Regional Science and Urban Economics 94 (2022) 103675

i S

ELSEVIER

Contents lists available at ScienceDirect

Regional Science and Urban Economics

journal homepage: www.elsevier.com/locate/regec

Quantitative economic geography meets history: Questions, answers and N

challenges™

David Krisztidn Nagy

CREi, Universitat Pompeu Fabra, Barcelona GSE, Spain

Check for
updates

ARTICLE INFO ABSTRACT

Keywords:

Economic geography
Regional economics
Urban economics
Economic history

A rapidly growing literature uses quantitative general equilibrium models of economic geography to study the
economic impact of historical events such as the railroad revolution, industrial take-off, structural transformation
and wars. I identify three key challenges facing this literature: the tractability of model structure, the availability
of historical data, and issues related to identification. I review the literature by discussing how it has been

addressing each of these challenges. While doing so, I point out the rich set of questions that this literature can
address, as well as the methodological innovations it has conducted to answer these questions.

1. Introduction

How much economic growth was induced by railroads? How much
did the falling costs of trade contribute to the current world income
distribution? What was the economic impact of city bombing, of war-
induced border changes, or population expulsions? How did 19th-
century pollution reshape developed-world cities? Each of these ques-
tions calls for studying the economic consequences of large-scale his-
torical events. And, although these events took place in the past, they
might be relevant for today’s economists for at least two reasons. First,
they might provide explanations for why the current economy looks
how it looks. For instance, understanding the origins of the world
income distribution has been a long-held goal among researchers (Ace-
moglu, 2009). Second, similar large-scale events may take place in the
future, and economists and policymakers naturally want to understand
what they will induce. Pollution, for instance, is at least as much of a
problem for Chinese cities today as for 19th-century cities in the devel-
oped world (Ebenstein et al., 2015).

What is also common across these large-scale historical events is
that they are inherently geographic. Railroads connect certain locations,
but not others. Bombing and pollution affect certain parts of a city but
might leave other parts intact. Border changes or population expulsions

happen across certain points in space. This is not to say that other loca-
tions in the economy are unaffected by these events. They might expe-
rience indirect effects through their spatial linkages — trade, commuting,
or factor mobility — with directly affected locations. As a result, any
methodology aimed at studying the effects of these geographic events
needs to embrace the notion of distinct locations connected through
spatial linkages. Traditional general equilibrium macroeconomic mod-
els do not have this feature, as they model the economy as a dimen-
sionless point in space. This is precisely why researchers interested in
inherently geographic questions moved towards modeling the economy
as a set of locations, linked to one another through trade and factor
mobility (Fujita and Thisse, 2002).

Another prominent methodology used to study the effects of geo-
graphic events is reduced-form empirics. A clear advantage of this
approach over structural modeling is that it is devoid of the issue
of model misspecification, which lends additional credibility to its
results.! At the same time, the core principle of this methodology is
the comparison of individuals or locations affected by an event (the
“treated group”) to those unaffected by the event (the “control group”).
In a world with spatial linkages, it is likely that a large-scale event
affects every location. In this case, reduced-form empirics can identify
the effect of the event on locations designated as “treated” relative to
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locations designated as “control.” As described in Redding and Turner
(2015), such a relative effect might reflect the relocation of existing eco-
nomic activity between treated and control locations, rather than actual
(positive or negative) growth as a result of the event. Reduced-form
empirical techniques cannot distinguish between such growth and relo-
cation effects. As a consequence, unlike structural general equilibrium
models, they cannot be used to measure the effects on the economy as
a whole.?

Quantitative general equilibrium models of economic geography are
able to combine the advantages of reduced-form empirics and struc-
tural macroeconomic models. On the one hand, they embrace the real-
ism of multiple locations connected through complex spatial linkages,
unlike models that are dimensionless or feature stylized geography.
This allows the researcher to combine the model with rich spatial
data, or even with reduced-form empirical strategies to identify certain
moments from the data, as I also illustrate in the quantitative example
of Section 2.2. On the other hand, quantitative modeling, structural by
nature, allows the researcher to measure the effects of large-scale events
on the whole economy and distinguish growth from the mere relocation
of economic activity.

Needless to say, these advantages of quantitative modeling come at
a cost. In particular, using quantitative models to study history imposes
three key challenges on the researcher. One of these challenges is that
the realism of model structure often comes at the expense of tractability.
Another stems from the sparse nature of historical data on macroeco-
nomic aggregates. A final challenge, shared with reduced-form empir-
ics, is that identifying the effects of events may be subject to biases due
to omitted variables and endogeneity.

In the remainder of this article, I review the rapidly growing lit-
erature that uses quantitative general equilibrium models of economic
geography to study the economic impact of large-scale historical events.
I do so by discussing the above three challenges and the ways the lit-
erature has been addressing each of them. Thus, Section 2 discusses
the challenge of model tractability, Section 3 focuses on the scarcity
of historical data, while Section 4 looks at issues related to identifica-
tion. Section 5 concludes the article by suggesting avenues for further
research in the field. This paper is closely related and complementary
to Hanlon and Heblich (2020), who review the new insights brought
by studies in the intersection of economic geography and history into
classical questions in urban economics. The paper is also related by
Redding and Rossi-Hansberg (2017), who offer a general overview of
quantitative economic geography models.

2. Model tractability

Incorporating the complex nature of real-world spatial interactions
often comes at the expense of tractability in quantitative modeling. To
highlight which model ingredients do and which do not prove challeng-
ing from a tractability perspective, I proceed in this section as follows.
In Section 2.1, I present a class of quantitative spatial models with trade,
labor mobility and commuting that, even though not solvable in closed
form, prove tractable in various respects. Specifically, (1) the existence
and uniqueness of the model’s equilibrium can be characterized theo-
retically; (2) a simple algorithm can be used to solve for the equilibrium
on the computer; (3) unobserved location fundamentals that rationalize
the observed data as an equilibrium can be uniquely recovered for given
structural parameters (that is, the model can be inverted). In Section
2.2, 1 develop a quantitative application to illustrate that this class of

2 A related issue is that, by focusing on direct treatment effects, reduced-form
empirical studies often overlook indirect effects transmitted through spatial
linkages across locations. This issue, in principle, can be solved in the reduced
form, either by investigating spillover effects to neighboring locations or by
redefining treatment variables to capture both direct and indirect effects (Don-
aldson and Hornbeck, 2016).
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models is amenable to answering important historical questions. This
application showcases the strengths of these models when it comes to
their practical use, but also their limitations. Finally, in Section 2.3, I
consider additional model ingredients absent from the class of models
presented in Section 2.1: dynamics, multiple sectors, and endogenous
infrastructure development. I discuss how these additional model ingre-
dients could increase model realism in the context of the application of
Section 2.2. At the same time, [ highlight how the additional ingredients
pose challenges to tractability. I also point out how existing quantitative
historical studies that incorporate some of these additional ingredients
have addressed these challenges.

2.1. A tractable class of quantitative spatial models

In this section, I develop a quantitative spatial model of a set of
locations, where locations are linked through trade, labor mobility and
commuting (Section 2.1.1).% Next, I show that this model features a
tractable structure; more precisely, the existence and uniqueness of
the model’s equilibrium can be characterized theoretically, the equi-
librium can be computed using a simple algorithm, and the model can
be inverted to recover unobserved location fundamentals that rational-
ize the observed data as an equilibrium (Section 2.1.2). Finally, I show
isomorphisms between the model and a set of other models, some of
which have been used in the quantitative economic geography litera-
ture (Section 2.1.3). As a result of these isomorphisms, the tractability
of model structure I show for the model of Section 2.1.1 applies to this
entire class of quantitative spatial models.

2.1.1. Model setup

The economy consists of a discrete set of S locations, indexed by r, s,
or u. L > 0 workers inhabit the economy, where L is exogenously given.
There is one sector producing tradable goods. Within this sector, each
location produces one good that workers view as different from the
goods produced at other locations.* Hence, I index each tradable good
by the index of its production location. Besides tradables, workers also
consume housing, a homogenous nontradable good that is available in
exogenous positive supply at each location. Housing payments go to
immobile local landlords, who spend their entire income on tradables
and have the same preferences over tradables as workers (Monte et al.,
2018).

Consumption and location choice. Each worker chooses a residen-
tial location to live. They also choose a — potentially different — work-
place location, where they inelastically supply the one unit of labor they
own. Workers are atomistic, implying that they take wages, the prices
of tradables and the price of housing as given at every location.

If worker i chooses to live at location r and work at location s, she
obtains utility

4
v
o

S -1
Ui (r,) = & (r,8) k(1) [2 a(rs; u)ﬂ Hy(r,s)'™
u=1

where q; (r,s) denotes the amenities enjoyed by the worker at r and
s, k(r,s) > 1 is the cost of commuting between residence r to work-
place s,°, H; (r,s) is the quantity of housing consumed by the worker
at her residence r, and g; (r,s;u) is her consumption of tradable good
u, where o is the elasticity of substitution across goods. I make the

3 The model is closest in its structure to Monte et al. (2018), Heblich, Redding
and Sturm (2020), and Allen and Arkolakis (2014).

4 In trade and geography, this is called the Armington assumption (Anderson,
1979). Section 2.1.3 shows isomorphisms between the model and alternative
models in which I relax this assumption.

5 Commuting between two locations can be infinitely costly, in which case
K (r,s) = o0. Thus, the model embeds no commuting as a special case (k (r,s) =
oo for any r # s and k (r,r) = 1).
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standard assumption that ¢ > 1. That is, tradables are imperfect sub-
stitutes.

Amenities are drawn from a Fréchet distribution that is indepen-
dent across workers and residence-workplace pairs. This is a standard
assumption in the literature (Ahlfeldt et al., 2015; Redding, 2016), and
captures the idea that workers have different idiosyncratic tastes for
different locations. More precisely, I assume that the cumulative distri-
bution function of g; (r, s) takes the form

Prla;(r,s)<a] = e~ arING) Aat/n

where a(r,s) > 0 is the exogenous fundamental amenity level of the pair
(r,s), N(r)™* is a congestion disamenity that depends on the population
of the residential location r, N (r), with elasticity A > 0,° and # € (0,1)
is a parameter driving the dispersion in idiosyncratic location tastes.
Production and trade. Each tradable good is produced by a large
number of perfectly competitive firms that face a constant returns to
scale production technology. As a result, there exists a representative
firm. The representative firm of location s faces the production technol-

ogy
q(s)=AG)L(s)

where ¢ (s) is the firm’s output, A (s) is the location’s productivity that
the firm takes as given, and L (s) is employment. Employment at s poten-
tially has an effect on productivity:

A(s) =A(5)L(s)%,

a relationship that the firm does not internalize. This is a formulation
of agglomeration externalities that is standard in the literature (Ciccone
and Hall, 1996; Allen and Arkolakis, 2014). A (s) > 0 is the fundamental
productivity level of location s, which is exogenous.

Trade in tradable goods is subject to iceberg costs. That is, if tradable
goods start to be shipped from a location to another, only a fraction of
these goods arrives. In particular, 7 (s,r) > 1 units of good s need to be
shipped from the production location s so that one unit arrives at r. The
remaining units melt away in transit. As firms take all prices as given,
no arbitrage guarantees that the ratio of the good’s price between r and
s also equals 7 (s,r), as long as the good is traded between these two
locations.”

Equilibrium. An equilibrium of the model is a set of prices
and quantities such that workers choose their consumption levels as
well as residence and workplace locations to maximize their util-
ity; landlords choose their consumption levels to maximize their
utility; firms choose their employment and output to maximize
their profits; and labor, housing and tradable goods markets clear.
Section A.1 of the Online Appendix shows that the equilibrium con-
ditions of the model can be reduced to a system of 55 + S? + 1 equa-
tions. To compute the equilibrium, the researcher needs to solve these
equations for 58 + S2 + 1 endogenous variables; namely, for the resi-
dential population, the employment level, the wage level, the spending
on tradables and the ideal price index at each location, the commuting
flows between each pair of locations, as well as the economy-wide level
of workers’ expected utility.

2.1.2. Model tractability: theoretical results

This section presents three theoretical results that highlight the
tractability of the model. Theorem 1 shows that the existence and
uniqueness of the model’s equilibrium are guaranteed by a condition
that only depends on the model’s structural parameters. As I argue,

6 A generalization of the model would allow for the disamenity to depend on
both residential and workplace population: N(r)~*L(s)~*2, where L (s) denotes
the number of people working at s. All the theoretical results of Section 2.1.2
carry over to this more general case.

7 Similar to commuting costs, trade can be prohibitively costly across certain
pairs of locations, in which case 7 (s,r) = oo.
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this condition tends to hold if the model’s agglomeration force is not
too strong. Next, Theorem 2 shows that the theoretical condition for
equilibrium uniqueness also guarantees that a simple algorithm can be
used to solve for the model’s equilibrium on the computer. Finally,
Theorem 3 shows that, for a given set of structural parameters, the
model inversion identifies a unique set of unobserved amenities and
productivities (up to scale) that rationalize the observed data as an
equilibrium.

In the proofs of Theorems 1 to 3, I rely heavily on the set of theoret-
ical results presented in Allen et al. (2020). For brevity, the proofs are
relegated to Section A.2 of the Online Appendix.

Theorem 1. The model’s equilibrium exists and is unique under a condi-
tion that only depends on the model’s structural parameters.

The Online Appendix presents the specific condition under which
equilibrium existence and uniqueness are guaranteed. I have not
included the condition in the main text as it is a complex function of
matrices whose entries depend on the model’s structural parameters.
Intuitively, the condition is more likely to hold if the model’s agglom-
eration force (the agglomeration externality in production) is weak rel-
ative to the congestion forces (housing, the congestion disamenity, and
the dispersion of idiosyncratic location tastes). This result should not
be surprising. Under strong agglomeration forces, the concentration of
economic activity at a certain location can sustain itself, which may
give rise to different equilibria in which concentration arises at differ-
ent locations.

If the equilibrium is guaranteed to be unique, then the researcher
can be sure that a numerical procedure that has found an equilibrium
has found the only equilibrium of the model. In general, however, a
uniqueness result does not suggest a numerical procedure that can be
used to find the equilibrium. That said, the following theorem suggests
such a procedure. Moreover, it shows that the procedure is guaranteed
to find the equilibrium if the condition for uniqueness in Theorem 1
holds.

Theorem 2. Assume that the sufficient condition for existence and unique-
ness from Theorem 1 holds. Then a simple iterative algorithm is guaranteed
to converge to the equilibrium spatial distribution of residential population,
employment, wages, spending on tradables and price indices. Finally, work-
ers’ expected utility and commuting flows can be obtained in closed form as
a function of the former distributions.

The simple iterative algorithm, as shown in
Section A.2 of the Online Appendix, consists of guessing any initial
distribution of residential population, employment, wages, spending
on tradables and price indices, and then updating these distributions
using the model’s equilibrium conditions until convergence.

Although the convergence of the simple iterative algorithm is guar-
anteed by Theorem 2, the algorithm would be of little practical use if it
were slow. However, Allen et al. (2020) show that the rate of conver-
gence for such algorithms depends on how far the values of structural
parameters are from the boundary of the region in which the condition
of Theorems 1 and 2 holds. In practice, such algorithms tend to be very
quick unless the values of structural parameters are extremely close to
this boundary.

Theorems 1 and 2 provide a powerful tool to the researcher. As long
as the values of the model’s structural parameters guarantee uniqueness
(Theorem 1), the researcher can use the simple iterative algorithm of
Theorem 2 to compute the equilibrium spatial distribution of economic
activity under any trade costs, commuting costs, and so on. For instance,
she can simulate a counterfactual world in which a new railroad is built
to connect particular locations.®

8 This being said, the fact that the model features a unique equilibrium is
not necessarily appealing in every context. In particular, the economic geogra-
phy literature has argued for the indeterminacy of spatial structure in certain
contexts. For details, see the review article by Lin and Rauch (2020).
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Of course, the results of such counterfactual exercises depend on
the underlying distribution of fundamental amenities and productivity.
In practice, these fundamentals are unobserved. Thus, it is important
to recover their spatial distributions before conducting counterfactual
exercises with the model. A standard method for this consists of finding
the distributions of fundamentals that rationalize the real-world data as
an equilibrium (model inversion).

To invert the model, the researcher should ideally know if there
exists a unique set of fundamentals that rationalize the observed data.
Under uniqueness, if she finds a distribution of fundamentals that ratio-
nalize the data, she can be assured that it is the only distribution that
does so. Theorem 3 shows that this sort of uniqueness always holds in
this model.

Theorem 3. Assume that the researcher observes the values of structural
parameters, the matrix of commuting flows L (r,s), commuting costs k (7, )
and trade costs 7 (r,s), as well as housing supply H (s) and wages w(s)
at every location. Then the researcher can recover the set of fundamental
amenities a (r, s) and productivities A (s) uniquely (up to scale).®

Although Theorem 3 guarantees the uniqueness of model fundamen-
tals (conditional on structural parameters and the observed data), it
does not offer an algorithm to compute the distribution of these funda-
mentals, such as the algorithm provided by Theorem 2. In fact, one can
show that the simple iterative algorithm of Theorem 2 is not guaran-
teed to work in general for the model inversion. That said, there exist
relatively minor departures from it that can be used. One example is
the algorithm used to invert the model in Desmet et al. (2018). This
algorithm relies on an approximation to the simple iterative algorithm
that is guaranteed to converge to the equilibrium distribution of fun-
damentals. Moreover, the simple iterative algorithm can be shown to
work in certain special cases of the general model. One such example is
the special case of the model I consider for the quantitative application
of Section 2.2. In that special case, Section A.4 of the Online Appendix
presents a simple iterative procedure that can be used to invert the
model.

2.1.3. Isomorphisms with other quantitative spatial models

In this section, I show that the tractability results of Section 2.1.2
carry over to an entire class of quantitative economic geography models
that make different assumptions on consumption, production, and mar-
ket structure. I show this by presenting a set of isomorphisms between
the model of Section 2.1.1 and models featuring these alternative
assumptions. Finally, I point out which models used in the quantitative
economic geography literature belong to this class. The formal proofs of
the isomorphisms are relegated to Section A.3 of the Online Appendix.

Land use in production. I first present an isomorphism between
the model of Section 2.1.1 and a model in which the production of
tradables requires two inputs: labor and land. The two inputs enter the
production function with Cobb-Douglas shares y and 1 — pu:

q(s) =A@ L) AG)

where A (s) is the quantity of land used by the firm. Land is available in
fixed positive supply at each location. In equilibrium, land rents adjust
at every location until the local land market clears. Rents are redis-
tributed to local employees with equal shares. Thus, the income of an
employee at location s equals her wage income plus a 1/L (s) fraction
of rents at s.

Next, I show isomorphisms between the model of Section 2.1.1 and
two models in which locations endogenously specialize in the set of
tradable goods they produce. In other words, I relax the assumption

9 Up to scale means that the researcher cannot recover the worldwide level of
either fundamental. For instance, multiplying each location pair’s amenity level
by the same constant yields the same equilibrium (except that each worker’s
unobserved utility is multiplied by a constant).
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that each location produces its own good.

Endogenous specialization, driven by comparative advantage.
In this model, specialization is driven by differences in comparative
advantage, as in Eaton and Kortum (2002). There exists a continuum of
tradable goods, indexed by w € [0, 1]. Workers have constant elasticity
of substitution (CES) preferences over tradables:

1 o =
U;(r,s) =aq;(r,s) r((r,s)_1 [/ qi(r,s;w)Tldw] Hi(r,s)l_”
0

and purchase each tradable good @ from the location that offers the
good at the lowest price at r (including trade costs). Immobile local
landlords consume tradables only, and have the same preferences over
them as workers.

Every location hosts a large number of perfectly competitive firms
that can produce any tradable good w. However, locations are not
equally well-suited to producing a given good. In particular, the pro-
ductivity of a good is heterogeneous across locations. As in Eaton and
Kortum (2002), I assume that the productivity of good w at location s,
A, (s), is drawn from a Fréchet distribution, independent across goods
and locations:

Pr(A, (s) <2 = e [#/A01”

where 6 > o — 1 is a parameter driving the dispersion of productivity
draws, and A (s) > 0 is the productivity of the location. As a result of
these assumptions, locations specialize in the set of tradable goods they
are most productive at relative to other locations.

Endogenous specialization, driven by increasing returns.
Finally, I show an isomorphism between the model of Section 2.1.1
and a model in which locations’ endogenous specializiation in trad-
ables is driven by increasing returns, as in Krugman (1991). There exists
a continuum of tradable goods, indexed by w € [0,N], where the set
of tradables N is determined endogenously. As in the previous model,
workers have constant elasticity of substitution (CES) preferences over
tradables:

N o =
U; (r,s) = a; (r,s) k(r,s) " [ /0 qi(r,s;a))Tldw] H;(r,s)'™"

while landlords have the same preferences over tradables.

Firms produce tradable goods with a technology that is subject to
increasing returns, as in Krugman (1991). In particular, producing g, (s)
units of good w at location s requires q,, (s) /A (s) units of labor, plus an
additional fixed f > 0 units of labor required for start-up. This latter
element of the technology is a fixed cost, which implies that production
is subject to increasing returns.

Firms are aware that consumers differentiate across tradable goods.
As a result, each good is only produced by one firm in equilibrium, and
the firm uses its monopoly power to set a price of its good above the
marginal cost. Firms are, however, also aware that they are atomistic
relative to the whole set of tradables produced, and therefore cannot
influence location-wide prices (monopolistic competition). In equilib-
rium, each firm operates at its efficient size, implying that its labor
demand is a function of local productivity and structural parameters
only. Local labor market clearing then determines the equilibrium mass
of tradables that a location specializes in.

As a result of these isomorphisms, special cases of the model are iso-
morphic to a whole range of existing models in quantitative economic
geography. In particular,

o the model of Section 2 in Redding (2016) is isomorphic to a special
case of the model with specialization through comparative advan-
tage in which there are no agglomeration externalities (@ = 0), no
congestion disamenities (A = 0) and no commuting;

e the model of Section 3 in Redding (2016) is isomorphic to a special
case of the model with specialization through increasing returns in
which there are no congestion disamenities and no commuting;
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Fig. 1. The reduced-form effects of bridges on the upper Danube. The left panel is a scatterplot in which each circle represents a settlement in the 20 km radius
of bridges that were built on the upper Danube between 1891 and 1895. The horizontal axis corresponds to the settlement’s distance from the nearest bridge in
kilometers, while the vertical axis corresponds to the settlement’s population growth in percentages, either between 1870 and 1890 (blue circles) or between 1890
and 1910 (red circles). The blue and red lines are the corresponding regression lines. The right panel shows the estimated coefficients of column (1) in Table 1 by
census year, along with their 95% confidence intervals. The shaded grey area represents the period of bridge construction on the upper Danube. Source: Censuses
of the Hungarian Kingdom, 1870, 1880, 1890, 1900, 1910 and 1920. (For interpretation of the references to color in this figure legend, the reader is referred to the

Web version of this article.)

e the model of Redding and Sturm (2008) is isomorphic to a special
case of the model with specialization through increasing returns in
which there are no congestion disamenities, no commuting and no
location taste heterogeneity (corresponding to the limiting case of
n - 0);

e the model of Allen and Arkolakis (2014) is isomorphic to a special
case of the model with no housing (v = 1) and no commuting;

e the model of Monte et al. (2018) is isomorphic to a special case of
the model with specialization through increasing returns in which
there are no congestion disamenities.

As a consequence of these isomorphisms, the tractability results of
Section 2.1.2 carry over to the above frameworks as well, underscor-
ing again that a broad class of quantitative economic geography mod-
els exhibit tractability. This is true despite the fact that these models
incorporate various dimensions of real-world heterogeneity, such as dif-
ferences in amenities, productivity, trade costs, and commuting costs
across locations. The next section illustrates how this class of models
can be used to study important historical questions.

2.2. Quantitative illustration: bridges on the Danube

The Danube is Europe’s second-longest river, with a total length of
2850 km (1770 mi), roughly identical to the Rio Grande (1759 mi).
Over the long segment of the river that was historically located in Hun-
gary,' the first permanent bridge was built to connect the western
and eastern sides of the country’s largest city, Budapest, in 1849. Out-
side Budapest, however, no bridges were built on the river until the
1890s. Upriver from Budapest, the reason for this was technological:
floating ice on the river, a regular occurrence in the spring, would have
destroyed any bridge until technology allowed for the construction of
more resilient structures in the late 19th century (T6th, 2009). Once
bridge construction on the upper Danube became technologically feasi-
ble, three bridges were quickly built on this segment of the river: one in
the city of Pozsony (now Bratislava, Slovakia) in 1891, one in the city
of Koméarom in 1892, and one in the city of Esztergom in 1895.

What was the effect of these new bridges on the spatial distribution
of economic activity? How much did they change the costs of trade
across locations? Did population relocate in response to the changing
trade costs, and if it did, to what extent? How much did the new bridges

10 Nearly one third of the river’s entire length was in Hungarian territory
before Hungary’s large-scale border changes in 1920.

increase Hungarian residents’ welfare? Some of these questions can be
answered using a reduced-form empirical approach that exploits the
exogenous, technology-driven timing of bridge construction. I lay out
this reduced-form approach in Section 2.2.1. However, for some ques-
tions, such as the one about welfare, a quantitative model is necessary.
Hence, in Section 2.2.2, I examine the effect of bridge construction in a
quantitative framework that belongs to the class of models presented in
Section 2.1. Codes that allow for the replication of these exercises are
available on the author’s website.

2.2.1. The reduced-form effects of bridges

In this section, I assess the reduced-form local effects of the new
bridges on the upper Danube without committing to a structural model.
For this reduced-form assessment, I collect data on the spatial distribu-
tion of population within Hungary. Starting from 1870, decadal census
data are available on population at the of level of settlements (telepiilés).
Settlements are cities, towns or villages. For the censuses of 1870 and
1880, only the population of settlements above 2000 inhabitants is
available. Thus, to avoid selection bias, I restrict my reduced-form sam-
ple to settlements whose population already exceeded 2000 inhabitants
in 1870. I also restrict the sample to settlements in a 20-km radius
around the three new bridges. This gives me a sample of 21 settle-
ments, with population observed for all of them in 1870, 1880, 1890,
1900 and 1910, and population observed in 1920 for the nine of them
that remained in Hungary after the country’s 1920 border changes.!!

The left panel of Fig. 1 presents a scatterplot of population changes,
both before and after bridge construction, against distance from the
nearest new bridge for the 21 settlements in the sample. The results
are striking. Before bridge construction (i.e., between 1870 and 1890),
there was no systematic relationship between distance from the loca-
tions of future bridges and settlements’ population growth. But once
the bridges were present (i.e., by 1910), population grew substantially
faster in the bridges’ close proximity.

To further investigate the timing of the effects of the new bridges, I
run regressions of the form

11 Restricting the radius to 20 km has the advantage that the 20-km buffers
around the three bridges do not overlap. Although census data are also available
in the decades after 1920 for the nine settlements that remained in Hungary,
the country’s extensive border changes would make the interpretation of these
estimates difficult. As I argue below, this issue is already apparent for the 1920
estimates.



D.K. Nagy

log Pop,, = B, Distsby, + a5 + 6, + €5
y€(1870,1880,1900,1910,1920}

where Pop,; denotes the population of settlement s in census year t; a;
and 6, stand for settlement and census year fixed effects, respectively;
and Dist,5, denotes the interaction between distance from the bridge
and the fixed effect for census year y. The coefficient of interest, f,,
measures the effect of distance from the bridge on settlement popula-
tion in year y relative to the base year, which I set to 1890.

Column (1) of Table 1 presents the estimated f, coefficients, which
are also plotted in the right panel of Fig. 1. The estimated coefficients
are consistent with the pattern suggested by the left panel of Fig. 1.
While locations in the new bridges’ close proximity did not exhibit dif-
ferent population trends prior to bridge construction, their population
grew significantly faster already by 1900, and even more so by 1910.
The exogenous timing of bridge construction supports a causal inter-
pretation of these estimates. Column (1) of Table 1 also reports the
standardized beta coefficients in curly brackets. These coefficients are
large: by 1910, for instance, a one standard deviation decrease in dis-
tance from a new bridge led to a 0.123 standard deviation increase in
log population.'?

Columns (2) to (8) of Table 1 present a series of robustness checks to
the headline reduced-form finding that the new bridges attracted peo-
ple to their surroundings, especially by 1910. In column (2), I include
a settlement’s distance from the country’s economic center, Budapest,
interacted with census year fixed effects as controls. Next, I include ini-
tial settlement population interacted with census year fixed effects to
allow for differential population trends across settlements of different
size. I conduct this exercise both without (column 3) and with Budapest
controls (column 4). Finally, I address the issue that the census only
started to include military personnel in settlement populations in 1900.
From the two years in which population data are available both with
and without military personnel (1900 and 1910), it is clear that the city
of Komarom was the only settlement in the sample with substantial mil-
itary presence. Therefore, columns (5) to (8) repeat the specifications of
columns (1) to (4) after dropping Komarom from the sample. The esti-
mated effects of the new bridges on population are largely consistent
across these specifications.

The fact that the new bridges drew population to their surround-
ings should not be surprising. First, there is a large empirical literature
documenting that transport infrastructure can attract population and
economic activity, either through growth or relocation (Redding and
Turner, 2015). Second, Armenter et al. (2014) argue in a spatial model
that bridges, in particular, can foster the emergence of cities in their
surroundings. The mechanism laid out by Armenter et al. (2014) relies
on the fact that a bridge decreases transport costs at a particular point
in space along a river. Thus, it makes locations near the river, but espe-
cially locations in the bridge’s close proximity, see a larger increase in
their access to trade, triggering a reallocation of population. This effect
may be further amplified by agglomeration economies, which attract
even more people to the newly formed city at the bridge. The reduced-
form findings of this section can thus be thought of as providing causal
evidence for the mechanism laid out by Armenter et al. (2014).'3

12 The population effect of the new bridges becomes smaller and turns insignif-
icant at a 5% level by 1920. Hungary’s border changes in the same year might
be responsible for this fact. In particular, the upper Danube became the border
between Hungary and Czechoslovakia, and political conflict between the two
countries drastically reduced trade between them (Nagy, 2020b). Hence, the
three bridges could no longer facilitate trade in the same way as earlier. Unsur-
prisingly, estimation precision also drops as population data are only available
for nine settlements in 1920.

13 Another related paper is Tompsett (2020), who finds a positive causal
impact of bridges on county populations in the U.S. Midwest.
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2.2.2. A quantitative model

In Section 2.2.1, I showed that the new bridges on the upper Danube
attracted population to their surroundings. But what were the changes
in trade costs brought about by the new bridges? As no data on trade
costs are available in this historical setting, answering this first-order
question about the effects of bridges requires an approach different
from reduced-form empirics. In Section 2.1.1, I presented a quantita-
tive spatial model in which trade costs are among the fundamentals
shaping the spatial distribution of population and economic activity. It
seems reasonable to use this model as a tool to answer how the new
bridges reduced trade costs across Hungarian locations. Moreover, a
quantitative model also allows one to examine the impact of bridges on
aggregate outcomes, such as welfare. Thus, I also use the quantitative
framework to study how much the new bridges on the upper Danube
increased Hungarian residents’ well-being in this section.

Data availability requires me to simplify the structure of the model
relative to the general framework of Section 2.1.1. First, commuting
data are not available for this period, although it is unlikely that com-
muting was large-scale at this time in any case. As a result, I consider
the version of the model of Section 2.1.1 with no commuting (see foot-
note 5). Second, while population data are available for the period,
wage data are not. Hence, it proves impossible to separate funda-
mental amenities from fundamental productivity; a location with large
population can feature good amenities, high productivity, or both. To
solve this issue, I assume that fundamental productivity did not differ
across locations and only allow amenities to vary across space. Finally,
I abstract from congestion externalities as the model already features
dispersion forces in the form of idiosyncratic location tastes and hous-
ing. Section A.4 of the Online Appendix outlines the model under these
assumptions. While the realism of these assumptions is clearly debat-
able, one advantage of making them is that they result in an even more
tractable model than the one presented in Section 2.1. The existence
and uniqueness results of Section 2.1.2 obviously still hold in this spe-
cial case of the model. At the same time, simple iterative algorithms
can be used to both simulate and invert the model in this special case,
as Section A.4 of the Online Appendix shows.

I choose the following trade cost function to capture the potential
reduction in transport costs brought about by bridges. Between any two
locations r and s that are on the same bank of the Danube, I assume
that the cost of trade was exponential in distance between these two
locations, dist (r, s):

T (r’ S) - e(pdist(r,s)

As a result, parameter ¢ > 0 captures the cost of transporting goods
per unit of distance.'* Between any two locations that are on opposite
banks of the Danube, I follow Armenter et al. (2014) and allow for two
options. The first option involves crossing the river on a boat at cost
w > 0. This amounts to a trade cost between locations r and s equal to

Thoat (r,s)= e(p<d£§t(r,s)+u/ .

The second option involves crossing the river on a bridge at location b.
Abstracting from the cost of crossing the bridge itself, this amounts to
a trade cost equal to

7 (1, s) = e(p[dist(r,b)+d£st(b,s)].
I assume that traders between r and s choose the option with the lowest
cost, implying that the actual trade cost between r and s equals

7 (r,s) = min {Tboat (r,s) ,rbninrb (r, s)}
eB

14 Lacking georeferenced data on transportation networks, I approximate dis-
tance between two locations by their distance “as the crow flies.” Although a
simplification, this assumption is unlikely to lead to large biases since Hungary’s
railroad network was well-developed by the beginning of the 20th century. In
particular, the network was comparable in density to the networks of developed
countries (Nagy, 2020b).



Table 1

The reduced-form population effects of bridges.

Dependent variable: Log settlement population

(€Y] ©)] 3 4 (5) (O] @] ®
Distance from nearest bridge X 1870 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
{0.011} {0.011} {0.013} {0.013} {0.016} {0.017} {0.018} {0.018}
Distance from nearest bridge X 1880 0.001 0.001 —-0.001 —-0.001 0.002 0.001 —0.000 —0.000
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
{0.006} {0.006} {-0.007} {-0.007} {0.011} {0.011} {-0.002} {-0.002}
Distance from nearest bridge X 1900 —0.009"** —0.009"** —0.008** —0.008** —0.008"** —0.007*** —0.007* —0.007*
(0.003) (0.003) (0.003) (0.004) (0.003) (0.002) (0.004) (0.004)
{-0.062} {-0.062} {-0.055} {-0.056} {-0.055} {-0.054} {-0.050} {-0.050}
Distance from nearest bridge X 1910 —0.018"** —0.018"** —0.020*** —0.020*** —0.018"** —0.018"** —0.020"** —0.020"**
(0.005) (0.004) (0.006) (0.006) (0.006) (0.005) (0.007) (0.006)
{-0.123} {-0.123} {-0.136} {-0.137} {-0.128} {-0.125} {-0.141} {-0.140}
Distance from nearest bridge X 1920 —-0.011* -0.011* —0.011** —0.012** —0.010* —0.010 —-0.011* —-0.011*
(0.006) (0.006) (0.005) (0.005) (0.006) (0.006) (0.005) (0.005)
{-0.052} {-0.052} {-0.054} {-0.055} {-0.052} {-0.051} {-0.055} {-0.055}
Settlement FE Yes Yes Yes Yes Yes Yes Yes Yes
Census year FE Yes Yes Yes Yes Yes Yes Yes Yes
Distance from Bpest X Census yr FE No Yes No Yes No Yes No Yes
Log 1870 population X Census yr FE No No Yes Yes No No Yes Yes
Drop Komarom No No No No Yes Yes Yes Yes
R? 0.704 0.723 0.712 0.731 0.676 0.698 0.684 0.706
Number of observations 114 114 114 114 109 109 109 109
Number of settlements 21 21 21 21 20 20 20 20

Each column in this table corresponds to a fixed-effects regression. In all the regressions, the unit of observation is a settlement in the 20 km radius of bridges that
were built on the upper Danube between 1891 and 1895, in a given census year (1870, 1880, 1890, 1900, 1910 or 1920). The dependent variable, Log settlement
population, refers to the settlement’s log civil population in years until 1890, and log total (civil and military) population in years from 1900 on. Distance from nearest
bridge is the settlement’s distance from the nearest bridge built on the upper Danube between 1891 and 1895, measured in kilometers. 1870, 1880, 1900, 1910, 1920
refer to census year fixed effects for the specific year. Standardized beta coefficients in curly brackets. Standard errors clustered at the settlement level. *: significant
at 10%; **: significant at 5%; ***: significant at 1%. Source: Censuses of the Hungarian Kingdom, 1870, 1880, 1890, 1900, 1910 and 1920.
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Fig. 2. The effects of bridges in the model. The left panel shows the estimated beta coefficients from a fixed-effects regression of log population on distance from the
bridge interacted with a 1910 dummy, run on model-simulated data, as a function of transport cost parameter ¢. The right panel shows the effect of new bridges on
Hungarian workers’ expected utility U in the model, as a function of transport cost parameter ¢.

where B denotes the existing set of bridges on the Danube.

I set the boat cost parameter to y = 126.98¢ based on historical
evidence from Fogel (1964). This implies that the cost savings from the
bridge depend on the single transport cost parameter ¢. Given the cen-
tral role of this parameter for the research question at hand, I quantify
the impact of the new bridges in the model for multiple values of ¢.
More precisely, I set up a fine grid of ¢ between 0.001 and 0.1, and
repeat the quantitative analysis for each value of ¢ on this grid.'®

To measure the impact of new bridges in the model for any given
value of transport cost parameter ¢, I apply the following strategy.
As population data are available at the level of settlements, I define
a location as a 1910 Hungarian settlement above 2000 inhabitants.'® I
invert the model to recover Hungarian settlements’ fundamental ameni-
ties that rationalize these settlements’ observed population in 1910.
When conducting the inversion, I allow for the possibility of cross-
ing the Danube through any bridge present in 1910 (that is, through
bridges in Pozsony, Komarom, Esztergom and Budapest). Next, I sim-
ulate the model in the absence of new bridges that were built on the
upper Danube between 1890 and 1910 (Pozsony, Komarom and Eszter-
gom), while keeping all other fundamentals fixed. Hence, a comparison
of the 1910 equilibrium and the equilibrium without the new bridges
reveals the impact of these bridges on the spatial distribution of popula-
tion and welfare in the model. As discussed, I conduct this comparison
for each value of ¢ between 0.001 and 0.1.

In the left panel of Fig. 2, I present how population reallocates in
response to the new bridges in the model. More precisely, I plot the
standardized beta coefficient of the regression

log Popy, = fr919Dist;01910 + &5 + ¢ + €,

run on model-simulated data, against transport cost parameter ¢. This
regression is identical to the one I run to uncover the reduced-form pop-
ulation effects of new bridges in the data (Section 2.2.1). Thus, coeffi-
cient f;9;0 captures the causal effect of distance from the bridge on log
settlement population in 1910. The estimated standardized beta coeffi-
cients vary over a wide range between —0.005 and —0.137. Unsurpris-
ingly, the relationship between the population effects of new bridges
and transport costs is U-shaped. Whenever transport costs are low or
prohibitively high, new bridges have little impact on most locations’
access to trade, and hence lead to little reallocation in population.

15 T set the values of the model’s remaining structural parameters to central
values used in the literature. In Section A.5 of the Online Appendix, I discuss
these parameter choices in detail.

16 This amounts to inverting and simulating the model for 1801 locations. For
simplicity, I abstract from international trade between Hungarian settlements
and the rest of the world.

In line with this logic, I also find that the model-implied effect of
new bridges on Hungarian residents’ welfare is hump-shaped in trans-
port costs (right panel of Fig. 2). Under low or high transport costs,
bridges have little impact on trade, and hence on aggregate welfare.
Under intermediate values of transport costs, the aggregate welfare
effect of new bridges reaches 0.2%-0.4%, which is far from negligible.

It is straightforward that different values of ¢ have different impli-
cations on the cost reductions brought about by bridges as well. How
to pick the “right” value of @? One potential strategy is matching the
estimated causal effect of bridges between the model and the data.
Recall that the standardized beta coefficient of the population effect
by 1910 equaled —0.123 in the data (Section 2.2.1). In the left panel of
Fig. 2, the horizontal line corresponds to this value. As can be seen,
there are two values of ¢ at which this reduced-form coefficient is
matched by the model (0.026 and 0.065). What are the cost reduc-
tions implied by these values of @? Obviously, such cost reductions
vary across space, but one can calculate them for any specific settle-
ment pair. For instance, if ¢ = 0.026, then trade costs between Gy&r
and Ersekdjvar, two relatively large cities on opposite banks of the
upper Danube, reduced by 95% once they had the opportunity to trade
through the new Komarom bridge. The corresponding cost reduction
estimate is 99.4% if ¢ = 0.065.

These cost reductions, even the more modest of the two, seem unre-
alistically large. In fact, Nagy (2020b) estimates per-kilometer transport
costs from spatial price differences of traded commodities in 1910 Hun-
gary, and finds a much smaller value of ¢ = 0.000351. These findings
underscore that quantitative modeling always needs to be accompa-
nied with caution and care. Instead of concluding that trade costs in
early-20th century Hungary were orders of magnitude higher than pre-
viously thought, the researcher should ask a series of questions when
confronted with these findings. For realistic values of transport costs,
why does the model imply a smaller population effect of bridges than
the data? What forces are missing from the model that might be ampli-
fying the population-attracting effect of bridges in reality? In the next
section, I discuss a few forces that are missing from the class of models
presented in Section 2.1 and might be responsible for this amplification.
At the same time, I discuss how incorporating these forces with the aim
of further realism can prove challenging from a tractability perspective.

2.3. Additional model ingredients: challenges to tractability

In this section, I consider a set of model ingredients that are absent
from the class of quantitative models discussed in Section 2.1. My pri-
mary focus is on how these additional ingredients can pose challenges
to tractability, and how existing quantitative studies have addressed
these challenges.
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Dynamics. Many historical questions are dynamic by nature: How
did transport infrastructure foster economic growth? How persistent
has the spatial distribution of economic activity been? Answering these
questions with a quantitative spatial model necessarily requires incor-
porating dynamics in the model. There are also other cases in which,
even though the question the researcher is after is not inherently
dynamic, dynamics play a quantitatively relevant role. In the applica-
tion of Section 2.2, recall that the reduced-form effect of new bridges
seemed to increase over time, at least before 1920 (right panel of Fig. 1).
This could suggest that a bridge not only had a static impact on the
economy of its surroundings, but also fostered local growth. As such
growth effects are not present in the model, this could explain why
the model underestimates the effects of bridges under realistic levels of
transport costs.

It is not hard to see why incorporating dynamics can be challenging
from the point of view of model tractability. In a model in which the
future enters economic agents’ objective functions and influences the
decisions they make today, agents need to predict the future evolution
of prices. In a model with spatial linkages across locations, the problem
is even more complex: agents need to predict the evolution of prices at
each location. Without simplifying the problem, the curse of dimension-
ality makes it infeasible to compute the equilibrium, even if the number
of locations is small.

Various simplifications have been offered to this general dynamic
problem. One possible simplification is, of course, assuming that agents
do not care about the future and thus make static decisions at every
point in time. Under this assumption, the model still needs to be solved
for every time period, but it can be solved as a sequence of static prob-
lems. A case in which such an assumption is justifiable is one in which a
time period is about as long as a person’s lifetime (Delventhal, 2018). A
similar assumption can be made if agents live for two time periods, but
their decision with dynamic consequences is made in only one of those
two periods (Allen and Donaldson, 2020). In the case of firms, a possi-
ble microfoundation for the assumption that agents do not care about
the future is that irrespectively of their decisions today, their future
profits are driven down to zero by free entry (Desmet and Rossi-Hans-
berg, 2014; Desmet et al., 2018; Nagy, 2020a).!” Another simplifying
assumption can be the absence of trade costs, in which case prices
equalize across locations and agents only need to predict the future
evolution of one worldwide price (Eckert and Peters, 2018).

Multiple sectors. The class of models discussed in Section 2.1 does
not feature multiple sectors. From the point of view of the applica-
tion of Section 2.2, this might be an important omission. In particular,
Nagy (2020a) argues in the context of 19th-century U.S. railroad con-
struction that incorporating a rural (“farm”) and an urban (“non-farm”)
sector in a quantitative spatial model dramatically alters the evaluation
of transport infrastructure improvements. The intuition for this result
is as follows. In Nagy (2020a), urban activities are more subject to
increasing returns than rural activities. Therefore, if transport infras-
tructure improvements foster the growth of urban locations, they can
boost these increasing returns and have an impact on the economy that
exceeds the savings from transport cost reductions. Similar forces may
have operated in the historical context of Section 2.2, another potential
reason why the model stops short at explaining the reduced-form effect
of bridges in its entirety.

Various other historical questions call for incorporating multiple
sectors in the model as well. This is particularly true for questions

17 These papers allow firms to innovate, which is a decision with dynamic con-
sequences as it increases the firm’s future productivity. However, they assume
that innovation spills over locally after one period, and new firms can freely
enter at any point in time. Hence, entry drives down firms’ profits to zero in
all future periods, and they only innovate to the extent that maximizes their
current profits — a static decision. In Desmet et al. (2018), a similar set of
assumptions is made on individuals’ migration costs, which guarantees that
their location choice also reduces to a static decision.
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related to structural transformation (Delventhal, 2018; Eckert and
Peters, 2018; Fajgelbaum and Redding, 2018). Although the tractabil-
ity properties of Section 2.1 carry over to multi-sector models under
certain restrictive assumptions (constant expenditure shares, no input-
output linkages across sectors, no agglomeration externalities — Allen
and Arkolakis, 2014), such assumptions prove too restrictive in the con-
text of structural transformation. One of the major empirical facts doc-
umented about structural transformation, for instance, is that sectoral
expenditure shares do change over time (Herrendorf et al., 2014). As a
result, these studies cannot rely on the theoretical tractability results of
Section 2.1.

Endogenous infrastructure development. Another assumption of
the class of models discussed in Section 2.1 is that trade and commuting
costs are exogenous. Thus, the development of transport infrastructure
can be fed into these models as an exogenous reduction in trade (and
possibly commuting) costs across certain locations. This methodology
cannot account for the fact that infrastructure development is endoge-
nous: whether to develop infrastructure across certain locations is a
decision made by agents who take into account the benefits and costs
of infrastructure development. In the context of the quantitative appli-
cation of Section 2.2, it could be the case that new bridges fostered the
development of other infrastructure, such as railroad or road connec-
tions to settlements where the new bridges were located. If this was the
case, then settlements near the new bridges would have gained not only
from the bridge, but also from this complementary infrastructure. The
fact that the model does not account for such a mechanism can be yet
another source of the discrepancy between the effect of bridges in the
model and their reduced-form effect in the data.

Studying the forces behind endogenous infrastructure development
decisions is the focus of various quantitative historical studies (Santa-
maria, 2020; Swisher, 2014; Trew, 2020). However, without further
assumptions, the problem of endogenous infrastructure development is
subject to a similar curse of dimensionality as the dynamic problem
discussed earlier in this section. The reason for this is simple: the num-
ber of possible links across locations increases exponentially with the
number of locations. Therefore, the problem quickly gets computation-
ally out of hand as the number of locations becomes large. A further
complication is that infrastructure developers might engage in strategic
interaction with one another (Swisher, 2014).

Simplifications to the problem offered in this literature rely
on reducing the number of links and restricting strategic behavior
(Swisher, 2014), assuming one-dimensional space and free entry in
infrastructure development (Trew, 2020), or making infrastructure
development location-specific rather than link-specific (Santamaria,
2020; Fajgelbaum and Schaal, 2020; Ducruet et al., 2020). That said,
even these simplifying assumptions do not necessarily guarantee cer-
tain aspects of tractability, such as equilibrium uniqueness. Facing this
issue, Trew (2020) assumes that the infrastructure allocation maximiz-
ing economy-wide net rents is selected by the U.K. Parliament in the
case of multiple equilibria with different allocations.

As discussed above, the tractability issues arising in quantitative
models with such additional ingredients often prove challenging and
require the researcher to make highly restrictive assumptions. This,
of course, raises the question of whether quantitative modeling is the
way to go to answer these important historical questions. However, one
needs to weigh these costs of quantitative models against their benefits.
There are at least four benefits that need to be taken into account. First,
quantitative models can be used to infer missing data, as already high-
lighted in the application of Section 2.2 and discussed further in Section
3. Second, unlike reduced-form empirical techniques, they are able to
measure the aggregate general equilibrium impact of historical events
and therefore distinguish growth from reallocation. Third, those quan-
titative models that feature dynamics can be used to study the long-run
effects of events. Due to various other events taking place over long time
periods, such long-run effects are often impossible to recover empiri-
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cally.'® Finally, issues of tractability are ubiquitous in structural mod-
eling and are by no means restricted to the field of economic geography.
Therefore, new techniques developed to address tractability issues may
spill over and benefit other areas of economics as well.

3. Availability of historical data

Available data become sparser as one goes back in time. This is by
no means a problem that only economists face. In archaeology, conclu-
sions normally need to be drawn from scattered, small remains. Identi-
fying the sex and age of skeletal remains, for instance, relies primarily
on examining the pelvis, the skull, and other large bones. Quite often,
such remains are not available. In that case, the calcification of teeth
and the maturation of non-cranial bones may provide information on
age, while comparing the two may be informative about sex (Ubelaker,
2008). However, even these might be absent. What is left of the entire
pre-human species Australopithecus bahrelghazali, for example, is three
partial jawbones and a tooth (Brunet, 2010).

Similarly, economic geographers studying historical questions need
to draw conclusions from a small amount of sparse data, which become
increasingly sparser as one goes back to the more and more distant past.
This problem is, if anything, more severe in the case of quantitative eco-
nomic geography studies. This is because taking quantitative models to
the data typically requires observing a special set of data — namely,
macroeconomic aggregates such as GDP, population or land values at
the location level. In what follows, I briefly review the availability of
historical data sources on GDP, sectors and occupations, land values,
population, transportation networks, commuting and geographic char-
acteristics that have been used in the quantitative economic geography
literature. Next, I discuss what Geographic Information Systems (GIS)
and structural modeling can add to the information embedded in these
sparse data.!®

GDP. National accounting is almost exclusively a 20th-century phe-
nomenon. Official annual estimates of national income were first com-
piled by the Australian government in 1886, followed by Canada in
1925 (Bos, 1992). With Simon Kuznets joining the National Bureau of
Economic Research in 1929, the United States soon became the leader
in preparing national income estimates. In 1939, the U.S. Commerce
Department produced the first estimates of income at the state level
(Carson, 1975). However, it was not until 1947 that the first interna-
tional guidelines on national accounting were prepared (Bos, 1992).
Thus, official data on GDP are virtually unavailable for the study of
historical questions that predate the mid-20th century.

That said, economic historians have produced estimates of past
GDP based on available population, income and production data. One
notable example is the Maddison database, which includes estimates of
country GDP going back to the year 1 (Bolt et al., 2018), although it has
received criticism for its lack of accuracy (Fariss et al., 2017). In the
case of the U.S., Easterlin (1960), Gallman (1966), David (1967) and
Weiss (1992) estimate per capita income of the country and its regions
for various overlapping periods during the 19th century, relying primar-
ily on sectoral data. The vast differences across their estimates already
suggest that they are likely subject to large measurement errors. Hence,
using them as direct inputs into quantitative models could cast doubt
on the model’s quantitative predictions. Nevertheless, such estimates of
historical GDP might still be suitable for testing the model’s qualitative

18 By identifying these long-run effects, historical studies also have the poten-
tial to highlight economic mechanisms that require a very long time to
unfold. An example is the century-long change in occupational structure due
to improvements in communication technologies (Michaels et al., 2019).

19 An issue related to data scarcity is that historical data, even if available,
are often stored in archives in a not (yet) digitized format. Combes, Gobillon
and Zylberberg (2020) discuss recent machine learning techniques aimed at
processing such data, along with the associated challenges.
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predictions. For example, Nagy (2020a) finds that, according to a spa-
tial model of the 19th-century U.S. economy, the U.S. Northeast had
higher per capita income than the South and the Midwest before the
Civil War. This pattern of income distribution across U.S. regions is in
line with the above historical estimates. Such tests, even though they
do not force us to fully trust historical estimates of GDP, can lend addi-
tional credibility to models that can replicate similar broad patterns
observable in the estimates.

Sector- and occupation-level data. The 19th century saw the first
sectoral censuses conducted. These censuses tend to provide data on
employment, the number of establishments, land use, and/or output in
certain important sectors such as agriculture or manufacturing. Quite
often, however, they do not cover the entire economy.

In the United States, James Madison suggested that the first, 1790
population census include occupational statistics. Though this did not
happen in the end, the 1810 census asked enumerators to collect data
on the country’s manufacturing establishments. This became the first
U.S. Census of Manufactures, and it was followed by similar censuses
conducted in 1820 and 1840. However, the quantity and quality of
the collected data in these first three censuses disappointed contempo-
raries.’’ Major improvements were made afterwards, which made the
1850 and subsequent decennial Censuses of Manufactures substantially
more reliable than the previous ones (Fishbein, 1973). In the meantime,
the first U.S. Census of Agriculture was conducted in 1840,%! and was
followed by decennial censuses of this sector since then. The quantita-
tive economic geography literature has used these historical Censuses of
Agriculture and Manufactures. In particular, Donaldson and Hornbeck
(2016) use Census of Agriculture data to measure the effect of late-19th
century railroads on the value of agricultural land. Eckert and Peters
(2018), on the other hand, use Census of Manufactures data from 1880
on to study the spatial patterns of structural change towards manufac-
turing.

Another country with a long history of sectoral employment data is
the United Kingdom. The 1801 U.K. census already included a question
about occupation, albeit only at a broad level of sectoral disaggrega-
tion. Detailed census data on occupation are available from 1851 on.
Moreover, Shaw-Taylor et al. (2010) compile data on the occupation of
males in 1710 (for England) and 1817 (for England and Wales) based
on thousands of baptism records. The occupational categories are such
that the sector can be inferred from them; examples of occupations are
“grower of minor crops,” “coal miner,” “textile products maker” and
“rag dealer.” Trew (2014) and Trew (2020) use these occupational data
at the level of registration districts®? to study spatial structural change in
England during the industrial revolution.??

Value of land and structures. The value of land and buildings on
farms were included in the U.S. Census of Agriculture from 1850 on.
Naturally, these reflect not only land values but also the value of capital
embedded in buildings. To separate the two, Fogel (1964) estimates
the value of agricultural land alone at the state level. Donaldson and
Hornbeck (2016) use these estimates to impute the value of agricultural
land at the county level, assuming that the value of buildings relative
to land was uniform within states.

Historical data on the value of non-agricultural land and structures
are also sparse. In England and Wales, however, the value of proper-

” «

20 One reason for this is that the instructions given to enumerators were vague,
especially in 1810. Another reason is that several establishments refused to
provide data, fearing that the information would be used for tax purposes.

21 The 1840 census already included detailed data on livestock, prices and
output by crop, as well as estimates of the value of agricultural production by
county (U.S. Census, 1841).

22 The average registration district in England and Wales had 28,700 inhabi-
tants in 1851.

23 Further quantitative economic geography papers use historical sector-level
data from Argentina (Fajgelbaum and Redding, 2018), Germany (Peters, 2019)
and India (Donaldson, 2018).
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ties were constantly assessed by the government since 1601 for tax
purposes. These so-called rateable values again reflect both the value
of land and the value of structures built on it. To study the economic
impact of the steam railway on London, Heblich et al. (2020a) use these
rateable values by borough in the Greater London area. In the case of
Berlin, Ahlfeldt et al. (2015) use high-resolution data on the value of
undeveloped land (i.e., without structures) collected by a government-
appointed building surveyor (Kalweit, 1937) to examine the effect of
the Berlin Wall on the city’s economy.

Population. Due to the long history of government-administered
population censuses, population data tend to be the most widely avail-
able and the highest in quality.>* As a result, these data have been
widely used in the quantitative economic geography literature. Histori-
cal U.S. population data at the county level are used in Allen and Don-
aldson (2020), Desmet and Rappaport (2015), Donaldson and Horn-
beck (2016), Eckert and Peters (2018) and Nagy (2020a), among oth-
ers. Census-based population data at similar levels of geographic dis-
aggregation are used in quantitative historical studies on Argentina
(Fajgelbaum and Redding, 2018), Germany (Peters, 2019; Santamaria,
2020) and the United Kingdom (Trew, 2014, 2020). Normally, census
data also allow for distinguishing urban from rural populations. This
has been an advantage for papers investigating the historical drivers
of urbanization (Fajgelbaum and Redding, 2018; Nagy, 2020a, 2020b;
Redding and Sturm, 2008).

Historical census data can also be used to examine the drivers of
the distribution of population within cities. Within-city analysis neces-
sitates a distiction between residential population (i.e., number of peo-
ple by location of residence) and workplace population (i.e., number
of employed people by workplace location). Data on the former are
more widely available, as censuses are normally conducted on residen-
tial locations. Heblich et al. (2020a), for instance, use residential popu-
lation by borough in Greater London from 1801 until 1921 to document
that the steam railway allowed people to move away from downtown
areas. To study the effect of the Berlin Wall, Ahlfeldt et al. (2015) use
street-level residential population data on Berlin from the 1933 cen-
sus. They construct a proxy of workplace population by census block by
combining district-level employment data with a registry of company
locations within districts (Ahlfeldt et al., 2015).

Population censuses often include data on socioeconomic status such
as education, occupation and — more recently — income. As a result,
they can also be used to examine the drivers of residential segregation.
Various studies have documented that residential segregation patterns
exhibit persistence over time. That is, neighborhoods that were poor
in the past also tend to be poor today. Multiple explanations have been
offered for this phenomenon, based on persistent natural amenities (Lee
and Lin, 2018), differences in 19th-century pollution across Western
and Eastern parts of cities (Heblich et al., 2020b), and the war-time
bombing of certain neighborhoods (Redding and Sturm, 2016).

Finally, certain research questions ask for population data that pre-
date the official censuses. Similar to GDP, the Maddison project esti-
mates country populations back to the year 1 (Bolt et al., 2018). At a
higher level of spatial disaggregation, the History Database of the Global
Environment (HYDE) combines an assortment of historical sources to
estimate the population of each 5 by 5 arc minute grid cell of the
Earth, going back 12,000 years (Klein Goldewijk et al., 2010). Delven-
thal (2018) uses these data for the year 1000, aggregated up to a 3° by
3° resolution, to calibrate a dynamic spatial model of the world econ-
omy. He uses the model to quantify the extent to which falling trade
costs in the last 1000 years contributed to the current world income
distribution.

24 This does not mean that population data cannot be patchy sometimes. 1850
census data on San Franscisco were destroyed in a fire, while data on Contra
Costa and Santa Clara counties were lost on the way to the San Francisco office
(U.S. Census, 1852).
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Transportation links. A substantial portion of the quantitative eco-
nomic geography literature has pointed out the importance of spa-
tial linkages across locations. First, spatial linkages might be crucial
in transmitting the effects of historical events from locations directly
affected by the event to other locations in the economy. Second, the his-
torical event that the researcher aims to evaluate might be the establish-
ment of a spatial linkage itself. For instance, a large literature has stud-
ied the general equilibrium effects of U.S. railroads, starting with the
seminal work of Fogel (1964).%> Conducting such an exercise requires
collecting a database of transportation links across locations. Such a
database essentially consists of a series of maps, one by time period and
mode of transportation (such as water, rail and road; or, in the case of
within-city transportation, walking, car and public transport).?® Using
data on the cost of transportation by mode, the next task is determining
the overall transport cost between any pair of locations in each time
period. This is normally done using least-cost algorithms (Dijkstra algo-
rithm, Fast Marching algorithm).

Some studies use data on the location of planned, rather than actual,
transportation links. For example, Santamaria (2020) uses planned
highways in 1930s Germany to calibrate an economic geography model
with endogenous infrastructure placement. Brinkman and Lin (2019)
use planned freeways as instruments for the location of actual freeways,
which are endogenously affected by opposition to construction due to
freeway disamenities.

Commuting and other travel flows. Commuting data are useful
to calibrate quantitative models of within-city geography, as such data
create a mapping between residential and workplace locations. Heblich
et al. (2020a), for instance, observe 1921 commuting data across bor-
oughs in the city of London. They combine these data with population
by borough to recover the location of people’s workplaces in London.
This is an important contribution as workplace data within cities are not
available in most countries prior to the second half of the 20th century.
Unfortunately, such comprehensive commuting data are rarely avail-
able either when it comes to other historical contexts. However, it is
sometimes possible to rely on survey data. For example, Brinkman and
Lin (2019) use data from 1950s travel surveys for Chicago and Detroit
to show that freeways acted as barriers to travel flows aimed at the
opposite side of the freeway.?’

Geographic characteristics. It should come as no surprise that
various studies in quantitative economic geography rely on data
on natural geographic characteristics. First, natural features such as
rivers and oceans had an influence on transportation routes, partic-
ularly during historical times. Thus, they serve as important inputs
to the creation of transportation links databases (Delventhal, 2018;
Donaldson and Hornbeck, 2016). Second, nature matters for locations’

25 Fogel’s pioneering idea was that the aggregate impact of railroads on U.S.
agriculture needs to be assessed by comparing the real-world economy to a
hypothetical economy in which the transportation of agricultural goods can
only happen through other modes - an exercise that today’s economists call a
counterfactual. Motivated by Fogel’s analysis, Donaldson and Hornbeck (2016)
conduct the same exercise in a quantitative economic geography model. Similar
to Fogel, they find that the effect of railroads on U.S. agriculture was rather
modest. However, Pérez-Cervantes (2014) finds, conducting a large number of
counterfactuals involving alternative railroad networks in a similar model, that
certain rail connections were much more influential than others. Finally, using
a dynamic spatial model of city formation, Nagy (2020a) argues that, even with
a limited effect on the agricultural sector itself, railroads had a large aggregate
impact on the U.S. economy by fostering the development of cities.

26 Historical maps are often georeferenced to modern maps when creating
such transportation links databases. Unfortunately however, historical maps
often lack precision, an issue discussed in more detail in Hanlon and Heblich
(2020).

27 Historical trade data at a higher spatial resolution than cross-country flows
are even harder to find. To study the role of trade in Bronze Age city formation,
Barjamovic et al. (2019) use the number of mentions on clay tablets as a proxy
of trade flows across ancient Assyrian cities.
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agricultural potential. High-resolution spatial datasets on agricultural
potential include the Food and Agriculture Organization’s Global Agro-
Ecological Zones database (FAO GAEZ), the Caloric Suitability Index
(Galor and Ozak, 2016), and the index of agricultural land suitability
built by Ramankutty et al. (2002). These datasets are used as inputs
to quantitative historical studies such as Delventhal (2018) and Nagy
(2020a).

Spatial data are often processed in Geographic Information Systems
(GIS). A Geographic Information System is a versatile computer-based
tool that helps with the “storage, analysis, output, and distribution of
spatial data and information” (Bolstad, 2005). As the quote highlights,
GIS is useful for at least three purposes. First, it allows for the efficient
storage of high-resolution spatial data. Second, it can perform various
sorts of analysis on spatial data, such as merging data up to higher units
of disaggregation, measuring distances across spatial units, creating dis-
tance buffers around them, and so on. Finally, GIS is especially well-
suited to creating nice visual output of spatial data, such as maps. Due to
these advantages of GIS, various historical spatial datasets are primar-
ily made available in GIS-compatible format. For instance, the National
Historical Geographic Information System (NHGIS) is a free online source
of GIS-compatible U.S. census and survey data that go back to 1790
(Manson et al., 2017).

Needless to say, no processing tool can compensate for the sparse
nature of historical spatial data. That said, data requirements are some-
times less demanding in historical contexts. For instance, commut-
ing was not a widespread phenomenon before the mid-19th century
(Heblich et al., 2020a). As a result, studies looking at earlier periods
are freed from the need to acquire commuting data. Similarly, popula-
tion can be a good proxy of income in Malthusian environments.>® And
even if these conditions are not met, another advantage of quantitative
modeling is that the model can substitute for missing data.

One notable example of the model substituting for missing data
is Barjamovic et al. (2019). They combine the extremely patchy data
available from ancient Assyria (a proxy of trade flows across Assyrian
cities and the locations of cities that have been found by archaeolo-
gists) with a quantitative trade model to predict the locations of cities
that have not yet been found. A general issue with this approach is
that the structure of the model, which identifies the unobserved data, is
an assumption that is untestable in practice. Nonetheless, even though
one cannot test the structure of the model in its entirety, one can test
some of its implications on observed outcomes that are not used in the
model’s quantification. For example, Barjamovic et al. (2019) contrast
their model’s predictions on merchants’ itineraries to actual itineraries
found. Although they do not use the actual itineraries in the quantifi-
cation, they find a good fit between the model-implied and the actual
itineraries. Moreover, they find that their location predictions for lost
cities often coincide with archaeologists’ conjectures, and that their
model-based method of locating cities works well when predicting the
locations of known cities. Such overidentification tests are crucial to
show that the model is a credible enough tool to fill the gaps in sparse
historical data.

4. Identification

One of the largest challenges facing any empirical investigation in
economic geography is the identification of causal effects (Redding and
Turner, 2015). In the case of quantitative economic geography studies,
this challenge can arise in two separate places. First, the challenge of
identification is present when the quantitative model is estimated or
calibrated to data. Second, besides taking the model to the data, a large
number of quantitative studies also estimate the reduced-form effects of
spatial events on local outcomes, as also illustrated in the quantitative

28 See Delventhal (2018) for a dynamic spatial model in which the world
endogenously transitions out of a Malthusian steady state.
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example of Section 2.2. In this section, I focus on the first issue, as
it is the one directly related to quantitative modeling. For a review
of identification challenges faced by reduced-form empirical work in
economic geography, see Baum-Snow and Ferreira (2015).

The key challenge involved in identifying the effects of historical
spatial events stems from the fact that the event itself is often endoge-
nous. Transport infrastructure construction, trade, or the spatial con-
centration of population are the outcomes of decisions made by eco-
nomic agents. A model in which they occur exogenously misses a set
of structural equations that determine these outcomes as a function
of other economic variables. Taking the model to the data without
these missing equations can bias the estimation or calibration of model
parameters entering the equations that are present in the model. A
related issue is that of omitted variables. If the set of locations directly
affected by the historical event are special in other respects, then the
estimation or calibration might falsely attribute the effects of these
omitted variables to the event itself.

Quantitative historical studies have developed three broad strate-
gies to overcome the challenge of identification. Some studies rely on
natural experiments to estimate the parameters of the model. Others
use instrumental variables that are arguably exogenous. Finally, some
studies identify the model’s parameters using data that only come from
the period before the event occurred. In what follows, I briefly review
the studies that have followed these three strategies.

Estimation of model parameters using natural experiments. A
number of quantitative studies exploit natural experiments. In a spatial
context, a certain event constitutes a natural experiment if locations’
exposure to it is as good as random. That is, which locations are exposed
to the event and to what extent are not related to these (or other) loca-
tions’ pre-event characteristics. The redrawing of borders and expulsion
of populations that follow wars often provide such natural experiments.
Ahlfeldt et al. (2015), for example, use the division of Berlin after the
Second World War as a natural experiment to study the strength of
agglomeration economies within the city. The division of Berlin ulti-
mately resulted in the construction of the Berlin Wall, which cut the
Western part of the city from the Eastern part. Western locations close
to the wall experienced a dramatic decline in the surrounding concen-
tration of population and economic activity. The decline was naturally
smaller for locations farther away from the wall. As the location of the
wall was chosen based on non-economic (military) considerations, the
extent to which different locations suffered a decline in surrounding
concentration was as if these declines were randomly assigned to loca-
tions. Thus, Ahlfeldt et al. (2015) can use the division of Berlin as a nat-
ural experiment to estimate the model’s parameters driving the extent
to which locations benefit from surrounding concentration (agglomera-
tion economies).

Ahlfeldt et al. (2015) estimate their quantitative spatial model of
Berlin using Generalized Method of Moments (GMM). This method
relies on setting up a series of moment conditions, i.e., conditions that
need to be satisfied by the estimated parameters of the model. Ahlfeldt
et al. (2015) base these conditions on the natural experiment provided
by the division of the city. In particular, these moment conditions state
that a location’s proximity to the Berlin Wall was unrelated to the
change in the levels of fundamental amenities and productivity at the
location. This condition must be satisfied if the placement of the wall
was truly exogenous.

Nagy (2020b) and Peters (2019) employ similar strategies to look at
the effect of trade on urbanization and the effect of population on local
economic growth, respectively. In Nagy (2020b), the natural experi-
ment stems from the redrawing of Hungary’s borders after the First
World War. This redrawing of borders disproportionately reduced the
trading opportunities of regions close to the new border. Nagy (2020b)
develops a quantitative model in which trading opportunities affect
urbanization, and estimates the key parameter of the model using the
variation in changing trading opportunities due to different regions
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being differentially exposed to the new border. In the case of Peters
(2019), the natural experiment comes from the expulsion of ethnic Ger-
mans from Eastern European countries after the Second World War.
These refugees were settled in Germany, increasing local population
substantially but differentially across locations. As the placement of the
refugees was driven by non-economic considerations, the variation in
population increases across locations can be used to estimate the param-
eters of a quantitative model in which local population drives local
growth.

Estimation of model parameters using instrumental variables.
Instrumental variables provide an alternative to the use of natural
experiments, which are rare in history. In the context of measuring the
effects of spatial events, an instrumental variable is a variable that is
correlated with locations’ (possibly endogenous) exposure to the event,
but does not affect locations’ economic outcomes in other ways. Heblich
et al. (2020b), for instance, study the persistence of neighborhood seg-
regation in U.K. cities using a dynamic model of residential sorting. A
key structural equation of the model is one that links current to past
segregation. Estimating the equation with ordinary least squares would
be subject to the issue that past segregation is endogenous. As a result,
Heblich et al. (2020b) use 19th-century pollution as an instrument for
past segregation. This instrument has a significant effect on past seg-
regation, as richer residents sorted to less polluted neighborhoods his-
torically. This method of identification is valid as long as variation in
19th-century pollution across neighborhoods only affects current seg-
regation through segregation in the past. Although this assumption is
untestable by definition, Heblich et al. (2020b) also show that a key
determinant of 19th-century pollution was whether a neighborhood is
on the Eastern or Western side of a city (as winds typically blow from
West to East). Thus, a substantial part of the identifying variation comes
from geography, which is exogenous.

Various other quantitative historical studies rely on geography-
based instruments to estimate the parameters of quantitative models.
Heblich et al. (2020a) use straight-line distances across boroughs to
instrument rail travel times in early-20th century London. Fajgelbaum
and Redding (2018) use least-cost paths to major ports and Spanish
colonial postal routes as instruments for the location of railroads in
Argentina. In Brinkman and Lin (2019), planned freeways and histor-
ical exploration routes serve as instruments for the location of actual
freeways in the United States.

Calibration of the model to pre-event data. In a few studies, the
quantitative model is calibrated to data that precede the event whose
effect the model is used to measure. As a result, the potential endogene-
ity of the event cannot bias the identification of the model’s parame-
ters. For example, Nagy (2020a) evaluates the effect of early-19th cen-
tury U.S. railroads on city development and aggregate growth. Though
the placement of railroads is likely endogenous, the calibration of the
model is fully based on data from the period prior to railroad construc-
tion. One concern could still be that people anticipated the placement
of railroads at certain locations even before they started to be built.
However, this is unlikely in the case of the steam railroad, which came
into existence and spread out from Britain over the course of a few
years in the 1820s and 1830s. Other quantitative historical studies cali-
brating model parameters to pre-event data include Redding and Sturm
(2008) and Santamaria (2020), who take their models to pre-WWII Ger-
man data to study the impact of the 1947 division of Germany on city
populations and highway construction, respectively.

As in the case of new techniques meant to increase model tractabil-
ity, novel ways of identification developed in the quantitative historical
geography literature may benefit other researchers. Historical instru-
ments, for instance, are often useful to obtain exogenous variation
in present-day outcomes. Among others, Duranton et al. (2014) and
Duranton and Turner (2011) use historical exploration routes as instru-
ments to study how the current U.S. road network affects trade and
traffic congestion, respectively.
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5. Conclusion

Over the last few years, the use of quantitative models has gained
prominence in economic geography. In this article, I have reviewed
the part of this literature that studies the economic impact of histor-
ical events with a quantitative methodology. I have argued that this
methodology is able to bridge the gap between reduced-form empirical
work and classical structural modeling. On the one hand, it is suitable
to be combined with rich spatial data, thus allowing the data to speak
about important historical questions. On the other hand, structural by
nature, quantitative modeling can measure the aggregate impact of
historical events and distinguish growth from the mere relocation of
economic activity. These benefits from quantitative modeling, how-
ever, come at a price. Specifically, studying historical spatial ques-
tions with quantitative models is associated with three key challenges:
model tractability, the sparse nature of historical data, and identifi-
cation issues. In this article, I have reviewed how the literature has
addressed these challenges.

Even though quantitative historical studies have come a long way
over the course of a few years in economic geography, there is clearly
room for further research in the field. As already mentioned, historical
questions are often important for today’s economists because similar
events are expected to take place in the future. Developing models that
can be used by policymakers to assess the economic impact of these
future events has the potential to inform these policymakers’ decisions.
Quantitative models of economic geography are still rarely used in pol-
icy work. One reason for this might be the complex structure of these
models, which often makes them seem like a black box to researchers
outside the literature. Simplifying and clarifying model structure, with-
out giving up too much on model realism, seems a fruitful direction that
may allow these models to be adapted to a larger extent in the world of
policy.
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