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Abstract
This paper quantitatively assesses the world’s changing economic geography and sec-
toral specialization due to global warming. It proposes a two-sector dynamic spatial
growth model that incorporates the relation between economic activity, carbon emis-
sions and temperature. The model is taken to the data at the 1� by 1� resolution for
the entire world. Over a 200-year horizon, rising temperatures consistent with emis-
sions under Representative Concentration Pathway 8.5 push people and economic
activity northwards to Siberia, Canada and Scandinavia. Compared with a world with-
out climate change, clusters of agricultural specialization shift from Central Africa,
Brazil and India’s Ganges Valley, to Central Asia, parts of China and northern
Canada. Equatorial latitudes that lose agriculture specialize more in non-agriculture
but, due to their persistently low productivity, lose population. By the year 2200, pre-
dicted losses in real GDP and utility are 6% and 15%, respectively. Higher trade
costs make adaptation through changes in sectoral specialization more costly, leading
to less geographic concentration in agriculture and larger climate-induced migration.
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1. Introduction

Global warming will change the comparative advantage of regions across the world. Areas
that today have ideal temperatures for agricultural production, such as parts of India,
Africa, and South America, will become too hot for agriculture and will adapt by switch-
ing to other sectors. Of course, their ability to shift specialization as an adaptation mechan-
ism depends on their productivity in other sectors, such as manufacturing and services, as
well as on their ability to trade with other parts of the world. If adaptation through sectoral
specialization is ineffective, regions will suffer and population will migrate elsewhere, to
areas in the world where conditions are more hospitable.
Assessing the changing economic geography of a warming world therefore requires a

high-resolution multi-sector dynamic spatial model that is able to evaluate the relative im-
portance of trade and migration as adaptation mechanisms in different parts of the world.
Migration and trade are costly, so incorporating realistic frictions to moving people and
goods is paramount. Of course, while climate change affects the economy, the reverse is
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true as well. Hence, explicitly modeling the relation between economic activity, carbon
emissions and temperature is essential too.
Starting with the spatial dynamic model of the world economy of Desmet et al. (2018),

we introduce three changes to make it amenable to assessing the spatial and sectoral im-
pact of global warming. A first change extends the theory to multiple sectors.1

A second change allows sectoral productivity to depend on temperature. Because certain
sectors, such as agriculture, are more sensitive to rising temperatures, than other sectors,
such as manufacturing and services, and because different locations start off with different
temperature levels, a shock to temperature translates into a local shock to comparative ad-
vantage. As such, changing specialization patterns constitute a relevant margin of adjust-
ment to climate change. A third, and last, change follows standard integrated assessment
models by explicitly introducing the feedback from the economy to the climate.
Production requires energy use, which leads to emissions. Through the carbon cycle, emis-
sions affect the atmospheric stock of carbon, translating into rising temperatures.
In any quantitative assessment of global warming, using high-quality data is essential.

We use data on population, total output, agricultural output and temperature at the 1� by
1� resolution for the entire world. Although the model allows for any number of sectors,
we focus on just two: agriculture and a sector that combines all others, which we refer to
as non-agriculture. Our baseline exercise calibrates to an increase in the carbon stock and
in global temperature consistent with the predictions under Representative Concentration
Pathway (RCP) 8.5 (IPCC, 2020; van Vuuren et al., 2011). This is a high-emissions path-
way based on fossil-fuel-intensive economic growth, leading to a 1200 GTC increase in
the stock of carbon and a 3.7�C global temperature increase by the end of the 21st cen-
tury. One important element in our calibration is how sensitive local temperatures are to a
rise in global temperature. For example, it is well known that the poles are warming faster
than the rest of the world. Due to, among others, the albedo effect and poleward energy
transport, in some polar regions a one-degree increase in global temperature translates into
a more than three-degree increase in local temperature. To estimate location-specific
parameters that map changes in global temperature into changes in local temperature, we
use predicted local and global temperatures between 2000 and 2100 from the
Intergovernmental Panel on Climate Change (IPCC). Another key element in our calibra-
tion is how sensitive agricultural and non-agricultural productivities are to temperature.
For agriculture, we base ourselves on established estimates of the relation between tem-
perature and crop yields from the agronomy literature, whereas for non-agriculture we use
the model-predicted estimates of non-agricultural productivity to estimate its relation to
temperature.
After calibrating the model, we simulate the model forward for 200 years. The baseline

simulation assumes that frictions to moving people and moving goods remain unchanged
at current levels. Our main results can be summarized as follows. First, while in the next
200 years many of the world’s densest and richest regions continue to be dense and rich,
climate change does have an impact. In terms of population, Scandinavia, northern
Canada and Siberia gain, whereas the Arabian peninsula, northern India, North Africa,

1 We take preferences to be Cobb–Douglas across sectors. While this implies constant expenditure shares, we still
find a declining agricultural employment share because of the climate-induced relocation of agriculture toward
land-abundant areas. In many models of long-run development and structural transformation, the falling agricul-
tural employment share is generated by either nonhomothetic preferences or an elasticity of substitution between
agriculture and other sectors of less than one (e.g., Uy et al., 2013; Herrendorf et al., 2014; �Swiecki, 2017).
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Brazil and Central America lose. In terms of income per capita, patterns are similar,
though losses are more widespread, essentially spanning all latitudes comprised between
southern Africa and southern Europe. One exception are coastal areas that display greater
resilience.
Second, when considering sectoral specialization, agriculture becomes spatially more

concentrated. While this move toward greater geographic concentration happens independ-
ently of climate change, rising temperatures affect where the increased concentration
occurs. In the absence of climate change, clusters of agricultural specialization can be
found in South America, sub-Saharan Africa and India’s Ganges Valley. With rising tem-
perature, these clusters shift to Central Asia, China and Canada. In contrast to what one
might hope, most of the regions that lose agriculture do not become thriving non-
agricultural powerhouses. This is especially true in developing countries that start off with
low-tech manufacturing and services.
Third, in the aggregate, by the year 2200 global warming leads to a 6% decrease in in-

come per capita and a 15% decrease in utility. The larger drop in utility is related to cli-
mate change pushing people northward to areas with worse amenities, such as Siberia or
northern Canada. How do the different sectors perform in the aggregate? Although agricul-
ture is more sensitive to climate change than non-agriculture, we find that rising tempera-
tures increase productivity growth in agriculture and decrease productivity growth in non-
agriculture. Warmer temperatures push agriculture to regions, such as Central Asia, that
initially suffered from a large temperature penalty. With global warming, these regions
benefit from relatively high agricultural productivity.
To explore the role of trade, we conduct a number of counterfactual exercises with higher

and lower trade costs. We find that higher trade costs lead to greater climate-induced move-
ments of people. This indicates that trade and migration are substitutes: higher trade costs
limit the scope of locally adjusting to a climate shock by changing specialization. This
makes adjusting through migration relatively more attractive. These larger spatial changes
when trade is more costly are also present when analyzing real GDP per capita.
When considering patterns of specialization, higher trade costs limit the spatial concen-

tration of agriculture. Because goods are sourced from locations that are closer by when
trade is more costly, agriculture in the year 2200 is spatially more dispersed under high
trade costs than under low trade costs. In the aggregate, by the year 2200 climate-induced
losses in global income per capita are higher under low trade costs than under high trade
costs, though that difference is reversed by the year 2400. One might have expected that
higher trade costs would lead to larger climate-induced losses throughout. After all, with
higher trade costs, there is less scope to respond to the sector-specific effects of global
warming by changing specialization. However, higher trade costs lead to a greater shift of
population and economic activity to high-productivity places in the USA, Europe and
Japan, that are relatively less affected by the growing temperatures.
Our paper is related to a growing literature aimed at quantifying the economic effects of

climate change across the globe. Nordhaus (1993, 2008, 2010) pioneered the development
of integrated assessment models that incorporate the main insights of climate science into
economic growth models. Other examples of integrated assessment models that build on
standard quantitative macro frameworks include Golosov et al. (2014) and Hassler et al.
(2016). While many of these models have only one region, some allow for multiple
regions, and are thus able to evaluate how climate change affects different regions differ-
ently. However, with only a handful of regions, they are unable to capture the rich spatial
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heterogeneity of the effects of climate change. In addition, these models do not include
trade and migration in the economy’s response to global warming.
In recent years a burgeoning literature has developed high-resolution spatial models: most

are static (Allen and Arkolakis, 2014), and only a few are dynamic (Desmet and Rossi-
Hansberg, 2014; Desmet et al., 2018; Caliendo et al., 2019).2 Needless to say, in the context
of global warming, dynamics are of the essence, because of the slow-moving nature of cli-
mate change. Some of these spatial dynamic models have already been applied to evaluate
the economic impact of climate change. Desmet and Rossi-Hansberg (2015) assess the spa-
tial dynamic effect of global warming in a two-sector model with one-dimensional space.
While a one-dimensional model is a reasonable simplification—only a small fraction of the
variance in temperature occurs within latitudes—it fails to capture relevant differences be-
tween, for example, coastal areas and more inland regions. Using a two-dimensional spatial
growth model that captures the world’s true geography, Desmet et al. (2021) carry out a
quantitative assessment of rising sea levels. Another relevant paper is Balboni (2019) who
analyzes the welfare effects of large coastal infrastructure investments in Vietnam in a dy-
namic spatial model that takes into account future inundation.
In a contemporaneous and related contribution, Cruz and Rossi-Hansberg (2020) pro-

pose a similar dynamic spatial model to evaluate the geography of the economic costs of
global warming. They add a number of features that we abstract from here. In particular,
they incorporate the effect of changes in temperature on amenities and fertility, and model
the choice to use and produce clean and carbon-based energy. Importantly, they limit their
analysis to one aggregate sector. Hence, although richer in some dimensions, they cannot
study the role of specialization as an adaptation mechanism to global warming, which is
our central goal.
A key contribution of spatial dynamic models is the explicit treatment of trade and mi-

gration. Since climate change affects some locations more negatively than others, migra-
tion is an adaptation strategy. And because not all sectors are impacted in the same way,
so is trade.3 For example, Desmet et al. (2021) find that the loss in real GDP due to coast-
al flooding in the year 2200 drops from 4.5% to 0.11% when incorporating the dynamic
response of migration. In a related paper, Burzy�nski et al. (2019) predict that climate
change will induce the displacement of 200–300 million people over the course of the
21st century, though only 20% will involve cross-boarder migration. In another recent
evaluation, Benveniste et al. (2020) find substantially smaller numbers, estimating excess
climate-induced cross-border migration flows in the year 2100 of 75,000. In our paper, we
also focus on the importance of mobility and highlight that trade and migration may be
substitutes in their response to climate shocks.
A large part of the literature on climate change deals with policies aimed at mitigating

global warming. In fact, many integrated assessment models seek to quantify the optimal
carbon tax (Nordhaus, 2010; Golosov et al., 2014; Hassler et al., 2016, 2018). Other
papers analyze the use of different policies to promote the transition to clean energy
(Acemoglu et al., 2012, 2016). While we do not focus on mitigation and energy transition,
our paper does feature endogenous innovation. As a result, energy use per unit of

2 See Redding and Rossi-Hansberg (2017) for a review of the quantitative spatial literature.
3 Without using a spatial dynamic framework, other relevant papers that have analyzed the effect of climate change

on comparative advantage include Costinot et al. (2016) and Conte (2020) who emphasize the importance of
crop switching, as well as Nath (2020), who shows that subsistence food requirements may keep more people
employed in agriculture in some of the areas that are hardest hit by climate change.
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production declines over time. In their related framework, Cruz and Rossi-Hansberg
(2020) study carbon taxes, clean energy subsidies and abatement policies.
The rest of the paper is organized as follows. Section 2 develops the model. Section 3

describes the data and quantification of the model. Section 4 reports the main findings and
Section 5 concludes. Appendix A includes details on how to solve and invert the model to
obtain local amenities and productivities by sector.

2. Model

Our starting point is the high-resolution dynamic spatial model of the world economy with
trade and migration frictions of Desmet et al. (2018). To assess the economic impact of
climate change, we extend this model in three ways. First, we allow for multiple sectors.
To be precise, the economy consists of I sectors, indexed by i ¼ 1; 2; . . . ; I, with each sec-
tor producing a continuum of goods x 2 ½0; 1�. Agents’ utility is CES across goods within
each sector and Cobb–Douglas across sectors. Labor is freely mobile across sectors.
Second, at each location, sectoral productivity levels depend on the location’s temperature.
Third, each sector uses energy to produce. Energy is freely tradable and is supplied by a
resource extraction sector that operates under decreasing returns. Energy use contributes to
CO2 emissions, and hence to the atmospheric stock of carbon, which affects temperature
at every location. As a result, economic activity depends on temperature and temperature
depends on economic activity. We now proceed to describing the model in further detail.
Inevitably, part of the description draws on Desmet et al. (2018).

2.1. Model setup

2.1.1. Endowments and preferences

The world economy occupies a two-dimensional surface S, where a location is defined as
a point r 2 S. Location r has land density HðrÞ and there are L agents in the world econ-
omy, each supplying one unit of labor. An agent j who lives in location r 2 S in period t
with a history of having resided in fr0; . . . ; rt�1g enjoys utility

Uj
t r0; . . . ; rt�1; rð Þ ¼ vat rð Þ

YI
i¼1

ð1
0
cx
it rð Þqdx

" #vi
q

ejt rð Þ
Yt
s¼1

m rs�1; rsð Þ�1 (1)

in period t, where atðrÞ denotes local amenities, cx
it ðrÞ is the consumption of variety x of

good i, 1=ð1� qÞ is the elasticity of substitution between different varieties of the same
good, vi is the share of good i in the agent’s expenditure, ejtðrÞ is a location preference shock

drawn from a Fréchet distribution with shape parameter 1=X; mðrs�1; rsÞ is the cost moving

from rs�1 in period s�1 to rs in period s, and v ¼
QI
i¼1

v�vi
i is a constant that simplifies subse-

quent expressions. Agents discount future utility using the discount factor b.
Local amenities at location r suffer from congestion and take the form:

at rð Þ ¼ a rð Þ Lt rð Þ
H rð Þ

 !�k

; (2)

where aðrÞ denotes location r’s fundamental amenity and ðLtðrÞ=HðrÞÞ�k represents a
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dispersion or congestion force coming from local population density (i.e. local population
LtðrÞ divided by land). The greater the value of k, the stronger the dispersion force. In
addition to the effect of density on amenities, there is another dispersion force coming
from the preference shocks: a higher value of X implies greater taste heterogeneity, and
hence a stronger incentive to spatially disperse.
The cost of moving from r to s is the product of an origin-specific cost, m1ðrÞ, and a

destination-specific cost, m2ðsÞ, so that mðr; sÞ ¼ m1ðrÞm2ðsÞ. Remaining in the same place
is costless, and so mðr; rÞ ¼ m1ðrÞm2ðrÞ ¼ 1. This implies that the cost of leaving a loca-
tion is the inverse of the cost of entering that location, that is m2ðrÞ ¼ m1ðrÞ�1. As a re-
sult, the permanent utility flow cost paid by an immigrant who enters s is compensated by
a permanent utility flow benefit of the same magnitude when leaving s. Migrants therefore
only pay the flow utility moving cost while residing in the host location, making any deci-
sion to migrate reversible. This simplifies an agent’s forward-looking migration decision
to a static decision.
In addition to earning income from work, wtðrÞ, an agent residing in r at time t gets a

proportional share of local land rents, RtðrÞHðrÞ=LtðrÞ, as well as a proportional share
of global profits from the resource extraction sector, Pt=L. Following Desmet et al.
(2018), we can show that the number of people choosing to live in r in period t, LtðrÞ, is
given by

Lt rð Þ ¼
ut rð Þ1=Xm2 rð Þ�1=XÐ

Sut sð Þ
1=Xm2 sð Þ�1=Xds

L; (3)

where

ut rð Þ ¼ at rð Þ
wt rð Þ þPt=L þ Rt rð ÞH rð Þ=Lt rð ÞQI

i¼1
Pit rð Þvi

(4)

and PitðrÞ denotes the ideal price index of sector i, defined as

Pit rð Þ ¼
ð1
0
px
it rð Þ

q
q�1dx

" #q�1
q

; (5)

where px
it ðrÞ is the price of variety x at r.

2.1.2. Production of varieties

The representative firm producing variety x in sector i in location r at time t faces the
constant returns production function

qx
it ðrÞ ¼ Lx

/;itðrÞ
ci zxit ðrÞLx

it ðrÞ
liEx

it ðrÞ
riHx

it ðrÞ
1�ci�li�ri ; (6)

where qx
it ðrÞ denotes the firm’s output, Lx

/;itðrÞ denotes the amount of labor hired by the
firm to innovate, Lx

it ðrÞ is the amount of labor hired to produce, Ex
it ðrÞ is energy use,

Hx
it ðrÞ is the use of land and zxit ðrÞ is an idiosyncratic productivity shifter.
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We assume that the idiosyncratic productivity shifter zxit ðrÞ is i.i.d. across varieties, loca-
tions and time, drawn from a Fréchet distribution with c.d.f.

Pr½zxit ðrÞ � z� ¼ e�ðZitðrÞ=zÞ
h

; (7)

where h > 0. By the properties of the Fréchet distribution, ZitðrÞ is the average idiosyn-
cratic productivity of varieties of good i in location r. This average productivity depends
on fundamental productivity, temperature and agglomeration economies,

Zit rð Þ ¼ sit rð Þgi Tt rð Þð Þ Lit rð Þ
Hit rð Þ

 !ai

; (8)

where sitðrÞ denotes the fundamental productivity of good i in location r at time t, gið�Þ is
a temperature discount factor on the productivity of good i, TtðrÞ denotes temperature in r
at time t, and

�
LitðrÞ=HitðrÞ

�ai
represents agglomeration forces that depend on local dens-

ity in sector i, defined as total sectoral employment LitðrÞ ¼ L/;itðrÞ þ LitðrÞ divided by
sectoral land use HitðrÞ. The greater the exogenous parameter ai, the stronger the agglom-
eration forces.
Across periods, a location’s fundamental productivity in sector i evolves according to

the equation

sitðrÞ ¼ L/;i;t�1ðrÞci ½
ð
S
e�@distðr;sÞsi;t�1ðsÞds�1�dsi;t�1ðrÞd; (9)

where L/;i;t�1ðrÞ denotes the total amount of innovation labor hired in sector i at time
t�1, and distðr; sÞ denotes the geographic distance between locations r and s. As such, a
location’s fundamental productivity in sector i depends on local past sectoral innovation,
local past sectoral productivity and the spatial diffusion of past sectoral productivity from
all other locations. Spatial diffusion is essential to avoid excessive spatial concentration
over time.
We assume that the sector-specific temperature discount factor is bell-shaped in tem-

perature, so

gi Tt rð Þð Þ ¼ exp � 1

2

Tt rð Þ � gopti

gvari

!2
2
4

3
5; (10)

where gopti denotes the optimal temperature in sector i and gvari is a parameter that deter-
mines the variance of the bell-shaped relationship between temperature and productivity in
sector i. Note that the discount factor equals one at the optimal temperature but is below
one at any other temperature.
Firms are perfectly competitive. Taking all prices as given, a firm producing variety x

of good i chooses its inputs Lx
/;itðrÞ; Lx

it ðrÞ; Ex
it ðrÞ and Hx

it ðrÞ, subject to production func-
tion (6), to maximize its static profits

px
it ðr; rÞqx

it ðrÞ � wtðrÞ½Lx
/;itðrÞ þ Lx

it ðrÞ� � etE
x
it ðrÞ � RtðrÞHx

it ðrÞ; (11)

where et denotes the global price of energy and px
it ðr; rÞ is the price of variety x of good i

produced and sold in r. The reason why a firm maximizes its static profits is because we
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assume that land markets are competitive and that any local investment in innovation
becomes available to all potential entrants next period. Then, all future gains from innov-
ation will be reflected in the value of the fixed factor, namely, land. Because a firm under-
stands that its investments in innovation will yield zero profits in the future, its dynamic
profit maximization decision simplifies to a static profit maximization decision.4

Let L
x
it ðrÞ denote the total labor used by the firm, that is

L
x
it ðrÞ ¼ Lx

/;itðrÞ þ Lx
it ðrÞ: (12)

Integrating the first-order conditions of the firm’s maximization problem across goods yields
relationships between the sector-level use of factors and total sectoral employment, namely,

L/;it rð Þ ¼
ci

ci þ li

Lit rð Þ; (13)

Lit rð Þ ¼
li

ci þ li

Lit rð Þ; (14)

Eit rð Þ ¼
ri

ci þ li

wt rð Þ
et

Lit rð Þ; (15)

Hit rð Þ ¼
1� ci � li � ri

ci þ li

wt rð Þ
Rt rð Þ

Lit rð Þ: (16)

Rearranging Equation (16) and summing across sectors relates total land rents to wages
and sectoral employment levels,

Rt rð ÞH rð Þ ¼ wt rð Þ
XI
i¼1

1� ci � li � ri

ci þ li

Lit rð Þ: (17)

In each period, we normalize all nominal variables by average world wages. Hence,
only real variables can be meaningfully compared over time.

2.1.3. Production of energy

The world supply of energy is exogenously given by

Et ¼ eu
t ; (18)

where u 2 ð0; 1Þ.5 We abstract from the costs of resource extraction, which implies that prof-
its made in the resource extraction sector equal revenues.6 Thus,

4 See Desmet and Rossi-Hansberg (2014) and Desmet et al. (2018) for a more detailed description of this
argument.

5 In principle, we could allow for a supply intercept different from one. However, we can always measure energy
in units such that this intercept equals one.

6 See Cruz and Rossi-Hansberg (2020) for an alternative formulation in which the cost of extraction depends on
the cumulative amount of carbon used in the past.
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Pt ¼ etEt ¼ e1þu
t : (19)

2.1.4. Carbon cycle and the evolution of temperature

Emissions from production affect the carbon stock in the atmosphere, which in turn affects
temperature. The carbon cycle determines the relation between emissions and the stock of
carbon. We follow Desmet and Rossi-Hansberg (2015) in assuming a carbon cycle in the
spirit of Nordhaus (2010), with the carbon stock gradually decaying over time. More spe-
cifically, the stock of carbon in period t, Kt, is given by

Kt ¼ e1Kt�1 þ e2Et�1; (20)

where e1 � 1 determines how the carbon stock decays and e2 determines the relation be-
tween energy and carbon emissions. Note that if we were to set e1 ¼ 1 and K0 ¼ 0, then
the carbon stock is equal to cumulative emissions.7 Global temperature Tt at time t then
evolves with the carbon stock according to

Tt ¼ Tt�1 þ �ðKt � Kt�1Þ; (21)

where � > 0.
The rise in temperature due to global warming is not expected to be homogeneous

across space. We allow for a location-specific linear relation between changes in local tem-
peratures and changes in global temperature as in Stocker et al. (2013). Hence,

TtðrÞ ¼ Tt�1ðrÞ þ ðTt � Tt�1ÞnðrÞ; (22)

where nðrÞ are the location-specific down-scaling factors that map changes in global tem-
perature into local temperatures.

2.2. Equilibrium

2.2.1. Prices and export shares

Perfect competition implies that the price of each variety is equal to the marginal cost of
production,

px
it r; rð Þ ¼

mcit rð Þ
zxit rð Þ

; (23)

where

mcitðrÞ ¼ c�ci
i l�li

i r�ri
i ð1� ci � li � riÞciþliþri�1wtðrÞciþli eri

t RtðrÞ1�ci�li�ri : (24)

Trade across locations is costly. Let 1ðs; rÞ denote the iceberg shipping cost from r to s.
Then, the price of a variety produced in r and sold in s is px

it ðs; rÞ ¼ 1ðs; rÞpx
it ðr; rÞ.

7 Work by Allen et al. (2009) and Matthews et al. (2009) suggests that this is a reasonable simplification.
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Equation (23), the Fréchet distribution of idiosyncratic productivities, and the iceberg
nature of shipping costs guarantee that prices in any location are also distributed Fréchet.
Using the standard techniques of Eaton and Kortum (2002), we can write the spending of
location s on sector-i varieties of location r relative to the total spending of location s on
sector-i varieties as

pit s; rð Þ ¼
Zit rð Þh mcit rð Þ1 s; rð Þ

� ��hÐ
SZit uð Þ

h mcit uð Þ1 s; uð Þ
� ��hdu

: (25)

One can also obtain the price index of sector i at location s as

Pit sð Þ ¼ p

ð
S
Zit rð Þh mcit rð Þ1 s; rð Þ

� ��hdr

� ��1
h

; (26)

where p ¼ Cð1� q
1�qð ÞhÞ

�1�q
q . Using Equations (8), (16) and (24) allows us to rewrite

Equation (26) as

PitðsÞ�h ¼ jie
�rih
t

ð
S
sitðrÞhgiðTtðrÞÞhwtðrÞ�ðaiþciþliÞhRtðrÞðaiþciþliþri�1Þh1ðs; rÞ�hdr; (27)

where ji ¼ p�hccih
i llih

i rrih
i ðci þ liÞaihð1� ci � li � riÞð1�ai�ci�li�riÞh.

2.2.2. Market clearing

Market clearing in sector i implies that the revenue of firms producing varieties of good i
at any location r, 1

ciþli
wt rð ÞLit rð Þ, equals total spending on these varieties in the entire

world, namely,

1

ci þ li

wt rð ÞLit rð Þ ¼ vi
Ð
Spit s; rð Þ wt sð Þ þ

Pt

L

� 	
Lt sð Þ þ Rt sð ÞH sð Þ

� �
ds

¼ vijie
�rih
t sit rð Þhgi Tt rð Þð Þhwt rð Þ� aiþciþlið ÞhRt rð Þ aiþciþliþri�1ð Þh�Ð

SPit sð Þh wt sð Þ þ
Pt

L

� 	
Lt sð Þ þ Rt sð ÞH sð Þ

� �
1 s; rð Þ�hds:

(28)

Worldwide market clearing for energy implies that

et ¼
XI
i¼1

ri

ci þ li

ð
S
wt rð ÞLit rð Þdr

" # 1
1þu

; (29)

and, therefore using Equation (19),

Pt ¼ etEt ¼ e1þu
t ¼

XI
i¼1

ri

ci þ li

ð
S
wt rð ÞLit rð Þdr: (30)

Finally, competitive land and labor markets clear at each location, so Equation (17)
holds, and
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LtðrÞ ¼
X
i

LitðrÞ: (31)

2.2.3. Dynamic competitive equilibrium

For a given period t and a given distribution of fundamental amenities aðrÞ, productivity
sitðrÞ and temperature TtðrÞ, Equations (2), (3), (4), (17), (19), (27), (28), and (31) pin
down the world price of energy et, profits in the resource extraction sector Pt, the distribu-
tion of population LtðrÞ, utility utðrÞ, amenities atðrÞ, land rents RtðrÞ and wages wtðrÞ
across locations, as well as the distribution of price indices PitðsÞ and sectoral employment
LitðrÞ across sectors and locations. These conditions determine the period-t equilibrium.
Equation (13) gives the amount of innovation labor hired in each sector and each location.
This, together with Equation (9), yields the distribution of fundamental productivities in
period tþ 1, si;tþ1ðrÞ. To update the distribution of temperature in tþ 1, Ttþ1ðrÞ, we use
Equations (20)–(22).

3. Quantification

3.1. Preliminaries

From now onward, we assume the economy has two sectors: agriculture (A) and non-
agriculture (which we denote by M, for manufacturing but includes all sectors that are not
part of agriculture, including services). Further assume that we observe the matrix of bilat-
eral trade costs 1ðr; sÞ, as well as land HðrÞ, temperature T0ðrÞ, total population L0ðrÞ, the
value of total output

Y0 rð Þ ¼ 1

cA þ lA

w0 rð ÞLA0 rð Þ þ 1

cM þ lM

w0 rð ÞLM0 rð Þ (32)

and the value of agricultural output

YA0 rð Þ ¼ 1

cA þ lA

w0 rð ÞLA0 rð Þ (33)

at every location r at time 0. As we show in Appendix A, we can then use the model to
recover the unique initial distributions of fundamental agricultural productivity, sA0ðrÞ, fun-
damental non-agricultural productivity, sM0ðrÞ and fundamental amenities relative to utility,
aðrÞ=u0ðrÞ, that rationalize the data. We back out fundamental amenities aðrÞ by using
subjective well-being data to measure u0ðrÞ, and we set moving costs m2ðrÞ so that local
changes in population between the first two periods coincide with what we observe in the
data.
Appendix A also describes in detail the algorithm to compute an equilibrium of the

model. The model can be solved forward, using only current data, for as many periods as
needed.

3.2. Data and calibration

We discretize the world into 64,800 1� � 1� cells. At that level of spatial resolution, our
quantification requires initial distributions of population, L0ðrÞ, total output, Y0ðrÞ, agricul-
tural output, YA0ðrÞ, temperature, T0ðrÞ as well as the distribution of land, H(r). We also
need estimates for bilateral transport costs, 1ðr; sÞ. Period 0 is taken to be the year 2000.
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Data on population, total output and land by grid-cell come from the G-Econ 4.0 database
of Nordhaus et al. (2006). These data cover the entire globe, with the exception of a few
countries: Afghanistan, Iraq, Libya, North Korea, Somalia, Turkmenistan and Zimbabwe.
Estimates on bilateral transport costs come from Desmet et al. (2018). The data on agricul-
tural output and temperature require some more explanation.

3.2.1. Agricultural output and temperature

To estimate the initial distribution of agricultural output across grid cells, we proceed in
two steps. First, using high-resolution data on total crop production from GAEZ’s Actual
Yield and Production dataset, we compute grid-level agricultural production in year 2000
(IIASA and FAO, 2012). Second, we apply a country-specific conversion rate to local
crop production so that its sum at the country level as a share of total output coincides
with the share of value added that comes from agriculture, forestry and fishing, as
obtained from the World Bank Development Indicators. This is necessary because the
GAEZ data do not include all agricultural activities. Figure 1 depicts the estimated distri-
bution of agricultural output across the globe in year 2000.8 Agriculture is widespread
across the globe. Regions with particularly high agricultural output include the US
Midwest, Europe, northern India and eastern China.
For the initial temperature distribution at the 1� � 1� resolution, we rely on data on

yearly average temperature from the IPCC AR5 Data Distribution Centre (IPCC, 2020).
The resolution of the IPCC is 1:25� � 0:9�. When no centroid of any of these grid cells
lies within one of our 1� � 1� grid cells, we assign the temperature of the closest cell.
Figure 2 depicts the world map of temperature in the year 2000. Much of the variation is
across latitudes, but there are important exceptions: the Tibetan plateau, the Andes and the

Figure 1. Agricultural production in 2000.
Note: The log of agricultural output (US$million, PPP).

8 Although the land area of 1� � 1� grid cells varies across latitudes, the map projection we use is such that all
these cells have the same area. Hence, we prefer to display output rather than output density. Otherwise, integrat-
ing density across projected grid cells would yield a misleading measure of output. We only take the differences
in cell sizes across latitudes into account when calculating distances between locations.
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Rocky Mountains, for example, all have lower temperatures than their latitude would
predict.

3.2.2. Parameter values

Table 1 reports the parameter values we use. Many of them are taken from Desmet and
Rossi-Hansberg (2015) and Desmet et al. (2018). Others are either calibrated to moments
in the data or come from other papers. The innovation parameter in agriculture, cA, is set
to match the growth rate in agricultural productivity between 1975 and 2000 in 30 coun-
tries as estimated by Duarte and Restuccia (2010). Similarly, the innovation parameter in
non-agriculture, cM, is set to match the manufacturing productivity growth rate in the
same countries over the same time period. The value for the spatial decay of technology
diffusion, @, falls within the range of values estimated for a set of different technologies
by Comin et al. (2012). Consistent with the predictions for RCP 8.5, we calibrate the car-
bon cycle parameter e2 to obtain a 1200 GTC increase in the stock of carbon by 2100,
and we set the parameter � to obtain a 3.7�C global temperature increase by the end of
the 21st century. Before discussing the parameter values pertaining to the sensitivity of
agricultural productivity and non-agricultural productivity to temperature, we need the ini-
tial distributions of temperature-adjusted productivity in both sectors, denoted by
ŝi0ðrÞ ¼ si0ðrÞgiðTtðrÞÞ; i 2 fA;Mg.

3.2.3. Solving for initial distributions

Using the initial distributions of land, total population, total output and agricultural output,
as well as estimates of trade costs and the parameter values in Table 1, we follow the pro-
cedure outlined in Appendix A to back out the distributions of the initial temperature-
adjusted productivities in agriculture and non-agriculture, ŝi0ðrÞ. Determining the distribu-
tions of the initial fundamental productivities si0ðrÞ will require estimates of the tempera-
ture discounts giðTtðrÞÞ, an issue we turn to below.
As outlined in Desmet et al. (2018), we then use data on subjective well-being from the

Human Development Report to back out the distribution of fundamental amenities.

Figure 2. Average temperature in 2000 (�C).
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Location-specific moving costs are then set so that the model-predicted changes in popula-
tion between 2000 and 2005 match those in G-Econ 4.0.9

3.2.4. Sensitivity of agriculture and non-agriculture to temperature

To disentangle fundamental productivity from temperature-adjusted productivity, we use
the sector-specific temperature discount factor (10). Parameterizing this bell-shaped

Table 1. Parameter values

Parameter Target/comment

1. Preferences
b ¼ 0:96 Annual discount factor
q ¼ 0:75 Elasticity of substitution of 4a

k ¼ 0:32 Relation between amenities and populationa

X ¼ 0:5 Elasticity of migration flows with respect to incomea

w ¼ 1:8 Subjective well-being parametera

vA ¼ 0:051 Data on agricultural and total output
vM ¼ 0:949 Data on agricultural and total output

2. Technology

aA ¼ 0 No agglomeration externality in agriculture
aM ¼ 0:01 Agglomeration externality in non-agriculturea

h ¼ 6:5 Trade elasticitya

lA ¼ lM ¼ 0:6 Labor share in agriculture and non-agricultureb

cA ¼ 0:001 Growth rate of agricultural productivityc

cM ¼ 0:0002 Growth rate of non-agricultural productivityc

rA ¼ 0:04 Energy share in agricultureb

rM ¼ 0:07 Energy share in non-agricultureb

d ¼ 0:993 Technology diffusiona

@ ¼ 0:004 Spatial decay of diffusiond

/ ¼ 0:25 Energy supply elasticityb

3. Temperature and carbon cycle

goptA ¼ 19:9
�
C Optimal temperature in agricultureb

gvarA ¼ 7:28
�
C 0.1% of world agricultural production at locations below discount factor 0.01

goptM ¼ 10:5
�
C Relationship between non-agricultural productivity and temperature

gvarM ¼ 11:0
�
C Relationship between non-agricultural productivity and temperature

e1 ¼ 0:9975 Decay of carbon stockb

e2 ¼ 0:29 1200 GTC increase in global carbon stock by 2100
� ¼ 0:0031 3:7

�
C increase in global temperature by 2100

aDesmet et al. (2018).
bDesmet and Rossi-Hansberg (2015).
cDuarte and Restuccia (2010).
dComin et al. (2012). Further note that in Desmet et al. (2018) parameter aM is set to 0.06. However, our notation
is different: parameter aM in the current paper is equal to aM divided by h in Desmet et al. (2018), so we set its
value to 0.01.

9 Agricultural output data indicate zero output in some cells of the world (particularly in deserts or polar regions).
Given that our model and its inversion cannot handle zeros, we set the share of agricultural output in those
regions to 10�12. In a few cases, the reported agricultural output we obtain from GAEZ and the World Bank
yields agricultural cell output levels that are larger than the total output level reported by G-Econ. In those cases,
we set the non-agricultural output share to 10�12.
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Figure 3. Temperature discount in agriculture and non-agriculture. (a) Temperature discount. (b)
Log non-agricultural productivity and temperature.
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discount function requires for each sector i estimates for the optimal temperature, gopti , and
for the variance of the relation between temperature and productivity, gvari .
For agriculture, Desmet and Rossi-Hansberg (2015) rely on agronomy studies to esti-

mate an optimal growing-season temperature of 21.1�C. Because we use annual average
temperature, we need to map growing-season temperature into yearly average temperature.
To that effect, we regress annual average temperature on growing-season temperature
across all grid cells, and use the estimated mapping to obtain an optimal annual average
temperature in agriculture, goptA , of 19.9�C. We then set the variance parameter of the agri-
cultural temperature discount so that only 0.1% of world agricultural production takes
place in locations with a discount factor below 0.01. This yields gvarA ¼ 7:28

�
C. The esti-

mated agricultural temperature discount is depicted in Figure 3(a).
For non-agriculture, we take a different approach. We calibrate the parameter values of

the temperature discount to the observed relation between temperature and the model-
generated non-agricultural productivity across all grid cells.10 To derive an estimating
equation, we start by substituting the expression of the bell-shaped discount (10) into
ŝM0ðrÞ ¼ sM0ðrÞgM ðT0ðrÞÞ. This yields a relation between the temperature-adjusted and
the fundamental productivity in non-agriculture given by

log ŝM0 rð Þ ¼ log sM0 rð Þ � 1

2

T0 rð Þ � goptM

gvarM

!2

:

Rearranging gives us the estimating equation

log ŝM0ðrÞ ¼ b0 þ b1T0ðrÞ þ b2T0ðrÞ2 þ �ðrÞ; (34)

where b1 ¼ goptM =ðgvarM Þ
2 and b2 ¼ �1=ð2ðgvarM Þ

2Þ. The identification assumption behind
this estimation is that fundamental productivity sM0ðrÞ is uncorrelated with temperature.11

Using the model-generated values of ŝM0ðrÞ, we run regression (34). The underlying data
of this regression, displayed in Figure 3(b), strongly suggest that the relation between the
log of non-agricultural productivity and temperature is indeed quadratic, with the most
productive locations corresponding to those with moderate temperatures. From the esti-
mates of b1 and b2, we can derive the two parameters of the bell-shaped temperature dis-
count factor on non-agricultural productivity, goptM ¼ 10:5

�
C and gvarM ¼ 11

�
C.

When comparing non-agriculture to agriculture, Figure 3(a) shows that its optimal tem-
perature is lower and its sensitivity to temperature is smaller. These temperature discounts
can be shown on a map. Figure 4(a and b) depicts the temperature discounts by location
in the year 2000, gAðT0ðrÞÞ and gM ðT0ðrÞÞ. In agriculture, relatively cold areas suffer the
most: this explains the large discount on productivity in much of Canada and Russia.
With the exception of some areas such as the Sahara desert, most regions closer to the
Equator do not experience large productivity penalties. In non-agriculture, productivity

10 For non-agriculture, there is less guidance from the literature. For a discussion of the few studies that exist, see
Dell et al. (2014).

11 This is plausible if temperature has had no effect on past investment decisions. Of course, if temperature has
been an important determinant of the areas where humanity has concentrated and flourished, then the coeffi-
cients b1 and b2 are likely to include not just the direct effect of temperature on non-agricultural productivity,
but also its indirect effect through cumulative past innovation. If so, we would be overstating the effect of tem-
perature on non-agricultural productivity, because in our theory it is meant to only capture its direct effect.

508 � Conte et al.



does not suffer from much of a discount in large swaths of Canada and Russia, except in
the northernmost areas. However, the lower optimal temperature in non-agriculture implies
that warmer areas close to the Equator experience large productivity penalties.
Our estimates of the temperature discounts allow us to back out the initial distributions

of fundamental productivity in agriculture and non-agriculture, displayed in Figure 4(c and
d). We see that large areas of China, Central Asia and Canada have relatively high agricul-
tural productivity, in spite of the important temperature discount they suffer. As global
warming reduces the temperature penalty in northern latitudes, these regions stand to be-
come some of the more productive in agriculture. Areas of high non-agricultural product-
ivity tend to be spatially concentrated in the developed world, such as North America,
western Europe, Japan and southeastern Australia. Some areas in Brazil, Paraguay and
Argentina, as well as parts of Central Africa, display markedly lower productivity in non-
agriculture than neighboring regions. These are areas that heavily specialize in agriculture
in the data and so have limited experience in other sectors.

3.2.5. Model simulation

To simulate the model forward, we use the equilibrium allocation in period t to estimate
fundamental productivities in period tþ 1, and we use the carbon cycle, as well as the re-
lation between the change in the carbon stock and the change in temperature in Equation
(22), to get estimates of temperature by location.
An important feature of global warming is that the rise in temperature is predicted to be

heterogeneous across space. Polar latitudes are expected to experience higher-than-average
increases in temperature, whereas coastal regions, including some islands such as Britain,
are set to experience lower-than-average increases in temperature. To get estimates of the
location-specific parameter nðrÞ that measures the local increase in temperature for a one-
degree global increase in temperature, we use 20-year intervals of predicted local and

Figure 4. Temperature discount and fundamental productivity in 2000. (a) Temperature discount
in agriculture. (b) Temperature discount in non-agriculture. (c) Fundamental productivity in agricul-
ture. (d) Fundamental productivity in non-agriculture.
Note: Panel (a) depicts gAðT0ðrÞÞ, panel (b) depicts gM ðT0ðrÞÞ, panel (c) depicts log ðsA0ðrÞÞ and
panel (d) depicts log ðsM0ðrÞÞ.
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global temperatures between 2000 and 2100 from the IPCC AR5 Data Distribution Center
(IPCC, 2020) for RCP 8.5, and run the regression

TtðrÞ � Tt�1ðrÞ ¼ nðrÞðTt � Tt�1Þ þ vtðrÞ: (35)

Figure 5 depicts the spatial distribution of nðrÞ. As can be seen, in some polar areas a
one-degree increase in global temperature is predicted to translate into a more than three-
degree increase in local temperatures.
With the distributions of fundamental productivities and temperatures in tþ 1, we then

solve for sectoral employment levels, wages and prices in tþ 1. Using this algorithm, we
can compute the equilibrium allocation for as many periods as necessary.

4. Global warming and local specialization

We now simulate our model forward for 200 years and analyze how global warming
affects the world’s economic geography. The effect of rising temperatures is location- and
sector-specific. As a result, residents of particularly hard-hit locations may have an incen-
tive to relocate and local sectoral specialization may shift because of changing compara-
tive advantage. Our goal is to document the spatial response of population, income per
capita and specialization to global warming. We are also interested in the aggregate effects
of climate change. Needless to say, the magnitude of spatial frictions affects the extent of
these adjustments. In our baseline simulation, we keep mobility frictions at their current
levels. Given our interest in trade and specialization, we then explore the effects of higher
or lower trade costs.

4.1. Current spatial frictions

4.1.1. Spatial distribution of population and output per capita

Figure 6 depicts the log difference of population in 2200 between the baseline with climate
change and a counterfactual exercise with constant temperatures. Although the impact of cli-
mate change on population across the world is large and heterogeneous, with some regions
doubling and others reducing by half their 2200 population, it does not dramatically affect

Figure 5. Predicted change in temperature for 1�C increase in global temperature.
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the geography of the world’s main population centers.12 Many of today’s densest regions,
such as western Europe, India and eastern China, continue to be densely populated two cen-
turies from now, whether the world experiences climate change or not. There are some sig-
nificant climate-induced shifts though. Northern latitudes gain in population density, at the
expense of regions such as the Arabian peninsula, northern India, western Australia, north-
ern Africa, Brazil and Central America. In the regions that lose population, inland areas tend
to be more impacted by rising temperatures than coastal areas. This could reflect tempera-
tures rising less in regions close to oceans; it could also reflect the greater resilience of
coastal agglomerations due to their better connectivity to the rest of the world.
In terms of real output per capita, Figure 7 shows that over the next two centuries the

more northern latitudes of Canada and Siberia improve their lot because of rising tempera-
tures, whereas sub-Saharan Africa becomes worse off. The losses from climate change are
more widespread in the case of real output per capita than in the case of population: al-
most all regions spanning the latitudes comprised between southern Africa to the south
and the Mediterranean basin to the north lose output per capita. These more widespread
losses are related to two factors. First, whereas the relocation of population is a zero-sum
game, this is not the case with global output per capita. Second, the relocation of popula-
tion is limited by mobility restrictions, implying that certain areas that suffer significant
negative shocks to output per capita may lose relatively fewer people.

4.1.2. Sectoral specialization

What is the role of agriculture and non-agriculture in these geographic shifts? When consid-
ering agricultural output, Figure 8(a–c) shows that over the next two centuries agriculture is
predicted to experience increased geographic concentration. Climate change has a pro-
nounced effect on where agriculture continues to be prominent. In the absence of rising tem-
peratures, South America and sub-Saharan Africa maintain their importance, in addition to
India, eastern China and eastern Europe. Today’s developed world is predicted to specialize

Figure 6. Effect of climate change on predicted population in 2200.
Note: log ðL200ðrÞÞ under climate change minus log ðL200ðrÞÞ under no climate change.

12 Because the variation in population density in the world in 2000 and 2200 is as large as 15 log points, changes
by 1 log point do not drastically alter the density map.
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almost fully in non-agricultural sectors. With climate change, Canada emerges as a major
agricultural producer, as do Russia and Central Asia. This comes at the expense of declining
production in India, South America and sub-Saharan Africa. The regions that gain from cli-
mate change are relatively cold areas with high fundamental productivity. Global warming
reduces the temperature penalty they suffer, making them highly productive.
With non-agriculture being less sensitive to rising temperatures than agriculture, we

might have expected equatorial regions to become non-agricultural powerhouses.

Figure 8. Agricultural output. (a) Agricultural output in 2000. (b) Agricultural output in 2200:
no climate change. (c) Agricultural output in 2200: climate change. (d) Agriculture output in
2200: climate—no climate change.
Notes: Panel (a) displays the log of agricultural output in period 1, Panel (b) displays the log of
agricultural output in period 200 under no climate change, Panel (c) displays the log of agricultur-
al output in period 200 under climate change and Panel (d) displays the log difference of agricul-
tural output in period 200 with and without climate change. In all panels agricultural output is
normalized by average nominal wages in the world.

Figure 7. Effect of climate change on real output per capita in 2200
Note: The log of real output per capita under climate change minus the log of real output per cap-
ita under no climate change in period 200.
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However, Figure 9 shows no evidence of this happening. Two reasons explain this. First,
the optimal temperature for non-agriculture is lower than for agriculture, implying that any
increase in temperature in equatorial regions leads to a loss in non-agricultural productiv-
ity. Second, their original productivity in non-agriculture is relatively low and they are un-
able to catch up with more advanced economies.
When focusing on specialization patterns in terms of sectoral employment shares, Figure

10(a–c) confirms that the areas that specialize in agriculture become much more concentrated
in space. While in the year 2000 we still have many locations with agricultural employment
shares above 20% scattered around the globe, by the year 2200 areas of high agricultural spe-
cialization are limited to a few regions. In the absence of climate change, those regions are
concentrated in South America, sub-Saharan Africa and India’s Ganges Valley. With rising
temperature, clusters of agricultural specialization shift to Central Asia, China and Canada.

4.1.3. Aggregate patterns

At the aggregate level, Figure 11(a) shows that the growth rate of world real GDP per cap-
ita is predicted to increase from 2.2% annually in 2000 to 2.8% annually in 2200, further
increasing to 3.0% by the year 2400.13 Global warming leads to a loss in the level of
world real GDP per capita of around 6% by the year 2200, increasing to around 9% by
the year 2400 (Figure 11(b)). In terms of world utility, Panel (a) shows that its growth rate
rises from 2.1% in 2000 to 2.7% in 2200 and 2.9% in 2400. The losses due to global

Figure 9. Non-agricultural output. (a) Non-agricultural output in 2000. (b) Non-agricultural
output in 2200: no climate change. (c) Non-agricultural output in 2200: climate change. (d) Non-
agriculture output in 2200: climate—no climate change.
Notes: Panel (a) displays the log of non-agricultural output in period 1, panel (b) displays the log
of non-agricultural output in period 200 under no climate change, panel (c) displays the log of
non-agricultural output in period 200 under climate change and panel (d) displays the log differ-
ence of non-agricultural output in period 200 with and without climate change. In all panels agri-
cultural output is normalized by average nominal wages in the world.

13 To sharpen the visualization of some of the very long-run trends, it is convenient to simulate the model for an-
other 200 years, until the year 2400.
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warming are greater than in the case of real GDP per capita: more than 15% by 2200 and
above 20% by 2400 (Panel (b)). To understand why losses from global warming are larger
for utility than for real income per capita, recall that utility takes into account amenities
whereas real GDP per capita does not. As global warming tends to benefit locations at
more polar latitudes which on average have worse amenities, rising temperatures have a
more negative effect on utility than on income per capita.14

Two other aggregate effects from global warming are worth mentioning. First, Figure
12(a) shows that higher global temperatures lower the growth rate of non-agricultural prod-
uctivity, and increase the growth rate of agricultural productivity. Given that agriculture is
more sensitive to rising temperatures than non-agriculture, we might have expected the con-
trary. However, global warming shifts agriculture to areas with relatively high exogenous
productivity. As an example, in a world without climate change, one of the regions with the
highest agricultural employment share is northern India. Global warming shifts agricultural
specialization to parts of Central Asia and Canada, which have higher fundamental
agricultural productivity. Second, Figure 12(b) shows that climate change leads to lower
agricultural employment. Given that our preferences are Cobb–Douglas in agriculture and
non-agriculture, this is not a simple counterpart of the relative increase in agricultural prod-
uctivity under climate change. Instead, it has to do with global warming pushing agriculture
to regions where labor is relatively expensive. More specifically, Figure 8 shows that, with
climate change, agricultural production moves to areas where land is abundant relative to
labor (e.g. northern Canada, Russia and Mongolia), so total agricultural employment falls.

Figure 10. Agricultural specialization. (a) Agricultural specialization in 2000. (b) Agricultural
specialization in 2200: no climate change. (c) Agricultural specialization in 2200: climate change.
(d) Agricultural specialization in 2200: climate—no climate change.
Notes: Panel (a) displays the share of labor employed in agriculture in period 1, panel (b) displays
the share of labor employed in agriculture in period 200 under no climate change, panel (c) dis-
plays the share of labor employed in agriculture in period 200 under climate change and panel (d)
displays the difference in the share of labor employed in agriculture with and without climate
change in period 200.

14 This effect would be mitigated if we allowed amenities to change with temperature as in Cruz and Rossi-
Hansberg (2020).
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Figure 11. Aggregate real GDP per capita and utility: growth rates and levels. (a) Growth rates
with climate change. (b) Log difference: climate—no climate change.
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Figure 12. Productivity growth and employment. (a) Productivity growth: climate—no climate
change. (b) Agricultural employment (billions).
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In contrast, without climate change, agriculture concentrates more in India, where labor is
relatively abundant, so total agricultural employment increases.

4.2. Trade costs

We now explore how different levels of trade costs affect the world’s economic geography.
In particular, we compare a world with 50% higher trade costs to one with 50% lower
trade costs.

4.2.1. Spatial distribution of population and GDP per capita

Consider first the effect of trade costs on the spatial distribution of population in the year
2200 in a world with climate change. Figure 13 depicts the log difference in population
when we increase trade costs by 50% relative to a scenario where we decrease them by
50%. As the figure shows, in a world with high transport costs, population is more con-
centrated in today’s developed countries and regions, such as the USA, Europe and Japan.
Living far from the main production centers becomes more costly, so population concen-
trates. This also explains why Africa, South America and Australia all lose considerable
fractions of their population in the high trade cost scenario.
Now consider the effect that trade costs have on the impact of climate change across

the world. Figure 14 presents a difference-in-difference visualization of this effect. More
specifically, it displays the difference between high and low trade costs in the climate-
induced log difference in population in the year 2200. The figure shows that with high
trade costs more people leave the areas that are estimated to suffer the most from global
warming. That is, with higher trade costs we witness more relocation of people from
regions closer to the Equator to areas closer to the poles. This suggests that trade and mi-
gration are substitutes. When faced with a climate-induced sectoral shock, higher trade
costs limit the scope of locally adjusting by changing specialization. That makes adjusting
through migrating relatively more attractive. The difference-in-difference graph for GDP
per capita exhibits a very similar pattern, with production moving out of South America,

Figure 13. The effect of trade costs on population in 2200.
Notes: The difference in population with climate change in period 200, log ðL200ðrÞÞ, with high
(þ50%) minus with low (�50%) trade costs.
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Africa and South Asia when trade costs are high, and concentrating in Canada and
Siberia. We omit the map for brevity.

4.2.2. Sectoral specialization

Figure 15(a and b) shows that the predicted distribution of agricultural production in the
year 2200 is more dispersed under high trade costs than under low trade costs, for the
simple reason that people source goods from closer by. In particular, with high trade costs,
Europe, North America, as well as parts of South America and sub-Saharan Africa, con-
tinue to be important agricultural producers. In addition, agriculture stretches into more
northern latitudes of Siberia. When comparing climate change to no climate change in
Panels (c) and (d), under low trade costs we see a resurgence of agriculture at moderate
latitudes in Europe, Russia and North America. This resurgence is not present when trade
costs are higher, because in that case these regions continue to be agricultural producers
even in the absence of climate change.
When looking at the employment share in agriculture in the year 2200, Figure 16(a and

b) similarly displays greater geographic dispersion under high trade costs. Rising tempera-
tures lead to relocations that are also more spatially dispersed when trade costs are high.
More specifically, in a world with high trade costs, agriculture relocates to many areas of
East and Central Asia, as well as to more northern latitudes in Canada, whereas in a world
with low trade costs, relocation occurs most prominently from northern India to parts of
China and Central Asia. Note that the climate-induced resurgence of Europe and the USA
as agricultural producers if trade costs are low (Figure 15(d)) does not translate in a sub-
stantial increase in agricultural employment (Figure 16(d)), suggesting that these regions
benefit from high-productivity agriculture that requires little labor.
When looking at non-agricultural output in Figure 17, higher temperatures lead to relo-

cations to higher latitudes. There are some exceptions though: under high trade costs, we
see some areas in northern Canada losing non-agriculture, and a number of dispersed
regions in Africa as well as the Tibetan Plateau gaining non-agriculture. These areas tend

Figure 14. The impact of trade costs on the effect of climate change on population in 2200.
Notes: The difference with high (þ50%) minus low (�50%) trade costs of the difference in
log ðL200ðrÞÞ with minus without climate change.
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to be mirror images of the shifting specialization patterns observed in Figure 16(a). For
example, northern Canada switches specialization, from non-agriculture to agriculture,
whereas certain places in Africa experience the opposite, switching from agriculture to
non-agriculture. The Tibetan Plateau is different: starting off with much lower tempera-
tures, the rise in temperature increases its productivity, turning it into a region that experi-
ences an important climate-induced increase in non-agricultural output. When comparing
how climate-induced changes depend on trade costs, we observe a larger drop in non-
agricultural output under low trade costs in the regions of China and Central Asia where
world agricultural production becomes geographically concentrated.

4.2.3. Aggregate effects

By the year 2200 climate-induced losses in real GDP per capita are higher under low trade
costs than under high trade costs, but this effect is reversed by the year 2400 (Figure
18(a)). On the one hand, with higher trade costs, there is less scope to respond to sector-
specific climate shocks by changing specialization. This was evident from Figure 14 where
we saw people adapt by migrating, rather than by shifting specialization, when trade costs
are high. The lack of adaptation through trade makes a world with higher trade costs more
vulnerable to climate change. On the other hand, with higher trade costs, Figure 13
showed that less people end up living in the warmest areas of the earth that suffer the
most from temperature rises. This makes a world with higher trade costs less vulnerable to
global warming. As Figure 18(a) shows, the second effect dominates for the first

Figure 15. Agricultural output and trade costs. (a) Agricultural output: high trade costs. (b)
Agricultural output: low trade costs. (c) Effect of climate on agricultural output: high trade costs.
(d) Effect of climate on agricultural output: low trade costs.
Notes: Panel (a) displays the log of agricultural output under climate change with þ50% trade
costs, panel (b) displays the log of agricultural output under climate change with �50% trade
costs, panel (c) displays the log difference of agricultural output with and without climate change
(þ50% trade costs), panel (d) displays the log difference in agricultural output with and without
climate change (�50% trade costs). In all panels agricultural output is normalized by average
nominal wages in the world. All maps are for period 200.
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300 years. Eventually, however, the concentration in agriculture in northern latitudes makes
lower trade costs a more important advantage.
When considering utility instead of real GDP per capita, as in Figure 18(b), the losses

from climate change are smaller under high trade costs than under low trade costs
throughout the 400-year period under investigation (though the difference between both
narrows after 200 years). This points to a greater relocation of people and economic activ-
ity toward high-amenity locations under higher trade costs.

Figure 16. Agricultural specialization and trade costs. (a) Agricultural specialization: high trade
costs. (b) Agricultural specialization: low trade costs. (c) Effect of climate on agricultural special-
ization: high trade costs. (d) Effect of climate on agricultural specialization: low trade costs.
Notes: Panel (a) displays the share of agricultural employment under climate change with þ50%
trade costs, panel (b) displays the share of agricultural employment under climate change with
�50% trade costs, panel (c) displays the difference in share of agricultural employment with and
without climate change (þ50% trade costs) and panel (d) displays difference in share of agricultur-
al employment with and without climate change (minus log ðL200ðrÞÞ under no climate change
with (�50% trade costs). All maps are for period 200.

Figure 17. Non-agricultural output and trade costs. (a) Effect of climate on non-agricultural out-
put: high trade costs. (b) Effect of climate on non-agricultural output: low trade costs.
Notes: Panel (a) displays the log difference of non-agricultural output with and without climate
change (þ50% trade costs), panel (b) displays the log difference in non-agricultural output with
and without climate change (�50% trade costs). In both panels, non-agricultural output is normal-
ized by average nominal wages in the world. Maps are for period 200.
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Figure 18. Aggregate real GDP per capita and utility: effect of climate change and trade costs.
(a) Log real GDP per capita: climate—no climate change. (b) Log utility: climate—no climate
change

Specialization in a warming world � 521



5. Conclusion

Global warming has heterogeneous effects across space, sectors and time. Because climate
shocks are location- and sector-specific, migration and trade are central to the economy’s
adjustment to rising temperatures. Convincingly assessing the local, sectoral and aggregate
economic effects of global warming therefore requires a multi-sector dynamic spatial
model that incorporates migration and trade. This paper provides such a framework and
combines it with high-quality high-resolution data.
Under RCP 8.5, our results indicate that over a 200-year horizon rising temperatures push

people and economic activity toward Siberia, Canada and Scandinavia. Because migration is
costly, losses in real GDP per capita are geographically more widespread than losses in popu-
lation. In a world without climate change, by the year 2200 clusters of agricultural specializa-
tion are found in Central Africa, Brazil and India’s Ganges Valley. Rising temperatures move
these clusters toward Central Asia, northern Canada and parts of China. Equatorial latitudes
that suffer a relative decline in agricultural productivity fail to emerge as non-agricultural
powerhouses. By the year 2200, predicted losses in real GDP and utility are, respectively, 6%
and 15%. In spite of agriculture being more sensitive to temperature than non-agriculture, glo-
bal warming increases agricultural productivity growth, while it decreases non-agricultural
productivity growth. This unexpected result is due to rising temperatures shifting agriculture
toward regions that become highly productive once the temperature increases enough.
Higher trade costs slow down the spatial concentration of agriculture. Because goods are

sourced more locally, agriculture remains closer to the world’s population centers. Trade and
migration are substitutes. When faced with a climate shock, the scope to adjust through
changing local specialization is smaller when trade costs are high, thus increasing the incen-
tive to move. Because migration tends to happen toward regions of relatively high productiv-
ity, higher trade costs generate smaller aggregate losses in real GDP than lower trade costs.
This paper can be extended in different directions. First, allowing for an elasticity of

substitution between agriculture and non-agriculture of less than one would affect the
world’s vulnerability to climate change. For example, if agriculture experiences greater
productivity gains than non-agriculture, it would lead to a shrinking share of employment
in the sector that is most sensitive to global warming. Second, this paper has inevitably
left many questions related to climate change unanswered. We have not investigated the
impact of public policies, such as carbon taxes or innovation policies. Nor have we con-
sidered that climate change affects amenities. As the worlds warms, amenities in previous-
ly cold areas, such as Siberia, are bound to improve, whereas amenities in regions that
already start out being very warm, will worsen. Another omission is having left out add-
itional dimensions of climate change. Rising sea levels and more extreme weather phe-
nomena, such as hurricanes, storm surges and droughts, are obvious examples. With
adequate data, these aspects of climate change could be incorporated into the multi-sector
dynamic spatial climate assessment model we have developed.

Acknowledgements

D.K.N. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness,
through the Severo Ochoa Program for Centers of Excellence in R&D (SEV-2015-0563), through
the Juan de la Cierva Grant (FJCI-2017-34728) and from the Government of Catalonia, through the
CERCA and SGR Program (2017-SGR-1393).

522 � Conte et al.



References

Acemoglu, D., Aghion, P., Bursztyn, L., Hemous, D. (2012) The environment and directed technical
change. American Economic Review, 102: 131–166.

Acemoglu, D., Akcigit, U., Hanley, D., Kerr, W. (2016) Transition to clean technology. Journal of
Political Economy, 124: 52–104.

Allen, M. R., Frame, D. J., Huntingford, C., Jones, C. D., Lowe, J. A., Meinshausen, M.,
Meinshausen, N. (2009) Warming caused by cumulative carbon emissions towards the trillionth
tonne. Nature 458: 1163–1166.

Allen, T., Arkolakis, C. (2014) Trade and the topography of the spatial economy. Quarterly Journal
of Economics, 129: 1085–1140.

Allen, T., Arkolakis, C., Li, X. (2020) On the Equilibrium Properties of Network Models with
Heterogeneous Agents. Working Paper, Yale University.

Balboni, C. (2019) In Harm’s Way? Infrastructure Investments and the Persistence of Coastal Cities.
Working Paper, MIT.

Benveniste, H., Oppenheimer, M., Fleurbaey, M. (2020) Effect of border policy on exposure and
vulnerability to climate change. Proceedings of the National Academy of Sciences, 117:
26692–26702.

Burzy�nski, M., de Melo, J., Deuster, C., Docquier, F. (2019) Climate Change, Inequality, and
Human Migration. CEPR Discussion Paper 13997.

Caliendo, L., Dvorkin, M., Parro, F. (2019) Trade and labor market dynamics: general equilibrium
analysis of the China trade shock. Econometrica, 87: 741–835.

Comin, D. A., Dmitriev, M., Rossi-Hansberg, E. (2012) The Spatial Diffusion of Technology. NBER
Working Paper 18534.

Conte, B. (2020) Climate Change and Migration: The Case of Africa. Unpublished manuscript.
Costinot, A., Donaldson, D., Smith, C. (2016) Evolving comparative advantage and the impact of

climate change in agricultural markets: Evidence from 1.7 million fields around the world.
Journal of Political Economy, 124: 205–248.

Cruz, J. L., Rossi-Hansberg, E. (2020) The Geography of Global Warming. Princeton University
Working Paper.

Dell, M., Jones, B. F., Olken, B. A. (2014) What do we learn from the weather? The new
climate-economy literature. Journal of Economic Literature, 52: 740–798.

Desmet, K., Kopp, R. E., Kulp, S. A., Nagy, D. K., Oppenheimer, M., Rossi-Hansberg, E., Strauss,
B. H. (2021) Evaluating the economic cost of coastal flooding. American Economic Journal:
Macroeconomics, 13: 444–86.

Desmet, K., Nagy, D. K., Rossi-Hansberg, E. (2018) The geography of development. Journal of
Political Economy, 126: 903–983.

Desmet, K., Rossi-Hansberg, E. (2014) Spatial development. American Economic Review, 104:
1211–1243.

Desmet, K., Rossi-Hansberg, E. (2015) On the spatial economic impact of global warming. Journal
of Urban Economics, 88: 16–37.

Duarte, M., Restuccia, D. (2010) The role of the structural transformation in aggregate productivity.
Quarterly Journal of Economics, 125: 129–173.

Eaton, J., Kortum, S. (2002) Technology, geography, and trade. Econometrica, 70: 1741–1779.
Golosov, M., Hassler, J., Krusell, P., Tsyvinski, A. (2014) Optimal taxes on fossil fuel in general

equilibrium. Econometrica, 82: 41–88.
Hassler, J., Krusell, P., Olovsson, C. (2018) The consequences of uncertainty: Climate sensitivity

and economic sensitivity to the climate. Annual Review of Economics, 10: 189–205.
Hassler, J., Krusell, P., Smith, A. (2016) Environmental macroeconomics. In J. B. Taylor and H.

Uhlig (eds) Handbook of Macroeconomics, Vol. 2B, Chapter 24, pp. 1893–2008. Elsevier.
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Appendix A: Solving the model

We start by recovering the initial distributions of fundamental agricultural productivity,
sA0ðrÞ, fundamental non-agricultural productivity, sM0ðrÞ and fundamental amenities relative
to utility, aðrÞ=u0ðrÞ, that rationalize the data.
First, combine Equations (33) and (32) to express location r’s agricultural employment as

LA0 rð Þ ¼ L0 rð Þ
1þ cMþlM

cAþlA

Y0 rð Þ
YA0 rð Þ � 1
� � ; (36)

where we use the fact that L0ðrÞ ¼ LA0ðrÞ þ LM0ðrÞ. Next, combining Equations (33) and
(36) allows us to express wages in r as

w0 rð Þ ¼ cA þ lA þ cM þ lMð Þ
Y0 rð Þ
YA0 rð Þ � 1

� 	� �
YA0 rð Þ
L0 rð Þ

; (37)

where we apply the normalization
Ð
Sw0ðrÞdr ¼ 1. Equation (17) then allows us to obtain

land rents as

R0 rð Þ ¼ w0 rð Þ
H rð Þ

1� cA � lA � rA

cA þ lA

LA0 rð Þ þ 1� cM � lM � rM

cM þ lM

LM0 rð Þ
� 	

: (38)

Two further notes are in order. First, Cobb–Douglas sectoral shares can be identified using
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vA
vM
¼

Ð
SYA0 rð ÞdrÐ

S Y0 rð Þ � YA0 rð Þð Þdr
and the fact that vA þ vM ¼ 1. Second, e0 and P0 can be obtained from Equations (29) and
(30), respectively.

Recover fundamental productivities and ratio of amenities to utility

With these results in hand, we are ready to recover the distribution of fundamental productiv-
ities by sector. In the case of agriculture, Equation (27) implies

PA0ðsÞ�h ¼ jAe
�rAh
0 �Ð

S ŝA0ðrÞ
hw0ðrÞ�ðaAþcAþlAÞhR0ðrÞðaAþcAþlAþrA�1Þh1ðs; rÞ�hdr;

(39)

where

ŝA0ðrÞ ¼ sA0ðrÞgAðT0ðrÞÞ;
while Equation (28) implies

ŝA0ðrÞ�h ¼ vAjAe
�rAh
0 w0ðrÞ�ðaAþcAþlAÞhR0ðrÞðaAþcAþlAþrA�1ÞhYA0ðrÞ�1�Ð

SPA0ðsÞh½ðw0ðsÞ þP0=LÞL0ðsÞ þ R0ðsÞHðsÞ�1ðs; rÞ�hds:
(40)

In the case of non-agriculture, the same equations are

PM0ðsÞ�h ¼ jMe
�rMh
0 �Ð

S ŝM0ðrÞhw0ðrÞ�ðaMþcMþlM ÞhR0ðrÞðaMþcMþlMþrM�1Þh1ðs; rÞ�hdr;
(41)

where

ŝM0ðrÞ ¼ sM0ðrÞgM ðT0ðrÞÞ (42)

and

ŝM0ðrÞ�h ¼ vMjMe
�rMh
0 w0ðrÞ�ðaMþcMþlM ÞhR0ðrÞðaMþcMþlMþrM�1ÞhYM0ðrÞ�1�Ð

SPM0ðsÞh½ðw0ðsÞ þP0=LÞL0ðsÞ þ R0ðsÞHðsÞ�1ðs; rÞ�hds:
(43)

Our aim is to solve the systems (39) and (40) for ŝA0ðrÞ and PA0ðrÞ, and solve the systems
(41) and (43) for ŝM0ðrÞ and PM0ðrÞ. We can show the solution to each system exists and is
unique:

Lemma 1. The solution to Equations (39) and (40) and the solution to Equations (41) and
(43) exist and both are unique to scale.

Proof. The system of Equations (39) and (40) constitutes a special case of the systems
considered in Allen et al. (2020)15:

YH
h¼1

xhðrÞckh ¼
ð
S
Kkðr; sÞ

YH
h¼1

xkðrÞjkhxhðsÞbkh k ¼ 1; 2; . . . ;H (44)

such that H¼ 2, x1ðrÞ ¼ PA0ðrÞ; x2ðrÞ ¼ ŝA0ðrÞ,

15 See Remark 3 in Allen et al. (2020) in particular.
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K1ðr; sÞ ¼ jAe
�rAh
0 w0ðrÞ�ðaAþcAþlAÞhR0ðrÞðaAþcAþlAþrA�1Þh1ðs; rÞ�h;

K2ðr; sÞ ¼ vAjAe
�rAh
0 w0ðrÞ�ðaAþcAþlAÞhR0ðrÞðaAþcAþlAþrA�1ÞhYA0ðrÞ�1�

½ðw0ðsÞ þP0=LÞL0ðsÞ þ R0ðsÞHðsÞ�1ðs; rÞ�h;

c11 ¼ c22 ¼ �h; c12 ¼ c21 ¼ j11 ¼ j12 ¼ j21 ¼ j22 ¼ b11 ¼ b22 ¼ 0 and b12 ¼ b21 ¼ h.
Theorem 1 in Allen et al. (2020) shows that the system (44) has a unique solution (to scale) if
the largest eigenvalue of the matrix jðBðC�KÞ�1Þkhj is less than or equal to one, where B is
the matrix whose (k, h) element is bkh, K is the matrix whose (k, h) element is jkh and C is the
matrix whose (k, h) element is ckh. In our case, the largest eigenvalue of jðBðC�KÞ�1Þkhj
equals one. The proof for the system of Equations (41) and (43) is analogous. h

Allen et al. (2020) also show that the solution to Equation (44) can be found by iter-
ation if the largest eigenvalue of jðBC�1Þkhj is strictly less than one. While this condition
does not hold, we find that, in practice, iteration works on the system of Equations (39)
and (40). However, in the case of Equations (41) and (43), iteration fails to find the solu-
tion. To address this issue, we follow the inversion procedure in Desmet et al. (2018) and
approximate Equation (41) by

PM0ðsÞ�h ¼jMe
�rMh
0 �Ð

S ŝM0ðrÞh��w0ðrÞ�ðaMþcMþlM ÞhR0ðrÞðaMþcMþlMþrM�1Þh1ðs; rÞ�hdr
; (45)

where � > 0 is a constant. For any positive �, the largest eigenvalue of the system of
Equations (43) and (45) is now strictly less than one, so that we can solve the system by
iteration. We choose the value of � sufficiently small such that the difference between
Equations (41) and (45) becomes negligible.

Given that agricultural and non-agricultural productivities can only be identified up to a
scale, we normalize their global averages to one:ð

S
ŝA0ðrÞdr ¼ 1 and

ð
S
ŝM0ðrÞdr ¼ 1:

To separate fundamental productivity si0ðrÞ from ŝi0ðrÞ, we use the sector-specific temperature
discount factor giðT0ðrÞÞ. In the data section, we explain how we get estimates of giðT0ðrÞÞ.

With w0ðrÞ; R0ðrÞ; PA0ðrÞ and PM0ðrÞ in hand, we can express amenities relative to
utility from Equations (2) and (4):

a rð Þ
u0 rð Þ ¼

PA0 rð ÞvAPM0 rð ÞvM
w0 rð Þ þP0=L þ R0 rð ÞH rð Þ=L0 rð Þ

L0 rð Þ
H rð Þ

 !k

: (46)

We have now finished solving for the initial distributions of fundamental productivities
and amenities relative to utility. Since solving the systems (41) and (43) required us to use
an approximation, we want to ensure that this approximation is reasonable. To that end, we
investigate whether the amenities and productivities backed out in the model inversion
imply an equilibrium distribution of population that is sufficiently close to the one in the
data. We do so by using the same algorithm as the one we use to solve the model forward.
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A Recovering fundamental amenities

To recover fundamental amenities aðrÞ, we apply the same procedure as in Desmet et al.
(2018). That is, we use subjective wellbeing data to measure u0ðrÞ and obtain fundamental
amenities as

a rð Þ ¼ a rð Þ
u0 rð Þ u0 rð Þ: (47)

We briefly discuss this in the data section.

Recovering moving costs

As in Desmet et al. (2018), we use location-level population data at time 1 to back out mov-
ing costs m2ðrÞ. Having total population at every location r at time 1, L1ðrÞ, we guess a
worldwide energy price e1 as well as an agricultural employment level LA1ðrÞ 2 ð0; L1ðrÞÞ
and a wage w1ðrÞ for every location.16 In the first step, we compute

K1 rð Þ ¼ 1� cM � lM � rM

cM þ lM

L1 rð Þ þ 1� cA � lA � rA

cA þ lA

� 1� cM � lM � rM

cM þ lM

� 	
LA1 rð Þ

and rewrite Equation (17) as

R1ðrÞ ¼ w1ðrÞK1ðrÞHðrÞ�1:

Plugging this into Equations (27) and (28), we obtain

PA1ðsÞ�h ¼ jAe
�rAh
1

Ð
SsA1ðrÞ

hgAðT1ðrÞÞhK1ðrÞðaAþcAþlAþrA�1Þh�
HðrÞ�ðaAþcAþlAþrA�1Þhw1ðrÞ�ð1�rAÞh1ðs; rÞ�hdr

(48)

PM1ðsÞ�h ¼ jMe
�rMh
1

Ð
SsM1ðrÞhgM ðT1ðrÞÞhK1ðrÞðaMþcMþlMþrM�1Þh�

HðrÞ�ðaMþcMþlMþrM�1Þhw1ðrÞ�ð1�rM Þh1ðs; rÞ�hdr
(49)

w1 rð ÞLA1 rð Þ
cA þ lA

¼ vAjAe
�rAh
1 sA1 rð ÞhgA T1 rð Þð ÞhK1 rð Þ aAþcAþlAþrA�1ð ÞhH rð Þ� aAþcAþlAþrA�1ð Þh�

w1 rð Þ� 1�rAð ÞhÐ
SPA1 sð Þh w1 sð Þ þ

P1

L

� 	
L1 sð Þ þ w1 sð ÞK1 sð Þ

� �
1 s; rð Þ�hds

(50)

and

16 In practice, we start with the guesses e1 ¼ e0, LA1ðrÞ ¼ LA0ðrÞ and w1ðrÞ ¼ w0ðrÞ.
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w1 rð ÞLM1 rð Þ
cMþlM

¼vMjMe
�rMh
1 sM1 rð ÞhgM T1 rð Þð ÞhK1 rð Þ aMþcMþlMþrM�1ð ÞhH rð Þ� aMþcMþlMþrM�1ð Þh�

w1 rð Þ� 1�rMð ÞhÐ
SPM1 sð Þh w1 sð Þþ

P1

L

� 	
L1 sð Þþw1 sð ÞK1 sð Þ

� �
1 s;rð Þ�hds

;

(51)

where P1 can be obtained from Equation (19). Combining Equations (50) and (51) and rear-
ranging yields

w1ðrÞ1þh ¼ L1ðrÞ�1
Ð
S ½vAðcA þ lAÞjAe

�rAh
1 sA1ðrÞhgA

�
T1ðrÞ

�h
K1ðrÞðaAþcAþlAþrA�1Þh�

HðrÞ�ðaAþcAþlAþrA�1Þhw1ðrÞrAhPA1ðsÞh þ vM ðcM þ lM ÞjMe
�rMh
1 �

sM1ðrÞhgM
�
T1ðrÞ

�h
K1ðrÞðaMþcMþlMþrM�1ÞhHðrÞ�ðaMþcMþlMþrM�1Þh�

w1ðrÞrMhPM1ðsÞh� w1ðsÞ þ
P1

L

� 	
L1ðsÞ þ w1ðsÞK1ðsÞ

� �
1ðs; rÞ�hds:

(52)

In the second step, we compute PA1ðsÞ and PM1ðsÞ using Equations (48) and (49) and up-
date w1ðrÞ using Equation (52). We proceed with this until w1ðrÞ converges, where we also
apply the normalization

Ð
Sw1ðrÞdr ¼ 1. Next, we update LA1ðrÞ using

LA1 rð Þ ¼ vA cA þ lAð ÞjAe
�rAh
1 sA1 rð ÞhgA T1 rð Þð ÞhK1 rð Þ aAþcAþlAþrA�1ð ÞhH rð Þ� aAþcAþlAþrA�1ð Þh�

w1 rð Þ� 1þ 1�rAð Þh½ �Ð
SPA1 sð Þh w1 sð Þ þP1

L

� 	
L1 sð Þ þ w1 sð ÞK1 sð Þ

� �
1 s; rð Þ�hds

(53)

which we obtained from rearranging Equation (50) and we update e1 using Equation (29).
After this, we return to the beginning of the first step. We proceed until convergence in
LA1ðrÞ.
Once we know w1ðrÞ; PA1ðrÞ; PM1ðrÞ and K1ðrÞ, we can obtain the level of utility at any

location from Equations (2) and (4):

u1 rð Þ ¼ a rð Þ L1 rð Þ
H rð Þ

 !�k
w1 rð Þ þP1=L þ w1 rð ÞK1 rð Þ=L1 rð Þ

PA1 rð ÞvAPM1 rð ÞvM
(54)

which allows us to obtain the level of moving costs (up to scale) from Equation (3)

m2ðrÞ ¼ m2u1ðrÞL1ðrÞ�X; (55)

where we choose the level shifter m2 such that minr2Sm2ðrÞ ¼ 1, as in Desmet et al. (2018).

Solving for the equilibrium

We solve for the equilibrium of the model forward in time, similar to Desmet et al. (2018).
As a first step, we recover the distribution of sectoral productivities in any period t 	 1 by
inserting the productivities and sectoral employment levels of period t�1 into Equations (13)
and (9). Next, we recover the distribution of temperature in period t by substituting the car-
bon emissions and temperature levels of period t�1 into Equations (20) and (22). As a final
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step, we solve for sectoral employment levels, wages and prices in period t as a function of
these productivities, so we can proceed with solving for the equilibrium of period tþ 1.
The final step of solving for the equilibrium consists of three loops embedded in each

other. In the outermost loop, we guess a distribution of population LtðrÞ and a worldwide en-
ergy price et, and proceed to the middle loop.17 In the middle loop, we guess a distribution of
agricultural employment LAtðrÞ, compute

Kt rð Þ ¼
1� cA � lA � rA

cA þ lA

LAt rð Þ þ
1� cM � lM � rM

cM þ lM

LMt rð Þ

and rewrite Equation (17) as

RtðrÞ ¼ wtðrÞKtðrÞHðrÞ�1:

Plugging this into Equations (27) and (28), we obtain

PAtðsÞ�h ¼ jAe
�rAh
t

Ð
SsAtðrÞ

hgAðTtðrÞÞhKtðrÞðaAþcAþlAþrA�1Þh�
HðrÞ�ðaAþcAþlAþrA�1ÞhwtðrÞ�ð1�rAÞh1ðs; rÞ�hdr

(56)

PMtðsÞ�h ¼ jMe
�rMh
t

Ð
SsMtðrÞhgM ðTtðrÞÞhKtðrÞðaMþcMþlMþrM�1Þh�

HðrÞ�ðaMþcMþlMþrM�1ÞhwtðrÞ�ð1�rM Þh1ðs; rÞ�hdr
(57)

wt rð ÞLAt rð Þ
cA þ lA

¼ vAjAe
�rAh
t sAt rð ÞhgA Tt rð Þð ÞhKt rð Þ aAþcAþlAþrA�1ð ÞhH rð Þ� aAþcAþlAþrA�1ð Þh�

wt rð Þ� 1�rAð ÞhÐ
SPAt sð Þh wt sð Þ þ

Pt

L

� 	
Lt sð Þ þ wt sð ÞKt sð Þ

� �
1 s; rð Þ�hds

(58)

and

wt rð ÞLMt rð Þ
cM þ lM

¼ vMjMe
�rMh
t sMt rð ÞhgM Tt rð Þð ÞhKt rð Þ aMþcMþlMþrM�1ð ÞhH rð Þ� aMþcMþlMþrM�1ð Þh�

wt rð Þ� 1�rMð ÞhÐ
SPMt sð Þh wt sð Þ þ

Pt

L

� 	
Lt sð Þ þ wt sð ÞKt sð Þ

� �
1 s; rð Þ�hds

;

(59)

where, naturally, LMtðrÞ ¼ LtðrÞ � LAtðrÞ, and Pt can be obtained from Equation (19).
Combining Equations (58) and (59) and rearranging yields

17 In practice, we always start with guessing that the value of a given variable equals its value in period t�1.
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wtðrÞ1þh ¼ LtðrÞ�1
Ð
S ½vAðcA þ lAÞjAe

�rAh
t sAtðrÞhgAðTtðrÞÞhKtðrÞðaAþcAþlAþrA�1Þh�

HðrÞ�ðaAþcAþlAþrA�1ÞhwtðrÞrAhPAtðsÞh þ vM ðcM þ lM ÞjMe
�rMh
t �

sMtðrÞhgM ðTtðrÞÞhKtðrÞðaMþcMþlMþrM�1ÞhHðrÞ�ðaMþcMþlMþrM�1Þh�
wtðrÞrMhPMtðsÞh�½ðwtðsÞ þ

Pt

L
ÞLtðsÞ þ wtðsÞKtðsÞ�1ðs; rÞ�hds:

(60)

In the innermost loop, we guess a distribution of wages wtðrÞ, and keep iterating on wtðrÞ
using Equation (60), also updating PAtðsÞ and PMtðsÞ using Equations (56) and (57) in every
iteration step. We proceed with this until convergence in wtðrÞ, while we also apply the nor-
malization

Ð
SwtðrÞdr ¼ 1. This concludes the innermost loop.

In the middle loop, we update LAtðrÞ using

LAt rð Þ ¼ vA cA þ lAð ÞjAe
�rAh
t sAt rð ÞhgA Tt rð Þð ÞhKt rð Þ aAþcAþlAþ=rA�1ð ÞhH rð Þ� aAþcAþlAþrA�1ð Þh�

wt rð Þ� 1þ 1�rAð Þh½ �Ð
SPAt sð Þh wt sð Þ þ

Pt

L

� 	
Lt sð Þ þ wt sð ÞKt sð Þ

� �
1 s; rð Þ�hds

(61)

which we obtained from rearranging Equation (58). We iterate on Equation (61) until conver-
gence in LAtðrÞ. This concludes the middle loop.
In the outermost loop, we update LtðrÞ using

Lt rð Þ ¼ zt
wt rð Þ þPt=L

 �

Lt rð Þ þ wt rð ÞKt rð Þ
PAt rð ÞvAPMt rð ÞvM

a rð Þ
m2 rð ÞH rð Þk

" # 1
1þkþX

(62)

which comes from combining Equations (2)–(4). zt ¼ LÐ
S
ut sð Þ1=Xm2 sð Þ�1=Xds

� 	X
is a worldwide

constant that drives the level of LtðrÞ. We do not need to explicitly solve for zt as we can ob-

tain the level of LtðrÞ from the condition

ð
S
LtðrÞdr ¼ L:

We iterate on Equation (62) until convergence in LtðrÞ. We also update et using Equation
(29) in every iteration step. This completes the outermost loop.
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