality conditions:

q(k̂) = 1, k̂ ∈
{
k̂−, k̂∗−

}
,(14)

q(k̂) = 1− ω, k̂ ∈
{
k̂∗+, k̂+

}
.(15)

From these conditions, q’s stopping-time formulation is given by

(16) q(k̂) = E

[∫ τ

0

αe−Us+(α−1)k̂s

p
ds + e−Uτq(k̂τ )

]
.

Proof’s strategy We divide this proof into three steps.

1. In Step 1, we characterize the two-state value function V (k, u) and optimal policies (k−(u), k∗−(u), k∗+(u), k+(u))

through the Hamilton-Jacobi-Bellman (HJB) equation, value matching, optimality, and smooth pasting con-

ditions.

2. In Step 2, we guess that V (k, u) = uv(k̂), where v(k̂) is a function of the log capital-to-productivity ratio

k̂ ≡ log(k/u). Using the guess, we exploit homotheticity in the firm’s programming problem to express

optimality conditions as joint conditions between v(k̂) and the firm’s policy (k̂−, k̂∗−, k̂∗+, k̂+). We use the

sufficient conditions that characterize the two-state value function and optimal policies from Step 1 to reduce

the state space into one dimension. The corresponding policies are (k̂−, k̂∗−, k̂∗+, k̂+). We verify the guess

by showing that the sufficient conditions for V (·) are equivalent to those satisfied by v(·).

3. In Step 3, we note that q(k̂) = v′(k̂)/(pek̂) and establish its sufficient optimality conditions reexpressing the

HJB and optimality conditions for v in Step 2. An advantage of characterizing the policy with q(k̂) is that

it shares the infinitesimal generator with k̂; this is not the case with v(k̂) as its drift equals −(ν + σ2).

A.2.1 Step 1: Characterize the two-state value function V (k, u)

Substitute output ys = u1−α
s kαs from (1) and the adjustment costs θs = θus from (3) into the firm problem in (5):

V (k0, u0) = max
{Th, iTh

}∞
h=1

E

[∫ ∞

0

e−rsu1−α
s kαs ds −

∞∑
h=1

e−rTh (θuTh
+ p (∆kTh

) iTh
)

]
.(A.7)
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Using the principle of optimality, we get a recursive stopping-time problem with initial conditions (k0, u0) = (k, u):

V (k, u) = max
τ, ∆kτ

E
[∫ τ

0

e−rsu1−α
s kαs ds + e−rτ (−θuτ − (p(∆kτ ))∆kτ + V (kτ− +∆kτ , uτ ))

]
,(A.8)

where we change the notation to iTh
= ∆kτ = kτ − kτ− .

Let R be the firms’ inaction region that is equal to R ≡ {(k, u) : k−(u) < k < k+(u)}, where k−(u) is the

lower inaction threshold that triggers a positive investment, and k+(u) is the upper inaction thresholds that trigger

a negative investment. For each level of productivity u, let R− ≡ {(k, u) : k = k−(u)} denote the lower border

of the inaction set and k∗−(u) the reset capital after positive adjustment, where ∆k(u) = k∗−(u) − k−(u) > 0.

Analogously, we denote the upper border of inaction set as R+ ≡ {(k, u) : k = k+(u)} with a reset capital after

negative adjustment as k∗+(u), where ∆k(u) = k∗+(u)− k+(u) < 0.

Optimality conditions for V (k, u) The value V (k, u) and the optimal policy (k−(u), k∗−(u), k∗+(u), k+(u))

satisfy the system of sufficient conditions in (A.9) to (A.17):

1. Inside the inaction region R, V (k, u) solves the HJB equation:

rV (k, u) = u

(
k

u

)α

− ξk
∂V (k, u)

∂k
+

(
µ+

σ2

2

)
u
∂V (k, u)

∂u
+
σ2u2

2

∂2V (k, u)

∂u2
∀(k, u) ∈ R.(A.9)

2. Value matching conditions equalize the value of action and inaction at the borders of the inaction region:

V (k∗−(u), u) − p ∆k(u)− θu = V (k−(u), u) ∀(k, u) ∈ R−,(A.10)

V (k∗+(u), u) − p(1− ω)∆k(u)− θu = V (k+(u), u) ∀(k, u) ∈ R+.(A.11)

3. The two optimality conditions for the reset capitals {k∗−, k∗+} are:

∂V (k∗−(u), u)
∂k

= p,(A.12)

∂V (k∗+(u), u)
∂k

= p(1− ω).(A.13)

4. The four smooth pasting conditions are:

∂V (k, u)

∂k
= p ∀(k, u) ∈ R−,(A.14)

∂V (k, u)

∂k
= p(1− ω) ∀(k, u) ∈ R+,(A.15)

∂V (k∗−(u), u)
∂u

= θ +
∂V (k, u)

∂u
∀(k, u) ∈ R−,(A.16)

∂V (k∗+(u), u)
∂u

= θ +
∂V (k, u)

∂u
∀(k, u) ∈ R+,(A.17)

For additional details on the sufficiency of these conditions, see Baley and Blanco (2019, 2021).

A.2.2 Step 2: Characterize the one-state value v(k̂) = V (k, u)/u

We guess that V (k, u) is separable:

(A.18) V (k, u) = u× v

(
log

(
k

u

))
= uv(k̂),
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with associated policies

(A.19) (k−(u), k∗−(u), k∗+(u), k+(u)) = u× (ek̂
−
, ek̂

∗−
, ek̂

∗+
, ek̂

+

).

Given the guess (A.18), the derivatives of V (k, u) and the derivatives of v(k̂) satisfy the following relationships:

∂V (k, u)

∂k
=

u

k
v′
(
log

(
k

u

))
=
u

k
v′(k̂),(A.20)

∂V (k, u)

∂u
= v

(
log

(
k

u

))
− v′

(
log

(
k

u

))
= v(k̂)− v′(k̂),(A.21)

∂2V (k, u)

∂u2
= −v

′ (log ( ku))
u

+
v′′
(
log
(
k
u

))
u

= −v
′(k̂)
u

+
v′′(k̂)
u

.(A.22)

2a. HJB Substituting the guess into (A.9):

rV (k, u) = u

(
k

u

)α

− ξk
∂V (k, u)

∂k
+

(
µ+

σ2

2

)
u
∂V (k, u)

∂u
+
σ2u2

2

∂2V (k, u)

∂u2
,(A.23)

ruv(k̂) = ueαk̂ − ξk
u

k
v′(k̂) +

(
µ+

σ2

2

)
u(v(k̂)− v′(k̂)) +

σ2u2

2

(
v′′(k̂)
u

− v′(k̂)
u

)
.(A.24)

Joining terms we get: (
r − µ− σ2

2

)
uv(k̂) = ueαk̂ − (µ+ ξ + σ2)uv′(k̂) +

σ2

2
uv′′(k̂).(A.25)

Defining new parameters ν ≡ µ+ ξ and ρ ≡ r − µ− σ2/2, and dividing both sides by u, we obtain the HJB:

ρv(k̂) = eαk̂ − (ν + σ2)v′(k̂) +
σ2

2
v′′(k̂).(A.26)

2b. Value matching Substituting the guess into (A.10) and (A.11):

uτv(k̂
∗−) − p∆k − θuτ = uτv(k̂

−) ,(A.27)

uτv(k̂
∗+) − p(1− ω)∆k − θuτ = uτv(k̂

−) .(A.28)

Next, we express investment in terms of changes in capital productivity ratios k̂. The expression (9), which reads

∆k̂ = log (1 + ∆k/kτ−), implies ∆k = e∆k̂kτ− − kτ− ; multiplying and dividing by uτ and substituting the

definition of k̂ yields: ∆k = uτ

(
e∆k̂+k̂τ − ek̂τ

)
. Then we use k̂τ = k̂+ or k̂τ = k̂− accordingly. Using this notation,

we rewrite positive investment as ∆k = uτ (e
∆k̂+k̂− − ek̂

−
) and negative investment as ∆k = uτ (e

∆k̂+k̂+ − ek̂
+

).

Substituting into (A.27) and (A.28) and dividing both sides by uτ

v(k̂∗−)− p(ek̂
∗− − ek̂

−
)− θ = v(k̂−),(A.29)

v(k̂∗+)− p(1− ω)(ek̂
∗+ − ek̂

+

)− θ = v(k̂+).(A.30)

2c. Optimality Substituting the guess into (A.12) and (A.13):

∂V (k∗−(u), u)
∂k

= p ⇐⇒ u

k∗−(u)
v′(k̂∗−) = p ⇐⇒ v′(k̂∗−) = pek̂

∗−
,(A.31)

∂V (k∗+(u), u)
∂k

= p(1− ω) ⇐⇒ u

k∗+(u)
v′(k̂∗−) = p(1− ω) ⇐⇒ v′(k̂∗−) = p(1− ω)ek̂

∗+
.(A.32)

7

Electronic copy available at: https://ssrn.com/abstract=5077479



2d. Smooth pasting for capital Substituting the guess into (A.14) and (A.15)

∂V (k−(u), u)
∂k

= p ⇐⇒ u

k−(u)
v′(k̂−) = p ⇐⇒ v′(k̂−) = pek̂

−
,(A.33)

∂V (k+(u), u)

∂k
= p(1− ω) ⇐⇒ u

k+(u)
v′(k̂+) = p(1− ω) ⇐⇒ v′(k̂+) = p(1− ω)ek̂

+

.(A.34)

2e. Smooth pasting for idiosyncratic productivity To verify the smooth-pasting for idiosyncratic productiv-

ity, we substitute the guess into (A.16) and (A.17) and then substitute v′(k̂) = pek̂ and v′(k̂) = p(1− ω)ek̂ in the

outer inaction regions to rewrite v′(·) in terms of prices, which yields

v(k̂∗−) = θ + v(k̂−) + p(ek̂
∗− − ek̂

−
)(A.35)

v(k̂∗+) = θ + v(k̂+) + p(1− ω)(ek̂
∗+ − ek̂

+

)(A.36)

Summary The value v(k̂) and the optimal policy {k̂−, k̂∗−, k̂∗+, k̂+} satisfy the conditions:

(i) In the inaction region R, v(k̂) solves the HJB equation:

ρv(k̂) = eαk̂ − (ν + σ2)v′(k̂) +
σ2

2
v′′(k̂), ∀k̂ ∈ (k̂−, k̂+).(A.37)

(ii) At the borders of inaction, v(k̂) satisfies the value-matching conditions:

v(k̂−) = v(k̂∗−) − θ − p(ek̂
∗− − ek̂

−
),(A.38)

v(k̂+) = v(k̂∗+) − θ + p(1− ω)(ek̂
+ − ek̂

∗+
).(A.39)

(iii) At the borders of inaction and reset states, v(k̂) satisfies the smooth-pasting and the optimality conditions:

v′(k̂) = pek̂, k̂ ∈
{
k̂−, k̂∗−

}
,(A.40)

v′(k̂) = p(1− ω)ek̂, k̂ ∈
{
k̂∗+, k̂+

}
.(A.41)

A.2.3 Step 3: Characterizing q = v′(k̂)/pek̂

From the definition q(k̂) ≡ ∂V (k,u)
∂k /p, and the decomposition V (k, u) = uv(k̂) from Step 2, we have that q(k̂) = v′(k̂)

pek̂
.

Thus, the following relationships hold:

q′(k̂) =
v′′(k̂)

pek̂
− v′(k̂)

pek̂
=

v′′(k̂)

pek̂
− q(k̂) ⇐⇒ v′′(k̂)

pek̂
= q′(k̂) + q(k̂)(A.42)

q′′(k̂) =
v′′′(k̂)

pek̂
− 2

v′′(k̂)

pek̂
+
v′(k̂)

pek̂
=

v′′′(k̂)

pek̂
− 2q′(k̂)− q(k̂) ⇐⇒ v′′′(k̂)

pek̂
= q′′(k̂) + 2q′(k̂) + q(k̂).(A.43)

3a. HJB We take the first derivative of the HBJ equation for v in (A.37) and then divide by pek̂:

ρ
v′(k̂)

pek̂
=

αe(α−1)k̂

p
− (ν + σ2)

v′′(k̂)

pek̂
+

σ2

2

v′′′(k̂)

pek̂
, ∀k̂ ∈ (k̂−, k̂+).(A.44)
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Substituting q’s definition and the second and third derivatives of v in (A.42) and (A.43):

ρq(k̂) =
αe(α−1)k̂

p
− (ν + σ2)

(
q′(k̂) + q(k̂)

)
+

σ2

2

(
q′′(k̂) + 2q′(k̂) + q(k̂)

)
.(A.45)

Joining common terms: (
ρ+ ν +

σ2

2

)
q(k̂) =

αe(α−1)k̂

p
− νq′(k̂) +

σ2

2
q′′(k̂),(A.46)

Since ρ ≡ r − µ− σ2/2, then ρ+ ν + σ2

2 = r + ξ := U . Substitute to obtain the final expression for q′s HJB:

(A.47) Uq(k̂) =
αe(α−1)k̂

p
− νq′(k̂) +

σ2

2
q′′(k̂), ∀ k̂ ∈ (k̂−, k̂+).

3b. Value matching The value matching at k̂− in (A.38) can be written as a definite integral:

θ = v(k̂∗−) − pek̂
∗− − (v(k̂−)− pek̂

−
) =

∫ k̂∗−

k̂−

(
v′(k̂) − pek̂

)
dk̂.(A.48)

Dividing both sides by p, factoring ek̂ on the right, and substituting q, we obtain the value matching for q at k̂−:

θ

p
=

∫ k̂∗−

k̂−
ek̂

(
v′(k̂)

pek̂
− 1

)
dk̂ =

∫ k̂∗−

k̂−
ek̂
(
q(k̂) − 1

)
dk̂.(A.49)

Similarly, we use (A.39) to obtain the value matching for q at k̂+:

θ

p
=

∫ k̂+

k̂∗+
ek̂
(
(1− ω)− q(k̂)

)
dk̂.(A.50)

3c. Optimality Substituting q’s definition in the optimality conditions for v in (A.40) and (A.41)

v′(k̂) = pek̂ ⇐⇒ q(k̂) = 1 k̂ ∈
{
k̂−, k̂∗−

}
(A.51)

v′(k̂) = p(1− ω)ek̂ ⇐⇒ q(k̂) = (1− ω) k̂ ∈
{
k̂∗+, k̂+

}
.(A.52)

3d. Stopping-time formulation Given the sufficient conditions, we write the optimal q(k̂) using a stopping-time

formulation (note that there is no maximization involved):

(A.53) q(k̂) ≡ E

[∫ τ

0

αe−Us+(α−1)k̂s

p
ds + e−UτQ∗(k̂τ )

]
,

where the reset function takes two values: Q∗(k̂∗−) = 1 and Q∗(k̂∗+) = 1− ω.
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A.3 Cross-sectional distributions

Consider θs = θus, where θ > 0 is a constant fixed adjustment cost. The density and frequencies solve the KFE

(A.54) νg′(k̂) +
σ2

2
g′′(k̂) = 0, for all k̂ ∈ (k̂−, k̂+) \ {k̂∗−, k̂∗+};

three border conditions

g(k̂) = 0, for k̂ ∈ {k̂∗−, k̂∗+},(A.55) ∫ k̂+

k̂−
g(k̂) dk̂ = 1;(A.56)

two resetting conditions

σ2

2
lim
k̂↓k̂−

g′(k̂)︸ ︷︷ ︸
N−

=
σ2

2

[
lim

k̂↑k̂∗−
g′(k̂)− lim

k̂↓k̂∗−
g′(k̂)

]
,(A.57)

−σ
2

2
lim
k̂↑k̂+

g′(k̂)︸ ︷︷ ︸
N+

=
σ2

2

[
lim

k̂↑k̂∗+
g′(k̂)− lim

k̂↓k̂∗+
g′(k̂)

]
,(A.58)

and two continuity conditions at the reset points:

g(k̂) ∈ C,C1({k̂∗−, k̂∗+}),C2({k̂∗−, k̂∗+}).(A.59)

Condition (A.55) sets the mass of firms at the inaction thresholds equal to zero. Condition (A.56) ensures

that g is a density. Conditions (A.57) and (A.58) relate the masses of upward and downward adjustments to the

discontinuities in the derivative of g at the reset points. In a small period of time ds, the mass N− that “exits”

the inaction region by hitting the lower threshold—equal to σ2

2 limk̂↓k̂− g′(k̂)—must coincide with the mass of firms

that “enters” at the reset point k̂∗−—equal to the jump in g′. This argument is analogous for N+; in fact, it is

straightforward to verify that conditions (A.54) to (A.57) jointly imply condition (A.58), and thus it is redundant.
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A.4 Distributions of stopping times τ

Conditional on current capital-productivity ratio Given the inaction thresholds k̂− < k̂+, we derive the

densities of stopping times (first passage time) when firms hit the ℓower threshold ℓ(τ |k̂), the υpper threshold

υ(τ |k̂), or hitting either threshold h(τ |k̂), conditional on a current capital-productivity ratio k̂. The first passage

time is set to zero after a reset. We use the formulas of the exit times densities when barriers are flat (15) and (16)

in Kolkiewicz (2002), adjusted for the drift −ν and the volatility σ.

• The measure of times for hitting the lower threshold for current k̂ is

ℓ(τ |k̂) =

(
πσ2

(k̂+ − k̂−)2

∞∑
n=1

n(−1)n−1 sin

[
πn

(k̂+ − k̂)

(k̂+ − k̂−)

]
exp

[
− n2π2σ2τ

2(k̂+ − k̂−)2

])
(A.60)

× exp

[−ν
2σ2

(2(k̂+ − k̂) + ντ)

]
.

• The measure of times for hitting the upper threshold for current k̂ is

υ(τ |k̂) =

(
πσ2

(k̂+ − k̂−)2

∞∑
n=1

n(−1)n−1 sin

[
πn

(k̂ − k̂−)

(k̂+ − k̂−)

]
exp

[
− n2π2σ2τ

2(k̂+ − k̂−)2

])
(A.61)

× exp

[−ν
2σ2

(2(k̂− − k̂) + ντ)

]
.

• The density of times for hitting either threshold for current k̂ is the sum of the two previous measures:

(A.62) h(τ |k̂) = ℓ(τ |k̂) + υ(τ |k̂).

Evaluating (A.60), (A.61), and (A.62) at the reset points, we obtain the duration densities conditional on a previous

upsizing ℓ(τ |k̂∗−), υ(τ |k̂∗−) or downsizing ℓ(τ |k̂∗+), υ(τ |k̂∗+). The unconditional duration densities are weighted

averages of the conditional densities, averaged using the updating shares:

(A.63) z(τ) =
N−

N z(τ |k̂∗−) + N+

N z(τ |k̂∗+), for z ∈ {υ, ℓ, h}.

Figure A.1: Distributions of stopping times

Stopping times τ

(A) Conditional on k̂∗−

ℓ(τ |k̂∗−) υ(τ |k̂∗−)

h−(τ)

Stopping times τ

(B) Conditional on k̂∗+

ℓ(τ |k̂∗+) υ(τ |k̂∗+)

h+(τ)

Stopping times τ

(C) Conditional and Unconditional

h(τ) h+(τ) h−(τ)

1

Notes: These figures present the conditional densities of stopping times (τ) for hitting the lower and upper thresholds: Panel A depicts
the densities following a purchase, and Panel B shows those following a sale. Panel C illustrates the stopping time distribution’s
conditional and unconditional densities.
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A.5 Illustrative example on adjusted shares

Consider an economy where half of the firms adjust their capital every year (N = 0.5), with 80% purchasing

(N−/N = 0.8) and 20% selling capital (N+/N = 0.2). The conditional duration of inaction following a purchase

is E−[τ ] = 1.5 years and following a sale is E+[τ ] = 4 years. From (24), the economy-wide average duration is

computed using shares is E[τ ] = (N−/N )E−[τ ] + (N+/N )E+[τ ] = 0.8(1.5) + 0.2(4) = 2 years.34 The average

adjustment E[∆k̂] is also computed using these shares.

Now, let us consider the distribution of k̂. Assume the average capital-productivity ratio after a purchase is

E−[k̂] = −0.2 (capital is 80% of productivity) and after a sale is E+[k̂] = 0.2 (capital is 120% of productivity).

To compute the economy-wide mean E[k̂], the naive aggregation using shares is biased as it does not consider the

duration of inaction. While only 20% of adjustments are downward, they happen after longer inaction spells with

twice the average duration, implying that the capital-productivity ratios generating those adjustments are occupied

for more extended periods. According to (25), the renewal weights r− = (N−/N )(E−[τ ]/E[τ ]) = 0.8(0.75) = 0.6

and r+ = (N+/N )(E+[τ ]/E[τ ]) = 0.2(2) = 0.4 appropriately account for the higher occupancy. Therefore, the

average ratio computed with (26) is E[k̂] = 0.6(−0.2) + 0.4(0.2) = −0.04 (capital is 96% of productivity). Using

the wrong aggregation delivers a lower mean and biases the estimation of investment frictions.

34Note that E[τ ] = 1/N but E±
[τ ] ̸= 1/N±.
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B Generalized Hazard Model

In the main text, we specialize investment frictions to a symmetric adjustment cost θ paid indistinctly for positive

and negative investments and a price wedge that gives rise to partial irreversibility.

We examine this model mainly for pedagogical reasons, as it simplifies the exposition of the theory. In this

section, we expand the scope of the analysis and present an asymmetric generalized hazard model, which follows

the contributions by Caballero and Engel (1999, 2007) and examined in contemporary work by Alvarez, Lippi and

Oskolkov (2022), which may accommodate other empirically-relevant frictions. All the following proofs in the next

sections are shown for the generalized hazard model and thus apply to the parsimonious environments as a special

case setting Λ(k̂) = 0.

B.1 Environment

The generalized hazard function depends mainly on the assumption of the fixed adjustment cost. Therefore, in this

section, we assume technology and shocks as in Section 2. Moreover, the firm can control its capital stock through

buying and selling investment goods at prices pbuy and psell, with pbuy > psell.

Adjustment costs The first step generalizes the adjustment cost structure. For every investment i = ∆k, the

firm must pay an adjustment cost θs proportional to current productivity us and measured in consumption units

(Caballero and Engel, 1999):

(B.1) θs = Θ(is,dN
−
s ,dN

+
s , ϑ

−
s , ϑ

+
s )us,

where the function Θ(·) > 0 is described by

Θ(i,dN+,dN−, ϑ−, ϑ+) =


0 if i = 0

θ̄+(1− dN) + dNϑ+ if i < 0

θ̄−(1− dN) + dNϑ− if i > 0.

(B.2)

Let us describe each element in equation (B.2).

(i) N+
s and N−

s follows Poisson counter with unit increments and arrival rates λ+ and λ−;

(ii) θ̄+ and θ̄− are non negative number; and

(iii) ϑ+s and ϑ−s are i.i.d. random variables with support Supp(ϑ+) = [0, ϑ̄+] and Supp(ϑ−) = [0, ϑ̄−]. We assume

that ϑ− ≤ θ̄− and ϑ+ ≤ θ̄+. Define J+(x) ≡ Pr(ϑ+ < x) and J−(x) ≡ Pr(ϑ− < x) the cumulative

distribution for each random variable.

B.1.1 Relationship to the literature

The stochastic process of fixed cost in (B.2) can derive the majority of lumpy adjustment models used in previous

work.

1. Setting λ+ = λ− = 0 and θ̄+ = θ̄− yields the standard fixed cost model of adjustment, originally proposed

by Scarf (1959) in an inventory model and Sheshinski and Weiss (1977) in a pricing context.

2. Setting λ+ = λ− > 0 and Supp(ϑ+) = Supp(ϑ−) = {0}, and θ̄+ = θ̄− > 0 yields the CalvoPlus model

proposed by Nakamura and Steinsson (2010), which nests the standard fixed cost model and the time-

dependent Calvo model.
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3. Under this case, if θ̄+ ̸= θ̄−, then we have the Bernoulli fixed cost model or asymmetric Bernoulli fixed cost

model if λ+ ̸= λ−, see Baley and Blanco (2021).

4. Finally, setting λ+ = λ− > 0 and ϑ̄+ = ϑ̄− = θ̄− = θ̄+ yields the generalized hazard model originally

proposed by Caballero and Engel (1993).

B.1.2 Value function and optimal policy

Value Let V (k, u) denote the value of a firm with capital stock k and productivity u. Given initial conditions

(k0, u0), the firm chooses a sequence of adjustment dates {Th}∞h=1 and investments {iTh
}∞h=1, where h counts the

number of adjustments, to maximize its expected discounted stream of profits. The sequential problem is

(B.3) V (k0, u0) = max
{Th,iTh

}∞
h=1

E

[∫ ∞

0

e−ρsπs ds−
∞∑
h=1

e−ρTh (θTh
+ p (iTh

) iTh
)

]
,

subject to the production technology (1), the idiosyncratic productivity shocks (2), the investment price function

(4), the law of motion for the capital stock (6), and the stochastic process of adjustment cost in (B.2).

Capital-productivity ratios k̂ As in the main text, it is easy to show that v(k, u) = uv(k̂) where

(B.4) v(k̂) = max
τ,∆k̂

E
[∫ τ

0

Ae−rs+αk̂s ds + e−rτ
(
−θτ (∆k̂)− p(∆k̂)(ek̂τ+∆k̂ − ek̂τ ) + v(k̂τ +∆k̂)

) ∣∣∣k̂0 = k̂
]
.

Here, θτ (∆k̂) is a random variable instead of a number, a function of the adjustment direction—similar to the

investment price.

Optimal investment policy The optimal investment policy is characterize by four numbers K ≡ {k̂− ≤ k̂∗− ≤
k̂∗+ ≤ k+}, and a hazard rate of adjustment Λ(k̂). The numbers k̂− and k+ correspond to the lower and upper

borders of the inaction region R =
{
k̂ : k̂− < k̂ < k̂+

}
, and k̂∗− < k̂∗+ to the two reset points following a positive

and a negative investment, respectively. Λ(k̂) : R → R+ is a non-negative function corresponding to the arrival

rate of a new Poisson counter NΛ. Given R and NΛ, the optimal adjustment dates are

(B.5) Th = inf
{
s ≥ Th−1 : k̂s /∈ R or dNΛ

s (k̂) = 1
}

with T0 = 0.

Following Øksendal and Sulem (2005) and Oksendal (2007), Lemma B.1 establishes the optimality conditions that

characterize (B.4).

Lemma B.1. The value function v(k̂) and the policy K ≡ {k̂−, k̂∗−, k̂∗+, k̂+} satisfy:

(i) For all k̂ ∈ R, v(k̂) solves the HJB equation:

rv(k̂) = Aeαk̂ − νv′(k̂) +
σ2

2
v′′(k̂)(B.6)

+ λ−
∫ ϑ̄−

0

max
{
vbuy(k̂)− ϑ, 0

}
dJ−(ϑ) + λ+

∫ ϑ̄+

0

max
{
vsell(k̂)− ϑ, 0

}
dJ+(ϑ)

where the values vbuy and vsell are defined as follows:

vbuy(k̂) ≡ v(k̂−)− v(k̂)− pbuy(ek̂
− − ek̂),(B.7)

vsell(k̂) ≡ v(k̂+)− v(k̂)− psell(ek̂
+ − ek̂).(B.8)
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(ii) At the borders of the inaction region, v(k̂) satisfies the value-matching conditions:

vbuy(k̂−) = θ̄−; vsell(k̂+) = θ̄+;(B.9)

(iii) At the borders of the inaction region and the two reset states, v(k̂) satisfies the smooth-pasting and the

optimality conditions:

dvbuy(k̂)

dk̂
= pbuyek̂, k̂ ∈

{
k̂−, k̂∗−

}
,(B.10)

dvsell(k̂)

dk̂
= psellek̂, k̂ ∈

{
k̂∗+, k̂+

}
.(B.11)

Hazard rate of adjustment Λ(k̂) We are now ready to define Λ(k̂), which gives the probability of adjustment

Λ(k̂) dt in a time period dt a firm with k̂ ∈ R. The hazard rate of adjustment is given by

(B.12) Λ(k̂) = λ−J−
(
vbuy(k̂)

)
1{k̂∈(k̂−,k̂∗−)} + λ+J+

(
vsell(k̂)

)
1{k̂∈(k̂∗+,k̂+)}.

The hazard function Λ(k̂) satisfies the following properties:

1. Λ(k̂) = 0 in the inner inaction region, i.e., for all k̂ ∈ (k̂∗−, k̂∗+),

2. Λ(k̂) is weakly decreasing in (k̂−, k̂∗−) and weakly increasing in (k̂∗+, k̂+);

3. If J−(0) > 0 then Λ(k̂) is bounded below in the domain (k̂−, k̂∗−) by Λ(k̂) = λ−J−(0).

4. If J+(0) > 0 then Λ(k̂) is bounded below in the domain (k̂∗+, k̂+) by Λ(k̂) = λ+J+(0)

B.1.3 Cross-sectional distribution

Without irreversibility

Λ(k̂)g(k̂) = νg′(k̂) +
σ2

2
g′′(k̂), ∀k̂ ∈ (k̂−, k̂+)/{k̂∗}(B.13)

g(k̂±) = 0(B.14) ∫ k̂+

k̂−
g(k̂) dk̂ = 1,(B.15)

g(k̂) ∈ C,C1({k̂∗}),C2({k̂∗})(B.16)

With irreversibility

Λ(k̂)g(k̂) = νg′(k̂) +
σ2

2
g′′(k̂), ∀k̂ ∈ (k̂−, k̂+)/{k̂∗−, k̂∗+}(B.17)

g(k̂±) = 0(B.18) ∫ k̂+

k̂−
g(k̂) dk̂ = 1,(B.19)

g(k̂) ∈ C,C1({k̂∗−, k̂∗+}),C2({k̂∗−, k̂∗+})(B.20)

15

Electronic copy available at: https://ssrn.com/abstract=5077479



C Proofs under Generalized Hazard

Proofs’ overview. In Proposition 2, we express the CIR as the integral of a value function m(k̂) and g′(k̂). In

Proposition 3, we characterize the terminal value of the value function. In Proposition 4, we characterize the CIR

as a function of steady-state moments. In all propositions, we examine cases without and with irreversibility, in

that order.

C.1 Proof of Proposition 2

Proposition 2. (CIR) Up to the first order, the CIR equals

(40)
CIR(δ)

δ
= −

∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂ + o(δ),

where m(k̂) is a continuously differentiable function equal to the average cumulative deviations of the capital-

productivity ratio k̂ from the economy’s mean E[k̂], satisfying the HJB

(41) 0 = k̂ − E[k̂] − νm′(k̂) +
σ2

2
m′′(k̂) ∀k̂ ∈ (k̂−, k̂+),

with two boundary conditions

(42) m(k̂−) = m(k̂∗−), and m(k̂+) = m(k̂∗+),

and a stationarity condition

(43)

∫ k̂+

k̂−
m(k̂)g(k̂) dk̂ = 0.

C.1.1 Step 1: First-order approximation and exchange order of integration

Let g(k̂) be the capital-productivity steady-state distribution and gt(k̂) the distribution t-periods after an aggregate

productivity shock of size δ > 0, with g0(k̂) = g(k̂ − δ). Let f(k̂) be a continuous function of k̂ (in the main text,

we take f(k̂) = k̂, the proof here is more general). Define the cumulative impulse response of the function f as:

CIR(f, δ) ≡
∫ ∞

0

∫ k̂+

k̂−
f(k̂)

(
gs(k̂)− g(k̂)

)
dk̂ ds.(C.21)

We show that in a general environment, with or without irreversibility, up to first order, the CIR is equal to

CIR(f, δ) = −δ
∫ k̂+

k̂−
lim

T →∞
mT (k̂)g

′(k̂) dk̂ + o(δ2).(C.22)

where mT (k̂0) is defined as

(C.23) mT (k̂0) ≡
∫ T

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0) dk̂ ds.

Starting from the CIR’s definition in (C.21), we do the following steps: Equality (1) operates over the integral; (2)

uses the Chapman-Kolmogorov equation to substitute the conditional expectation with respect to k̂, with density

gs(k̂), with a conditional expectation with respect to the initial condition k̂0, with density gs(k̂|k̂0)g0(k̂0), where
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gs(k̂|k̂0) dk̂ is the probability of the state k̂ at date s with initial condition k̂0; (3) writes the initial density following

the shock in terms of the steady-state density g0(k̂0) = g(k̂0 − δ); (4) applies Fubini’s theorem to exchange orders

of integration; (5) writes the integral using a limit; (6) defines and substitutes the function mT (k̂) as in (C.23) and

changes the variable of integration from k̂0 to k̂; and (7) applies a first-order approximation over δ.

CIR(f, δ) =

∫ ∞

0

∫ k̂+

k̂−
f(k̂)

(
gs(k̂)− g(k̂)

)
dk̂ ds

=(1)

∫ ∞

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂) dk̂ ds

=(2)

∫ ∞

0

∫ k̂+

k̂−

[∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0)g0(k̂0) dk̂0

]
dk̂ ds

=(3)

∫ ∞

0

∫ k̂+

k̂−

[∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0)g(k̂0 − δ) dk̂0

]
dk̂ ds

=(4)

∫ k̂+

k̂−

[∫ ∞

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0) dk̂ ds

]
g(k̂0 − δ) dk̂0

=(5)

∫ k̂+

k̂−

 lim
T →∞

∫ T

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0) dk̂ ds︸ ︷︷ ︸

≡ mT (k̂0)

 g(k̂0 − δ) dk̂0

=(6)

∫ k̂+

k̂−
lim

T →∞
mT (k̂)g(k̂ − δ) dk̂

=(7) −δ
∫ k̂+

k̂−
lim

T →∞
mT (k̂)g

′(k̂) dk̂ + o(δ2).

C.1.2 Step 2: Show that the cross-sectional mean of mT is zero.

Show that
∫ k̂+

k̂− mT (k̂)g(k̂) dk̂ = 0. Substitute the integral’s definition of mT (k̂) from (C.23) into
∫ k̂+

k̂− mT (k̂)g(k̂) dk̂.

In the following equalities, (1) uses Fubini’s theorem, (2) uses Bayes’ theorem, (3) uses the fact that g(k̂) is the

steady-state distribution, and (4) solves the first and second integrals.

∫ k̂+

k̂−
mT (k̂)g(k̂) dk̂ =

∫ k̂+

k̂−

[∫ T

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0) dk̂ ds

]
g(k̂0) dk̂0(C.24)

=(1)

∫ T

0

∫ k̂+

k̂−

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0)g(k̂0) dk̂ dk̂0 ds

=(2)

∫ T

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)[∫ k̂+

k̂−
gs(k̂|k̂0)g(k̂0) dk̂0

]
dk̂ ds

=(3)

∫ T

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
g(k̂) dk̂ ds =(4) 0.

C.1.3 Step 3: Derive HJB and border conditions for mT .

We start from the stopping time definition of mT (k̂0) ≡
∫ T
0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0) dk̂ ds in equation (C.23),

and use the conditions in Auxiliary Theorem (A.3) to characterize its value.
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Without irreversibility

0 = f(k̂)− E[f(k̂)]− dmT (k̂)
dT − ν

dmT (k̂)

dk̂
+
σ2

2

d2mT (k̂)

dk̂2
+ Λ(k̂)(mT (k̂

∗)−mT (k̂))(C.25)

0 = mT (k̂
∗)−mT (k̂

±)(C.26)

0 =

∫ k̂+

k̂−
mT (k̂)g(k̂) dk̂(C.27)

With irreversibility Using the property that Λ(k̂) = 0 for all k̂ ∈ (k̂∗−, k̂∗+), we can write in a simple form the

HJB and border conditions satisfied by mT (k̂):

0 = f(k̂)− E[f(k̂)]− dmT (k̂)
dT − ν

dmT (k̂)

dk̂
+
σ2

2

d2mT (k̂)

dk̂2
+ Λ(k̂)(MT (k̂)−mT (k̂))(C.28)

0 = MT (k̂
∗±)−mT (k̂

±),(C.29)

0 =

∫ k̂+

k̂−
mT (k̂)g(k̂) dk̂.(C.30)

where MT (k̂) ∈ C2 is defined as

MT (k̂) ≡
{

mT (k̂∗−) if k̂ ∈ [k̂−, k̂∗−]

mT (k̂∗+) if k̂ ∈ [k̂∗+, k̂+]
(C.31)

C.1.4 Step 4: Show pointwise converge of mT to m

Let m(k̂) be defined as:

(C.32) m(k̂) ≡ E
[∫ ∞

0

(k̂s − E[k̂]) ds
∣∣∣k̂] + C.

We show that for each k̂, limT →∞mT (k̂) = m(k̂).

Without irreversibility See Baley and Blanco (2021).

With irreversibility Let {Ti}N(T )
i=0 be the adjustment dates between 0 and T , where i denotes the counter of

adjustments for all i = 1, 2, . . . , N(T )−1, N(T ) is the maximum number of adjustments until T and T0 = 0. Then,

for any T , we rewrite mT (k̂) as a sum between adjustment dates:

(C.33) mT (k̂) = E

N(T )−1∑
i=1

∫ Ti

Ti−1

(
f(k̂s)− E[f(k̂)]

)
ds+

∫ T

TN(T )−1

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣∣ k̂0 = k̂


We take the limit T → ∞ to show convergence. We conduct the following steps in the next equalities: (1) splits

the sum; (2) uses the indicator function to write the finite sum in the first term; (3) uses the fact that N(T ) always
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exceeds i, thus E
[
limT →∞ I(N(T ) ≥ i)| k̂0 = k̂

]
= 1,∀i; (4) recognizes that the first term is independent of T .

lim
T →∞

mT (k̂)(C.34)

=(1) E

 lim
T →∞

N(T )−1∑
i=1

∫ Ti

Ti−1

(
f(k̂s)− E[f(k̂)]

)
ds+ lim

T →∞

∫ T

TN(T )−1

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣k̂0 = k̂


=(2) E

[
lim

T →∞

∞∑
i=1

I(N(T ) ≥ i)

∫ Ti

Ti−1

(
f(k̂s)− E[f(k̂)]

)
ds+ lim

T →∞

∫ T

TN(T )−1

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣k̂0 = k̂

]

=(3) E

[ ∞∑
i=1

∫ Ti

Ti−1

(
f(k̂s)− E[f(k̂)]

)
ds+ lim

T →∞

∫ T

TN(T )−1

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣ k̂0 = k̂

]

=(4) terms independent of T + E

[
lim

T →∞

∫ T

TN(T )−1

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣ k̂0 = k̂

]
︸ ︷︷ ︸

tail term E

.

Tail term Next, we show the “tail” term is independent of the initial condition k̂ and the T . To do this, we

consider tails conditional on the previous reset, defined as:

(C.35) E(k̂∗±, T ) ≡ E

[∫ T

TN(T )−1

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣ k̂TN(T )−1
= k̂∗±

]
.

Define P+
T (k̂0) ≡ E

[
k̂TN(T )−1

≥ k̂∗+
∣∣∣ k̂0] and P−

T (k̂0) ≡ E
[
k̂TN(T )−1

≤ k̂∗−
∣∣∣ k̂0] be the probabilities of downsizing

or upsizing, given a current k̂. In the following equalities, we do the following steps. In Step 1, we use the law of

iterated expectations (only two contingencies, upsizing or downsizing) and use conditional expectation to substitute

the tails and probabilities, conditional on the initial condition k̂0. Step 2 eliminates the dependence of probabilities

on the initial condition using the convergence of discrete Markov chains (see chapter 11 of Stokey (1989)) and

the proof at the end. In other words, limT →∞ P+
T (k̂0) is independent of T and k̂0. Finally, the convergence of

limT →∞ E(k̂∗±, T ) = E∞(k̂∗±) is shown in Baley and Blanco (2021) and Alexandrov (2021).

E

[
lim

T →∞

∫ T

TN(T )−1

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣ k̂0
]

=(1) E
[

lim
T →∞

E(k̂∗+, T ) lim
T →∞

P+
T (k̂0) + lim

T →∞
E(k̂∗−, T ) lim

T →∞
P−
T (k̂0)

∣∣∣ k̂0]
=(2) lim

T →∞
E(k̂∗+, T )P+,∞ + lim

T →∞
E(k̂∗−, T )P−,∞

=(3) E∞(k̂∗+)P+,∞ + E∞(k̂∗−)P−,∞.

Extra: Convergence of discrete Markov chains Let PN (k̂) ≡
[
P−
N (k̂);P+

N (k̂)
]
∈ R2×1, then

(C.36) PN (k̂) = PTPN−1(k̂),

where P = [P−(k̂∗−), 1 − P−(k̂∗−); 1 − P+(k̂∗+);P+(k̂∗+)] ∈ R2×2 is a 2 × 2 transition probability where the rows

are the transition probability and PT is its transpose. If P−
1 (k̂

∗−),P+
1 (k̂

∗+) ∈ (0, 1), then

(C.37) lim
N→∞

PN (k̂) = lim
N→∞

PN−1P1(k̂) = [P−∞;P+∞].

where the last equality comes from Theorem 11.1 in Stokey (1989).
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C.1.5 Step 5: Show convergence of CIR

We will show that

(C.38) CIR(f, δ) = −δ
∫ k̂+

k̂−
lim

T →∞
mT (k̂)g

′(k̂) dk̂ + o(δ2) = −δ
∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂ + o(δ2)

Without irreversibility We also need to show that the HJB and border conditions converge. For this, we take

the limit T → ∞ of conditions (C.25), (C.26) and (C.27) and use point-wise convergence of mT (k̂) from Step 4:

0 = f(k̂)− E[f(k̂)]− νm′(k̂) +
σ2

2
m′′(k̂) + Λ(k̂)(m(k̂∗)−m(k̂)),(C.39)

0 = m(k̂∗)−m(k̂±),(C.40)

With irreversibility Finally, we take the limit T → ∞ of conditions (C.28), (C.29) and (C.30) and use point-wise

convergence of mT (k̂) from Step 4 to obtain:

0 = f(k̂)− E[f(k̂)]− νm′(k̂) +
σ2

2
m′′(k̂) + Λ(k̂)(M(k̂)− Cov[k̂, a]−m(k̂)),(C.41)

0 = M(k̂±)− Cov[k̂, a]−m(k̂±),(C.42)

(C.43)

where M(k̂) ∈ C2 is defined as

M(k̂) ≡
{

m(k̂∗−) + Cov[k̂, a] if k̂ ∈ [k̂−, k̂∗−]

m(k̂∗+) + Cov[k̂, a] if k̂ ∈ [k̂∗+, k̂+]
(C.44)

Stability condition To show the stability condition that require the cross-sectional average of m(k̂) = 0 in the

cases with and without irreversibility, we write m(k̂) = limT →∞mT (k̂) inside the integral, pull the limit outside

the integral, and use the previous result in (C.24) to get:

(C.45)

∫ k̂+

k̂−
m(k̂)g(k̂) dk̂ =

∫ k̂+

k̂−
lim

T →∞
mT (k̂)g(k̂) dk̂ = lim

T →∞

∫ k̂+

k̂−
mT (k̂)g(k̂) dk̂ = 0

C.1.6 Step 6: Without general hazard

To obtain the characterization in the baseline model, just set Λ(k̂) = 0.

C.2 Proof of Proposition 3

Proposition 3. (Expected sum of deviations) The expected sum of deviations after upsizing M(k̂∗−) ≡
m(k̂∗−) + Cov[k̂, a] and after downsizing M(k̂∗+) ≡ m(k̂∗+) + Cov[k̂, a] are equal to

M(k̂∗−) = (E−[k̂]− E[k̂]) E−
[τ ]

E[P+(k̂)]

P−+
< 0(47)

M(k̂∗+) = (E+[k̂]− E[k̂]) E+
[τ ]

E[P−(k̂)]
P+− > 0,(48)
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where the average downsizing and upsizing probabilities are equal to

(49) E[P−(k̂)] =
E
[
τ ′1{k̂τ′=k̂−}

]
E[τ ]

, E[P+(k̂)] =
E
[
τ ′1{k̂τ′=k̂+}

]
E[τ ]

.

C.2.1 Without irreversibility

For any continous function f , we characterize the terminal value m(k̂∗) = −Cov[a, f(k̂)]. From Proposition 2, m(k̂)

satisfies the following recursive representation

(C.46) m(k̂) = E
[∫ τ

0

(f(k̂s)− E[f(k̂)]) ds+m(k̂∗)

∣∣∣∣ k̂0 = k̂

]
.

For a given parameter φ ≥ 0, define the auxiliary function z(k̂|φ) as follows

(C.47) z(k̂|φ) ≡ E
[∫ τ

0

eφs(f(k̂s)− E[f(k̂)]) ds+ eφτm(k̂∗)

∣∣∣∣ k̂0 = k̂

]
,

Using Auxiliary Theorem A.3, the auxiliary function z(k̂|φ) satisfies the following HBJ and border conditions:

−φz(k̂|φ) = f(k̂)− E[f(k̂)]− ν
∂z(k̂|φ)
∂k̂

+
σ2

2

∂2z(k̂|φ)
∂k̂2

+ Λ(k̂)
(
m(k̂∗)− z(k̂|φ)

)
,(C.48)

z(k̂±, φ) = m(k̂∗).(C.49)

Taking the derivatives of (C.48) and (C.49) with respect to φ:

(Λ(k̂)− φ)
∂z(k̂|φ)
∂φ

− z(k̂|φ) = −ν ∂
2z(k̂, φ)

∂k̂∂φ
+
σ2

2

∂3z(k̂|φ)
∂k̂2∂φ

and
∂z(k̂±|φ)

∂φ
= 0.(C.50)

Using the Schwarz’s theorem to exchange partial derivatives, evaluating at φ = 0, and using z(k̂|0) = m(k̂), the

two expressions become:

Λ(k̂)
∂z(k̂|0)
∂φ

= m(k̂)− ν
∂

∂k̂

(
∂z(k̂|0)
∂φ

)
+
σ2

2

∂2

∂k̂2

(
∂z(k̂|0)
∂φ

)
and

∂z(k̂±|0)
∂φ

= 0.(C.51)

From Auxiliary Theorem A.3, equations in (C.51) are the HBJ and border conditions of ∂z(k̂|0)
∂φ , and therefore:

(C.52)
∂z(k̂|0)
∂φ

= E
[∫ τ

0

m(k̂s) ds
∣∣∣k0 = k̂

]

Evaluating at k̂∗, using the Auxiliary Theorem OMT in (A.2), providing the equivalence of occupancy measure

and steady-state moments, we write the previous equation as:

(C.53)
∂z(k̂∗|0)
∂φ

= E
[∫ τ

0

m(k̂s) ds
∣∣∣k0 = k̂∗

]
= E[τ ]E[m(k̂)] = 0

where we used E[m(k̂)] =
∫ k̂+

k̂− m(k̂)g(k̂) dk̂ = 0 by (43) .

At the same time, taking the derivative of (C.47) with respect to φ and evaluating at φ = 0 yields

(C.54)
∂z(k̂∗|0)
∂φ

= E
[∫ τ

0

s
(
f(k̂s)− E

[
f(k̂)

])
ds+ τm(k̂∗)

∣∣∣∣ k̂0 = k̂∗
]
.
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Together (C.53) and (C.54) imply:

(C.55) 0 = E
[∫ τ

0

s
(
f(k̂s)− E

[
f(k̂)

])
ds

∣∣∣∣ k̂0 = k̂∗
]
+ E

[
τ | k̂0 = k̂∗

]
m(k̂∗).

Solving for m(k̂∗):

(C.56) m(k̂∗) = −
E
[∫ τ

0
s
(
f(k̂s)− E

[
f(k̂)

])
ds
∣∣∣ k̂0 = k̂∗

]
E
[
τ | k̂0 = k̂∗

] .

Note that s captures the time elapsed since the last adjustment, that is, capital age a. Using the OMT in (A.2),

we rewrite the occupancy measure as a steady-state moment, which turns out to be equal to minus the covariance

of age with the function of capital-productivity ratios f(k̂):

(C.57) m(k̂∗) = −E[a(f(k̂)− E[f(k̂)])] = −Cov[a, f(k̂)].

C.2.2 With irreversibility

Observe that M(f, k̂) satisfies the following recursive representation

m(k̂) = E
[∫ τ

0

(
f(k̂s)− E

[
f(k̂)

])
ds+m(k̂∗(k̂τ ))

∣∣∣∣ k̂0 = k̂

]
.(C.58)

Define an auxiliary function z(k̂|φ) as follows:

z(k̂|φ) ≡ E
[∫ τ

0

eφs
(
f(k̂s)− E[f(k̂)]

)
ds+ eφτm(k̂∗(k̂τ ))

∣∣∣∣ k̂0 = k̂

]
.(C.59)

and note the relationship: z(k̂|0) = m(k̂), z(·|φ) ∈ C2((k̂−, k̂+)) ∩ C for all φ, and

−φz(k̂|φ) + Λ(k̂)
(
z(k̂|φ)−m(k̂)

)
= f(k̂)− E[f(k̂)]− νz′(k̂|φ) + σ2

2
z′′(k̂|φ),(C.60)

z(k̂±|φ) = m(k̂∗±).(C.61)

Since z(k̂|0) = m(k̂), then we have
∫ k̂+

k̂− z(k̂|0)g(k̂) dk̂ =
∫ k̂+

k̂− m(k̂)g(k̂) dk̂ = 0. Taking the derivative with respect

to φ in (C.60), we have that

(Λ(k̂)− φ)
∂z(k̂|φ)
∂φ

− z(k̂|φ) = −ν ∂
2z(k̂|φ)
∂k̂∂φ

+
σ2

2

∂3z(k̂|φ)
∂k̂2∂φ

and
∂z(k̂±, φ)

∂φ
= 0.(C.62)

Using the Schwarz’s theorem to exchange partial derivatives and evaluating at φ = 0:

Λ(k̂)
∂z(k̂, φ)

∂φ

∣∣∣∣∣
φ=0

−m(k̂) = −ν
∂

∂
∂z(k̂,φ)

∂φ

∣∣∣
φ=0

∂φ

∂k̂
+
σ2

2

∂2 ∂z(k̂,φ)
∂φ

∣∣∣
φ=0

∂k̂2
and

∂z(k̂, φ)

∂φ

∣∣∣∣∣
φ=0

= 0.(C.63)

From the previous equation, using OMT in (A.2) and the renewal distribution, we have that

E

[
∂z(k̂∗(∆k̂)|0)

∂φ

]
= E

[
E
[∫ τ

0

m(k̂s) ds|k̂0 = k̂∗
]]

E[τ ] = E[τ ]E[m(k̂)] = 0.(C.64)
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Therefore, E
[
∂z(k̂∗(∆k̂)|0)

∂φ

]
= 0. Using this result, the renewal distribution, the OST, and the the definition of E

with shares, we get:

0 = E

[
∂z(k̂∗(∆k̂)|0)

∂φ

]

= E
[
E
[∫ τ

0

s
(
f(k̂s)− E

[
f(k̂)

])
ds+ τm(k̂∗(k̂τ ))

∣∣∣∣ k̂0 = k̂∗
]]

= E[τ ]E
[
a
(
f(k̂)− E[f(k̂)]

)]
+ E

[
E[τm(k̂∗(k̂τ ))|k̂0 = k̂∗]

]
= E[τ ]Cov

[
a, f(k̂)

]
+

N−

N E− [
τm(k̂∗(k̂τ ))

]
+

N+

N E+
[
τm(k̂∗(k̂τ ))

]
= E[τ ]Cov

[
a, f(k̂)

]
+

N−

N E− [
τ
(
m(k̂∗+)1{k̂τ≥k̂∗+} +m(k̂∗−)

(
1− 1{k̂τ≥k̂∗+}

))]
+

N+

N E+
[
τ
(
m(k̂∗+)1{k̂τ≥k̂∗+} +m(k̂∗−)

(
1− 1{k̂τ≥k̂∗+}

))]
= E[τ ]Cov

[
a, f(k̂)

]
+m(k̂∗−) + (m(k̂∗+)−m(k̂∗−))E[τI(k̂τ ≥ k̂∗+)](C.65)

To characterize the difference in cumulative deviations, m(k̂∗+)−m(k̂∗−), observe that

(C.66) m(k̂∗−) =
(
E−[f(k̂)]− E[f(k̂)]

)
E−

[τ ] + (1− P−−)m(k̂∗+) + P−−m(k̂∗−)

where E−[f(k̂)] is the expected k̂ conditional of a positive investment. Thus,

(C.67) −(m(k̂∗+)−m(k̂∗−)) =

(
E−[f(k̂)]− E[f(k̂)]

)
E−

[τ ]

1− P−−

From (C.65) and (C.67), we have that

m(k̂∗−) + Cov
[
f(k̂), a

]
=

E[τI(k̂τ ≥ k̂∗+)]

E[τ ]

(
E−[f(k̂)]− E[f(k̂)]

)
E−

[τ ]

1− P−− .(C.68)

With similar steps as before, it is easy to show that

m(k̂∗+) + Cov
[
f(k̂), a

]
=

E[τI(k̂τ ≤ k̂∗−)]
E[τ ]

(
E+[f(k̂)]− E[f(k̂)]

)
E+[τ ]

1− P++
.(C.69)

C.2.3 Expected probabilities

Next, we characterize the average adjustment probabilities in terms of stopping times: E[P−(k̂)] = E[τI(k̂τ≤k̂∗−)]
E[τ ]

and E[P+(k̂)] = E[τI(k̂τ≥k̂∗+)]
E[τ ] . Define the function

(C.70) P̃+(k̂, φ) ≡ E
[
eφτ I[k̂τ ≥ k̂∗+]|k̂0 = k̂

]
,
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which satisfies the following HBJ conditions and border conditions

−φP̃+(k̂, φ) + Λ(k̂)
(
P̃+(k̂, φ)− I[k̂ ≥ k̂∗+]

)
= −ν ∂P̃

+(k̂, φ)

∂k̂
+
σ2

2

∂2P̃+(k̂, φ)

∂k̂2
,(C.71)

P̃+(k̂+, φ) = 1,(C.72)

P̃+(k̂−, φ) = 0.(C.73)

Note that P̃+(k̂, 0) = P+(k̂). Taking the derivative with φ and evaluating at φ = 0

Λ(k̂)
∂P̃+(k̂, 0)

∂φ
= P+(k̂)− ν

∂ ∂P̃+(k̂,0)
∂φ

∂k̂
+
σ2

2

∂2 ∂P̃+(k̂,0)
∂φ

∂k̂2
,(C.74)

∂P̃+(k̂+, 0)

∂φ
= 0,(C.75)

∂P̃+(k̂−, 0)
∂φ

= 0.(C.76)

From Auxiliary Theorem A.3, we convert the HJB and borders into the first of two formulations:

(C.77)
∂P̃+(k̂, 0)

∂φ
= E

[∫ τ

0

P+(k̂t) dt
∣∣∣k̂0 = k̂

]
.

To obtain the second formulation, note that by definition

(C.78)
∂P̃+(k̂, φ)

∂φ
= E

[
τeτφI[k̂τ ≥ k̂∗+]

∣∣∣k̂0 = k̂
]
,

evaluating at zero

(C.79)
∂P̃+(k̂, 0)

∂φ
= E

[
τI[k̂τ ≥ k̂∗+]

∣∣∣k̂0 = k̂
]
.

Using relations (C.77) and (C.79), we have that

(C.80) E
[∫ τ

0

P+(k̂t) dt
∣∣∣k̂0 = k̂

]
= E

[
τI[k̂τ ≥ k̂∗+]

∣∣∣k̂0 = k̂
]

Evaluating in k̂∗± and operating

r−E−[τ ]
E[τ ]

E−[P+(k̂)] = r−
Ē−
[
τI[k̂τ ≥ k̂∗+]

]
E[τ ]

,(C.81)

r+E+[τ ]

E[τ ]
E+[P+(k̂)] = r+

Ē+
[
τI[k̂τ ≥ k̂∗+]

]
E[τ ]

.(C.82)

Suming the two equations,

(C.83) E[P+(k̂)] =
Ē
[
τI[k̂τ ≥ k̂∗+]

]
E[τ ]

.
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C.3 Proof of Proposition 4

Proposition 4. (Sufficient statistics) Up to the first order, the CIR of average capital-productivity ratios equals

the sum of three steady-state cross-sectional moments:

(51)
CIR(δ)

δ
=

Var[k̂]
σ2

+
νCov[k̂, a]

σ2︸ ︷︷ ︸
up to first adjustment

+
1

σ2
E
[
1

ds
Es[d(k̂sM(k̂s))]

]
︸ ︷︷ ︸

subsequent adjustments

+ o(δ).

Proof’s strategy We prove the proposition without and with irreversibility. In each case, we construct the master

equation that combines the HJB for deviations m(k̂) and the KFE describing the distribution of k̂. The trick is

substituting the hazard Λ(k̂) from the KFE into the HJB. Then, we multiply by k̂ and compute the cross-sectional

average. Depending on the case, we get three or four terms Tj that we compute using integration by parts, exploiting

the border conditions of m and g. We prove the results for any continuous function f(k̂).

C.3.1 Without irreversibility

We will show that

(C.84)
CIR(f, δ)

δ
= Cov

[
f(k̂),

k̂ + νa

σ2

]
=

Cov
[
f(k̂), k̂

]
σ2

+
νCov

[
f(k̂), a

]
σ2

.

Rearranging the HJB for m(k̂) in (C.39), we get:

Λ(k̂)m(k̂) = f(k̂)− E[f(k̂)]− νm′(k̂) +
σ2

2
m′′(k̂) + Λ(k̂)m(k̂∗)

Solve for Λ(k) =
νg′(k̂)+σ2

2 g′′(k̂)

g(k̂)
from the KFE and substitute it into (B.13) to obtain

(C.85)

[
νg′(k̂) + σ2

2 g
′′(k̂)

g(k̂)

]
m(k̂) = f(k̂)− E[f(k̂)]− νm′(k̂) +

σ2

2
m′′(k̂) +

[
νg′(k̂) + σ2

2 g
′′(k̂)

g(k̂)

]
m(k̂∗).

Multiplying both sides by g(k̂)k̂ and taking the definite integral between k̂− and k̂+ (effectively, we compute the

cross-sectional average) we obtain the following expression:

0 = E
[
f(k̂)k̂

]
− E[f(k̂)]E[k̂] − νT1 +

σ2

2
T2 + m(k̂∗)T3.(C.86)

where we define the following three terms, characterized next:

T1 ≡
∫ k̂+

k̂−
k̂
[
m′(k̂)g(k̂) +m(k̂)g′(k̂)

]
dk̂(C.87)

T2 ≡
∫ k̂+

k̂−
k̂
[
m′′(k̂)g(k̂)−m(k̂)g′′(k̂)

]
dk̂(C.88)

T3 ≡
∫ k̂+

k̂−
k̂

(
νg′(k̂) +

σ2

2
g′′(k̂)

)
dk̂.(C.89)

We will now rearrange T1, T2 and T3. We will often use the product rule, integration by parts, and the continuity and

border conditions of g, namely g(k̂+) = g(k̂−) = 0, the border conditions of m, namely m(k̂+) = m(k̂−) = m(k̂∗),

and the continuity of m(·) and g(·) around k∗.
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(i) We re-write T1 by the following steps: in step (1) we split the integral, in step (2) the product rule –

m′(k̂)g(k̂)+m(k̂)g′(k̂) = d[m(k̂)g(k̂)]

dk̂
, in step (3) we use integration by parts, in step (4) we rely on the border

conditions and continuity of m(·) and g(·) around k∗, in step (5) we join the integral, and in step (6) we use

that the cross-sectional mean of m(·) is zero:

T1 =

∫ k̂+

k̂−
k̂
[
m′(k̂)g(k̂) +m(k̂)g′(k̂)

]
dk̂(C.90)

=(1)

∫ k̂∗

k̂−
k̂
[
m′(k̂)g(k̂) +m(k̂)g′(k̂)

]
dk̂ +

∫ k̂+

k̂∗
k̂
[
m′(k̂)g(k̂) +m(k̂)g′(k̂)

]
dk̂

=(2)

∫ k̂∗

k̂−
k̂(m(k̂)g(k̂))′ dk̂ +

∫ k̂+

k̂∗
k̂(m(k̂)g(k̂))′ dk̂

=(3) k̂m(k̂)g(k̂)
∣∣∣k̂∗

k̂−
+ k̂m(k̂)g(k̂)

∣∣∣k̂+

k̂∗
−
[∫ k̂∗

k̂−
m(k̂)g(k̂) dk̂ +

∫ k̂+

k̂∗
m(k̂)g(k̂) dk̂

]

=(4) 0 + 0−
[∫ k̂∗

k̂−
m(k̂)g(k̂) dk̂ +

∫ k̂+

k̂∗
m(k̂)g(k̂) dk̂

]
=(5) −

∫ k̂+

k̂−
m(k̂)g(k̂) dk̂ =(6) 0

(ii) To characterize T2, we do the following steps. In step (1), we split the integral; in step (2), we use the equality

m′′(k̂)g(k̂) −m(k̂)g′′(k̂) = (m′(k̂)g(k̂) −m(k̂)g′(k̂))′ and integration by parts; in step (3), we use continuity

of m′(k̂) and g(k̂) around k̂∗ and the border condition g(k̂+) = g(k̂−) = 0 for k̂m′(k̂)g(k̂)
∣∣∣k̂+

k̂−
= 0; in step (4),

we use the border conditions of m; in step (5) we apply integration by parts to t
∫ k̂+

k̂− m′(k̂)g(k̂) dk̂; and step

(6) groups common terms and relies on the continuity and border conditions of m(·) and g(·):

T2 =

∫ k̂+

k̂−
k̂
[
m′′(k̂)g(k̂)−m(k̂)g′′(k̂)

]
dk̂

(C.91)

= (1)

∫ k̂∗

k̂−
k̂
[
m′′(k̂)g(k̂)−m(k̂)g′′(k̂)

]
dk̂ +

∫ k̂+

k̂∗
k̂
[
m′′(k̂)g(k̂)−m(k̂)g′′(k̂)

]
dk̂

= (2) k̂
[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]∣∣∣k̂∗

k̂−
+ k̂

[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]∣∣∣k̂+

k̂∗

· · · −
[∫ k̂∗

k̂−

[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]
dk̂ +

∫ k̂+

k̂∗

[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]
dk̂

]

= (3) k̂m′(k̂)g(k̂)
∣∣∣k̂+

k̂−︸ ︷︷ ︸
=0

−m(k̂∗)

[
k̂g′(k̂)

∣∣∣k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣k̂+

k̂∗

]

· · · −
[∫ k̂∗

k̂−

[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]
dk̂ +

∫ k̂+

k̂∗

[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]
dk̂

]

= (4) −m(k̂∗)

[
k̂g′(k̂)

∣∣∣k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣k̂+

k̂∗

]
−
∫ k̂+

k̂−
m′(k̂)g(k̂) dk̂ +

∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂

= (5) −m(k̂∗)

[
k̂g′(k̂)

∣∣∣k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣k̂+

k̂∗

]
−
[
m(k̂)g(k̂)

∣∣∣k̂+

k̂−︸ ︷︷ ︸
=0

−
∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂

]
+

∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂

= (6) −m(k̂∗)

[
k̂g′(k̂)

∣∣∣k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣k̂+

k̂∗

]
+ 2

∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂.
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(iii) To characterize T3 we perform the following steps: In step (1) we split the integral, in step (2) we use

integration by parts, in step (3) we use the border conditions of g(·), the definition of a density function and

solve the integral
∫ k̂+

k̂− g′(k̂) dk̂, in step (4) we use the border conditions of g(·):

T3 =

∫ k̂+

k̂−
k̂

(
νg′(k̂) +

σ2

2
g′′(k̂)

)
dk̂(C.92)

=(1) ν

[∫ k̂∗

k̂−
k̂g′(k̂) dk̂ +

∫ k̂+

k̂∗
k̂g′(k̂) dk̂

]
+
σ2

2

[∫ k̂∗

k̂−
k̂g′′(k̂) dk̂ +

∫ k̂+

k̂∗
k̂g′′(k̂) dk̂

]

=(2) ν

 k̂g(k̂)∣∣∣k̂∗

k̂−
+ k̂g(k̂)

∣∣∣k̂+

k̂∗︸ ︷︷ ︸
=0

−
∫ k̂+

k̂−
g(k̂) dk̂︸ ︷︷ ︸
=1

+
σ2

2

[
k̂g′(k̂)

∣∣∣k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣k̂+

k̂∗
−
∫ k̂+

k̂−
g′(k̂) dk̂

]

=(3) −ν + σ2

2

 k̂g′(k̂)∣∣∣k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣k̂+

k̂∗
− g(k̂)

∣∣∣k̂+

k̂−︸ ︷︷ ︸
=0


=(4) −ν + σ2

2

[
k̂g′(k̂)

∣∣∣k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣k̂+

k̂∗

]
Substituting back the expressions for T1, T2, and T3 from equations (C.90) to (C.92) into (C.86)

0 = E
[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
− νT1 +

σ2

2
T2 +m(k̂∗)T3

(C.93)

= E
[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
− ν0 +

σ2

2

[
−m(k̂∗)

[
k̂g′(k̂)

∣∣∣k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣k̂+

k̂∗

]
+ 2

∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂

]

· · ·+m(k̂∗)

[
−ν + σ2

2

[
k̂g′(k̂)

∣∣∣k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣k̂+

k̂∗

]]
= E

[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
+ σ2

∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂ + νE

[
a
(
f(k̂)− E

[
f(k̂)

])]
= Cov

[
f(k̂), k̂ + νa

]
+ σ2

∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂. ⇐⇒ −

∫ k̂+

k̂−
m(k̂)g′(k̂) = Cov

[
f(k̂),

k̂ + νa

σ2

]

Combining this result with the CIR’s first-order approximation in Proposition 2 yields:

(C.94)
CIR(f, δ)

δ
= −

∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂ = Cov

[
f(k̂),

k̂ + νa

σ2

]
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C.3.2 With irreversibility

From Propositions 2 and 3, we know that

0 = f(k̂)− E[f(k̂)]− νm′(k̂) +
σ2

2
m′′(k̂) + Λ(k̂)

(
M(k̂)− Cov[f(k̂), a]−m(k̂)

)
,(C.95)

0 = M(k̂±)− Cov[f(k̂), a]−m(k̂±),(C.96)

0 =

∫ k̂+

k̂−
m(k̂)g(k̂) dk̂.(C.97)

where M(k̂) is defined in (C.98)

(C.98) M(k̂) ≡

 m(k̂∗−) + Cov(k̂, a) < 0 if k̂ ∈ [k̂−, k̂∗−]

m(k̂∗+) + Cov(k̂, a) > 0 if k̂ ∈ [k̂∗+, k̂+].

From the KFE in (B.17) we solve for the adjustment hazard Λ(k) =
νg′(k̂)+σ2

2 g′′(k̂)

g(k̂)
and using equation (C.41)

(C.99)
νg′(k̂) + σ2

2 g
′′(k̂)

g(k̂)
m(k̂) = f(k̂)−E[f(k̂)]−νm′(k̂)+

σ2

2
m′′(k̂)+

νg′(k̂) + σ2

2 g
′′(k̂)

g(k̂)

(
M(k̂)− Cov[f(k̂), a]

)
Multiplying by g(k̂)k̂ and taking the integral between k̂− and k̂+:

0 = E
[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
− νT1 +

σ2

2
T2 + νT3 +

σ2

2
T4(C.100)

where we define the following four terms, characterized next:

T1 =

∫ k̂+

k̂−
k̂
[
m′(k̂)g(k̂) +m(k̂)g′(k̂)

]
dk̂(C.101)

T2 =

∫ k̂+

k̂−
k̂
[
m′′(k̂)g(k̂)−m(k̂)g′′(k̂)

]
dk̂(C.102)

T3 =

∫ k̂+

k̂−
(M(k̂)− Cov[f(k̂), a])k̂g′(k̂) dk̂(C.103)

T4 =

∫ k̂+

k̂−
(M(k̂)− Cov[f(k̂), a])k̂g′′(k̂) dk̂.(C.104)

(i) To characterize T1, we use the following: (1) the product rule – m′(k̂)g(k̂) + m(k̂)g′(k̂) = d[m(k̂)g(k̂)]

dk̂
, (2)

integration by parts, border and continuity conditions of m(·) and g(·), and the zero expectation of m(·):

T1 =

∫ k̂+

k̂−
k̂
[
m′(k̂)g(k̂) +m(k̂)g′(k̂)

]
dk̂(C.105)

=(1)

∫ k̂+

k̂−
k̂
(
m(k̂)g(k̂)

)′
dk̂

=(2) k̂m(k̂)g(k̂)
∣∣∣k̂∗−

k̂−
+ k̂m(k̂)g(k̂)

∣∣∣k̂∗+

k̂∗−
+ k̂m(k̂)g(k̂)

∣∣∣k̂+

k̂∗+︸ ︷︷ ︸
=0

−
∫ k̂+

k̂−
m(k̂)g(k̂) dk̂ = 0

(ii) To rewrite T2 we carry out the following steps: (1) substitutesm′′(k̂)g(k̂)−m(k̂)g′′(k̂) with
d[m′(k̂)g(k̂)−m(k̂)g′(k̂)]

dk̂
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using the product rule and splits the integral; (2) applies integration by parts; (3) rearranges terms; (4) uses

the continuity and border conditions of m(·) and g(·); (5) uses integration by parts; (6) uses the continuity

and border conditions of m(·) and g(·) and joins common terms; (7) uses m(k̂) = M(k̂) + Cov[f(k̂), a]:

T2 =

∫ k̂+

k̂−
k̂
[
m′′(k̂)g(k̂)−m(k̂)g′′(k̂)

]
dk̂

(C.106)

=(1)

∫ k̂∗−

k̂−
k̂
d
[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]
dk̂

dk̂ +

∫ k̂∗+

k̂∗−
k̂
d
[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]
dk̂

dk̂ +

∫ k̂+

k̂∗+
k̂
d
[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]
dk̂

dk̂

=(2) k̂
[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]∣∣∣k̂∗−

k̂−
+ k̂

[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]∣∣∣k̂∗+

k̂∗−
+ k̂

[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]∣∣∣k̂+

k̂∗+

· · · −
[∫ k̂∗−

k̂−

[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]
d k̂ +

∫ k̂∗+

k̂∗−

[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]
d k̂ +

∫ k̂+

k̂∗+

[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]
d k̂

]

=(3) k̂m′(k̂)g(k̂)
∣∣∣k̂+

k̂−
+ k̂m′(k̂)g(k̂)

∣∣∣k̂∗+

k̂∗−
+ k̂m′(k̂)g(k̂)

∣∣∣k̂+

k̂∗+︸ ︷︷ ︸
=0

−
[
m(k̂)k̂g′(k̂)

∣∣∣k̂∗−

k̂−
+ m(k̂)k̂g′(k̂)

∣∣∣k̂∗+

k̂∗−
+ m(k̂)k̂g′(k̂)

∣∣∣k̂−

k̂∗−

]

· · · −
[∫ k̂+

k̂−
m′(k̂)g(k̂) d k̂ −

∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂

]

=(4) −
[
m(k̂)k̂g′(k̂)

∣∣∣k̂∗−

k̂−
+ m(k̂)k̂g′(k̂)

∣∣∣k̂∗+

k̂∗−
+ m(k̂)k̂g′(k̂)

∣∣∣k̂+

k̂∗+

]
−
∫ k̂+

k̂−
m′(k̂)g(k̂) d k̂ +

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂

=(5) −
[
m(k̂)k̂g′(k̂)

∣∣∣k̂∗−

k̂−
+ m(k̂)k̂g′(k̂)

∣∣∣k̂∗+

k̂∗−
+ m(k̂)k̂g′(k̂)

∣∣∣k̂+

k̂∗+

]
+

∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂

−

m(k̂)g(k̂)
∣∣∣k̂∗−

k̂−
+ m(k̂)g(k̂)

∣∣∣k̂∗+

k̂∗−
+ m(k̂)g(k̂)

∣∣∣k̂+

k̂∗+︸ ︷︷ ︸
=0

−
∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂


=(6) −

[
m(k̂)k̂g′(k̂)

∣∣∣k̂∗−

k̂−
+ m(k̂)k̂g′(k̂)

∣∣∣k̂∗+

k̂∗−
+ m(k̂)k̂g′(k̂)

∣∣∣k̂+

k̂∗+

]
+ 2

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂.

=(7) −
[(

M(k̂)− Cov[f(k̂), a]
)
k̂g′(k̂)

∣∣∣k̂∗−

k̂−
+
(
M(k̂)− Cov[f(k̂), a]

)
k̂g′(k̂)

∣∣∣k̂∗+

k̂∗−

]
−
[(

M(k̂)− Cov[f(k̂), a]
)
k̂g′(k̂)

∣∣∣k̂+

k̂∗+

]
+ 2

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂

(iii) For T3, step (1) divides the integration domain into the discontinuity points; step (2) uses continuity of M(k̂)

and g(k̂), together with the boundaries conditions of g(k̂±) = 0; step (3) re-writes the integral:
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T3 =

∫ k̂+

k̂−

(
M(k̂)− Cov[f(k̂), a]

)
k̂g′(k̂) dk̂

(C.107)

= (1)

∫ k̂∗−

k̂−
k̂
(
M(k̂)− Cov[f(k̂), a]

)
g′(k̂) dk̂ +

∫ k̂∗+

k̂∗−
k̂
(
M(k̂)− Cov[f(k̂), a]

)
g′(k̂) dk̂

+

∫ k̂+

k̂∗+
k̂
(
M(k̂)− Cov[f(k̂), a]

)
g′(k̂) dk̂

=(2)
(
M(k̂)− Cov[f(k̂), a]

)
k̂g(k̂)

∣∣∣k̂∗−

k̂−
+
(
M(k̂)− Cov[f(k̂), a]

)
k̂g(k̂)

∣∣∣k̂∗+

k̂∗−
+
(
M(k̂)− Cov[f(k̂), a]

)
k̂g(k̂)

∣∣∣k̂+

k̂∗+︸ ︷︷ ︸
=0

−
∫ k̂+

k̂−

[
M(k̂)− Cov[f(k̂), a] + k̂M′(k̂)

]
g(k̂) dk̂

= (3)Cov[f(k̂), a]− E
[
M(k̂) + k̂M′(k̂)

]
(iv) For T4, step (1) breaks the integral, step (2) uses integration by parts, step (3) uses integration by parts, step

(4) uses the border conditions for g(·):

T4 =

∫ k̂+

k̂−
k̂
(
M(k̂)− Cov[f(k̂), a]

)
g′′(k̂) dk̂

(C.108)

=(1)

∫ k̂∗−

k̂−
k̂
(
M(k̂)− Cov[f(k̂), a]

)
g′′(k̂) dk̂ +

∫ k̂∗+

k̂∗−
k̂
(
M(k̂)− Cov[f(k̂), a]

)
g′′(k̂) dk̂

+

∫ k̂+

k̂∗+
k̂
(
M(k̂)− Cov[f(k̂), a]

)
g′′(k̂) dk̂

=(2)
(
M(k̂)− Cov[f(k̂), a]

)
k̂g′(k̂)

∣∣∣k̂∗−

k̂−
+
(
M(k̂)− Cov[f(k̂), a]

)
k̂g′(k̂)

∣∣∣k̂∗+

k̂∗−

+
(
M(k̂)− Cov[f(k̂), a]

)
k̂g′(k̂)

∣∣∣k̂+

k̂∗+
−
∫ k̂+

k̂−

[
M(k̂)− Cov[f(k̂), a] + k̂M′(k̂)

]
g′(k̂) dk̂

=(3)
(
M(k̂)− Cov[f(k̂), a]

)
k̂g′(k̂)

∣∣∣k̂∗−

k̂−
+
(
M(k̂)− Cov[f(k̂), a]

)
k̂g′(k̂)

∣∣∣k̂∗+

k̂∗−
+
(
M(k̂)− Cov[f(k̂), a]

)
k̂g′(k̂)

∣∣∣k̂+

k̂∗+

· · · −
[
M(k̂)− Cov[f(k̂), a] + k̂M′(k̂)

]
g(k̂)

∣∣∣k̂+

k̂−︸ ︷︷ ︸
=0

+

∫ k̂+

k̂−

[
2M′(k̂) + k̂M′′(k̂)

]
g(k̂) dk̂

=
(
M(k̂)− Cov[f(k̂), a]

)
k̂g′(k̂)

∣∣∣k̂∗−

k̂−
+
(
M(k̂)− Cov[f(k̂), a]

)
k̂g′(k̂)

∣∣∣k̂∗+

k̂∗−
+
(
M(k̂)− Cov[f(k̂), a]

)
k̂
dg(k̂)

dk̂

∣∣∣∣∣
k̂+

k̂∗+

+ E
[
2M′(k̂) + k̂M′′(k̂)

]
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From equations (C.104) to (C.109)

0 = E
[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
− νT1 +

σ2

2
T2 + νT3 +

σ2

2
T4

(C.109)

= E
[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
− ν0 + σ2

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂ + ν

[
Cov[f(k̂), a]− E

[
M(k̂) + k̂M′(k̂)

]](C.110)

±
(
M(k̂)− Cov[f(k̂), a]

)
k̂g′(k̂)

∣∣∣k̂∗−

k̂−
+
(
M(k̂)− Cov[f(k̂), a]

)
k̂g′(k̂)

∣∣∣k̂∗+

k̂∗−
+
(
M(k̂)− Cov[f(k̂), a]

)
k̂
dg(k̂)

dk̂

∣∣∣∣∣
k̂+

k̂∗+

(C.111)

+
σ2

2
E
[
2M′(k̂) + k̂M′′(k̂)

]
= Cov

[
f(k̂), k̂

]
+ σ2

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂ + νCov[f(k̂), a]− νE

[
M(k̂) + k̂M′(k̂)

]
+
σ2

2
E
[
2M′(k̂) + k̂M′′(k̂)

]

Recalling that CIR(f,δ)
δ =

∫ k̂+

k̂− m(k̂)g′(k̂) dk̂ and rearranging the terms we obtain:

(C.112)
CIR(f, δ)

δ
= Cov

[
f(k̂),

k̂ + νa

σ2

]
− ν

σ2
E
[
M(k̂) + k̂M′(k̂)

]
+

1

2
E
[
2M′(k̂) + k̂M′′(k̂)

]
+ o(δ)

Finally, if we apply Ito’s lemma to k̂M(k̂) , we have that

(C.113) Es[d(k̂sM(k̂s))|k̂s = k̂] =

[
−ν
[
M(k̂) + k̂M′(k̂)

]
+
σ2

2
E
[
2M′(k̂) + k̂M′′(k̂s)

]]
ds

such that:

(C.114)
CIR(f, δ)

δ
= Cov

[
f(k̂),

k̂ + νa

σ2

]
+

1

σ2
E
[
1

ds
Es[d(M(k̂s)k̂s)]

]

This concludes the proof.
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C.4 Proof of Proposition 5

Proposition 5. (Extreme cases) Up to the first order, the CIR’s sufficient statistics as a function of investment

frictions are as follows.

(i) No drift and only fixed cost: If ν = ω = 0 and θ > 0, then

(53)
CIR(δ)

δ
=

Var[k̂]
σ2

=

(
12θ̃

(1− α)σ6

)1/4

, where θ̃ =
θ

α

(
pU
α

) α
1−α

.

(ii) No drift and only partial irreversibility: If ν = θ = 0 and ω > 0, then

CIR(δ)

δ
= 2× Var[k̂]

σ2
=

(
12ω̃

(1− α)σ4

)1/3

, where w̃ =
ω/2

U(1− ω/2)
.(54)

(iii) Large drift: If σ2 > 0 and ν → ∞, then the price wedge is irrelevant and

E

[
Es[d(k̂sM(k̂s))]

ds

]
= 0, νCov[k̂, a] = −Var[k̂],

CIR(δ)

δ
= 0.(55)

Proof’s strategy We prove Proposition 5 in a sequence lemmas by departing from Proposition 1. First, Lemma

C.2 shows that the investment policy can be separated into a static frictionless component and a dynamic frictional

component, where we characterize the latter, introducing the notion of effective investment frictions. From a firm’s

perspective, what matters for investment decisions is the fixed adjustment cost relative to frictionless profits and

the price wedge relative to the frictionless profits-capital ratio, respectively. The first lemma uses the dynamic

frictional component to characterize CIR’s sufficient statistics. Then, we divide the proof into two major cases:

ν → 0 and ν → ∞. Within the first case, we consider θ = 0 and ω = 0.

C.4.1 Static and dynamic investment policies

Lemma C.2. Let K ≡ {k̂−, k̂∗−, k̂∗+, k̂+} denote the firm’s optimal investment policy. Fix any investment price

p̂. The optimal investment policy can be decomposed as the sum of a static and a dynamic component K = k̂ss+X ,

where k̂ss is the static log capital-productivity ratio that firms would set in the absence of frictions under the

investment price p̂

(C.115) k̂ss =
1

1− α
log

(
α

p̂U

)
and X ≡ {x−, x∗−, x∗+, x+} is the dynamic component that solves the following stopping-time problem for the

normalized capital-productivity ratio x := k̂ − k̂ss

q̃(x) = E

[∫ τ

0

e−Us
(
e(α−1)xs − 1

)
ds+ e−Us (q̃(xτ +∆x)− p̃(∆x))

∣∣∣∣∣x0 = x

]
,(C.116)

dxt = −ν dt+ σ dWt,(C.117)
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with the additional restriction

θ̃ =

∫ x∗−

x−
ex
(
q̃(x)− p̃buy

)
dx,(C.118)

θ̃ =

∫ x+

x∗+
ex
(
p̃sell − q̃(x)

)
dx.(C.119)

The effective fixed cost θ̃ and the effective price wedge ω̃ are define as

θ̃ =
θ

αeαk̂ss
=

θ

α

(
p̂U
α

) α
1−α

(C.120)

p̃buy =
p− p̂

αe(α−1)k̂ss
=

p− p̂

U p̂(C.121)

p̃sell =
p(1− ω)− p̂

αe(α−1)k̂ss
=

p(1− ω)− p̂

U p̂(C.122)

The static optimal policy k̂ss in (C.115) sets the capital-productivity ratio to a constant, and its value reflects

profitability α, the average user cost of capital U , and the investment price p. By definition, investment frictions

do not affect the static choice k̂ss. In contrast, the dynamic policy X characterized by (C.116) and (C.117) takes

into account the fixed cost and the price wedge, scaled by static profits or the profit-capital ratio, respectively. The

flow payoff in the dynamic problem e(α−1)xs − 1 only depends on the curvature of the profit function α, and thus

is invariant to frictions. Finally, any price can be used to construct k̂ss, because X moves accordingly so that K is

invariant to the price. We use this property below to obtain symmetry in the problem.

Proof. The equilibrium conditions for the Tobin’s q are given by:

Uq(k̂) = αe(α−1)k̂

p
− νq′(k̂) +

σ2

2
q′′(k̂), ∀ k̂ ∈ (k̂−, k̂+).(C.123)

θ

p
=

∫ k̂∗−

k̂−
ek̂
(
q(k̂)− 1

)
dk̂,(C.124)

θ

p
=

∫ k̂+

k̂∗+
ek̂
(
(1− ω)− q(k̂)

)
dk̂,(C.125)

q(k̂) = 1, k̂ ∈
{
k̂−, k̂∗−

}
(C.126)

q(k̂) = (1− ω), k̂ ∈
{
k̂∗+, k̂+

}
.(C.127)

Normalized q⋆ Define the normalized Tobins’ q as

(C.128) q⋆(x) ≡ q(x+ k̂ss)− p̂/p

αe(α−1)k̂ss
,

which satisfies the following properties:

q(k̂) = q⋆(k̂ − k̂ss)αe(α−1)k̂ss

+ p̂/p(C.129)

q′(k̂) = q⋆
′
(k̂ − k̂ss)αe(α−1)k̂ss

(C.130)

q′′(k̂) = q⋆
′′
(k̂ − k̂ss)αe(α−1)k̂ss

.(C.131)
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From the HJB, we have that for all k̂ ∈ (k̂−, k̂+)

Uq(k̂) =
αe(α−1)k̂

p
− νq′(k̂) +

σ2

2
q′′(k̂), ⇐⇒(C.132)

U(q⋆(k̂ − k̂ss)αe(α−1)k̂ss

+ p̂/p) =
αe(α−1)k̂

p
− νq⋆

′
(k̂ − k̂ss)αe(α−1)k̂ss

+
σ2

2
q⋆

′′
(k̂ − k̂ss)αe(α−1)k̂ss

, ⇐⇒

Uq⋆(x) =
e(α−1)x − 1

p
− νq⋆

′
(x) +

σ2

2
q⋆

′′
(x),

where the last equation holds for all x ∈ (x−, x+). From the optimality condition

q(k̂) = 1, k̂ ∈
{
k̂−, k̂∗−

}
⇐⇒ q⋆(x) =

p− p̂

pαe(α−1)k̂ss
, x ∈

{
x−, x∗−

}
(C.133)

q(k̂) = (1− ω), k̂ ∈
{
k̂∗+, k̂+

}
⇐⇒ q⋆(x) =

p(1− ω)− p̂

pαe(α−1)k̂ss
, x ∈

{
x+, x∗+

}
(C.134)

From the value-matching condition with k̂−, we have that

θ

p
=

∫ k̂∗−

k̂−
ek̂
(
q(k̂)− 1

)
dk̂ ⇐⇒(C.135)

θ

pαe(α−1)k̂ss
=

∫ k̂∗−

k̂−
ek̂
(
q⋆(k̂ − k̂ss)− p− p̂

pαe(α−1)k̂ss

)
dk̂ ⇐⇒

θ

pαe(α−1)k̂ss
=

∫ k̂∗−

k̂−
ek̂−k̂ss+k̂ss

(
q⋆(k̂ − k̂ss)− p− p̂

pαe(α−1)k̂ss

)
dk̂ ⇐⇒

θ

pαeαk̂ss
=

∫ x∗−

x−
ex
(
q⋆(x)− p− p̂

pαe(α−1)k̂ss

)
dx ⇐⇒

θ

αeαk̂ss
=

∫ x∗−

x−
ex
(
q̃(x)− p− p̂

αe(α−1)k̂ss

)
dx.

where we define q̃(x) ≡ pq⋆(x),. Similar steps apply to the value matching condition for k̂+.

C.4.2 Proof for ν = 0

Lemma C.3. Let ν = 0 and set p̂ = p(1− ω/2). Consider a first-order approximation of the flow profits

(C.136) e(α−1)x − 1 ≈ −(1− α)x

and assume the unweighted boundary conditions are a good approximation of the weighted conditions:

∫ x∗−

x−
ex
(
q̃(x)− p̃buy

)
dx ≈

∫ x∗−

x−

(
q̃(x)− p̃buy

)
dx(C.137) ∫ x+

x∗+
ex
(
p̃sell − q̃(x)

)
dx ≈

∫ x+

x∗+

(
p̃sell − q̃(x)

)
dx.(C.138)
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Then q̃(x) is anti-symmetric, the policies are x− = −x+ and x− = −x+, and satisfy:

U q̃(x) = −(1− α)x +
σ2

2
q̃′′(x), ∀ x ∈ (0, x+),(C.139)

q̃(x) = −ω̃, x ∈
{
x+, x∗+

}
, q̃(0) = 0(C.140)

−θ̃ =
∫ x+

x∗+
(q̃(x) + ω̃) dx.(C.141)

Moreover, x+ and x∗+ satisfy the non-linear system of equations√
2U
σ2

−θ̃U + (1− α) (x
+)2−(x∗+)2

2 − U ω̃(x+ − x∗+)

e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+ − e

√
2U
σ2 x∗+ − e

−
√

2U
σ2 x∗+

(e

√
2U
σ2 x∗+

− e
−
√

2U
σ2 x∗+

)− (1− α)x∗+ = −ωU(C.142)

√
2U
σ2

−θ̃U + (1− α) (x
+)2−(x∗+)2

2 − U ω̃(x+ − x∗+)

e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+ − e

√
2U
σ2 x∗+ − e

−
√

2U
σ2 x∗+

(e

√
2U
σ2 x+

− e
−
√

2U
σ2 x+

)− (1− α)x+ = −ωU(C.143)

• If ω̃ = 0, then

(C.144) x∗+ = 0; x+ =

(
12θ̃σ2

1− α

)1/4

.

• If θ̃ = 0, then

(C.145) x∗+ = x+ =

(
3ω̃σ2

2(1− α)

)1/3

.

Proof. We show that q(x) = −q(−x), x− = x+, and x∗− = −x∗+ using a guess and verify strategy in the equilib-

rium conditions.

Step 1: q is antisymmetric. Observe that if q(x) = −q(−x), then q′′(x) = −q′′(−x). Assume that for all

x ∈ (x−, 0]

(C.146) U q̃(x) = −(1− α)x+ νq′(x) +
σ2

2
q′′(x), ∀ k̂ ∈ (x−, x+)

Multiplying by −1 both sizes of the equality

U q̃(x) = −(1− α)x +
σ2

2
q′′(x), ∀ x ∈ (x−, 0](C.147)

U(−q̃(x)) = −(1− α)(−x) +
σ2

2
(−q′′(x)), ∀ x ∈ (x−, 0](C.148)

U(q̃(−x)) = −(1− α)(−x) +
σ2

2
(q′′(−x)), ∀ x ∈ (x−, 0](C.149)

U q̃(x) = −(1− α)x +
σ2

2
q′′(x), ∀ x ∈ [0, x+).(C.150)
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Observe that under p̂ = p(1− ω)

p̃buy =
p− p(1− ω/2)

Up(1− ω/2)
=

ω/2

U(1− ω/2)
=: ω̃(C.151)

p̃sell =
p(1− ω)− p̂

U p̂ =
ω/2

U(1− ω/2)
=: −ω̃(C.152)

Then

(C.153) q̃(x) = ω̃, x ∈
{
x−, x∗−

}
⇐⇒ −q̃(x) = −ω̃, x ∈

{
x−, x∗−

}
⇐⇒ q̃(x) = −ω̃, x ∈

{
x+, x∗+

}
.

Finally, using the unweighted boundary condition, using a change of variables s = −x and dx = −ds

θ̃ =

∫ x∗−

x−
(q̃(x)− ω̃) dx ⇐⇒ −θ̃ =

∫ x∗−

x−
(−q̃(x) + ω̃) dx ⇐⇒ −θ̃ =

∫ x∗−

x−
(q̃(−x) + ω̃) dx ⇐⇒(C.154)

−θ̃ = −
∫ −x∗−

−x−
(q̃(s) + ω̃) ds ⇐⇒ −θ̃ =

∫ x+

−x∗+
(q̃(s) + ω̃) ds.(C.155)

Thus, we have shown that q̃(x) is anti-symmetric.

Step 2: q equilibrium conditions. Since q̃(x) = −q̃(−x), we have that q̃(0) = −q̃(0) if and only if q̃(0). Thus,

the equilibrium conditions for q̃(x) and {x∗+, x+} are given by

U q̃(x) = −(1− α)x +
σ2

2
q̃′′(x), ∀ x ∈ (0, x+),(C.156)

q̃(x) = −ω̃, x ∈
{
x+, x∗+

}
, q̃(0) = 0(C.157)

−θ̃ =
∫ x+

x∗+
(q̃(x) + ω̃) dx.(C.158)

The solution to the HJB in (C.156) is given by

q̃(x) =
Ae

√
2U
σ2 x

+Be
−
√

2U
σ2 x − (1− α)x

U(C.159)

Since q̃(0) = 0, we find that A = −B and thus

q̃(x) =
A(e

√
2U
σ2 x − e

−
√

2U
σ2 x

)− (1− α)x

U(C.160)

To find A, we use the border condition (C.158)

−θ̃ =
∫ x+

x∗+

(
A

U (e

√
2U
σ2 x − e

−
√

2U
σ2 x

)− (1− α)x

U + ω̃

)
dx

=
A

U

(√
2U
σ2

)−1 (
e

√
2U
σ2 x

+ e
−
√

2U
σ2 x
)∣∣∣∣x+

x=x∗+
− (1− α)

(x+)2 − (x∗+)2

2U + ω̃(x+ − x∗+)

=
A

U

(√
2U
σ2

)−1(
e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+

− e

√
2U
σ2 x∗+

− e
−
√

2U
σ2 x∗+

)
− (1− α)

(x+)2 − (x∗+)2

2U + ω̃(x+ − x∗+)
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Solving for A we get:

A =

√
2U
σ2

−θ̃U + 1−α
2

(
(x+)2 − (x∗+)2

)
− ω̃U(x+ − x∗+)(

e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+ − e

√
2U
σ2 x∗+ − e

−
√

2U
σ2 x∗+

.

)(C.161)

The equilibrium policy satisfies the following system of equations√
2U
σ2

−θ̃U + (1− α) (x
+)2−(x∗+)2

2 − U ω̃(x+ − x∗+)

e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+ − e

√
2U
σ2 x∗+ − e

−
√

2U
σ2 x∗+

(e

√
2U
σ2 x∗+

− e
−
√

2U
σ2 x∗+

)− (1− α)x∗+ = −ωU(C.162)

√
2U
σ2

−θ̃U + (1− α) (x
+)2−(x∗+)2

2 − U ω̃(x+ − x∗+)

e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+ − e

√
2U
σ2 x∗+ − e

−
√

2U
σ2 x∗+

(e

√
2U
σ2 x+

− e
−
√

2U
σ2 x+

)− (1− α)x+ = −ωU(C.163)

C.4.3 Proof for ω = 0

If ω̃ = 0, then x∗+ = 0 we have that

(C.164)

√
2U
σ2

(
(1− α)

(x+)2

2
− θ̃U

)
e

√
2U
σ2 x+

− e
−
√

2U
σ2 x+

e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+ − 2

− (1− α)x+ = 0

We can operate over the previous equation, and we have

(C.165) (1− α)x+

−1 +
x+

2

√
2U
σ2

e

√
2U
σ2 x+

− e
−
√

2U
σ2 x+

e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+ − 2


︸ ︷︷ ︸

=(2)

=

√
2U
σ2
θ̃U e

√
2U
σ2 x+

− e
−
√

2U
σ2 x+

e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+ − 2︸ ︷︷ ︸

=(1)

First, we approximate the term (1), e

√
2U
σ2 x+

−e−
√

2U
σ2 x+

/
(
e

√
2U
σ2 x+

+e
−
√

2U
σ2 x+

−2
)
for low value of x+. Observe

that when x+ ↓ 0, e

√
2U
σ2 x+

− e
−
√

2U
σ2 x+

↓ 0 and
(
e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+

− 2
)
↓ 0. Thus, we use a Taylor approximation

to approximate the ratio—keeping the lowest order to determine the sign of the denominator and numerator. For

the denominator and numerator, we have that

e

√
2U
σ2 x+

− e
−
√

2U
σ2 x+

= e

√
2U
σ2 0 − e

−
√

2U
σ2 0︸ ︷︷ ︸

=0

+

√
2U
σ2

(e

√
2U
σ2 0

+ e
−
√

2U
σ2 0

)(x+ − 0)︸ ︷︷ ︸
=
√

2U
σ2 2x+

e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+

− 2 = e

√
2U
σ2 0

+ e
−
√

2U
σ2 0 − 2︸ ︷︷ ︸

=0

+

√
2U
σ2

(e

√
2U
σ2 0 − e

−
√

2U
σ2 0

)(x+ − 0)︸ ︷︷ ︸
=0x+

+
1

2

(
2U
σ2

)
(e

√
2U
σ2 0

+ e
−
√

2U
σ2 0

)(x+ − 0)2︸ ︷︷ ︸
= 2U

σ2 (x+)2

Using this approximation

√
2U
σ2
θ̃U e

√
2U
σ2 x+

− e
−
√

2U
σ2 x+

e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+ − 2

≈
√

2U
σ2
θ̃U 2√

2U
σ2 x+

=
2θ̃U
x+

(C.166)
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Now, we approximate the term (2),

(C.167) (2) = −1 +
x+

2

√
2U
σ2

e

√
2U
σ2 x+

− e
−
√

2U
σ2 x+

e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+ − 2

for low value of x+. Doing a third-order Taylor approximation over x near 0 in the numerator and a second in the

denominator the denominator

(2) = −1 +
x+

2

√
2U
σ2

e

√
2U
σ2 x+

− e
−
√

2U
σ2 x+

e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+ − 2

,(C.168)

= −1 +
x+

2

√
2U
σ2

2
√

2U
σ2 x

+ + 2
3!

(
2U
σ2

)3/2
(x+)3

2U
σ2 (x+)2

,(C.169)

= −1 + 1 +

(
2U
σ2

)
(x+)2

3!
.(C.170)

Using this approximation

(1− α)x+

−1 +
x+

2

√
2U
σ2

e

√
2U
σ2 x+

− e
−
√

2U
σ2 x+

e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+ − 2

 = (1− α)

(
2U
σ2

)
(x+)3

3!
.(C.171)

Thus,

(C.172)
2θ̃U
x+

= (1− α)

(
2U
σ2

)
(x+)3

3!
⇐⇒ x+ =

(
12θ̃σ2

1− α

)1/4

.

Since ω = 0, we have that θ̃ = θ
α

(
p̂U
α

) α
1−α

= θ
α

(
p(1−ω/2)U

α

) α
1−α

= θ
α

(
pU
α

) α
1−α

and

(C.173) x+ =

(
12θ̃σ2

1− α

)1/4

, with θ̃ =
θ

α

(
pU
α

) α
1−α

C.4.4 Proof for θ = 0

Since q(x) = −ω̃ has two roots for x ≥ 0 with q(0) = 0, it is easy to see that when θ̃ ↓ 0, then x∗+ → x+ with

q′(x+) = 0. Thus, we replace −θ̃ =
∫ x+

x∗+ (q̃(x) + ω̃) dx, by the reflecting barrier condition q′(x+) = 0.

U q̃(x) = −(1− α)x +
σ2

2
q̃′′(x), ∀ x ∈ (0, x+),(C.174)

q̃(x+) = −ω̃, q̃(0) = 0, q̃′(x+) = 0.(C.175)

Given the solution

(C.176) q̃(x) =
A(e

√
2U
σ2 x − e

−
√

2U
σ2 x

)− (1− α)x

U

The border condition q̃′(x+) = 0 implies

(C.177)

√
2U
σ2
A(e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+

)− (1− α) = 0 ⇐⇒ A =

√
σ2

2U
1− α

e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+
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Thus, x+ satisfies

(C.178) (1− α)

√ σ2

2U
e

√
2U
σ2 x+

− e
−
√

2U
σ2 x+

e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+

− x+

 = −w̃U

Applying similar steps as before

√
σ2

2U
e

√
2U
σ2 x+

− e
−
√

2U
σ2 x+

e

√
2U
σ2 x+

+ e
−
√

2U
σ2 x+

− x+(C.179)

≈
√
σ2

2U
2
√

2U
σ2 x

+ + 2
3!

(√
2U
σ2 x

+
)3

2 + 2U
σ2 (x+)2

− x+(C.180)

=
2x+ + 1

3

(
2U
σ2

)
(x+)3 − 2x+ − 2U

σ2 (x
+)3

2 + 2U
σ2 (x+)2

(C.181)

=
2U
2σ2

(x+)3
1/3− 1

1 + U
σ2 (x+)2

(C.182)

= − U
σ2

(x+)3
2

3
(C.183)

Therefore, we get the result:

(C.184) x+ =

(
3ω̃σ2

2(1− α)

)1/3

, with w̃ =
ω/2

U(1− ω/2)

C.4.5 Sufficient statistics

We finish the proof with the investment statistics and the CIR′(0) components. To simplify the exposition, we

work in the space of normalized capital-productivity ratios x ≡ k̂ − k̂ss

Lemma C.4. The variance is given by

(C.185) Var[x] =
(x̄+)2 + (x∗+)2

6
.

The covariance is given by

(C.186) Cov[a, x] = 0.

The irreversibility term is given by

(C.187) E
[
1

ds
Es[d(M(xs)xs)]

]
=
x∗+x+

3
.

The CIR is given by

CIR(δ)

δ
=

(x̄+)2 + (x∗+)2

6σ2
+

x∗+x+

3σ2
+ o(δ).(C.188)
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If θ = 0, then

(C.189)
CIR(δ)

δ
= 2

Var[x]
σ2

=

(
12ω̃

(1− α)σ4

)1/3

If ω = 0, then

(C.190)
CIR(δ)

δ
=

Var[x]
σ2

=

(
12θ̃

σ6(1− α)

)1/4

Proof. We exploit symmetry in x to compute all the inputs for the CIR.

Cross-sectional distribution. The stationary density g(x) solves the KFE with border, continuity, and reinjec-

tion (exit mass equals entry mass) conditions:

0 =
σ2

2
g′′(x),(C.191)

g(x) = g(−x) = 0,(C.192) ∫ x

−x

g(x) dx = 1,(C.193)

lim
x↓−x∗

g(x) = lim
x↑−x∗

g(x), lim
x↓x∗

g(x) = lim
x↑x∗

g(x),(C.194)

lim
x↓−x

g′(x) = lim
x↑−x∗

g′(x)− lim
x↓−x∗

g′(x), lim
x↑x

g′(x) = lim
x↓x∗

g′(x)− lim
x↑x∗

g′(x).(C.195)

Solving for g(x), we obtain a linear function:

(C.196) g′′(x) = 0, g′(x) = A, g(x) = Ax+B.

We split the state-space into three segments [−x,−x∗] ∪ [−x∗, x∗] ∪ [x∗, x] and consider three different functions

gk(x) = Akx+Bk for j = 1, 2, 3, one for each segment. Evaluating at the border conditions, we obtain relationships

for (A1, B1) and (A3, B3):

−A1x+B1 = 0

A3x+B3 = 0

}
=⇒ x = B1/A1 = −B3/A3.(C.197)

Evaluating at the reinjection conditions, we obtain A2:

A1 = A1 −A2

A3 = A3 −A2

}
=⇒ A2 = 0.(C.198)

Evaluating at the continuity conditions, using A2 = 0 we obtain for (A1, B1) and (A3, B3):

B2 = −A1x
∗ +B1

B2 = A3x
∗ +B3

}
=⇒ x∗ =

B1 −B2

A1
=
B2 −B3

A3
.(C.199)
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Finally, we use the fact that the density integrates to one:

1 =

∫ −x∗

−x

(A1x+B1) dx+

∫ x∗

−x∗
B2 dx+

∫ x

x∗
(A3x+B3) dx(C.200)

=

(
A1

x2

2
+B1x

) ∣∣∣−x∗

−x
+B2x

∣∣∣x∗

−x∗
+

(
A3

x2

2
+B3x

) ∣∣∣x
x∗

= A1

(
x∗2 − x2

2

)
+B1 (x− x∗) + 2B2x

∗ +A3

(
x2 − x∗2

2

)
+B3(x− x∗)

= (A3 −A1)

(
x2 − x∗2

2

)
+ 2B2x

∗ + (B1 +B3)(x− x∗).

Substituting B1 = xA1 and B3 = −xA3 from (C.197) into the previous expression:

1 = (A3 −A1)

(
x2 − x∗2

2

)
+ 2B2x

∗ − x (A3 −A1) (x− x∗)(C.201)

= (A3 −A1) (x− x∗)

[
x+ x∗

2
− x

]
+ 2B2x

∗

= (A3 −A1)
(x− x∗)2

2
+ 2B2x

∗.

Therefore, the cross-sectional density is equal to:

g(x) =
1

x2 − x∗2


x+ x for x ∈ [−x,−x∗]
x− x∗ for x ∈ [−x∗, x∗]
x− x for x ∈ [x∗, x].

(C.202)

Renewal probabilities and relative shares. The renewal probabilities (the mass of adjusters from each reset

point) are equal to:

N− =
σ2

2
lim
x↓−x

g′(x) =
σ2

2
A1 =

σ2

2

1

(x2 − x∗2)
(C.203)

N+ = −σ
2

2
lim
x↑x

g′(x) = −σ
2

2
A3 =

σ2

2

1

(x2 − x∗2)
.(C.204)

The shares of total, upward, and downward adjustment are:

N = N− +N+ =
σ2

(x2 − x∗2)
(C.205)

N−

N =
1

2
;

N+

N =
1

2
.(C.206)

Probability of negative adjustment. Let P+(x) ≡ Pr[∆x < 0|x] denote the probability of doing a negative

adjustment (after hitting the upper bound) conditional on the state x. It solves the HJB with border conditions:

0 = P+′′
(x); P+(x) = 1; P+(−x) = 0(C.207)

Solving for P+(x) = Ax+B and evaluating at the border conditions:

Ax+B = 1

−Ax+B = 0

}
=⇒

A = 1/2x

B = 1/2

}
=⇒ P+(x) =

x+ x

2x
=

1

2
+

x

2x
.(C.208)
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The unconditional probability of a negative adjustment is:

(C.209) E[P+] =
1

2
+

1

2x
E[x] =

1

2
.

The probability of a negative adjustment conditional on the last adjusting being positive (a switch in adjustment

sign) equals:

(C.210) P+(−x∗) ≡ Pr[∆x < 0| − x∗] =
x− x∗

2x
.

Probability of positive adjustment. Let P−(x) ≡ Pr[∆x > 0|x] denote the probability of doing a positive

adjustment (after hitting the lower bound) conditional on the state x. It solves the HJB with border conditions:

0 = P−′′
(x); P−(−x) = 1; P−(x) = 0.(C.211)

Solving for P−(x) = Ax+B and evaluating at the border conditions:

−Ax+B = 1

Ax+B = 0

}
A = −1/2x

B = 1/2

}
P−(x) =

x− x

2x
=

1

2
− x

2x
.(C.212)

The unconditional probability of a positive adjustment is:

(C.213) E[P−] =
1

2
− 1

2x
E[x] =

1

2
.

The probability of a positive adjustment conditional on the last adjusting being negative (a switch in adjustment

sign) equals:

(C.214) P−(x∗) ≡ Pr[∆x > 0|x∗] =
x− x∗

2x
.

Expected duration of inaction. Let T (x) ≡ E[τ |x]. It solves the HJB with border conditions:

(C.215) 0 = 1 +
σ2

2
T ′′(x), T (x) = T (−x) = 0.

Solving for T (x):

(C.216) T ′′(x) = − 2

σ2
, T ′(x) = − 2

σ2
x+A, T (x) = −x

2

σ2
+Ax+B.

Evaluating at the border conditions, we obtain values for A and B:

−x
2

σ2
+Ax+B = 0

−x
2

σ2
−Ax+B = 0

 =⇒
2Ax = 0

−2x2

σ2
+ 2B = 0

 =⇒
A = 0

B =
x2

σ2

 =⇒ T (x) =
x2 − x2

σ2
.(C.217)

The expected duration of inaction given the current state E[τ |x], the expected duration of a complete inaction

spell conditional on the last reset point (E+
[τ ],E−

[τ ]), and the unconditional expected duration of inaction E[τ ]
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are given by:

E[τ |x] =
x2 − x2

σ2
,(C.218)

E+
[τ ] = E−

[τ ] =
x2 − x∗2

σ2
,(C.219)

E[τ ] =
N+

N E+
[τ ] +

N−

N E−
[τ ] =

x2 − x∗2

σ2
,(C.220)

where the shares of upward and downward adjustment are identical: N+/N = N−/N = 1/2.

Cross-sectional means Let m(x) ≡ E
[∫ τ

0
xs ds|x0 = x

]
. It solves the HJB with border conditions:

(C.221) 0 = x+
σ2

2
m′′(x), m(x) = m(−x) = 0.

Solving for m(x):

(C.222) m′′(x) = − 2

σ2
x, m′(x) = −x

2

σ2
+A, m(x) = − x3

3σ2
+Ax+B.

Evaluating at the border conditions, we obtain values for A and B:

− x3

3σ2
+Ax+B = 0

x3

3σ2
−Ax+B = 0

 =⇒
A =

x2

3σ2

B = 0

 =⇒ m(x) =
x2x− x3

3σ2
=
x

3

x2 − x2

σ2
=
x

3
E[τ |x](C.223)

Unconditional means. Using the occupancy measure, we obtain the means conditional on the last rest point:

(C.224) E−
[x] =

m(−x∗)
E−

[τ ]
= −x

∗

3
; E+

[x] =
m(x∗)

E+
[τ ]

=
x∗

3
,

where E−
[τ ] = E[τ | − x∗] and E+

[τ ] = E[τ |x∗].

Conditional mean. By symmetry, E[x] = 0. To show this formally, we use the conditional means and the renewal

distribution:

(C.225) E[x] =
N+

N E+
[x] +

N−

N E−
[x] =

1

2

(
x∗

3

)
+

1

2

(−x∗
3

)
= 0.

Unconditional variance. Since E[x] = 0, then Var[x] = E[x2]. Using the cross-sectional distribution, the second

moment equals:
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Var[x] =
∫ x

−x

x2g(x) dx(C.226)

=
1

(x2 − x∗2)

[∫ −x∗

−x

x2(x+ x) dx + (x− x∗)
∫ x∗

−x∗
x2 dx +

∫ x

x∗
x2(x− x) dx

]

=
1

(x2 − x∗2)

[(
x3x

3
+
x4

4

) ∣∣∣−x∗

−x
+ (x− x∗)

x3

3

∣∣∣x∗

−x∗
+

(
x3x

3
− x4

4

) ∣∣∣x
x∗

]
=

1

(x2 − x∗2)

[
−x∗3x

3
+
x∗4

4
+
x∗4

3
− x4

4
+ (x− x∗)

x∗3 + x∗3

3
+
x4

3
− x4

4
− x∗3x

3
+
x∗4

4

]

=
1

(x2 − x∗2)

(
x4 − x∗4

6

)
=

1

(x2 − x∗2)

(
(x2 − x∗2)(x2 + x∗2)

6

)
=

x2 + x∗2

6

CIR. From (51) and (62), the CIR without drift equals:

(C.227)
CIR(δ)

δ
=

Var[x]
σ2

− Cov[∆k̂,M(∆k̂)]

σ2E[τ ]
+ o(δ).

Cumulative deviations. Recall the values for the unconditional probabilities of a negative and a positive ad-

justment E[P+] = E[P−] = 1/2 in (C.209) and (C.213), and the conditional probabilities of switching adjustment

sign P+(−x∗) = P−(x∗) = (x − x∗)/2x in (C.210) and (C.214). Substituting these probabilities, the conditional

means E−[x] = −x∗/3 and E−[x] = x∗/3 in (C.224), and the conditional durations E−[τ ] = E+[τ ] = (x2 − x∗2)/σ2

in (C.219) into the definition of cumulative deviations m(k̂∗−) and m(k̂∗+) yields:

m(k̂∗−) = E[P−]
1

P+(−x∗) (E
−[x]− E[x])E−[τ ] =

1

2

(
2x

x− x∗

)(
−x

∗

3
− 0

)
x2 − x∗2

σ2
= −x

∗x(x+ x∗)
3σ2

,(C.228)

m(k̂∗+) = E[P+]
1

P−(x∗)
(E+[x]− E[x])E+[τ ] =

1

2

(
2x

x− x∗

)(
x∗

3
− 0

)
x2 − x∗2

σ2
=

x∗x(x+ x∗)
3σ2

.(C.229)

Irreversibility term. The irreversibility term for the CIR equals the covariance of the adjustment size and the

auxiliary capital-deviation deviation function M(∆x) defined in (C.98). Recall x∗ = x − ∆x for ∆x < 0 and

−x∗ = −x−∆x for ∆x > 0 and by symmetry E [∆x] = 0. The numerator of the irreversibility term equals:

Cov[∆x,M(∆x)] = E [∆xM(∆x)]− E [∆x]E [M(∆x)]

=
1

2

[
E−

[∆xM(∆x)] + E+
[∆xM(∆x)]

]
=

1

2

[
(x− x∗)m(k̂∗−) + (x∗ − x)m(k̂∗+)

]
= (x− x∗)m(k̂∗−),

= −(x− x∗)
x∗x(x+ x∗)

3σ2
= −x

∗x
3

(
x2 − x∗2

σ2

)
= −x

∗x
3

E[τ ].

Therefore, the irreversibility term of the CIR equals:

(C.230) −Cov[∆x,M(∆x)]

E[τ ]
=

x∗x
3

> 0.
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Finally, substituting the expression for the cross-sectional variance in (C.226) and the irreversibility term in (C.230)

into the CIR yields:

CIR(δ)

δ
=

x2 + x∗2

6σ2
+

x∗x
3σ2

+ o(δ).(C.231)

In the benchmark cases:

(C.232)
CIR(δ)

δ
=


x2

6σ2 + o(δ) if p̃ = 0,

2x∗2

3σ2 + o(δ) if θ̃ = 0,

C.4.6 Proof for ν → ∞
Lemma C.5. Let ν > 0 and σ2 → 0 such that ν/σ2 → ∞. The mean and variance of k̂ − k̂ss satisfy the joint

system

(C.233) E[x]
√

Var[x] = − (U − ν)θ̃√
12(1− α)

; Var[x] = 2
( ν
U
)2 e(α−1)E[x] − 1

1−
(
1− ν

U (1− α)
)2
e(α−1)E[x]

The covariance is given by

(C.234) Cov[a, x] = −νVar[x].

The irreversibility term is given by

(C.235) E
[
1

ds
Es[d(M(xs)xs)]

]
= 0.

The CIR is given by

CIR(δ)

δ
= 0 + o(δ).(C.236)

Proof. We depart from the equilibrium condition for q̃(x) to characterize the policy in the case with σ = 0. Let

p̂ = p. Then p̃buy = 0 and since σ = 0, the domain in x > x∗− is not operating. q̃(x) satisfies

U q̃(x) = e(α−1)x − 1− νq̃(x),(C.237)

q̃(x−) = q̃(x∗−) = 0,(C.238)

θ̃ =

∫ x∗−

x−
exq̃(x) dx.(C.239)

Next, we obtain a system of two equations to characterize x− and x∗−. Multiplying the HJB equation by e
U
ν x, we

have that

(C.240) e
U
ν x(U q̃(x) + νq̃′(x)) = e

U
ν x(e(α−1)x − 1),
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which is equivalent to

(C.241) ν
de

U
ν xq̃(x)

dx
= e

U
ν x(e(α−1)x − 1).

Integrating from x− to x

(C.242) ν(e
U
ν xq̃(x)− e

U
ν x− q̃(x−)) =

∫ x

x−
e

U
ν s(e(α−1)s − 1) ds

Using the optimality condition q(x∗−) = 0, we have that

(C.243) q̃(x) =

∫ x

x− e
U
ν (s−x)(e(α−1)s − 1) ds

ν
.

Evaluation at x∗+, we have the first equilibrium condition

(C.244) 0 =

∫ x∗+

x−
e

U
ν (s−x∗+)(e(α−1)s − 1) ds ⇐⇒ 0 =

∫ x∗+

x−
e

U
ν s(e(α−1)s − 1) ds.

To obtain the second optimality condition, we multiply the HJB equation by ex, we have that

(C.245) Uexq̃(x) = ex(e(α−1)x − 1)− νexq̃′(x).

Integrating between x− to x∗−,

(C.246) U
∫ x∗−

x−
exq̃(x) dx =

∫ x∗−

x−
ex(e(α−1)x − 1) dx− ν

∫ x∗−

x−
exq̃′(x) dx.

Doing integration by part and using the boundary condition for q̃(x),

(C.247)

∫ x∗−

x−
exq̃′(x) dx = exq̃(x)|x

∗−

x−︸ ︷︷ ︸
=0

−
∫ x∗−

x−
exq̃(x) dx.

Rearranging

(C.248) (U − ν)

∫ x∗−

x−
exq̃(x) dx =

∫ x∗−

x−
ex(e(α−1)x − 1) dx.

Finally, since θ̃ =
∫ x∗−

x− exq̃(x) dx,

(C.249) (U + ν)θ̃ =

∫ x∗−

x−
(eαx − ex) dx.

In conclusion, the optimality conditions are given by

0 =

∫ x∗+

x−
e

U
ν x(e(α−1)x − 1) dx(C.250)

(U − ν)θ̃ =

∫ x∗−

x−
ex(e(α−1)x − 1) dx(C.251)

Observe that the equilibrium conditions are similar to Sheshinski and Weiss (1977) with the objective function
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F (x) = xα

α − x and discounting ρ = U − ν. Moreover, for this problem to be well-defined, U > ν (if not, firms value

is infinite). Now, we describe steady-moments as a function of the investment friction. Using a first-order Taylor

approximation around zero for ex(e(α−1)x − 1), we have

(C.252) ex(e(α−1)x − 1) ≈ e0(e(α−1)0 − 1) + (αe0 − e0)(x− 0) = −(1− α)x

Applying this approximation to the first optimality condition in (C.251) yields:

x∗−
2 − x−

2
= −2(U − ν)θ̃

1− α
.(C.253)

Since the cross-sectional distribution is uniform in the range [x−, x∗−], it has the following moments:

(C.254) Var[x] =
(x∗− − x−)2

12
; E[x] =

x∗− + x−

2
.

Thus, we can write the first optimality condition in (C.253) as:

(C.255) E[x]
√
Var[x] = − (U − ν)θ̃√

12(1− α)
.

It is easy to see that E[x] < 0. Firms compensate, but not undo, capital depresiation and productivity growth.

Define j(x) = e
U
ν x(e(α−1)x − 1). Observe that if we divide and multiply by x∗− − x−, we can re-express as

(C.256) 0 =

∫ x∗+

x−
e

U
ν x(e(α−1)x − 1) dx = (x∗− − x−)

∫ x∗+

x−
j(x)

1

x∗− − x−
dx ⇐⇒ 0 = E[j(x)]

Thus, the expected discounted marginal product of capital relative to its cost is equal to zero. Doing a second-order

Taylor approximation over j(x) around the mean

(C.257) 0 = E[j(x)] ≈ E[j(E[x]) + j′(E[x])(x− E[x]) +
j′′(E[x])

2
(x− E[x])2] = j(E[x]) +

j′′(E[x])
2

Var[x].

Re-expressing the previous equation

(C.258) Var[x] = 2
j(E[x])

−j′′(E[x])

Since E[x] < 0, j(E[x]) > 0 and since j(x) is concave (because U/ν > 1 and α− 1 < 0), −j′′(E[x]) > 0. Thus,

(C.259) Var[x] = −2
e(

U
ν +α−1)E[x] − e

U
ν E[x](U

ν + α− 1
)2
e(

U
ν +α−1)E[x] −

(U
ν

)2
e

U
ν E[x]

Thus, the equilibrium conditions are given by

(C.260) E[x]
√
Var[x] = − (U − ν)θ̃√

12(1− α)
; Var[x] = −2

e(
U
ν +α−1)E[x] − e

U
ν E[x](U

ν + α− 1
)2
e(

U
ν +α−1)E[x] −

(U
ν

)2
e

U
ν E[x]
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Rearranging the second equation

Var[x] = −2
e(

U
ν +α−1)E[x] − e

U
ν E[x](U

ν + α− 1
)2
e(

U
ν +α−1)E[x] −

(U
ν

)2
e

U
ν E[x]

(C.261)

= −2
e(α−1)E[x] − 1(U

ν + α− 1
)2
e(α−1)E[x] −

(U
ν

)2(C.262)

= 2
e(α−1)E[x] − 1(U

ν

)2 − (Uν + α− 1
)2
e(α−1)E[x]

(C.263)

= 2
( ν
U
)2 e(α−1)E[x] − 1

1−
(
1− ν

U (1− α)
)2
e(α−1)E[x]

(C.264)

Thus, the equilibrium mean and variance of capital-to-productivity ratios is given by

(C.265) E[x]
√
Var[x] = − (U − ν)θ̃√

12(1− α)
; Var[x] = 2

( ν
U
)2 e(α−1)E[x] − 1

1−
(
1− ν

U (1− α)
)2
e(α−1)E[x]

The proof for the fact that Cov[x, a] = −νVar[x] is in Baley and Blanco (2021).

C.5 Preliminaries for Proofs of Propositions 6, 7, 8 and 9

We review some properties of Markov chains in this model. Following the main text notation, let P++ and P−− be

the transition probabilities. In a steady state, the probability of a current upsizing (downsizing) equals the ergodic

probability of a subsequent upsizing (downsizing):

N−

N =
N−

N P−− +
N+

N P+−(C.266)

N+

N =
N+

N P++ +
N−

N P−+(C.267)

Ergodicity of stopping times We show that

(C.268)
N−

N E−
[τ ′] +

N+

N E+
[τ ′] = E[τ ].

This relationship follows directly from the law of iterated expectations.

Ergodicity of reset points We show that the average reset capital conditional on an investment E
[
k̂∗(∆k̂)

]
=

H−k̂∗− + H+k̂∗+ is equal to the average reset capital in the next investment conditional on current investment

E
[
E
[
k̂∗(∆k̂′)

] ∣∣∣∆k] = E
[
k̂∗(∆k̂)

]
.

(C.269)
N−

N E−
[k̂∗

′
] +

N+

N E+
[k̂∗

′
] = E[k̂∗].

The first term:

(C.270)
N−

N E−
[k̂∗

′
] =

N−

N P−−k̂∗− +
N−

N P−+k̂∗+
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The second term:

(C.271)
N+

N E+
[k̂∗

′
] =

N+

N P++k̂∗+ +
N+

N P+−k̂∗−

Summing the two terms up and using the relationships in (C.266) and (C.267) we get:

N−

N E−
[k̂∗

′
] +

N+

N E+
[k̂∗

′
] =

N−

N P−−k̂∗− +
N−

N P−+k̂∗+ +
N+

N P++k̂∗+ +
N+

N P+−k̂∗−

=

(N−

N P−− +
N+

N P+−
)
k̂∗− +

(N−

N P−+ +
N+

N P++

)
k̂∗+

=
N−

N k̂∗− +
N+

N k̂∗+ = E[k̂∗]

C.6 Proof of Proposition 6

Proposition 6. (Recovering parameters) The drift ν and volatility σ2 of capital-productivity ratios implied by

investment microdata are recovered through the following mappings:

ν =
E[∆k̂]
E[τ ]

,(56)

σ2 =
E[(k̂τ ′ + ντ ′)2 − (k̂∗)2]

E[τ ]
.(57)

C.6.1 Drift

Conditional on the previous reset point k̂∗, the law of motion of capital-productivity ratios implies

(C.272) k̂s + νs − k̂∗ = σWs.

Evaluate at a future stopping time s = τ ′ to get

(C.273) k̂τ ′ + ντ ′ − k̂∗ = σWτ ′ .

Since the expectation of the future stopped capital depends on the previous reset point, we take expectations

conditional on the last adjustment:

(C.274) E±
[k̂τ ′ ] + νE±

[τ ′] − k̂∗± = 0.

Note that from these expressions, we can find mappings for the drift using conditional means:

(C.275) ν =
k̂∗± − E±

[k̂τ ′ ]

E±
[τ ′]

.

To derive mappings using the unconditional mean, we average the conditional expectations in (C.274) with the

shares of upward and downward adjustments:

(C.276)
N−

N
(
E−

[k̂τ ′ ] + νE−
[τ ′]− k̂∗−

)
+

N+

N
(
E+

[k̂τ ′ ] + νE+
[τ ′]− k̂∗+

)
= 0
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Join similar terms and use the ergodic property of stopping times in (C.268)

(C.277)
N−

N E−
[k̂τ ′ ] +

N+

N E+
[k̂τ ′ ] + ν

(N−

N E−
[τ ′] +

N+

N E+
[τ ′]

)
︸ ︷︷ ︸

E[τ ]

−N+

N k̂∗− − N+

N k̂∗+ = 0.

Substitute the relationship k̂τ ′ = k̂∗
′ −∆k̂′ and use the ergodic property of reset points in (C.269)

(C.278)
N−

N E−
[k̂∗

′
] +

N+

N E+
[k̂∗

′
]︸ ︷︷ ︸

E[k̂∗]

−N−

N E−
[∆k̂′]− N+

N E+
[∆k̂′]︸ ︷︷ ︸

−E[∆k̂′]

+ νE[τ ′] −N−

N k̂∗− − N+

N k̂∗+︸ ︷︷ ︸
−E[k̂∗]

= 0

Cancel terms and rearrange

(C.279) �
��E[k̂∗] − E[∆k̂′] + νE[τ ′] − �

��E[k̂∗] = 0

to obtain the result:

(C.280) ν =
E[∆k̂′]
E[τ ′]

.

C.6.2 Idiosyncratic volatility

Let Ys ≡ (k̂s + νs)2. Applying Itō’s lemma to Ys,

(C.281) dYs = 2(k̂s + νs)(dk̂s + ν ds) + (dk̂s)
2 = 2(k̂s + νs)σ dWs + σ2 ds.

We integrate both sides from 0 to τ ′ and take expectations conditional on the previous reset point:

(C.282) E±
[Yτ ′ ]− Y0 = 2σE±

[∫ τ ′

0

(k̂s + νs) dWs

]
+ σ2E±

[∫ τ ′

0

1 ds

]

We use the OST (Auxiliary Theorem in A.1) to set the martingale to zero, E±
[
∫ τ ′

0
(k̂s + νs) dWs] = 0, and obtain:

(C.283) E±
[Yτ ′ ]− Y0 = σ2E±

[τ ′].

Substituting Yτ ′ ≡ (k̂τ ′ + ντ ′)2 and Y0 ≡ (k̂∗±)2

(C.284) E± [
(k̂τ ′ + ντ ′)2

]
− (k̂±)2 = σ2E±

[τ ′]

We average the conditional expectations with the shares of upward and downward adjustments

(C.285)
N−

N E− [
(k̂τ ′ + ντ ′)2

]
+

N+

N E+
[
(k̂τ ′ + ντ ′)2

]
︸ ︷︷ ︸

E[(k̂τ′+ντ ′)2]

−
(N−

N (k̂∗−)2 +
N+

N (k̂∗+)2
)

︸ ︷︷ ︸
E[(k̂∗)2]

= σ2

(N−

N E+
[τ ′] +

N+

N E−
[τ ′]

)
︸ ︷︷ ︸

E[τ ] by (C.268)

Rearranging, we obtain the mapping from data to σ2:

(C.286) σ2 =
E[(k̂τ ′ + ντ ′)2]− E[(k̂∗)2]

E[τ ]
.
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C.7 Proof of Proposition 7

Proposition 7. (Recovering means) Let r± be the adjusted shares in (25). The unconditional mean E[k̂] and
means conditional on the previous reset E±[k̂] are recovered as:

E[k̂] = r−E−[k̂] + r+E+[k̂],(58)

E±[k̂] = E±
[(

k̂∗± + k̂τ ′

2

)(
k̂∗± − k̂τ ′

E±
[k̂∗± − k̂τ ′ ]

)]
+

σ2

2ν
.(59)

Proof. This proposition expresses the cross-sectional moments of k̂ as functions of the data. We derive mappings

for any moment n of k̂. We apply Itō’s lemma to k̂ns for n ≥ 2:

(C.287) dk̂n+1
s = −ν(n+ 1)k̂ns ds + σ(n+ 1)k̂ns dWs +

σ2n(n+ 1)

2
k̂n−1
s ds.

We integrate this expression from 0 to τ ′ and take expectations conditional on the initial condition given by the

previous reset point k̂0 = k̂∗±

(C.288) E±
[∫ τ ′

0

dk̂n+1
s

]
= −ν(n+ 1)E±

[∫ τ ′

0

k̂ns ds

]
+ σ(n+ 1)E± [

k̂ns dWs
]

+
σ2n(n+ 1)

2
E± [

k̂n−1
s ds

]
.

The term on the LHS is the definite integral of a derivative. On the RHS, we use the OST in (A.1) to set the

martingale in the second term to zero, E± [
k̂ns dWs

]
= 0.

(C.289) E± [
k̂n+1
τ ′

]
− (k̂∗±)n+1 = −ν(n+ 1)E±

[∫ τ ′

0

k̂ns ds

]
+

σ2n(n+ 1)

2
E±
[∫ τ ′

0

k̂n−1
s ds

]
.

Divide both sides by E±
[τ ′]

E± [
k̂n+1
τ ′

]
− (k̂∗±)n+1

E±
[τ ′]

= −ν(n+ 1)
E± [∫ τ ′

0
k̂ns ds

]
E±

[τ ′]
+

σ2n(n+ 1)

2

E± [∫ τ ′

0
k̂n−1
s ds

]
E±

[τ ′]
(C.290)

Use OMT in (A.2) to recover steady-state moments in the RHS using the occupancy measure (e.g. E±
[k̂n] =

E±
[∫ τ ′

0
k̂ns ds

]
/E±

[τ ′])

E± [
k̂n+1
τ ′

]
− (k̂∗±)n+1

E±
[τ ′]

= −ν(n+ 1)E±[k̂n] +
σ2n(n+ 1)

2
E±[k̂n−1](C.291)

Solving for E±[k̂n] and rearranging, we obtain a mapping for the conditional n-th moment:

(C.292) E±[k̂n] =
(k̂∗±)n+1 − E± [

k̂n+1
τ ′

]
ν(n+ 1)E±

[τ ′]
+

σ2n

2ν
E±[k̂n−1].

Applying similar steps as before, we compute the conditional moments centered at the economy-wide mean E[k̂]:

(C.293) E±[(k̂ − E[k̂])n] =
(k̂∗± − E[k̂])n+1 − E± [

(k̂τ ′ − E[k̂])n+1
]

ν(n+ 1)E±
[τ ′]

+
σ2n

2ν
E±[(k̂ − E[k̂])n−1].
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Conditional means To obtain the conditional means, we first evaluate (C.292) at n = 1,

(C.294) E±[k̂] =
(k̂∗±)2 − E± [

k̂2τ ′

]
2νE±

[τ ′]
+

σ2

2ν
.

Unconditional mean To compute the unconditional mean, we average the conditional means using the adjusted

shares r± = N±

N
E±

[τ ′]

E[τ ′]
, where r− + r+ = 1.

E[k̂] = r−E−[k̂] + r+E+[k̂](C.295)

= r−
E− [

(k̂∗−)2 − k̂2τ ′

]
2νE−

[τ ′]
+ r+

E+
[
(k̂∗+)2 − k̂2τ ′

]
2νE+

[τ ′]
+ (r− + r+)

σ2

2ν
(C.296)

=
N−

N
E−

[τ ′]

E[τ ′]

E− [
(k̂∗−)2 − k̂2τ ′

]
2νE−

[τ ′]
+

N+

N
E+

[τ ′]

E[τ ′]

E+
[
(k̂∗+)2 − k̂2τ ′

]
2νE+

[τ ′]
+

σ2

2ν
(C.297)

=

N−

N E− [
(k̂∗−)2 − k̂2τ ′

]
+ N+

N E+
[
(k̂∗+)2 − k̂2τ ′

]
2νE[τ ′]

+
σ2

2ν
(C.298)

=
E[(k̂∗)2]− E[k̂2τ ′ ]

2E[∆k̂]
+

σ2

2ν
.(C.299)

In the last step, we substitute ν = E[∆k̂′]/E[τ ′] and use the relationship E[·] = N−

N E−
[·] + N+

N E+
[·].

C.8 Proof of Proposition 8

Proposition 8. (Recovering the variance and covariance) The variance Var[k̂] and the covariance Cov[k̂, a]
are recovered from the microdata as:

Var[k̂] =
1

3

E
[
(k̂∗ − E[k̂])3

]
− E

[
(k̂τ ′ − E[k̂])3

]
k̂∗ − E[k̂τ ′ ]

.(60)

Cov[k̂, a] =
1

2ν

Var[k̂] + σ2E[a] −
E
[
(k̂τ ′ − E[k̂])2τ ′

]
E[τ ]

 .(61)

Proof. Variance To obtain the variance, we evaluate (C.293) at n = 2:

(C.300) E±[(k̂ − E±[k̂])2] =
E± [

(k̂∗± − E±[k̂])3 − (k̂τ ′ − E±[k̂])3
]

3νE±
[τ ′]

+
σ2

ν
E±[(k̂ − E±[k̂])].

Substituting the definition of variance on the LHS and setting the second term on the RHS to zero, we obtain

(C.301) Var±[k̂] =
1

3

(k̂∗± − E±[k̂])3 − E± [
(k̂τ ′ − E±[k̂])3

]
νE±

[τ ′]
.

To obtain the unconditional average, we average the conditional variances using relative adjusting shares to get the
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unconditional values:

(C.302) Var[k̂] =
1

3

(k̂∗ − E[k̂])3 − E
[
(k̂τ ′ − E[k̂])3

]
νE[τ ′]

.

Finally, substitute the denominator for (C.275).

Joint moments of k̂ and a We prove this proposition of any joint moment of (k̂, a). Consider the function

Ys = (k̂s − E[k̂])n+1s and apply Itō’s lemma to obtain:

dYs = (k̂s − E[k̂])n+1 ds − ν(n+ 1)(k̂s − E[k̂])nsds + σ(n+ 1)(k̂s − E[k̂])nsdWs(C.303)

+
σ2

2
n(n+ 1)(k̂s − E[k̂])n−1sds.

We integrate this expression from 0 to τ ′, take expectations conditional on the previous reset point, use OST in

(A.1) to set martingales to zero, and divide both sides by E±
[τ ′]:

(C.304)
E± [

(k̂τ ′ − E[k̂])n+1τ ′
]

E±
[τ ′]

= E±[(k̂−E[k̂])n+1]−ν(n+1)E±[(k̂−E[k̂])na]+
σ2

2
n(n+1)E±[(k̂−E[k̂])n−1a].

Rearranging:

(C.305)

E±[(k̂ − E[k̂])na] =
1

ν(n+ 1)

[
E±[(k̂ − E[k̂])n+1] +

σ2

2
n(n+ 1)E±[(k̂ − E[k̂])n−1a] − E±

[(k̂τ ′ − E[k̂])n+1τ ′]

E±
[τ ′]

]
.

To obtain the unconditional average, we average the conditional joint moments of k̂ and a using relative adjusting

shares to get the unconditional joint moments:

(C.306)

E[(k̂ − E[k̂])na] =
1

ν(n+ 1)

[
E[(k̂ − E[k̂])n+1] +

σ2

2
n(n+ 1)E[(k̂ − E[k̂])n−1a] − E[(k̂τ ′ − E[k̂])n+1τ ′]

E[τ ′]

]
.

Covariance Finally, to compute the covariance between (k̂, a), we evaluate expression (C.306) at n = 1 to obtain

(C.307) Cov[k̂, a] =
1

2ν

(
Var[k̂] + σ2E[a]− E[(k̂τ ′ − E[k̂])2τ ′]

E[τ ′]

)

C.9 Proof of Proposition 9

Proposition 9. (Recovering the irreversibility term) The CIR’s irreversibility term is recovered from the

microdata as

(62) E
[
1

ds
Es

[
d(k̂sM(k̂s))

]]
=

E[k̂τ ′M(k̂τ ′)]− E[k̂∗M(k̂∗)]

E[τ ]
,

where departing deviations M(k̂∗±) and ending deviations M(k̂τ ′) are recovered in Proposition 3.
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Proof. C.9.1 Local drift

Apply Ito’s lemma to the product k̂sM(k̂s)

(C.308) Es[d(k̂sM(k̂s))] =

[
−ν
[
M(k̂s) + k̂sM′(k̂s)

]
+
σ2

2
E
[
2M′(k̂s) + k̂sM′′(k̂s)

]]
ds

Taking the integral between 0 and τ ′, using the OST in (A.1) to set martingales to zero, and the OMT in (A.2) to

convert occupancy measures into cross-sectional moments:

(C.309)
E
[
E
[
k̂τ ′M(k̂τ ′)|∆k̂

]]
− E

[
E
[
k̂∗M(k̂∗)|∆k̂

]]
E[τ ]

= E
[
1

ds
Es

[
d(M(k̂s)k̂s)

]]

C.10 Proof of proposition 10

Proposition 10. (Recovering reset points) Let Φ ≡ log
(
α/(U − (1− α)ν − (1− α)2σ2/2)

)
. The two reset

points {k̂∗−, k̂∗+} are recovered from the microdata as:

k̂∗− =
1

1− α

Φ − log p + log
1− E− [

e−Uτ∗ + (1−α)(k̂∗−−k̂τ′ )
]

1− E− [p(∆k̂′)
p e−Uτ∗

]
 ,(65)

k̂∗+ =
1

1− α

Φ − log p(1− ω) + log
1− E+

[
e−Uτ∗ + (1−α)(k̂∗+−k̂τ′ )

]
1− E+

[
p(∆k̂′)
p(1−ω)e

−Uτ∗
]

 .(66)

C.10.1 Without irreversibility

We begin showing how to recover the unique reset point k̂∗ without irreversibility. Recall the HJB for Tobin’s q in

sequential form in equation (11), evaluated at q∗ = 1:

(C.310) q(k̂) = E

[∫ τ

0

αe−Us+(α−1)k̂s

p
ds + e−Uτ1

]

Evaluating at the optimum k̂∗

(C.311) 1 = q(k̂∗) = E

[∫ τ

0

αe−Us−(1−α)k̂s

p
ds + e−Uτ1

]

Next, we characterize in terms of observables. Define Ys = e−Us−(1−α)k̂s and apply Ito’s lemma:

dYs = Ys[−U ds− (1− α) dk̂s +
(1− α)2

2
dk̂2s ](C.312)

= Ys

[
−U ds− (1− α)(−ν ds+ σ dWs) +

(1− α)2σ2

2
ds

]
(C.313)

= −
[
U − (1− α)ν − (1− α)2σ2

2

]
︸ ︷︷ ︸

ϕ

Ys ds− (1− α)σYs dWs(C.314)
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where we define ϕ ≡ U − (1− α)ν − (1−α)2σ2

2 . Integrating both sides from 0 to τ∗, taking expectations conditional

on the initial condition k0 = k∗, and using the OST in (A.1) to set the expectation of martingales to zero, we

obtain:

E

[∫ τ∗

0

dYs ds

]
︸ ︷︷ ︸

E[Yτ−Y0 ]

= −ϕE
[∫ τ∗

0

Ys ds

]
− (1− α)σ E

[∫ τ∗

0

Ys dWs

]
︸ ︷︷ ︸

=0

.(C.315)

or simply

(C.316)
E [Y0 − Yτ∗ ]

ϕ
= E

[∫ τ∗

0

Ys ds

]

Since Yτ∗ = e−Uτ∗−(1−α)(k̂∗−∆k̂) and Y0 = e−(1−α)k̂∗
, then Y0 − Yτ∗ = e−(1−α)k̂∗

[1− e−Uτ∗+(1−α)∆k̂]. Substituting

back and rearranging, we find an expression for the first term of (C.311)

(C.317) E

[∫ τ∗

0

Ys ds

]
=

e−(1−α)k̂∗
(
1− E

[
e−Uτ∗+(1−α)∆k̂

])
ϕ

Using this term, we solve for k̂∗ from (C.311) to get:

p = α
e−(1−α)k̂∗E

[
1− e−Uτ∗+(1−α)∆k̂

]
ϕ

+ pE
[
e−Uτ∗

]
(C.318)

e(1−α)k̂∗
= α

1− E
[
e−Uτ∗+(1−α)∆k̂

]
ϕp
(
1− E [e−Uτ∗ ]

)(C.319)

k̂∗ =
1

1− α
log

 α

ϕp

1− E
[
e−Uτ∗+(1−α)∆k̂

]
1− E [e−Uτ∗ ]

(C.320)

k̂∗ =
1

1− α

Φ− log p+ log
1− E

[
e−Uτ∗+(1−α)∆k̂

]
1− E [e−Uτ∗ ]

(C.321)

where Φ ≡ log(α/ϕ) = log(α)− log
(
U − (1− α)ν − (1− α)2σ2/2

)
.

C.10.2 With irreversibility

With irreversibility we characterize the two reset states as a function of the data. The investment price is now

a function of the investment sign. Moreover, since future reset points are unknown and to avoid confusion, we

distinguish between past and future investments by denoting with primes future variables, such as k̂′τ and ∆k̂′.

Using the sequential formulation of the Tobin’s q

(C.322) q(k̂) = E

[∫ τ

0

αe−Us+(α−1)k̂s

p
ds + e−UτQ∗

(
∆k̂
)]

Because there are two reset points, at this step, we must condition on the appropriate initial condition to evaluate

the previous condition. If the last reset point was k̂0 = k̂∗− (there was a capital purchase), then the optimality
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condition is q(k̂∗−) = 1:

(C.323) 1 =
α

p
E−
[∫ τ∗

0

e−Us−(1−α)k̂s ds + Q(∆k̂′)e−Uτ∗

]
.

If the last reset point is k̂0 = k̂∗+ (there was a capital sale), then the optimality condition is q(k̂∗+) = 1− ω:

1− ω =
α

p
E+

[∫ τ∗

0

e−Us−(1−α)k̂s ds + Q(∆k̂′) e−Uτ∗

]
.(C.324)

where E+
= E[·|k∗+, u0] denotes expectations conditional on a negative investment.

To express these moments in terms of microdata, we follow similar steps as in the proof without irreversibility

but taking into account that investments happen at two different reset points. Consider the optimality condition

of a firm that has bought capital at a price pbuy to reset its capital-productivity ratio to k̂∗− in (C.323) (the proof

for a capital purchase is analogous). As before, we define Ys = e−Us−(1−α)k̂s and apply Ito’s lemma: dYs =

−ϕYs ds − (1 − α)σYs dWs. Integrating both sides from 0 to τ∗, taking expectations conditional on a positive

investment, i.e., with respect to the initial condition k0 = k∗−, and using the OST to set the expectation of

martingales to zero, we obtain:

E−
[Y0 − Yτ∗ ]

ϕ
= E−

[∫ τ∗

0

Ys ds

]
.(C.325)

Since Yτ∗ = e−Uτ∗−(1−α)k̂′
τ and Y0 = e−(1−α)k̂∗−

, then Y0 − Yτ∗ = e−(1−α)k̂∗− − e−Uτ∗−(1−α)k̂′
τ . We find a common

factor but remain alert about the difference between current and future investments:

(C.326) Y0 − Yτ∗ = e−(1−α)k̂∗−
[
1− e−Uτ∗−(1−α)(k̂′

τ−k̂∗−)
]
.

Substituting back these difference into the LHS of (C.325),

e−(1−α)k̂∗−E− [
1− e−Uτ∗−U(k̂′

τ−k̂∗−)
]

ϕ
= E−

[∫ τ∗

0

Ys ds

]
.(C.327)

Now, we substitute this expression into the first term of (C.323) and multiply and divide the second term by pbuy

to get:

1 =
α

pbuy

e−(1−α)k̂∗−E− [
1− e−Uτ∗−(1−α)(k̂′

τ−k̂∗−)
]

ϕ
+ E− [

Q(∆k̂′)e−Uτ∗
]

(C.328)

pbuy = α
e−(1−α)k̂∗−E− [

1− e−Uτ∗−(1−α)(k̂′
τ−k̂∗−)

]
ϕ

+ pbuyE−
[
p(∆k̂′)
pbuy

e−Uτ∗

]
(C.329)

e(1−α)k̂∗−
=

α

ϕpbuy

1− E− [
e−Uτ∗−(1−α)(k̂′

τ−k̂∗−)
]

1− E− [p(∆k̂′)
pbuy e−Uτ∗

](C.330)

k̂∗− =
1

1− α

Φ − log pbuy + log
1− E− [

e−Uτ∗−(1−α)(k̂′
τ−k̂∗−)

]
1− E− [p(∆k̂′)

pbuy e−Uτ∗
]

(C.331)

The previous expression characterizes the reset point after a positive investment. As a final step, noting that
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k̂′τ = k̂∗(∆k̂′)−∆k̂′, we can rewrite (C.331) as:

(C.332) k̂∗− =
1

1− α

Φ − log pbuy + log
1− E− [

e−(r+ξ)τ∗−(1−α)(k̂∗(∆k̂′)−k̂∗−−∆k̂′)
]

1− E− [p(∆k̂′)
pbuy e−(r+ξ)τ∗

]


With one reset point, k̂∗(∆k̂′) = k̂∗ and the expression collapses to that in (C.321). Here, because reset points

might be different, k̂∗− appears on both sides of (C.331); thus, it is only characterizes it implicitly. We propose an

iterative method to compute this value from the microdata.

With analogous steps, we obtain the reset point for negative investments:

k̂∗+ =
1

1− α

Φ − log psell + log
1− E+

[
e−(r+ξ)τ∗−(1−α)(k̂∗(∆k̂′)−k̂∗+−∆k̂′)

]
1− E+

[
p(∆k̂′)
psell e−(r+ξ)τ∗

]
(C.333)

Given the two reset points, the distance between them (the length of the inner inaction region) equals:

k̂∗+ − k̂∗− =
1

1− α

log
1

1− ω
+ log

1− E+
[
e−(r+ξ)τ∗−(1−α)(k̂∗(∆k̂′)−k̂∗+−∆k̂′)

]
1− E− [

e−(r+ξ)τ∗−(1−α)(k̂∗(∆k̂′)−k̂∗−−∆k̂′)
] − log

1− E+
[

p(∆k̂)
p(1−ω)e

−(r+ξ)τ∗
]

1− E− [p(∆k̂)
p e−(r+ξ)τ∗

]

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D A General Equilibrium Framework

This section provides a general equilibrium model that microfounds the parsimonious investment model presented,

allowing for examining macroeconomic fluctuations. Its core components are a small open economy and “capital

quality shocks.”

D.1 Economic environment

Time is continuous, and it extends forever. Four types of agents live in the economy: (i) A representative household,

(ii) a capital–goods producer, (iii) a final–good producer, and (iv) a unit mass of intermediate–good firms indexed

by f ∈ [0, 1] who are subject to capital adjustment frictions.

(i) Representative household. The household chooses the stochastic processes for consumption Cs, risk-free

bonds Bs, and equity for each firm Efs, subject to the law of motion for nominal wealth:

(D.1) Ws =

∫ 1

0

PftEft df +Bt,

(D.2) dBs +

∫ 1

0

Pfs dEfs df = (Ys − Cs) ds,

where Pfs is the price of equity for firm f and Ys is the after-tax available income, given by:

(D.3) Ys =

(∫ 1

0

DfsEfs df + ρ̃sBs

)
.

Here, Dfs represents firm f ’s dividend payments, and ρ̃s is the world interest rate. We omit the profits of the

final-good producer and the capital-good producer, as they exhibit constant returns to scale and do not generate

profits for the household. Thus, we exclude those sectors’ profits from the household budget constraint. Taking the

prices of equity {Pfs}fs and the real interest rate ρ̃s as given, the household’s problem is to maximize its expected

utility (discounted at rate χ):

(D.4) max
{Cs,Bs,{Eft}f}∞

t=0

E0

[∫ ∞

0

e−χt logCs ds

]
,

subject to the budget constraints in (D.2) and (D.3), and the initial conditions B0 and {Ef0}f .

(ii) Capital–good producer. The capital–good producer manufactures firm-specific investment goods {ift}f∈[0,1]

in a competitive market according to a linear technology:

(D.5)

∫ 1

0

(
φ(ift)ifs
ufs

)
df = is,

where

(D.6) φ (ift) =

{
φ− if ift > 0

φ+ if ift ≤ 0
.

We refer to ufs as capital quality shocks. The parameters φ− and φ+ measure the level of partial irreversibility,
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with φ− > φ+. Taking the prices of firm-specific investment goods pkjs as given, the capital–good firm maximizes

its profits:

(D.7) max
{ift,it}∞

t=0

(∫ 1

0

pkfsifs df − is

)
,

subject to the technology described in (D.5). Here, is is the aggregate investment to produce capital. Note that

ift may be positive or negative, as its sign has no technological constraint.

(iii) Final–good producer. The final–good producer assembles output Ys using intermediate inputs {ŷfs}f∈[0,1]

according to a linear aggregator:

(D.8) Ys =

∫ 1

0

(
ŷfs
ufs

)
df,

where capital quality ufs decreases the marginal product of the intermediate good f . Taking the prices of inter-

mediate inputs pft as given, the producer’s problem entails choosing final–good supply Ys and input demands ŷfs

to maximize profits:

(D.9) max
Ys,ŷfs

(
Yt −

∫ 1

0

pftŷft df

)
,

subject to the aggregator in (D.8).

(iv) Intermediate-good firms. These are the most important economic agents for our question as they make

investment choices subject to adjustment costs. Intermediate–good firm f ∈ [0, 1] produces output yfs using capital

kfs according to a production function with decreasing returns to scale:

(D.10) yfs = u1−α
s kαfs, α < 1.

An idiosyncratic component drives the firm’s total productivity:

(D.11) dlog(ufs) = µds+ σ dWfs, Wfs ∼ Wiener,

where the processes Wft are independent across intermediate–good firms. The profit rate is given by:

(D.12) πfs = pfsyfs.

Taking the prices of the intermediate goods pft, the marginal investor discount factor Qt, and firm-specific

capital goods pkft(̂i) as given, together with the adjustment friction θft, each firm f chooses a sequence of capital

adjustment dates {Tfh}∞h=1 and investments {if,Tfh
}∞h=1 to maximize its expected discounted stream of profits:

(D.13) max
{Tfh ,̂if,Tfh

}∞
h=1

E

[∫ ∞

0

Qtπft ds−
∞∑
h=1

QTfh
pkf,Tfh

(
θfTfh

+ pkfTfh
(̂ifTfh

)̂ifTfh

)]
,

subject to the profit function in (D.12) and the law of motion for its capital stock:

log(kft) = log(kf0)− ζt+
∑

h:Tfh≤t

log

(
1 +

îf,Tfh

kT−
fh

)
.(D.14)
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Market structure. There are three types of goods (respectively, markets) in the economy: (i) final goods, (ii)

intermediate goods, and (iii) firm-specific investment goods. There are two assets: (i) risk-free bonds and (ii)

equity. All good and asset markets are competitive. We assume equity can only be held by the representative

household. Thus, we have segmented the equity market, and the bond market freely trades across countries. The

market clearing conditions, respectively, are as follows:

Efs = 1 for all t and f,(D.15)

ŷfs = yfs for all s and f,(D.16)

îfs = ifs for all s and f.(D.17)

Equilibrium. Given a stochastic processes for capital quality {ufs}fs, and adjustment costs θft, an equilibrium is a

set of stochastic processes for prices {ρ̃s, {pfs, pkfs(i), Pfs}f∈[0,1]}∞s=0, the household’s policy {Cs, Bs, {Efs}f∈[0,1]}∞t=0,

the final–good producer’s policy
{
Ys, {ŷfs}f∈[0,1]

}∞

t=0
, the capital–good producer’s policy

{
{ifs}f∈[0,1], is

}∞
t=0

, and

the intermediate–good firms’ policy
{
{Tfh, if,Thf

}∞h=1

}
such that:

(i) Given prices {ρ̃s, Pfs}, the household solves (D.4).

(ii) Given prices {pkfs}, the capital–good producer solves (D.7).

(iii) Given prices {pfs}, the final–good producer solves (D.9).

(iv) Given prices {Qs, pfs, p
k
fs}, intermediate–good firms solve (D.13).

(v) Market clears in (D.15) to (D.17).

D.2 Equilibrium characterization

We now describe the equilibrium determination of prices and quantities in that order. From now on, we assume

that the world interest rate is constant: ρ̃s = ρ̃. We derive the aggregate macroeconomic outcomes from their

individual counterparts.

Equilibrium determination of prices. The household’s optimality conditions over bonds and equity are:

ρ̃ ds = χds− d(1/Cs)

1/Cs
∀s

E[dP i
fs] +Di

fs ds

P i
fs

= χds− d(1/Cs)

1/Cs
∀s, f(D.18)

The differential equations in (D.18) jointly imply a unique equilibrium for the price of equity. Under the

equilibrium condition of unit supply of equity in (D.15), we find:

V0 = P0 = E0

[∫ ∞

0

e−ρ̃sDs ds

]
.

Finally, the zero-profit conditions for the final- and capital-good producers imply the following relationships

for the input and output prices of the respective goods:

pft =
1

uft
; pkft(i) = pftφ(i),
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where φ(i) = φ+1i<0 + φ−1i>0, and p
k
ft(i) represents the relative price of capital.

Equilibrium policy of intermediate good firms. With these facts about equilibrium prices established, we

turn to the problem facing an individual intermediate–good firm. Let V (k, u) be the value of a firm with capital k

and productivity u. The sufficient optimality conditions satisfied by a firm’s policy are (i) the HJB equation valid

during periods of inactivity, (ii) the value matching conditions, and (iii) the smooth pasting conditions. The firm

policy consists of an inaction region R ≡ {(k, u) : k−(u) ≤ k ≤ k+(u)}, where k−(u) and k+(u) are the lower and

upper inaction thresholds, together with reset capitals k∗−(u) and k∗+(u) for positive and negative investments

upon adjustment.

Let r ≡ ρ̃− µ (without subtracting σ2/2, in contrast to the main text) be the adjusted discount factor and let

v(k̂) : R → R be a function of the log capital-productivity ratio equal to

(D.19) v(k̂) = max
τ,∆k̂

E
[∫ τ

0

e−rs+αk̂s ds+ e−rτ
(
−θ − p(∆k̂)(ek̂τ+∆k̂ − ek̂τ ) + v(k̂τ +∆k̂)

) ∣∣∣k̂0 = k̂

]
where the price function with taxes is given by:

p(is) =
(
φ−1is>0 + φ+1is<0

)
.(D.20)

Then the firm value equals V0 = v(k̂0).

A few remarks about the firms’ investment policy are in order. The formulations of the capital quality shocks

and the adjustment costs allow us to collapse the state-space of the firms (k, u) into the capital-to-productivity ratio

k̂ = k/u. Note that the value of the firm v(k̂0) is not scaled by the level of productivity to recover the time-0 value

V0. The prices of intermediate goods pft and capital goods pkft, as well as the adjustment costs θft, are proportional

to capital quality uft, making profits and investment scaled by total productivity the relevant variables for the firm.

Equilibrium determination of macroeconomic outcomes. With equilibrium prices and firms’ policies, we

can determine equilibrium aggregate quantities. Lemma D.1 characterizes the equilibrium detrended aggregate

quantities: It shows that all aggregates are functions of the distribution of capital-to-productivity ratios.

Lemma D.1. Let g(k̂) be the density of capital-to-productivity ratios and define the following expectations: E
[
exp(k̂)

]
≡∫ k̂+

k̂− exp(k̂)g(k̂) dk̂. Then, the equilibrium aggregate output is

Ŷt ≡
∫ 1

0

pftyft df = E
[
exp(αk̂t)

]
,(D.21)

We cannot sum firms’ capital since they are different goods. Still, as in the main text, the capital-productivity

ratio is the only input to determine output in this economy. Thus, we define aggregate capital as

(D.22) K̂t = E
[
exp(k̂t)

]
.

Equations (D.21) and (D.22) show an important property in this economy: Without fixed costs of adjustment

and partial irreversibility, the supply side of this model collapses to a neoclassical firm with technology Ŷ = K̂α.

Doing a first-order approximation on equation (D.22), it follows the CIR(δ) definition in 32.

With these facts over aggregate quantities, we now describe misallocation. Misallocation is defined as the

dispersion of the log of productivity-weighted marginal revenue given by

(D.23) V
[
log

(
uf

dpfyf
dkf

)]
= V

[
log

(
uf
kf

(
kf
uf

)α)]
= (1− α)V

[
k̂
]
.
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The argument for why we need to weigh according to capital quality comes from the technology to produce

investment. If the transformation rate from consumption goods to firm-specific investment goods is one, then

there is no need to weigh it with capital. This is not the case in our economy since the transformation rate from

consumption goods to firm-specific investment goods is given by uf . This is why we need to weigh the idiosyncratic

capital quality shocks to obtain misallocation or productivity in this economy.

D.3 Remarks on the economic framework

General equilibrium structure Capital quality uft was first used by Baley and Blanco (2021) in the investment

context. In the pricing literature, an analogous formulation was first employed by Woodford (2009) to maintain

the tractability of their model. It is also used by Midrigan (2011), Alvarez and Lippi (2014), Baley and Blanco

(2019), and Blanco (2020), among others. This formulation implies that aggregate feasibility depends only on firms’

capital-to-productivity ratios rather than capital and productivity separately. As a result, capital quality shocks

reduce the dimensionality of the aggregate state space from the joint distribution of capital and productivity to

the distribution of their ratio.

Partial irreversibility The price wedge is a technological constraint for the capital–good producer and, therefore,

is exogenous. This formulation follows Veracierto (2002) and Khan and Thomas (2008). Alternatively, partial irre-

versibility could be the outcome of distortionary taxation. For example, Chen et al. (2023) uses China’s 2009 VAT

reform to study changes in the level of partial irreversibility. It would be straightforward to extend our framework

to micro-found partial irreversibility as an outcome of a tax system, as in Chen et al. (2023). See Lanteri (2018)

for a model that endogenizes partial irreversibility.

Financial markets We assume that the representative household can trade in the bond market, but the econ-

omy is closed to the equity market. Only the households in the small open economy own firms, providing the

firms’ discount factor. While these are extreme assumptions, they are a reasonable approximation for small, open

economies. Empirically, it is well known that central banks, firms, and households in emerging economies tend to

save in dollar-denominated risk-free assets (e.g., T-bills). Moreover, despite the globalization of finance and finan-

cial institutions, market participants commonly allocate most of their wealth to domestic assets. This home bias

may be due to regulatory constraints, information, and transaction costs, though some attribute it to preferences.

While the current version of the model represents an extreme form of the home bias phenomenon, it provides a

useful starting point for analyzing business cycle fluctuations in an investment model.

Tractability Given the novelty of the general equilibrium framework, further discussion of the assumptions and

economic adjustment mechanisms is warranted. The tractability of our framework arises from three main features.

First, all aggregate variables are expressed regarding the distribution of capital-to-productivity ratios. This result

follows from the introduction of capital quality shocks and the structure of capital adjustment costs. Second, the

model produces a constant real interest rate due to the small open economy assumption. Third, the closed equity

market assumption allows us to determine the firms’ discount factor as a function of the world interest rate.

The theory developed in the main text assumes that the cross-sectional distribution of capital-to-productivity

ratios is the relevant aggregate state and that the interest rate is exogenous. The general equilibrium framework

presented here provides a microfoundation for the model in the main text.
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E Establishment-level investment data

This section describes the sources, the construction of variables, and the filters we apply to clean the data to

construct the investment series at the firm level in order

E.1 Source, description and data cleaning

Data come from the Encuesta Nacional Industrial Anual (ENIA). The sample period covers 31 years, from 1980

to 2011, with an average of 543 manufacturing plants per year. We have a total number of plant-year observations

of 154,591.

1. First, we drop the 3,984 permanently small firms (i.e. with less than 10 workers throughout the sample

period, 4% of the sample). This filter is motivated by the lack of good quality data with respect to these

firms since ENIA is directed to plants with more than 10 workers.

2. Second, we drop 5,343 observations with a non-positive total value of book capital, wage bill or sales.

3. Third, we drop 12,161 observations that had a frequency of non-zero investment lower than 10% of the

sample period.

4. Finally, we drop 5,556 plants with less than 3 years of coverage (6% of the sample). Note that we consider

new plants (and give a new ID) that disappear from the sample more than three years and reappear in the

sample after that.

5. In total, we drop about 18% of the year-plant observations and keep 127,631 observations. Within this

remaining sample, a balanced panel would maintain 101,160 plant-years.

Table E.1 summarizes the cleaning process and shows the number of observations dropped at each step.

Table E.1: Data cleaning

Description Chile

Start year 1980
End year 2011
Avg. number of plants per year 543
Plant-year observations 154,591

Cleaning Removed observations

Less than 10 employees 3,984
Non-positive wage bill, capital, or sales 5,343
Frequency of non-zero investment less than 10 12,161
Less than 3 years of coverage 5,556

Remaining observations 127,631
% of total 82.6

With more than 10 years of data 101,160
% of remaining observations 79.3

Sources: Authors’ calculations using establishment-level survey data from Chile. Less than 10 employees refers to

plants with less than 10 employees for all the years in the sample.

63

Electronic copy available at: https://ssrn.com/abstract=5077479



E.2 Perpetual Inventory Method

To deal with reporting and measurement errors in the surveys, we construct capital series using the standard per-

petual inventory method (PIM) with the addition of an investment price wedge.

Capital stocks. Let firm i’s stock of capital on year t be given by:

(E.1) ki,t = (1− ξk)ki,t−1 +
Ii,t

p(It)Dt
for ki,t0 given.

We consider the following elements to construct the capital series:

• Capital types considered are j ∈ {structures,machinery and equipment, vehicles}.

• Gross investment: Ii,j,t is the gross nominal investment into the capital of type j at time t, and it is based

on the information on purchases, reforms and improvements, and sales of fixed assets reported by each plant

in the ENIA and EAM data sets.

(E.2) Ii,j,t = puchasesi,j,t + reformsi,j,t + improvementsi,j,t − salesi,j,t

• Depreciation rate: ξk = 0.09 is a the depreciation rate.

• Price deflators: Dj,t are gross fixed capital formation deflators by capital type from Penn World Tables

(PWT).

• Investment prices and wedge.

• Initial capital: Ki,j,t0 is given by:

(E.3) Ki,j,t0 =
K̃i,j,t0

Dt0

if K̃i,j,t0 ≥ 0,

where K̃i,j,t0 is firm i’s self-reported nominal stock of capital of type j at current prices on the starting year

t0 = t0,i,j , which is the first year in which firm i reports a non-negative capital stock of type j.

Investment rates. Once we construct the investment and capital stock series, we generate the investment rate

ii,j,t by dividing investment by initial capital:

(E.4) ii,j,t =
Ii,j,t

Ki,j,t−1
,

Outliers. Once we generate the series of investment rates, we eliminate investment rates below the 2nd percentile

and above the 98th percentile of the investment rate distribution.

Figure E.1 plots the aggregate capital stock computed with the perpetual inventory method and compares it

to the reported book value. In the aggregate, we observe that the reported book value is consistent with the PIM

series for each capital type and the total stock. This shows the sound quality of the micro-data. Moreover, given

the similarity in the series, we validate our choice of using the initial book value reported by the plant as the initial

condition for the PIM construction.
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Figure E.1: Chile: Reported Book Value vs Perpetual Inventory
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Notes: Aggregate capital stock in Chile’s manufacturing sector reported by plants and computed through the PIM. All the variables

are in logs and real terms, normalized to zero in 1980.

E.3 Comparison with National Accounts

This section verifies that the information in the survey data is consistent with aggregated information from National

Accounts.

The national account office in Chile uses the ENIA survey to compute several indices, such as variations in

inventories or value added by type of industry. Nevertheless, National Accounts does not use ENIA to compute

total investment or investment in the manufacturing sector; for that purpose, it uses sources related to the supply

of capital goods (i.e., balance of payments, National Statistical Institute, Corporacion de Desarrollo Tecnologico

de Bienes de Capital). Therefore, National Accounts serve as an orthogonal source to verify that the micro-data

from the survey is consistent with the total investment in the manufacturing sector.

Panel A of Figure E.2 describes the total nominal investment constructed from the ENIA (dashed black line)

and the total nominal investment in the manufacturing sector constructed using National Accounts (solid blue

line), in current millions of pesos. As we can see, the two series are very close, with a correlation of 0.62. Total

investment from the micro-data for the period 2005-2009 seems to grow much faster than National Accounts, but

we found that a few outliers mainly explain this. For example, suppose we drop observations with investment

rates larger than 5% of aggregate investment (dashed-dotted red line). In that case, the fit between the aggregate

investment from the micro-data and the national account is much better, both in levels and cyclicality. Finally,

Panel B of E.2 describes the proportion of total investment done in the manufacturing sector, which represents on

average 7% in the sample period but has been declining.

For 2003-2009, the National Accounts calculates the investment distribution by capital types at the sector

level. Table E.2 describes the composition of capital across different types from the ENIA and National Accounts.
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Figure E.2: Chile: Micro-data vs. National Accounts
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Notes: Panels A describes investments in the manufacturing sector. Black dashed line plots aggregate nominal investment constructed

from ENIA, the red dashed-dotted line plots the same variable but dropping outliers (i.e., investment larger than 5% of aggregate

investment), and the blue solid line plots the total investment from National Accounts. Panel B describes investment in the manufac-

turing sector over total investment. Nominal investment from the national account uses the concatenated investments from the base

year 2015.

The proportions invested in structures are similar between National Accounts and ENIA, but the decomposition

between machinery and vehicles differs across datasets.

Table E.2: Chile: Distribution of Investment Across types of Capital

Structures Machinery Vehicles

National Accounts 35.4 51.4 13.1
ENIA 29.1 68.6 2.1

Notes: Proportion of investment across different types of capital in the ENIA and national accounts.
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E.4 Mappings from microdata to macro outcomes

This section describes the application of the theory with producer-level investment data. Let Ift be the nominal

investment in period t for firm f . Below, we show the steps to compute all the macroeconomic outcomes described

in Table II.

(I) Construction of
{
∆k̂fh, τfh

}
fh

• We follow subsection E.1 to drop observations that do not satisfy a set of criteria (e.g., positive sales,

wage bill, minimum number of year, etc.).

• We apply the perpetual inventory method to construct the capital stock kft of firm f in period t

(E.1) kft = (1− ξ)kft−1 + Ift/(p(Ift)Dt),

where ξ is the physical depreciation rate; Ift is the nominal value of the investment; p(Ift) is the

investment pricing function, which considers different prices for capital purchases and sales; Dt is the

gross fixed capital formation deflator, and kf0 is a plant’s self-reported nominal capital stock at current

prices for the first year enter in the data or its firms investment level.

• We construct the change in the capital-productivity ratio upon action ∆k̂h as

∆k̂fh =

{
log
(
1 +

Ift/(p(Ift)Dt)
kft−1

)
if |ιh| > ι,

0 if |ιh| < ι.
(E.2)

• With ∆k̂fh, we construct τfh as the number of periods between non-zero investments.

(II) Construction of weights ωf Unobserved heterogeneity in the frequency of non-zero investment can gen-

erate a bias in estimating moments relevant to the theory. Let Nf be the adjustment frequency of firm f .

We construct weights ωf as the inverse frequency of non-zero investments:

(E.3) ωf ∝ 1

Nf
.

We normalized ωf s.t.

(E.4)
∑
f

Nf∑
h=1

ωf = 1

(III) Estimation of (k̂∗−, k̂∗+, ν, σ): First, we estimate the drift as:

(E.5) ν =

∑
fh ∆k̂fhωf∑
fh τfhωf

,

With the estimate of the drift, we design an iterative method to estimate (k̂∗−, k̂∗+, σ2). The method

constructs a sequence (k̂∗−j , k̂∗+j , σ2
j )

∞
j=0 that converges to the solution of the implicit equations (57), (65),

and (66) from Section 4.

0. Fix a convergence parameter ψ > 0 and a dampening parameter Γ ∈ (0, 1).
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1. Construct (k̂∗−0 , k̂∗+0 , σ0) assuming no irreversibility to compute σ0 and the right-hand side

of (65) and (66): Without irreversibility, we can estimate σ2
0 as

σ2
0 =

∑
fh ∆k̂

2
fhωf∑

fh τfhωf
− 2ν

(∑
fh ∆k̂fhωf

2
(1− CV2[τ ]) +

Cov[∆hk, τ ]∑
fh τfhωf

)
(E.6)

CV2[τ ] :=

∑
fh(τfh − E[τ ])2ωf(∑

fh τfhωf

)2 , where E[τ ] =
∑
fh

τfhωf ,(E.7)

Cov[∆k̂, τ ] :=
∑
fh

(τfh − E[τ ])(∆k̂fh − E[∆k̂])ωf , where E[∆k̂] =
∑
fh

∆k̂fhωf .(E.8)

With σ2
0 , we compute

Φ(ν, σ2
0) = log

(
α

U − (1− α)ν − σ2
0(1−α)2

2

)
(E.9)

k̂∗−0 =
1

1− α

(
Φ(ν, σ2

0)− log(pbuy) + log

(
1−Num−

0

1−Den−
0

))
(E.10)

k̂∗+0 =
1

1− α

(
Φ(ν, σ2

0)− log(psell) + log

(
1−Num+

0

1−Den+
0

))
(E.11)

where the numerators and denominators in the last terms are computed as:

Num+
0 =

∑
fh exp(−Uτ ′fh + (1− α)∆k̂′fh)I(∆k̂fh < 0)ωf∑

fh I(∆k̂fh < 0)ωf

(E.12)

Den+
0 =

∑
fh exp(−Uτ ′fh)I(∆k̂fh < 0)ωf∑

fh I(∆k̂fh < 0)ωf

(E.13)

Num−
0 =

∑
fh exp(−Uτ ′fh + (1− α)∆k̂′fh)I(∆k̂fh > 0)ωf∑

fh I(∆k̂fh > 0)ωf

(E.14)

Den−
0 =

∑
fh exp(−Uτ ′fh)I(∆k̂fh > 0)ωf∑

fh I(∆k̂fh > 0)ωf

(E.15)

Define k̂∗0(∆k̂) and k̂τ,0(∆k̂) as:

k̂∗0(∆k̂) = k̂∗−j 1{∆k̂>0} + k̂∗+j 1{∆k̂<0},(E.16)

k̂h,0(∆k̂) = k̂∗0(∆k̂)−∆k̂,(E.17)

(E.18)
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2. For j = 1, 2, 3, . . . , compute (k̂∗−j , k̂∗+j , σ̃2
j ) as

σ̃2
j =

∑
fh(k̂

∗
τ,j−1(∆k̂

′
fh) + ντ ′fh)ωf −∑fh k̂

∗
j−1(∆k̂fh)ωf∑

fh τfhωf
(E.19)

Φ(ν, σ2
j−1) = log

 α

U − (1− α)ν − σ2
j−1(1−α)2

2

(E.20)

k̂∗−j =
1

1− α

(
Φ− log(pbuy) + log

(
1−Num−

j

1−Den−
j

))
(E.21)

k̂∗+j =
1

1− α

(
Φ− log(psell) + log

(
1−Num+

j

1−Den+
j

))
(E.22)

where the numerators and denominators in the last terms are computed as:

Num+
j =

∑
fh exp

(
−Uτ ′fh + (1− α)

(
k̂∗+ − k̂∗τ,j−1(∆k̂

′
fh)
))

I(∆k̂fh < 0)ωf∑
fh I(∆k̂fh < 0)ωf

(E.23)

Den+
j =

∑
fh

p(∆k̂′
fh)

p(∆k̂fh)
exp

(
−Uτ ′fh

)
I(∆k̂fh < 0)ωf∑

fh I(∆k̂fh < 0)ωf

(E.24)

Num−
j =

∑
fh exp

(
−Uτ ′fh + (1− α)

(
k̂∗−j−1 − k̂τ,j−1(∆k̂

′
fh)
))

I(∆k̂fh > 0)ωf∑
fh I(∆k̂fh > 0)ωf

(E.25)

Den−j =

∑
fh

p(∆k̂′
fh)

p(∆k̂fh)
exp

(
−Uτ ′fh

)
I(∆k̂fh > 0)ωf∑

fh I(∆k̂fh > 0)ωf

(E.26)

Update (k̂∗−j , k̂∗+j , σ2
j ) with the dampening parameter Γ

σ2
j = (1− Γ)σ̃2

j + Γσ2
j−1(E.27)

k̂∗−j = (1− Γ)
˜̂
k∗−j + Γk̂∗+j−1(E.28)

k̂∗+j = (1− Γ)
˜̂
k∗+j + Γk̂∗+j−1(E.29)

3. Repeat step 2 until there is a j, such that, ||
(
σ2
j − σ2

j−1, k̂
∗−
j − k̂∗−j−1, k̂

∗+
j − k̂∗+j−1

)
|| < ψ.

(IV) We construct the reset points k̂∗(∆k̂) and stopped capitals k̂τ (∆k̂) as:

k̂∗(∆k̂) = k̂∗−1{∆k̂>0} + k̂∗+1{∆k̂<0}(E.30)

k̂τ (∆k̂) = k̂∗(∆k̂)−∆k̂(E.31)

(V) Cross-sectional mean and variances: We estimate the unconditional mean and variances of capital–productivity

ratios as

E[k̂] =
∑

fh k̂
∗(∆k̂fh)2ωf −∑fh k̂τ (∆k̂

′
fh)

2ωf

2
∑

fh ∆k̂fhωf

+
σ2

2ν
(E.32)

V[k̂] =
∑

fh(k̂
∗(∆k̂fh)− E[k̂])3ωf −∑fh(k̂τ (∆k̂

′
fh)− E[k̂])3ωf

3
∑

fh ∆k̂fhωf

(E.33)
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We can also compute conditional means

E±[k̂] =
(k̂∗±)2 −∑fh k̂τ (∆k̂

′
fh)

2I(±∆k̂fh < 0)ωf

2(k̂∗± −∑fh k̂τ (∆k̂
′
fh)I(±∆k̂fh < 0)ωf )

+
σ2

2ν
(E.34)

(E.35)

(VI) Estimation of covariance: We estimate the covariance using the sample moment of (61) given by

(E.36) Cov[k̂, a] = −
∑

fh(k̂τ ′(∆k̂′fh)− E[k̂])2τ ′fhωf

2νE[τ ]
+

V[k̂]
2ν

+
σ2

2ν

E[τ ]
2

(1 + CV(τ)),

where CV(τ) and τ̄ are estimated using (E.7), V[k̂] is estimated using (E.33), and E[k̂] is estimated using

(E.34).

(VII) Estimation of irreversibility term: We estimate the CIR’s irreversibility term following its sample

counterpart:

E
[
1

ds
Es

[
d(M(k̂s)k̂s)

]]
=

∑
fh

(
k̂τ (∆k̂

′)M
(
∆k̂′fh

)
− k̂∗(∆k̂)M

(
∆k̂fh

))
ωf

E[τ ]
.(E.37)

The objects are given by:

• M(∆k̂) := M(k̂∗−)1{∆k̂fh>0} +M(k̂∗+)1{∆k̂fh<0} with

M(k̂∗−) = (E−[k̂]− E[k̂])E−
[τ ]

E[P+]

P−+
(E.38)

M(k̂∗+) = (E+[k̂]− E[k̂])E+
[τ ]

E[P−]
P+− .(E.39)

• Conditional durations of inaction as:

E−[τ ] =

∑
fh τ

′
fh1{∆k̂fh>0}ωf∑

fh 1{∆k̂fh>0}ωf
,(E.40)

E+[τ ] =

∑
fh τ

′
fh1{∆k̂fh<0}ωf∑

fh 1{∆k̂fh<0}ωf
,(E.41)

• Transition probabilities as:

P−+ =

∑
fh 1{∆k̂′

fh<0}1{∆k̂fh>0}ωf∑
fh 1{∆k̂fh>0}ωf

,(E.42)

P+− =

∑
fh 1{∆k̂′

fh>0}1{∆k̂fh<0}ωf∑
fh 1{∆k̂fh<0}ωf

(E.43)

• Expected probabilities

E[P+] =

∑
fh τ

′
fh1{∆k̂′

fh<0}ωf

E[τ ]
,(E.44)

E[P−] =

∑
fh τ

′
fh1{∆k̂′

fh>0}ωf

E[τ ]
.(E.45)
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E.5 Calculating (λ−, λ+, J−, J+)

Let
{
∆k̂fh, τfh

}
fh

and weights ωf be the sample of investment rates and durations with firms’ weights ωf computed

in step (i) in Section E.4. We follow step (ii) in Section E.4 to compute
(
ν, σ2, k̂∗+, k̂∗−

)
. We now the steps to

compute the (λ−, λ+, J−, J+). From now on, we assume that the sample is i.i.d. Observe that this assumption

is incorrect due to partial irreversibility (positive investment begets future positive investment). We find similar

results whenever we estimate

(I) Estimate h(∆k) using a parametric specification: From now on, we assume that the sample is i.i.d.35

We parameterize h(∆k̂) with two Gamma distributions where their parameters can differ between positive

and negative investment rates.

(E.46) h(∆k̂) =


Υ

Γ(ϱ−)ς
ϱ−
−

(
∆k̂
)ϱ−−1

e
−∆k̂

ς− if ∆k̂ > 0

1−Υ

Γ(ϱ+)ς
ϱ+
+

(
(−∆k̂)

)ϱ+−1

e
− (−∆k̂)

ς+ if ∆k̂ < 0
.

Here, Υ ∈ (0, 1) is the fraction of positive investment rates, ϱ± > 0 are the shape parameters of Gamma

distributions and ς± > 0 are the scale parameters. We have two methods to estimate the parameters

(Υ, ϱ−, ϱ+, ς−, ς+): Maximum likelihood estimator and method of moments.

(I.a) Method of Moments: Using the method of moments, we have that

Υ =
N−

N− +N+
,(E.47)

ϱ− =
E
[
∆k̂|∆k̂ > 0

]2
V̄
[
∆k̂|∆k̂ > 0

] ,(E.48)

ς− =
V̄[∆k̂|∆k̂ > 0]

E[∆k̂|∆k̂ > 0]
(E.49)

ϱ+ =
E
[
∆k̂|∆k̂ < 0

]2
V̄
[
∆k̂|∆k̂ < 0

] ,(E.50)

ς+ =
V̄[∆k̂|∆k̂ < 0]

E[∆k̂|∆k̂ < 0]
.(E.51)

By replacing equations (E.47)-(E.51) with their sample counter-part with weights wf , we have the estimates

of (Υ, ϱ−, ϱ+, ς−, ς+).

(I.b) Maximum Likelihood Estimation: To simplify notation, let i = 1, 2, . . . , N denotes the index of the

sample with weights wi. To write the likelihood, let us define A− the set of positive investment rates with

cardinality #A− = N− (i.e., the total number of positive investment rates in the sample) and A+ be the set

of negative investment rate with cardinality #A+ = N+ (i.e., the total number of negative investment rates

in the sample). By construction, N−+N+ =
∑

f Nf , i.e., the sample size. Under these assumptions, we can

35Observe that this assumption is not correct due to partial irreversibility (positive investment begets future
positive investment). We find similar results whenever we estimate h(∆kh) conditional on a positive or negative
investment rate and then Baye’s rule.

71

Electronic copy available at: https://ssrn.com/abstract=5077479



Table E.1: Estimation of h(∆k̂) with Method of Moments and Maximum Likelihood

Method of Moments Maximum Likelihood

Parameters
Share positive investment (Υ) 0.947 0.947

∆k̂ > 0 ∆k̂ < 0 ∆k̂ > 0 ∆k̂ < 0

Shape parameter-Gamma distribution (ϱ) 0.758 1.413 0.744 0.915
Scale parameter-Gamma distribution (ς) 0.273 0.031 0.279 0.048

write the likelihood as

L(Υ, ϱ−, ς−, ϱ+, ς+, α|{∆k̂}) =
∑
i∈A−

wi log

(
Υ

Γ(ϱ−)ς
ϱ−
−

(
∆k̂i

)k−−1

e
−∆k̂i

ς−

)
+
∑
i∈A+

wi log

(
(1−Υ)

Γ(ϱ+)ς
ϱ+

+

(
∆k̂i

)k+−1

e
−∆k̂i

ς+

)(E.52)

= (k− − 1)
∑
i∈A−

wi log
(
∆k̂i

)
−
∑
i∈A−

wi∆k̂i
ς−

−N−
∑
i∈A−

wi ∼ (ϱ− log(ς−)− log(Γ(ϱ−))) . . .(E.53)

· · ·+ (k+ − 1)
∑
i∈A+

wi log
(
∆k̂i

)
−
∑
i∈A+

wi∆k̂i
ς+

−N+

∑
i∈A+

wi (ϱ+ log(ς+)− log(Γ(ϱ+)))(E.54)

· · ·+N−
∑
i∈A−

wi log(Υ) +N+

∑
i∈A+

wi log(1−Υ)(E.55)

From the likelihood optimization, we have that

log(ϱ−)−
Γ′(ϱ−)
Γ(ϱ−)

= log

∑
i∈A−

wi∆k̂i
N−

∑
i∈A−

wi

−
∑

i∈A−
wi log

(
∆k̂i

)
N−

∑
i∈A−

wi
(E.56)

log(ϱ+)−
Γ′(ϱ+)
Γ(ϱ+)

= log

∑
i∈A+

wi∆k̂i
N+

∑
i∈A+

wi

−
∑

i∈A+
wi log

(
∆k̂i

)
N+

∑
i∈A+

wi
(E.57)

ς− =

∑
i∈A−

wi∆k̂i

N−
∑

i∈A−
wiϱ−

,(E.58)

ς+ =

∑
i∈A+

wi∆k̂i

N+

∑
i∈A+

wiϱ+
,(E.59)

Υ =
N−

∑
i∈A−

wi

∑
N−

∑
i∈A−

wi +N+

∑
i∈A+

wi
.(E.60)

Figure E.1 shows the estimated distributions (E.46) under methods of moments and maximum likelihood.

As the figure shows, we have an almost perfect histogram approximation under both methods. Table XX

shows the estimates under the two methods.

(II) Compute g(k̂) and Λ(k̂) using h(∆k̂): We use the finite difference to solve the KFE and back up the

distribution g(k̂). The hazard rate of adjustment is given by

(E.61) Λ(k̂) =


Nh(k̂∗+−k̂)

g(k̂)
if k̂ > k̂∗+,

Nh(k̂∗−−k̂)

g(k̂)
if k̂ < k̂∗+

.
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Figure E.1: Estimated h(∆k̂) under Maximum Likelihood and Method of Moments

Notes: Panel A shows the histogram of investment rates (blue bars) and the estimated distribution (E.46) using the method of moments.

Panel B uses the maximum likelihood to show the histogram of investment rates (blue bars) and the estimated distribution (E.46).

E.6 Results for Chile

Next, we present yearly averages of cross-sectional statistics. Inaction frequency is the fraction of observations with

investment below 1% in absolute value; positive spikes are investments above 20% and negative spikes below −20%.

Table E.1 presents the yearly average of cross-sectional statistics by capital category for a balanced panel

within Chile’s ENIA establishment-level survey data. Note that the column total considers the statistics for the

total capital stock, which is not the average of the statistics by capital type. For comparison, we include information

for the US in Cooper and Haltiwanger (2006) and Zwick and Mahon (2017). Following these papers, investment

rates reported in this table are computed as Investment divided by Initial Capital. We use perpetual inventories

to compute capital stock.

Table E.1: Investment Rate Statistics (Chile: by capital type)

Structures Machinery Vehicles Total US I US II

Average Investment 7.3 17.0 17.1 15.8 12.2 10.4

Positive Fraction (i > 1%) 22.2 54.9 25.5 56.8 81.5 —
Negative Fraction (i < −1%) 0.5 1.5 5.3 3.1 10.4 —
Inaction rate (|i| <= 1%) 77.3 43.7 69.2 40.1 8.1 23.7

Spike rate (|i| > 20%) 8.9 23.2 21.2 22.8 20.4 14.4
Positive spikes (i > 20%) 8.9 23.2 18.7 22.7 18.6 —
Negative spikes (i < −20%) 0.0 0.0 2.5 0.1 1.8 —

Serial correlation 0.0 0.0 0.0 0.0 0.1 0.4

Notes: Authors calculations using establishment-level survey data for Chile (balanced panel).
US I shows data from Cooper and Haltiwanger (2006) and US II shows data reported in Zwick
and Mahon (2017) for the balanced panel. Following these papers, investment rates reported in
this table are computed as investment divided by initial capital. We use the perpetual inventory
method to compute capital stocks. We eliminate investment rates below the 1st percentile and
above the 99th percentile of the investment rate distribution.
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E.7 Comparative Statics

This section conducts a comparative statics exercise concerning the returns to scale α. Other parameters as in the

main calibration.

Table E.2: Aggregate Capital Behavior: Comparative Statics

ω = 0.15 α = 0.5

Benchmark α = 0.4 α = 0.6 ω = 0.05 ω = 0.25

Productivity process

ν 0.11 0.11 0.11 0.12 0.11
σ 0.23 0.23 0.24 0.23 0.24

Investment Policy

Difference in reset capitals (k̂∗+ − k̂∗−) 0.568 0.472 0.697 0.221 0.914
Exogenous price wedge 0.325 0.271 0.406 0.102 0.575
Endogenous response 0.243 0.201 0.291 0.118 0.339

Capital Allocation

Variance 0.098 0.097 0.099 0.096 0.098

Capital Valuation

Tobin’s q 1.06 1.07 1.05 1.07 1.05
Productivity 1.09 1.10 1.08 1.08 1.10
Irreversibility -0.03 -0.03 -0.03 -0.01 -0.05

Capital Fluctuations

CIR 3.07 3.71 2.50 3.40 2.62
Responsiveness 2.29 2.37 2.17 2.51 1.93
Irreversibility 0.77 1.33 0.33 0.89 0.69

Notes: Objects recovered from theory mappings applied to establishment-level data from Chile. Compar-
ative statics with respect to the wedge ω and the returns to scale α. Other parameters are described in
the main text.
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F Price wedges in the literature

Asplund (2000) and Ramey and Shapiro (2001) were the first to provide direct empirical evidence on the degree of

partial irreversibility of capital investments using data from particular industries. Using data on equipment sales

of three aerospace plants, Ramey and Shapiro find an average return on replacement costs of 28 cents per dollar,

i.e., an average price wedge of 0.72. Nonetheless, they find that the wedge varies depending on the sale type,

private liquidation, or auction, and they find an insider premium on the buyer. Meanwhile, Asplund examined

prices for used metalworking machinery in Swedish manufacturing industries. He estimates wedges between 50

and 80 percent for “new” machines once installed. More recently, Kermani and Ma (2023) rely on estimated asset

liquidation values of non-financial firms that filed for Chapter 11 bankruptcy. They find a liquidation recovery rate

of 35 percent or a 0.65 irreversibility wedge for the average industry.

Contributions to the microeconomic implications of irreversibilities motivated the study of their macroeconomic

consequences. Veracierto (2002) proposes a macro model with microeconomic (S,s) policy rules from optimal

decision rules of profit-maximizing establishments. The author simulates the model economy with different values

of the irreversibility wedge, ranging from 0 (fully flexible) to 1 (entirely irreversible investment), and finds aggregate

fluctuations to behave similarly. Bloom (2009) predicts that an uncertainty shock generates a rapid drop and

rebound in aggregate output and employment driven by a sudden halt in investment and hiring following the

shock; adjustment costs and irreversibilities explain the investment halt. Bloom sets a 34 percent irreversibility

wedge based on a simulated method of moments approach which includes joint (cross-sectional and dynamic)

moments of the investment, employment, and sales growth series and second-and fourth-order correlations of the

investment, employment growth, and sales series. Bloom’s estimates are used by Senga and Varotto (2024) in their

study of cyclical capital misallocation with partial irreversibilities.

Similarly, Lanteri, Medina and Tan (2023) investigate capital reallocation following an import competition

shock. The authors use the method of moments to calibrate their model and set an irreversibility wedge of 0.409

while allowing for an additional wedge for liquidating firms. The frequency of negative investments and the slope

of exit thresholds (average slope of survival iso-probability lines) are informative moments for these wedges. Fang

(2023) asks about monetary policy effectiveness in a setting with investment frictions. He targets the covariance

of the capital gap with the time elapsed since the last adjustment to calibrate an irreversibility wedge of 0.3.

Smaller wedges are used by Khan and Thomas (2013) and by Lanteri (2018). Khan and Thomas base their

0.046 on several steady-state moments reported in Cooper and Haltiwanger (2006). Despite this small wedge, the

authors find that negative shocks to borrowing conditions have strong and persistent effects through their capital

distribution impact. Lanteri found a 0.067 average wedge in simulations of a GE model, with heterogeneous firms

and imperfect substitutability between new and used capital. Despite this, his model features an endogenous resell

to purchasing price, which he finds to be pro-cyclical; thus, it takes more work to reverse past investment decisions

during recessions.
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Table F.3: Price wedges in the literature

Direct evidence Source Wedge ω
1. Asplund (2000) Metalwork machinery in Swedish manufacturing 0.5–0.8
2. Ramey and Shapiro (2001) Equipment in US aerospace manufacturing 0.72
3. Kermani and Ma (2023) US firms filling for Chapter 11 0.65

Quantitative models Calibration Wedge ω
4. Gilchrist, Sim and Zakraǰsek (2014) Book-value of leverage 0.5
5. Lanteri, Medina and Tan (2023) Frequency of negative investments 0.41
6. Senga and Varotto (2024) Investment, employment and sales moments 0.40
7. Bloom (2009); Bloom et al. (2018) Investment, employment and sales moments 0.34
8. Fang (2023) Covariance of the capital gap with age 0.30
9. Lanteri (2018) Capital reallocation to expenditures 0.07
10. Khan and Thomas (2013) Std dev, autocorrelation of investment rates, and spikes 0.05
11. Cooper and Haltiwanger (2006) Investment spikes and serial correlation 0.025

Surveys Notes Wedge ω
12. Dibiasi, Mikosch and Sarferaz (2021) Survey of Swiss firms 0.47
13. Dibiasi (2022) Firm surveys and car resale prices 0.21–0.42

Notes: Price wedges are presented in descending order. See Appendix F for further details on these values.

G Asymmetries and Non-Linearities

While the main text focuses on small productivity shocks, this section of the Online Appendix explores non-

linearities and asymmetries by calculating impulse-response functions and the CIR(δ) for various aggregate shocks δ,

both in terms of sign and magnitude. Our primary finding is that non-linearities and asymmetries are quantitatively

insignificant in the generalized hazard model computed in Section 5 with a price wedge of 12% (i.e., ω = 0.12).

This result aligns with the distribution of investment rates and the CIR components (to first order).

Figure G.1 displays the impulse-response function normalized by the size of the shocks, i.e., IRFt(δ)/δ. Panel

A shows results for δ = −0.01 (represented by the black solid line, as analyzed in the main text) and δ = 0.01

(represented by the gray dotted line). A notable property that emerges is symmetry: positive and negative shocks

produce symmetric effects on the dynamics of the average capital-productivity ratio. This outcome exemplifies the

certainty equivalent principle, where first-order perturbations to aggregate shocks are independent of the volatility of

those shocks. The same property can be observed in CIR(δ)/δ. As shown in Table G.1, the numerical computation

of CIR(δ)/δ for a small negative shock of -1% is 1.94, while for a small positive shock of 1% it is 1.98. Both values

are close to the first-order approximation of CIR′(0), which is 1.93, since the CIR(δ) is differentiable at zero.

Panels B and C of Figure G.1 display impulse-response functions for positive and negative shocks of 5% and

10%. It is important to note that empirical estimates of the standard deviation of productivity shocks are generally

less than 1%—see Gaĺı (1999) and Justiano, Primiceri and Tambalotti (2010). Therefore, and under the assumption

of a normal distribution, the probability of having a shock larger than 3% is around 0.0027. The figure illustrates

that the responses show only minor differences compared to the reaction for δ = −0.01. The main text shows the

rationale for the minimal presence of non-linearities in Figure VII. To match the sufficient statistics for the CIR’s

implying substantial size and dispersion of investment rates, the model incorporates a relatively flat hazard function.

This results in a low proportion of firms near the inaction region’s boundary, leading to minimal asymmetries and

non-linearities.
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Figure G.1: Impuse-Response Function for Different Productivity Shocks
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Notes: This figures shows the impulse-response function for the general hazard model computed in Section 5. Panel

A shows the impulse-response function for δ = −0.01 (black solid line) and for δ = 0.01 (gray dotted line). Panel

B and C show the impulse-response functions for δ = ±0.05 and for δ = 0.10, respectively.

Table G.1: CIR(δ) for Generalized Hazard
Model and ω = 12

δ

-0.10 -0.05 -0.01 0.01 0.05 0.10

CIR(δ)/δ 1.78 1.87 1.94 1.98 2.05 2.14

Notes: The Table computes the normalized CIR(δ) for
different aggregate shocks.
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