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A B S T R A C T

We study the optimal monetary policy problem in a New Keynesian economy with a zero lower
bound (ZLB) on the nominal interest rate, when the steady state natural rate (𝑟∗) becomes
permanently negative. We show that the optimal policy aims to approach gradually a new steady
state with positive average inflation. Around that steady state, the optimal policy implies well
defined (second-best) paths for inflation and output in response to shocks to the natural rate.
Under plausible calibrations, the optimal policy implies that the nominal rate remains at its
ZLB most of the time. Despite the latter feature, the central bank can implement the optimal
outcome as a unique equilibrium by means of an appropriate nonlinear interest rate rule. In
order to establish that result, we derive sufficient conditions for local determinacy in a general
model with endogenous regime switches.

1. Introduction

Over the past decade, a growing consensus has emerged among academic economists and policymakers pointing to a substantial
decline in the average natural rate of interest, a variable often referred to as 𝑟∗. Some of the likely sources of that decline – including
lower productivity growth, demographic factors, higher inequality or enhanced precautionary savings induced by higher uncertainty
– suggest that such a downward trend is unlikely to be reversed in the near future.1

A low 𝑟∗ has important implications for monetary policy, due to the presence of a zero lower bound (ZLB) on the nominal interest
rate. Thus, and given the inflation target, a low 𝑟∗ will generally hamper the ability of monetary policy to stabilize the economy,
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1 See, e.g. Eggertsson et al. (2019) for a model-based analysis of some of the forces underlying the decline in 𝑟∗. Rachel and Smith (2017) and Rachel and
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close to target.
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bringing about more frequent episodes in which the ZLB becomes binding and the economy plunges into a protracted recession
with below-target inflation. Not surprisingly, the evidence of a decline in 𝑟∗ has been a key motivation behind the monetary policy
strategy reviews undertaken by many central banks in recent years.

On the research front, and as discussed in the literature review below, several authors have studied the problem of optimal
monetary policy in the face of shocks that drive the natural rate of interest temporarily into negative territory. A common finding
of those analyses is that an optimizing central bank will keep the short-term nominal rate at zero during those episodes, and even
for some time after the natural rate has returned to positive values – with the latter feature often referred to as ‘‘lower for longer’’
policy. In all of those analyses, however, the natural rate tends to gravitate towards a positive mean, i.e. 𝑟∗ > 0. By contrast, in
the present paper we study the problem of optimal monetary policy under the ZLB constraint when the mean of the natural rate
becomes permanently negative, i.e. 𝑟∗ < 0.

As discussed below, that environment is of particular interest since the coexistence of a negative 𝑟∗ with the ZLB constraint makes
it impossible to support the (first-best) zero inflation outcome even in the deterministic case, i.e. in the absence of fluctuations in
the natural rate. In the latter case, the optimal policy implies positive inflation and a binding ZLB constraint in the deterministic
steady state, a feature that is absent from conventional analyses that assume a positive 𝑟∗, in which the deterministic steady state is
characterized by zero inflation and a strictly positive nominal rate. The focus of our analysis lies, however, on the stochastic case,
i.e. in the optimal policy in the presence of fluctuations in the natural rate around 𝑟∗ < 0, and on the implications of that policy for
the nominal rate, inflation and the output gap.

While the assumption of a negative 𝑟∗ is at odds with the predictions of the standard macro framework with an infinite-lived
representative consumer, it can be microfounded once the latter assumption is relaxed. Thus, for instance, models with overlapping
generations, or heterogeneous agents and idiosyncratic shocks, can generate a negative 𝑟∗ under certain parameterizations.
Furthermore, we believe the assumption of a negative 𝑟∗ is more than a theoretical curiosum: recent estimates of the evolution
of the natural rate in advanced economies display a downward trend that has attained negative territory in some cases.2 In any
event, the relevance of a negative 𝑟∗ can hardly be dismissed as a real possibility in a not too distant future, if the trends in some
of the fundamental forces behind the recent decline in the natural rate were to persist or even strengthen further.

As much of the related literature, we cast our analysis of the optimal monetary policy problem in the context of an otherwise
standard New Keynesian model subject to a ZLB constraint and a central bank loss function characterized by a conventional dual
mandate.3 A number of interesting results emerge from our analysis.

Focusing first on the deterministic case, we show that in response to an unanticipated decline in 𝑟∗ which brings the latter
permanently into negative territory, the optimal policy aims at steering the economy gradually towards a new steady state
characterized by positive inflation. The choice of a gradual transition (rather than an immediate jump to the new steady state)
makes it possible for inflation to remain closer to zero – its efficient value – for a longer period, which is welfare improving.

Secondly, we solve for the paths of inflation and the output gap implied by the optimal (second-best) policy in the presence of
fluctuations in the natural rate of interest around 𝑟∗ < 0. Not surprisingly, the presence of the ZLB constraint prevents the central
bank from fully stabilizing inflation and the output gap, so the first-best outcome cannot be attained. Most interestingly, we show
that if either the volatility of the natural rate is not too large (for any given 𝑟∗) or if 𝑟∗ is low enough (for any assumed volatility
of the natural rate), then the optimal policy implies a persistently binding ZLB constraint, with the nominal rate remaining at zero
most of the time (all the time, in some of our simulations). Behind the appearance of extreme passivity suggested by a near-constant
policy rate, however, there is still a meaningful optimal policy problem facing the central bank, which yields unique optimal paths
for inflation and the output gap.4

Thirdly, we show that average inflation under the optimal policy is decreasing and convex in 𝑟∗. The resulting relation balances
three requirements: (i) the intrinsic desirability of price stability, which calls for inflation being as close to zero as possible, (ii) the
equilibrium requirement that, on average, inflation must be no lower than −𝑟∗ due to the ZLB constraint, and (iii) a precautionary
motive linked to the desire to limit the incidence of binding ZLB episodes. Thus, when 𝑟∗ is positive and large the precautionary
motive is negligible and optimal average inflation is zero. As 𝑟∗ approaches zero from above, optimal average inflation becomes
positive due to a more significant precautionary motive, but it remains very low and responds less than one-for-one to changes
in 𝑟∗. The more 𝑟∗ moves into negative territory, the more optimal average inflation approaches −𝑟∗, its minimum average value
consistent with the ZLB constraint, due to the increasing weight of the price stability motive resulting from the convexity of the loss
function. The convergence of optimal average inflation to −𝑟∗ mirrors the convergence of the average nominal rate to zero, and is
thus associated with a near-permanently binding ZLB constraint.

In order to characterize that finding more precisely, we introduce the concept of precautionary inflation, which we define as the
difference between optimal average inflation in the presence of natural rate shocks and optimal inflation in the deterministic case.

2 A recent paper by Davis et al. (2023) uses a market-based approach to estimate the Postwar evolution of 𝑟∗ in ten industrialized economies. Their estimates
of 𝑟∗ in 2020 are negative in 8 out of the 10 countries Evidence on global 𝑟∗ in Del Negro et al. (2019) points to a probability of negative values between
2000 and 2016 (the last period of their sample) in the 30–50 percent range. Brand and Mazelis (2019) use a semi-structural model incorporating a Taylor rule,
and also uncover negative estimates of 𝑟∗ in the US and the euro area from 2010 to the end of their sample period (2018).

3 We use the textbook New Keynesian model as a framework in which we revisit the optimal policy problem in the presence of a negative 𝑟∗. This is meant to
highlight in a most transparent way the key qualitative implications of a negative 𝑟∗ for monetary policy. We believe that adding additional ‘‘realistic’’ features to
the model (e.g. imperfect credibility, parameter uncertainty, investment, etc.) would complicate the analysis without qualitatively altering or shedding additional
light on those key implications.

4 This is because the constant interest rate policy is consistent with a continuum of paths for output and inflation, which can be welfare-ranked.
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That measure can be interpreted as capturing the central bank’s willingness to accept a higher average inflation in order to limit
the incidence of binding ZLB episodes. We show that precautionary inflation displays a non-monotonic relation with 𝑟∗. Thus, when
𝑟∗ is very high, the risk of a binding ZLB is low, and there is no need to deviate from the first-best outcome of zero inflation at
all times. At the other extreme, when 𝑟∗ is sufficiently negative and, hence, the lower bound on average inflation is already high,
the central bank has little incentive to raise average inflation further above that lower bound, and thus chooses to keep average
inflation at the same level as in the deterministic case. By contrast, precautionary inflation is strictly positive for a range of 𝑟∗ values
closer to zero, for which optimal inflation in the deterministic case is either zero (if 𝑟∗ ≳ 0) or positive but low (if 𝑟∗ ≲ 0), since in
that case the costs of deviations from full price stability are relatively low, and are outweighed by the gains from a lower incidence
of a binding ZLB made possible by the additional policy space created by a higher average inflation and nominal rate.

Fourthly, we describe one particular way in which the central bank can implement the optimal (second best) policy. More
specifically we propose a nonlinear policy rule which calls for one-sided adjustments in the nominal rate in response to (off-
equilibrium) deviations from the desired inflation and output gap paths. In order to establish the implementability of those paths
as a unique equilibrium under the proposed rule, we derive and exploit a sufficient condition for local determinacy for a relatively
general class of models with endogenous regime switches. We believe the latter finding has some independent interest, beyond the
application at hand, and complements existing results in the literature for exogenous regime switching models.

The rest of the paper is organized as follows. The remaining of the present section provides a brief review of the related
literature. Section 2 formulates the optimal policy problem and derives the associated optimality conditions. Section 3 analyzes
the economy’s (deterministic) transitional dynamics under the optimal policy. Section 4 characterizes the fluctuations of inflation
and output around the steady state, in response to natural rate shocks. Section 5 discusses the implementation of the optimal plan,
deriving sufficient conditions on the coefficients of a proposed interest rate rule to support the optimal plan as a unique equilibrium.
Section 6 concludes.

1.1. Related literature

Our paper is related to a branch of the literature that studies the optimal design of monetary policy in the presence of a
ZLB constraint on the nominal rate. Since Krugman (1998), a number of articles have studied optimal monetary policy with an
occasionally binding zero lower bound (ZLB) on the nominal interest rate. Closest to us is the work by Eggertsson and Woodford
(2003), Jung et al. (2005), Adam and Billi (2006), and Nakov (2008), who analyze the problem of optimal policy under commitment
in the basic New Keynesian model with a ZLB constraint.

A different line of work has focused on the implications of the ZLB for the optimal choice of an inflation target, conditional on
an assumed simple interest rate rule. Relevant papers include Coibion et al. (2012), Bernanke et al. (2019), and Andrade et al. (2020,
2021).5 In all the papers above, however, the natural interest rate remains negative only temporarily, with the binding ZLB being
a transitory phenomenon. In contrast, the analysis of the present paper assumes a negative 𝑟∗, and hence a permanent “secular
stagnation” environment, with a ZLB that is binding most of the time, with the possible exception of brief periods in the wake of
large increases in the natural rate.6

A branch of the literature has uncovered the possibility of multiple equilibria in the presence of the ZLB. A seminal contribution
in that literature is Benhabib et al. (2001), which shows the necessary existence of two steady states when the central bank follows a
Taylor rule with a ZLB constraint, with the low inflation, low interest rate steady state being globally stable.7 Armenter (2019) and
Nakata and Schmidt (2019, 2022) show that the multiplicity property may arise also when the central bank follows an optimal
discretionary (time-consistent) policy, which leads to the accommodation of occasional declines in private sector’s confidence,
triggering a persistent liquidity trap episode. Our analysis, by contrast, focuses on the optimal policy with commitment, which
yields a unique (second-best) equilibrium allocation.

Our finding that the optimal policy requires that the nominal rate remains constant at the ZLB most of the time raises the
possibility of equilibrium indeterminacy and the challenge of finding a way to implement the constrained-efficient outcome chosen
by the central bank. This leads us to propose a nonlinear policy rule which generates a representation of the deviations from
the optimal plan in the form of a system with switches between regimes, and for which we study the conditions for uniqueness
of its solution. From that perspective, the present paper is related to a branch of the literature that studies the conditions for

5 In that literature, the inflation target is usually defined as a parameter of the assumed interest rate rule which has a natural interpretation as an inflation
arget. Thus, for example, 𝜋∗ is interpreted as the inflation target in the simple interest rate rule

𝑖𝑡 = max{0, 𝑟∗ + 𝜋∗ + 𝜙𝜋 (𝜋𝑡 − 𝜋∗)}

ith an occasionally binding ZLB, equilibrium average inflation is generally below the target 𝜋∗ under interest rate rules of this type. By contrast, in the present
paper we do not assume a simple rule and consider instead the fully optimal policy and report the average inflation associated with the implied equilibrium.
Coibion et al. (2012) also analyze the case of optimal discretionary policy, in addition to a simple Taylor rule.

6 The environment analyzed in the present paper is reminiscent of that described in Summer’s celebrated speech on secular stagnation at the 2013 IMF
annual Research Conference (Summers, 2015).

7 Aruoba et al. (2018) estimate a small-scale New Keynesian model with that multiplicity property, in which the economy potentially fluctuates between
the two steady states in response to sunspot shocks. For Japan (though not the U.S.) they find evidence of an expectations-driven transition to the liquidity
trap steady state. Their evidence for the U.S. on the other hand suggests that the ZLB episode in that economy may instead have been the result of adverse
fundamental shocks Bullard (2020) makes a case for the relevance of that analysis to the Japanese and U.S. economies. Mertens and Ravn (2014) examine the
differential implications of fiscal policy interventions in a neighborhood of the two steady states.
3
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equilibrium determinacy in regime-switching models. Applications of this literature have typically focused on regime switches driven
by exogenous stochastic variations in the coefficients of a Taylor-type interest rate rule, which are often assumed to follow a finite-
state Markov process. Prominent examples include Davig and Leeper (2007), Farmer et al. (2009) and Barthélemy and Marx (2019).
The main difference in our approach is that under our assumed interest rate rule the model’s implied regime switches are endogenous,
i.e. the regime is a function of the state.8 That endogeneity arises as a consequence of the particular nonlinearity embedded in
the interest rate rule that implements the optimal allocation, which makes the effective coefficients of the corresponding linear
model depend on the (off-equilibrium) deviations of inflation and output from their optimal paths.9 We believe our analysis may
be of interest beyond the present application, since its validity should carry over to a wide range of linear stochastic models with
endogenous regime switches.

2. The optimal monetary policy problem

The equilibrium conditions describing the economy’s non-policy block are assumed to be given by

𝜋𝑡 = 𝛽E𝑡{𝜋𝑡+1} + 𝜅𝑦𝑡 (1)

𝑦𝑡 = E𝑡{𝑦𝑡+1} −
1
𝜎
(𝑖𝑡 − E𝑡{𝜋𝑡+1} − 𝑟𝑛𝑡 ) (2)

for 𝑡 = 0, 1, 2,… where 𝜋𝑡 denotes inflation, 𝑦𝑡 is the output gap, 𝑖𝑡 is the short-term nominal rate and 𝑟𝑛𝑡 is the natural rate of
interest.10 Eq. (1) is the familiar New Keynesian Phillips curve, which can be derived from the aggregation of firms’ price setting
decisions in an environment with price rigidities à la Calvo (1983). Eq. (2) is the so-called dynamic IS equation, which results from
combining an Euler equation for (log) aggregate consumption, a goods market clearing condition and an equation describing the
evolution of output and the real interest rate under flexible prices.11

Variations in the natural rate of interest 𝑟𝑛𝑡 are assumed to be described by

𝑟𝑛𝑡 = 𝑟∗ + 𝑧𝑡 (3)

where {𝑧𝑡} follows an exogenous 𝐴𝑅(1) process with zero mean, autoregressive coefficient 𝜌𝑧 and innovation variance 𝜎2𝑧 . The
unconditional mean of the natural rate is given by 𝑟∗, which coincides with the real interest rate, 𝑟𝑡 ≡ 𝑖𝑡−E𝑡{𝜋𝑡+1}, in the deterministic
teady state. In much of the analysis below we assume

𝑟∗ < 0 (4)

In a companion appendix available as online supplementary material, we formally describe an environment where (1) and (2)
btain as equilibrium conditions, and where the steady state real interest rate may be negative. The proposed environment is a
ersion of a New Keynesian model with overlapping generations (NK-OLG) à la Blanchard-Yaari, as developed in Galí (2021).12

n that environment the steady state real interest is not fully pinned down by the discount rate; instead it also depends on the
xtent to which income of any given cohort declines over time as a result of retirement or other shocks that make individuals leave
mployment permanently (e.g. skill obsolescence). That phenomenon tends to enhance savings, lowering the steady state real rate,
hich may take a negative value.13

The monetary authority is assumed to choose at 𝑡 = 0 a state-contingent sequence {𝑦𝑡, 𝜋𝑡}∞𝑡=0 that minimizes the welfare loss
unction

1
2
E0

∞
∑

𝑡=0
𝛽𝑡

(

𝜋2
𝑡 + 𝜗𝑦2𝑡

)

ubject to the sequence of constraints (1) and (2), as well the ZLB constraint

𝑖𝑡 ≥ 0 (5)

all for 𝑡 = 0, 1, 2, ..14

8 Barthélemy and Marx (2017) also allow for endogeneity of the regime switches but only of a sort with continuous transition probabilities, which rules out
he threshold switches that arise naturally in models with a ZLB constraint like ours.

9 One drawback of our approach, of limited consequence in our particular application, is that it only allows us to derive sufficient conditions for determinacy,
i.e. we cannot establish necessity, in contrast with the papers mentioned above.

10 See, e.g., Woodford (2003) or Galí (2015) for a derivation of (1) and (2) in a standard New Keynesian model. In a companion appendix, we show that
similar equilibrium conditions obtain in an OLG version of the New Keynesian model that allows for a negative steady state real rate, as considered below.

11 Note that we write the previous equations in levels – as opposed to deviations from steady state values – since the steady state is endogenous in our model,
and the result of a policy choice. While (1) is derived as a first-order approximation around a zero inflation steady state, we assume the approximation remains
valid for small deviations from that steady state, as considered in our analysis.

12 The analysis in Galí (2021) focuses on the possibility of rational bubbles in that environment. Here we assume away that possibility and focus instead on
a bubbleless version of the NK-OLG model.

13 As is well known, other departures from the representative consumer assumption are also consistent with a negative steady state real rate, e.g., models with
heterogeneous households subject to idiosyncratic income shocks, as in Aiyagari (1994) or Huggett (1993). In contrast with the NK-OLG model, those models
do not generally yield an aggregate Euler equation like (2), though the latter has been shown to constitute a good approximation under plausible calibrations
(see, e.g., Debortoli and Galí (2022)).

14 As discussed in the companion appendix, the previous loss function can be microfounded as the second order approximation to the expected welfare losses
of individuals currently alive in a New Keynesian model with overlapping generations.
4



Journal of Monetary Economics 142 (2024) 103518R. Billi et al.
Note that the ZLB constraint can be rewritten in terms of inflation and the output gap as:

𝑟𝑛𝑡 + E𝑡{𝜋𝑡+1} + 𝜎(E𝑡{𝑦𝑡+1} − 𝑦𝑡) ≥ 0 (6)

for 𝑡 = 0, 1, 2, ..
The (discounted) Lagrangian is given by:

 = E0

∞
∑

𝑡=0
𝛽𝑡

[ 1
2
(

𝜋2
𝑡 + 𝜗𝑦2𝑡

)

− 𝜉1,𝑡(𝜋𝑡 − 𝜅𝑦𝑡 − 𝛽𝜋𝑡+1) − 𝜉2,𝑡[𝜋𝑡+1 + 𝜎(𝑦𝑡+1 − 𝑦𝑡)]
]

The associated optimality conditions are:

𝜋𝑡 = 𝜉1,𝑡 − 𝜉1,𝑡−1 + 𝛽−1𝜉2,𝑡−1 (7)

𝜗𝑦𝑡 = −𝜅𝜉1,𝑡 − 𝜎𝜉2,𝑡 + 𝜎𝛽−1𝜉2,𝑡−1 (8)

𝜉2,𝑡 ≥ 0 (9)

𝜉2,𝑡
[

𝑟𝑛𝑡 + E𝑡{𝜋𝑡+1} + 𝜎(E𝑡{𝑦𝑡+1} − 𝑦𝑡)
]

= 0 (10)

which should be interpreted as holding for each date and state of nature. The previous conditions, combined with (1), (2), (3), (6)
and initial values for 𝜉1,−1 and 𝜉2,−1 (which will depend on the particular problem analyzed) describe the economy’s equilibrium
under the optimal policy.

In the next two sections, we characterize that equilibrium and provide simulations for a calibrated version of the model. First
we study the transitional dynamics in a deterministic environment after an unanticipated shock to 𝑟∗. Then we introduce shocks to
the natural rate of interest and we look at the economy’s response to those shocks in a neighborhood of the new (stochastic) steady
state, as implied by the optimal policy.

3. Transitional dynamics under the optimal policy

In the present section we focus on the equilibrium implied by the optimal policy with full commitment (Ramsey) in a deterministic
environment. More specifically, we assume that the economy had been in a (deterministic) steady state for some time, with
𝑟𝑛𝑡 = 𝑟∗ > 0, 𝜋𝑡 = 0 and 𝑖𝑡 = 𝑟∗, for 𝑡 = −1,−2,…This is of course the (trivial) outcome of the optimal policy when 𝑟∗ > 0 and
in the absence of shocks.15

At 𝑡 = 0 the economy is assumed to be hit by an unanticipated (MIT-type) shock that lowers 𝑟∗ permanently, turning it negative,
i.e. 𝑟∗ < 0 for 𝑡 = 0, 1, 2,…We start by characterizing the new steady state under the optimal policy. In that steady state we must
have 𝑖 = 𝜋 + 𝑟∗ ≥ 0 or, equivalently, 𝜋 ≥ −𝑟∗ > 0. In addition, it follows from (7)–(10) that under the optimal policy:

𝜋 = 𝛽−1𝜉2 ≥ 0

𝜗𝑦 = −𝜅𝜉1 + 𝜎(𝛽−1 − 1)𝜉2

𝜉2 ≥ 0 ; 𝑟∗ + 𝜋 = 0 ; 𝜉2(𝑟∗ + 𝜋) = 0

It is easy to check that the optimal policy requires that 𝑖 = 0 in the new steady state. To see this, note that if 𝑖 > 0 then 𝜉2 = 0
implying 𝜋 = 0, which is inconsistent with a steady state. Thus the steady state under the optimal policy must satisfy:

𝜋 = −𝑟∗ > 0

𝑦 =
1 − 𝛽
𝜅

𝜋 = −
1 − 𝛽
𝜅

𝑟∗ > 0

𝜉2 = 𝛽𝜋 = −𝛽𝑟∗ > 0

𝜉1 = − 𝜗
𝜅
𝑦 +

𝜎(𝛽−1 − 1)
𝜅

𝜉2

= −
(1 − 𝛽)

𝜅

(

𝜎 − 𝜗
𝜅

)

𝑟∗

15 Formally, this can be determined by evaluating (1) and the optimality conditions (7) through (10) at a steady state with 𝑟∗ > 0. The only solution to that
5
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Note that this steady state is (globally) unique. This contrasts with the multiplicity of steady states that generally arise in the
resence of the ZLB constraint when the central bank follows a Taylor-type interest rate rule as opposed to the optimal policy under
ommitment that characterizes our analysis.16

Next we study the transitional dynamics, i.e. we characterize the equilibrium paths that satisfy

𝜋𝑡 = 𝛽𝜋𝑡+1 + 𝜅𝑦𝑡

𝜋𝑡 = 𝜉1,𝑡 − 𝜉1,𝑡−1 + 𝛽−1𝜉2,𝑡−1

𝜗𝑦𝑡 = −𝜅𝜉1,𝑡 − 𝜎𝜉2,𝑡 + 𝜎𝛽−1𝜉2,𝑡−1

𝜉2,𝑡 + 𝜉2 ≥ 0

𝜋𝑡+1 + 𝜎(𝑦𝑡+1 − 𝑦𝑡) ≥ 0

(𝜉2,𝑡 + 𝜉2)
[

𝜋𝑡+1 + 𝜎(𝑦𝑡+1 − 𝑦𝑡)
]

= 0

or 𝑡 = 0, 1, 2,….where a ‘‘̂’’ symbol on a variable denotes deviations from its value in the new steady state. Note also that
1,−1 = 𝜉2,−1 = 0, implying initial conditions 𝜉1,−1 = −𝜉1 and 𝜉2,−1 = −𝜉2. We restrict ourselves to paths that converge to the
ew steady state, i.e. lim𝑡→∞ 𝑥𝑡 = 0 for 𝑥𝑡 ∈ {𝜋𝑡, 𝑦𝑡, 𝜉1,𝑡, 𝜉2,𝑡}.

Fig. 1 illustrates the transitional dynamics for a calibrated version of our economy.17 In particular, we assume 𝜎 = 1, 𝛽 = 0.99,
𝜅 = 0.1717, 𝜗 = 0.0191, which are values consistent with the baseline calibration in Galí (2015). In addition, we set 𝑟 = −0.0025,
implying an annualized steady state natural rate of minus 1 percent. Interest rates and the inflation rate are shown in annualized
erms in all figures.

As shown in Fig. 1, the transition to the steady state under the optimal policy is not immediate. Instead, the initial values of
nflation and the output gap are significantly below their long run values of 1 and 0.058 percent, respectively, and adjust only

gradually towards the new steady state. In fact, inflation is negative for a few periods under our baseline calibration.18 By choosing
a path like the one depicted in Fig. 1, the central bank succeeds in keeping inflation close to the first best temporarily, even though
it is at the cost of a persistently negative output gap. Given the relative small weight of the latter in the central bank’s loss function
under our baseline calibration (𝜗 ≃ 0.02), that choice turns out to be more desirable than jumping immediately to the new steady
state (which would be perfectly feasible). The persistent low inflation and output gaps are consistent with the observed path for the
real rate, which remains above its long run value 𝑟 during the transition. Most interestingly, the path for the real rate is entirely
driven by expected inflation, since the nominal rate remains at the ZLB throughout the transition. Thus, the central bank must
implement its nontrivial optimal plan while keeping the setting for its policy instrument unchanged. In Section 5 below, we discuss
how the central bank may succeed in doing so, given the multiplicity of equilibrium paths consistent with a constant nominal rate.

Our previous analysis of the Ramsey policy made the simplifying assumption that low trend inflation (1%) would not alter much
the linearized New Keynesian Phillips curve or the loss function of the central bank (both derived around zero inflation). We can
relax this assumption by using the correct approximation of the New Keynesian Phillips curve following Ascari and Ropele (2007)
and Ascari and Sbordone (2014), and by lowering the weight on the output gap in the loss function following Lago-Alves (2014)
by a factor of 0.8. In Fig. A.1 in the Appendix we show the counterpart to our Fig. 1, based on this modified analysis. One can
appreciate small differences in the implied paths (e.g. for the output gap), but overall the results are quite robust to allowing for
positive trend inflation.

4. Aggregate fluctuations under the optimal policy

In this section, we characterize the behavior of inflation and the output gap under the optimal policy in a neighborhood of the
(stochastic) steady state, in the presence of shocks to the natural rate (i.e. fluctuations in 𝑧𝑡). The (local) equilibrium dynamics are
escribed by the system of stochastic difference equations given by:

𝜋𝑡 = 𝛽E𝑡{𝜋𝑡+1} + 𝜅𝑦𝑡

𝜋𝑡 = 𝜉1,𝑡 − 𝜉1,𝑡−1 + 𝛽−1𝜉2,𝑡−1

𝜗𝑦𝑡 = −𝜅𝜉1,𝑡 − 𝜉2,𝑡 + 𝛽−1𝜉2,𝑡−1

16 See, e.g., Benhabib et al. (2001) for an analysis of the ‘‘perils of multiplicity’’ when the central bank follows a conventional Taylor rule under a ZLB
onstraint. Bullard (2020) makes a case for the relevance of their analysis to the Japanese and U.S. economies.
17 We use Dynare’s perfect foresight solver, based on Kanzow and Petra (2004), to compute the transition paths.
18 The result of an optimal negative inflation in the short run is not general. In particular, it does not obtain when the weight on the output gap is raised
6

ufficiently (e.g. when 𝜗 = 1).
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Fig. 1. Transitional dynamics under the optimal monetary policy. Inflation and interest rates in annualized terms.

𝜉2,𝑡 + 𝜉2 ≥ 0

𝜎(E𝑡{𝑦𝑡+1} − 𝑦𝑡) + E𝑡{𝜋𝑡+1} + 𝑧𝑡 ≥ 0

[𝜉2,𝑡 + 𝜉2][𝜎(E𝑡{𝑦𝑡+1} − 𝑦𝑡) + E𝑡{𝜋𝑡+1} + 𝑧𝑡] = 0

for 𝑡 = 0, 1, 2,…We are interested in the equilibrium generated as an outcome of the optimal policy under the timeless perspective,
i.e. once the transition to the new steady state has been completed. Accordingly, we assume the initial Lagrange multipliers are at
their steady state value, thus implying initial conditions 𝜉1,−1 = 0 and 𝜉2,−1 = 0. Appendix A describes our approach to determining
the solution to the system above.

Fig. 2 displays the equilibrium path for inflation and the output gap under the optimal policy, given a sequence of realized values
of the shock {𝑧𝑡}, drawn from an 𝐴𝑅(1) process with autoregressive coefficient 𝜌𝑧 = 0.5 and Gaussian innovations with standard
deviations 𝜎𝑧 = 0.0025. This calibration implies an unconditional standard deviation for the (annualized) natural rate of 1.15 percent.

ccordingly, 𝑟𝑛𝑡 remains negative about 80% of the time. The remaining parameters are kept at their baseline settings. The top-left
ox of the Figure displays the simulated path of the natural rate (in black) and the actual real rate (in blue) over 100 periods. Note
hat the latter is much smoother than the former, which reflects the central bank’s inability to match fluctuations in the natural rate
ne-for-one, due to the ZLB constraint. As a result, monetary policy cannot prevent some fluctuations in inflation and the output
ap, as illustrated in the two bottom plots. The resulting outcome of the optimal policy is thus clearly second-best.

Most interestingly, we see that the nominal rate remains at the ZLB throughout the simulation, as shown on the top-right plot of
ig. 2. Thus, the central bank must steer the economy along the optimal path without changing the settings for its policy instrument,
nd keeping it instead constant at zero.19 The reason why it does not lower the nominal rate in the face of a negative natural rate

19 Given the assumed unbounded support of the natural rate, we cannot rule out that the nominal rate could rise above zero temporarily, given a sufficiently
ong simulation. But as discussed below in the context of Fig. 4, this is not even the case under our baseline calibration when we simulate the economy over
7

0,000 periods. On the other hand, the nominal rate rises occasionally above zero when we increase the variance of the shocks, as discussed below.
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Fig. 2. Aggregate fluctuations under the optimal monetary policy and baseline calibration. Inflation and interest rates in annualized terms.

s clear: the ZLB prevents it from doing so. Perhaps less obvious is why it chooses to keep the nominal rate at zero even when the
atural rate rises above zero. Intuitively, the anticipation that the central bank will keep the interest rate lower than the natural
ate when the latter is high helps stabilize inflation and the output gap when the natural rate is low (and can thus not be matched
ue to the ZLB). More precisely, the stabilizing gains in periods with a low natural rate from the anticipation of a constant zero
ominal rate in future periods when the natural rate is positive, more than offset the losses from not matching the natural rate in
he latter periods. As a result, the nominal rate remains at the ZLB throughout the simulation. That strategy, which relies on the
orward looking nature of aggregate demand and inflation, can thus be viewed as a form of forward guidance.

The property of a constant nominal rate at zero is not general, however. In particular, the central bank may find it desirable to
eviate from the constant zero nominal rate policy in response to an increase in the natural rate of interest that is sufficiently large,
nd which would induce very high inflation if not counteracted at least partly by an increase in the nominal rate. This is illustrated
n Fig. 3, which shows a simulation of equilibrium fluctuations under the optimal policy, based on a calibration identical to that
nderlying the simulations of Fig. 2 except for a higher shock volatility, with 𝜎𝑧 = 0.0075. Thus, in the simulation shown in Fig. 3

there are three episodes in which the central bank optimally chooses to raise the nominal rate above zero, even if only briefly.
Roughly speaking, those episodes can be seen to take place when two conditions are met simultaneously: (i) the natural interest
rate is unusually high, and (ii) this has not been preceded by a recent episode with an unusually low natural rate, for in the latter
case it would have been desirable to keep the nominal rate ‘‘low for longer’’ for the reasons discussed above. Note, however, that
the nominal rate remains at the ZLB for much of the simulation, despite the high incidence of a positive natural rate.

In Fig. 4 we display the fraction of time that the economy remains at the ZLB under the optimal policy, as a function of 𝑟∗,
based on a simulation with 10,000 observations for each value of 𝑟∗, and under the baseline calibration for the shock volatility
(𝜎𝑧 = 0.0025) and the remaining parameters. As Fig. 4 makes clear, when 𝑟∗ is sufficiently high (above 3%, roughly), the incidence
of the ZLB falls to zero. As 𝑟∗ decreases, the ZLB incidence starts rising significantly above zero, with the mapping between the two
ariables becoming quite steep as 𝑟∗ approaches zero, and reaching unity (i.e. a permanently binding ZLB, effectively) when 𝑟∗ is

about −0.5% or below.
In Figs. 5a and 5b, we display, respectively, the mean and standard deviation of inflation under the optimal policy as a function of

𝑟∗, under the same baseline calibration as Fig. 4. We note that the range of 𝑟∗ values for which the first best is attained (i.e., for which
the mean and standard deviation of inflation are both zero) corresponds to that for which the ZLB is never binding (𝑟∗ above 3%,
roughly). On the other hand, for a range or 𝑟∗ roughly between 1% and 3% the optimal policy is associated with an average inflation
8

very close to zero, without being able to fully stabilize that variable (and hence the output gap), due to the positive incidence of
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Fig. 3. Aggregate fluctuations under the optimal monetary policy with higher shock volatility. Inflation and interest rates in annualized terms.

Fig. 4. ZLB incidence under the optimal monetary policy.
9
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Fig. 5a. Average inflation under the optimal monetary policy in annualized terms.

binding ZLB episodes.20 For values of 𝑟∗ below 1%, average inflation becomes positive, and keeps increasing as we lower 𝑟∗ further.
The more 𝑟∗ moves into negative territory, the more optimal average inflation approaches −𝑟∗. That convergence of optimal average
inflation to −𝑟∗ mirrors the convergence of the average nominal rate to zero, and is thus associated with a permanently binding ZLB
constraint.21

In order to understand that result, note that it follows from Eq. (2) that average inflation must be equal to the average nominal
rate minus 𝑟∗. Thus, the ZLB constraint implies a lower bound for average inflation given by −𝑟∗. In the deterministic economy, zero
steady state inflation is feasible and optimal when 𝑟∗ ≥ 0. On the other hand, when 𝑟∗ < 0, zero steady state inflation is no longer
feasible, and the optimal policy implies average inflation equal to −𝑟∗, the lowest feasible value. In the stochastic economy, on the
other hand, there may be an incentive to deviate from the previous prescription by allowing for a higher average inflation and
nominal rates, in order to build some ‘‘policy space’’ that allows the central bank to better counteract adverse demand shocks. The
previous motive can be characterized more precisely by introducing the notion of precautionary inflation, denoted by 𝜋𝑝, which we
define as the component of average inflation that results from a precautionary motive, i.e. from the desire to limit the incidence
of the ZLB. More specifically, we define precautionary inflation for any given 𝑟∗ as the difference between average inflation under
the optimal policy, 𝜋(𝑟∗), and the optimal steady state inflation in the corresponding deterministic economy, which is given by
ax{0,−𝑟∗}. Formally,

𝜋𝑝(𝑟∗) = 𝜋(𝑟∗) − max{0,−𝑟∗}

Fig. 6 displays precautionary inflation as a function of 𝑟∗ under our baseline calibration. Note that the implied mapping is clearly
non-monotonic. Thus, for 𝑟∗ sufficiently high, the risk of a binding ZLB is low, and there is no need to deviate from the first-best
utcome of zero inflation at all times. At the other extreme, when 𝑟∗ is sufficiently negative and, hence, the lower bound on average

20 Our findings for positive values of 𝑟∗ imply average inflation rates somewhat below those typically found in the literature on the optimal inflation target in
he presence of the ZLB (see, e.g., Coibion et al. (2012) and Andrade et al. (2020)). The reason for this is that the previous literature assumes a simple interest
ate rule, while we analyze the fully optimal policy. The latter makes it possible to stabilize the economy with a smaller ‘‘inflation cushion’’. Note also that in
he above mentioned literature the inflation target is defined as the parameter of the assumed interest rate rule that provides a reference value for inflation. In
hat context the equilibrium average inflation is generally slightly lower than the inflation target, due to the occasionally binding ZLB constraint that prevents
he central bank from counteracting deflationary episodes.
21 Our finding of a one-to-one (inverse) mapping between optimal average inflation and 𝑟∗ is reminiscent of a similar finding in Andrade et al. (2020). In

he latter paper, however, that finding emerges for positive but relatively low values of 𝑟∗, while in the present paper it does so only for negative values of 𝑟∗.
The reason for the difference lies in the different assumptions made on the nature of policy (simple rule vs. fully optimal with commitment). In our analysis,
the optimal policy with commitment makes it possible to limit the incidence of costly ZLB episodes while maintaining an average inflation close to zero; this is
not feasible under the simple rule assumed in Andrade et al. (2020), so a higher inflation target is desirable in that case.
10



Journal of Monetary Economics 142 (2024) 103518R. Billi et al.

p
b

t

c
o
e
e

a
c

Fig. 5b. Volatility of inflation under the optimal monetary policy in annualized terms.

inflation (given by −𝑟∗) is already high, the central bank has little incentive to raise average inflation further above that lower
bound, so it chooses to keep average inflation at the same level as in the deterministic case. By contrast, precautionary inflation is
strictly positive for a range of 𝑟∗ values closer to zero, for which optimal inflation in the deterministic case is either zero (if 𝑟∗ ≳ 0) or
ositive but low (if 𝑟∗ ≲ 0), since in that case the costs of deviations from full price stability are relatively low, and are outweighed
y the gains from a lower incidence of a binding ZLB made possible by the choice of a higher average inflation.

As illustrated previously by Figs. 2 and 3, the extent of ZLB incidence does not only depend on 𝑟∗ but also on the volatility of
he natural rate. This is confirmed and shown more clearly in Fig. 7, which displays (in the shaded area) the set of values for 𝑟∗ and
𝜎𝑧 for which the ZLB is (near) permanently binding.22 Three observations are worth making. First, we see that an equilibrium with
a (near) permanently binding ZLB emerges under the optimal policy only if 𝑟∗ < 0. Secondly, for any given negative 𝑟∗, the ZLB
constraint becomes (near) permanently binding under the optimal policy as long as 𝜎𝑧 is sufficiently low. Finally, we see that the
lower is 𝑟∗ the larger is the volatility of the natural rate required in order to observe, even if only occasionally, a positive nominal
rate under the optimal policy.

Similar qualitative findings to those discussed in the present section emerge when we replace shocks to the natural rate with
ost-push shocks, i.e. exogenous disturbances to the New Keynesian Phillips curve (1). As is well known, in that case a trade-
ff between inflation stabilization and output gap stabilization emerges independently of the presence of a ZLB (see, e.g., Clarida
t al. (1999)), with the optimal policy calling for output gap variations in order to dampen fluctuations in inflation. As in the
nvironment analyzed above, with a negative 𝑟∗ and relatively small shocks, the (second-best) management of output and inflation

fluctuations is consistent with a nominal rate that remains at zero throughout our simulation. In response to sufficiently large positive
(i.e. inflationary) cost push shocks, on the other hand, the policy rate under the optimal policy temporarily rises above zero. This is
illustrated in Figs. A.2a and A.2b in the Appendix, which display simulations of the equilibrium outcomes under the optimal policy
in the presence of cost-push shocks. See Appendix B for a presentation of the modified model and calibration.

How the central bank manages to steer the economy as required by the solution to its optimal policy problem while keeping the
nominal rate unchanged at zero is the subject of the next section.

5. Optimal monetary policy implementation under a ZLB constraint

Let (𝑖∗𝑡 , 𝑦∗𝑡 , 𝜋∗
𝑡 ) denote the central bank’s optimal plan, i.e. the solution to the policy problem analyzed in the previous sections.

Next we consider one particular way of implementing that plan as the unique equilibrium, through an interest rate rule that responds

22 We use the near qualifier to stress the fact that we cannot rule out in theory the possibility of brief episodes with positive nominal rates in response to
sequence of large positive realizations of the natural rate, even though that event has not materialized even once over a 10,000 period simulation for the
11

alibrations for which a unit incidence of a binding ZLB is reported.



Journal of Monetary Economics 142 (2024) 103518R. Billi et al.
Fig. 6. Precautionary inflation under the optimal monetary policy in annualized terms.

Fig. 7. ZLB near-permanently binding under the optimal monetary policy.
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to eventual deviations from that plan. We then impose conditions on the rule coefficients that guarantee that such deviations do
not occur in any bounded equilibrium (i.e. they become off-equilibrium paths).23

Consider thus deviations from the optimal plan satisfying the equilibrium conditions (1), (2) and (5). Formally, and letting
�̃� ≡ 𝜋𝑡 − 𝜋∗

𝑡 , 𝑦𝑡 ≡ 𝑦𝑡 − 𝑦∗𝑡 and �̃�𝑡 ≡ 𝑖𝑡 − 𝑖∗𝑡 , we have

𝜋𝑡 = 𝛽E𝑡{𝜋𝑡+1} + 𝜅𝑦𝑡 (11)

𝑦𝑡 = E𝑡{𝑦𝑡+1} −
1
𝜎
(̃𝑖𝑡 − E𝑡{𝜋𝑡+1}) (12)

as well as the ZLB constraint

�̃�𝑡 ≥ −𝑖∗𝑡 (13)

or all 𝑡.24

We complement the previous equations with the following piece-wise linear interest rate rule

𝑖𝑡 = 𝑖∗𝑡 + 𝜙(𝑞)
𝜋 𝜋𝑡 + 𝜙(𝑞)

𝑦 𝑦𝑡 (14)

here 𝑞 ∈ {1, 2, 3, 4} denotes the ‘‘regime’’ prevailing at each point in time, which is determined by the sign configuration of the
eviations of inflation and the output gap from their values under the optimal plan. Thus, the central bank conducts monetary
olicy by setting the nominal rate to 𝑖∗𝑡 as prescribed by the optimal plan, unless inflation and/or the output gap deviate from their
orresponding optimal paths, in which case the nominal rate responds to those deviations according to (14).

More specifically, we define the following regimes, with the corresponding sign restrictions on their associated rule coefficients:

𝑞 = 1 ∶ 𝜋𝑡 ≥ 0, 𝑦𝑡 ≥ 0 ⇒ 𝜙(1)
𝜋 ≥ 0, 𝜙(1)

𝑦 ≥ 0

𝑞 = 2 ∶ 𝜋𝑡 < 0, 𝑦𝑡 < 0 ⇒ 𝜙(2)
𝜋 ≤ 0, 𝜙(2)

𝑦 ≤ 0

𝑞 = 3 ∶ 𝜋𝑡 ≥ 0, 𝑦𝑡 < 0 ⇒ 𝜙(3)
𝜋 ≥ 0, 𝜙(3)

𝑦 ≤ 0

𝑞 = 4 ∶ 𝜋𝑡 < 0, 𝑦𝑡 ≥ 0 ⇒ 𝜙(4)
𝜋 ≤ 0, 𝜙(4)

𝑦 ≥ 0

(15)

Note that the specification of rule (14) together with the sign restrictions in (15) guarantee that 𝑖𝑡 ≥ 𝑖∗𝑡 ≥ 0 for all 𝑡, thus meeting
the ZLB constraint (13) at all times, even on any off-equilibrium path.

Note that 𝜋𝑡 = 𝑦𝑡 = �̃�𝑡 = 0 for all 𝑡 is always a solution to the system (11)–(13), and the one which corresponds to the desired
outcome, i.e. the optimal plan. Our objective is to study the conditions on 𝜙(𝑞)

𝜋 and 𝜙(𝑞)
𝑦 , for 𝑞 ∈ {1, 2, 3, 4} that guarantee that the

previous solution is (locally) unique or, equivalently, that the optimal plan is effectively implemented.25

We tackle this problem by treating (11)–(12) as a regime switching model, with endogenous regime switches. Then we apply
a novel result that allows us to establish sufficient conditions for the (local) uniqueness of the solution of an endogenous regime
switching model. The advantage of our approach is that we do not need to specify a law of motion describing the transition across
regimes. Given the potential interest of the latter result beyond the problem at hand, we first state it for a more general setting
before we apply it to the model above.

5.1. A sufficient condition for equilibrium determinacy of an endogenous regime switching model

Consider a regime switching model whose equilibrium is described by a system of difference equations of the form:

𝐱𝑡 = 𝐀𝑡E𝑡{𝐱𝑡+1} (16)

where 𝐱𝑡 is an (𝑛 × 1) vector of non-predetermined variables and 𝐀𝑡 is an (𝑛 × 𝑛) matrix. We assume 𝐀𝑡 ∈  where  ≡
{𝐀(1),𝐀(2),… ,𝐀(𝑄)} is a finite set of (𝑛 × 𝑛) nonsingular matrices. The evolution of 𝐀𝑡 over time is left unspecified. It may evolve
exogenously, e.g. according to a Markov process. Alternatively, 𝐀𝑡 may vary endogenously, i.e. it may be a function of current and
lagged values of 𝐱𝑡.

It is clear that 𝐱𝑡 = 0 for all 𝑡 is a solution to (16). Our goal is to establish sufficient conditions on  that guarantee that 𝐱𝑡 = 0
for all 𝑡 is the only bounded solution to (16). We take this to be the case if lim𝑇→+∞ E𝑡{‖‖𝐱𝑡+𝑇 ‖‖} > 𝑀‖𝐱𝑡‖ for any scalar 𝑀 > 0 and
𝐱𝑡 ≠ 0, and where ‖⋅‖ is the usual 𝐿2 norm.

Let us define the induced matrix norm ‖𝐀‖ ≡ max𝐱 ‖𝐀𝐱‖ subject to ‖𝐱‖ = 1. In addition, define 𝛼 ≡ max{‖‖
‖

𝐀(1)‖
‖

‖

,
‖

‖

‖

𝐀(2)‖
‖

‖

,… . ‖‖
‖

𝐀(𝑄)‖
‖

‖

}. Note that nonsingularity of 𝐀(𝑞) for 𝑞 = 1, 2,… , 𝑄 implies 𝛼 > 0.

23 See Svensson and Woodford (2004) for a similar approach in the context of a linear model (i.e. without the ZLB constraint).
24 Note that the previous representation in terms of equilibrium deviations from the optimal plan holds independently of the underlying source of fluctuations

natural rate shocks or cost-push shocks). More generally, (𝑖∗𝑡 , 𝑦
∗
𝑡 , 𝜋

∗
𝑡 ) can be interpreted as the central bank’s desired equilibrium path, which may or may not

oincide with the solution to the optimal policy problem analyzed above.
25 The fact that the proposed interest rate rule includes only contemporaneous values should not be interpreted as suggesting the optimal policy is not
istory-dependent, since that history-dependence is already embedded in the ‘‘targets’’ 𝜋∗, 𝑦∗ and 𝑖∗.
13
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Theorem (Sufficient Condition for Determinacy). If 𝛼 < 1, then 𝐱𝑡 = 0 for all 𝑡 is the only bounded solution to (16)

Proof. See Appendix C

Remark. The previous condition is sufficient but not necessary. As a counterexample consider a switching regime model given by
(16) with 𝐀𝑡 = 𝐀(1) for odd 𝑡 and 𝐀𝑡 = 𝐀(2) for even 𝑡, where

𝐀(1) =
[

1.1 0
0 0.5

]

; 𝐀(2) =
[

0.5 0
0 1.1

]

Note that the previous model does not satisfy the sufficiency condition since 𝛼 = 1.1 > 1. Yet, 𝐱𝑡 = 0 can be shown to be the only
bounded solution. See Appendix D for a proof.26

Remark. Note that ‖𝐀‖ < 1 implies that all the eigenvalues of 𝐀 lie within the unit circle, though the converse is not true. See
ppendix E for a proof. Hence our sufficient condition 𝛼 < 1 also implies that 𝐱𝑡 = 0 is the unique bounded solution for each of

the ‘‘single regime’’ models 𝐱𝑡 = 𝐀(𝑞)E𝑡{𝐱𝑡+1}, for 𝑞 = 1, 2,… , 𝑄. By contrast, under the usual eigenvalue criterion, the equilibrium
may be unique for each of the ‘‘single regime’’ models but indeterminate for the regime-switching model. The latter possibility is
discussed in Barthélemy and Marx (2019) in the context of a New Keynesian model with exogenous switches in the interest rate rule
coefficients: they show how indeterminacy may emerge even if each of the regimes adheres to the Taylor principle when considered
in isolation (i.e. it satisfies the eigenvalue condition for uniqueness in the corresponding single regime economy). Our strengthened
condition, in terms of the norm of the 𝐀(𝑞) matrices as opposed to their eigenvalues, rules out such a possibility: if the norm condition
is satisfied for each of the regimes in isolation, then it is also satisfied ‘‘globally’’ for the regime-switching model.

Remark. An alternative sufficient condition for determinacy is given by 𝜌() < 1, where 𝜌() ≡ lim𝑇→+∞ max{∥ 𝐴𝑖1𝐴𝑖2 ⋯𝐴𝑖𝑇 ∥
1
𝑇 ∶

𝑖 ∈ } is the joint spectral radius of . The proof is almost identical to that in Appendix C. Note that this alternative condition is
eaker than 𝛼 < 1 but is not necessary either. In particular, the counterexample above also applies, since 𝜌() > 1.1. We prefer to
ork with the norm condition since it is easier to check computationally.

.2. Application to the problem of optimal monetary policy implementation

Next, we apply the result of the previous subsection to the problem of implementation of the optimal monetary policy analyzed
bove. Recall that feasible deviations from the optimal outcome are described by (11), (12) and (14), with the latter effectively
efining four regimes. Plugging (14) into (12) to eliminate �̃�𝑡, and after some straightforward substitutions, we can represent the
ynamics for 𝐱𝑡 ≡ [𝑦𝑡, 𝜋𝑡]′ as in (16), with

𝐀(𝑞) ≡ 1
𝜎 + 𝜙(𝑞)

𝑦 + 𝜅𝜙(𝑞)
𝜋

[

𝜎 1 − 𝛽𝜙(𝑞)
𝜋

𝜎𝜅 𝜅 + 𝛽(𝜎 + 𝜙(𝑞)
𝑦 )

]

for 𝑞 ∈ {1, 2, 3, 4}, corresponding to the four regimes defined above.
The colored areas in Fig. 8 display the configurations of (𝜙(𝑞)

𝜋 , 𝜙(𝑞)
𝑦 ) values for which 𝛼 < 1, i.e. for which ‖

‖

‖

𝐀(𝑞)‖
‖

‖

< 1, for

∈ {1, 2, 3, 4}. Note that each regime corresponds to a different quadrant of the Figure, with the corresponding configurations
f determinacy-inducing coefficients depicted in a different color for each regime. Thus, to the extent that the central bank adopts
ule (14) with coefficients that fall within the depicted regions under each regime, no deviations from the desired allocation will be
onsistent with a (bounded) equilibrium, and hence the adopted rule will indeed implement the desired allocation (𝑦∗𝑡 , 𝜋

∗
𝑡 ), while

atisfying the ZLB constraint. For completeness, Fig. 8 also displays in light gray the set of (𝜙(𝑞)
𝜋 , 𝜙(𝑞)

𝑦 ) values for which the two
igenvalues of 𝐀(𝑞) fall within the unit circle, which correspond to the necessary and sufficient condition for (local) uniqueness in
single regime economy. Note that, for each regime the light gray area subsumes the colored regions, consistent with the fact that

he former represent necessary and sufficient conditions, while the latter only sufficient, for each single regime model.
Finally, a word about some of the rule’s implications. As discussed above, the rule instructs the central bank to deviate from the

nterest rate 𝑖∗𝑡 implied by the optimal policy if and only if inflation and/or output deviate from their optimal values, 𝜋∗
𝑡 and 𝑦∗𝑡 . If the

ule coefficients satisfy the sufficient condition for a unique equilibrium (as assumed in our simulations), those deviations remain
ff-equilibrium, i.e. they never materialize ex-post. While the previous feature is often found in interest rate rules that implement
desired feasible allocation,27 a specific characteristic of our nonlinear rule is that, by construction, all its implied off-equilibrium
eviations for the nominal rate are positive, i.e. they involve raising the nominal interest rate above 𝑖∗𝑡 . That property guarantees
hat the ZLB constraint is never violated, not even on off-equilibrium paths, given that 𝑖∗𝑡 ≥ 0 for all 𝑡.

Needless to say, some of the off-equilibrium interest rate movements called for by the rule may be perceived ex-post as being
uboptimal (e.g. raising the interest rate if inflation falls below its level under the optimal plan), but this sort of time inconsistency is

26 We thank Danila Smirnov for suggesting this counterexample.
27 See, e.g., the discussion in Galí (2015, chapters 4 and 5) regarding the implementation of optimal policies through interest rate rules, in the context of a
aseline New Keynesian model without a ZLB constraint.
14
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Fig. 8. Implementation of the optimal monetary policy with state-contingent interest rate rule. Colored areas show values of the rule coefficients consistent with
the sufficient condition for determinacy.

inherent to optimal policies under commitment even in the absence of the ZLB constraint, their benefits arising from the (desirable)
effects of their anticipation (as it is the case here).28

6. Concluding remarks

The analysis in the present paper has shown that in response to a permanent decline in the natural rate of interest, so that the
latter’s mean, 𝑟∗, becomes negative, a central bank may optimally choose to keep the policy rate at zero permanently . We have
also shown that in such an environment, and despite the possible constancy of the policy rate, there is still a meaningful optimal
policy problem: a fully credible central bank operating under commitment can keep influencing macro outcomes and implement
the constrained-efficient allocation in the face of continuous shocks that may impinge on the economy.

More specifically, we have studied the optimal monetary policy problem in a New Keynesian economy with a zero lower bound
(ZLB) on the nominal interest rate, and in which 𝑟∗ becomes permanently negative. In the deterministic case the optimal policy
aims to approach gradually the new steady state with positive average inflation, while keeping the policy rate at zero. A gradualist
approach minimizes welfare losses by keeping inflation close to zero for longer.

In the presence of shocks to the natural rate of interest, and once the new (stochastic) steady state has been attained, the optimal
policy problem yields unique optimal paths for inflation and the output gap. If 𝑟∗ is sufficiently negative and the shocks to the natural
rate are not too large, the optimal policy requires that the nominal rate remains at its ZLB permanently.

Finally we have shown that the central bank can implement the optimal policy as a (locally) unique equilibrium by means of an
appropriate nonlinear state-contingent rule consistent with the ZLB. In order to establish that result, we derive a sufficient condition
for local determinacy in a more general model of endogenous regime switches. That result may be of interest beyond the problem
studied in the present paper.

In order to keep the analysis as close as possible to that of the standard monetary policy problem in the New Keynesian model,
we have abstracted from both quantitative easing (QE) and fiscal policy, among other possible instruments. Those additional policy
instruments may help improve the outcome in the face of a permanently negative 𝑟∗. In the case of QE, the analysis of its role would
require modifying the standard New Keynesian environment in order to overcome the well-known irrelevance result (Eggertsson
and Woodford, 2003) and render it effective independently of interest rate policy.29 We plan to pursue that analysis in future work.

28 Departures from the assumption of full credibility adopted here will generally have implications on the optimal policy outcomes. Given the absence of a
widely accepted model of imperfect credibility we do not pursue this avenue here.

29 See, e.g., Nisticò and Seccareccia (2022).
15
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ppendix A. Solving for the local equilibrium dynamics under the optimal policy

We use the numerical algorithm for solving rational expectations models as implemented in the CompEcon toolkit of Miranda
nd Fackler (2002). In particular, we solve for the optimal policy 𝑥 as a function of the state 𝑠, when equilibrium is governed by a
ystem of the form

𝑓 [𝑠𝑡, 𝑥𝑡, 𝐸𝑡ℎ(𝑠𝑡+1, 𝑥𝑡+1)] = 𝜉𝑡

here 𝑠 follows the state transition function

𝑠𝑡+1 = 𝑔(𝑠𝑡, 𝑥𝑡, 𝜀𝑡+1)

nd 𝑥𝑡 and 𝜉𝑡 in our case satisfy the following Kuhn–Tucker condition

𝑖𝑡 ⩾ 0, 𝜉2𝑡 ⩾ 0, 𝑖𝑡 > 0 ⇒ 𝜉2𝑡 = 0.

The solution is obtained with the collocation method, which consists of approximating the expectation functions by linear
ombinations of known basis functions, 𝜃𝑗 . The corresponding coefficients, 𝑐𝑗 , are determined by requiring the approximating

function to satisfy the equilibrium equations exactly at 𝑛 collocation nodes:

ℎ[𝑠, 𝑥(𝑠)] ≈
𝑛
∑

𝑗=1
𝑐𝑗𝜃𝑗 (𝑠)

For a given value of the coefficient vector 𝑐, the equilibrium policies 𝑥𝑖 are computed at the 𝑛 collocation nodes 𝑠𝑖 by solving a
tandard root-finding problem. The coefficient vector 𝑐 is updated solving the 𝑛-dimensional linear system

𝑛
∑

𝑗=1
𝑐𝑗𝜃𝑗

(

𝑠𝑖
)

= ℎ
(

𝑠𝑖, 𝑥𝑖
)

The previous iterative procedure is repeated until the distance between successive values of 𝑐 becomes sufficiently small. To
pproximate the expectation functions, we discretize the innovation to 𝑟𝑛𝑡 using a 𝐾-node Gaussian quadrature scheme:

𝐸ℎ[𝑠, 𝑥(𝑠)] ≈
𝐾
∑

𝑘=1

𝑛
∑

𝑗=1
𝜔𝑘𝑐𝑗𝜃𝑗

[

𝑔
(

𝑠𝑖, 𝑥, 𝜀𝑘
)]

here 𝜀𝑘 and 𝜔𝑘 are Gaussian quadrature nodes and weights chosen so that the discrete distribution approximates the continuous
nivariate normal distribution 𝑁(0, 𝜎2). We use linear splines on a uniform grid of 200 points for values of the natural rate of interest

between −10 percent and +10 percent, so that each point on the grid corresponds to 10 basis points.

Appendix B. The case of cost-push shocks

As a robustness exercise we have also analyzed the optimal policy in response to inefficient or ‘‘cost-push’’ shocks. In that case
the equilibrium conditions describing the economy’s non-policy block are given by:

𝜋𝑡 = 𝛽E𝑡{𝜋𝑡+1} + 𝜅𝑦𝑡 + 𝑢𝑡 (B.1)

𝑦𝑡 = E𝑡{𝑦𝑡+1} −
1
𝜎
(𝑖𝑡 − E𝑡{𝜋𝑡+1} − 𝑟∗) (B.2)

where {𝑢𝑡} is a cost push shock that is assumed to follow an 𝐴𝑅(1) process with autoregressive coefficient 𝜌𝑢 and white noise
Gaussian innovations with variance 𝜎2𝑢 .

The analysis of the optimal monetary policy proceeds unchanged, except for the two equations above. Fig. A.2a displays
simulations associated with the optimal policy under our baseline calibration, with 𝜌𝑢 = 0.5 and 𝜎2𝑢 = (0.00125)2 and with the
remaining parameters unchanged. Fig. A.2b displays analogous results for the case of ‘‘large’’ shocks, with 𝜎2𝑢 = (0.0075)2. As
discussed in the main text, the qualitative findings are analogous to those obtained under the assumption of shocks to the natural
16
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A

Fig. A.1. Optimal transition paths with and without Ascari and Sbordone (2014) and Lago-Alves (2014) corrections for positive trend inflation.

ppendix C. Proof of theorem [sufficiency conditions for determinacy]

By the law of iterated expectations

𝐱𝑡 = 𝐀𝑡E𝑡+𝑇−1{𝐱𝑡+1}
= E𝑡{𝐀𝑡𝐀𝑡+1 ⋯𝐀𝑡+𝑇−1𝐱𝑡+𝑇 }

Thus,

‖

‖

𝐱𝑡‖‖ = ‖

‖

E𝑡{𝐀𝑡𝐀𝑡+1 ⋯𝐀𝑡+𝑇−1𝐱𝑡+𝑇 }‖‖
≤ E𝑡{‖‖𝐀𝑡𝐀𝑡+1 ⋯𝐀𝑡+𝑇−1𝐱𝑡+𝑇 ‖‖}
≤ E𝑡{‖‖𝐀𝑡𝐀𝑡+1 ⋯𝐀𝑡+𝑇−1

‖

‖

‖

‖

𝐱𝑡+𝑇 ‖‖}
≤ 𝛼𝑇 E𝑡{‖‖𝐱𝑡+𝑇 ‖‖}

where the last inequality uses the fact that
‖

‖

‖

𝐴𝑖1𝐴𝑖2 ⋯𝐴𝑖𝑇
‖

‖

‖

≤ ‖

‖

‖

𝐴𝑖1
‖

‖

‖

‖

‖

‖

𝐴𝑖2
‖

‖

‖

⋯ ‖

‖

‖

𝐴𝑖𝑇
‖

‖

‖

≤ 𝛼𝑇

where 𝐴𝑖 ∈ .
Accordingly, 𝛼 < 1 implies that lim𝑇→+∞ E𝑡{‖‖𝐱𝑡+𝑇 ‖‖} > 𝑀 ‖

‖

𝐱𝑡‖‖ for any arbitrarily large 𝑀 > 0 and 𝐱𝑡 ≠ 0. □

Appendix D. [A counterexample]

Letting 𝐀 ≡ 𝐀(1)𝐀(2) = 𝐀(2)𝐀(1) we can write

𝐱 = 𝐀𝑇E {𝐱 }
17
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Fig. A.2a. Aggregate fluctuations under the optimal monetary policy with cost-push shocks. Inflation and interest rates in annualized terms.

Thus,

‖

‖

𝐱𝑡‖‖ ≤ ‖

‖

‖

𝐀𝑇 ‖
‖

‖

E𝑡{‖‖𝐱𝑡+2𝑇 ‖‖}

= ‖𝐀‖𝑇 E𝑡{‖‖𝐱𝑡+2𝑇 ‖‖}

In our numerical example ‖𝐀‖ = 0.55 < 1. Accordingly,

E𝑡{‖‖𝐱𝑡+2𝑇 ‖‖} = 0.55−𝑇 ‖

‖

𝐱𝑡‖‖

which implies lim𝑇→+∞ E𝑡{‖‖𝐱𝑡+𝑇 ‖‖} > 𝑀 ‖

‖

𝐱𝑡‖‖ for any arbitrarily large 𝑀 > 0 and 𝐱𝑡 ≠ 0. □

Appendix E. [Eigenvalue vs. norm criteria]

Let 𝐀 be a nonsingular matrix with ‖𝐀‖ < 1. Thus, 0 < 𝐱′𝐀′𝐀𝐱 < 1 for all 𝐱 such that ‖𝐱‖ = 1. Let 𝐐 be the matrix of (orthonormal)
eigenvectors of 𝐀′𝐀 and let 𝛶 be the corresponding (diagonal) matrix with (real) eigenvalues on its diagonal. Thus, 𝐀′𝐀𝐐 = 𝐐𝛶
with 𝐐′𝐐 = 𝐈. Hence 𝐐′𝐀′𝐀𝐐 = 𝛶 , with all diagonal elements of 𝛶 between zero and one. Thus we can write 𝐀′𝐀 = 𝐐𝛶𝐐′ or,
equivalently, 𝐀′𝐐𝐐′𝐀 = (𝐐𝛶

1
2 )(Υ

𝟏
𝟐 𝐐′) implying 𝐀′𝐐 = 𝐐𝛶

1
2 . Thus the eigenvalues of 𝐀′ (and, hence, of 𝐀, since both share the

ame characteristic polynomial) are given by the diagonal elements of 𝛶
1
2 and are thus real and between zero and one. This is

precisely the condition for determinacy in a single regime model.

Appendix F. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmoneco.2023.09.005.
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Fig. A.2b. Aggregate fluctuations under the optimal monetary policy with cost-push shocks with higher volatility. Inflation and interest rates in annualized
terms.
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