(Behavioral) Decision Making

Jose Apesteguia

ICREA-Universitat Pompeu Fabra and BSE

Bojos per l'Economia! 2024

Introduction

- Economics is built on the basis of a model of individual behavior
 - The atom in economics is the individual
 - Starting from a model of individual behavior, economics studies topics as diverse as industrial organization, financial markets, the monetary system, economic development, social choice, political economy, etc.

Outline

1. Rational model of choice

- 1.1 Principles of rationality
- 1.2 Utility representations
- 1.3 Especial domains: Risk, Time, Social preferences

2. Behavioral economics

- 2.1 Psychology and economics
- 2.2 Experimental economics
- 2.3 Three models:
 - 2.3.1 Prospect theory
 - 2.3.2 $\beta \delta$ preferences
 - 2.3.3 Social preferences

Part I: Rational model of choice

It should respect the diversity of possible views of the world (tastes, beliefs, etc)

De gustibus non est disputandum

- It should respect the diversity of possible views of the world (tastes, beliefs, etc)
 - De gustibus non est disputandum
- It should be mathematically coherent, versatile and tractable
 - We want a well founded and simple model of individual behavior that we could apply to virtually every setting where there are decisions

- It should respect the diversity of possible views of the world (tastes, beliefs, etc)
 - De gustibus non est disputandum
- It should be mathematically coherent, versatile and tractable
 - We want a well founded and simple model of individual behavior that we could apply to virtually every setting where there are decisions
- It should be a good approximation of actual behavior.
 - We should be able to use it in predictive exercises

- It should respect the diversity of possible views of the world (tastes, beliefs, etc)
 - De gustibus non est disputandum
- It should be mathematically coherent, versatile and tractable
 - We want a well founded and simple model of individual behavior that we could apply to virtually every setting where there are decisions
- It should be a good approximation of actual behavior.
 - We should be able to use it in predictive exercises
- It should be able to be used in normative judgements
 - It should guide in the optimal decision-making

- It should respect the diversity of possible views of the world (tastes, beliefs, etc)
 - De gustibus non est disputandum
- It should be mathematically coherent, versatile and tractable
 - We want a well founded and simple model of individual behavior that we could apply to virtually every setting where there are decisions
- It should be a good approximation of actual behavior.
 - We should be able to use it in predictive exercises
- It should be able to be used in normative judgements
 - It should guide in the optimal decision-making
- It should be falsifiable
 - We should be able to empirically falsified its predictions

Rational model of choice

Rational model of choice

 $\max_{x \in A} U(x)$

Rational model of choice

$\max_{x \in A} U(x)$

A: set of available alternatives at the time of deciding

U: utility function, U : X → ℝ, represents the preferences of the individual over all the possible alternatives X

 $U(x) \ge U(y) \Leftrightarrow x P y$

max: the individual seeks the best interests that she can attain, given her own view on them

Rational model of choice (2)

 $\max_{x \in A} U(x)$

- It respects the preferences of the individual (U), and it is difficult to conceive a simpler, more practical and operational mathematical representation of individual preferences
- It guides on how choices should be optimally made (max), given the preferences of the individual and the restrictions
- It has sound mathematical foundations, as we will discuss next
- Is it a good description of actual individual behavior? This is an empirical question we will address in the second part of this lecture

Transitivity: IF [xPy and yPz] THEN

Transitivity: IF [xPy and yPz] THEN [xPz]

```
Transitivity:
IF [xPy \text{ and } yPz] THEN [xPz]
```

Completeness:

For every $x, y \in X$ either [xPy] or [yPz] or both

A representation theorem

A representation theorem

Theorem:

Let X be a finite set of alternatives. Preferences P on X satisfy Transitivity and Completeness if and only if there exists a utility function U that represents P.

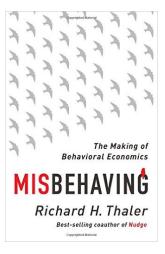
• Risk:
$$x = (p_1, ..., p_n; y_1, ..., y_n)$$

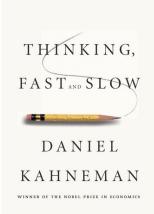
• Time:
$$x = (t_1, ..., t_n; y_1, ..., y_n)$$

 Others: strategic situations, distributive preferences, ambiguity, etc.

Wrap up Part I: Rational model of choice

- Elegant, simple model of individual decision-making
- Well founded mathematically
- Portable to very diverse situations
- Positive and normative considerations
- Empirically valid?


Part II: Behavioral economics


Psychology and Economics

 $\max_{x \in A} U(x)$

- There is very little psychology in this model
- The three main elements of the model, U, A, and max, are being challenged empirically
- Ultimate aim: to offer operational models of individual behavior, with sound psychological foundations
- Tools, approaches:
 - As in the rational economic model of choice: sound mathematical foundations
 - Empirical and experimental approaches
 - Learn from neighboring sciences: (Cognitive) Psychology, Sociology, Neurosciences, Biology, Computer Science,...

Recommended readings

Experimental Economics

Experimental Economics

- A controlled situation in which individuals take actions according to some pre-specified rules which determine their payoffs.
- Random assignment to treatment and control: causality
- Treatment and control should differ in just one dimension: avoid confounds
- Voluntary participants, economically incentivized

Prospect Theory

Prospect Theory

- Kahneman and Tversky (1979, Econometrica): one of the most cited papers in the history of all the social sciences
- One of the very first models that incorporates psychological phenomena into a model of decision-making, in the spirit of economic modelling
- Represents the start of behavioral economics
- Still today a very active research topic, both theoretically and empirically

Asian disease

Asian disease

- Imagine the Government is preparing for the outbreak of an unusual Asian disease, which is expected to kill 600 people. Two alternative programs to combat the disease have been proposed.
 - Program A: 200 people will be saved.
 - Program B: there is 1/3 probability that 600 people will be saved, and 2/3 probability that no people will be saved.

Asian disease (2)

Asian disease (2)

- Imagine the Government is preparing for the outbreak of an unusual Asian disease, which is expected to kill 600 people. Two alternative programs to combat the disease have been proposed.
 - Program A: 400 people will die.
 - Program B: there is 1/3 probability nobody will die, and 2/3 probability that 600 people will die.

Asian disease (3)

Results

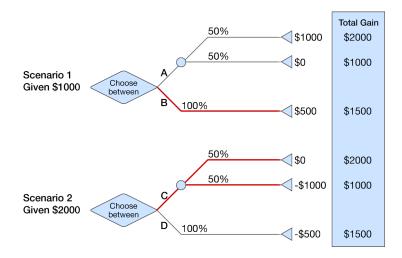
- Presentation 1: program A chosen by 72% of subjects (out of 152).
- Presentation 2: program A chosen by 22% of subjects (out of 155).

Experiment: Lottery choices

Experiment: Lottery choices

Scenario 1: In addition to whatever you own, you have been given 1000. You are now asked to choose between receiving 500 for sure or 1000 with probability 0.5.

Experiment: Lottery choices (2)


Experiment: Lottery choices (2)

Scenario 2: In addition to whatever you own, you have been given 2000. You are now asked to choose between losing 500 for sure or 1000 with probability 0.5.

Experiment: Lottery choices (3)

- Scenario 1: In addition to whatever you own, you have been given 1000. You are now asked to choose between receiving 500 for sure or 1000 with probability 0.5. [16% choose the lottery]
- Scenario 2: In addition to whatever you own, you have been given 2000. You are now asked to choose between losing 500 for sure or 1000 with probability 0.5. [69% choose the lottery]

Experiment: Lottery choices (3)

Behavioral concept 1: Framing

- The precise presentation of the decision problem may matter, to a large degree.
- Framing the situation in terms of either gains or losses affect behavior in very particular ways:
 - Gains: induce risk aversion
 - Losses: induce risk loving

Behavioral concept 2: Loss aversion

- People are much more sensitive to losses than to gains of the same magnitude, and are willing to take more risks to avoid losses
 - Experiments with monkeys

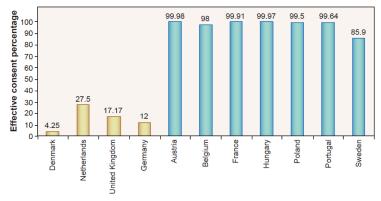
Experiment: Valuation of goods

Experiment: Valuation of goods

- 50% of subjects are randomly allocated an object, a coffee mug
- The other half is allocated no object
- Ask for their evaluation of subjects (WTP/WTA)

Experiment: Valuation of goods (2)

- 50% of subjects are randomly allocated an object, a coffee mug
- The other half is allocated no object
- Ask for their evaluation of subjects (WTP/WTA)
- Results:
 - ▶ First group, with the coffee mug (WTA): \$5.25
 - Second group (WTP): \$2.25


Experiment: 401(k) plans

- Most important retirement income after social security in the US
- Variation of enrollment into a plan in a given company:
 - Automatic, by default, to a given plan
 - Active choice of plan, from a menu of possible plans

Experiment: 401(k) plans (2)

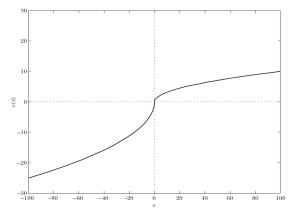
- Most important retirement income after social security in the US
- Variation of enrollment into a plan in a given company:
 - Automatic, by default, to a given plan
 - Active choice of plan, from a menu of possible plans
- Results: automatic enrollment has a 50% higher enrollment rate

Empirical finding: Organ donations

Effective consent rates, by country. Explicit consent (opt-in, gold) and presumed consent (optout, blue).

Behavioral concept 3: Default Effects/Status Quo Bias

- The default option is the option the chooser will obtain if he or she does nothing
 - (e.g., the coffee mug, the pension plan, automatic organ donation)
- Defaults affect human choice:
 - People tend to evaluate more highly default options than other options, even when the default has been randomly allocated
 - Experiments with monkeys


Behavioral concept 3': Reference points

- The default option acts as a behavioral reference point to which the other options are compared:
 - What matters are local comparisons with respect to the reference point, not global comparisons
 - People care about changes not levels

Behavioral concept 4: Diminishing sensitivity

- People's sensitivity to further changes in an outcome is smaller for outcome levels that are further away from the reference point.
- Diminishing sensitivity reflects a fundamental feature of human cognition.
 - For example, a change from getting \$0 to getting \$10 feels greater than a change from getting \$1,000 to getting \$1,010.
 - Similarly, a change from getting \$0 to getting \$-10 feels greater than a change from getting \$-1,000 to getting \$-1,010.

Behavioral Concepts 1-4: The Value Function

Note: The graph plots the value flux function proposed by Teersky and Kahneman (1992) as part of cumulative prospect theory, namely $v(x) = x^{1}$ for $x \ge 0$ and $v(x) = -\lambda(-x)^{2}$ for x < 0, where x is a dollar gain or loss. The authors estimate $\alpha = 0.88$ and $\lambda = 2.25$ from experimental data. The plot uses $\alpha = 0.5$ and $\lambda = 2.5$ so as to make loss areasion and diminising sensitivity easier to see.

More Lottery Choices

Choose one of the following two lotteries:

- A: A .001 probability of winning \$5000.
- B: A 100% chance of winning \$5.
- Choose one of the following two lotteries:
 - A: A .001 probability of -\$5000.
 - B: A 100% chance of -\$5.

More Lottery Choices (2)

Choose one of the following two lotteries:

- A : A .001 probability of winning \$5000. [72%]
- B : A 100% chance of winning \$5. [28%]
- Choose one of the following two lotteries:
 - A : A .001 probability of -\$5000. [17%]
 - B : A 100% chance of -\$5. [83%]

Overweight of low probability effects: people like both lotteries and insurance

Behavioral Concept 5: Probability weighting

- Measuring how people weight probabilities:
 - Steepness at 0: overweighting of small probabilities.
 - Steepness at 1: certainty effect.
 - Flatness in the middle: unresponsiveness to intermediate probabilities

Probability weighting

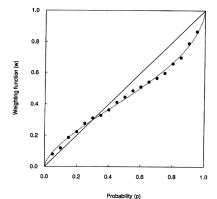


FIGURE 1.- The points represent median estimates, across subjects (N = 40), obtained in Tversky and Fox (1994). The smooth curve is obtained by fitting the parametric form $w(p) = \delta p^{\gamma} / (\delta p^{\gamma} +$ $(1-p)^{\gamma}$), suggested by Lattimore, Baker, and Witte (1992). The estimated values of the parameters are $\gamma = .69, \ \delta = .77$.

Expected utility and Prospect theory

• Given wealth w and a lottery $x = (p_1, \ldots, p_n; y_1, \ldots, y_n)$

Expected utility and Prospect theory

Given wealth w and a lottery x = (p₁,..., p_n; y₁,..., y_n)
Expected utility:

$$U_{eu}(x) = p_1 u(w + y_1) + \cdots + p_n u(w + y_n)$$

Expected utility and Prospect theory

Given wealth w and a lottery x = (p₁,..., p_n; y₁,..., y_n)
Expected utility:

$$U_{eu}(x) = p_1 u(w + y_1) + \cdots + p_n u(w + y_n)$$

$$U_{pt}(x) = \pi(p_1)v(y_1) + \cdots + \pi(p_n)v(y_n)$$

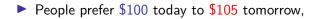
Prospect theory in the field

- Labor supply: aspirations on daily earnings affect labor supply of taxi drivers, bike messengers, stadium vendors, etc
- Housing prices: people unwilling to sell house below purchase price (reference point)
- Tax compliance: +/- balance (reference point 0) triggers more claiming deductions
- Marathon runners: round numbers as goals (reference points) affect running effort when behind the goal, but still reachable
- Expectations on the quality of goods affect willingness to pay after enjoyment of goods
- Domestic violence and sports events

> . . .

Preferences over time

Preferences over time


https://www.youtube.com/watch?v=QX_oy9614HQ

https://www.youtube.com/watch?v=QX_oy9614HQ

▶ Mischel et al (1989, Science):

- 32 preschoolers from Stanford
- .57*** correlation between seconds to wait to eat the marshmallow and SAT scores

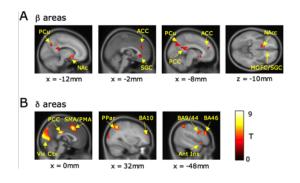
Experiments: Present bias

Experiments: Present bias

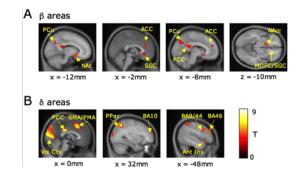
People prefer \$100 today to \$105 tomorrow, but prefer \$105 in one year and a day to \$100 in one year

Experiments: Present bias

People prefer \$100 today to \$105 tomorrow, but prefer \$105 in one year and a day to \$100 in one year


Inconsistent with Exponential discounted utility:

 $U_{ed}(\$100,0) = u(\$100) > \delta u(\$105) = U_{ed}(\$105,1)$


$$\Leftrightarrow$$

 $U_{ed}(\$100, 365) = \delta^{365} u(\$100) > \delta^{366} u(\$105) = U_{ed}(\$105, 366)$

Neuroexperiment: McClure et al (2004, Science)

Neuroexperiment: McClure et al (2004, Science)

β areas respond only to immediate rewards
 δ areas respond equally to all rewards

Experimental evidence

When choosing today between having chocolate or fruit as dessert in a lunch next week, 74% of people choose fruit

Experimental evidence

- When choosing today between having chocolate or fruit as dessert in a lunch next week, 74% of people choose fruit
- however, when choosing today between having chocolate or fruit as dessert in today's lunch, 30% of people choose fruit

Evidence: Commitment Devices

 People seem to anticipate that have some degree of present-bias

Evidence: Commitment Devices

- People seem to anticipate that have some degree of present-bias
- Savings: in a field experiment people could voluntary enroll in a savings product with a commitment to restrict access to their savings, subject to penalties:
 - ► 28.4% accepted the product
 - they increased their savings by 81%, as compared to a control group.

Evidence: Commitment Devices

- People seem to anticipate that have some degree of present-bias
- Savings: in a field experiment people could voluntary enroll in a savings product with a commitment to restrict access to their savings, subject to penalties:
 - ► 28.4% accepted the product
 - they increased their savings by 81%, as compared to a control group.
- Other settings: exercising, quitting smoking, job productivity, etc.

Behavioral Concept 6: Present-Bias

- Over-discounting of the future when compared to the present
- Generates time inconsistent behavior, as compared to the exponential discounting model
- With crucial consequences for:
 - Retirement plans
 - Savings
 - Labor productivity
 - Health
- A behavioral model: $\beta \delta$ discounted utility:

$$egin{aligned} &U_{eta,\delta}(y,0)=u(y)\ &U_{eta,\delta}(y,t)=eta\delta^t u(y) \end{aligned}$$

when $\beta=1$ we have the standard exponential model, when $\beta<1$ we have present bias

Social preferences

Social preferences

• Narrow view: $U_i(x_i) = U_i(x_i, \mathbf{x}_j)$

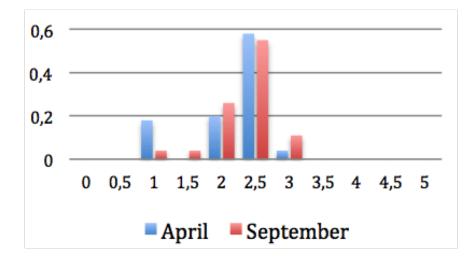
- However:
 - Billions of dollars donated to charity every year
 - Welfare state
 - We are all aware of instances of:
 - altruism: being oneself better off when someone else is made better off
 - reciprocity: being oneself better off when someone who has been kind to oneself is better off
 - aversion to inequity: we dislike inequalities in our reference group, and appreciate fairness

▶ Player 1 offers an allocation (x_{self}, x_{other}) , such that $x_{self} + x_{other} = 5$

Player 2 accepts or rejects

▶ If accepts: (*x_{self}*, *x_{other}*) is implemented

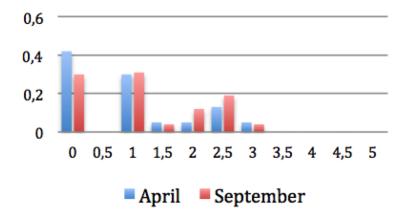
If rejects: (0,0)


Player 1 offers an allocation (x_{self}, x_{other}), such that x_{self} + x_{other} = 5

- Player 2 accepts or rejects
 - ▶ If accepts: (*x_{self}*, *x_{other}*) is implemented
 - If rejects: (0,0)
- Standard prediction:
 - ► (5,0)

And if for whatever reason $x_{other} > 0$, this is never rejected

Player 1 offers an allocation (x_{self}, x_{other}), such that x_{self} + x_{other} = 5


- Player 2 accepts or rejects
 - ▶ If accepts: (*x_{self}*, *x_{other}*) is implemented
 - If rejects: (0,0)
- Standard prediction:
 - ► (5,0)
 - And if for whatever reason $x_{other} > 0$, this is never rejected
- Typically in experimental studies:
 - About 25% of the offers are rejected
 - Average acceptance cutoff is at 1/4 of the endowment

- Player 1 offers an allocation (x_{self}, x_{other}), such that x_{self} + x_{other} = 5
- Player 2 has no choice; the proposed allocation of Player 1 is always implemented

- Player 1 offers an allocation (x_{self}, x_{other}), such that x_{self} + x_{other} = 5
- Player 2 has no choice; the proposed allocation of Player 1 is always implemented
- Standard prediction: (5,0)

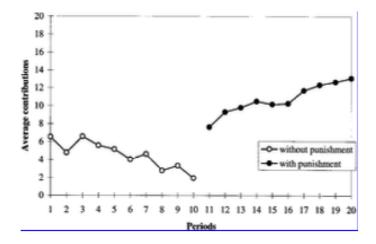
- Player 1 offers an allocation (x_{self}, x_{other}), such that x_{self} + x_{other} = 5
- Player 2 has no choice; the proposed allocation of Player 1 is always implemented
- Standard prediction: (5,0)
- Typically in experimental studies:
 - Average offer of about 1/5 of the endowment

- Player 1 and Player 2 endowed with 10 Euros each
- Player 1 decides how much from the 10 Euros to transfer to Player 2
- Transfer is multiplied by 3
- Player 2 decides how much of the total sum to transfer to Player 1

- Player 1 and Player 2 endowed with 10 Euros each
- Player 1 decides how much from the 10 Euros to transfer to Player 2
- Transfer is multiplied by 3
- Player 2 decides how much of the total sum to transfer to Player 1
- Standard Prediction:
 - Player 2 transfers back nothing
 - Player 1 anticipates this and transfers zero too

- Player 1 and Player 2 endowed with 10 Euros each
- Player 1 decides how much from the 10 Euros to transfer to Player 2
- Transfer is multiplied by 3
- Player 2 decides how much of the total sum to transfer to Player 1
- Standard Prediction:
 - Player 2 transfers back nothing
 - Player 1 anticipates this and transfers zero too
- Experimental Results:
 - Player 1 makes transfers (altruism or trust)
 - Player 2 sends back money (unconditional kindness or trustworthiness)
 - On average, Player 1 gets back the amount that is sent

Fig. 1. Distribution of dependent variables. Notes: pSent and pReturn refer to the untransformed amount sent as a proportion of amount available by senders and the amount returned as a proportion of amount available by receivers respectively.


- Private endowments e_i , i = 1, ..., n
- Each player chooses how much to contribute c_i to the public good, and how much to keep $e_i c_i$
- \blacktriangleright Contributions to the public good benefit all players, at a rate of $\alpha < 1$

• Payoffs:
$$\pi_i = e_i - c_i + \alpha \sum_j c_j$$

- Private endowments e_i , i = 1, ..., n
- Each player chooses how much to contribute c_i to the public good, and how much to keep e_i c_i
- \blacktriangleright Contributions to the public good benefit all players, at a rate of $\alpha < 1$
- Payoffs: $\pi_i = e_i c_i + \alpha \sum_j c_j$
 - Since $\alpha < 1$, incentives not to contribute
 - Nash equilibrium: zero contributions
 - Social optimum: all players contribute everything

- Private endowments e_i , i = 1, ..., n
- Each player chooses how much to contribute c_i to the public good, and how much to keep e_i c_i
- \blacktriangleright Contributions to the public good benefit all players, at a rate of $\alpha < 1$
- Payoffs: $\pi_i = e_i c_i + \alpha \sum_j c_j$
 - Since $\alpha < 1$, incentives not to contribute
 - Nash equilibrium: zero contributions
 - Social optimum: all players contribute everything
- Experimental results
 - There is a lot of heterogeneity, with many people contributing significant parts of their endowents
 - There is a clear downwards trend
 - If allow to punish others at a cost, people punish others, and cooperation is sustained

Public Game Experiments

Models of Social Preferences

Altruism (Andreoni, 1989):

$$U = u(x_{self}) + \alpha u(x_{other})$$

Models of Social Preferences

Altruism (Andreoni, 1989):

$$U = u(x_{self}) + \alpha u(x_{other})$$

Inequity aversion (Fehr & Schmidt, 1999; Bolton & Ockenfels, 2000):

$$U_{i} = x_{i} - \alpha_{i} \frac{\sum_{j \neq 1} \max\{x_{j} - x_{i}, 0\}}{n - 1} - \beta_{i} \frac{\sum_{j \neq 1} \max\{x_{i} - x_{j}, 0\}}{n - 1}$$

with α_i representing envy and β_i guilt

Wrap up Part II: Behavioral economics

- Aims at making economic decision-making models more realistic, with better psychological foundations,
- while trying to keep the models tractable and versatile
- Very active research area, with contributions coming from economic theory, cognitive psychology, neuro-sciences, etc