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Abstract

This paper explores whether rational herding can generate endogenous aggregate fluctuations. We embed 
a tractable model of rational herding into a business cycle framework. In the model, technological inno-
vations arrive with unknown qualities, and agents have dispersed information about how productive the 
technology really is. Rational investors decide whether to invest based on their private information and the 
investment behavior of others. Herd-driven boom-bust cycles arise endogenously in this environment when 
the technology is unproductive but investors’ initial information is overly optimistic. Their overoptimism 
leads to high investment rates, which investors mistakenly attribute to good fundamentals, leading to a self-
reinforcing pattern of higher optimism and higher investment until the economy reaches a peak, followed 
by a crash when agents ultimately realize their mistake. We calibrate the model to the U.S. economy and 
show that it can broadly explain boom-and-bust cycles like the dot-com bubble of the 1990s.
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1. Introduction

Business cycle history is replete with examples in which new technologies led to periods of 
massive investment that ended in severe economic downturns. One salient example is the 1990s 
boom in information technologies that culminated in the stock market crash of 2001 (“dot-com 
bubble”). While the internet had been invented years earlier to connect academic and military 
networks, its commercial potential only became clear in the 1990s, when extreme enthusiasm 
for the new technology led to large investments in communication networks, software, and IT 
equipment. The high volume of investment and rising valuations of IT companies initially seemed 
to validate an optimistic outlook, but a crash eventually followed as some of the expected returns 
failed to materialize.1 While the deep drivers that caused this sequence of events are still debated, 
a common view is that shifts in expectations played a key role in shaping the dot-com boom-bust 
cycle.

The idea that expectations contribute to aggregate economic fluctuations has a long tradition 
in macroeconomics. In seminal work, Pigou (1927) emphasized the importance of beliefs in 
shaping the business cycle. In his view, booms can be caused by waves of optimism among 
business executives, and crashes arise when their lofty expectations turn out to be mistaken. This 
hypothesis has been extensively studied in modern business cycle theory by the news-driven 
business cycle literature, pioneered by Beaudry and Portier (2004).2 According to this view, 
agents receive news about future productivity, which sometimes turn out to be false. Boom-bust 
cycles arise after an initial sequence of positive news is later contradicted by experience.

These theories, however, remain mostly silent on the technological, social and psychologi-
cal factors that drive the evolution of beliefs. In most of these studies, the belief process obeys 
an exogenous law of motion, and boom-bust cycles occur after a specific sequence of shocks—
first positive, then negative. In other words, a large part of these cycles remains attributed to 
unexplained factors, precluding a deeper understanding of the key determinants of business cy-
cles. What explains that beliefs follow this particular—and perhaps systematic—pattern which 
evolves from a phase of rising optimism to all-out pessimism? Is the growing optimism during 
the boom the consequence of luck, or the result of particular interactions between investors that 
lead to instability and inefficiencies? What causes precipitate the economy into a bust? Answer-
ing these questions is essential for our understanding of business cycles and for the design of 
stabilization policies.

This paper proposes one potential unifying explanation by exploring how herding in investors’ 
behavior can generate a full macroeconomic boom-bust cycle without relying on an exogenous 
sequence of shocks. In our theory, entrepreneurs infer the quality of their investment opportu-
nities by observing the decisions of others and can be tempted to invest when they see their 

1 Other boom-bust episodes follow similar patterns. For instance, the Roaring Twenties, a period of massive economic 
growth fueled by technological innovations in many sectors such as car manufacturing, communication, aviation and 
the chemical industry, ended in the Great Depression. Xiong (2013) documents several instances of boom-bust episodes 
that follow the introduction of new technologies. Arif and Lee (2014) document that aggregate investment tends to peak 
during periods of optimisms, and that these periods are followed by lower equity returns.

2 See Beaudry and Portier (2014) for an overview of the empirical and theoretical research supporting the news view 
of the business cycle.
2



E. Schaal and M. Taschereau-Dumouchel Journal of Economic Theory 210 (2023) 105669
competitors expand their operations. The introduction of a new technology of uncertain quality 
can trigger a slow-rising boom followed by a sudden crash, in line with the experience of the 
dot-com era. In the boom phase, the initial optimism of investors translates into high levels of 
aggregate investment, and high investment, in turn, leads to further increases in optimism. This 
self-reinforcing process can fuel a long-lasting expansion of the economy, which comes to an 
end when new observations no longer support an optimistic view of the technology. Agents stop 
investing and the economy rapidly collapses. Herding thus offers a potential explanation for the 
emergence of technology-driven boom-bust cycles.

Our theory captures these ideas as follows. In the model, random technological innovations 
arrive over time and rational entrepreneurs decide whether to adopt the technology or not. The 
payoff from adoption is initially unknown, and agents use all available information to update 
their beliefs about the fundamental value of the technology. Information comes from both public 
and private sources. Importantly, to capture the idea that agents collect information from similar 
sources (news media, market reports, etc.), we assume that private signals feature some common 
noise. This assumption is key as it allows the distribution of beliefs across entrepreneurs to vary 
for reasons unrelated to the fundamental value of the technology. Entrepreneurs do not initially 
know the extent of that bias but progressively learn about it.

Agents also receive public signals. First, they learn by observing an exogenous public signal 
which stands in for the general information provided by public sources. They also learn from 
endogenous market outcomes such as aggregate quantities or prices. In the model, this amounts 
to observing, with some noise, the mass of agents who adopt the new technology. As the indi-
vidual adoption decisions reflect the private information of the agents, this public signal operates 
as a social learning channel by aggregating, in a non-linear fashion, some of the information 
dispersed across agents.

How agents interpret this public signal is key for the emergence of boom-bust cycles. Such 
cycles are caused in our model by what we refer to as “false-positives”: bad realizations of the 
technology fundamental that are accompanied by unusually large and positive realizations of the 
common noise. False-positives may thus capture situations in which, for instance, excessively 
promising benchmark tests are widely advertised upon the introduction of the technology and 
lead to overly optimistic beliefs.

When observing the large rate of adoption induced by such false-positive shocks, agents in-
fer that private signals are positive. These signals, in turn, can be positive either because the 
fundamental value of the technology is good, or because the common noise component of the 
private signals is high. Entrepreneurs cannot tell these stories apart, but if false-positive shocks 
are relatively rare, the high adoption rate is initially attributed to a high-value technology, whose 
posterior likelihood rises. More optimistic beliefs lead to further aggregate adoption next pe-
riod, which, in turn, leads to even more positive beliefs about the fundamental and so on. It is in 
that sense that our model displays a form of herding: agents mimic the behavior of others and 
sometimes mistakenly follow the herd into an adoption boom, meanwhile a shrinking measure 
of agents use their private information to go against the crowd. Through this positive feedback 
loop, the arrival of a low-value technology can create a long-lasting boom as entrepreneurs are 
fooled by the initial adoption craze.

But agents are rational and understand the possibility that they can sometimes be mistaken 
in their assessment of the true state of the world. As a result, they keep track of the probability 
of being in a false-positive state, which appears increasingly likely over time, as adoption keeps 
falling short of the most optimistic predictions. At some point, the most pessimistic agents stop 
adopting the technology and aggregate adoption no longer supports a high-productivity scenario. 
3
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This leads to a reversal in beliefs and a collapse in new technology adoption. We provide formal 
conditions under which these boom-and-bust episodes are guaranteed to arise in equilibrium.

A distinguishing feature of our approach is that the boom-and-bust cycle emerges endoge-
nously. Standard practice in modern business cycle analysis often treats the booms and the busts 
as separate episodes, both driven by their own sequence of exogenous shocks. In contrast, our 
model generates an endogenous boom-and-bust cycle out of the single impulse shock that is the 
arrival of the new technology.3 The crash, in particular, is not triggered by an exogenous shock 
but arises endogenously through the natural evolution of beliefs. As a consequence, the proper-
ties of the bust can be affected by what happened during the preceding boom, and government 
policies can have a large impact: policy interventions may affect the duration and magnitude of 
the boom as well as the timing and depth of the bust. They may also determine whether or not 
a cycle is to take place at all. This feature is absent from most standard models of the business 
cycle.

In the model, the mass of investing agents is a nonlinear aggregator of the dispersed informa-
tion. As a result, the amount of information that agents receive is endogenous and varies with the 
cycle, which opens the door to a form of information cascades. When the public signals received 
up to a certain date are very positive, most agents invest regardless of their private signals so that 
their private information is not encoded into the mass of adopters. As a result, the model is able 
to generate sustained booms, when massive adoption restricts the flow of information, and rapid 
busts when slight downturns encourage enough entrepreneurs to use their private information, 
which suddenly reveals more information on the true state of the world.

Due to this variable flow of public information, the model features an information externality: 
agents do not internalize how their private adoption decisions affect the flow of public infor-
mation. We characterize the solution of a social planning problem and show that the planner 
tends to lean against the wind by pushing for fewer agents to adopt the technology during booms 
and more during downturns so as to optimize the amount of information provided by aggregate 
adoption data.

To explore how the evolution of beliefs generated by our learning model can produce a gen-
eral macroeconomic expansion followed by a recession, and to have a sense of the magnitude of 
the boom-bust cycles generated by the theory, we embed our main mechanism into a quantita-
tive business cycle framework, which models the technology adoption decision of entrepreneurs 
after the arrival of a new technology. The model features two types of capital, “traditional” and 
“information technology” capital (IT), and we assume that the new technology is more intensive 
in IT capital. As in the basic model, social learning takes place as agents observe the measure of 
new-technology adopters.

We calibrate the model to match various moments of the data that relate to the dot-com 
period. In particular, we discipline the amount of private information—a key moment for our 
mechanism—using dispersion in forecasts from the Survey of Professional Forecasters (SPF). 
We also use data from the SPF to discipline investors’ beliefs about the true value of the tech-
nology. Under our calibration, the model is able to generate a boom-bust cycle with positive 

3 By “endogenous”, we mean that the entire boom-and-bust pattern is produced by the forces in the model. Our theory 
still relies on shocks, however, but only one-time shocks and does not rely on a particular sequence of positive then 
negative shocks. This approach is different from other theories of endogenous business cycles that generate deterministic 
periodic or chaotic dynamics (see Boldrin and Woodford (1990); Benhabib (1992); Guesnerie and Woodford (1992) for 
surveys).
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comovements in consumption, investment, hours worked and output. The overinvestment into 
IT capital during the boom period and the negative wealth effect associated to its sudden loss 
of value cause the economy to contract significantly when beliefs collapse as agents realize that 
resources were misallocated. Overall, our results suggest that rational herding among economic 
agents can generate realistic fluctuations in macroeconomic aggregates.

Literature review

This paper builds on a long historical tradition in macroeconomics. The view that business 
cycles are shaped by expectations dates back at least to Pigou (1927), who also suggested a role 
of herding among investors.4 While ignoring the financial aspects of booms and busts, our paper 
also echoes parts of the narrative that describes the behavioral and psychological causes of cycles 
in Minsky (1977) and Kindleberger (1978) after an initial “displacement” (e.g., the introduction 
of a new technology).

Our paper is closely related to the literature on news or noise-driven business cycles (Beaudry 
and Portier, 2004; Lorenzoni, 2009; Jaimovich and Rebelo, 2009). Indeed, our model shares the 
view that boom-bust cycles may be due to false-positives. In the news-shock literature, beliefs 
are driven by the exogenous release of news at fixed dates. In contrast, in our approach, the rise 
and fall in beliefs are endogenously driven by model forces, allowing us to explore the model’s 
unique predictions on the frequency and timing of such cycles, and providing a greater role for 
stabilization policies. In addition, the news literature does not consider the role of herding in 
driving fluctuations, which is essential for our results: in our model, the gradually rising boom 
is the sole product of a positive feedback loop between investors under social learning, and the 
timing of the bust is determined by the time when the positive feedback disappears.

Christiano et al. (2008) consider the interaction of monetary policy and boom-bust cycles 
driven by news shocks. Closer to our work, Benhima (2019) builds a new-Keynesian model 
with dispersed private information in which news shocks released at fixed exogenous dates can 
create boom-bust episodes. In a recent paper, Angeletos et al. (2022) show that common noise 
shocks can generate excessive fluctuations in a model of start-up financing through comple-
mentary interactions between the entrepreneurial sector and financial markets. As in our setup, 
lean-against-the-wind policies can be beneficial. Burnside et al. (2016) propose an epidemiology-
based model in which the transmission of optimistic beliefs in a population about the housing 
market can create a boom and bust. In a similar epidemiology-based variant of their framework, 
Angeletos and La’O (2013) propose a model in which a sentiment shock produces a hump-shaped 
cycle as it propagates through the population. Gorton and Ordoñez (2019) build a model in which 
the evolution of beliefs about the quality of collateral can lead to endogenous cycles. Goldstein 
et al. (2013) propose a model in which learning from prices creates strategic complementarities 
between financial markets and capital providers that give rise to trading frenzies.

Our paper also relates to the original work on herding and information cascades by Banerjee 
(1992), Bikhchandani et al. (1992) and Chamley (2004). It further relates to Avery and Zemsky 
(1998), who study herding in financial markets and introduce multidimensional uncertainty to 

4 In Industrial Fluctuations (1927), Pigou states that “the varying expectations of business men [...] and not anything 
else, constitute the immediate and direct causes or antecedents of industrial fluctuation”. He emphasized the importance 
of the herding process: “the pioneers, who thus undertake and expand enterprises, at once fill a social need and lay 
treasure for themselves. Gradually, as no disaster happens to them, other less bold spirits follow their example; then 
others and yet other.”
5
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allow for information cascades. Our model differs from these traditional models of herding in 
several dimensions. First, in previous herding models, agents make decisions sequentially and 
the dynamics of the model are governed by the gradual observation of these individual decisions. 
Both features do not sit well with standard macroeconomic models. In our setup, instead, agents 
act simultaneously and learn by observing aggregates, which allows for a smoother integration of 
herding into macroeconomic frameworks. Second, the source of agents’ confusion is different. In 
traditional herding models, people are confused between the fundamental return and the idiosyn-
cratic shocks that stem from a particular ordering of the investors. As a consequence, boom-bust 
cycles arise only for specific sequences of idiosyncratic shocks. In our model instead, agents are 
confused between the fundamental and the common noise, which are drawn once and for all. 
Boom-bust patterns emerge endogenously through the natural evolution of beliefs and without 
any timing assumptions about shocks. This distinction with the existing literature is crucial to 
generate endogenous cycles.

To our knowledge, Loisel et al. (2012) is the only other macroeconomic model with herding. 
Their paper presents a simple general equilibrium model with overlapping generations of finitely-
lived entrepreneurs who are endowed with private signals and must invest in a risky asset. As in 
traditional models of herding, entrepreneurs act sequentially and individual investment decisions 
are publicly observable. Our paper extends this approach by offering a novel herding model, 
based on contemporaneous decisions and the observation of aggregate actions, which, we believe, 
can be more easily integrated into traditional macroeconomic models.

Our learning model shares similarities with Vives (1997) who studies an environment in which 
agents with dispersed information learn by observing the average action across agents. Chapter 
4 of Chamley (2004) briefly reviews a model in which privately informed agents learn from 
the average action. As in our model, the amount of information released by the public signal 
varies over the state space. As in Caplin and Leahy (1994) and Veldkamp (2005), the endogenous 
release of information in our model can generate sudden collapses in economic activity. Our work 
also contributes to a literature in which the aggregation of private information leads to nonlinear 
aggregate dynamics (Fajgelbaum et al., 2017). Straub and Ulbricht (2019) explore in a general 
setup the informativeness of nonlinear public signals and Straub and Ulbricht (2017) studies a 
particular application with financial constraints. None of these works consider the emergence of 
endogenous boom-bust cycles.

In contrast to our approach which maintains the assumption of rational expectations, a lit-
erature studies the emergence of boom-and-bust cycles in asset prices or in aggregate economic 
activity after departing from rationality or rational expectations. This includes the adaptive learn-
ing literature (Carceles-Poveda and Giannitsarou, 2008; Eusepi and Preston, 2011; Adam et 
al., 2017), the heterogeneous-belief literature with disagreement (Harrison and Kreps, 1978; 
Scheinkman and Xiong, 2003; Simsek, 2013) and, more recently, a literature that uses diagnostic 
expectations (Bordalo et al., 2021).

Our work also relates to a strand of literature that studies the role of bubbles in macroeco-
nomic environments,5 the literature on endogenous deterministic cycles,6 a literature that views 

5 These include studies based on rational bubbles (Galí, 2014; Martin and Ventura, 2016; Asriyan et al., 2019; Guerrón-
Quintana et al., 2020) as well as bubbles due to financial constraints and others (Kocherlakota, 1992; Miao and Wang, 
2012; Barlevy, 2014; Hirano and Yanagawa, 2016).

6 See, for instance, Grandmont (1985), Boldrin and Woodford (1990), Benhabib (1992), Benhabib et al. (2002) and 
Matsuyama (1999, 2013). More recent contributions include Beaudry et al. (2020), who provide empirical evidence in 
6



E. Schaal and M. Taschereau-Dumouchel Journal of Economic Theory 210 (2023) 105669
endogenous cycles from the point of view of equilibrium indeterminacy and sunspots,7 and a 
literature on learning from markets (Chen et al., 2007; Bond et al., 2012).

Section 2 introduces a simple learning model that conveys the intuition for the mechanism. 
The following section describes the forces at work in the model and discusses its welfare impli-
cations. Section 4 presents our business cycle model. We calibrate the model in Section 5 and 
show several empirical implications of the mechanism. The final section concludes.

2. Learning model

We first present our mechanism in a simplified dynamic game of technology adoption. This 
allows us to provide intuition for why social learning can lead to an endogenous herd-driven 
boom-bust cycle out of a single impulse shock. We also use this simplified model to derive 
analytical results and discuss the policy implications.

Notation

In what follows, whenever Fx (x̃) = Pr (x ≤ x̃) denotes the cumulative distribution function 
(CDF) of some random variable x, f x refers to its associated probability density function and 
F

x
to its complementary CDF, F

x
(x̃) = Pr (x > x̃).

2.1. Environment

Time is discrete and goes on forever, t = 0, 1, . . . . The economy is populated by a unit mea-
sure of entrepreneurs indexed by j ∈ [0,1]. Entrepreneurs are risk-neutral and discount future 
consumption at rate 0 < β < 1. Each entrepreneur faces a technology adoption choice and must 
decide whether to use an old technology or adopt a new one. The old technology is known and 
provides a constant deterministic return Ao. The new technology, on the other hand, is character-
ized by an unknown stochastic return An

t . We assume that the new technology is not immediately 
productive. It initially delivers the same return as the old technology until it matures, which hap-
pens with some fixed per-period probability λ > 0. After maturation, the true nature of the new 
technology is revealed and characterized by a constant return θ ∈ {θH , θL}, θH > Ao > θL. We 
refer to θ as the technology fundamental. Maturation is a one-time event and all uncertainty is 
resolved afterwards. In other words,

An
t =

{
Ao before maturation

θ after maturation.

Adopting the new technology is costless and, every period, agents must decide whether to use 
the new technology (ij t = 1) or not (ij t = 0). We assume that a fraction μ of agents are “noise 
entrepreneurs”, that is, they are clueless regarding technological adoption and behave randomly. 

favor of endogenous cycles. In contrast to our setup, models in this literature feature deterministic limit cycles that can 
be periodic or chaotic.

7 This literature includes Benhabib and Farmer (1994) and Wen (1998). More recent contributions include Benhabib et 
al. (2015), Kaplan and Menzio (2016), Eeckhout and Lindenlaub (2019) and Golosov and Menzio (2020). These studies 
typically feature multiple equilibria and aggregate fluctuations are due to shifts in expectation triggered by sunspot 
shocks. Our model, instead, features a unique equilibrium and boom-bust cycles result from agents’ gradual learning 
about the technology and the common noise.
7
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Specifically, we assume that a fraction εt of noise entrepreneurs adopt the new technology, where 
εt is iid distributed according to a CDF Fε. The remaining 1 − μ entrepreneurs are rational and 
choose the best of the two technologies, based on public and private information. There is no 
cost of switching between technologies, so entrepreneur j solves

ij t = argmax
ij t∈{0,1}

ij tE
[
An

t | Ij t

]+ (1 − ij t

)
Ao,

where Ij t is its information set at time t .

2.2. Information

The technology fundamental θ is randomly drawn once and for all at date 0. We denote by p0
the ex-ante probability that θ = θH . Entrepreneurs do not observe θ directly but receive various 
private and public signals about its true value.

Private signals

First, we assume that each agent receives a private signal sj at date 0, upon the arrival of 
the new technology. Importantly, we allow these private signals to feature not only idiosyncratic 
noise but also common noise. This common noise might come, for instance, from sources of 
information shared by agents (mass media, internet) that may report noisy signals about the initial 
success of the technology (e.g., benchmark tests). Common noise is key to our mechanism as it 
introduces the possibility that the average belief about θ varies for reasons that are orthogonal to 
the true value of the fundamental.

Common noise is captured by the random variable ξ , distributed according to the CDF Fξ . 
Formally, we assume that the private signal sj of agent j is drawn from the CDF F s

θ+ξ (s) =
Pr
(
sj ≤ s

)
, where 

{
F s

x

}
x∈I

is a family of distributions that admit the probability density func-
tions 

{
f s

x

}
x∈I

. To prevent the possibility of trivial learning, we make the assumption that F s
x

has full support over R, i.e., f s
θ+ξ > 0 everywhere. Finally, in order to guarantee monotonicity 

in learning, we assume that the family 
{
F s

x

}
x∈I

satisfies the monotone likelihood ratio property
(MLRP). That is, for x1 < x2 ∈ I and s1 < s2, we have

f s
x2

(s2)

f s
x1

(s2)
≥ f s

x2
(s1)

f s
x1

(s1)
. (MLRP)

Intuitively, the MLRP condition guarantees that a high signal s is more likely to be coming from 
a high realization of x = θ + ξ . In other words, an entrepreneur observing a high private signal 
sj becomes more optimistic and puts a higher probability on the value of the technology θ and 
the common noise ξ being high.

Example. In most of our examples, we will use additive private signals so that

sj = θ + ξ + vj , with vj ∼ iid CDF Fv. (1)

Public signals

Before the new technology matures, entrepreneurs collect public information in addition to 
their initial private signal. We first assume that each period all agents observe a public signal 
8
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St = θ + ut , centered around θ with iid noise distributed according to CDF Fu and standard 
deviation σu, which stands in for all the information collected over time from exogenous public 
sources. After maturation, we assume that the fundamental θ is observed and that all uncertainty 
is resolved.

Second, and more importantly for our mechanism, we introduce a form of social learning by 
allowing entrepreneurs to observe an endogenous signal which partially aggregates the private 
information of agents. This is to capture the type of information that agents learn by observing 
aggregate quantities or prices, which result from the aggregation of individual decisions.8 Specif-
ically, we assume that entrepreneurs observe the total measure of adopters of the new technology 
mt , which, in the presence of noise entrepreneurs, can be written as9

mt =
1−μ∫
0

ij t dj

︸ ︷︷ ︸
rational entrepreneurs

+ μεt .︸︷︷︸
noise entrepreneurs

(2)

The presence of the noise εt is required in our setting to prevent agents form learning too quickly 
(or even immediately in some cases, as we discuss later).

In equilibrium, the decision to adopt ij t is a nonlinear function of the agent’s indi-
vidual beliefs. In turn, these beliefs are a function of public information up to time t , 
{St−1,mt−1, . . . , S0,m0}, and of the private signal sj . As a result, since public information is 
shared and can be filtered out, mt partially aggregates the private information across the popula-
tion of entrepreneurs and therefore contains useful information regarding the fundamental θ and 
the common noise ξ .

As we explain in more details below, it is the presence of this endogenous signal that will 
allow herding to occur in our environment. As mt aggregates the dispersed information of pri-
vate agents, a particularly high draw of mt will be interpreted as being indicative of a strong 
fundamental θ and a high common noise ξ . As a result, agents will update their beliefs in favor 
of these states, which might encourage technology adoption, increasing mt further, and so on.

2.3. Belief characterization

There are two aggregate shocks in this economy: the fundamental θ and the common noise ξ . 
The beliefs of an individual entrepreneur j are described by a joint probability distribution that 
we denote by

�jt

(
θ̃ , ξ̃
)

= Pr
(
θ = θ̃ , ξ ∈

[
ξ̃ , ξ̃ + dξ̃

]
| Ij t

)
,

in which we explicitly allow for ξ to take a continuum of values and where Ij t is agent j ’s infor-
mation set at date t . Since entrepreneurs receive different private signals, we should in principle 
keep track of the whole distribution of beliefs in the economy (i.e., a distribution over distri-
butions). Fortunately, the information structure is simple enough that the model lends itself to 
a useful simplification. As in Chapter 3 of Chamley (2004), it is enough to keep track of only 

8 In our full business cycle model from Section 4, observing aggregate quantities or prices will provide a public signal 
of the same form.

9 Alternatively, the noise εt in (2) can be interpreted as pure observational noise or measurement error in this simplified 
learning model.
9
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one set of time-varying beliefs, the public beliefs �t

(
θ̃ , ξ̃
)

= Pr
(
θ = θ̃ , ξ ∈

[
ξ̃ , ξ̃ + dξ̃

]
| It

)
. 

These public beliefs correspond to the beliefs of an outside observer who only has access to 
public information It at time t , which is the collection of past public signals on the tech-
nology and measures of entrepreneurs: It = {St−1,mt−1, . . . , S0,m0}. In comparison to this 
outside observer, an entrepreneur’s information set also includes the private signal sj , so that 
Ij t = It ∪ {sj}. Entrepreneurs’ individual beliefs can easily be recovered from public beliefs 
using Bayes’ rule and the private signal sj , according to

�jt

(
θ̃ , ξ̃
)

=
�t

(
θ̃ , ξ̃
)

f s

θ̃+ξ̃

(
sj
)

∫
�t (θ, ξ)f s

θ+ξ

(
sj
)
d (θ, ξ)

. (3)

This simplification comes from the fact that only public information evolves over time. Indeed, 
since the private signal distribution f s

θ+ξ is constant and known up to the realization of θ and ξ , 
it is easy to recover the entire distribution of private beliefs across agents for a given combination 
of (θ, ξ) at any point in time. As a result, the only object whose evolution over time we need to 
keep track of is the public belief distribution �t .

2.4. Timing and adoption decision

The timing is as follows. At date 0, the fundamental θ , the common noise component ξ and 
the private signals sj are drawn once and for all. At date t ≥ 0,

1. Agents choose whether to adopt the new technology or not based on their individual beliefs 
�jt ;

2. If it has not matured yet, the new technology matures with probability λ;
3. If the new technology matures, θ is learned. Otherwise, agents observe {St ,mt } and update 

their beliefs. The economy moves to the next period.

Since the adoption decision is a simple static problem, it can be characterized in an easy way. 
Agent j adopts the technology in period t if and only if

E
[
An

t | Ij t

]= λ
[
pjt θH + (1 − pjt

)
θL

]+ (1 − λ)Ao ≥ Ao, (4)

where we define

pjt = Pr
(
θ = θH | Ij t

)= ∫ �jt (θH , ξ) dξ (5)

as the probability that j puts on being in the good-technology state θH , the adoption decision (4)
is characterized by a cutoff rule p∗ in the space of beliefs. That is, an agent adopts the technology 
if and only if pjt ≥ p∗ where p∗ is the belief of the marginal adopter such that

p∗θH + (1 − p∗) θL = Ao. (6)

The total measure of adopting agents, including noise entrepreneurs, can then be expressed as

mt = me (�t , θ, ξ) + μεt , (7)

where me (�t , θ, ξ) = (1 − μ)

∫
1I
(
pj

(
�t, sj

)≥ p∗)f s
θ+ξ

(
sj
)
dsj . (8)
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The variable me is the measure of adopting agents among rational entrepreneurs in a given state of 
the world (θ, ξ). Importantly for what follows, me is an object that any agent in the economy can 
compute. To see this, note that since they know the structure of the model and the public beliefs, 
all agents agree on the cutoff p∗. Second, thanks to the dichotomy between public beliefs and the 
fixed distribution of private signals f s

θ+ξ , agents understand the mapping from (θ, ξ) to pj and 
can therefore compute the distribution of beliefs pj that would arise in a given state of the world 
(θ, ξ). This property is essential to tractably solve the inference problem from the endogenous 
public signal, to which we now turn.

2.5. Evolution of beliefs

After characterizing the adoption decision, we can now describe how beliefs are updated over 
time. Before maturation, each end of period brings two new public signals for agents to process: 
St and mt . The updating of information with St is straightforward as it is a simple exogenous 
signal. Applying Bayes’ rule, we define the interim beliefs at the end of the period as

�t |St

(
θ̃ , ξ̃
)

=
�t

(
θ̃ , ξ̃
)

f u
(
St − θ̃

)
∫

�t (θ, ξ)f u (St − θ) d (θ, ξ)
. (9)

We now turn to incorporating the information contained in mt . Solving the inference problem 
from an endogenous signal like mt can be complicated in general because individual decisions 
need to be inverted to back out their information content about θ and ξ . Fortunately, and as 
highlighted at the end of the previous section, the inference problem is greatly simplified in our 
environment since the measure of rational adopters me in every state of the world is a simple 
function of the public beliefs �t (known by everyone) and of the true realization of (θ, ξ). En-
trepreneurs solely differ in their assessment of the probability of each state (θ, ξ), encoded in 
�jt , but there is no infinite regress problem arising from the necessity to forecast the beliefs of 
agents after any history of shocks. Because of the equilibrium structure of the signal (7), Bayes’ 
rule gives us the simple updating equation

�t+1

(
θ̃ , ξ̃
)

=
�t |St

(
θ̃ , ξ̃
)

f ε

((
mt − me

(
�t, θ̃ , ξ̃

))
/μ

)
∫

�t |St (θ, ξ) f ε

(
(mt − me (�t , θ, ξ)) /μ

)
d (θ, ξ)

. (10)

2.6. Equilibrium

We are now ready to define an equilibrium in this economy.

Definition 1. An equilibrium consists of history-contingent public beliefs �t , a distribution of 
private beliefs 

{
�jt

}
j∈[0,1] and a measure of technology adopters mt for all t , such that: 1) 

the distribution of private beliefs is derived from the public beliefs through (3) and (5); 2) the 
measure of adopters is consistent with entrepreneurs decisions under their private beliefs as in 
(7); and 3) the public beliefs follow the laws of motion (9)–(10).

With that definition in hand, the following proposition characterizes the set of equilibria.

Proposition 1. There exists a unique equilibrium.
11
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Proof. All proofs are in Appendix A.2. �
The proof of the proposition is straightforward. It shows that from a given distribution of 

public beliefs �t , there is a unique mapping, given the realization of the shocks, to next period’s 
public beliefs �t . Starting from the initial �0 we can therefore reconstruct the unique equilibrium 
sequence {�0,�1, . . . }. All other equilibrium quantities such as the measure of adopters and the 
distribution of private beliefs can then be reconstructed from the public beliefs in a unique way.

3. Endogenous booms and busts

We are now fully equipped to analyze the dynamics implied by the model. To simplify the 
exposition, we focus on a simple special case that conveys the intuition about the emergence of i) 
a smooth form of information cascades and ii) endogenous booms and busts. We then show that 
these results extend to a more general setup. We also discuss the welfare properties of the model.

3.1. The 3-state model

To simplify the exposition, we temporarily make the simplifying assumption that the pair 
(θ, ξ) can only take three different values, the minimal number of states required for endogenous 
boom-bust cycles to emerge in our model. Specifically, we assume10

(θ, ξ) ∈ {(θL,0) , (θH ,0) ,
(
θL, ξ

)}
with θL < θL + ξ < θH .

We refer to (θL,0) as the bad-technology state, (θH ,0) as the good-technology state and 
(
θL, ξ

)
as the false-positive state. The latter is the state of interest as it is the one that will trigger a boom-
and-bust cycle by having entrepreneurs mistakenly assess the technology to be of high quality 
before later realizing their mistake.

Having only three states reduces the number of state variables required to keep track of the 
belief distribution �t . Public beliefs are now summarized by the two variables

pt ≡ �t (θH ,0) and qt ≡ �t

(
θL, ξ

)
,

and the corresponding updating rules can be found in Appendix A.1.
We now establish a first result. Under our assumptions, the individual belief about the proba-

bility of the good technology, pjt = �jt (θH ,0), is increasing in the private signal sj . As a result, 
the adoption decision can be further characterized by a cutoff rule s∗ (pt , qt ) in terms of private 
signals, which simplifies the expression of the measure of rational adopters me as the following 
lemma shows.

Lemma 1. In the three-state model, the optimal adoption strategy is characterized by a cutoff 
rule in the private signal s∗ (pt , qt ), such that pj (pt , qt , s

∗ (pt , qt )) = p∗, that is decreasing in 
pt . That is, an agent adopts the technology if and only if sj ≥ s∗ (pt , qt ). The measure of rational 
adopters is given by

me (pt , qt , θ, ξ) = (1 − μ)F
s

θ+ξ

(
s∗ (pt , qt )

)
.

10 We only consider the case θL < θL + ξ < θH because it ensures that beliefs about the good state, pjt , are non-
decreasing in the signal sj . This corresponds to the more general case from Section 3.2 where Fs satisfies the MLRP 
condition and ξ is normally distributed. In the case θL + ξ > θH , beliefs are non-monotonic in sj and other phenomena 
can be observed.
12
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Fig. 1. Private beliefs and expected measure of adopters.

Learning from mt

To develop intuition on the way agents learn from the measure of adopters, we propose an 
example in Fig. 1. Panel (a) displays the distribution of private signals sj in the three states of 
the world. Due to the MLRP assumption, the three distributions are ordered in the sense of first-
order stochastic dominance. The measure of rational adopters me is represented as the mass of 
agents located to the right of the cutoff s∗

t . We can see that me is small in the bad-technology 
state (θL,0) (dashed line), that agents expect more adoption in the false-positive state 

(
θL, ξ

)
(dotted line), and that it is at its largest in the good-technology state (θH ,0) (continuous line).

The three measures me being computed, we then present in panel (b) the three potential dis-
tributions of mt in the three states of the world assuming that the noise ε is normally distributed 
with mean 0. As the graph illustrates, agents expect very different distributions of adopters mt , 
each centered on their expected value me in the different states of the world (θ, ξ). We can split 
the mt -space into three regions that indicate which state is attributed more probability after ob-
serving mt . For instance, for low mt the likelihood of the state θL is greater than that of the 
other states, so information updating will attribute it a higher probability. The two other states, (
θL, ξ

)
and (θH ,0), have their own higher likelihood region that are also represented on the 

graph. Importantly for the emergence of boom-and-bust cycles, beliefs about the good state tend 
to increase after observing high realizations of mt . It is in that sense that the model displays a 
form of “herding”: agents become more optimistic (resp. pessimistic) after seeing high (resp. 
low) patterns of adoption, leading them to make inefficient adoption decisions, as we will see in 
our welfare analysis.

Signal-to-noise ratio and smooth information cascades

In the traditional herding literature (Banerjee, 1992; Bikhchandani et al., 1992), information 
cascades arise when public beliefs are so extreme (pt extremely high or low, because of a partic-
ular history of public signals), that agents disregard their own private information. That is, agents 
adopt (or not) the technology no matter what their private information is. As a result, observing 
previous entrepreneurs’ decisions becomes uninformative and the economy may end up being 
stuck in a situation with mistaken beliefs forever.
13
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Fig. 2. Measure of technology adopters mt as a function of public belief pt .

Because social learning takes place through the observation of the continuous variable mt , 
rather than the sequence of binary decisions by previous entrepreneurs, the emergence of infor-
mation cascades is somewhat different in our setup. We show nonetheless that a similar form of 
“smooth” information cascades may arise depending on assumptions about the distributions of 
signals.

The bottom-right panel of Fig. 2 represents how the measure of adopters mt varies in expec-
tation, along with its ±1-standard deviation error bands, as a function of the public belief pt , 
holding qt constant. These curves are drawn by first connecting a given level of pt in the bottom-
right panel to the equilibrium signal threshold s∗ (pt , qt ) (upper-right panel), itself connected to 
the upper-left panel which shows how the measures me = (1 − μ)F

s

θ+ξ (s∗) vary with the cutoff 
s∗. As the bottom panel shows, the expected measure of rational adopters me is a monotonic 
transformation of the CDF F s

θ+ξ in the three different states.
The key feature to take away from this graph is that the signal-to-noise ratio in mt varies 

nonmonotonically with the public beliefs. For intermediate values of pt , the three expected mea-
sures me are far apart so that despite the noise εt , observing mt is highly informative about the 
14
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underlying state θ + ξ (i.e., the signal-to-noise ratio is high). For pt large (resp. small), almost 
all (resp. no) agents adopt the technology, the three measures converge to lim

s∗→−∞F
s

θ+ξ (s∗) = 1

(resp. 0 when s∗ → ∞), so that the signal mt is dominated by noise and becomes uninformative 
about the underlying fundamentals (i.e., the signal-to-noise ratio is low). Note that this result is 
not an artifact of specific distributions or functional forms but is instead a general feature of the 
model as long as s∗ varies sufficiently on the support of F

s

θ+ξ .11

The model offers a smooth analog to informational cascades when the equilibrium s∗ reaches 
the extreme regions of the state space where learning is slow. Suppose for instance that public 
beliefs are optimistic (pt high) so that s∗ is very low. In such a situation, almost all agents act in 
the same way and adopt the new technology. Only few agents use their private information to “go 
against the crowd” and do not adopt: the most pessimistic ones that have received particularly 
low private signals. Unfortunately, their measure is so small that they are hard to detect when 
looking at the aggregate adoption patterns. As a result, markets are nearly uninformative and 
beliefs can remain wrong for an extended period of time. The main difference with traditional 
herding models is that, under the assumption that private signals have full unbounded support, 
the information flow is never exactly 0 so that there is always some learning taking place through 
mt and St . Such a smooth form of information cascades is of interest to us for two reasons: i) 
it explains why the economy may remain for an extended period of time in the booming region, 
where agents understand that they could be wrong in their assessment of the true state of the 
world but adopt the technology nonetheless, ii) it opens the door to the economy endogenously 
exiting the information cascade and crashing when some threshold in beliefs is reached, as we 
will now describe.

Endogenous boom-and-bust cycle

We now turn to boom-and-bust cycles, which we define as a sequence of rising then declining 
public beliefs pt about the good state. We present simulations of the model to illustrate its ability 
to generate endogenous boom-bust patterns out of a single impulse shock. We do not attempt to 
make a realistic calibration but merely pick parameters so as to highlight the model’s properties. 
We will examine later under what general conditions one should expect the boom-bust cycles to 
occur.

We present the impulse responses of the measure of adopters (mt ) and the public beliefs (pt , 
qt ), keeping all other shocks to their mean levels (e.g., εt , ut = 0), when the economy is in the 
false-positive state (θ, ξ) = (θL, ξ

)
, the case of interest for our purpose.12

Figs. 3 and 4 present two examples of endogenous boom-and-bust patterns that may arise in 
the model, depending on whether or not the economy falls into an information cascade. In both 
examples, the emergence of boom-and-bust patterns hinges on three key assumptions: (i) θL + ξ

needs to be sufficiently close to θH , so that the two states are hard to distinguish; (ii) St is not 

11 Fig. 2 may give the wrong impression that the nonmonotonicity result highly depends on the sigmoidal shape of the 
CDFs Fs

θ+ξ . While the regions with higher signal-to-noise ratio may change with the distribution, a robust prediction 
for any distribution is that the measure mt is less informative for extreme public beliefs, when agents herd on the same 
action, since Fs

θ+ξ

(
s∗)→ 1 (resp. Fs

θ+ξ

(
s∗)→ 0) when pt gets close to 1 (resp. 0) and the cutoff s∗ goes to minus 

infinity (resp. infinity) for any signal distribution.
12 Figs. 9 and 10 in the appendix show the economy’s response to the good-technology and bad-technology states. With 
our parametrization, these cases are relatively uninteresting: learning is fairly quick, and the dynamics are close to the 
full information case.
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Fig. 3. Slow boom, sudden crash.

Fig. 4. Endogenous boom and bust with information cascade.

too informative, to prevent agents from learning the truth too quickly, and (iii) the prior q0 on the 
false-positive state 

(
θL, ξ

)
needs to be sufficiently small relative to the true positive (θH ,0) for 

agents to initially attribute most of the rising adoption pattern to the true positive state.
Fig. 3 presents the evolution of an economy in which the prior about θ is such that the measure 

of initial adopters is low. When the economy starts in period t = 0, the measure of adopters 
(panel a) is small but higher than agents expected. Seeing a surprisingly high adoption rate, 
agents understand that it is unlikely to come from the bad state and they reduce the probability 
assigned to it (dashed curve in panel b). Agents also understand that the high adoption rate could 
arise from either the good-technology or the false-positive states. As a result, they revise upward 
their probability assessments of both states (pt and qt rise). Importantly, however, given that 
agents start with a low prior on the false-positive state, the observed high level of adoption is 
mostly attributed to the good-technology state, so the rise in pt dominates their expectation. 
Consequently, agents become more optimistic overall, adoption continues to grow, and the rising 
adoption pattern, in turn, leads to further upward revisions in expectations, seemingly confirming 
the assessment that the economy is in the good state. We refer to this first stage of the cycle, 
characterized by the joint increase of adoption rates and beliefs (pt , qt ), as the growth stage.

Being rational, agents do understand the possibility that they may be mistaken and keep track 
of the probability of the false-positive state qt in the background, which also rises throughout the 
growth stage. Since signals are unbiased along the impulse response path, the belief qt rises in 
fact faster than pt despite starting from a lower prior. Therefore, a time comes when qt is so high 
16
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that agents become reluctant to adopt the technology and the aggregate adoption rate begins to 
decline. This is the start of the crash stage, which arises at an endogenous date without the need 
of an exogenous trigger. As adoption reaches a peak of about 35% given our parametrization, 
the measure of adopters mt attains the intermediate region depicted in Fig. 2 where it becomes 
more informative. As a consequence, agents learn the truth faster, adoption rates drop, and the 
probability pt starts declining until a belief reversal occurs later when the belief qt takes over. 
Note that the truth is always learned in the end because of the strictly positive information flow.

This example shows that the model is able to generate asymmetric cycles. The growth stage is 
slow due to the low information flow when mt is close to 0. The crash, on the other hand, is more 
sudden because it occurs in the region where i) uncertainty between the good state and the false-
positive state is high (pt and qt are close, so beliefs are more responsive to new information), 
and ii) the signal mt is more informative at the peak.

To highlight the dynamics of the model, the simulations presented in Fig. 3 assume that there 
are no shocks to the exogenous public signal (ut = 0) and no shock from the noise entrepreneurs 
(εt = 0). But these random shocks, by influencing the signals that agents observe, can also play 
an important role in driving aggregate adoption rates. In Appendix A.4, we explore how they can 
affect the timing and intensity of the boom-bust cycle.

Information cascades

Whether the growth stage gives way to a sudden collapse or not depends on the parametriza-
tion of the model. Fig. 4 depicts an example of a cycle in which the economy grows so rapidly 
at first that it reaches the low-informativeness region associated with a high mt . In that case, the 
economy goes through an information cascade before the crash. This simulation uses the same 
parametrization as in Fig. 3, but with a higher common noise parameter ξ so that the distribu-
tion of private signals in the false-positive and the good states are more similar. Adoption rises 
faster and reaches higher levels than in the previous example. As a result, there comes a time 
at the end of the growth stage when agents are so optimistic that they herd on adoption and mt

becomes uninformative. The economy thus enters a period akin to an information cascade, as 
described earlier, where almost all agents adopt the technology due to overly optimistic public 
beliefs, and in which markets almost cease to provide information. Through this mechanism, the 
economy may remain stuck for a long period of time with wrong beliefs and excessive adoption. 
Because the flow of information is never exactly zero, the economy eventually exits the cascade. 
This event occurs when the belief about the false-positive state qt reaches a threshold at which a 
sufficient fraction of agents stop adopting, bringing back the economy to the region where mt is 
informative. The crash takes place in a manner similar to the previous example: beliefs converge 
more quickly to their true values as the flow of information increases.13,14

13 The way the economy exits the cascade is reminiscent of the “wisdom after the fact” mechanism proposed by Caplin 
and Leahy (1994) and its reinterpretation in Chapter 4 of Chamley (2004).
14 The model can also generate permanent information cascades. When private signals sj are bounded to a set 

[
s, s
]

and the exogenous public signal is uninformative (σu → ∞), the public beliefs might be so optimistic that the adoption 
threshold s∗ reaches s. In this case, all agents adopt regardless of their private signals. As a result, the endogenous public 
signal mt does not reveal any of the dispersed information and is therefore completely uninformative. The economy is 
then trapped in a constant state of massive adoption, even though the true quality of the technology is bad. The opposite 
can happen when public beliefs are sufficiently pessimistic. Appendix A.5 shows how a permanent information cascade 
can arise in this sample economy.
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Fig. 5. The role of endogenous learning and the impact of exogenous news shocks.

The importance of herding

To better understand the importance of the social learning channel for the dynamics of the 
economy, we provide a simulation in which that mechanism is turned off (σε → ∞) so that 
agents no longer learn by observing mt and, as a result, no herding takes place. That simulation 
is presented in panel (a) of Fig. 5. As we can see, without the herding mechanism the economy 
does not initially grow into a boom, despite being in the false positive state and entrepreneurs 
having an unusually optimistic prior. In our previous examples, it was the slow diffusion of the 
information contained in private signals into the public beliefs that led to an economic boom, 
but since this channel is shut down here, the boom does not happen and the mass of adopters mt

quickly converges to zero.
To further highlight how our endogenous learning mechanism differs from more traditional 

exogenous noise shocks as in Lorenzoni (2009), we provide another simulation, in panel (b) of 
Fig. 5, in which the economy is hit by an exogenous ut shock immediately before t = 0 and 
the social learning channel remains shut down (σε → ∞). Upon impact, this shock leads to 
an increase in mt , as expected, but the dynamics it triggers is qualitatively different from that 
generated by the herding mechanism (dashed curve). As the figure illustrates, adoption peaks 
immediately then gradually fades out as more information is collected. The propagation is weak 
and does not lead to the positive feedback loop highlighted in the case of herding, which showed 
a slow rising pattern of self-reinforcing adoption and optimism.15

3.2. Continuum-state case

How general are the phenomena highlighted in the 3-state model? In this section, we discuss 
under what conditions endogenous boom-and-bust cycles arise in a less restrictive environ-
ment.

First, we relax the three-state assumption and return to the specification where ξ can take on 
a continuum of values. Second, we wish to understand how our two key conditions, (i) θL + ξ

close to θH and (ii) low q0, translate to the more general case. To build intuition on this issue, 
Fig. 6 shows the impulse responses of the economy in the continuous-ξ case assuming that ξ is 

15 Only a specific sequence of increasingly positive then negative exogenous shocks ut can replicate the type of dy-
namics observed in Fig. 3. In contrast, in our model, the boom and bust dynamic is the natural outcome of the economic 
forces at work. The two models also have very different policy implications, as we discuss in Section 3.3.
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Fig. 6. Boom-and-bust cycles in the continuous case.

independent of θ and is normally distributed with mean 0 and standard deviation σξ . As in the 
previous section, we present the response of the economy in the bad-technology state θ = θL but 
we vary the size of the ξ shock. Four shocks of various sizes are represented, with ξ expressed as 
a multiple of the standard deviation, namely ξ = kσξ , k ∈ {1.5,2.2,2.4,2.5}. The figure shows 
very distinct behaviors depending on the size of the shock. When the shock is relatively small, 
ξ = 1.5σξ (dash-dotted line), the economy does not experience any herding behavior in which 
the high initial adoption rate leads to rising optimism. Agents put a sufficiently high likelihood 
on this ξ draw and are, consequently, able to detect it relatively quickly. Things start to differ 
as we increase the size of the shock. For an intermediate-sized shock, ξ = 2.4σξ (dashed line), 
the economy begins to experience a boom-bust cycle of the sort described earlier. Because of the 
low probability of experiencing a shock greater than two standard deviations, agents are initially 
fooled by the high adoption rates and the economy enters a growth stage with rising optimism 
and adoption. The growth stage is slow and the crash begins around date t = 12, as in Fig. 3. 
When the size of the shock is larger, ξ > 2.5σξ (continuous line), the rise in adoption is so large 
that the economy goes through an information cascade after experiencing a short growth stage, 
as in Fig. 4. The economy exits the cascade endogenously at a date which is further delayed as 
the size of the shock increases.

These simulations show that the dynamics depicted in the examples of Figs. 3 and 4, in the 
previous section, are not mere curiosities but regular fixtures of the more general model. They 
also emphasize the importance of nonlinearities in governing these dynamics. Indeed, the simu-
lations show that the endogenous boom-and-bust phenomenon occurs whenever the shock to ξ is 
unusually large, sufficiently so that agents underestimate its likelihood and initially attribute the 
observation of high adoption rates to the good-technology state.

We now show that there always exists a sufficiently large shock in ξ to trigger a boom-and-
bust cycle in beliefs, as long as the exogenous signal coming from the public signal St is not too 
precise.

Proposition 2. In the Gaussian case, i.e., Fξ ∼ N
(

0, σ 2
ξ

)
, F s |θ, ξ ∼ N

(
θ + ξ, σ 2

s

)
, Fε ∼

N
(
0, σ 2

ε

)
, Fu ∼ N

(
0, σ 2

u

)
, for θ and ξ independent and signal St sufficiently uninformative 

(σu low), there exists a ξ such that all shocks ξ ≥ ξ generate a boom-and-bust cycle in the 
impulse response of beliefs pt to a false-positive shock (θL, ξ).
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Note that the above discussion shows a restriction imposed by the theory: because they are 
rational, agents cannot make systematic mistakes in their assessment of the probability of each 
state. Hence, boom-bust cycles can only arise for shocks that have a low enough probability of 
occurring. Our model thus offers a theory of infrequent booms-and-busts. Going beyond this 
limitation may require the introduction of deviations from rationality.

3.3. Welfare

We now turn to the analysis of welfare in this economy. Since entrepreneurs do not internalize 
that their adoption decisions affect the release of public information, the equilibrium is in general 
not efficient and policy interventions can be beneficial. To show this formally, we introduce 
a social planner that maximizes aggregate welfare under limited information. Specifically, we 
assume that the planner only observes signals that are publicly available and cannot rely on the 
private information of the entrepreneurs when making decisions.16

We follow Angeletos and Pavan (2007) in assuming that the planner seeks to maximize the 
sum of the entrepreneurs’ expected utility, where the expectation is computed according to the 
agents’ private beliefs. In each period, the planner picks an adoption threshold p∗

t such that 
agents with beliefs pjt ≥ p∗

t adopt the technology. Written in recursive form, the problem of the 
social planner is

V (I) = max
p∗ Eθ,ξ

⎡
⎢⎣ ∫
pj ≥p∗

E
[
An | Ij

]
dF

pj

θ+ξ

(
pj

)+ AoF
pj

θ+ξ

(
p∗) | I

⎤
⎥⎦

+ βEθ,ξ

[
V
(
I ′ (p∗)) | I] , (11)

where I ′ is public information next period, which evolves according to the law of motion (10), 
and where F

pj

θ+ξ

(
pj

)
is the CDF of the agents’ subjective probability that θ = θH when the true 

state of the world is θ + ξ . The expectation Eθ,ξ is then taking over these states using the public 
beliefs.

The first term in (11) captures the current-period returns from letting agents with private 
beliefs above p∗ adopt the technology. To compute that term, the planner first uses the public 
beliefs I to evaluate the likelihood of being in a given state θ + ξ . Since the planner knows 
the structure of the economy, it can then reconstruct the distribution F

pj

θ+ξ

(
pj

)
of private beliefs 

in that state, which is needed to compute the mass of entrepreneurs above and below p∗. The 
second term in (11), the continuation value, captures the impact of a given adoption threshold p∗
on the future public information. It is this term that creates a gap between the equilibrium and 
the efficient allocation. In the competitive equilibrium, individual agents are atomistic, so they 
disregard the impact that their actions have on the release of public information. The planner, on 
the other hand, understands that by changing the cutoff p∗, the mass of adopters also changes, 
which affects the informativeness of public signals.

The first-order condition of the planner with respect to p∗ can be written as

Eθ,ξ

[
λ
(
p∗θH + (1 − p∗) θL − Ao

)
f

p
θ+ξ

(
p∗) | I]= β

∂Eθ,ξ

[
V
(
I ′) | I]

∂p∗ . (12)

16 We impose these restrictions so that the problem of the planner is not trivial, and that it resembles that of a government 
trying to design policy under uncertainty about the true value of a new technology.
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Fig. 7. Endogenous boom-bust cycles in the efficient allocation.

The left-hand side of this equation reflects the expected cost of increasing the threshold p∗ at 
the margin. If the true state is θ + ξ , increasing p∗ slightly pushes a mass f p

θ+ξ (p∗) of agents 
away from adopting, each of which loses λ (p∗θH + (1 − p∗) θL − Ao) in expected returns. The 
planner takes the expectation of these losses over all the states θ + ξ . The right-hand side of the 
equation reflects the impact of increasing p∗ on the flow of public information that is released at 
the end of the period. By changing p∗, the planner can, for instance, increase the gap between 
the expected realizations of m in different states of the world. When it does so, m becomes more 
informative as the signal-to-noise ratio increases. Notice that when β = 0 the first-order condition 
(12) collapses to the equilibrium cut-off rule (6), such that the efficient allocation coincides with 
the equilibrium.

We describe in Appendix A.6 how the efficient allocation can be implemented as an equilib-
rium through an adoption tax τ ∗. That tax in general varies with public beliefs and pushes agents 
to internalize the social benefits of their adoption decisions on the release information.

Example: Efficiency in the 3-state model

To further explore the role played by inefficiencies in the model, we now go back to our earlier 
example of Fig. 4, and compare the evolution of the equilibrium and the efficient allocations. The 
results are presented in Fig. 7 where, as before, the economy is in the false-positive state. We see 
from Panel (a) that, in the equilibrium (dashed lines), agents are initially cautious and only about 
10% of them adopt the new technology. To make the public signal more informative, the planner 
pushes more agents to adopt (solid lines). It follows that the public beliefs move more rapidly in 
the efficient allocation (Panel b), and agents quickly learn that the bad-technology can be ruled 
out. In later periods, starting from about t = 11, the situation changes as optimistic signals about 
the economy accumulate. The public beliefs are so positive that private agents would neglect their 
private information to adopt the technology massively. The planner instead is more cautious and 
the efficient allocation features less adoption than in the equilibrium. The planner leans-against-
the-wind so that more private information is transmitted into public signals, and that beliefs can 
move more rapidly. Overall, we see that in the planner’s allocation there is a brief boom followed 
by a steady decline that begins at t = 5. In the equilibrium, however, the economy enters an 
information cascade and aggregate adoption rates remain very high for an extended period. In 
Appendix A.6 we describe the optimal tax that would need to be implemented in this economy 
so that the equilibrium coincides with the efficient allocation.
21



E. Schaal and M. Taschereau-Dumouchel Journal of Economic Theory 210 (2023) 105669
4. A business cycle model with herding

We now embed the mechanism from the simple model into a business cycle framework. Our 
objective is threefold. First, we want to examine the robustness of the mechanism in a more 
realistic environment that involves more moving parts (e.g., prices and constraints). Second, we 
want to investigate under what conditions the hump-shaped evolution of beliefs produced by our 
simple learning model may lead to a contraction deep enough to go below the trend. Finally, a 
more realistic setup is required to explore the quantitative implications of the theory, which we 
do in the next section.

Foreword

A key lesson from the news (or noise)-driven business cycle literature is that standard models 
have difficulty producing realistic business cycles out of fluctuations in beliefs. In particular 
they are unable to generate a general macroeconomic expansion, with positive comovements in 
macro aggregates, during the optimistic phase of the cycle, followed by a recession when beliefs 
are reversed.

To circumvent this difficulty, we propose a model that features nominal rigidities and two 
types of capital. Following Lorenzoni (2009), nominal rigidities ensure that aggregate output and 
hours may increase in response to a surge in demand driven by optimistic expectations. Under 
a sufficiently accommodative monetary policy, in line with standard estimates, the economy is 
demand-driven and a muted response of interest rates helps sustain the expansion in demand 
caused by a positive wealth effect.

We also include two types of capital, a new-technology-specific capital (e.g., IT capital) and 
a traditional form of capital, in the model to achieve two objectives. First, under the assumption 
that the new technology is intensive in IT capital, investment must increase for agents to benefit 
from the technological innovation, ensuring positive comovements between consumption and 
investment along the booming phase of the cycle. Second, the two types of capital also allow the 
model to generate a decline below trend during the bust through a misallocation channel: when 
people realize that they overestimated the quality of the technology, the IT capital stock loses its 
value and the economy must work its way back up to trend by reinvesting in traditional capital.

4.1. Household

Our business cycle framework builds on the core entrepreneurial economy presented in Sec-
tion 2. In addition to the entrepreneurs who face a technology adoption choice, the economy 
is composed of i) a representative household, ii) retailers, who are the only agents facing price 
rigidities, and iii) a monetary authority. The household lives forever, consumes, supplies labor 
and is the owner of all the firms and capital stocks in the economy. The preferences of the house-
hold are given by

E

[∑
βt log

(
Ct − L

1+ψ
t

1 + ψ

)]
, ψ ≥ 0,

where Ct is the consumption of the final good and Lt is labor. The household can save in a 
risk-free one-period nominal bond Bt in zero net supply and in two different forms of capital: a 
traditional type (T) in quantity KT

t and IT capital in quantity KIT
t . The household is subject to 

the real budget constraint
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Ct +
∑

i=T ,IT

I i
t + Bt

Pt

= wtLt +
∑

i=T ,IT

zi
tK

i
t + 1 + Rt−1

1 + πt

Bt−1

Pt−1
+ t,

where I i
t , i = T , IT , is the investment in each capital type, zi

t is the corresponding real rental 
rate, wt is the real wage, t is total profits, Rt−1 is the nominal interest rate on government debt 
issued at date t − 1, Pt is the nominal price level and 1 + πt = Pt/Pt−1 is the inflation rate. As 
usual, the law of motion for each type of capital, i = T or IT , is given by

Ki
t+1 = (1 − δ)Ki

t + I i
t ,

where δ is the depreciation rate.

4.2. Technology

There are four sectors: i) an entrepreneur sector, ii) a wholesale sector, iii) a retail sector and 
iv) a final good sector. The most important one, the entrepreneur sector, is the analog of the 
simple model from Section 2.

Entrepreneur sector

As in the simple model, the entrepreneurial sector is populated by a unit continuum of en-
trepreneurs indexed by j ∈ [0,1] who face a choice between an old versus a new technology. 
As before, the old technology is characterized by a known constant productivity Ao and the new 
technology by an unknown stochastic return An

t . In contrast with the earlier model, however, 
we now assume that these productivities can be combined with capital and labor in a produc-
tion function. The old production technology is Cobb-Douglas in some capital bundle Ko

jt , to be 
described shortly, and labor Lo

jt ,

Yo
jt = Ao

(
Ko

jt

)α (
Lo

jt

)1−α

, 0 ≤ α ≤ 1.

Unexpectedly, at date 0, the new technology becomes available with production function

Yn
jt = An

t

(
Kn

jt

)α (
Ln

jt

)1−α

.

As before, the TFP of the new technology An
t is initially as productive as the old one, An

t = Ao, 
before it matures with fixed probability λ > 0. After maturation, the true nature of the technology 
is revealed and An

t is then characterized by a constant fundamental θ ∈ {θH , θL}, θH > Ao > θL.
In addition to differing in TFP, the two technologies differ in the capital bundle they use as 

input. The capital bundle used by each technology i = o, n is given by

Ki
jt = κi

(
ωi

(
KIT

it

) ζ−1
ζ + (1 − ωi)

(
KT

it

) ζ−1
ζ

) ζ
ζ−1

, ζ > 0, (13)

where κi =
(
ω

ζ
i + (1 − ωi)

ζ
)− 1

ζ−1
and with the assumption that the intensity in IT capital is 

greater for the new than for the old technology, 0 ≤ ωo < ωn ≤ 1.17 We denote by zi
t , i = o, n, 

the rental price of each bundle.

17 The value of the parameter κi is set such that permanent changes in the measure of new technology adopters mt have 
no effect on steady-state output for equal productivities.
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After date t ≥ 0, entrepreneurs face a technology choice problem. As before, we assume that a 
fraction 0 ≤ μ ≤ 1 of entrepreneurs are “noise entrepreneurs”, and that a fraction εt of them adopt 
the new technology, where εt is i.i.d., distributed according to a CDF Fε with support [0,1]. The 
remaining 1 −μ entrepreneurs are rational and choose the best of the two technologies, based on 
public and private information:

ij t = argmax
ij t∈{0,1}

ij tE
[
n

t | Ij t

]+ (1 − ij t

)
E
[
o

t | Ij t

]
,

where i
t , i = o, n, are the profits from using technology i, Ij t is the information set of en-

trepreneur j at time t , and ij t is a dummy capturing the technology adoption decision. Finally, 
we assume that entrepreneurs are monopolistic producers of differentiated varieties that sell their 
output to the wholesale sector.

Wholesale sector

The wholesale, retail and final good sectors play no major role in the model other than sepa-
rating price rigidities from the technology choice problem of the entrepreneurs.

The wholesale sector is modeled as a representative firm which produces a wholesale good 
with CES technology

Yw
t =

⎛
⎝ 1∫

0

Y
σ−1
σ

j t dj

⎞
⎠

σ
σ−1

, σ ≥ 0, (14)

where Yjt is the quantity of inputs it purchases from the monopolistic entrepreneurs. The whole-

sale sector is perfectly competitive, giving rise to the demand schedule, Yjt = (Pjt/P
w
t

)−σ
Yw

t , 

where P w
t =

(∫ 1
0 P 1−σ

jt dj
) 1

1−σ
is the price of the wholesale good and Pjt the price of each 

differentiated entrepreneur good.

Retail sector

The retail sector is composed of a unit continuum of monopolistic producers who buy the 
wholesale good at P w

t and costlessly differentiate it using a one-to-one technology. Retail sector 
firms are the only ones to face price rigidities. We assume that they face Calvo-style frictions: 
firms can only reset their price with probability 1 − χ , leading to a standard Phillips curve.

Final good sector

The final good sector, similar to the wholesale sector, is modeled as a representative firm 
that operates under perfect competition and produces the final good, used for consumption and 
investment, using inputs from the retail sector. It uses the CES technology,

Yt =
⎛
⎝ 1∫

0

(
Y r

jt

) σ−1
σ

dj

⎞
⎠

σ
σ−1

,

where Y r
jt is the quantity purchased from each retail firm j and σ is the same elasticity of sub-

stitution as in (14).
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4.3. Monetary authority

To close the model, we need to specify the policy followed by the monetary authority. As is 
common in the literature, we assume that the central bank follows a Taylor rule,

1 + Rt

1 + R
=
(

1 + πt

1 + π

)φπ
(

Yt

Y

)φy

, (15)

where R, π and Y correspond to the values of, respectively, the target nominal interest rate, 
inflation and output, which we define later.

4.4. Information

The information structure for entrepreneurs mimics the one in the simple model of Section 2. 
As before, the true technology θ and the common noise ξ are drawn once-and-for-all at date 0. 
The ex-ante probability that θ = θH is denoted by p0. Entrepreneurs receive a private signal sj
drawn from Fθ+ξ at date 0. In addition, entrepreneurs and all other agents in the economy (house-
hold, central bank, retailers, etc.) collect public information over time through the observation of 
an exogenous signal St and the measure of entrepreneurs mt = ∫ 1−μ

0 ij t dj + μεt . Importantly, 
because the productivity of the new technology is identical to Ao until maturation, there is no 
other source of information in the economy. In equilibrium, prices and aggregate quantities are 
solely functions of mt and of the public information up to time t . As a result, prices and quanti-
ties provide no other information than is already contained in mt . The updating rules for beliefs 
�t and �jt are identical to those in the simple model and given by equations (3), (9) and (10).

4.5. Timing

Before date 0, the economy is in a deterministic, no-inflation initial steady state that cor-
responds to the economy before the introduction of the new technology. At date 0, the new 
technology fundamental θ , the common noise component ξ and the private signals sj are drawn 
once-and-for-all. For all date t ≥ 0,

1. Entrepreneurs choose whether to adopt the new technology based on the capital stocks (
KIT

t ,KT
t

)
, the relative rental rates zi

t , i = T , IT , and their information set 
(
�t, sj

)
(Stage 

A),
2. The measure of technology adopters mt is realized,
3. The new technology matures with probability λ,
4. Simultaneously (Stage B),

(a) All agents observe {mt,St } and update their information,
(b) The household chooses consumption, investment and labor supply,
(c) Production takes place,
(d) The monetary authority sets the policy rate,
(e) Markets clear.

The notation “Stage A” and “Stage B” is used in Appendix B.1 to identify when decisions are 
made in the full equilibrium definition.
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4.6. Investment decision

The technology adoption decision is more complicated than in the simple model because of 
the presence of general equilibrium effects. When choosing whether to use the new technology, 
agents have to forecast the profits from either technology. Profits in equilibrium depend not only 
on productivity but also on the level of demand from wholesalers Yw

t , prices and the real marginal 

costs mci
t = 1

Ajt

(
zi
t

α

)α (
wt

1−α

)1−α

from using each technology i = o, n:

i
t =
(
Pjt − Ptmci

t

)
Yjt . (16)

Solving the model by linearizing the equations of the DSGE model, entrepreneur j ultimately 
chooses to invest if and only if

E
[
Ân

t − αẑn
t | Ij t

]
≥ E

[
Âo︸︷︷︸
=0

− αẑo
t | Ij t

]
, (17)

where the hatted variables are log-deviations from a moving steady state that we define in Sec-
tion B.3 of the appendix and zi

t , i = n, o, are the rental rates on the capital bundles (13). As 
equation (17) demonstrates, entrepreneurs not only have to forecast the technology An

t but also 
factor prices, as they are now competing for the same inputs.

This concludes the exposition of the general business cycle model. Additional details with a 
full definition of the equilibrium, all model equations and a discussion of the resolution method 
can be found in Appendix B.

5. Quantitative illustration

We now turn to a quantitative illustration of our general macroeconomic model. We calibrate 
the model to a specific episode in US history and examine its ability to explain broad features of 
the data.

5.1. Calibration

As we argued before, our model offers a theory of infrequent endogenous booms-and-busts. 
For that reason, we do not expect to explain general business cycle patterns in the absence of 
other shocks, but rather to provide a narrative for certain episodes. We thus focus our calibration 
exercise on a particular episode in recent US history that best fits the description of a technology-
driven boom and bust cycle: the late 1990’s dot-com bubble. We map the new technology in our 
model to the introduction of IT technologies in the 1990s and we focus more specifically on 
the late part of the cycle which covers the period that preceded the stock market collapse in the 
NASDAQ composite index starting from a trough in 1995Q4 to the crash in 2001Q1.

Our goal with this exercise is not to show that the mechanism can precisely replicate the 
behavior of the economy during the dot-com period. Rather, we want to determine whether a 
reasonable calibration of the model is able to generate boom-bust cycles that are similar in terms 
of magnitude and comovements to what we see in the data. Since we focus on a single historical 
episode, there is limited data to pin down certain parameters with confidence. For those, we 
rely on the best data available and provide robustness tests in Appendix B to show that the 
mechanism does not hinge on specific parameter values. We are, however, careful to properly 
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Table 1
Standard parameters.

Parameter Value Target

α 0.36 Labor share
β 0.99 4% annual interest rate
ψ 2 Frisch elasticity of labor supply (Chetty et al., 2011)
χ 0.75 1 year price duration
σ 10 Markups of about 11%
φy 0.125 Clarida et al. (2000)
φπ 1.5 Clarida et al. (2000)
ζ 1.71 Elasticity between types of capital (Boddy and Gort, 1971)

discipline moments that are key for the mechanism, such as the dispersion of private beliefs, as 
we explain in more details below.

The model is solved at a quarterly frequency. Table 1 lists a first set of standard parameters 
that we take from the literature. The labor intensity α is set to target a standard labor share of 
36%. The discount factor β matches an annual real interest rate of about 4%. The household’s 
preference over consumption is logarithmic and the Frisch elasticity is set to 2, within the range 
of standard macro-level estimates (Chetty et al., 2011). The Calvo price-setting parameter χ
yields a standard average price duration of 1 year (Basu and Bundick, 2017). The elasticity of 
substitution between varieties σ is set to 10 to match an average markup of 11%. The Taylor rule 
parameters 

(
φy,φπ

)
are within the estimates of Clarida et al. (2000). The target inflation rate (π)

is set to 0 and that for output 
(
Y
)

and the interest rate 
(
R
)

are set to their respective values in 
the zero-inflation steady-state before the arrival of the technology. Finally, we pick the elasticity 
ζ between the different types of capital within the firm from early estimates by Boddy and Gort 
(1971).

Table 2 lists the more important parameters that attempt to match features of the dot-com 
bubble. We set the IT-capital shares ωi , i = o, n, to match a share of IT capital of 3% before the 
introduction of the new technology in 1991 and 14% in 2007 (Strauss and Samkharadze, 2011). 
The probability of maturation for the new technology λ is set to 1/22 to match an average waiting 
time of 22 quarters, corresponding to the length of our period of interest: 1995Q4-2001Q1. We 
now turn to the technology parameters. Ao is normalized to 1. We use the Survey of Professional 
Forecaster (SPF) mean real GDP growth forecast over the current quarter to discipline θH and 
θL. Under the assumption that factors are fixed in the short run, this identifies changes in the 
productivity parameter θ . The highest forecast for growth was 4.19% in 2000Q2 in annualized 
terms. Correcting for a mean growth trend in GDP of 2.4% over 1991-1998, this yields θH =
1.099. Similarly, targeting the lowest growth forecast of 0.80% in 2001Q1, we obtain an estimate 
of θL = 0.912.18

For the common noise, we adopt the same structure as in Section 3.1 and assume that the pair 
(θ, ξ) can only take the three values

(θ, ξ) ∈ {(θL,0) , (θH ,0) ,
(
θL, ξ

)}
with θL < θL + ξ < θH ,

18 The point estimate θL < Ao is not to be interpreted literally as implying that IT technologies are unproductive per se, 
but merely that the market was not fully ripe in 2000 for an economy-wide adoption due to temporary disruption costs 
(habits, processes) and because other complementary investments (e.g., infrastructure, workforce quality), not modeled 
here, had not taken place yet. See Appendix B.4 for more details about how we calibrate θL and θH .
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Table 2
Dot-Com episode related parameters.

Parameter Value Target

ωo 0.11 Share of IT capital 1991 (3%)
ωn 0.26 Share of IT capital 2007 (14%)
λ 1/22 Duration of NASDAQ boom-bust 1995Q4-2001Q1
θH 1.099 SPF highest growth forecast over 1998-2001
θL 0.912 SPF lowest growth forecast over 1998-2001
sj N (θ + ξ,0.156) SPF avg. dispersion in forecasts over 1998-2001
ε Beta(2,2) Non-uniform distribution over [0,1]
μ 15% Fraction of noise traders
p0 0.20 Prior on the “good technology” state
q0 0.15 Prior on the “false positive” state
ξ 0.95(θh − θl) See text
σu 3 × σ s See text

where (θL,0) is the bad-technology state, (θH ,0) is the good-technology state and 
(
θL, ξ

)
is the false-positive state. As before, we let pt and qt denote the public beliefs about the 
good-technology and false-positive states. The distribution of private signals is assumed to be 
Gaussian, centered on θ +ξ with standard deviation σs . To set the dispersion σs , we target the av-
erage dispersion of growth forecasts in the SPF over 1995Q4-2001Q1, which yields σs = 0.156. 
Finally, we must assume a distribution for the fraction of noise traders that adopt the new tech-
nology with support over [0,1]. We choose a beta distribution with parameters (2,2).19

Five parameters remain to calibrate for which there does not exist widely accepted estimates 
or natural targets. The first one is the fraction of noise entrepreneurs μ, which controls the infor-
mativeness of the social learning channel. While some estimates exist in the literature regarding 
the informativeness of markets (see for instance David et al., 2016), these estimates do not cover 
social learning about new technologies. We conduct sensitivity analysis on this parameter but 
start with a benchmark value of μ = 15%. We must also specify the priors p0 and q0 that agents 
associate with the states of the world “good technology” and “false positive”. There is no obvious 
moment that we can target for these parameters given that we focus on one historical episode. 
We start with a benchmark parametrization that assigns relatively low values to those parame-
ters and do some robustness analysis in the appendix. Our benchmark parametrization attempts 
to capture the idea that if new technologies can be invented frequently, only few of them lead 
to deep economic transformations likes the ones considered in this paper. This suggests a small 
value for p0. Similarly, the false-positive signal ξ cannot happen too frequently, otherwise agents 
would distrust their private signals and the boom-bust cycles would never arise. As a benchmark, 
we therefore pick p0 = 0.2 and q0 = 0.15 but we show in Appendix B that boom-bust episodes 
are robust to some variation in these values. We must also set a value for the common noise 
term ξ . Again, neither the literature nor the data provides much guidance. Since one of our goals 
is to evaluate the potential of the model in generating boom-bust cycles, we pick a relatively 
large shock and set ξ = 0.95 (θH − θL). Finally, we need a value for the exogenous public signal 
about θ . For the mechanism to operate, we need that signal to be mostly uninformative, other-
wise agents know the true value of θ and boom-bust cycles can obviously never arise. We set 

19 The distribution Beta(1,1) is uniform and produces a flat learning response. As a result, we pick a Beta(2,2) distri-
bution which is symmetric around its mode of 0.5. This assumption is relatively unimportant.
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Fig. 8. Impulse response in the false-positive state of the world.

σu = 3 × σs in the benchmark simulations so that a private signal has about the same informa-
tion as three exogenous public signals. Appendix B conducts sensitivity analysis over all the 
parameters mentioned in this paragraph. The results are fairly robust.

5.2. Boom-and-bust cycles

Our interpretation of the dot com bubble is that the economy was in the false-positive state, 
and that investors’ optimism about IT technologies triggered the initial boom. As more infor-
mation became available, agents became pessimistic, and the bust followed.20 In line with this 
interpretation, Fig. 8 presents the impulse responses of our model economy in the false-positive 

20 Ofek (2002) looks at the earnings trajectory that would have been required to justify the stock valuation of internet 
companies in early 2000. He finds that, according to a standard asset pricing model, the earnings growth of internet 
companies would have had to exceed 40% for a decade to justify their valuations. These large growth rates did not 
materialize. This analysis is consistent with investors having a very optimistic view about the fundamental that turned 
out to be mistaken, in line with our false-positive interpretation.
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state with all the other shocks are set to zero, that is εt = 0 and ut = 0 for all t . We also assume 
that the technology never matures through the λ shock, so that the bust that we observe is purely 
endogenous.21

In period t = 0, a new technology is discovered and entrepreneurs receive encouraging pri-
vate signals about the true value of that technology. Since the false-positive state is initially 
deemed unlikely, entrepreneurs begin to adopt the new technology and the economy goes through 
a growth phase with mt moving upward. While this growth in mt is initially consistent with both 
the “good technology” and the “false-positive” state, there comes a point at which agents start to 
realize that the data is more consistent with θ = θL, and the likelihood pt starts to decline. As a 
result, the mass of entrepreneurs who adopt the new technology collapses around t = 5, pushing 
the economy into a crash.

While the behavior of the mass of adopters mt is similar to what we have observed in the 
simplified model of Section 3.1, Fig. 8 shows how this pattern and the evolution of beliefs trans-
late to other macroeconomic variables. As agents become more optimistic after observing people 
rushing to adopt the new technology, the household anticipates higher productivity growth in the 
future and higher income, resulting in upward pressure on consumption due to a positive in-
come effect. With expectations of higher productivity from the new technology, the demand for 
IT capital rises and the household responds by increasing IT investment. The new technology 
being less intensive in the other form of capital, the demand for traditional capital falls and so 
does traditional investment. The rise in consumption and investment in IT capital, despite be-
ing accompanied by a moderate decline in traditional investment, contribute to an overall rise in 
aggregate demand. Price rigidities play an important role in turning this surge in demand into 
a general macroeconomic boom. In a real business cycle model, the rise in aggregate demand 
should be offset by a sharp rise in the real interest rate. With sticky prices, the interest rate re-
sponse is muted if the monetary authority is sufficiently accommodative. As a result, aggregate 
demand remains high. Firms, satisfying demand, respond by raising output and employment. 
Because of a higher labor demand, wages increase, but inflation remains low because firms an-
ticipate greater productivity and lower marginal costs in the future. As evidenced by the variable 
Q̂, which captures the value of the firms, the economy also experiences a stock market boom 
along the expansion.

These dynamic effects are reversed when the crash occurs and agents realize that the new 
technology is actually of low quality. While agents abandon the new technology, a recession 
occurs, with GDP falling below trend, because agents wake up after having invested too much in 
IT capital and not enough in traditional capital. This misallocation of resources, combined with 
a negative income effect, is the essential ingredient that puts downward pressure on aggregate 
demand and pushes the economy below the trend in the recovery.

A few comments are in order at this point. First, while the model is able to generate a reces-
sion with a significant peak-to-trough gap (about 2%), it remains smaller than the one in the data 
(about 3%). This result seems, however, a feature of belief-driven cycles that our model shares 
with most of the news/noise-driven business cycle literature. Second, while the model is able to 
generate a recession with output falling below trend, that effect is somewhat weak in our simula-

21 An alternative view of the data is that the bust was triggered by the technology maturing. While we cannot completely 
rule out that story, we note that measures of labor productivity in the technology industry have kept increasing through 
the bust, which pushes against a scenario in which the IT technology would be revealed to be of low productivity. Also, 
the literature does not seem to agree, even roughly, on any given event (a potential λ shock) that could have triggered the 
bust.
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tion. Given that the capital stocks can be adjusted rapidly, the misallocation channel responsible 
for the dip does not lead to a large drop in output. The introduction of debt and bankruptcy in 
the model would provide another channel through which the crash could result in a deeper re-
cession. Third, we can also compute the frequency at which boom-and-bust cycles arise in our 
model. While the existing consensus is that such cycles are rare in models with rational agents,22

our benchmark calibration suggests that boom-bust cycles may arise in our calibrated model at 
the fairly high frequency of q0 = 15% after the introduction of a new technology. We view this 
number as quite encouraging for the ability of rational herding models in explaining the data.

Overall, the impulse responses of Fig. 8 suggest that it is possible to generate a realistic 
macroeconomic boom-bust cycle that is entirely driven by the internal forces of the model—
without the need of an exogenous shock to trigger the bust after the initial introduction of a new 
technology.23

6. Conclusion

This paper explores whether rational herding can generate endogenous business cycle fluc-
tuations. We propose a novel theory of herding which captures many essential features of more 
traditional models (Banerjee, 1992; Bikhchandani et al., 1992; Chamley, 2004), while being 
tractable enough to be embedded into a general equilibrium business cycle framework. We show 
that the model is able to endogenously generate a boom-and-bust pattern without the need for a 
particular sequence of shocks. Our model has predictions on the frequency, the timing and the 
conditions under which such cycles emerge or burst. It can thus be used to analyze the role of 
stabilization policy, including investment-specific taxes or monetary policy.

We have restricted our attention to technology-driven boom-and-bust cycles, but the impli-
cations of the theory go beyond this context and we believe our herding model can be used in 
other environments to analyze herding behavior following any sort of innovation, be it financial 
innovations or innovations to the demand for certain types of goods (new products, housing, etc).

Several extensions are worth investigating. First, our current macroeconomic model ignores 
the role of debt. An interesting extension would be to study how the rising pattern of optimism 
during the growth stage of the cycle could relax financial constraints and lead to an expansion in 
credit, triggering a wave of bankruptcies at the time of the crash. Another natural extension would 
be to consider a financial market application of our herding model and examine, in particular, the 
role of speculation. We leave these ideas to future research.
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22 Chamley (2004) suggests that a boom-bust cycle arises with a probability of 10−6 in the traditional model of herding 
of Avery and Zemsky (1998).
23 In Appendix B.5, we investigate the role of lean-against-the-wind monetary policy in this economy and find that it 
only has a limited impact on boom-bust cycles.
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Appendix A. Appendix of Section 2

A.1. Equations for the three-state model

This section provides the specific model equations that characterize beliefs in the three-state 
model. Equation (3) that builds private beliefs from the public ones becomes

pjt = pj

(
pt , qt , sj

)= ptf
s
θH

(
sj
)

ptf
s
θH

(
sj
)+ qtf

s

θL+ξ

(
sj
)+ (1 − pt − qt ) f s

θL

(
sj
) , (18)

qjt = qj

(
pt , qt , sj

)= qtf
s

θL+ξ

(
sj
)

ptf
s
θH

(
sj
)+ qtf

s

θL+ξ

(
sj
)+ (1 − pt − qt ) f s

θL

(
sj
) .

Equation (9) that defines the interim beliefs after observing St is simply

pt |Rt = ptf
u (St − θH )

ptf u (St − θH ) + (1 − pt )f u (St − θL)
,

qt |Rt = qtf
u (Rt − θL)

ptf u (St − θH ) + (1 − pt )f u (St − θL)
.

Finally, in the three state model, the optimal adoption strategy characterized by Equation (10)
that defines the law of motion of beliefs after observing mt becomes

pt+1 =
pt |Rt f

ε
((

mt − (1 − μ)F
s

θH
(s∗ (pt , qt ))

)
/μ
)

denomt

,

qt+1 =
qt |Rt f

ε
((

mt − (1 − μ)F
s

θL+ξ (s∗ (pt , qt ))
)

/μ
)

denomt

,

where

denomt = pt |Rt f
ε
((

mt − (1 − μ)F
s

θH

(
s∗ (pt , qt )

))
/μ
)

+ qt |Rt f
ε
((

mt − (1 − μ)F
s

θL+ξ

(
s∗ (pt , qt )

))
/μ
)

+ (1 − pt |Rt − qt |Rt

)
f ε
((

mt − (1 − μ)F
s

θL

(
s∗ (pt , qt )

))
/μ
)

.

A.2. Propositions

Proposition 1. There exists a unique equilibrium.

Proof. The threshold p∗ is uniquely determined by (6). The result is established recursively. 
Fix the fundamental (θ, ξ) and the realization of the shocks {u0, ε0, u1, ε1, . . . }. At any date t , 
given public beliefs �t , (3) and (5) yield a unique distribution of private beliefs 

{
�jt

}
j∈[0,1] and {

pjt

}
j∈[0,1]. Given these, under the tie-breaking rule that indifferent agents adopt the technology, 

there is a unique me
t derived from (8) and, therefore a unique mt from (7). As a result, updating 

beliefs through (9) and (10) yields unique �t |R and �t+1. We have shown that the updating of 
public beliefs yields a unique �t+1 from �t and the realization of shocks {ut , εt }. Starting from 
public beliefs �0, there is therefore a unique equilibrium path {�0,�1, . . . } for any history of 
shocks, and all other quantities can be uniquely determined from it. �
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Lemma 1. In the three-state model, for θL < θL + ξ < θH and 
{
F s

x

}
satisfying the MLRP con-

dition, the optimal adoption strategy in characterized by a cutoff rule in the private signal 
s∗ (pt , qt ), decreasing in pt . That is, an agent adopts the technology if and only if sj ≥ s∗ (pt , qt ). 
The measure of rational adopters is given by

me (pt , qt , θ, ξ) = (1 − μ)F
s

θ+ξ

(
s∗ (pt , qt )

)
.

Proof. The proof is straightforward. Under the above conditions, rewrite the individual proba-
bility of the good-technology state as

pj

(
pt , qt , sj

)= pt

pt + qt

f s

θL+ξ

(
sj
)

f s
θH

(
sj
) + (1 − pt − qt )

f s
θL

(
sj
)

f s
θH

(
sj
)
.

Under the assumption of MLRP and θL < θL + ξ < θH , pj is clearly increasing in sj . Hence, 
for all (pt , qt ), there exists a cutoff s∗ (pt , qt ) ∈ R ∪ {−∞,∞} such that sj ≥ s∗ (pt , qt ) ⇔
pj

(
pt , qt , sj

)≥ p∗. Also, because pj is increasing in pt , the implicit function theorem ensures 
that s∗ (pt , qt ) is decreasing in pt . The measure of rational adopters is thus

me (pt , qt , θ, ξ) = (1 − μ)

∫
1I
(
pj

(
pt , qt , sj

)≥ p∗)f s
θ+ξ

(
sj
)
dsj

= (1 − μ)F
s

θ+ξ

(
s∗ (pt , qt )

)
. �

Proposition 2. In the Gaussian case, i.e., Fξ ∼ N
(

0, σ 2
ξ

)
, F s |θ, ξ ∼ N

(
θ + ξ, σ 2

s

)
, Fε ∼

N
(
0, σ 2

ε

)
, Fu ∼ N

(
0, σ 2

u

)
, for θ and ξ independent and signal St sufficiently uninformative 

(σu low), there exists a large enough ξ such that all shocks ξ ≥ ξ generate a boom-and-bust 
cycle in the impulse response of beliefs pt to a false-positive shock (θL, ξ).

Proof. Our strategy is to show that there exists a sufficiently large ξ , such that for all shock 
ξ ≥ ξ the public beliefs about the good state in date 1, p1, increases after observing m0. Since 
beliefs must converge to the truth in the long-run (pt → 0), due to the strictly positive flow of 
information, and the law of large numbers, this guarantees the existence of a boom-and-bust 
cycle in beliefs. We start under the assumption that St is totally uninformative, σu = ∞.

First, we establish that the optimal strategy in the Gaussian case follows a cutoff strategy in 
s∗. The probability that individual j puts on the good state is given by

pj

(
p0, sj

)=
∫

�0 (θH , ξ) f s
θH +ξ

(
sj
)
dξ∫

�0 (θH , ξ)f s
θH +ξ

(
sj
)
dξ + ∫ �0 (θL, ξ)f s

θL+ξ

(
sj
)
dξ

.

Since ξ is independent from θ , �0 (θH , ξ) = p0f
ξ (ξ) and �0 (θL, ξ) = (1 − p0) f ξ (ξ). No-

tice, then, that 
∫

f ξ (ξ)f s
θ+ξ

(
sj
)
dξ is the pdf of sj given θ , which is a normal, sj |θ ∼

N
(
θ, σ 2

ξ + σ 2
s

)
. Denote φ the pdf of a unit normal, we have:

pj

(
p0, sj

)= 1

1 + (1−p0)
∫

f ξ (ξ)f s
θL+ξ

(
sj
)
dξ

p0
∫

f ξ (ξ)f s
θH +ξ

(
sj
)
dξ

= 1

1 + 1−p0
p0

φ

(
sj −θL√
σ 2+σ 2

)
/φ

(
sj −θH√
σ 2+σ 2

) .
ξ s ξ s
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Since the Gaussian family satisfies the MLRP property, pj is increasing in sj . Hence, the optimal 
adoption strategy at date 0 takes a cutoff form ŝ0.

Under the assumption that St is uninformative, the public belief about the good state at the 
beginning of period 1, p1, is given by

p1 =
∫

�1 (θH , ξ) dξ

=
∫

�0 (θH , ξ) f ε ((m0 − me (�0, θH , ξ)) /μ)dξ∫
�0 (θH , ξ)f ε ((m0 − me (�0, θH , ξ)) /μ)dξ + ∫ �0 (θL, ξ) f ε ((m0 − me (�0, θL, ξ)) /μ)dξ

.

Using the independence property between θ and ξ and the cutoff property, the above formula can 
be rewritten as

p1 = 1

1 + 1−p0
p0

∫
f ξ (ξ)f ε
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m0−(1−μ)F

s
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(
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.

Denoting ξ0 the true shock, the impulse response in mt yields m0 = (1 − μ)F
s

θL+ξ0

(
s∗

0

)
, which 

goes to 1 −μ as ξ0 → ∞. Because the MLRP property implies first-order stochastic dominance, 
we have F

s
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(
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0

)
< F

s
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(
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)
. Since f ε (ε) is decreasing for ε ≥ 0, we have
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/μ
)
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(
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/μ
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for all ξ ≤ θL − θH + ξ0. Decompose the difference between the denominator and numerator can 
be written ∫

f ξ (ξ)f ε
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θH +ξ
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−
∫
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The difference converges to a strictly positive term. Thus, there exists ξ such that for all ξ0 > ξ

∫
f ξ (ξ)f ε
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)

dξ

and p1 > p0. The shock is large enough for agents to attribute it mostly to the good state, initi-
ating the growth stage of the cycle. By continuity of the belief updating equations in σu. There 
must also exists a sufficiently large σu (St sufficiently uninformative) for which p1 > p0 after 
ξ0 ≥ ξ . �
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A.3. Additional figures

Fig. 9. Impulse response in the case of a true positive.

Fig. 10. Impulse response in the case of a true negative.

A.4. The role of random shocks

To highlight the dynamics of the model, the simulations presented in Figs. 3 and 4 assumed 
that there were no shocks to the public signal St (ut = 0) and no shock coming from the noise 
entrepreneurs (εt = 0). But these random shocks, by influencing the signals that agents observe, 
can also play an important role in driving aggregate adoption. Because single shocks do not have 
much effect, we illustrate this by conducting a series of simulations using the same economy 
as in Fig. 3 but in which we fix the shocks to some number x̄. As a result, we can see how 
the economy evolves when agents continuously receive optimistic signals and, inversely, when 
they get a constant flow of pessimistic news. We plot the results in Fig. 11. In the left panel we 
set ut = 0 and εt = x̄ and vary x̄ from −0.005 to 0.005. In the right panel we set εt = 0 and 
ut = x̄ and vary x̄ from −0.1 to 0.1. The continuous line represents the simulation with x̄ = 0, 
and the dashed lines represent simulations with x̄ = 0. As we can see from the figure, there 
is quite a bit of dispersion across simulations and shocks to ut and εt can push the economy 
through very different dynamics. For the more optimistic signals (ut , εt ), the economy enters 
an information cascade and adoption remains high for a sustained period. In contrast, for the 
more pessimistic signals, adoption slowly declines and we never observe a boom-bust cycle. 
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Fig. 11. The role of ut and εt in driving aggregate adoption.

Fig. 12. Impulse response in the false-positive state with permanent information cascades.

Notice also that shocks to μt and εt , as they both influence the overall level of optimism in the 
economy, have similar effects on the dynamic of adoption.24

A.5. Permanent information cascades

In this appendix, we show that a slight modification of the environment considered in Fig. 4
in the main text can lead to a permanent information case in which no information is provided by 
the observation of the mass of adopters. We depart from that specification by imposing a lower 
bound s = 0 on the distribution of private signal and by making the exogenous public signal 
uninformative (σu = ∞). Fig. 12 shows the behavior of the economy in the false-positive state 
under this new parametrization. As we can see, the economy quickly converges to a permanent 
plateau at m = 1. The public beliefs are so optimistic at that point that even the most pessimistic 
agent (sj = 0) adopts the technology. Since all agents adopt regardless of the true state of the 

24 Some of the curves in Fig. 11 intersect each other. For instance, in the case with x̄ = 0 agents learn fairly slowly 
about the true state of the world. In contrast, in the simulation with a slightly higher x̄ the behavior of aggregate adoption 
leads to a high flow of information and agents quickly learn that the true fundament is bad.
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Fig. 13. Optimal tax as a function of p.

world, observing the mass of adopters provides no information and the economy remains in a 
permanently elevated state of adoption.

A.6. Optimal taxation

To gain further insight into the nature of the model’s inefficiencies, it is useful to look at a 
particular implementation of the efficient allocation using a tax (or subsidy) τ ∗ that entrepreneurs 
must pay to adopt the new technology. The next proposition characterizes τ ∗.

Proposition 3. The efficient allocation can be implemented as an equilibrium by an adoption tax

τ ∗ =
(
Eθ,ξ

[
f

p
θ+ξ

(
p∗) | I])−1

β
∂Eθ,ξ

[
V
(
I ′) | I]

∂p∗ , (19)

and a lump-sum transfer to all entrepreneurs.

Proof. We consider a tax τ that agents must pay to adopt the new technology. Under that tax, (6)
shows that the marginal adopter p∗ is such that λ (p∗θH + (1 − p∗) θL) + (1 − λ)Ao − τ = Ao. 
Combining with (12) and reorganizing yields (19). �

The optimal tax τ ∗ balances the distortion in adoption it creates (first term in the product) 
with the potential benefit on information acquisition (second term).

We plot in Fig. 13 how this optimal tax varies with the public beliefs p in the example of 
Fig. 7.25 We see that the tax tends to be negative for low values of p and positive for larger 
values. As we described in Section 3.1, when agents are pessimistic (low p), few of them adopt 
the technology and the endogenous public signal does not reveal much information. The planner 
therefore sets τ ∗ < 0 to encourage entry and make the observed mass of adopters a more precise 
signal. The opposite happens when many entrepreneurs adopt (high p). In this case, the plan-
ner sets τ ∗ > 0 to discourage adoption, once again to make the endogenous public signal more 
informative. The tax for intermediate values of p reflects these information concerns.26

In this particular Gaussian case, the tax incentivizes agents to behave against the crowd in 
what amounts to a leaning-against-the-wind pattern: the tax is negative when no agent wants to 

25 To draw this plot, we fix q to some arbitrary value q = 0.01 and plot m in the good-technology state.
26 The planner begins to phase out the tax as p approaches 0. In this case, the public beliefs are so extreme that there 
is very little uncertainty about the true state of the world. Since there is not much more to learn, the planner sets the tax 
close to zero to minimize the distortion in adoption.
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adopt the technology, and positive when agents adopt massively.27 We will see in our quantitative 
model that these same forces have important consequences for the conduct of monetary policy.

Appendix. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2023 .105669.
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