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Abstract

We document that professional forecasters adjust inflation forecasts in a lumpy way—

forecasts are changed infrequently, and when adjusted, they are revised by a large amount.

As the forecasting horizon shrinks, the frequency of revisions, the variance of revisions, and

forecast errors decrease. Using a fixed-event forecasting framework, we assess the role of the

consensus forecast and private information in shaping forecast revisions, both at the extensive

and the intensive margins. A model of Bayesian belief formation with fixed revision costs

and strategic concerns (i) delivers lumpy forecasts consistent with the survey evidence, (ii)

rationalizes forecast efficiency tests without introducing behavioral biases, and (iii) generates

the observed response to increases in inflation volatility.
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1 Introduction

Expectations and belief formation are central to macroeconomics. Both theoretical and empirical

work has questioned the Full Information Rational Expectations (FIRE) paradigm in favor of

other rigidities.1 For instance, Coibion and Gorodnichenko (2015) argues that professional fore-

casters deviate from the traditional rational expectations full-information hypothesis as they form

expectations facing limitations on the rate by which they observe and acquire information. Rely-

ing on surveys of expectations for firms, Coibion, Gorodnichenko and Kumar (2018) and Coibion,

Gorodnichenko and Ropele (2020), confirm that, similar to professional forecasters, firms are also

prone to suffer from information rigidities.

A common assumption at the core of the literature is that forecasts accurately reflect agents’

beliefs. We challenge this assumption and ask to what extent and why forecasts may differ from

agents’ beliefs. First, using a relatively understudied survey of professional forecasters, we doc-

ument that inflation forecasts are lumpy : Forecasts are characterized by periods of inaction fol-

lowed by significant revisions. Forecast lumpiness is present despite relevant information becoming

available during the forecasting period, which should, in principle, change agents’ beliefs. Thus,

forecasts are a rather imperfect measure of agents’ information sets. This evidence casts doubts

on the extent to which forecasts are a useful proxy for individual beliefs and has important im-

plications for monetary and other policy tools that rely on these forecasts. Second, to rationalize

the evidence, we build a new model of Bayesian belief formation with fixed revision costs and

strategic concerns. The model (i) delivers lumpy forecasts consistent with the survey evidence,

(ii) rationalizes forecast efficiency tests without introducing behavioral biases, and (iii) generates

the observed response to increases in inflation volatility. Next, we explain in more detail the

empirical and theoretical contributions.

Facts on lumpy revisions The first part of the paper documents new facts on lumpy forecast

revisions. Using the Economic Forecasts ECFC survey conducted by Bloomberg for the US for

the period 2010-2020, we document the evolution of monthly inflation forecasts about end-of-

year inflation. We show that the frequency of revisions, the variance of revisions, and forecast

errors fall as the date when the forecasted variable is released approaches. Since we focus on

predictions for the same variable (annual inflation) at different horizons, these patterns are puzzling

as it is precisely at shorter horizons when the most significant amount of relevant information is

available, and we should, in principle, expect more revisions. We also study agents’ learning rates,

adjustment hazards, and other revision patterns along the forecasting horizon, which we label the

“term structure” of forecast revisions and errors.

1For instance, sticky information model (Mankiw and Reis, 2002), rational inattention (Sims, 2003) and (Mack-
owiak and Wiederholt, 2009), higher-order uncertainty (Morris and Shin, 2002) and (Woodford, 2003), level-k
thinking (Garćıa-Schmidt and Woodford, 2019), over- and under-reaction to private information (Bordalo, Gen-
naioli, Ma and Shleifer, 2018), to name a few.

2



Related to the triggers of revisions, we show that the distance to the average forecast (the

consensus forecaster) and the distance to a statistical AR(1) prediction significantly drive revisions,

both at the extensive and the intensive margin. The probability of revision increases with these two

distances, and conditional on a revision, new forecasts are closer to the consensus and the AR(1)

prediction. The results suggest that strategic complementarities are at play, in which forecasts

depend on the forecasts of others, reflecting, on the one hand, correlated information and, on the

other hand, reputational costs.

Forecasting model with fixed revisions costs In the second part of the paper, we build a

novel forecasting model with fixed revision and strategic concerns. Since revision costs reduce the

frequency and size of revisions, we interpret them as forecaster preference for forecast stability.

We calibrate the model parameters to match average cross-sectional statistics. The model delivers

horizon-dependent frequency and variance of revisions and forecast errors that match the empirical

term structure of these moments. Alternative calibration that shut down either motive cannot

jointly explain the term structure of revisions and forecast errors.

With the calibrated model at hand, we conduct three exercises that shed light on the relevance

of lumpy forecasts in different dimensions. First, we assess forecast efficiency regression tests in

the spirit of Bordalo, Gennaioli, Ma and Shleifer (2020). By regressing forecast errors on forecast

revisions, the test investigates the predictability of forecast errors at the individual level, and

thus, it is a test for rational expectations. Following Broer and Kohlhas (2022) and Valchev

and Gemmi (2023), we extend the baseline test to incorporate the consensus forecast as a source

of public information. Consistent with the empirical regressions, we find a non-significant bias,

a negative and significant coefficient on forecast revisions (interpreted as over-reaction to private

information), and a positive and significant coefficient on the distance to the consensus (interpreted

as an under-reaction to public information). Importantly, our results are generated in a model

with Bayesian agents, without the need of behavioral biases (e.g., extrapolating expectations) as

in Bordalo, Gennaioli, Ma and Shleifer (2020).

Second, we use the model to investigate the strength of strategic concerns and the preference

for forecast stability across the four types of forecasters in our data: (i) banks, (ii) financial

institutions, (iii) consulting companies, and (iv) universities and research centers. For this purpose,

we recalibrate the model to match type-specific moments. The most significant differences in

these moments occur between consulting companies and universities. For instance, relative to

universities, consulting companies adjust 1.4 times more frequently more than universities and do

revisions that are 1.3 times more dispersed. Through the lens of the model, these moments imply

that universities face larger revisions costs and stronger concerns for forecast stability. Thus, our

results suggest that forecast heterogeneity is an important dimension to consider when working

with this type of surveys.

Third, we investigate the forecasts response to increases in underlying inflation volatility. We
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motivate this exercise by the observation that during the years of the Great Recessions (2008-2009)

and the Covid-19 pandemic (2020-2021), what we label turbulent years, monthly inflation volatil-

ity spiked. In the same period, forecast revision became more frequent and dispersed, and forecast

errors sharply increased. In the model, we implement this change by increasing the volatility of

the underlying state in the same amount as in the data and simulate the economy under two

scenarios. In the first scenario, we give forecasters the information that volatility has changed

(disclosed volatility shock). In the second scenario, we do not give this information and thus keep

the policy functions as in the benchmark calibration (undisclosed volatility shock). In both cases,

the cross-sectional moments of forecast revisions and errors increase as in the data. However, the

forecasts’ response under the undisclosed volatility shock better matches the large increase in the

empirical moments, especially the forecast errors.

Contributions to the literature We highlight three main contributions. First, we con-

tribute to the literature that uses survey data to elicit expectations. Our work complements

studies focusing on model heterogeneity as a driver behind professional forecasters reports being

different predictions for the same macroeconomic outcome (Giacomini, Skreta and Turen, 2020).

Focusing on the micro-level, agent forecasts’ characteristics have also captured researchers’ atten-

tion. Mankiw and Reis (2002) build a model where agents update their expectations in a lumpy

way. They claim that a model that allows agents to collect and update information relatively

infrequently can reconcile different macro facts. Building on the “sticky information” theory of

Mankiw and Reis (2002), Andrade and Le Bihan (2013) provides further empirical evidence that

expectations from professional forecasters are indeed sticky. Interestingly, they notice that there is

still disagreement in their predictions for agents who are forecasting the same variable and choose

to update at the same time. Recently, using the well-known Ifo Survey of firms in Germany, Born,

Enders, Müller and Niemann (2022) confirms that firms’ expectations are also sticky as they are

adjusted only infrequently.

4



2 The Anatomy of Inflation Forecasts

This section discusses the data. First, we describe the data sources and the fixed-event forecasting

framework. Then we describe how forecast revisions and forecast errors evolve over the forecasting

horizon.

2.1 Inflation

We construct annual inflation in the United States using the Consumer Price Index (CPI) index.

For any year τ , we let cpij be the CPI measured j months before the end of year and we let

cpiτ = 1
12

∑11
j=0 cpij be the average CPI in year τ . Then, the annual inflation rate πτ in any year

τ is calculated as

(1) πτ =
cpiτ − cpiτ−1

cpiτ−1

Following Giacomini, Skreta and Turen (2020), we alternatively express the annual inflation rate

using the CPI in month h, cpih, as follows:

(2) πτ ∼=
11∑
h=0

xh, with xh =
1

12

(
cpih − cpih+12

cpih+12

)
, ∀h = 11, . . . , 0.

2.2 Inflation Forecasts

We analyze revisions of US annual (year-on-year) CPI inflation forecasts from the “Economic

Forecasts ECFC” survey of professional forecasters conducted by Bloomberg. This survey is

comparable to other surveys of professional forecasters regarding the number of participants and

the background of forecasters, i.e., financial institutions and banks, consulting firms, universities,

and research centers.2 Besides its similarities, one of the most appealing features of this particular

dataset is that the most recent forecasts of any other forecaster, the date when each prediction was

last updated, and the consensus forecast (the mean forecast) are visible to users of the Bloomberg

terminal in real-time.

Sample We examine monthly fixed-event forecasts of annual US inflation. Our sample covers

the years 2008 to 2022. In the main analysis, we focus on low-volatility years 2010-2019. Section 8

analyses the turbulent years of the Great Recession, 2008-09, and the COVID-19 pandemic, 2020-

21, in which the inflation process is more volatile. For each year, we consider survey participants

who forecast inflation for all 12 months before the final figure (end-of-year inflation) is officially

published. We remove forecasters who fail to provide at least one annual inflation revision. This

2See Giacomini, Skreta and Turen (2020) for further details related to the comparison between the Bloomberg
survey and other existing surveys.
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Figure I – Fixed-event forecasting

Notes: The figure illustrates how fixed-event forecasts work. The fixed event is the end-of-year inflation π. All
forecasts f ih refer to the fixed event.

leaves approximately 100 forecasters per year. The panel dataset contains the history of forecast

updates for all forecasters over the 12-month horizon (h) before the end of each year.3

Inflation forecasts Within each year, we denote with f ih the inflation forecast of forecaster i at

horizon h (to save on notation, we do not explicitly use the year):

(3) f ih, i = 1...N, h = 12, ...1.

We count the horizon backward so that the index h = 12, ..., 1 indicates that the forecast was

produced h months before the end of each corresponding year (the fixed event). Figure I illustrates

the workings of a fixed-event forecast. The fixed event is the end-of-year inflation π. All forecasts

f ih refer to the fixed event. Monthly inflation rates xh are published at the end of the month.

Consensus forecast At each horizon, the consensus forecast is the average forecast:

(4) Fh ≡
1

N

N∑
i=1

f ih di.

Bloomberg reports the consensus in real-time.

3Although we have information on the precise dates when a forecast was revised, we analyze a monthly frequency
as there are only very few weekly updates. In particular, we use the forecast available on the terminal on the last
day of the month to construct our monthly panel data.
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2.3 Forecasts revisions

We define the forecast revision at horizon h, ∆f ih, as the one-period difference between the forecast

in two consecutive horizons:

(5) ∆f ih ≡ f ih − f ih+1.

Table I reports summary statistics of forecast revisions averaged across years, forecasters, and

horizons. The average revision is close to zero, E[∆f ] = −0.013, which suggests a symmetric

environment in which positive and negative revisions, on average, cancel out. The average revision

size (in absolute value and excluding zeros) equals E[abs(∆f)|∆f 6= 0] = 0.247. There are, on

average, 5 forecast revisions in a given year, which means that forecasts are inactive for 1.6 months.

The adjustment frequency is 0.427, and downward revisions (0.231) are slightly more likely than

upward revisions (0.196). The spike rate, which counts the proportion of large adjustments (above

20%), is close to 3%. Next, we examine the “term structure” of forecast revisions—that is, how

the frequency and the variance of forecast revisions evolve along the forecasting horizon h.

Table I – Summary Statistics of Forecast Revisions

Average E[∆f ] −0.013
Size E[abs(∆f)|∆f 6= 0] 0.247
Variance Var[∆f ] 0.055

Number of revisions in a year count[∆f 6= 0] 5.059
Months of inaction E[τ ] 1.594

Adjustment frequency Pr[∆f 6= 0] 0.427
Upward Pr[∆f > 0] 0.196
Downward Pr[∆f < 0] 0.231

Spike rate Pr[abs(∆f) > 0.2] 0.028

Serial correlation (all ∆f) corr[∆f,∆f−1] −0.043
Serial correlation (non-zero ∆f) corr[∆f,∆f−1] −0.107

Observations N 9,256

Sources: Bloomberg data for years 2010-2019. Averages across sample years and 12 horizons.

Figure II shows the unconditional probability of updating a forecast across the horizon (left

panel) and the variance of revisions (right panel). Regarding the extensive margin of adjustment,

the left panel in Figure II shows that forecasts are updated infrequently. On average, around 38%

of forecasters choose to update their predictions throughout the year. Interestingly, the share of

updaters also drops as the date when the final inflation figure is published h = 0 approaches. The

increasing lumpiness is puzzling as every month, a new piece of relevant information (the monthly

release of inflation, xh) is published, which could be used to improve the accuracy of the prediction

further. Turning to the intensive margin, the right panel of Figure II shows that the magnitude

of revisions becomes smaller as the horizon h shrinks.
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Figure II – Term Structure of Forecast Revisions
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Notes: Left panel shows the frequency of non-zero revisions Pr[∆f 6= 0]. The right panel shows
the variance of revisions Var[∆f ]. Bloomberg data for normal years = 2010-2019.

2.4 Forecast errors

At any given year, we let eih be the forecast error of individual i at horizon h, defined as the

difference between the actual end-of-year inflation π and the reported forecast f ih. Because errors

require knowledge about the actual realization of inflation, they are an ex-post measure.

(6) eih ≡ π − f ih.

Table II provides summary statistics on forecast errors averaged across years, forecasters, and

horizons. The average error is small E[e] = −0.055. Typically, agents tend to overpredict inflation

and thus a negative error eih.

Table II – Summary Statistics of Forecast Errors

Average E[e] −0.055
Average of squares E[e2] 0.255

Serial correlation corr[e, e−1] 0.877

Observations N 9,256

Sources: Bloomberg data for 2010-2019. Between-year averages of within-year statistics.

The term structure of forecast errors across horizons is shown in the left panel in Figure III.

The average squared forecast errors decrease with the horizon. As expected, as the fixed event (end

of the year) approaches, more information is accumulated, making the prediction more precise.

Nonetheless, despite the monotonic decrease, the forecast error does not converge to zero, even at

h = 1. This is a tell-tale sign that forecast accuracy is not the only driving force behind forecasters’
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Figure III – Term Structure of Forecast Errors and Hazard Rate

24681012

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

Notes: Bloomberg data for years 2010-2019.

activities.

2.5 Hazard rate

The hazard rate of forecast adjustment is a dynamic moment useful to assess learning speed. We

assess how forecast revisions depend on the time elapsed since the last revision (the forecast’s age).

The right panel in Figure III plots the adjustment hazard against the forecast age. The hazard

is downward slopping: The probability of adjusting a newly set forecast (age = 0) is 0.5. As the

forecast age increases, the probabilities drop gradually and monotonically. Revision probabilities

drop below 0.3 after six months (age = 6).4

Taking stock To summarize, forecasts are lumpy: they exhibit significant periods of inaction

that are followed by large adjustments. The frequency and dispersion of revisions fall with the

forecasting horizon. Forecast errors also decrease with the horizon but do not converge to zero.

3 Forecasting with fixed revision costs

This section builds a fixed-event Bayesian forecasting model with frequent information revelation,

strategic concerns, and fixed forecast revision costs.

3.1 Forecasting problem

A large number of forecasters, indexed by i ∈ N , produce forecasts about end-of-year inflation

π. End-of-year inflation inflation π equals the sum of within-year monthly inflations xh, namely

4Appendix F shows the adjustment hazard conditional on the number of revisions. The age dependence of
forecast updating changes as a function of the number of revisions the agent has done in the past.
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π ≡
∑12

h=1 xh. Forecasters believe monthly inflation follows an AR(1) process:

(7) xh = cx + φxxh+1 + εxh, εxh ∼ N (0, σ2
x),

where c is a constant, φ is the persistence parameter, and εxh is an iid normally distributed noise

with volatility σ2
x. The parameters cx, φx and σ2

x are common knowledge.

Payoffs At each horizon h, forecaster i chooses a forecast f ih based on their information set I ih.
Changing a forecast entails paying a fixed revision cost κ > 0 measured in utility units. For a

given initial forecast f i13, forecasts minimize the yearly sum of monthly losses:

(8) min
{f ih}

1
h=12

E

[
1∑

h=12

(f ih − π)2︸ ︷︷ ︸
accuracy

+ r (f ih − Fh)
2︸ ︷︷ ︸

strategic

+ κ1{f ih 6=f ih+1}︸ ︷︷ ︸
stability

∣∣∣I i0
]
.

The first term in the payoff function is the distance between the forecast and the actual end-of-

year inflation, reflecting losses from the lack of accuracy. The second term is the distance between

the forecast and the consensus (the average) Fh = N−1
∑N

i=1 f
i
h, multiplied by the parameter r

that measures the strength of strategic concerns. If r > 0, there is strategic complementarity,

as the payoff increases when the forecast is close to the consensus. If r < 0, there is strategic

substitutability, as the payoff increases when the forecast is far from the consensus. The third term

is the fixed cost κ > 0 paid for any forecast revision, capturing preference for forecast stability.

Public signal Let Ih denote the publicly available information at each horizon, corresponding

to the lagged values of xh and Fh:

(9) Ih = {(xj, Fj) : j ≥ h+ 1}.

Under Ih, the inflation process implies a monthly public signal zh about yearly inflation:

(10) zh = h

(
cx

1− φx

)
+

φx(1− φhx)
1− φx

(
xh+1 −

cx
1− φx

)
+

12∑
j=h+1

xj, h = 12, . . . , 1.

Private signal Following Patton and Timmermann (2010), at the beginning of the month, each

forecaster receives an unbiased private signal x̃ih about what inflation in that month will be (the

true monthly inflation is only released at the end of the period):

(11) x̃ih = xh + ζ ih.

Idiosyncratic noise ζ ih
iid∼ N (0, σ2

ζ ) reflects the heterogeneity in beliefs or models across agents.
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Information dynamics At the end of the period, and after f ih is decided, monthly inflation xh

is revealed (a stand for the official release from a statistical agency), removing all the uncertainty

about its lagged values. Similarly, the consensus forecast Fh is observed at the end of the period.

These timing assumptions eliminate a fixed point between individual choices and the consensus, as

in a beauty contest (Morris and Shin, 2002), greatly simplifying the model solution with revision

costs.

Therefore, individual information sets I ih at the time of choosing the forecast equal

(12) I ih = x̃ih ∪ Ih = x̃ih ∪ {xh+1, xh+2, . . . , Fh+1, Fh+2, . . .},

where Ih stands for the public information set, including past releases and consensus.

3.2 Belief formation

Proposition 1 writes the sequential problem in (8) as a function of inflation and consensus beliefs,

using the law of iterated expectations and conditioning payoffs on horizon-specific information

sets. All proofs are in the Appendix.

Proposition 1. Let π̂ih ≡ E[π|I ih] and Σπ
h ≡ E[(π̂ih−π)2|I ih] be the conditional mean and variance

of end-of-year inflation beliefs. Let F̂h ≡ E[Fh|I ih] and ΣF ≡ E[(F̂h − Fh)2|I ih] be the conditional

mean and variance of consensus beliefs. Then forecasters solve the following problem:

(13) min
{f ih}

1
h=12

1∑
h=12

E
[
Σh + E[(f ih − π̂ih)2|I ih] + rE[(f ih − F̂h)2|I ih] + κ1{f ih 6=f ih+1}

∣∣∣I i0] .
where Σh ≡ Σπ

h + rΣF and f i13 given.

Next, we characterize forecasters’ beliefs about the consensus and end-of-year inflation. To

guide the characteriztion, Figure IV shows the timeline of how information becomes available and

how it is used to form beliefs.

Consensus Beliefs Since the consensus is observed with a one-period delay (e.g., at horizon h,

Fh+1 is observed), forecasters must form expectations about the contemporaneous consensus when

choosing their forecasts. All forecasters entertain the following beliefs about the consensus:

(14) Fh = cF + φFFh+1 + εFh , εFh ∼ N (0, σ2
F ).

The parameters cF , φF and σ2
F are common knowledge. Given this assumption, they generate

common horizon-specific consensus beliefs Fh|I ih ∼ N (F̂h,ΣF ), where the conditional mean F̂h
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Figure IV – Timeline of events
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Notes: The figure illustrates the timeline of information revelation, belief formation, and forecast revisions for
three contiguous horizons h+ 1, h, h− 1.

and variance ΣF are given by

F̂h = cF + φFFh+1,(15)

ΣF = σ2
F .(16)

Inflation beliefs To form end-of-year inflation beliefs, forecasters construct monthly beliefs,

which are then projected into end-of-year beliefs. In the first step, forecasters combine two sources

of information at the monthly frequency. The AR(1) assumption of the inflation process implies

a “statistical” common expectation about next month’s inflation:

(17) xARh ≡ E[xh|xh+1] = cx + φxxh+1,

with variance σ2
x. Forecasters combine this statistical expectation xARh with their private signal x̃ih

in (11) to construct an individual monthly inflation belief x̂ih:

(18) x̂ih ≡ E[xh|I ih] =
σ−2
x xARh + σ−2

ζ x̃ih

σ−2
x + σ−2

ζ

= (1− α)xARh + αx̃ih,

where we define the weight on the private signal as α ≡ σ−2
ζ

σ−2
x +σ−2

ζ

. The weight increases in the

precision of the private signal.

In the second step, forecasters form end-of-year inflation beliefs at each horizon π|I ih ∼
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N (π̂ih,Σ
π
h). To obtain the conditional mean π̂ih, forecasters combine past “official” releases {xj}j>h

with their individual monthly beliefs x̂ih:

(19) π̂ih = h

(
cx

1− φx

)
+

1− φhx
1− φx

(
x̂ih −

cx
1− φx

)
︸ ︷︷ ︸

AR(1) projection using h info

+
12∑

j=h+1

xj︸ ︷︷ ︸
realized, j>h

, h = 12, . . . , 1.

The first part of the expression (19) uses the AR(1) statistical model to project the monthly belief

x̂ih into the future. The second part equals the sum of the true monthly inflation values released

to date.

The conditional variance Σπ
h is a function of the AR(1) parameters {φx, σ2

x} and noise σ2
ζ ; it

decreases with the horizon and is independent of i.5

(20) Σπ
h = (σ2

η + σ2
ζ )

(
1− φhx
1− φx

)2

+
σ2
x

(1− φx)2

[
(h− 1)− 2φx(1− φh−1

x )

1− φx
+
φ2
x(1− φ

2(h−1)
x )

1− φ2
x

]
.

Finally, it is useful to establish a relationship between individual beliefs under I ih in (??) and

public beliefs zh under Ih in (10)

(21) π̂ih = zh + νih, with νih ∼ N

(
0,

[
1− φhx
1− φx

]2

α2(σ2
x + σ2

ζ )

)
.

where α is the updating weight defined in (18).

Discussion of assumptions Although participants interpret public information differently, we

argue that the prediction that builds on an AR(1) process is a tractable and accurate proxy for a

fixed-event forecast. We provide further discussion about the features and accuracy of the proxy

in Section E.1. See Giacomini, Skreta and Turen (2020).

3.3 Optimal forecast revision policy

Proposition 2 writes the problem in recursive form as a stopping-time problem using the principle

of optimality. The individual state includes the past forecast, the mean and variance of inflation

beliefs, and the mean and variance of consensus beliefs. It is equivalent to working with posterior

beliefs instead of the signals. The aggregate state includes past realizations of monthly inflation

and consensus. Because total uncertainty evolves deterministically and is common across agents,

we include it in the aggregate state. We thus index value function with the horizon h to account

for the aggregate state.

5Appendix B.1 presents a detailed derivation of zih and Σzh.
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Proposition 2. The value of a forecaster i at horizon h with state (π̂ih, F̂h, f
i
h+1) equals

(22) Vh(π̂ih, F̂h, f ih+1) = min{ VIh(π̂ih, F̂h, f
i
h+1)︸ ︷︷ ︸

inaction

, VAh (π̂ih, F̂h)︸ ︷︷ ︸
action

}

where the value of inaction VIh and the value of action VAh are, respectively,

VIh(π̂ih, F̂h, f
i
h+1) = Σh + (f ih+1 − π̂ih)2 + r(f ih+1 − F̂h)

2 + E[Vh−1(π̂ih−1, F̂h−1, f
i
h+1)|I ih]

VAh (π̂ih, F̂h) = κ + Σh + min
f ih

{
(f ih − π̂ih)2 + r(f ih − F̂h)2 + E[Vh−1(π̂ih−1, F̂h−1, f

i
h)|I ih]

}
subject to the evolution of inflation beliefs in (19) and (20), and consensus beliefs in (14).

Optimal policy The solution entails an horizon-specific inaction region

(23) Rh ≡ {(π̂ih, F̂h, f ih+1) : VIh(π̂ih, F̂h, f
i
h+1) ≥ VAh (π̂ih, F̂h)}

and a reset forecast f ih
∗
(π̂ih, F̂h), such that, for given the beliefs, the forecast remains unchanged

f ih = f ih+1, i.e., a zero revision ∆fh = f ih− f ih+1, whenever f ih+1 ∈ Rh. The forecast changes to f ih
∗
,

i.e., a revision of size ∆fh = f ih
∗ − f ih+1, whenever f ih+1 /∈ Rh.

For a given past forecast f ih+1, we can express the inaction region as a function of beliefs

Rh(π̂
i
h, F̂h|f ih+1). It includes the set of beliefs such that it is optimal not to reset the forecast.

Idiosyncratic uncertainty and forecasting Discuss here the option and volatility effects.

Show inaction region for various horizons h.

3.4 Calibration

Given parameters, we compute the decision rules of forecasters using backward induction. Ap-

pendix C.1 derives expressions to compute the distributions of expected beliefs needed to compute

the value functions.

Initial forecast At the beginning of each year, we assume initial forecasts equal the 13-months

ahead belief, which is optimal without frictions (κ = r = 0):6

(24) f i13 = π̂i13 = z13 + νi13

6We initialize forecasts in the first year at the unconditional mean plus some noise: f i13 = cx/1−φx + εi13, εi13 ∼
N (0, σ2

13). Then we burn P periods to eliminate its dependence on the initial condition.
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where z13 is constructed using the projection formula in (10)

z13 = 12

(
cx

1− φx

)
+ φx

1− φ12
x

1− φx

(
x̂13 −

cx
1− φx

)
(25)

and the monthly belief equals x̂i13 = α[cx + φxx14] + (1− α)x̃i13.

Externally set parameters We feed the AR(1) parameters estimated directly from the data.

By relying on the available information to forecasters in real time, we estimate the AR(1) process

parameters using a rolling window over the sample years. For the monthly inflation process

xt, we estimate (cx, φx, σx) = (0.013, 0.932, 0.036). For the consensus process Ft, we estimate

(cF , φF , σF ) = (0.153, 0.913, 0.26). More details are in Appendix D.

Internally calibrated parameters Using the simulated method of moments, we estimate val-

ues for the six remaining parameters by matching the cross-sectional moments in normal years.

We calibrate three parameters: the strength of strategic concerns r, the fixed revision cost κ, and

the private noise σζ . We target three moments: the frequency of adjustment Pr[∆f 6= 0] = 0.43,

Vari[∆f ] = 0.05 and the average forecast error squared E[(π − f ih)2] = 0.23. Table III shows the

baseline parameterization, the moments in the data, and the model fit.

Table III – Internally calibrated parameters, Baseline

Parameter Value Moment Data Model
κ adjustment cost 0.083 Pr[∆f 6= 0] 0.43 0.43
r strategic concerns 0.263 Var[∆f ] 0.05 0.05
σζ private noise 0.098 E[e2] 0.23 0.21

The calibrated parameters are as follows. First, the fixed adjustment cost of κ = 0.083 implies

a preference for forecast stability. Second, the positive value for r = 0.263 signals strategic

complementarities. Lastly, the private noise σζ = 0.098 is 2.5 larger than the volatility of the

inflation process, σx = 0.036.

4 The model in action

This section explores various dimensions of the forecasting model.

4.1 Evolution of individual forecasts and consensus

Figure V shows individual forecasts, the consensus, and the public signal for three different years.

The first year inflation was 3%, the second year 1.8% and the third year 2%.

15



Figure V – Simulation for ten years
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4.2 Cross-sectional statistics

With the calibration, we now assess the model’s capacity to replicate some of the studied features

of forecasters across the horizons. Figure VI shows the term structures of frequency/variance of

revisions and forecast errors. While we only targeted average values of these moments across all

horizons, the model does a very good job in tracking their patterns along the forecasting period.

Both the frequency of revisions (extensive margin, first panel) and the variance of revisions con-

ditioning on adjustment (intensive margin, second panel). The model predicts these two margins

would decrease over the horizon in both cases. Hence, although the inaction region is horizon-

dependent, it seems that at longer horizons, the volatility effect dominates (when there is higher

uncertainty about π) relative to the option value effect. At shorter horizons, the option value

effects dominate, leading to less updating frequency. Moreover, it is precisely at shorter horizons

when the contribution of each extra piece of information (monthly release) will only marginally

affect the inflation belief, making it less likely to hit out of the bands, leading to fewer revisions as

predicted by the data. The contribution of each extra bit of information only marginally affects

the inflation beliefs, which is also reflected in the decreasing magnitude of forecast revisions.

Forecast errors (third panel) also decrease with the horizon; this is unsurprising, as more

information gets accumulated as the end-of-year event approached.
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Figure VI – Cross-sectional statistics across horizons
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Notes: Model, benchmark calibration.

Untargeted moments We present additional suggestive evidence of lumpy forecast revisions.

To this end, we assess how the model performs in delivering untargeted moments from the data.

Table IV presents autocorrelations of forecast errors and revisions (for all and non-zero revisions).

The model values are very close to those in the data.

Table IV – Autocorrelations: Model vs. Data

Data Model

Forecast errors corr[e, e−1] 0.877 0.626
All revisions corr[∆f,∆f−1] −0.043 -0.161
Non-zero revisions corr[∆f,∆f−1|∆f 6= 0] −0.107 -0.296

Sources: Data for 2010-2019. Model with benchmark calibration

4.3 On the role of fixed revision costs and strategic concerns

We explore two alternative model versions of the model to assess the role of fixed costs κ and

strategic concerns r. In each panel of Figure VII, we plot four lines: data (red), benchmark

calibration (blue), zero fixed costs κ = 0 (dashed pink), and zero strategic concerns r = 0 (dotted

blue).

As expected, the model with zero fixed costs implies a frequency of revisions close to one for

all horizons, and thus fails dramatically in replicating the observed empirical patterns. The model

with zero strategic concerns delivers steeper profiles in frequency and variance. Notably, all model

configurations delivers very similar patterns for the square of forecast errors.
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Figure VII – Cross-sectional moments across model configurations
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5 Extensive and Intensive Margins of Revisions

This section explores the determinants of forecast revisions’ extensive and intensive margins, both

in data and model. First, we construct two gaps: (i) the distance between the past forecast

and the current AR(1) projection and (ii) the distance between the past forecast and the current

consensus.

Given individual forecasts and public information, we define the following variables at the

individual level. Let bih be the gap between individual i’s forecast at horizon h+ 1 and an AR(1)

estimate zh defined in (10) at horizon h:

(26) bih ≡ f ih+1 − zh.

Also, let cih be the gap between individual i’s forecast at horizon h+ 1 and the consensus forecast

at horizon h:

(27) cih ≡ f ih+1 − Fh.

In the model, these gaps arise because of revision costs, private information, and strategic concerns.

In the data, they may also arise because of other forces not considered in the model, such as higher-

order beliefs, heterogeneous parameters, model misspecification, and heterogeneity in revision costs

or strategic concerns.
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Figure VIII – Extensive Margin: Data
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Notes: Bloomberg data.

5.1 The extensive margin and its determinants

First, we examine how the consensus gap cih and the AR gap bih shape the probability of updating

a prediction, that is, the extensive margin. Figure VIII plots the average frequency of upward

revisions (left column) and the average frequency of downward revisions (right column) with

respect to the consensus gap (top row) and the AR(1) gap (bottom row). These probabilities are

residuals that control for forecaster-fixed effects.7 Figure IX plots the same variables in the model.

Two interesting features arise. First, as the relative distance between the forecasts and either

gap increases, the probability of a revision increases as well; however, the likelihood of revising

upward or downward depends on the sign of the gap. When gaps are above zero, the probability

of doing a positive revision (f ih > f ih+1) drops while the probability of revising downwards (f ih <

f ih+1) significantly increases. Likewise, when gaps are negative, the probability of revising upward

significantly increases, and the probability of revising downward decreases. Second, the extensive

margin reaction appears to be asymmetric; that is, the updating probability reacts differently

depending on whether the forecast is below or above the focal point (consensus or belief). Overall,

these two gaps have a significant effect on the extensive margin of revisions.

7See the Appendix for details on constructing residual adjustment probabilities.
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Figure IX – Extensive Margin: Model
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Notes: Model, benchmark calibration.

5.2 The intensive margin and its determinants

Conditioning on agent revisions, we now study the determinants behind the magnitude of revisions

as a function of the two gaps. Figure X plots the average revision as a function of both cih and bih.

As with the extensive margin, we plot residual revisions that control for a battery of fixed effects.

Figure XI shows the intensive margin for the model. All figures show that positive deviations call

for negative revisions and the contrary for negative deviations. The strong negative correlation

implies that larger deviations call for larger revisions. When either gap is positive (negative), the

agent partially revises downwards (upwards) to close this gap.

Figure X – Intensive Margin: Data
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Figure XI – Intensive Margin: Model
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6 Forecast efficiency tests

In our first exercise, we analyze forecast error predictability at the individual level using the

following empirical strategy. The tests build on the work by Bordalo, Gennaioli, Ma and Shleifer

(2020), extended by Broer and Kohlhas (2022) and Valchev and Gemmi (2023) to incorporate the

consensus forecast as a source of public information.

Let πt − fht−h be the individual forecast error at horizon h about annual inflation (known at

time t), f it−h − f it−h+1 be the forecast revision between consecutive months for the same variable,

and Ft,h − f it,h+1 be the surprise contained in public information. Relying on the panel structure,

we run the following OLS regression.

πt − f it,h︸ ︷︷ ︸
error

= γh0︸︷︷︸
bias

+ γh1 (f it,h − f it,h+1)︸ ︷︷ ︸
revision

+ γh2 (Ft,h − f it,h+1)︸ ︷︷ ︸
public info

+ εih.(28)

Relative to the literature, which considers a fixed horizon h, we run the regression for different

horizons. As a useful benchmark, note that rational expectations imply that γh0 = γh1 = 0, even un-

der the presence of information frictions. Moreover, if γh1 > 0, a positive revision predicts a higher

realization of inflation relative to the forecast, meaning that the average forecaster underreacts to

his own information. In contrast, if γh1 < 0 indicates that the average forecasters overreact to his

information. Analogously, the sign of γh2 reflects how information contained in public surprises

affects forecast errors.

With our simulated data, we also run regression (28). Interestingly, and although we did not

target any of these results, the model can predict, across all horizons, three features of the data:

(i) the zero bias (left panel), (ii) the over-reaction to private information (middle panel), and (iii)

the under-reaction to the consensus (right panel).
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Figure XII – Efficiency tests in model and data
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Consistent with the empirical regressions, we find a non-significant bias, a negative and sig-

nificant coefficient on forecast revisions (interpreted as over-reaction to private information), and

a positive and significant coefficient on the distance to the consensus (interpreted as an under-

reaction to public information). Importantly, our results are generated in a model with Bayesian

agents, without the need of behavioral biases (e.g., extrapolating expectations) as in Bordalo,

Gennaioli, Ma and Shleifer (2020).

7 Forecaster Heterogeneity

In our second exercise, we explore heterogeneity across forecaster types. The survey contains four

types of forecasters: (i) banks, (ii) financial and investment institutions, (iii) economic consulting

companies, and (iv) universities and research centers. Table V shows substantial heterogeneity in

average cross-sectional moments in normal years. The most significant differences occur between

consulting firms and universities. For instance, relative to universities, consulting firms adjust

30% more than universities.

Table V – Cross-sectional moments by forecaster type

All Financial Inst. Banks Consulting Universities

Moment Data Model Data Model Data Model Data Model Data Model

Pr[∆f 6= 0] 0.43 0.43 0.45 0.46 0.38 0.37 0.47 0.45 0.34 0.34
Var[∆f ] 0.05 0.05 0.06 0.06 0.06 0.07 0.08 0.07 0.06 0.07

E[(π − f)2] 0.23 0.21 0.28 0.21 0.22 0.23 0.25 0.23 0.24 0.24

Observations 12,355 5,366 2,567 2,982 1,440
Notes: Bloomberg data. Data for normal years 2010-2019.

For each of the four groups, Figure XIII shows the term structure of adjustment frequency,
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size, and forecast errors. These term structures are broadly consistent with the general patterns

observed for the average moments, with universities being the group that adjusts less often but

for larger amounts across horizons, while consulting firms do the opposite.

Figure XIII – Term Structure of Revisions and Errors: By Forecaster Type
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Calibration by forecaster type The differences in the cross-sectional moments of forecast

revisions and forecast errors reflect potential differences in strategic concerns (r) and preference

for forecast stability (κ). Given the observed heterogeneity, we recalibrate four versions of the

model, each matching type-specific moments. We consider heterogeneity in two parameters: fixed

costs κG and strategic concerns rG. Results are reported in Table VI. Through the lens of the

model, these moments imply that universities face higher revision costs and stronger concerns for

forecast stability. Thus, our results suggest that forecast heterogeneity is an important dimension

to consider when working with this type of survey.
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Table VI – Calibration by forecaster type

Parameter All Financial Inst. Banks Consulting Universities

κ 0.083 0.087 0.143 0.116 0.190
r 0.263 0.193 0.520 0.528 0.604
σ2
ζ 0.098 0.045 0.067 0.050 0.054

Notes: Calibration that targets the group-specific moments reported in Table V.

8 Changes in inflation volatility

In our third and last exercise, we investigate the forecasts’ response to changes in underlying

inflation volatility. In four years in our sample, economic conditions were far from ordinary. In

particular, at the two ends of the sample, we have the Great Recession between 2008 and 2009 and

the COVID-19 pandemic between 2020 and 2021. The volatility of monthly inflation was different

over these two episodes: in turbulent years, inflation volatility is 36% higher than in normal years.

We split the sample between normal years, 2010-2019, and turbulent years, 2008-2009 and 2020-21.

Tables VII and VIII in the Appendix show summary statistics of forecast revisions and errors for

normal and turbulent years. Figure XIV shows the term structure of (a) frequency of revisions,

(b) variance of revisions, and (c) forecast errors squared. In turbulent years, forecast revisions are

more frequent and dispersed, and forecast errors sharply increase.

Figure XIV – Term Structure of Forecast Revisions: Normal vs. Turbulent Tears
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Notes: Bloomberg data. Notes: Normal years = 2010-2019. Turbulent years = 2008-2009 and 2020-21.

We explore if the model is able to deliver these changes in cross-sectional moments. We

implement increasing monthly inflation volatility as in the data, 1.36× σ2
x. We also consider two

different unconditional means. Low cx for 2008-2009 and high cx for 2020-2021. Then we simulate

the economy under two scenarios: disclosed and undisclosed regime changes in the underlying

parameters.

Disclosed regime change In the first scenario, we give forecasters the information that volatil-

ity and mean have changed. Figure XV shows the results. Relative to the baseline calibration (solid

line, that matches moments in normal years) higher volatility increases all moments, regardless of

the change in the mean.

24



Figure XV – Changes in underlying process: Disclosed shock

Undisclosed regime change In the second scenario, agents ignore that parameters have changed

and thus keep the policy functions as in the benchmark calibration. Figure XVI shows the results.

We also superimpose the data for turbulent years. The cross-sectional moments increase much

more, especially forecast errors.

Figure XVI – Changes in underlying process: Undisclosed shock
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Garćıa-Schmidt, M. and Woodford, M. (2019). Are low interest rates deflationary? a para-

dox of perfect-foresight analysis. American Economic Review, 109 (1), 86–120.

Giacomini, R., Skreta, V. and Turen, J. (2020). Heterogeneity, inattention, and bayesian

updates. American Economic Journal: Macroeconomics, 12 (1), 282–309.

Kozlowski, J., Veldkamp, L. and Venkateswaran, V. (2020a). Scarring body and mind: the

long-term belief-scarring effects of Covid-19. Tech. rep., National Bureau of Economic Research.

—, — and — (2020b). The tail that wags the economy: Beliefs and persistent stagnation. Journal

of Political Economy, 128 (8), 2839–2879.

Mackowiak, B. and Wiederholt, M. (2009). Optimal sticky prices under rational inattention.

American Economic Review, 99 (3), 769–803.

Mankiw, G. and Reis, R. (2002). Sticky information versus sticky prices: A proposal to replace

the new keynesian phillips curve. Quarterly Journal of Economics, 117, 1295–1328.

26



Morris, S. and Shin, H. S. (2002). Social value of public information. American Economic

Review, 92 (5), 1521–1534.

Patton, A. J. and Timmermann, A. (2010). Why do forecasters disagree? lessons from the

term structure of cross-sectional dispersion. Journal of Monetary Economics, 57 (7), 803–820.

Sims, C. (2003). Implications of rational inattention. Journal of Monetary Economics, 50(3),

665–90.

Valchev, R. and Gemmi, L. (2023). Biased Surveys. Tech. rep., National Bureau of Economic

Research.

Woodford, M. (2003). Imperfect common knowledge and the effects of monetary policy. Knowl-

edge, Information, and Expectations in Modern Macroeconomics: In Honor of Edmund S.

Phelps, p. 25.

27



Lumpy Forecasts

Isaac Baley and Javier Turén

Online Appendix

0



A Summary statistics

Table VII – Summary Statistics of Forecast Revisions

All Turbulent Normal

Average E(∆f) −0.002 0.028 −0.013
Size E(abs(∆f)|∆f 6= 0) 0.307 0.453 0.247
Dispersion Var(∆f) 0.104 0.227 0.055

Number of revisions count(∆f 6= 0) 5.204 5.602 5.059
Duration (months) E(τ) 1.497 1.231 1.594

Inaction rate Pr(∆f = 0) 0.523 0.392 0.569
Frequency Pr(∆f 6= 0) 0.444 0.492 0.427

Upward Pr(∆f) > 0 0.228 0.318 0.196
Downward Pr(∆f) < 0 0.216 0.173 0.231

Spike rate abs(∆f/f) > 0.2 0.081 0.231 0.028
Positive spikes ∆f/f > 0.2 0.076 0.227 0.023
Negative spikes ∆f/f < −0.2 0.005 0.004 0.005

Serial correlation (all) corr(∆f,∆f−1) −0.035 −0.035 −0.043
Serial correlation (non-zero) corr(∆f,∆f−1) −0.085 −0.078 −0.107

Annual Inflation π 1.896 2.175 1.795

Observations N 12,619 3,363 9,256

Sources: Bloomberg data. Notes: Normal years = 2010-2019. Turbulent years = 2008-2009 and 2020-21. Numbers

are averages across sample years and 12 horizons.

Table VIII – Summary Statistics of Forecast Errors

All Turbulent Normal

Average E(e) 0.023 0.237 -0.055
Size E(abs(e)) 0.434 0.789 0.305
Positive Pr(e > 0) 0.414 0.606 0.345
Negative Pr(e < 0) 0.510 0.340 0.572
Dispersion σ(e) 0.663 1.105 0.502

Serial correlation corr(e, e−1) 0.882 0.878 0.877

Observations N 12,619 3,363 9,256

Sources: Bloomberg data. Notes: Normal years = 2010-2019. Turbulent years = 2008-2009 and 2020-21. Numbers

are between-year averages of within-year statistics.
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B Proofs

B.1 Forecasters’ Beliefs

In this section we derive expressions for the mean zih ≡ E[π|Iih] and the variance Σzh ≡ E[(π− zih)2|Iih] of annual

inflation beliefs.

Demeaned monthly inflation We begin from the assumption of an AR(1) process for monthly inflation:

(B.1) xh = cx + φxxh+1 + εxh.

This process has an unconditional mean of cx
1−φx and an unconditional variance of

σ2
x

1−φ2
x

. For any h, we can rewrite

(B.1) as deviations from the unconditional mean:

(B.2) xh −
cx

1− φx
= φx

(
xh+1 −

cx
1− φx

)
+ εxh.

Annual inflation Annual inflation π is approximately equal to the sum of the twelve realizations of monthly

inflation xh within each target year π =
∑12
h=1 xh. Add proof.

Without loss of generality, we can derive π as a function of the initial value of monthly inflation x12:

x1 =
cx

1− φx
+ φ11x

(
x12 −

cx
1− φx

)
+

10∑
j=0

φjxε
x
j+1

. . .

x10 =
cx

1− φx
+ φ2x

(
x12 −

cx
1− φx

)
+ φxε

x
11 + εx10

x11 =
cx

1− φx
+ φx

(
x12 −

cx
1− φx

)
+ εx11,

Summing up the monthly values x1, x2, . . . , x12 we get an expression for annual inflation at horizon h = 12:

π = 12

(
cx

1− φx

)
+

1− φ12x
1− φx

(
x12 −

cx
1− φx

)
+

11∑
j=1

1− φjx
1− φx

εxj .(B.3)

Similarly, for any h within the year, we can derive an expression for π. Importantly, as h shrinks (as we get

closer to the release date), we start summing the actual lagged values of inflation starting at h = 12 until h while

we project the remaining months of the year using the last piece of available information xh. In particular, annual

inflation at any given horizon h = 12, 11, . . . , 1 can be written as follows:

π = h

(
cx

1− φx

)
+

(1− φhx)

1− φx

(
xh −

cx
1− φx

)
+

12∑
i=h+1

xj +

h−1∑
j=1

1− φjx
1− φx

εxj ,(B.4)

where
∑12
i=h+1 xj = 0 for i = 12. If h = 1 then π =

∑12
h=1 xh. The unconditional mean and variance of end-of-year

inflation are:

E[π] =(B.5)

Var[π] =
σ2
x

(1− φx)2

h−1∑
j=1

(
1− φjx

)2
.(B.6)
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To compute annual inflation from the perspective of h = 13, we use the fact that

(B.7) x12 −
cx

1− φx
= φx

(
x13 −

cx
1− φx

)
+ εx12.

Thus, when summing up the monthly values x1, x2, . . . , x12, we get

π = 12

(
cx

1− φx

)
+ φx

1− φ12x
1− φx

(
x13 −

cx
1− φx

)
+

11∑
j=1

1− φjx
1− φx

εxj .(B.8)

B.1.1 Private Signals

As each horizon h, forecasters observed a noisy signal x̃h about monthly inflation, given by x̃ih = xh + ηh + ζih.

Agents update their beliefs at the beginning of each month before the actual value of monthly inflation is released.

Hence, we interpret the signal x̃ih as news. In addition, the historical values of lagged monthly inflation are observed

without noise. Thus, the forecasters information set at each horizon Iih = {x̃ih, xh+1, xh+2, . . . }.
Taking the conditional expectation of equation (B.4), given information up to horizon h, delivers the signal zih:

(B.9) zih = h

(
cx

1− φx

)
+

1− φhx
1− φx

(
x̃ih −

cx
1− φx

)
+

12∑
i=h+1

xj for h = 12, . . . , 1

which corresponds to equation (19) in the main text.

B.1.2 Signal Precision

Forecasters evaluate their signals’ precision through the AR(1) model. We define forecast errors as the difference

between end-of-year inflation and the signal: εih ≡ π − zih. Given the expressions for π in (B.4) and zh in (B.9),

forecast errors are expressed as:

εih = π − zih =
1− φhx
1− φx

(ζih + ηh) +

h−1∑
j=1

1− φjx
1− φx

εxj ∀h(B.10)

Squaring and taking expectations, we obtain the variance of the forecast error Σzh ≡ E[(εih)2] at each horizon h:

Σzh =

(
1− φhx
1− φx

)2

(σ2
ζ + σ2

η) +
σ2
x

(1− φx)2

h−1∑
j=1

(1− φjx)2 ∀h(B.11)

where we used that shocks are i.i.d εxh
iid∼ N (0, σ2

x), ζih
iid∼ N (0, σ2

ζ ), ηh
iid∼ N (0, σ2

η) and uncorrelated E[ζih, ηh] = 0.

We simplify the last term with the sum as follows:

h−1∑
j=1

(1− φjx)2 = (1− φx)2 + (1− φ2x)2 + . . . + (1− φh−1)2

= 1 − 2φx + φ2x + 1 − 2φ2x + φ4x + . . . + 1 − 2φh−1 + φ2(h−1)

= (h− 1)− 2(φx + φ2x + · · ·+ φh−1x ) + (φ2x + φ4x + . . .+ φ2(h−1))

= (h− 1)− 2φx(1− φh−1x )

1− φx
+
φ2x(1− φ2(h−1)x )

1− φ2x

3



Substituting back into (B.11), we obtain the expression for the signal variance in

(B.12) Σzh = (σ2
η + σ2

ζ )

(
1− φh

1− φ

)2

+
σ2
v

(1− φ)2

[
(h− 1)− 2φ(1− φh−1)

1− φ
+
φ2(1− φ2(h−1))

1− φ2

]
.

The conditional variance is common across forecasters and thus we denote it as Σz,h.

B.1.3 Relationship between individual vs. public signals

The public signal zh in (10) projects the past release xh+1 to obtain the yearly forecast:

(B.13) zh = h

(
cx

1− φx

)
+

φx(1− φhx)

1− φx

(
xh+1 −

cx
1− φx

)
+

12∑
j=h+1

xj .

In contrast, the private signal zih in (??) projects the noisy observation x̃ih to obtain the yearly forecast (note the

extra φ in the second term of the expression above, reflecting the timing of the information):

(B.14) zih = h

(
cx

1− φx

)
+

1− φhx
1− φx

(
x̂ih −

cx
1− φx

)
+

12∑
j=h+1

xj .

Next, in the first line, we substitute the expression for the noisy signal x̃ih = xh + ζih + ηh. In the second line, we

substitute the expression for the (demeaned) true monthly inflation xh−cx/(1−φx) = φx(xh+1−cx/(1−φx))+εxh.

Lastly, in the third line we define the noise term νih ≡
1−φhx
1−φx (εxh + ηh) and compute its noise.

B.1.4 Relationship between zh and zih

Next, we establish a relationship between the public and the private signals about yearly inflation.

zih = h

(
cx

1− φx

)
+

1− φhx
1− φx

(
xh −

cx
1− φx

+ ζih

)
+

12∑
j=h+1

xj

= h

(
cx

1− φx

)
+

1− φhx
1− φx

(
φx

(
xh+1 −

cx
1− φx

)
+ εxh + ζih

)
+

12∑
j=h+1

xj

= zh + νih, νiη ∼ N

(
0,

[
1− φhx
1− φx

]2
α2(σ2

v + σ2
ζ )

)
.(B.15)

B.1.5 Martingale property of beliefs

Beliefs follow a martingale: expected of future belief equal current beliefs, i.e, E[zih−1|Iih] = zih. First, we use the

relationship between public and private beliefs in (B.15) to set the expectation of individual noise ν to zero.

(B.16) E[zih−1|Iih] = E[zh−1 + νih−1|Iih] = E[zh−1|Iih].

Next, we show that the expected public belief equals current public belief. Substituting in the expression for zh−1

in (10) and applying the expectation conditional on Iih, we get:

E[zh−1|Iih] = (h− 1)
cx

1− φx
+

φx(1− φh−1x )

1− φx

(
x̂ih −

cx
1− φx

)
+ x̂ih +

12∑
j=h+1

xj .
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In the last sum, we separate x̂ih ≡ E[xh|Iih] that is not yet released from the rest of known values for h = 12, ..., h+1.

Finally, we rearrange the expression to recover the expression for individual beliefs zih plus three summands that

cancel out:

E[zh−1|Iih] = h
cx

1− φx
+

1− φhx
1− φx

(
x̂ih −

cx
1− φx

)
+

12∑
j=h+1

xj︸ ︷︷ ︸
= zih

− cx
1− φx

− 1− φx
1− φx

(
x̂ih −

cx
1− φx

)
+ x̂ih︸ ︷︷ ︸

= 0

.

We conclude that E[zh−1|Iih] = zih. As data on monthly inflation arrives, forecasters add the new observations

to their dataset and update their estimates. Belief changes tend to be very persistent, even if the shocks that

caused the beliefs to change are transitory. As a result, any changes in beliefs induced by new information are

approximately permanent (Kozlowski, Veldkamp and Venkateswaran, 2020a,b).

B.2 Proof of Proposition 1

First, using the law of iterated expectations, we condition payoffs on the horizon-specific information sets:

E

[
1∑

h=12

E[(f ih − π)2|Iih] + r E[(f ih − Fh)2|Iih] + κ1{fih 6=fih+1}
∣∣∣Ii0
]

Second, we add and subtract beliefs π̂ih ≡ E[π|Iih] and F̂ ih ≡ E[Fh|Iih] and open the squares:

E

[
1∑

h=12

E[(f ih − π̂ih + π̂ih − π)2|Iih] + r E[(f ih − F̂ ih + F̂ ih − Fh)2|Iih] + κ1{fih 6=fih+1}
∣∣∣Ii0
]

= E

[
1∑

h=12

E[(f ih − π̂ih)2|Iih] + E[(π̂ih − π)2|Iih] + 2E[(f ih − π̂ih)(π̂ih − π)|Iih]
∣∣∣Ii0
]

+ rE

[
1∑

h=12

E[(f ih − F̂ ih)2|Iih] + E[(F̂ ih − Fh)2|Iih] + 2E[(f ih − F̂ ih)(F̂ ih − Fh)|Iih]
∣∣∣Ii0
]

+ κE

[
1∑

h=12

1{fih 6=fih+1}
∣∣∣Ii0
]

Third, we rewrite using conditional variances Σπh ≡ E[(π̂ih − π)2|Iih] and ΣFh ≡ E[(F̂ ih − Fh)2|Iih] and the fact that

beliefs are unbiased E[(π̂ih − π)|Iih] = E[(F̂ ih − Fh)|Iih] = 0:

1∑
h=12

E
[
Σπh + rΣFh + E[(f ih − π̂ih)2|Iih] + rE[(f ih − F̂ ih)2|Iih] + κ1{fih 6=fih+1}

∣∣∣Ii0] .
B.3 Proof of Proposition 2

Given the stationarity of the problem and the stochastic processes, we apply the Principle of Optimality to the

sequential problem and express it as a sequence of stopping-time problems Let τ be the stopping data associated

with the optimal decision given the state (π̂ih, F̂
i
h). The stopping time problem is given by:
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B.4 Frictionless benchmark

As a benchmark, we assume away the adjustment cost and set κ = 0. In this case, the problem becomes static,

and the optimal forecast at horizon h minimizes per-period losses:

(B.17) min
{fih}

(f ih − π̂ih)2 + r(f ih − F̂h)2

The FOC yields:

(B.18) f ih =
1

1 + r

(
π̂ih + rF̂h

)
.

Substituting the Bayesian beliefs yields:

(B.19) f ih = zh + r (cF + φFFh+1) + νih, with νih ∼ N

(
0,

[
1− φhx
1− φx

]2
α2(σ2

x + σ2
ζ )

)
.

where α is the weight on private signals: α ≡ (σ2
ζ+σ

2
η)

−1

(σ2
x)

−1+(σ2
ζ+σ

2
η)

−1 .

Rationality tests The rationality test is

(B.20) π − f ih = γ0 + γ1(f ih − f ih+1) + γ2(Fh − f ih+1) + ηih, E[ηih] = 0.

It can be written as:

(B.21) π − f ih = γ0 + (γ1 + γ2)(f ih − f ih+1) + γ2(Fh − f ih) + ηih, E[ηih] = 0.

or

(B.22) π − f ih = γ0 + (γ1 + γ2)(f ih − f ih+1) + γ2(Fh − F̂h) + γ2(F̂h − f ih) + ηih.

Let us first compute the forecast revision (f ih − f ih+1). From the FOC in the frictionless case:

(B.23) f ih = zh + rF̂h + νih, with νih ∼ N

(
0,

[
1− φhx
1− φx

]2
α2(σ2

x + σ2
ζ )

)
.

we have that revisions are driven by two surprises in beliefs and an iid term:

f ih − f it+1 =
1

1 + r

 (zh − zh+1)︸ ︷︷ ︸
surprise I:

1−φh+1
x

1−φx εxh+1

+ r
(
F̂h − F̂h+1

)
︸ ︷︷ ︸

surprise II

+ (νih − νih+1)

(B.24)

Now we compute the two surprise or news terms.
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• Surprise I—difference in the zh’s—is computed as

zh − zh+1 = (h− (h+ 1))

(
cx

1− φx

)
+
φx(1− φhx)

1− φx

(
xh+1 −

cx
1− φx

)
− φx(1− φh+1

x )

1− φx

(
xh+2 −

cx
1− φx

)
+

12∑
j=h+1

xj −
12∑

j=h+2

xj

= −
(

cx
1− φx

)
+
φx(1− φhx)

1− φx

(
xh+1 −

cx
1− φx

)
− φx(1− φh+1

x )

1− φx

(
xh+2 −

cx
1− φx

)
+

1− φx
1− φx

xh+1

= −(1− φh+1)

(
cx

1− φx

)
+

(1− φh+1
x )

1− φx
(xh+1 − φxxh+2)

= −1− φh+1

1− φx
cx +

1− φh+1
x

1− φx
(cx + εxh+1)

=
1− φh+1

x

1− φx
εxh+1

• Surprise II—difference in the F̂h’s—is computed as

F̂h − F̂h+1 = cF − (1− φF )Fh+1 + εFh + (Fh+1 − F̂h+1)

= cF − (1− φF )Fh+1 + εFh + εFh+1

Next, we compute the consensus gap Fh − f ih. From the AR(1) assumption on the consensus process:

F̂h − f ih = F̂h − zh − rF̂h + νih = (1− r)F̂h − zh + νih(B.25)

Putting everything together, we have:

π − f ih = γ0 + (γ1 + γ2)(f ih − f ih+1) + γ2(Fh − f ih) + ηih

= γ0 +
(γ1 + γ2)

1 + r

[
1− φh+1

x

1− φx
εxh+1 + r(cF − (1− φF )Fh+1) + r(εFh + εFh+1) + νih − νih+1

]
+ γ2

[
εFh + (1− r)F̂h − zh + νih

]
= γ0 +

(γ1 + γ2)

1 + r

[
1− φh+1

x

1− φx
εxh+1 + r(εFh + εFh+1) + νih − νih+1

]
+ γ2

[
εFh + νih

]
+ ηih

+
(γ1 + γ2)

1 + r
r(cF − (1− φF )Fh+1) + γ2[(1− r)F̂h − zh]

= γ0 +
(γ1 + γ2)

1 + r

[
1− φh+1

x

1− φx
εxh+1 + r(εFh + εFh+1) + νih − νih+1

]
+ γ2

[
εFh + νih

]
+ ηih

+
(γ1 + γ2)

1 + r
r(cF − (1− φF )Fh+1) + γ2[(1− r)F̂h − zh]

Bordalo

(B.26) π − f ih = γ0 + γ1(f ih − f ih+1) + ηih, E[ηih] = 0.

Since we have

f ih − f it+1 =
1

1 + r
(zh − zh+1) =

1

1 + r

1− φh+1
x

1− φx
εxh+1(B.27)

then

(B.28) π − f ih = γ0 + γ1

[
1

1 + r

1− φh+1
x

1− φx
εxh+1

]
+ ηih

7



Average forecast errors in frictionless benchmark Alternatively, it can be written as:

(B.29) π − f ih = γ0 + γ1f
i
h − (γ1 + γ2)f ih+1 + γ2Fh + ηih, E[ηih] = 0.

(B.30) eh = π −
∫
f ih di = π − zh − r (cF + φFFh+1)

(B.31) h

(
cx

1− φx

)
+

φx(1− φhx)

1− φx

(
xh+1 −

cx
1− φx

)
+

12∑
j=h+1

xj
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C Computational strategy

Solving the problem requires computing expectations of future beliefs. Since all random variables are normal, this

amounts to knowing the first two moments of these distributions. Next, we characterize these moments. Afterward,

we use these moments to compute expectations.

C.1 Distributions of expected beliefs

The law of motion of individual states implies the following values at h− 1:

π̂ih−1 =

(
Σz,h−1

σ2
o + Σz,h−1

)
µo +

(
1− Σz,h−1

σ2
o + Σz,h−1

)
zih−1(C.32)

F̂h−1 = cF + φFFh(C.33)

Expected consensus beliefs The mean and variance of the distribution of expected consensus beliefs at

h− 1, from the perspective of horizon h (with knowledge up to Fh+1), are:

E[F̂h−1|Iih] = cF + φFE[Fh|Iih] = cF (1 + φF ) + φ2FFh+1(C.34)

Var[F̂ ih−1|Iih] = φ2FVar[Fh|Iih] = φ2Fσ
2
F(C.35)

Expected inflation beliefs The mean and variance of the distribution of expected inflation beliefs at h−1,

from the perspective of horizon h, are:

E[π̂ih−1|Iih] =

(
Σz,h−1

σ2
o + Σz,h−1

)
µo +

(
1− Σz,h−1

σ2
o + Σz,h−1

)
E[zih−1|Iih](C.36)

Var[π̂ih−1|Iih] =

(
σ2
oΣz,h−1

σ2
o + Σz,h−1

)2

Var[zih−1|Iih](C.37)

Now we compute the mean E[zih−1|Iih] and variance Var[zih−1|Iih] of the idiosyncratic signal from the perspective

of horizon h—inputs into the formulas above.

Expected signals We evaluate the formula for zih in (??) at h− 1, and separate the observation xh from the

sum yields:

(C.38) zih−1 = (h− 1)

(
cx

1− φx

)
+

1− φh−1x

1− φx

(
x̃ih−1 −

cx
1− φx

)
+ xh +

12∑
j=h+1

xj .

Then, we take the expectation conditional on Iih:

(C.39) E[zih−1|Iih] = (h− 1)

(
cx

1− φx

)
+

1− φh−1x

1− φx

(
E[x̃ih−1|Iih]− cx

1− φx

)
+ E[xh|Iih] +

12∑
j=h+1

xj

Next, we use the fact that E[x̃ih−1|Iih] = E[xh−1|Iih] (because public and private noise have zero mean) and

E[xh−1|Iih] = cx + φxE[xh|Iih] (by the AR(1) assumption). Substituting into the previous expression:

E[zih−1|Iih] = (h− 1)

(
cx

1− φx

)
+

1− φh−1x

1− φx

(
cx + φxE[xh|Iih]− cx

1− φx

)
+ E[xh|Iih] +

12∑
j=h+1

xj
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Rearranging, we obtain:

E[zih−1|Iih] = h

(
cx

1− φx

)
+ φx

1− φh−1x

1− φx

(
E[xh|Iih]− cx

1− φx

)
+ E[xh|Iih]− cx

1− φx
+

12∑
j=h+1

xj

Lastly, we substitute the AR(1) assumption E[xh|Iih] = cx + φxxh+1:

(C.40) E[zih−1|Iih] = h

(
cx

1− φx

)
+ φ2x

1− φh−1x

(1− φx)2
xh+1 + φx

(
xh+1 −

cx
1− φx

)
+

12∑
j=h+1

xj .

For the variance, we apply the variance operator to (C.38) and note that the terms in the sum disappear

because they are known at h. Thus we are left with two terms.

Var[zih−1|Iih] =

(
1− φh−1x

1− φx

)2

Var[x̃ih−1|Iih] + Var[xh|Iih]

=

(
1− φh−1x

1− φx

)2 (
φ2xVar[xh|Iih] + σ2

x + σ2
ζ + σ2

η

)
+ Var[xh|Iih]

=

(
1− φh−1x

1− φx

)2 (
φ2xσ

2
x + σ2

x + σ2
ζ + σ2

η

)
+ σ2

x

where we use Var[xh|Iih] = σ2
x and the structure of the signal and the AR(1) assumption to write

(C.41) x̃ih−1 = xih−1 + ζih−1 + ηh−1 = cx + φxxh + εxh−1 + ζih−1 + ηh−1.

Computing expectations We approximate the expected continuation value of the value of action and

inaction derived in Proposition 2 as follows

(C.42) E[Vh−1(π̂ih−1, F̂h−1, f
i
h+1)|Iih] =

∑
π̂ih−1

∑
F̂h−1

Vh−1(π̂ih−1, F̂h−1, f
i
h+1)ω(π̂i)ω(F̂ )

where weights {ω(π̂i), ω(F̂ )} are constructed with Gaussian quadrature over grids for π̂i and F̂ .

Integration weights ωF̂ are such that F̂h−1|Iih ∼ N (E[F̂h−1|Iih],Var[F̂ ih−1|Iih]) with

E[F̂h−1|Iih] = cF (1 + φF ) + φ2FFh+1

Var[F̂ ih−1|Iih] = φ2Fσ
2
F

Integration weights ωπ̂i are such that π̂ih−1|Iih ∼ N
(
E[π̂ih−1|Iih],Var[π̂ih−1|Iih]

)
, with

E[π̂ih−1|Iih] =
Σz,h−1

σ2
o + Σz,h−1

µo +
σ2
o

σ2
o + Σz,h−1

h( cx
1− φx

)
+ φ2x

1− φh−1x

(1− φx)2
xh+1 + φx

(
xh+1 −

cx
1− φx

)
+

12∑
j=h+1

xj


Var[π̂ih−1|Iih] =

(
σ2
oΣz,h−1

σ2
o + Σz,h−1

)2
[
σ2
x +

(
1− φh−1x

1− φx

)2 (
φ2xσ

2
x + σ2

x + σ2
ζ + σ2

η

)]
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D Rolling Estimates

Inflation estimates Let the monthly inflation rate xh follow an AR(1) process:

(D.43) xh = cx + φxxh+1 + εxh, εxh ∼ N (0, σ2
x),

where cx is a constant, φx is the persistence parameter, and εxh is an iid normally distributed noise with volatility

σ2
x. We estimate the three parameters (cx, φx, σ

2
x) = (0.013, 0.932, 0.036) using the monthly inflation rate from the

CPI.

Figure XVII plots the resulting estimates and 95% confidence intervals.

Figure XVII – Rolling Estimates for Inflation Parameters
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Consensus estimates Let the consensus Fh follow an AR(1) process:

(D.44) Fh = cF + φFFh+1 + εFh , εFh ∼ N (0, σ2
F ),

where cF is a constant, φF is the persistence parameter, and εFh is an iid normally distributed noise with volatility

σ2
F . We estimate the three parameters (cF , φF , σ

2
F ) = (0.153, 0.913, 0.26) using the monthly consensus from the

survey. Figure XVIII plots the resulting estimates and 95% confidence intervals.

Figure XVIII – Rolling Estimates for Consensus Parameters
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E Cross-sectional statistics by year

Figure XIX – Adjustment Frequency and Size by Horizon and Year
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(c) Forecast errors
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E.1 Accuracy of AR(1) forecast vs. consensus

Since yearly inflation π equals to the sum of year-on-year monthly inflation xh: π =
∑12
h=1 xh, then monthly

inflation releases xh are relevant information strictly related to the forecasted variable. We assume forecasters

believe monthly inflation follows an AR(1) process:8 As noticed by Ih, the public belief is formed using the available

information at each horizon, corresponding to the lagged values of xh. By relying on the available information for

forecasters in real time, we estimate the AR(1) process parameters using a rolling window over the sample years.

The parameters are (cx, φx, σ
2
x) = (0.013, 0.932, 0.036). The estimates are presented in Appendix D. Given these

estimates, we compute our proxy for public beliefs each month.

Given the estimates, we compare the forecast errors from the AR(1) project and the average prediction of

forecasters (consensus). We compute the evolution of forecast errors over the horizon using these two forecasts,

where

(E.45) eh = π − fh, where fh ∈ {zh, Fh}.

The results are presented in Figure XX.

As expected, the accuracy of the AR(1) process increases monotonically as the release date of inflation ap-

proaches. This feature is particularly salient for normal years. As more relevant information is accumulated, the

accuracy improvements are notorious. If we focus on normal years at longer and medium horizons, the forecast

error of the consensus forecast is relatively better than the AR(1). This could be caused by the possible combina-

tion of public and private information from forecasters that makes predictions more accurate. However, at shorter

horizons, the accuracy of the public belief is slightly better than the average prediction. Interestingly, the consensus

is consistently more accurate during turbulent years.

8Although participants interpret public information differently, we argue that the prediction that builds on the
AR(1) is a tractable and accurate proxy for a fixed-event forecast. We provide further discussion about the features
and accuracy of the proxy in Appendix YY. See Giacomini, Skreta and Turen (2020).
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Figure XX – Accuracy of AR(1) proxy and Consensus Forecasts
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F Hazard Rates

F.1 By number of Revisions

Building on the discussion in Section 2.5, we compute the hazard rates conditioning on the number

of revisions the forecasters have done in the past. In this sense, we explore whether the age-

dependence of updating probabilities changes as a function of the revision being the first, second,

third, and so forth. This is shown in Figure XXI.

Figure XXI – Hazard Rates by revisions

(a) Hazard Rate: 1st, 2nd and 3rd Rev.
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(b) Hazard Rate: 4th, 5th and 6th Rev.
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Notes: Bloomberg data.

Independently of the revision, the decaying pattern of the hazard rates remains across specifi-

cations. While the chance of an immediate revision right at age one is roughly the same across the

number of revisions (between 45% and 50%), the likelihood drops as more revisions accumulate
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throughout the year. Although the relations are not monotonic, in most cases, the age proba-

bilities are not statistically different across groups. We interpret the decaying probability as a

function of revisions as an implication of both the fixed-event scheme, whereas age growths, we

get closer to the final release date, and the fact that, as time passes, we accumulate more relevant

information to predict the annual inflation.

F.2 By forecasters’ type

As in the previous section, we can also compute the hazard rate conditioning on the four types

of forecasters. This is shown in Figure XXII. The hazard rates for forecasters belonging to either

“Financial & Investment” or “Economic Consulting” are the steepest relative to the other two

groups. Hence, although they decrease, the updating probability is less sensible to the age of both

Banks and Universities.

Figure XXII – Hazard Rates by Groups
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Notes: Bloomberg data. Notes: Normal years = 2010-2019. Turbulent years = 2008-2009 and 2020-21.
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G Gap to “Top Forecasters”

Although forecasters participating in the Bloomberg survey can observe the consensus forecast in

real-time, the average prediction of participants is not necessarily the statistic they aim to be close

to. While the consensus acts as a focal point for participants, they could have incentives for being

close to a different subset of forecasters, for instance, the group of the most accurate ones. Thus,

we revisit the estimation for the extensive and intensive margin of Sections 5.1 and 5.2, but now

rely on an alternative measure of the consensus gap.

Let FT,h be the average forecast at each h for the group of ten forecasters that provide the

most accurate predictions (i.e., the lowest forecast error) the year before9. Then we define gaps

to the top ciT,h as

(G.46) ciT,h ≡ f ih+1 − FT,h.

The idea of ciT,h is to assess whether the relevant focal point is somehow related to past (or

historical) accuracy rather than the average of others. With this new measure, we repeat the

extensive and intensive margin estimations, shown in Table IX and X, respectively.

Consistent with the baseline results, the gap to the average predictions of the “top-ten” fore-

casters constitutes a relevant adjustment predictor. A positive gap not only reduces the probability

of positive revisions but also significantly increases the probability of downward revisions, closing

the gap. The effect of downward revisions was only mildly significant in the baseline specification,

while in this case, it becomes highly significant. Concerning the intensive margin, the results

remain with respect to the baseline specification, in particular for the persistence of revisions and

the willingness to close the two gaps once a revision is decided.

The results thus support the presence of strategic considerations to understand the behavior of

forecast revisions. In this sense, the motivation is not to take a stance on the specific object fore-

casters are following but rather to stress that forecasters have incentives to report their forecasts

close to some (observed) focal point.

9We compute the group of the best ten forecasters by ranking their forecast error, during the previous year, at
h = 1
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Table IX – Extensive Margin Determinants

Update > 0 Update < 0 Update > 0 Update < 0 Update > 0 Update < 0 Update > 0 Update < 0

ciT,h -0.067** 0.070** -0.067** 0.071**

(0.022) (0.023) (0.021) (0.022)
bih -0.012 0.041** -0.011 0.036**

(0.018) (0.017) (0.017) (0.015)

ciT,h
+

-0.033*** 0.044*** -0.034*** 0.046***

(0.004) (0.010) (0.004) (0.011)

ciT,h
−

-0.186 0.242* -0.178 0.223**

(0.134) (0.109) (0.128) (0.098)

bih
+

-0.001 0.036** 0.000 0.031**
(0.007) (0.011) (0.006) (0.010)

bih
−

0.195 -0.070 0.197 -0.080
(0.110) (0.107) (0.111) (0.112)

Ageih 0.024*** 0.025*** 0.022*** 0.026*** 0.025*** 0.025*** 0.022*** 0.027***
(0.005) (0.007) (0.005) (0.008) (0.006) (0.007) (0.005) (0.008)

sh
MP -0.143 0.386 -0.096 0.338

(0.453) (0.610) (0.442) (0.651)
πh+1 0.002 -0.004 0.003 -0.003 0.003 -0.014 0.004 -0.013

(0.007) (0.018) (0.009) (0.020) (0.007) (0.021) (0.008) (0.021)
πh+2 0.017 0.035* 0.014 0.040** 0.016 0.030** 0.013 0.034**

(0.018) (0.017) (0.013) (0.016) (0.017) (0.013) (0.011) (0.012)
Constant 0.116** 0.101 0.082* 0.116* 0.115** 0.137* 0.082** 0.151**

(0.043) (0.063) (0.040) (0.060) (0.040) (0.063) (0.034) (0.060)

Observations 7,619 7,619 7,619 7,619 7,207 7,207 7,207 7,207
Forecaster FE X X X X X X X X
Time FE X X X X X X X X
Macro Controls X X X X X X X X

Standard errors (in parenthesis) are robust to heteroskedasticity and clustered at both forecaster and time level.
Macro controls include lagged vales of the growth of industrial production and the 3-month Treasury rate in the US.

*** p<0.01, ** p<0.05, * p<0.1

H Forecast Rationality Test
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Table X – Intensive Margin Determinants

Without Zero Revisions With Zero Revisions
Revih Revih Revih Revih Revih Revih Revih Revih

Revih+1 -0.248*** -0.198*** -0.254*** -0.203*** -0.069** -0.051** -0.073** -0.054**
(0.068) (0.046) (0.070) (0.043) (0.027) (0.017) (0.028) (0.017)

ciT,h -0.177*** -0.178*** -0.112** -0.119**

(0.045) (0.046) (0.042) (0.046)
bih -0.038** -0.033** -0.022* -0.015

(0.016) (0.014) (0.011) (0.013)

ciT,h
+

-0.118*** -0.121*** -0.075*** -0.081***

(0.011) (0.011) (0.018) (0.022)

ciT,h
−

-0.260 -0.248 0.359** 0.351**

(0.228) (0.213) (0.145) (0.138)

bih
+

-0.036*** -0.033*** -0.025** -0.020
(0.010) (0.009) (0.009) (0.012)

bih
−

0.369* 0.369* -0.020 -0.019
(0.194) (0.200) (0.055) (0.055)

Ageih 0.002 0.002 0.002 0.002 0.001 -0.001 0.001 -0.001
(0.011) (0.011) (0.011) (0.011) (0.006) (0.006) (0.007) (0.006)

sh
MP -0.333 -0.099 -0.578 -0.389

(1.085) (1.079) (0.403) (0.397)
πh+1 -0.008 -0.014 -0.001 -0.008 -0.004 -0.006 -0.002 -0.004

(0.024) (0.027) (0.028) (0.030) (0.009) (0.012) (0.011) (0.013)
πh+2 0.017 0.010 0.020 0.013 -0.008 -0.011 -0.008 -0.011

(0.037) (0.042) (0.036) (0.041) (0.015) (0.015) (0.013) (0.015)
Constant -0.010 -0.045 -0.031 -0.065 0.024 0.010 0.018 0.003

(0.107) (0.128) (0.109) (0.131) (0.044) (0.058) (0.045) (0.062)

Observations 3,031 3,031 2,882 2,882 7,619 7,619 7,207 7,207
Forecaster FE X X X X X X X X
Time FE X X X X X X X X
Macro Controls X X X X X X X X

Standard errors (in parenthesis) are robust to heteroskedasticity and clustered at both forecaster and time level.
Macro controls include lagged vales of the growth of industrial production and the 3-month Treasury rate in the US.

*** p<0.01, ** p<0.05, * p<0.1

I Correlation between the gaps

As expected, both the belief and the consensus gap are highly correlated in the data. This is

shown in Figure XXIII below. In fact, in the sample, 88% of the time, the gaps share the same

sign.
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Table XI – Efficiency Tests in the Literature

Coibion-Gorodnichencko (2015) Bordalo et.al (2020) Broer and Kohlhas (2022)

Horizon Constant Revision F-test Constant Revision F-test Constant Revision Consensus F-test

1 -0.0341 5.7198 0.0720 -0.0657 -0.5379 0.0008 -0.0651 -0.2359 0.0026 0.0008
(.0418) (2.7197) (.0003) (.1092) (.0220) (.1101) (.0133)

2 -0.1001 7.1433 0.0004 -0.0665 -0.3284 0.0080 -0.0648 -0.1006 0.0011 0.0184
(.0233) (1.0654) (.0008) ( .0969) (.0227) (.2296) (.0136)

3 -0.0318 5.9955 0.0007 -0.0657 -0.5048 0.0001 -0.0555 -0.2895 0.0001 0.0078
(.0426) (1.0723) (.0002) (.0729) (.0236) (.1396) (.01415)

4 -0.0172 7.9209 0.2830 -0.0707 -0.3527 0.0022 -0.0678 -0.1225 0.0076 0.0112
(.0775) (5.3897) (.00001) (.0833) (.02543) (.1012) (.0153)

5 -0.1020 -0.5235 0.3723 -0.0820 -0.3501 0.0030 -0.1044 -0.2546 0.0221 0.0000
(.1352) (2.1798) ( .0001) (.0867) ( .0286) (.0674) (.0169)

6 -0.0812 1.4816 0.0458 -0.1054 -0.4286 0.0012 -0.1676 -0.2687 0.0440 0.0000
(.1394) (2.2645) (.00112) (.0916) (.0285) (.1175) (.01667)

7 -0.0441 2.9080 0.0023 -0.1363 -0.5388 0.0013 -0.2014 -0.3205 0.0476 0.0000
(.1261) (1.2488) (.0037) (.1172) (.0273) (.1273) (.0159)

8 -0.1902 3.4327 0.0050 -0.1471 -0.5098 0.0020 -0.2788 0.0075 0.0783 0.0000
(.0622) (1.2121) (.0006) (.1186) (.0282 (.0912) (.0161)

9 -0.2616 5.8216 0.0019 -0.1326 -0.3888 0.0396 -0.3447 0.0146 0.1217 0.0000
(.0736) (1.0557) (.0042) (.1616) (.0328) (.12729 (.01879)

10 -0.2470 4.3845 0.0059 -0.1031 -0.4776 0.0011 -0.4016 0.2655 0.1671 0.0000
(.0695) (1.0055) (.0034) (.1016) (.0433) (.0805) ( .0247)

11 -0.0247 2.2792 0.0236 -0.1018 -0.5368 0.0000 -0.5377 -0.1216 0.2778 0.0000
(.1140) (1.0906) (.00007) (.0619) (.0507) (.1007) (.0293)

12 0.1126 2.5178 0.0010 -0.1590 -0.8157 0.0016 -0.4858 0.1883 0.2381 0.0000
(.2179) (.9034) (.0142) (.1737) (.0717) (.1163) (.0363)

Notes: The first columns of the table reports the estimates of running Coibion and Gorodnichenko (2015)’s aggregate Rationality Test.
Standard are estimated using a HAC matrix. The middle columns present the results of Bordalo et al. (2020)’s individual test. Finally,
the last columns shows the estimates of Broer and Kohlhas (2022). The panel estimations include individual fixed-effects. Standard errors
are robust and clustered by forecaster and time. All the tests are estimated using the “Normal years” sample (2010-2019).
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Figure XXIII – Correlation between the gaps
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