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Abstract

We extend the standard Bellman’s theory of dynamic programming and the theory of recursive contracts 
with forward-looking constraints of Marcet and Marimon (2019) to encompass non-differentiability of the 
value function associated with non-unique solutions or multipliers. The envelope theorem provides the 
link between the Bellman equation and the Euler equations, but it may fail to do so if the value function 
is non-differentiable. We introduce an envelope selection condition which restores this link. In standard 
single-agent dynamic programming, ignoring the envelope selection condition may result in inconsistent 
multipliers, but not in non-optimal outcomes. In recursive contracts it can result in inconsistent promises and 
non-optimal outcomes. Planner problems with recursive preferences are a special case of recursive contracts 
and, therefore, solutions can be dynamically inconsistent if they are not unique. A recursive method of 
solving dynamic optimization problems with non-differentiable value function involves expanding the co-
state and imposing the envelope selection condition.
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1. Introduction

The Euler equation and the Bellman equation are the two basic tools used to analyze dynamic 
optimization problems. Euler equations are the first-order inter-temporal necessary conditions for 
optimal solutions and, under standard concavity-convexity assumptions, they are also sufficient 
conditions, provided that a transversality condition holds. Euler equations are usually second-
order difference equations. The Bellman equation allows the transformation of an infinite-horizon 
optimization problem into a recursive problem, resulting in time-independent policy functions 
determining the actions as functions of the states. The envelope theorem provides the bridge 
between the Bellman equation and the Euler equations, establishing the necessity of the latter 
for the former. This bridge allows us to reduce the second-order difference equation system of 
Euler equations to a first-order system, fully determined by the policy function of the Bellman 
equation with corresponding initial conditions, provided that the value function is differentiable.

Differentiability makes the bridge between the Bellman equation and the Euler equation tight. 
If the value function is differentiable, the state provides univocal information about the derivative 
and, therefore, the inter-temporal change of values across states (Bellman) is uniquely associated 
with the change of marginal values (Euler) via the envelope theorem. However, the value function 
may not be differentiable when solutions are non-unique or constraints are binding. In fact, as 
we show, the envelope theorem implies that a convex value function is non-differentiable if the 
solutions are non-unique, and concave value function is non-differentiable if the multipliers of 
the binding constraints are non-unique. In these cases, knowing the state and its value does not 
provide univocal information about the derivative, which is needed to recover the Euler equations 
from the Bellman equation.

Recursive methods of dynamic programming have been widely applied in macroeconomics 
over the last 30 years since the publication of Stokey et al. (1989). Usual assumptions such as 
interiority of optimal paths imply differentiability of the concave value function and enable the 
application of the standard envelope theorem. However, the issue of non-differentiability can-
not be ignored in a wide range of currently used models. Models where households, firms, or 
countries, may face – possibly, forward-looking – binding constraints at optimal choices are, 
nowadays, more the norm than the exception. As we show, the differentiability problem caused 
by binding constraints or non-unique solutions is particularly pervasive in dynamic models with 
forward-looking constraints.1 Forward-looking constraints are constraints where feasibility of 
current actions depends on future actions. Incentive constraints stemming from limited enforce-
ment or moral hazard usually take the form of forward-looking constraints. Dynamic planner’s 
problems play an important role in macroeconomics because of the equivalence between the 
solution to planner’s problems and competitive equilibria, provided by the welfare theorems. 
Planner’s problems usually have value functions which are convex, with respect to the vector of 
Pareto weights. Solutions may not be unique and, therefore, the value function non-differentiable 
with respect to the Pareto weights. Non-uniqueness arises when the Pareto frontier is not strictly 

1 Koeppl (2006) provided an early example of non-differentiability of the value function in a dynamic model of risk-
sharing with enforcement constraints.
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concave, for example, due to linear preferences (e.g. of consumers, firms, or banks), non-convex 
feasible sets, or the use of lotteries to convexify them; as it is done in general equilibrium models 
with incentive problems or externalities, see Prescott and Townsend (1984) and Kilenthong and 
Townsend (2021).

This paper extends the standard Bellman’s theory of dynamic programming and the theory 
of recursive contracts of Marcet and Marimon (2019) – (MM19) from now on – to encompass 
non-differentiability of the value function resulting from the presence of binding constraints or 
non-unique solutions. In particular, this involves three major contributions: First, we general-
ize the envelope theorem using methods of sub-differential calculus and saddle-point analysis 
(see Rockafellar (1970))). The new envelope theorem plays a critical role in the applications to 
dynamic programming. Second – this is the main contribution of the paper – we identify an en-
velope selection condition in dynamic programming, and show that it is necessary and sufficient 
to recover the Euler equation from the Bellman equation when the value function is not differen-
tiable. Third, we extend the theory of recursive contracts to recursive preferences of Koopmans 
(1960), showing that dynamic planner’s problems with recursive preferences can be modeled as 
recursive contracts.

We derive the envelope theorem for static constrained optimization problems in Section 2
without assuming differentiability of the value function or interiority of the solutions. Our result 
extends the envelope theorem for directional derivatives of Milgrom and Segal (2002, Corol-
lary 5) to maximization problems with non-compact choice sets. It applies to value functions 
arising in recursive dynamic programming. Further, we provide characterizations of the superdif-
ferential of a concave value function and the subdifferential of a convex value function. We derive 
several sufficient conditions for differentiability of the value function from the envelope theorem. 
For example, if there is a unique saddle-point, the value function is differentiable and the stan-
dard form of the envelope theorem holds. If the value function is concave, a sufficient condition 
for differentiability is that the saddle-point multiplier be unique. If it is convex, a sufficient condi-
tion is that the solution be unique. The well-known result of Benveniste and Scheinkman (1979)
stating that the concave value function is differentiable at an interior solution follows from our 
results because the saddle-point multiplier is zero and hence unique at an interior solution.2

In the main part of the paper, Section 3, we analyze dynamic models where the problem 
of differentiability of the value function may arise, and lead to time-inconsistent solutions or 
multipliers. We introduce the envelope selection condition which guarantees that solutions and 
multipliers generated from the Bellman equation satisfy the Euler equations. The envelope se-
lection is a consistency condition on solutions and multipliers, and it involves subgradients of 
the value function. The recursive method of solving dynamic programming problems can be 
extended to provide consistent solutions and multipliers by expanding the co-state to include a 
subgradient of the value function, and taking a policy function from the saddle-point Bellman 
equation that satisfies the envelope selection condition. We show these results first in the con-
text of deterministic recursive contracts: partnership problems with (forward-looking) limited 
enforcement constraints. It is in this framework that Messner and Pavoni (2016) constructed an 
example with linear preferences, resulting in non-unique solutions and non-differentiable con-
vex value function, in which the saddle-point Bellman equation generates outcomes which are 
non-optimal or do not satisfy enforcement constraints. Our recursive method of solving recur-

2 The result of Rincón-Zapatero and Santos (2009) that the value function in concave dynamic programming problems 
is differentiable if the multiplier is unique follows from our results as well.
3
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sive contracts involves expanding the co-state to include a subgradient of the value function and 
imposing the envelope selection condition (i.e. a subroutine within a recursive contracts algo-
rithm). The envelope selection condition is equivalent to the intertemporal consistency condition
in MM19, which, in turn, is the “promise keeping condition”. If the value function is differen-
tiable, the envelope selection condition is redundant and, accordingly, there is no need to expand 
the co-state.

Second, we analyze the deterministic dynamic Pareto planner’s problem with recursive prefer-
ences of Lucas and Stokey (1984). Recursive utilities play an important role in macroeconomics, 
in particular, in stochastic models which can accommodate the important Epstein and Zin (1989)
utility. We extend the theory of recursive contracts to recursive preferences. In fact, we show that 
the planner’s problem is a special case of recursive contracts and, therefore, may have the dif-
ferentiability problem if there are multiple solutions, either because the period-utility functions 
are linear or lotteries are used by the planner to convexify the set of feasible values (Examples 3
and 4). We also show that when lotteries over future values are used, even if preferences are 
time-separable, their representation as recursive preferences helps to define and characterize the 
saddle-point Bellman equation of the planner’s problem. In the absence of the envelope selection 
condition, the recursive method of solving the planner’s problem may deliver time-inconsistent 
paths of consumptions and continuation utilities to the agents even without limited enforcement 
constraints. The envelope selection condition recovers the Euler equations and the consistency 
of solutions. Our saddle-point approach to the planner’s problem is an alternative to the ap-
proaches of Lucas and Stokey (1984) and, more recently, Pavoni et al. (2018). Those approaches 
are subject to the problem of differentiability of the value function and potential inconsistency of 
solutions as well.

Third, we consider the standard dynamic programming problem with discounted time-
separable utilities and no forward looking constraints. We show that in problems with binding 
backward looking constraints and multiple multipliers (resulting in non-differentiability of the 
concave value function), there may be inconsistency of multipliers, but not solutions. The en-
velope selection condition makes the multipliers to follow a time-consistent path of the Euler 
equations. We present an example in Section 3 and a general discussion of the standard dynamic 
programming in Appendix F.

Dynamic macroeconomics abounds in optimization problems with forward-looking con-
straints (see Ljungqvist and Sargent (2018)). Recursive contracts (MM19) are nowadays part 
of the graduate toolkit to formulate and solve dynamic incentive and limited-commitment prob-
lems, see Messner et al. (2012) and Mele (2014), with a broad range of applications in economics. 
Some examples are: optimal taxation (Aiyagari et al. (2002)), international business cycles (Ke-
hoe and Perri (2003)), debt contracts and risk-sharing mechanisms (Ábrahám et al. (2020)), dy-
namic political economy (Acemoglu et al. (2011)), dynamic household behavior (Voena (2015)). 
Other work that closely relates to ours is Cole and Kubler (2012). They provide an example 
of a dynamic principal-agent problem, where lotteries convexify a non-convex set of feasible 
contracts and, therefore, the value function of the planner’s problem is not differentiable. As in 
Messner and Pavoni (2016) they discuss how recursive contracts with multiple solutions can fail 
to select the optimal ones, which is precisely the problem we analyze, solve and provide an al-
gorithmic solution for the general class of recursive contract in this paper.3 Pavoni et al. (2018)
develop a slightly different approach to dynamic contracts with forward-looking constraints and 

3 Cole and Kubler (2012) provide a solution tailored to the two-agent partnership problem they consider.
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recursive preferences based on duality theory, but they do not take advantage of the saddle-point 
structure of recursive contracts. They identify the problem of multiple solutions to the recursive 
method but do not offer any remedy other than requiring unique solutions. Instead, we show that 
recursive utilities, and the corresponding planner’s problems, have a saddle-point structure and, 
therefore, can be analyzed as recursive contracts and, for example, the result on existence of the 
saddle-point value function in (MM19) applies with minor modifications. Our result is for the 
deterministic case and provides the guideline for the more general stochastic case. The extension 
of the co-state and the envelope selection condition, proposed here, can be easily incorporated 
into existing programs that compute recursive contracts, which in turn use relatively standard 
computational methods in dynamic optimization, thereby expanding the class of problems that 
the graduate toolkit can handle.

The envelope theorem has long history in mathematics and economics, as well. Earlier ver-
sions of it for non-parametric constraints have been known as Danskin’s Theorem (see Oyama 
and Takenawa (2018) and references therein). Our approach provides representation of direc-
tional derivatives in optimization problems with parametric constraints using saddle-points of the 
Lagrangian, and extends the results of Milgrom and Segal (2002). A slightly different approach 
using multipliers of the Kuhn-Tucker first-order conditions instead of saddle-point multipliers in 
problems with differentiable objective and constraint functions has been developed in Gauvin and 
Dubeau (1982) and Morand et al. (2015, 2018).4 Recent papers by Oyama and Takenawa (2018)
and Clausen and Strub (2016) provide further explorations of the conditions for differentiability 
of the value function.

The paper is organized as follows: Sections 2 covers the static envelope theorem and provides 
an example of how our results apply. Section 3 contains the analysis of recursive contracts for the 
partnership problem with forward-looking participation constraints (subsection 3.1), the Pareto 
planner’s problem with recursive utilities – with an example, showing how (subsection 3.2), and 
the standard dynamic programming (subsection 3.3). All subsections include examples where 
the value function is non-differentiable and the saddle-point Bellman equation generates non-
optimal outcomes or inconsistent multipliers. The appendix contains an extension of the envelope 
theorem to constrained saddle-point problems, proofs of the main results, and a discussion of the 
standard dynamic programming.

2. The envelope theorem

This section gives a synopsis of the envelope theorem for parametric constrained maxi-
mization problems and the differentiability of the value function. An extension to saddle-point 
problems is presented in Appendix C for the use in recursive contracts in Section 3.

We consider the following problem:

max
y∈Y

f (x, y) (1)

s.t. h1(x, y) ≥ 0, . . . , hk(x, y) ≥ 0. (2)

4 Extensions of the envelope theorem to non-smooth optimization problems using generalized Kuhn-Tucker multipliers 
can be found in Morand et al. (2015, 2018).
5
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Parameter x lies in the set X ⊂ �m. Choice variable y lies in Y ⊂ �n. Objective function f
and each constraint function hi are real-valued functions on Y × X.5 The value function of the 
problem (1)–(2) is denoted by V (x).

The Lagrangian function associated with (1) is L(x, y, λ) = f (x, y) + λh(x, y), where λ ∈
�k+ is a vector of (positive) multipliers.6 The saddle-point of L is a pair (y∗, λ∗), where y∗ ∈ Y

is called a saddle-point solution and λ∗ ∈ �k+ a saddle-point multiplier, such that

L(x, y,λ∗) ≤ L(x, y∗, λ∗) ≤ L(x, y∗, λ), (3)

for every y ∈ Y and λ ∈ �k+. The saddle-point operator defined by (3) is denoted7 by SP so that

L(x, y∗, λ∗) = SP min
λ≥0

max
y∈Y

L(x, y,λ). (4)

The set of saddle-points of L is a product of two sets Y ∗(x) × �∗(x), where Y ∗(x) ⊂ Y and 
�∗(x) ⊂ �k+, see Lemma 1, Appendix A. The slackness condition λ∗

i hi(x, y∗) = 0 for every i, 
for every (y∗, λ∗) ∈ Y ∗(x) × �∗(x), implies that the saddle-point value of (4) is equal to V (x).

We impose the following conditions, for every i,
A1. Y is convex; f and hi are continuous functions of (x, y),
A2. The constraint set �(x) = {y ∈ Y : h(x, y) ≥ 0} is compact for every x ∈ X.
A3. The correspondence � : X → Y is continuous.
A4. For every x ∈ X, there exists ŷi ∈ Y such that hi(x, ŷi ) > 0 and hj (x, ŷi ) ≥ 0 for j 	= i.
A5. Y ∗(x) × �∗(x) 	= ∅ for every x ∈ X.

Assumption A1 is standard. A2 guarantees the existence of a solution to (1)–(2). A3 guar-
antees continuity of the value function while A4 is a weak form of the Slater’s condition. 
Assumption A5 says that the set of saddle-points is nonempty. It holds if functions f and hi

are concave in y and A4 holds.8 If A5 holds, then the saddle-point solutions Y ∗(x) are precisely 
the solutions to (1)–(2), see the proof of Lemma 1, Appendix A. We refer to them simply as 
solutions.

The envelope theorem is best stated in terms of directional derivatives of the value function V . 
We first consider one-dimensional parameter set X – a convex subset of the real line. Directional 
derivatives are then the left- and right-hand derivatives defined as V ′(x+) = limt→0+[V (x + t) −
V (x)]/t and V ′(x−) = limt→0−[V (x + t) − V (x)]/t if the limits exist.

We have the following result:

Theorem 1. Suppose that X ⊂ �, conditions A1-A5 hold, and partial derivatives ∂f
∂x

and ∂hi

∂x
are 

continuous functions of (x, y). Then the value function V is right- and left-hand differentiable at 
every x ∈ intX and the directional derivatives are

V ′(x+) = max
y∗∈Y ∗(x)

min
λ∗∈�∗(x)

[∂f

∂x
(x, y∗) + λ∗ ∂h

∂x
(x, y∗)

]
(5)

and

5 We abstract away from equality constraints. Typical budgetary, resource, or incentive constraints can be stated as 
inequalities.

6 We use the product notation: λh(x, y) = ∑k
i=1 λihi (x, y).

7 This SP notation was introduced in Marcet and Marimon (2019). The min and max operators merely indicate which 
variables are being minimized and maximized, respectively, in the saddle-point.

8 Lemma 36.2 in Rockafellar (1970) provides necessary and sufficient conditions for existence of a saddle-point with-
out concavity of f or hi .
6



R. Marimon and J. Werner Journal of Economic Theory 196 (2021) 105309
V ′(x−) = min
y∗∈Y ∗(x)

max
λ∗∈�∗(x)

[∂f

∂x
(x, y∗) + λ∗ ∂h

∂x
(x, y∗)

]
, (6)

where the order of maximum and minimum does not matter.

Theorem 1 generalizes Corollary 5 in Milgrom and Segal (2002) by discarding assumptions of 
concavity of functions f and hi and compactness of the choice set Y , and weakening the Slater’s 
condition. In applications to dynamic programming in Section 3 and Appendix F, the choice set 
is not compact.

The value function V on X ⊂ � is differentiable at x if the one-sided derivatives are equal to 
each other. Sufficient conditions for differentiability follow from Theorem 1.

Corollary 1. Under the assumptions of Theorem 1, each of the following conditions is sufficient 
for differentiability of value function V at x ∈ intX:
(i) there is a unique saddle-point,
(ii) there is a unique solution and hi does not depend on x for every i.
(iii) there is a unique saddle-point multiplier and ∂f

∂x
and ∂hi

∂x
do not depend on y, for every i.

A result related to (iii) can be found in Kim (1993). A sufficient condition for uniqueness of 
saddle-point solution is that f be strictly concave and hi be concave in y. A sufficient condition 
for uniqueness of the multiplier is a Constrained Qualification condition, see Appendix B.

For a multidimensional parameter set X in �m, the directional derivative of the value function 
V at x ∈ X in the direction x̂ ∈ �m such that x + x̂ ∈ X is defined as V ′(x; x̂) = limt→0+[V (x +
t x̂) − V (x)]/t . Applying Theorem 1 to the value function V (x + t x̂) of single variable t , it 
follows that, if Dxf (x, y) and Dxhi(x, y) are continuous functions of (x, y), then

V ′(x; x̂) = max
y∗∈Y ∗(x)

min
λ∗∈�∗(x)

[
Dxf (x, y∗) + λ∗Dxh(x, y∗)

]
x̂, (7)

and the order of maximum and minimum does not matter. The value function V is (Gateaux) 
differentiable at x ∈ X if the gradient vector DV (x) exists and V ′(x; x̂) = DV (x)x̂ for every 
direction x̂ ∈ �m. Any condition of Corollary 1 for multivariate functions f and hi is sufficient 
for differentiability of value function V . In that case, it holds

DV (x) = Dxf (x, y∗) + λ∗Dxh(x, y∗) (8)

for every (y∗, λ∗) ∈ Y ∗(x) × �∗(x).
If the value function is concave or convex, the envelope theorem can be stated using the 

superdifferential or the subdifferential. The superdifferential ∂V (x) of concave V is the set of 
all vectors φ ∈ �m such that V (x′) + φ(x − x′) ≤ V (x) for every x′ ∈ X. The value function 
is concave if the objective function f and all constraint functions hi are concave functions of 
(x, y). We have the following:

Theorem 2. Suppose that conditions A1-A5 hold, derivatives Dxf and Dxhi are continuous 
functions of (x, y) for every i, and V is concave. Then

∂V (x) =
⋂

y∗∈Y ∗(x)

⋃
λ∗∈�∗(x)

{Dxf (x, y∗) + λ∗Dxh(x, y∗)} (9)

for every x ∈ intX.
7
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It follows that a sufficient condition for differentiability of concave value function V at x ∈
intX is that the saddle-point multiplier be unique, or alternatively that hi does not depend on x
for every i (for the latter, see Corollary 3 in Milgrom and Segal (2002)).

The subdifferential ∂V (x) of convex V is defined by reversing the inequality in the definition 
of the superdifferential.9 The value function is convex, if the objective function f (y, ·) is convex 
in x for every y ∈ Y and all constraint functions hi are independent of x. We have the following:

Theorem 3. Suppose that conditions A1-A5 hold, derivatives Dxf and Dxhi are continuous 
functions of (x, y) for every i, and V is convex. Then

∂V (x) =
⋂

λ∗∈�∗(x)

co
( ⋃

y∗∈Y ∗(x)

{Dxf (x, y∗) + λ∗Dxh(x, y∗)}
)
, (10)

for every x ∈ intX, where co( ) denotes the convex hull.

A sufficient condition for differentiability of convex value function is that the saddle-point 
solution be unique. We conclude with an example.

Example 1 (A planner’s problem). Consider the resource allocation problem in an economy with 
k agents. The planner’s problem is

max
c≥0

k∑
i=1

μiui(ci) (11)

s.t.
n∑

i=1

ci ≤ x, (12)

where μ = (μ1, . . . , μk) ∈ �k++ is a vector of welfare weights and x ∈ �L++ represents total 
resources. Utility functions ui are continuous so that conditions A1-A4 hold. Let V (x, μ) be the 
value of (11). It follows from Corollary 1 (iii) that V is differentiable in x if the saddle-point 
multiplier λ∗ of constraint (12) exists and is unique. If utility functions ui are differentiable, then 
the CQ condition (see Appendix B) holds, implying that the multiplier is unique. The derivative 
is DxV = λ∗. V is a convex function of μ. The subdifferential ∂μV is (by Theorem 3) the 
convex hull of the set of vectors (u1(c

∗
1), . . . , uk(c

∗
k )) over all saddle-point solutions c∗. V is 

differentiable in μ if the saddle-point solution exists and is unique.
Consider two agents with single good and linear utilities ui(c) = c. Let the welfare weights 

be μ1 = μ and μ2 = 1 − μ for μ ∈ [0, 1]. The value function is V (x, μ) = max{μ, 1 − μ}x. For 
every μ 	= 1

2 , V is differentiable with respect to μ and the solution c∗ is unique. For μ = 1
2 , V is 

not differentiable, and there are multiple solutions. V is differentiable with respect to x.

3. The envelope selection condition

Euler equations characterize the solutions of the infinite-horizon problems. However, when 
these problems are analyzed as dynamic programming problems, the Bellman equation and the 
envelope theorem may not be equivalent to the Euler equations if the value function is not dif-
ferentiable. We identify this inconsistency and introduce an envelope selection condition which 

9 We use the same notation for the superdifferential and the subdifferential as is customary in the literature.
8
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is necessary and sufficient to recover the Euler equations, and to guarantee correct solutions. We 
apply the envelope theorem and the results on the differentiability of the value function and on 
the characterization of the subdifferentials of Section 2 and Appendix C.

This section consists of three subsections. First, we show the role of the envelope selection
condition in recursive contracts (MM19). Second, we show that the inconsistency can emerge in 
the planner problem with recursive preferences of Lucas and Stokey (1984). Thereby we extend 
recursive contracts to recursive preferences. Third, we show that the inconsistency may also arise 
in the standard dynamic programming with binding backward looking constraints. In this case, it 
is inconsistency of multipliers but not suboptimality of solutions.

3.1. The partnership problem with limited enforcement

We consider a canonical deterministic partnership problem10 with limited enforcement and 
discounted time-separable utilities. Each agent receives an endowment of yi,t , and has an outside 
option with utility vi(yi,t ) if she leaves the partnership at date t . The planner’s problem is

Vμ(y0) = max
{ct }∞0

∞∑
t=0

βt

m∑
i=1

μi u(ci,t ) (13)

s.t.
m∑

i=1

yi,t −
m∑

i=1

ci,t ≥ 0, (14)

∞∑
n=0

βn u(ci,t+n) − vi(yi,t ) ≥ 0, (15)

ci,t ≥ 0, for all i, t ≥ 0,

where the sequence {ct} is bounded, i.e. {ct } ∈ �m∞. The sequence of incomes {yt} is bounded and 
follows a law of motion yt+1 = g(yt ) for some g : �m++ → �m++ and given initial income vector 
y0. We impose the following conditions:
P1. The function u : �+ → �+ is bounded, increasing, concave, and differentiable. Furthermore
μi > 0 for every i, and β ∈ (0, 1).
P2. Given y0 ∈ �m++, there exists ε > 0 and {ĉt }∞t=0 ∈ �m∞, with ĉi,t > 0 for every i and t , such
that constraints (14) and (15), hold with ε instead of 0 on the right-hand side.

A convenient way of analyzing problem (13) is to consider the following constrained saddle-
point problem resulting from writing the Lagrangean with all the forward-looking constraints 
(15), rearranging terms, and collecting the partial sums of multipliers into weights μi,t – see 
(MM19) for details:

SP max
{ct }∞t=0

min
{μt }∞t=1

∞∑
t=0

βt

m∑
i=1

[
μi,t+1

(
u(ci,t ) − vi(yi,t )

) + μi,t vi(yi,t )
]

(16)

s.t.
m∑

i=1

ci,t ≤
m∑

i=1

yi,t

μi,t+1 ≥ μi,t

10 (MM19) considers recursive contracts in a more general dynamic stochastic formulation. The approach presented in 
this section can be easily extended to their general setup with infinite-horizon forward-looking constraints.
9
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ci,t ≥ 0, for all i, t,

where μ0 = μ, and {ct } ∈ �m∞ and {μt } ∈ �m∞. The unconstrained saddle-point problem for the 
Lagrangian of (16) is

SP max
{ct ,λt+1}∞t=0

min
{γt ,μt+1}∞t=0

∞∑
t=0

βt
m∑

i=1

{
μi,t+1

(
u(ci,t ) − vi(yi,t )

) + μi,t vi(yi,t ) (17)

− λi,t+1(μi,t+1 − μi,t ) + γt

(
yi,t − ci,t

) }
.

If {c∗
t } ∈ �m∞ is a solution to (13), then under assumptions P1-P2 there exists a bounded se-

quence of weights {μ∗
t } ∈ �m∞ and summable sequences of multipliers {λ∗

t } ∈ �m
1 and {γ ∗

t } ∈ �1

(see Dechert (1992, Theorem 2)) such that {c∗
t , λ

∗
t+1, μ

∗
t+1, γ

∗
t } is a saddle-point of (17).11

Conversely, if {c∗
t , λ

∗
t+1, μ

∗
t+1, γ

∗
t } is a saddle-point of (17), then constraints (14) and (15) are 

satisfied and {c∗
t } is a solution to (13).

The first-order necessary conditions with respect to μi,t+1 for saddle-point {c∗
t , λ

∗
t+1, μ

∗
t+1,

γ ∗
t } of (17) are

u(c∗
i,t ) − (

vi(yi,t ) + λ∗
i,t+1

) + β
(
vi(yi,t+1) + λ∗

i,t+2

) = 0 (18)

for every i and t ≥ 0. The respective condition with respect to ci,t is μ∗
i,t+1u

′(c∗
i,t ) = γ ∗

t . Equation 
(18) is the intertemporal Euler equation for the partnership problem. The Euler equation together 
with first-order conditions for ci,t , the constraints, and complementary slackness conditions for 
γ ∗
t and λ∗

i,t+1, are a system of second-order difference equations.
Euler equations and a transversality condition are sufficient conditions for a solution to (17).

Proposition 1. Suppose that condition P1 holds. Let {c∗
t , λ

∗
t+1, μ

∗
t+1, γ

∗
t }, with {c∗

t }∞t=0 ∈ �m∞, 
{μ∗

t }∞t=1 ∈ �m∞, μ∗
0 = μ, λ∗

t+1 ≥ 0 and γ ∗
t ≥ 0 for every t , satisfy the Euler equations (18), the 

constraints and complementary slackness conditions,12 and the first-order conditions with re-
spect to ci,t . If the transversality condition

lim
t→∞βt [vi(yi,t ) + λ∗

i,t+1] = 0 (19)

holds for every i, then {c∗
t , λ

∗
t+1, μ

∗
t+1, γ

∗
t } is a saddle-point of (17). In particular, {c∗

t } is a 
solution to the partnership problem (13).

Proof. See Appendix D.

The constrained saddle-point problem (16) has recursive structure that can be expressed by 
the following saddle-point Bellman equation:

W(y, μ) = SP min
μ′ max

c

m∑
i=1

[
μ′

i (u(ci) − vi(yi)) + μivi(yi)
] + βW(y′,μ′) (20)

11 In the derivation of (16) weights μ∗
t are obtained as partial sums of a summable sequence and therefore are a conver-

gent, hence bounded, sequence.
12 These are: λ∗

i,t+1(μ∗
i,t+1 − μ∗

i,t
) = 0, μ∗

i,t+1 − μ∗
i,t

≥ 0 for all i, and γ ∗
t

∑m
i=1

(
yi,t − c∗

i,t

)
=

0, 
∑m

(
yi,t − c∗ )

≥ 0.
i=1 i,t

10
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s.t.
m∑

i=1

ci ≤
m∑

i=1

yi (21)

μ′
i ≥ μi (22)

ci ≥ 0, for all i,

where y′ = g(y). The existence of function W satisfying equation (20) has been established in 
(MM19; Theorem 3) under assumptions P1 and P2. The value function W is convex and homo-
geneous of degree one with respect to μ. (MM19; Theorem 1) implies that the value function Vμ

satisfies equation (20), that is, W(y0, μ) = Vμ(y0) for every μ ∈ �m+.
A saddle-point of the Bellman equation (20) is denoted by (c∗, λ∗, μ∗′, γ ∗) where γ ∗ is a 

multiplier of constraint (21) and λ∗ is a multiplier of (22). The set of all saddle-points is a product 
of two sets M∗(y, μ) and N∗(y, μ) so that (c∗, λ∗) ∈ M∗(y, μ) and (μ∗′, γ ∗) ∈ N∗(y, μ) for 
every saddle-point (c∗, λ∗, μ∗′, γ ∗). Under assumptions P1-P2, the sets M∗(y, μ) and N∗(y, μ)

are non-empty. The envelope Theorem 4 for saddle-point problems, see Appendix C, can be 
applied to W .13 Eq. (98) implies that the subdifferential of W is

∂μW(y, μ) = v(y) + {λ∗| (c∗, λ∗) ∈ M∗(y,μ) for some c∗}. (23)

Function W is differentiable with respect to μ at (y, μ) if and only if there is unique multiplier 
λ∗ that is common to all solutions c∗.

For every sequence {c∗
t , λ

∗
t+1, μ

∗
t+1, γ

∗
t }∞t=0 which is a saddle-point of (17), (c∗

t , λ
∗
t+1, μ

∗
t+1,

γ ∗
t ) is a saddle-point of the saddle-point Bellman equation (20) at (yt , μ∗

t ) for every t . It fol-
lows that for every solution {c∗

t } to partnership problem (13), there exist weights {μ∗
t } such that 

(c∗
t , μ

∗
t+1) is a solution to the saddle-point Bellman equation for every t . However, the converse 

result requires an envelope selection condition that involves subgradients from the first-order con-
ditions of (20). The first-order conditions with respect to μ′ for saddle-point (c∗

t , λ
∗
t+1, μ

∗
t+1, γ

∗
t )

at (yt , μ∗
t ) state that there exists subgradient vector φ∗

t+1 ∈ ∂μW(yt+1, μ∗
t+1) such that

u(c∗
i,t ) − (

vi(yi,t ) + λ∗
i,t+1

) + βφ∗
i,t+1 = 0 (24)

for every i.

Proposition 2. Suppose that conditions P1-P2 hold. Let {c∗
t , λ

∗
t+1, μ

∗
t+1, γ

∗
t } be a sequence 

of saddle-points generated by saddle-point Bellman equation (20) starting at (y0, μ), with 
{c∗

t }∞t=0 ∈ �m∞ and {μ∗
t }∞t=1 ∈ �m∞, and let {φ∗

t }∞t=1 be the corresponding sequence of subgradi-
ents with φ∗

t+1 ∈ ∂μW(yt+1, μ∗
t+1) satisfying (24) for t ≥ 0. If the following envelope selection 

condition

φ∗
i,t = vi(yi,t ) + λ∗

i,t+1 (25)

holds for every i and every t ≥ 1, then {c∗
t , λ

∗
t+1, μ

∗
t+1, γ

∗
t } is a saddle-point of (17) and {c∗

t } is 
a solution to (13).

Proof. The first-order conditions (24) together with the envelope selection condition (25) imply 
the Euler equation (18) for every t ≥ 0. The complementary slackness conditions and the first-
order condition with respect to ci,t follow from the respective conditions for (20). Since W is 

13 The constraint set given by (22) can be compactified under P2, see (MM19; Section 4).
11
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bounded and convex, the sequence of subgradients {φ∗
t } is bounded. The transversality condition 

(19), which by (25) can be written as limt→∞ βtφ∗
t = 0, holds. The conclusion follows from 

Proposition 1. �
Proposition 2 corresponds to – and provides an alternative proof of – (MM19, Theorem 2 

and its Corollary) where the envelope selection condition (25) is replaced by the intertemporal 
consistency condition

φ∗
i,t = u(c∗

i,t ) + βφ∗
i,t+1. (26)

Because of the first-order condition (24), those two conditions are equivalent in this context.
The envelope selection condition (25) guarantees consistency of multipliers and solutions 

generated by the saddle-point Bellman equation. It can be dispensed with if the saddle-point 
multiplier is unique, which is a sufficient condition for value function W to be differentiable in 
μ. Inconsistency of multipliers may occur if, given (c∗

t , λ
∗
t+1, μ

∗
t+1, γ

∗
t ) with the corresponding 

subgradient φ∗
t+1 ∈ ∂μW(yt+1, μ∗

t+1) from the first-order condition (24) at t , at t + 1 multiplier 
λ∗

t+2 is chosen without satisfying envelope selection condition (25). This is likely to happen if 
the saddle-point Bellman equation is solved only knowing (yt+1, μ∗

t+1). Then the Euler equa-
tion (18) is not satisfied for λ∗

t+1 and λ∗
t+2, and the sequence {c∗

t , λ
∗
t+1, μ

∗
t+1, γ

∗
t } need not be a 

saddle-point of (17). Since the multiplier λ∗
t+1 has to be chosen together with consumption c∗

t

in the set M∗(yt , μ∗
t ), an inconsistent choice of the multiplier may lead to consumption that is 

either suboptimal, or violates the participation constraints.
Proposition 2 does not provide a recursive method of generating consistent solutions from 

the saddle-point Bellman equation, but it clearly suggests what that method should be: extend 
the co-state to (μ, φ) with φ ∈ ∂μW(y, μ), and impose the envelope selection condition. To that 
end, we define the selective value function as the value function of the saddle-point Bellman 
equation (20) with the additional restriction that the saddle-point satisfies the envelope selection 
condition. That is:

Ws(y, μ;φ)

= SP min
μ′ max

c,λ

m∑
i=1

[
μ′

i (u(ci) − vi(yi)) + μivi(yi) − λi

(
μ′

i − μi

)] + βW(y′,μ′)

(27)

s.t. v(yi) + λi = φi, (28)
m∑

i=1

ci ≤
m∑

i=1

yi,

ci ≥ 0, λi ≥ 0, for all i,

where y′ = g(y).14 It holds that Ws( y, μ; φ) = W( y, μ) for φ ∈ ∂μW(y, μ), but the (saddle-
point) solutions to (27) may be a proper subset of solutions of (20). The first-order condition for 
saddle-point (c∗, λ∗, μ∗′, γ ∗) of (27) with respect to μ is

u(c∗
i ) − (

vi(yi) + λ∗
i

) + βφ∗′
i = 0, (29)

14 Note that the multiplier λ is uniquely determined by constraint (28).
12
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where φ∗′ ∈ ∂μW(y′, μ∗′). It holds that

Ws(y, μ;φ) =
m∑

i=1

[
μ∗′

i (u(c∗
i ) − vi(yi)) + μivi(yi)

] + βWs(y′,μ∗′;φ∗′).

The policy functions ϕ : �3m+ → �2m+ and � : �3m+ → �m+1+ are defined by ϕ(y, μ, φ) =
(c∗, λ∗, μ∗′, γ ∗) such that (c∗, λ∗, μ∗′, γ ∗) is a saddle-point of (27) and �(y, μ, φ) = φ∗′ where 
φ∗′ ∈ ∂μW(y′, μ∗′) satisfies the first-order condition (29).

Policy functions (ϕ, �) can be used to generate sequences of saddle-points {c∗
t , λ

∗
t+1, μ

∗
t+1, γ

∗
t }

and subgradients {φ∗
t+1} such that (c∗

t , λ
∗
t+1, μ

∗
t+1, γ

∗
t ) = ϕ(yt , μ∗

t , φ
∗
t ) and φ∗

t+1 = �(yt , μ∗
t , φ

∗
t )

for every t ≥ 0, with initial state y0 and co-state (μ∗
0, φ

∗
0 ) where μ∗

0 = μ and φ∗
0 ∈ ∂μW(y0, μ). It 

follows from Proposition 1 that {c∗
t , λ

∗
t+1, μ

∗
t+1, γ

∗
t }∞t=0 is a saddle-point of (17).15 The sequence 

{c∗
t , λ

∗
t+1, μ

∗
t+1, γ

∗
t , φ∗

t+1} can be found by solving the system of equations (25) and (24) together 
with first-order conditions w.r. ci,t and complementary slackness conditions. All these equations 
are first-order difference equations.

The next Corollary 2 summarizes our results for recursive contracts. It extends the sufficiency 
result in (MM19; Theorem 2 and its Corollary) by providing a recursive algorithm for solving 
recursive contracts with forward-looking constraints.

Corollary 2. Suppose that conditions P1-P2 hold. If {c∗
t , λ

∗
t+1, μ

∗
t+1, γ

∗
t } and {φ∗

t+1} are 
sequences of saddle-points and subgradients generated by policy functions (ϕ, �) of (27), 
starting from μ∗

0 = μ and φ∗
0 ∈ ∂μW(y0, μ), with {c∗

t }∞t=0 ∈ �m∞ and {μ∗
t }∞t=0 ∈ �m∞, then 

{c∗
t , λ

∗
t+1, μ

∗
t+1, γ

∗
t } is a saddle-point of (17) at μ and {c∗

t } is a solution to (13). Further-
more, if at date τ + 1 a new sequence {̂c∗

t , ̂λ
∗
t+1, ̂μ

∗
t+1, ̂γ

∗
t }∞t=τ+1 is generated using possi-

bly different policy functions (ϕ̂, ̂�) starting from initial state yτ and co-state (μ∗
τ , φ

∗
τ ), then 

({c∗
t , λ

∗
t+1, μ

∗
t+1, γ

∗
t }τt=1, {̂c∗

t , ̂λ
∗
t+1, ̂μ

∗
t+1, ̂γ

∗
t }∞t=τ+1) is also a saddle-point of (17) at μ and {c∗

t }
is a solution to (13).

In sum, the intertemporal Euler equation (18) along with other first-order conditions are neces-
sary and sufficient for a solution to the partnership problem (13). Saddle-point Bellman equation 
can be used to generate the solution recursively, but the envelope selection condition is required 
to guarantee that the Euler equation are satisfied. Such sequence can be generated by a policy 
function of the selective value function. Example 2 illustrates these results.

Example 2 (Messner and Pavoni (2016) revisited). Consider a partnership problem (13) with 
two agents and linear utilities,

W(μ) = max
{ct }∞0

∞∑
t=0

βt
2∑

i=1

μici,t (30)

s.t. c1,t + c2,t ≤ y,

∞∑
j=0

βj c1,t+j ≥ 0,

∞∑
j=0

βjc2,t+j ≥ b(1 − β)−1, (31)

15 Note that co-state φ∗
t can be replaced by λ∗

t+1. This is so because the envelope selection condition (23) is a one-to-one 
relationship between the subgradient φ∗

t and the multiplier λ∗ .

t+1

13



R. Marimon and J. Werner Journal of Economic Theory 196 (2021) 105309
ci,t ≥ 0, i = 1,2, for all t ≥ 0,

where 0 < b < y, μi > 0 for i = 1, 2, and 0 < β < 1. Note that agent 1’s participation constraint 
is not binding. The value function is

W(μ) =
{

(1 − β)−1[μ1(y − b) + μ2b] if μ1 ≥ μ2

(1 − β)−1μ2y if μ1 ≤ μ2.
(32)

If μ1 > μ2, the constant sequence c∗
1,t = y − b and c∗

2,t = b is a solution to (30), but we shall 
see that there are many other solutions. The value function W is convex and differentiable if 
μ1 	= μ2, but it is not differentiable at μ1 = μ2 where the sub-differential is

∂W(μ) = (1 − β)−1co{(y − b, b), (0, y)}. (33)

The saddle-point Bellman equation (20) is

W(μ) = SP min
μ′ max

c

{
2∑

i=1

μ′
ici − (μ′

2 − μ2)b(1 − β)−1 + βW(μ′)
}

(34)

s.t. c1 + c2 ≤ y, μ′
i ≥ μi, ci ≥ 0, i = 1,2.

A sequence of saddle-points {c∗
t , λ

∗
t+1, μ

∗
t+1, γ

∗
t+1} of (34) generated by a policy function can be 

found by recursively solving a system of equations consisting of the first-order conditions

μ∗
i,t+1 − γ ∗

t+1 = 0, (35)

c∗
1,t − λ∗

1,t+1 + βφ∗
1,t+1 = 0 (36)

c∗
2,t − (b(1 − β)−1 + λ∗

2,t+1) + βφ∗
2,t+1 = 0, (37)

with φ∗
t+1 ∈ ∂W(μ∗

t+1), the complementary slackness conditions for λ∗
t+1, and the envelope se-

lection conditions

φ∗
1,t = λ∗

1,t+1, and φ∗
2,t = b(1 − β)−1 + λ∗

2,t+1. (38)

Suppose that the initial state is μ∗
0 = μ such that μ1 > μ2. Since W is differentiable at μ∗

0, 
the initial co-state is φ∗

0 = DW(μ∗
0), that is, φ∗

1,0 = (y − b)(1 − β)−1 and φ∗
2,0 = b(1 − β)−1. 

From equations (38) we obtain λ∗
1,1 = (y − b)(1 − β)−1 and λ∗

2,1 = 0, and using complementary 
slackness μ∗

1,1 = μ1 and μ∗
2,1 = μ∗

1,1. Because W is not differentiable at μ∗
1, φ∗

1,1 and φ∗
2,1 can be 

arbitrary, as long as they satisfy: φ∗
1,1 + φ∗

2,1 = y(1 − β)−1, φ∗
1,1 ≥ 0 and φ∗

2,1 ≥ b(1 − β)−1 (see 
(33)). The consumption plan c∗

0 can be any selection satisfying c∗
1,0 = (y − b)(1 − β)−1 − βφ∗

1,1

and c∗
2,0 = b(1 − β)−1 − βφ∗

2,1. Selection of c∗
0 determines φ∗

1 . We have thus derived φ∗
1 =

�(μ∗
0, φ

∗
0 ), and (c∗

0, μ∗
1, λ

∗
1) = ϕ(μ∗

0, φ
∗
0 ) for a policy function (ϕ, �).16

Next, iteration of equations (35) - (38) with given state μ∗
1 and co-state φ∗

1 gives μ∗
2 = μ∗

1, 
c∗

1,1 = φ∗
1,1 − βφ∗

1,2, c∗
2,1 = φ∗

2,1 − βφ∗
2,2 where φ∗

1,2 + φ∗
2,2 = y(1 − β)−1, φ∗

1,2 ≥ 0 and 
φ∗

2,2 ≥ b(1 − β)−1. Again, a selection of c∗
1 determines φ∗

2 . With this step, we have derived 
φ∗

2 = �(μ∗
1, φ

∗
1 ), and (c∗

1, μ∗
2, λ

∗
2) = ϕ(μ∗

1, φ
∗
1 ). All subsequent iterations follow the same pattern 

with μ∗
t = μ∗

1 for all t > 1, and μ∗
t being the point of non-differentiability of value function W . 

16 To simplify notation, we eliminated multipliers γ ∗
t (given by (35)) from consideration.
14
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Corollary 5 implies that every sequence generated in this way is an optimal solution to (30). For 
example, consumption sequence c∗

1,t = y − b and c∗
2,t = b is optimal.

There are sequences of saddle-points of the Bellman equation (34) that are not optimal solu-
tions to (30) because the envelope selection conditions are not satisfied. For example, if βy ≥ b, 
then the sequences c∗

1,t = y, c∗
2,t = 0, for all t , with μ∗

t as before and the corresponding subgra-
dients satisfy equations (35) - (36), but the envelope selection conditions (38) are violated for 
every t ≥ 1. This sequence violates participation constraints (31) and hence is not a solution to 
(30).

3.2. Pareto optimal allocations with recursive utilities

In this section we consider the planner’s problem of constructing Pareto optimal allocations 
with recursive preferences. As in (13), the planner’s objective is a Benthamite welfare function 
with positive Pareto weights. We abstract away from limited enforcement constraints. The opti-
mization problem is

V (y0,μ0) ≡ max
{ct }∞0

m∑
i=1

μi,0Ui,0(ci) (39)

s.t.
m∑

i=1

ci,t ≤ yt , (40)

ci,t ≥ 0, for all i, t ≥ 0,

where the sequences {ci,t } are bounded, i.e. {ci,t } ∈ �+∞ for every i. The sequence {yt } of aggre-
gate endowment follows the law of motion yt+1 = g(yt ) for some g : �m++ → �m++, with initial 
value y0. We impose the following assumption that parallels P2 of Section (13):
R1. The sequence {yt } is bounded, and there exists ε > 0 such that yt > ε for every t ≥ 0.

Recursive preferences have been introduced by Koopmans (1960) to relax the restrictions of 
discounted time-separable utilities while maintaining recursivity. They are specified by utility 
functions Ut(c) for every date t ≥ 0 which are history independent, that is, utility Ut(c) depends 
only on consumption sequence (ct , ct+1, . . . ) from date-t on.17 Date-t utility Ut(c) is related to 
date-(t + 1) continuation utility Ut+1(c) via stationary aggregator F : �+ × �+ → �, so that

Ut(c) = F(ct ,Ut+1(c)), t = 0, . . . , (41)

for every {ct } ∈ �+∞.18 Recursive preferences are dynamically consistent. Examples of recursive 
preferences are the standard discounted time-separable utility with F(c, v) = u(c) + βv, and the 
Epstein-Uzawa utility with F(c, v) = u(c) + β(c)v, where β(c) = e−u(c).

Aggregator function Fi of every agent i is assumed to satisfy the following conditions,
R2. Fi : �+ ×�+ → � is bounded, strictly increasing, concave, differentiable, and Fi(0, 0) = 0.
R3. There exists 0 < β < 1 such that |Fi(c, v) − Fi(c, v′)| ≤ β|v − v′| for every c ∈ R+ and
v, v′ ∈ R+.

17 For simplicity, we write c is the notation Ut (c) even though Ut depends only on (ct , ct+1, . . . ). Note that - unlike in 
Koopmans (1960) and Lucas and Stokey (1984) - utility functions Ut are time-dependent.
18 We do not restrict recursive preferences to satisfy Koopmans’ condition of future-independence, i.e. preferences over 
ct are independent of future consumption (ct+1, . . . ), although this condition is not restrictive when there is a single 
consumption good at every date. See Backus et al. (2004) for a discussion.
15
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Assumptions R2 and R3 guarantee that a unique sequence of utilities {Ui,t(c)} ∈ �+∞ defined 
recursively by the aggregator Fi exist for every c ∈ �+∞, see Lucas and Stokey (1984, Theorem 1). 
Assumption R3 is known as the Blackwell condition.

Using the recursive structure of utilities (41), the Pareto problem (39) can be restated as re-
cursive contract problem, akin to (13). That is,

V (y0,μ0) = max
{ct ,vt+1}∞t=0

m∑
i=1

μi,0Fi(ci,0, vi,1) (42)

s.t. Fi(ci,t , vi,t+1) − vi,t ≥ 0, for all i, t ≥ 1, (43)

yt −
m∑

i=1

ci,t ≥ 0,

ci,t ≥ 0, vi,t+1 ≥ 0, for all i, t ≥ 0,

where {ci,t }∞t=0 ∈ �+∞ and {vi,t }∞t=1 ∈ �+∞ for every i. Constraints (43) have been written as 
inequality constraint, because aggregator functions are strictly increasing. It is easy to see 
that, under R2 and R3, {c∗

t } is a solution to (39) if an only if {c∗
t , v

∗
t+1} solves (42), where 

v∗
i,t = Fi(c

∗
i,t , v

∗
i,t+1) for every t ≥ 1 and every i.

Problem (42) is a special case of recursive contracts of Marcet and Marimon (2019) with 
one-period forward-looking constraints, see Appendix E. It can be analyzed as a saddle-point 
problem of the Lagrangian which has the same value function. It is convenient to use multipliers 
scaled by βt , with the discount factor β of assumption R3, so that βtμi

t is the multiplier of date-t 
constraint (43) for t ≥ 1. Rearranging terms, we can write the saddle-point problem as

V (y0,μ0) = SP min
{μt }∞t=1

max{ct ,vt+1}

∞∑
t=0

m∑
i=1

βt [μi,tFi(ci,t , vi,t+1) − βμi,t+1vi,t+1] (44)

s.t.
∑

i

ci,t ≤ yt ,

ci,t ≥ 0, vi,t+1 ≥ 0, μi,t+1 ≥ 0, for all i, t ≥ 0.

If {c∗
t , v

∗
t+1} is a solution to (42) with {c∗

t } ∈ �m∞ and {v∗
t } ∈ �m∞, then under assumptions R1 -

R3 there exists a sequence of multipliers {μ∗
t } and {γ ∗

t } (of the feasibility constraint) such that 
{βtμ∗

t } ∈ �m
1 and {γ ∗

t } ∈ �m
1 (see Dechert (1992, Theorem 2)) such that {c∗

t , μ
∗
t+1, v

∗
t+1, γ

∗
t } is a 

saddle-point of (44).
The necessary first-order conditions with respect to ci,t and vi,t+1 for a saddle-point 

{c∗
t , μ

∗
t+1, v

∗
t+1, γ

∗
t } of (44), where γ ∗

t is a multiplier of the feasibility constraint, are
βtμ∗

i,t ∂1Fi(c
∗
i,t , v

∗
i,t+1) = γ ∗

t and
μ∗

i,t ∂2Fi(c
∗
i,t , v

∗
i,t+1) = βμ∗

i,t+1. The first-order condition with respect to μi,t is

Fi(c
∗
i,t , v

∗
i,t+1) = v∗

i,t (45)

for every i and t ≥ 0. Equations (45) are the intertemporal Euler equations. They guarantee 
consistency of continuation utilities with consumption plans at optimal solutions.

Euler equations and a transversality condition are sufficient conditions for a solution to (44).
16
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Proposition 3. Suppose that conditions R2 and R3 hold. Let {c∗
t , v

∗
t , μ∗

t , γ
∗
t }, with {c∗

t }∞t=0 ∈ �m∞, 
{v∗

t }∞t=1 ∈ �m∞, μ∗
0 = μ, satisfy the Euler equations (45), the constraints and complementary 

slackness conditions and the first-order conditions with respect to ci,t and vi,t+1. If the transver-
sality condition

lim
t→∞βtμ∗

i,t v
∗
i,t = 0 (46)

holds for every i, then {c∗
t , v

∗
t , μ∗

t , γ
∗
t } is a saddle-point of (44). In particular, {c∗

t } is a solution 
to the Pareto problem (39).

Proof. The proof is analogous to that of Proposition 1.

The saddle-point Bellman equation of the problem (44) is

V (y,μ) = SP min
μ′ max

c,v

m∑
i=1

[μiFi(ci, vi) − βμ′
ivi] + βV (y′,μ′) (47)

s.t.
∑

i

ci ≤ y,

ci ≥ 0, vi ≥ 0, μ′
i ≥ 0, for all i,

where y′ = g(y).
If assumptions R2 - R3 are satisfied, it follows from Marcet and Marimon (2019, Theorem 3)

that there exists a continuous and bounded value function satisfying (47).19 The value function 
V is convex and homogeneous of degree one in μ.

The set of all saddle-points of (47) is a product of two sets M∗(y, μ) and N∗(y, μ) so that 
(c∗, v∗) ∈ M∗(y, μ) and (μ′∗, γ ∗) ∈ N∗(y, μ) for every saddle-point (c∗, v∗, μ′∗, γ ∗). The en-
velope Theorem 4 of Appendix C and, in particular, equation (98) imply that

∂μi
V (y,μ) = {Fi(c

∗
i , v

∗
i ) : (c∗, v∗) ∈ M∗(y,μ)}. (48)

Clearly, V is differentiable in μ if the saddle-point maximizer is unique. A sufficient condition 
for this is strict concavity of the aggregators Fi .

Let (μ∗
t+1, c

∗
t , v

∗
t+1, γ

∗
t ) be a saddle-point Bellman equation (47) at date t with state (μ∗

t , yt ). 
Let φ∗

t be the subdifferential satisfying FOC for the optimality of μ∗
t at t − 1, that is

−v∗
i,t + φ∗

i,t = 0, (49)

and φ∗
i,t ∈ ∂μi

V (yt , μ∗
t ). The envelope selection condition for a solution (c∗

t , v
∗
t+1) at date t is

φ∗
i,t = Fi(c

∗
i,t , v

∗
i,t+1). (50)

If imposed, this condition implies - together with (49) - that the Euler equation

v∗
i,t = Fi(c

∗
i,t , v

∗
i,t+1) (51)

holds (see (45)). The envelope selection condition guarantees that continuation utilities are con-
sistent with consumption plans. If the value function is differentiable, the envelope selection 
condition is redundant.

19 See Appendix E for details on how Marcet and Marimon (2019, Theorem 3) applies to recursive preferences.
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Proposition 4. Suppose that conditions R1-R3 hold. Let {c∗
t , v

∗
t , μ∗

t , γ
∗
t } be a sequence of saddle-

points generated by saddle-point Bellman equation (47) starting at (y0, μ0), with {c∗
t }∞t=0 ∈ �m∞, 

{v∗
t }∞t=1 ∈ �m∞, and {βtμ∗

t }∞t=1 ∈ �m
1 , and let {φ∗

t }∞t=1 be the corresponding sequence of subgra-
dients with φ∗

t+1 ∈ ∂μV (yt+1, μ∗
t+1) satisfying (49) for t ≥ 0. If the envelope selection condition 

(50) holds for every i and every t ≥ 1, then {c∗
t , v

∗
t , μ∗

t , γ
∗
t } is a saddle-point of (44) and {c∗

t } is 
a solution to (39).

Proof. The proof is analogous to that of Proposition 2. The transversality condition (46) holds 
because {βtμ∗

t } ∈ �m
1 , and {v∗

t } is bounded. �
Imposing the envelope selection condition (50) requires adding φ∗

t as co-state to (yt , μ∗
t ) at 

every t ≥ 0. As in Section 3.3, we define the selective value function of state (y, μ) and co-state 
φ, where φ ∈ ∂μV (y, μ), that is:

V s(y,μ;φ) = SP min
μ′ max

c, v

m∑
i=1

[μiFi(ci, vi) − βμ′
ivi] + βV (y′,μ′) (52)

s.t. φi = Fi(ci, vi), (53)
m∑

i=1

ci ≤ y,

ci ≥ 0, vi ≥ 0, μ′
i ≥ 0, for all i,

where y′ = g(y). It holds that V s(y, μ; φ) = V (y, μ) for φ ∈ ∂μV (y, μ), but the (saddle-point) 
solutions to (52) may be a proper subset of solutions of (47).

The policy functions ϕ : �3m+ → �2m+ and � : �3m+ → �m+1+ are defined by ϕ(y, μ, φ) =
(c∗, v∗, μ∗′, γ ∗) such that (c∗, v∗, μ∗′, γ ∗) is a saddle-point of (52) and �(y, μ, φ) = φ∗′ where 
φ∗′ ∈ ∂μV (y′, μ∗′) satisfies the first-order condition −v∗

i + φ∗′
i = 0. Policy functions (ϕ, �) can 

be used to generate sequences of saddle-points of (52) that are saddle-point solution to (44)
therefore a solution to (39) as well.

The following example shows that, if value function V is non-differentiable and there are 
multiple solutions to (47), then the envelope selection condition is indispensable.

Example 3 (Planner’s recursive choices may be time-inconsistent). Let there be two agents with 
the same aggregator that is linear in current consumption and strictly concave in continuation 
utility. We take Fi = F for i = 1, 2, where

F(c, v) = c + β ln(v + 1), (54)

where β < 1, see Koopmans et al. (1964).20 Further, let g(y) = y so that the aggregate endow-
ment is constant over time, with y > 0. Aggregator (54) satisfies conditions R2 and R3.21 It 
follows that there exists stationary utility function U : �∞+ → R such that date-t utility U(ct , . . . )
satisfies the recursive relation (41). It holds

20 Koopmans et al. (1964, pg 97) consider the aggregator F(c, v) = ln(1 +c+βv). It is well known that the transformed 
aggregator F̂ (c, v) = h ◦ F(c, h−1(v)) is ordinally equivalent for any strictly increasing function h, as it gives rise to 
recursive utility function h ◦ U . Taking h(x) = ex − 1, we obtain (54).
21 In fact F is not bounded in c, but this does not affect the analysis.
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U(c) = c0 + β lim
T →∞ ln{c1 + β ln{c2 + ....β ln(cT + 1)}},

see Lucas and Stokey (1984). Utility function U is linear in date-0 consumption and strictly 
concave in date-t consumption for t ≥ 1.

Pareto optimal allocations that maximize the welfare function with equal weights μ̄ = (μ, μ)

are of the form ci = (ci,0, 
y
2 , y2 , . . . ) for i = 1, 2, with arbitrary ci,0 ≥ 0 such that c1,0 + c2,0 = y. 

Date-0 utility of consumption plan ci obtain as follows: For the constant consumption plan with 
ci,0 = y

2 , continuation utility is time-invariant v̄, and it obtains from y
2 + β ln(v̄ + 1) = v̄. It is 

easy to see that there is unique v̄ > 0 solving this equation. Date-0 utility of any other ci is 
ci,0 + v̄ − y

2 .
The value function V at equal weights μ̄ is V (μ̄) = 2μv̄. Because of multiple solutions to 

(39) at μ̄, the convex value function V is non-differentiable at μ̄. The subdifferential ∂μV (y, μ̄)

obtains from (48) as

∂μV (y, μ̄) = {(αy + v̄ − y

2
, (1 − α)y + v̄ − y

2
) : α ∈ [0,1]}. (55)

The first-order conditions for saddle-point (c∗, v∗, μ∗) of Bellman equation (47) are −v∗
i +

φ∗
i = 0 for some φ∗

i ∈ ∂μi
V (y, μ∗), and μi

v∗
i +1 = μ∗

i . At μ̄, equal weights μ∗
1 = μ∗

2 are a solution 

to (47) together with equal continuation utilities v∗
1 = v∗

2 , and with φ∗
1 = φ∗

2 . Eq. (55) implies that 
φ∗

i = v̄, and therefore v∗
i = v̄. The first-order conditions put no restriction on solutions (c∗

1, c
∗
2)

beyond feasibility.
When solving the saddle-point Bellman equation with a policy function of the selective value 

function, consumption plans are determined by the envelope selection condition (see (50))

φ∗
i,t = c∗

i,t + β ln(v∗
i,t+1 + 1). (56)

It guarantees that the consumption sequence is consistent with continuation utilities. Let the ini-
tial state be μ̄0 = (μ0, μ0) and the co-state be φ∗

0 ∈ ∂μV (y, μ̄0). The sequence {v∗
t , μ∗

t }, where 

μ∗
t+1 = μ∗

t

v̄+1 and v∗
i,t = v̄ solves recursively the first-order conditions with corresponding subgra-

dient co-states φ∗
i,t = v̄ for t ≥ 1. The consumption sequence implied by the envelope selection 

condition (56) is c∗
i,t = y

2 , for t ≥ 1 and date-0 consumption c∗
i,0 is determined by condition (56)

with the initial co-state φ∗
0 ; that is, the initial co-state provides a parametrization of date-0 solu-

tions. By Proposition 4, the sequence {c∗
t } is a solution to (39). Ignoring the envelope selection 

condition (56) in solving the saddle-point Bellman equation at equal-weights μ̄0, would lead to 
dynamically inconsistent solutions, letting one to conclude that an arbitrary sequence of feasible 
consumptions can be the planner’s choice. In this example, dynamically consistent solutions are 
semi-stationary – i.e. consumption is constant after the first period – this is not the case in the 
next example.

Pareto optimal allocations with lotteries

Following the pioneering work of Prescott and Townsend (1984), convexification through 
lotteries has been a standard practice in macroeconomics since incentive problems, as well as 
externalities (Kilenthong and Townsend (2021)), often result in non-convex feasible sets. The 
following example shows that in dynamic economic problems, where lotteries are over agents’ 
values – in particular, continuation values – the envelope selection condition can play a key role. 
It also shows how our saddle-point representation of recursive preferences can help to formulate 
these problems recursively.
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Fig. 1. The Pareto frontier with (dashed), and without lotteries.

Example 4 (Convexification with lotteries). Consider an economy with two infinitely-lived 
agents and two consumption goods which can be produced with two technologies using labour 
as the unique input. Agents have time-separable preferences with a discount rate β ∈ (0, 1) and 
on current consumption represented by:

u1(c) = c
γ

1 c
1−γ

2 and u2(c) = c
1−γ

1 c
γ

2 , where γ ∈ (1/2,1).

Agents jointly provide one unit of labour without disutility, which can be allocated either to tech-
nology 1 or to technology 2, with n ∈ [0, 1] being the fraction of labour used in the production 
of good 1 and (1 − n) the fraction used in the production of good 2. There is only one plant and, 
therefore, only one technology can be used at any given period, but technologies can be changed 
between periods without adjustment costs. The two technology frontiers are:

T1 = {(c1, c2) = (n,α(1 − n)) : n ∈ [0,1]}
T2 = {(c1, c2) = (αn,1 − n) : n ∈ [0,1]} ,

where α ∈ (0, 1). The planner chooses at the beginning of any period the technology – say, s ∈
{s1, s2}, where s1 denotes the choice of technology T1, – and, conditional on the technological 
choice, how to allocate the unit the labour and consumption goods among the two agents.

We provide first a characterization of Pareto frontiers corresponding to the planner using only 
one technology. Let (n∗(sj , μ), c∗(sj , μ)) be the choice of (n, c) ∈ [0, 1] × R4+ that solves the 
one-period Pareto problem with weights μ = (μ1, μ2) for technology Tj . The Pareto frontier 
corresponding to Tj is described by

V Tj (μ) = (1 − β)−1
[
μ1u1(c

∗
1(sj ,μ)) + μ2u2(c

∗
2(sj ,μ))

]
, j = 1,2. (57)

Fig. 1 shows how the graphs of V T1(μ) and V T2(μ) intersect, which happens since γ > 1/2 and 
α ∈ (0, 1). Without lotteries, the one-period Pareto frontier is the upper contour of the two func-
tions (scaled down by (1 − β)). It generates a non-convex set of feasible values. With lotteries, 
20
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as we assume, the set of feasible values is convex, including the flat portion of slope −1, both 
for the one-period and the infinite-horizon problem.22

The value function W of the planner who can choose the technology, as a function of the 
Pareto weights, is

W(μ) = (1 − β)−1 max{V T1(μ),V T2(μ)}. (58)

Function W is convex. Because of the symmetry of technologies, it holds W(μ) = (1 −
β)−1V T1(μ) for μ1 > μ2, and W(μ) = (1 − β)−1V T2(μ) for μ2 > μ1. For equal weights 
denoted by μ̄ with μ̄1 = μ̄2, we have W(μ̄) = (1 − β)−1V T1(μ̄) = (1 − β)−1V T2(μ̄). Value 
function W is non-differentiable at μ̄ where its subdifferential is

∂W(μ̄) = (1 − β)−1co{∂V T1(μ̄), ∂V T2(μ̄)}. (59)

Let � = (π; {n(sj ), c(sj )}j=1,2) denote a one-period lottery which takes a T1-feasible alloca-
tion (n(s1), c(s1)) with probability π and a T2-feasible allocation (n(s2), c(s2)) with probability 
1 − π . Let L be the convex and compact set of such lotteries. Expected utility of lottery � to 
agent i is Eπ [ui(ci(s))]. The planner’s problem with lotteries is

W(μ) = max
{�t }∞0

2∑
i=1

μi

∞∑
t=0

βt Eπt [ui(ci,t (s))] (60)

s.t. �t ∈ L, ∀t ≥ 0.

For every solution {�∗
t } to (60) at μ, the support of lottery �∗

t are the solutions to one-period Pareto 
problems, that is, �∗

t takes (n∗(s1, μ), c∗(s1, μ)) with probability π∗
t , and (n∗(s2, μ), c∗(s2, μ))

with probability 1 − π∗
t . Note that, for every {�t }∞t=0 there is a one-period lottery �̄ such that ∑∞

t=0 βt Eπt [ui(ci,t (s))] = (1 −β)−1Eπ̄ [ui(ci(s)), i.e. the discounted expected utility of {�t }∞t=0
can be achieved with a stationary lottery. In particular, if {�∗

t }∞t=0 is a solution to (60), then π̄∗ = 1
for μ1 > μ2, π̄∗ = 0 for μ1 < μ2, and π̄∗ ∈ [0, 1] for μ = μ̄.

Let Ui,t (L) = ∑∞
τ=t β

τ−tEπτ [ui(ci,τ (s))] denote date-t discounted expected utility of the 
sequence of lotteries L = {�t } so that date-0 utilities Ui,0(L) for i = 1, 2 are featured in the plan-
ner’s problem (60). This utility function has recursive representation Ui,t (L) = Fi(�t , Ui,t+1(L))

with the aggregator

Fi(�, vi) = Eπ [ui(ci(s)] + βvi (61)

for � ∈ L and vi ≥ 0. The planner’s problem (60) has exactly the same structure as the problem 
(39) of Pareto optimal consumption allocation with recursive utilities. The saddle-point Bellman 
equation is

W(μ) = min
μ′ max

�,v

2∑
i=1

[μiFi(�, vi) − βμ′
ivi] + βW(μ′) (62)

s.t. � ∈ L, vi ≥ 0, μ′
i ≥ 0, for i = 1,2,

22 The planner in the infinite-horizon problem can expand the one-period possibility frontier with deterministic pro-
grams by changing technologies over periods of different length. However, not all points on the frontier with lotteries 
can be achieved that way. More importantly, such deterministic programs with changing technologies are subject to the 
same selection problem as with lotteries.
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as (47). The envelope Theorem 4 of Appendix C implies that

∂μi
W(μ) = {Fi(�

∗, v∗
i ) : (�∗, v∗

i ) ∈ M∗(μ)} (63)

= {Eπ∗ [ui(c
∗
i (s)] + βv∗

i : (�∗, v∗
i ) ∈ M∗(μ)},

where M∗(μ) is the set of solutions to (62) at μ. If μ1 	= μ2, then ∂μi
W(μ) is a singleton, in 

particular, if μ1 > μ2, then ∂μ1W(μ) = F1(�
∗, v∗

i ) = (1 − β)−1u1(c
∗
1(s1, μ)). At μ̄, we have

∂μi
W(μ) =

{
(1 − β)−1

[
π̄∗ui(c

∗(s1,μ)) + (1 − π̄∗)ui(c
∗(s2,μ))

]
: π̄∗ ∈ [0,1]

}
,

which follows from the fact that any π̄∗ ∈ [0, 1] can be part of a one-period optimal lottery at μ̄.
Let {μ∗

t+1, �
∗
t , v

∗
t+1} be a sequence of recursive solutions to the saddle-point Bellman equation 

(62) starting at μ0. The first-order condition with respect to vi implies that μ∗
i,t = μi,0 for all 

t ≥ 1 and i. Let φ∗
i,t ∈ ∂μi

W(μ∗
t ) be the corresponding sequence of subgradients satisfying the 

first-order condition with respect to μ′
i , that is v∗

i,t = φ∗
i,t . The envelope selection condition is 

φ∗
i,t = Fi(�

∗
t , v

∗
i,t+1) = Eπ∗

t
[ui(c

∗
i,t (s)] + βv∗

i,t+1, as in (50). It implies that

v∗
i,t =

∞∑
τ=t

βτ−tEπ∗
τ
[ui(c

∗
i,τ (s,μ

∗
τ ))],

that is v∗
i,t = Ui,t (L

∗). Thus, it guarantees that v∗
i,t is the continuation utility of the sequence of 

lotteries L∗ = {�∗
t }. For μ0 = μ̄, where the subdifferential (63) is not a singleton, ignoring the 

envelope selection condition would lead to dynamically inconsistent sequence of continuation 
utilities.

In sum, there are two lessons from this example. First, that even if agents’ preferences are time 
separable, when the planner uses lotteries to convexify the set of feasible values – effectively, 
lotteries over agents’ continuation values – the recursive formulation of the infinite-horizon 
planner’s problem is obtained by using its recursive preference representation on current and 
future values. Second, since lotteries precisely reflect indifferent choices for the planner which, 
in general, are not indifferent for the agents, the envelope selection condition plays a key role. 
It guarantees that the planner’s allocations are intertemporally consistent for the agents, so that 
“promises are kept”: the ‘principle of optimality’ continues to hold also for the agents.

3.3. Envelope selection in dynamic optimization

In this subsection we show that the inconsistency of the Euler equations on one side, and 
the Bellman equation and the envelope theorem on the other side may be present in the stan-
dard dynamic programming with binding backward looking constraints, if the value function 
is not differentiable. Backward looking constraints satisfy Koopmans’ future independence i.e., 
the feasibility of an action at t is independent of actions taken at t + 1, . . .. We show that the 
inconsistency affects saddle-point multipliers but not solutions. The envelope selection condi-
tion disposes of the inconsistency. We provide an example which illustrates these insights. The 
general results can be found in Appendix F.

Example 5 (A dynastic problem). Consider a dynasty where each generation leaves a bequest to 
the next – say a landholding. Preferences of generation t are represented by the utility function 
u(xt ) + αu(xt+1), where xt is the received bequest and xt+1 the bequest given to the next gen-
eration. We assume that u is differentiable, increasing and concave, and 0 < α. Bequests must 
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be non-negative and satisfy two constraints: a resource constraint, xt + xt+1 ≤ 2y, and a non-
expansion constraint (as it may be the case with land) xt+1 ≤ xt . The allocation problem of the 
dynasty is to maximize the discounted utility of all future generations as follows

V (x0) = max
{xt }∞t=1

∞∑
t=0

βt
[
u(xt ) + αu(xt+1)

]
(64)

s.t. xt + xt+1 ≤ 2y, xt+1 ≤ xt , xt ≥ 0, t ≥ 0, (65)

for given x0 ∈ [0, 2y]. Note that problem (64) does not contain forward-looking constraints.
The value function V is

V (x) =
{

(1 + α)(1 − β)−1u(x) if x ≤ y

u(x) + (α + β)(1 − β)−1u(2y − x) if x ≥ y,
(66)

and it is concave. Function V is not differentiable at y where the super-differential is

∂V (y) = [1 − (α + 2β),1 + α](1 − β)−1u′(y). (67)

The Euler equations for a saddle-point of (64) are

αu′(xt ) − λ∗
1,t − λ∗

2,t + β
[
u′(xt+1) − λ∗

1,t+1 + λ∗
2,t+1

] = 0 (68)

for t ≥ 1, where λ∗
1,t and λ∗

2,t are the multipliers of the first and the second constraints in (65), 
respectively. The unique solution to (64) for x0 = y is the constant sequence x∗

t = y, where both 
constraints are binding and the slackness conditions are vacuous. Therefore the saddle-point 
multipliers are arbitrary positive solutions to difference equations (68) that satisfy the standard 
transversality condition.

The saddle-point Bellman equation is

V (x) = SP min
λ≥0

max
x′≥0

{
u(x) + αu(x′) + λ1(2y − x′ − x) + λ2(x − x′) + βV (x′)

}
. (69)

The unique (saddle-point) solution to (69) at x = y is x′∗ = y. Starting from x0 = y, the saddle-
point Bellman equation generates the sequence of solutions x∗

t = y. The first-order condition at 
x∗
t is

αu′(x∗
t+1) − λ∗

1,t+1 − λ∗
2,t+1 + βφ∗

t+1 = 0, (70)

for some φ∗
t+1 ∈ ∂V (x∗

t+1). For x∗
t+1 = y, condition (70) can be written more explicitly using 

(67) as

(1 − β)−1u′(y)[1 − β(α + 2β)] ≤ λ∗
1,t+1 + λ∗

2,t+1 ≤ (1 − β)−1u′(y)[1 + 2α − αβ], (71)

and is the only restriction on multipliers generated by the saddle-point Bellman equation starting 
from x0 = 2. The set of multipliers (71) is a superset of multipliers satisfying the Euler equation 
(68).

The envelope selection condition, see (109) in Appendix F, is

φ∗
t = u′(x∗

t ) − λ∗
1,t+1 + λ∗

2,t+1. (72)

If imposed, it restricts - together with (70) - the set of saddle-point multipliers to those satisfy-
ing the Euler equation (68). Thus the set of multipliers generated by the saddle-point Bellman 
equation and satisfying (72) is the same as the set of saddle-point multipliers of (64).
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4. Conclusions

The main problem that we have addressed in this paper is how to make dynamically consis-
tent selections in dynamic programming. In standard dynamic programming – say, a single-agent 
problem with a concave value function and backward-looking constraints – there may be multi-
ple solutions even if the value function is not differentiable, but in this case the selection of an 
action from a policy correspondence is not a problem: constraints (not including future actions) 
are not affected by the selection and all the possible selections have the same optimal value. 
However, when multiplicity of solutions involve future values, or promises, the selection is, in 
fact, a commitment to follow the path where such values, or promises, should realize – i.e. the 
commitment must be recorded, which is what our “ envelope selection”does. Dynamic program-
ming problems with forward-looking constraints, or promises, have a saddle-point structure and 
recursive solutions to the SP-Bellman equation that satisfy the envelope selection condition, and 
only those solutions, are dynamically consistent.

In sum, this paper makes three contributions to constrained optimization problems when 
the value function may be non-differentiable. First, it extends the envelope theorem to non-
concave problems and provides novel characterizations of super- and sub-differentials of concave 
and convex value functions. Second, it uncovers time-inconsistency arising when the Bellman 
equation restarted at a later state results in solutions and/or multipliers for which the Euler 
equations fail to hold, and the continuation solution or multipliers are not part of the infinite-
horizon optimization. In the presence of forward-looking constraints or recursive utilities, this 
time-inconsistency can turn into inconsistency of solutions, that is, non-optimal or infeasible 
outcomes. In the standard dynamic programming problems, the solutions to the saddle-point 
Bellman equation are time-consistent, but the multipliers may not be. The paper introduces an 
envelope selection condition, which is shown to restore the Euler equations for solutions and 
multipliers of the saddle-point Bellman equations. It also provides a recursive algorithm by ex-
tending the co-state of the value function to account for the envelope selection condition when the 
function may not be differentiable. The third contribution is the formulation of recursive utilities 
as recursive contracts which, in turn, broadens the scope of recursive contract theory.

Appendix A. Proofs in Section 2

Lemma 1. Under assumptions A1-A5, the following hold:
(i) The set of saddle-points of (3) is a product of two sets Y ∗(x) × �∗(x) where Y ∗(x) ⊂ Y and 
�∗(x) ⊂ �k+.
(ii) The sets Y ∗(x) and �∗(x) are compact for every x ∈ X.
(ii) The correspondences Y ∗ and �∗ are upper hemi-continuous on X.

Proof. It follows from Lemma 36.2 in Rockafellar (1970) that if the set of saddle-points is non-
empty (assumption A5), then the set of saddle-points solutions is

Y ∗(x) = argmaxy∈Y min
λ∈�k+

[f (x, y) + λh(x, y)], (73)

while the set of saddle-point multipliers is

�∗(x) = argminλ∈�k+ max
y∈Y

[f (x, y) + λh(x, y)]. (74)

Consequently, the set of saddle-points is the product Y ∗(x) × �∗(x). This proves (i).
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For parts (ii) and (iii), we first note that the function minλ∈�k+[f (x, y) + λh(x, y)] which is 

maximized over y in (73) equals f (x, y) whenever h(x, y) ≥ 0 and −∞ if h(x, y) � 0. This im-
plies that Y ∗(x) is the set of solutions to the constrained maximization problem (1)–(2). Since the 
constraint correspondence � is compact-valued and continuous, the Maximum Theorem implies 
that Y ∗ is compact-valued and upper hemi-continuous on X. Furthermore, the value function V
is continuous on X.

To show the desired properties of �∗(x), we proceed as follows: Let ŷi be of the weak Slater’s 
condition A4. The saddle-point property (3) implies that

f (x, ŷi) + λ∗h(x, ŷi) ≤ V (x) (75)

for every saddle-point multiplier λ∗ at x. Using A4, we obtain

λ∗
i ≤ V (x) − f (x, ŷi)

hi(x, ŷi)
. (76)

We denote the RHS of (76) by λ̄i (x) and note that it is a continuous function of x. Consider a 
sequence {xn} with xn ∈ X converging to x ∈ X. Let {λ∗

n} be a sequence of saddle-point multipli-
ers λ∗

n ∈ �∗(xn). Since 0 ≤ λ∗
n ≤ λ̄(xn) and λ̄(xn) converges to λ̄(x), it follows that the sequence 

{λ∗
n} has a convergent subsequence (for which we use the same notation) with the limit denoted 

by λ∗. Let {y∗
n} be sequence of solutions with y∗

n ∈ Y ∗(xn). Since correspondence Y ∗ is upper 
hemi-continuous, there exists a subsequence (retaining the same notation) converging to some 
y∗ ∈ Y ∗(x). It is now easy to show taking the limits as xn converges to x in saddle-point inequal-
ities (3) that λ∗ is a saddle-point multiplier at x, that is, λ∗ ∈ �∗(x). This shows that �∗ is upper 
hemi-continuous and compact-valued on X. �
Proof of Theorem 1. We shall prove that equations (5) and (6) hold for arbitrary x0 ∈ intX. Let 
�f (s, y) denote the difference quotient of function f with respect to x at x0, that is

�f (s, y) = f (x0 + s, y) − f (x0, y)

s

for s 	= 0. For s = 0, we set �f (0, y) = ∂f
∂x

(x0, y). Assumptions of Theorem 1 imply that func-
tion �f (s, y) is continuous in (s, y) on U0 × Y for some neighborhood U0 of 0 in �.

Similar notation �hi(s, y) is used for each function hi , and �L(s, y, λ) for the Lagrangian. 
Functions �hi(s, y) are continuous in (s, y). Note that �L(s, y, λ) = �f (s, y) + λ�h(s, y), 
where we use the scalar-product notation λ�h(s, y) = ∑

i λi�hi(s, y).
Let (y∗

s , λ∗
s ) denote a saddle-point of Lagrangian L at x0 + s, that is, λ∗

s ∈ �∗(x0 + s) and 
y∗
s ∈ Y ∗(x0 + s), where the two sets are non-empty by A5. Saddle-point property (3) together 

with (4) imply that

V (x0 + s) ≥ L(x0 + s, y∗
0 , λ∗

s ) (77)

and

V (x0) ≤ L(x0, y
∗
0 , λ∗

s ). (78)

Subtracting (78) from (77) and dividing the result on both sides by s > 0, we obtain

V (x0 + s) − V (x0) ≥ �L(s, y∗
0 , λ∗

s ) = �f (s, y∗
0 ) + λ∗

s �h(s, y∗
0 ). (79)
s
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Since (79) holds for every y∗
0 ∈ Y ∗(x0), we can take the maximum on the right-hand side and 

obtain
V (x0 + s) − V (x0)

s
≥ max

y∗
0 ∈Y ∗(x0)

[�f (s, y∗
0 ) + λ∗

s �h(s, y∗
0 )]. (80)

Consider function � defined as

�(s,λ) = max
y∗

0 ∈Y ∗(x0)
[�f (s, y∗

0 ) + λ�h(s, y∗
0 )] (81)

so that the expression on the right-hand side of (80) is �(s, λ∗
s ). Since Y ∗(x0) is compact by 

Lemma 1 (ii), it follows from the Maximum Theorem that � is a continuous function of (s, λ). 
Further, since λ∗

s ∈ �∗(x0 + s) and �∗ is an upper hemi-continuous correspondence by Lemma 1
(iii), we obtain

lim inf
s→0+ �(s,λ∗

s ) ≥ min
λ∗

0∈�∗(x0)
�(0, λ∗

0) = min
λ∗

0∈�∗(x0)
max

y∗
0 ∈Y ∗(x0)

[∂f
∂x

(x0, y
∗
0 ) + λ∗

0
∂h

∂x
(x0, y

∗
0 )]

(82)

where we used the scalar-product notation λ∗
0

∂h
∂x

= ∑
i λ

∗
i0

∂hi

∂x
. It follows from (82) and (80) that

lim inf
s→0+

V (x0 + s) − V (x0)

s
≥ min

λ∗
0∈�∗(x0)

max
y∗

0 ∈Y ∗(x0)

[∂f

∂x
(x0, y

∗
0 ) + λ∗

0
∂h

∂x
(x0, y

∗
0 )

]
. (83)

Similar to (77) and (78), we have

V (x0 + s) ≤ L(x0 + s, y∗
s , λ∗

0) (84)

and

V (x0) ≥ L(x0, y
∗
s , λ∗

0), (85)

for every λ∗
s ∈ �∗(x0 + s) and y∗

s ∈ Y ∗(x0 + s). Subtracting side-by-side and dividing by s > 0, 
we obtain

V (x0 + s) − V (x0)

s
≤ �f (s, y∗

s ) + λ∗
0�h(s, y∗

s ). (86)

Taking the minimum over λ∗
0 ∈ �∗(x0) on the right-hand side of (86) results in

V (x0 + s) − V (x0)

s
≤ min

λ∗
0∈�∗(x0)

[�f (s, y∗
s ) + λ∗

0�h(s, y∗
s )]. (87)

Consider function � defined as

�(s, y) = min
λ∗

0∈�∗(x0)
[�f (s, y) + λ∗

0�h(s, y)]

so that the expression on the right-hand side of (87) is �(s, y∗
s ). It follows from the Maximum 

Theorem that � is a continuous function of (s, y). Using upper hemi-continuity of correspon-
dence Y ∗ (see Lemma 1 (iii)), we obtain

lim sup
s→0+

�(s, y∗
s ) ≤ max

y∗
0 ∈Y ∗(x0)

�(0, y∗
0 ) = max

y∗
0 ∈Y ∗(x0)

min
λ∗

0∈�∗(x0)
[∂f
∂x

(x0, y
∗
0 ) + λ∗

0
∂h

∂x
(x0, y

∗
0 )].

(88)
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It follows now from (88) and (87) that

lim sup
s→0+

V (x0 + s) − V (x0)

s
≤ max

y∗
0 ∈Y ∗(x0)

min
λ∗

0∈�∗(x0)

[∂f

∂x
(x0, y

∗
0 ) + λ∗

0
∂h

∂x
(x0, y

∗
0 )

]
. (89)

It holds (see Lemma 36.1 in Rockafellar (1970)) that

max
y∗

0 ∈Y ∗(x0)
min

λ∗
0∈�∗(x0)

[∂f

∂x
(x0, y

∗
0 ) + λ∗

0
∂h

∂x
(x0, y

∗
0 )

]
≤ min

λ∗
0∈�∗(x0)

max
y∗

0 ∈Y ∗(x0)

[∂f

∂x
(x0, y

∗
0 ) + λ∗

0
∂h

∂x
(x0, y

∗
0 )

]
. (90)

It follows from (83), (89) and (90) that the right-hand side derivative V ′(x0+) exists and is given 
by

V ′(x0+) = max
y∗

0 ∈Y ∗(x0)
min

λ∗
0∈�∗(x0)

[∂f

∂x
(x0, y

∗
0 ) + λ∗

0
∂h

∂x
(x0, y

∗
0 )

]
where the order of maximum and minimum does not matter. This establishes eq. (5) of Theo-
rem 1. The proof of (6) is similar. �
Proof of Theorem 2. By Theorem 23.2 in Rockafellar (1970), φ ∈ ∂V (x0) if and only if 
V ′(x0; x̂) ≤ x̂φ for every x̂ such that x0 + x̂ ∈ X. Using (7), we obtain that φ ∈ ∂V (x0) if and 
only if

min
λ∗

0∈�∗(x0)

[
Dxf (x0, y

∗
0 ) +

k∑
i=1

λ∗
i0Dxhi(x0, y

∗
0 )

]
x̂ ≤ φx̂ for every x̂, (91)

for every y∗
0 ∈ Y ∗(x0), where we used the fact that inequality (91) holds for every y∗

0 if and only 
if it holds for the maximum over y∗

0 . The left-hand side of (91), as a function of x̂, is the negative 
of the support function of the set

⋃
λ∗

0∈�∗(x0)

{Dxf (x0, y
∗
0 ) +

k∑
i=1

λ∗
i0Dxhi(x0, y

∗
0 )}. (92)

Since �∗(x0) is convex and compact, the set (92) is compact and convex. Theorem 13.1 in 
Rockafellar (1970) implies that (91) is equivalent to

φ ∈
⋃

λ∗
0∈�∗(x0)

{Dxf (x0, y
∗
0 ) +

k∑
i=1

λ∗
i0Dxhi(x0, y

∗
0 )}

for every y∗
0 ∈ Y ∗(x0). Consequently, φ ∈ ∂V (x0) if and only if

φ ∈
⋂

y∗
0 ∈Y ∗(x0)

⋃
λ∗

0∈�∗(x0)

{Dxf (x0, y
∗
0 ) +

k∑
i=1

λ∗
i0Dxhi(x0, y

∗
0 )}.

Proof of Theorem 3. The proof is similar to that of Theorem 2. Using (7) and Theorem 23.2 in 
Rockafellar (1970), we obtain that φ ∈ ∂V (x0) if and only if
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max
y∗

0 ∈Y ∗(x0)

[
Dxf (x0, y

∗
0 ) +

k∑
i=1

λ∗
i0Dxhi(x0, y

∗
0 )

]
x̂ ≥ φx̂ for every x̂, (93)

for every λ∗
0 ∈ �∗(x0). The left-hand side of (93) is the support function of the compact (but not 

necessarily convex) set

⋃
y∗

0 ∈Y ∗(x0)

{Dxf (x0, y
∗
0 ) +

k∑
i=1

λ∗
i0Dxhi(x0, y

∗
0 )}.

Theorem 13.1 in Rockafellar (1970) implies that φ ∈ ∂V (x0) if and only if

φ ∈
⋂

λ∗
0∈�∗(x0)

co

( ⋃
y∗

0 ∈Y ∗(x0)

{Dxf (x0, y
∗
0 ) +

k∑
i=1

λ∗
i0Dxhi(x0, y

∗
0 )}

)
.

Appendix B. Constrained qualification condition for the envelope theorem

If f and hi are differentiable in y, then the Kuhn-Tucker first-order conditions hold for a 
saddle-point of (3), and the set of saddle-point multipliers �∗(x) is a subset of the set of Kuhn-
Tucker multipliers. Those two sets of multipliers are equal if functions f and hi are differentiable 
and concave in y (see Theorem 28.3 in Rockafellar (1970)).

The following Constrained Qualification condition is sufficient for uniqueness of the Kuhn-
Tucker multiplier.
CQ (1) f and hi are continuously differentiable functions of y, (2) vectors Dyhi(x, y∗) for 
i ∈ I (x, y∗) are linearly independent, where I (x, y∗) = {i : hi(x, y∗) = 0} is the set of binding 
constraints.

A weaker form of condition CQ which is necessary and sufficient for uniqueness of Kuhn-
Tucker multiplier can be found in Kyparisis (1985).

The CQ can be substituted for assumption A4. With CQ in place of A4, Lemma 1 of Ap-
pendix A continues to hold with weakened assumption A3, see Gauvin and Dubeau (1982).

Appendix C. Envelope theorem for saddle-point problems

Consider the following parametric saddle-point problem with constraints

V (x) ≡ SP max
y∈Y

min
z∈Z

f (x, y, z) (94)

s.t. hi(x, y) ≥ 0, gi(x, z) ≤ 0, i = 1, . . . , k (95)

where Y ∈ �n, Z ∈ �l and x is the parameter in X ⊂ �m. The Lagrangian function is 
L(x, y, z, λ, γ ) = f (x, y, z) + λh(x, y) + γg(x, z), where λ ∈ �k+ and γ ∈ �k+ are vectors of 
multipliers. A saddle-point of L is vector (y∗, z∗, λ∗, γ ∗) where L is maximized with respect 
to y ∈ Y and γ ∈ �k+, and minimized with respect to z ∈ Z and λ ∈ �k+. If (y∗, z∗, λ∗, γ ∗) is 
a saddle-point, then (y∗, z∗) is a solution to (94)–(95). The set of saddle-points of L at x is a 
product of two sets M∗(x) and N∗(x) so that (y∗, γ ∗) ∈ M∗(x) and (z∗, λ∗) ∈ N∗(x) for every 
saddle-point (y∗, z∗, λ∗, γ ∗), see Appendix A or Lemma 36.2 in Rockafellar (1970).

Consider first a single-dimensional parameter set X ⊂ �. We have
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Theorem 4. Suppose that Y and Z are convex, functions f, hi and gi are continuous, the con-
straint set given by (95) is a compact-valued and continuous correspondence of x, the weak 
Slater condition23 holds, and the set of saddle-points is non-empty for every x. If partial deriva-
tives ∂f

∂x
, ∂h

∂x
and ∂g

∂x
are continuous functions of (x, y, z), then the directional derivatives of the 

value function V at x ∈ intX are

V ′(x+) = max
(y∗,γ ∗)∈M∗(x)

min
(z∗,λ∗)∈N∗(x)

[∂f

∂x
(x, y∗, z∗) + λ∗ ∂h

∂x
(x, y∗) + γ ∗ ∂g

∂x
(x, z∗)

]
(96)

and

V ′(x−) = min
(y∗,γ ∗)∈M∗(x)

max
(z∗,λ∗)∈N∗(x)

[∂f

∂x
(x, y∗, z∗) + λ∗ ∂h

∂x
(x, y∗) + γ ∗ ∂g

∂x
(x, z∗)

]
(97)

where the order of maximum and minimum does not matter.24

Milgrom and Segal (2002; Theorem 4) prove an envelope theorem for saddle-point problems 
without constraints and assuming that sets Y and Z are compact. As in Section 2, Theorem 4
can be used to derive sufficient conditions for differentiability of the value function in (94)–(95). 
Further, it can be used to derive directional derivatives of V for a multidimensional parameter set 
X.

In applications in Section 3, the following case with convex value function is particularly 
relevant. Suppose that the multi-dimensional parameter x can be decomposed in x = (x1, x2), 
and the constraints (95) can be written as hi(x

1, y) ≥ 0 and gi(x
2, z) ≤ 0, for i = 1, . . . , k. If 

function f is concave in x1 and convex in x2, while the functions hi are concave in x1 and y and 
the functions gi are convex in x2 and z, then V (x1, x2) is concave in x1 and convex in x2. The 
subdifferential of value function V with respect to x2 can then be written in a similar way as in 
Theorem 3 as

∂Vx2(x)

=
⋂

(z∗,λ∗)∈N∗
co

⎧⎨⎩ ⋃
(y∗,γ ∗)∈M∗

{Dx2f (x, y∗, z∗) + λ∗Dx2h(x, y∗) + γ ∗Dx2g(x, z∗)}
⎫⎬⎭ .

(98)

Appendix D. Proof of Proposition 1

Proof. We show first that {μ∗
t , γ

∗
t } minimizes the Lagrangian in (17) when {c∗

t , λ
∗
t } are fixed. 

Consider any sequence {μt, γt } such that {μt } ∈ �m∞ and μt ≥ 0, γt ≥ 0 and μ0 = μ. Let DT

be the difference between date-T partial sums of the Lagrangians for {μ∗
t , γ

∗
t } and {μt, γt }. We 

have

DT =
T∑

t=0

βt

{
m∑

i=1

[
�μi,t+1

(
u(c∗

i,t ) − vi(yi,t )
) + �μi,t vi(yi,t )

−λ∗
i,t+1(�μi,t+1 − �μi,t ) + (γ ∗

t+1 − γt+1)(yi,t − c∗
i,t )

]}
,

23 That is, for every x and every i there exist ŷi ∈ Y such that hi(x, ̂yi ) > 0 and hj (x, ̂yi ) ≥ 0 for j 	= i, and ẑi ∈ Z

such that gi (x, ̂zi ) < 0 and gj (x, ̂yi) ≤ 0 for j 	= i.
24 The proof of Theorem 4 is essentially the same as the proof of Theorem 1 in Appendix A.
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where �μt = μ∗
t − μt . It follows from the Euler equation (18) and complementary slackness 

that

DT = βT +1
m∑

i=1

{−[μ∗
i,T +1 − μi,T +1][vi(yi,T +1) + λ∗

i,T +2] − γt+1(yi,t − c∗
i,t )

}
. (99)

Since γt+1 ≥ 0 and c∗
i,t ≤ yi,t , it follows from (99) that

DT ≤ −βT +1
m∑

i=1

[μ∗
i,T +1 − μi,T +1][vi(yi,T +1) + λ∗

i,T +2]. (100)

Since μi,T and μ∗
i,T are bounded, the transversality condition (19) implies that the limit on the 

RHS of (100) is zero. Therefore limT →∞ DT ≤ 0.
Next we prove that {c∗

t , λ
∗
t } maximizes the Lagrangian in (17) when {μ∗

t , γ
∗
t } are fixed. Let

D̂T =
T∑

t=0

βt

{
m∑

i=1

[
μ∗

i,t+1(u(c∗
i,t ) − u(ci,t )) + γ ∗

t+1(ci,t − c∗
i,t )

]}
.

Using concavity of u, we have

D̂T ≥
T∑

t=0

βt

{
m∑

i=1

[
μ∗

i,t+1u
′(c∗

i,t )(c
∗
i,t − ci,t ) + γ ∗

t+1(ci,t − c∗
i,t )

]}
. (101)

Using the first-order condition γ ∗
t+1 = μ∗

i,t+1u
′(c∗

i,t ), it follows from (101) that D̂T ≥ 0 and con-

sequently limT →∞ D̂T ≥ 0. �
Appendix E. On recursive contracts with recursive preferences

In this appendix, we show how recursive contract theory (MM19) can encompass recursive 
preferences. In doing this, we provide the guidelines for further generalizations to stochastic 
problems. Optimization problem (42) is a recursive contract problem with one-period forward-
looking constraints (43), with the special feature that the constraints include next period value 
instead of next period action. Under R1 and R2, assumptions A2-A6 and A7s of (MM19) hold 
and A1 is vacuous with no uncertainty. With a minor reformulation,25 Theorems 1 and 2 apply 
as well. The latter because it assumes that the value function is differentiable in μ and this is 
also key here, while it is not in (MM19) if there are only one-period forward constraints. How-
ever, when the one-period constraints contain future values, solutions to the saddle-point Bellman 
equation (44) may fail, as we show, to be solutions to the planner’s problem (42) in the absence 
of differentiability. Nevertheless, they are solutions to (42) if the envelope selection condition is 
satisfied, see Proposition 4. In other words, (MM19) Corollary to Theorem 2 extends to recur-
sive preferences. An extension of (MM19) Theorem 3 establishing existence of the saddle-point 
value function needs a small clarification: (MM19) use Blackwells’ sufficiency conditions of 
monotonicity and discounting (Stokey et al. (1989) Theorem 3.3) to prove the contraction prop-
erty. For the optimization problem (42), the former follows from R2. The latter follows from R3, 
as the following simple lemma shows.

25 It requires to add constraints (43) for date 0 with vi,0 = 0 which are not binding at a solution.
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Lemma 4.1. If Fi satisfies R3, then Fi(c, v + r) ≤ Fi(c, v) + βr for every c ∈ R+, v ∈ R+, and 
r ∈ R+.

Proof. It follows from R3 that Fi(c, v + r) − Fi(c, v) ≤ |Fi(c, v + r) − Fi(c, v)| ≤ βr for c ∈
R+, v ∈ R+, and r ∈ R+. �
Appendix F. The envelope selection condition in standard dynamic programming

Consider the following dynamic constrained maximization problem studied in Stokey et al. 
(1989):

V (x0) ≡ max
{xt }∞t=1

∞∑
t=0

βtF (xt , xt+1) (102)

s.t. hi(xt , xt+1) ≥ 0, i = 1, ..., k, t ≥ 0,

for given x0 ∈ X, where {xt }∞t=1 is a bounded sequence (i.e., {xt} ∈ �n∞) such that xt ∈ X ⊂ �n

for every t . We impose the following conditions:
D1. X is convex, F is bounded, and β ∈ (0, 1).
D2. F and hi are concave and differentiable functions of (x, y) on X × X.
D3. The constraint correspondence �(x) = {y ∈ X : h(x, y) ≥ 0} is uniformly compact near x
for every x ∈ X.26

D4. For every x ∈ X there exists ŷ ∈ X such that hi(x, ŷ) > 0 for every i.
The saddle-point problem associated with (102) is

SP max
{xt }∞t=1

min
{λt }∞t=1,λt≥0

∞∑
t=0

βt
[
F(xt , xt+1) + λt+1h(xt , xt+1)

]
, (103)

where λt ∈ �k+ are Lagrange multipliers. It has the same value function V (x0). If {x∗
t } is a 

solution to (102), then under D1-D2 and D4 there exists a summable sequence of multipliers {λ∗
t }

such that {x∗
t , λ∗

t } is a saddle-point of (103). Conversely, if {x∗
t , λ∗

t } is a saddle-point of (103), 
then {x∗

t } is a solution to (102). The first-order necessary conditions for saddle-point {x∗
t , λ∗

t }∞t=1
of (103) are the following intertemporal Euler equations:

DyF(x∗
t , x∗

t+1) + λ∗
t+1Dyh(x∗

t , x∗
t+1) + β

[
DxF(x∗

t+1, x
∗
t+2) + λ∗

t+2Dxh(x∗
t+1, x

∗
t+2)

] = 0

(104)

for every t ≥ 0, with x∗
0 = x0. Under D1-D2, the Euler equations together with complementary 

slackness conditions and a transversality condition, are sufficient for a saddle-point of (103).
The value function V satisfies the standard Bellman equation

V (x) = max
y

{F(x, y) + βV (y)} (105)

s.t. hi(x, y) ≥ 0, i = 1, ..., k

for every x ∈ X. Function V is concave and bounded under D1-D4. By Theorem 2, the superdif-
ferential of V is

26 � is uniformly compact near x if there is a neighborhood Nx of x such that the set 
⋃

x′∈Nx
�(x′) is compact. 

Together, D2-D4 imply that � is continuous.
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∂V (x) =
⋂

y∗∈Y ∗(x)

⋃
λ∗∈�∗(x)

{DxF(x, y∗) + λ∗Dxh(x, y∗)}. (106)

If the saddle-point multiplier is unique, then V is differentiable. The saddle-point Bellman equa-
tion is

V (x) = SP min
λ≥0

max
y

{F(x, y) + λh(x, y) + βV (y)} . (107)

If (x∗
t , λ∗

t ) and (x∗
t+1, λ

∗
t+1) are consecutive elements of a saddle-point sequence of (103), then 

(x∗
t+1, λ

∗
t+1) is a saddle-point of (107) at x∗

t , for every t ≥ 0. As in Propositions 2 and 4, the 
converse implication requires that an envelope selection condition is satisfied. The first-order 
condition for saddle-point (x∗

t+1, λ
∗
t+1) at x∗

t states that there exists a subgradient vector φ∗
t+1 ∈

∂V (x∗
t+1) such that

DyF(x∗
t , x∗

t+1) + λ∗
t+1Dyh(x∗

t , x∗
t+1) + βφ∗

t+1 = 0. (108)

The envelope selection condition is

φ∗
t = DxF(x∗

t , x∗
t+1) + λ∗

t+1Dxh(x∗
t , x∗

t+1). (109)

Equations (108) and (109) imply that the Euler equations (104) hold. Therefore {x∗
t , λ∗

t }∞t=1 is a 
saddle-point of (103) and {x∗

t } a solution to (102).
The envelope selection condition (109) guarantees consistency of multipliers generated by 

the saddle-point Bellman equation. It can be dispensed with if the saddle-point multiplier is 
unique (which is sufficient for value function V to be differentiable) but not if there are multiple 
multipliers. On the other hand, the solutions generated by the saddle-point Bellman equation are 
solutions to the dynamic optimization problem (102) regardless of whether the envelope selection
condition is imposed or not. This is so because the principle of recursive optimality – through a 
sequence {x∗

t } – holds in the standard dynamic programming.
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