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Abstract

This paper explores whether rational herding can generate endogenous aggregate fluctua-

tions. We embed a tractable model of rational herding into a business cycle framework. In

the model, technological innovations arrive with unknown qualities and agents have dispersed

information about how productive the technology really is. Rational investors decide whether

to invest based on their private information and the investment behavior of others. Herd-driven

boom-bust cycles arise endogenously in this environment when the technology is unproductive

but investors’ initial information is unusually optimistic. Their overoptimism leads to high

investment rates, which investors mistakenly attribute to good fundamentals, leading to a self-

reinforcing pattern of higher optimism and higher investment until the economy reaches a peak,

followed by a crash when agents ultimately realize their mistake. We calibrate the model to the

U.S. economy and show that it can explain boom-and-bust cycles in line with episodes like the

dot-com bubble of the 1990s.
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1 Introduction

New technologies sometimes lead to periods of massive investment that end in severe economic

downturns. One salient example is the 1990s boom in information technologies that culminated in

the stock market crash of 2001 (“dot-com bubble”). While the internet had been invented years

earlier to connect academic and military networks, its commercial potential only became clear in the

1990s, when extreme enthusiasm for the new technology led to large investments in communication

networks, software, and IT equipment. This high volume of investment and the rising valuation of

IT companies initially seemed to validate the optimistic outlook, but the crash eventually followed

as some of the expected returns failed to materialize.1 While there is no consensus about the deep

drivers behind these fluctuations, a common view is that shifts in expectation played a key role in

shaping the dot-com boom-bust cycles.

The idea that expectations contribute to aggregate economic fluctuations has a long tradition

in macroeconomics. In his seminal work on the origin of economic fluctuations, Pigou (1927)

emphasized the importance of beliefs in shaping the business cycle. In his view, booms can be caused

by waves of optimism among business executives, and crashes arise when their lofty expectations

turn out to have been mistaken. This hypothesis has been extensively studied in modern business

cycle theory by the news-driven business cycle literature, pioneered by Beaudry and Portier (2004).2

According to this view, agents receive news about future productivity, which sometimes turn out

to be false. Boom-bust cycles arise after an initial sequence of positive news is later contradicted

by experience.

These theories, however, remain mostly silent on the technological, social and psychological

determinants that drive the evolution of beliefs. In most of these studies, the belief process obeys

an exogenous law, and boom-bust cycles occur after a specific sequence of shocks. In contrast to the

standard news literature, other explanations emphasize the social dimension of beliefs formation.

Pigou, in the earlier mentioned volume, highlighted the important role that the behavior of others

played in shaping these expectations.3 He suggested that executives infer business conditions by

observing the decisions of other business leaders, so that they might be tempted to invest when they

see their competitors expand their operations.4 This herding process can thus propel the economy

1Other boom-bust episodes follow similar patterns. For instance, the Roaring Twenties, a period of massive
economic growth fueled by technological innovations in many sectors such as car manufacturing, communication,
aviation and the chemical industry, ended in the Great Depression. Xiong (2013) documents several instances of
boom-bust episodes that follow the introduction of new technologies.

2See Beaudry and Portier (2014) for an overview of the empirical and theoretical research supporting the news
view of the business cycle.

3In Industrial Fluctuations (1927), Pigou states that “the varying expectations of business men [...] and not
anything else, constitute the immediate and direct causes or antecedents of industrial fluctuation”. He also emphasizes
the importance of the herding process: “the pioneers, who thus undertake and expand enterprises, at once fill a social
need and lay treasure for themselves. Gradually, as no disaster happens to them, other less bold spirits follow their
example; then others and yet other.”

4Other studies (Blasco et al., 2012; Galariotis et al., 2015) document the presence of herding behavior along the
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into a boom and precipitate the crash in a downturn, thereby providing a potential explanation for

the emergence of technology-driven boom-bust cycles

This paper considers herding as a source of boom-and-bust cycles. We propose a theory in

which a new technology of uncertain quality can trigger a slow-rising boom followed by a sudden

crash, in line with the experience of the dot-com era. In the boom phase, the initial optimism of

investors translates into high levels of aggregate investment, and that high investment, in turn, leads

to further increases in optimism. This self-reinforcing process can fuel a long-lasting expansion of

the economy, which comes to an end when the data no longer support an optimistic view of the

technology. Agents then stop investing and the economy rapidly collapses. Our theory therefore

captures the importance of expectations and the role of herding that were highlighted by Pigou

(1927).

In the model, random technological innovations arrive over time and a group of rational agents

can decide whether to invest or not in the new technology. The payoff from investing is initially

unknown and investors use all available information to update their beliefs about the fundamental

value of the technology. Information comes from both public and private sources. Importantly,

to capture the idea that investors collect information from similar sources (news media, market

reports, etc), we assume that private signals feature some common noise. This assumption is

key as it allows the distribution of beliefs across investors to vary for reasons unrelated to the

fundamental value of the technology. Investors do not initially know the extent of that bias but

progressively learn about it over time.

Agents also receive public signals. First, they can learn by observing the exogenous return

on investment, which provides noisy information about the technology. They can also learn from

endogenous market outcomes such as aggregate quantities or prices. In the model, this amounts to

observing, with some noise, the mass of agents who invest in the new technology. As the individual

investment decisions reflect the private information of the agents, this public signal operates as a

social learning channel by aggregating, in a non-linear fashion, some of the dispersed information

for everyone to see.

How agents interpret this public signal is key for the emergence of boom-bust cycles. Such cycles

are caused in our model by what we refer to as “false-positives”: bad realizations of the technology

fundamental that are accompanied by unusually large and positive realizations of the common noise.

False-positives may thus capture situations in which, for instance, excessively promising benchmark

tests are widely advertised upon the introduction of the technology and lead to overly optimistic

beliefs. When observing the large amount of investment induced by such false-positive shocks,

agents infer that private signals are positive. These signals, in turn, can be positive either because

the fundamental value of the technology is good, or because the common noise component of the

private signals is high. Investors cannot tell these stories apart but, as long as the false-positive

development of several historical boom-bust cycles.
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shocks are relatively rare, the high level of investment is mainly attributed to the good-technology

state, whose posterior likelihood rises. More optimistic beliefs lead to further aggregate investment

next period, which, in turn, leads to even more positive beliefs about the fundamental and so on. It

is in that sense that our model displays a form of herding: agents mimic the behavior of others and

sometimes mistakenly follow the herd into an investment boom, meanwhile a shrinking measure of

agents use their private information to go against the crowd. Through this positive feedback loop,

the arrival of a low-value technology can create a long-lasting boom as investors are fooled by the

initial investment craze.

But agents are rational and understand the possibility that they can sometimes be mistaken in

their assessment. As a result, they keep track of the probability of being in a false-positive state,

which appears increasingly likely as investment keeps falling slightly short of the most optimistic

predictions. At some point, the most pessimistic agents stop investing and aggregate investment

no longer supports a high-productivity scenario, leading to a reversal in beliefs and a collapse of

investment. We provide formal conditions under which these boom and bust episodes are guaranteed

to arise.

A distinguishing feature of our approach is that the boom-and-bust cycle emerges endogenously.

Standard practice in modern business cycle analysis often treats the booms and the busts as separate

episodes, both driven by their own sequence of exogenous shocks. In contrast, this paper explores

a fundamentally different view of aggregate fluctuations, in which both phases of the cycle are

intrinsically linked, such that the “booms sow the seeds of the subsequent busts” (Beaudry et al.,

2020). Indeed, our mechanism generates an endogenous boom-and-bust cycle out of the single

impulse shock that is the arrival of the new technology.5 The crash, in particular, is not triggered

by an exogenous shock but arises endogenously through the natural evolution of beliefs. As a result,

the properties of the bust can be affected by what happened during the preceding boom, and policy

interventions can have a particularly strong impact on the duration and magnitude of the boom as

well as the timing and depth of the bust.

In the model, the mass of investing agent is a nonlinear aggregator of the dispersed information.

As a result, the amount of information that agents receive is endogenous and varies with the cycle,

which opens the door to a form of information cascades. When the public signals received up

to a certain date are very positive, most agents invest regardless of their private signals so that

their private information is not encoded into the mass of investors. Similarly, after a series of bad

news, agents rely less on their private information when deciding not to invest, making aggregate

investment also less informative. As a result, the model is able to generate sustained booms

5By “endogenous”, we mean that the entire boom-and-bust pattern is produced by the forces in the model. Our
theory still relies on shocks, however, but only one-time shocks and does not rely on a particular sequence of positive
then negative shocks. This approach is different from other theories of endogenous business cycles that generate deter-
ministic periodic or chaotic dynamics (see Boldrin and Woodford (1990); Benhabib (1992); Guesnerie and Woodford
(1992) for surveys).
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and rapid busts as periods when massive investment restricts the flow of information, but slight

downturns can suddenly reveal more information on the true state of the world and trigger an

economic collapse.

Due to this variable flow of public information, the model features an information externality:

agents do not internalize how their private investment decisions affect the flow of public information.

We characterize the solution of a social planning problem and show that the planner pushes agents

to invest less during booms and more during downturns so as to optimize the amount of information

provided by aggregate investment. We also characterize the optimal investment tax that implements

the efficient allocation and show that it displays a leaning-against-the-wind characteristic, with

investment taxes during booms and investment subsidies during downturns while the technology is

uncertain.

To explore how the evolution of beliefs generated by our learning model can produce a general

macroeconomic expansion followed by a recession, and to have a sense of the magnitude of the boom-

bust cycles generated by the theory, we embed our main mechanism into a quantitative business

cycle framework, which models the technology adoption decision of entrepreneurs after the arrival

of a new technology. The model features two types of capital, “traditional” and “information

technology” capital (IT), and we assume that the new technology is more intensive in IT capital.

As in the basic model, social learning takes place as agents observe the measure of new-technology

adopters.

We calibrate the model to match various moments of the data that relate to the dot-com

period. In particular, we discipline the amount of private information—a key moment for our

mechanism—using dispersion in forecasts from the Survey of Professional Forecasters (SPF). We

also use data from the SPF to discipline investors’ beliefs about the true value of the technology.

Under our calibration, the model is able to generate a boom-bust cycle with positive comovements

in consumption, investment, hours worked and output. The overinvestment into IT capital during

the boom period causes the economy to contract significantly when beliefs collapse as agents realize

that resources were misallocated. Overall, our results suggest that rational herding among economic

agent can account for significant fluctuations in macroeconomic aggregates.

We also discuss our model’s implications for the conduct of monetary policy in the face of

boom-and-bust cycles and investigate whether a leaning-against-the-wind monetary policy would

be desirable. We find that it can dampen the cycle but has little effect on the technology choice

of the entrepreneurs and on the release of public information, in contrast to a technology-adoption

tax. The downside of these policies is that they also slow down the adoption of good technologies.
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1.1 Literature Review

Our paper is closely related to the literature on news or noise-driven business cycles (Beaudry and Portier,

2004; Lorenzoni, 2009; Jaimovich and Rebelo, 2009). Indeed, our model shares the view that boom-

bust cycles may be due to false-positives. In the news-shock literature, beliefs are driven by the

exogenous release of news at fixed dates. In contrast, in our model, the rise and fall in beliefs that

generates boom-and-bust cycles is endogenously driven by model forces, allowing us to explore the

model’s predictions on the frequency and timing of such cycles, and providing a greater role for

stabilization policies. In addition the news literature does not consider the role of herding in driving

fluctuations. Christiano et al. (2008) consider the interaction of monetary policy and boom-bust

cycles driven by news shocks. Closer to our work, Benhima (2019) builds a two-period model with

dispersed private information in which an overly optimistic news shock about demand can create a

boom in period 1 and a bust in period 2 when the truth is revealed. Burnside et al. (2016) construct

an epidemiological model in which the transmission of optimistic beliefs in a population about the

housing market can create a boom and bust.

As in Caplin and Leahy (1994) and Veldkamp (2005), the endogenous release of information

in our model can generate sudden collapses in economic activity. Angeletos and La’O (2013) con-

struct a model in which variations in sentiments can lead to aggregate fluctuations. Our work

also contribute to a literature in which the aggregation of private information leads to nonlinear

aggregate dynamics (Fajgelbaum et al., 2017).

Our paper also relates to the original work on herding and information cascades by Banerjee

(1992), Bikhchandani et al. (1992) and Chamley (2004). Our model differs from these traditional

models of herding in several dimensions. First, in previous herding models, agents make decisions

sequentially and the dynamics of the model are governed by the gradual observation of these

individual decisions. Both of these features do not sit well with standard macroeconomic models,

which explains, we believe, why herding does not figure more prominently in this literature. In

our setup, instead, agents act simultaneously and learn by observing aggregates, which allows for

a smoother integration of herding mechanisms into standard macroeconomic models. Second, the

source of agents’ confusion is different. In traditional herding models, people are confused between

the fundamental return and the idiosyncratic shocks that stem from a particular ordering of the

investors. As a consequence, boom-bust cycles arise in those models only for specific orderings,

or in other words for specific sequences of idiosyncratic shocks. In our model instead, agents are

confused between between the fundamental and the common noise, which are drawn once and for

all. Boom-bust patterns emerge endogenously through the natural evolution of beliefs and without

any timing assumptions about shocks. This distinction with the existing literature is crucial to

generate endogenous cycles. Finally, while most of the earlier literature on herding focused on

a strict type of permanent information cascade in which the flow of information is exactly zero,
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our model features a “smooth” form of information cascades in which the information flow varies

continuously over the cycle. This feature is important as it allows for the possibility of the economy

endogenously exiting the cascade region, producing the busts in our simulations.6

Our learning model shares similarities with Vives (1997) who studies an environment in which

agents with dispersed information learn by observing the average action across agents.7 Chapter

4 of Chamley (2004) briefly reviews a model in which privately informed agents learn from the

average action. As in our model, the amount of information released by the public signal varies

with the public beliefs. Straub and Ulbricht (2019) explore in a general setup the informativeness

of nonlinear public signals and Straub and Ulbricht (2017) studies a particular application with

financial constraints. None of these works consider the emergence of endogenous boom-bust cycles.

Our model also relates to Avery and Zemsky (1998), who study herding in financial markets and

introduce multidimensional uncertainty to allow for information cascades.

To our knowledge, Loisel et al. (2012) is the only other macroeconomic model that features

herding phenomena. Their paper presents a simple general equilibrium model with overlapping

generations of finitely-lived entrepreneurs who are endowed with private signals and must invest

in a risky asset. As in traditional models of herding, entrepreneurs act sequentially and individual

investment decisions are publicly observable. Aggregate output fluctuates as single agents gradually

make their investment decisions. Our paper extends this approach by offering a novel herding model,

based on contemporaneous decisions and the observation of aggregate actions, which, we believe,

can be more easily integrated into traditional macroeconomic models.

Our work also relates to a strand of literature that studies the role of bubbles in macroeconomic

environments. These includes studies based on rational bubbles (Gaĺı, 2014; Martin and Ventura,

2016; Asriyan et al., 2019; Guerrón-Quintana et al., 2020) as well as bubbles due to financial con-

straints and others (Kocherlakota, 1992; Miao and Wang, 2012; Barlevy, 2014; Hirano and Yanagawa,

2016).

Our paper also relates to the literature on endogenous deterministic cycles, which includes

Grandmont (1985), Boldrin and Woodford (1990), Benhabib (1992), Benhabib et al. (2002) and

Matsuyama (1999; 2013). More recent contributions to this literature include Beaudry et al. (2020),

who provide empirical evidence in favor of endogenous cycles. In contrast to our setup, models in

this literature feature deterministic limit cycles that can be periodic or chaotic.

Another literature views endogenous cycles from the point of view of equilibrium indeterminacy

and sunspot dynamics. This includes Benhabib and Farmer (1994) and Wen (1998). More recent

contributions include Benhabib et al. (2015), Kaplan and Menzio (2016), Eeckhout and Lindenlaub

(2019) and Golosov and Menzio (2020). These studies typically feature multiple equilibria and ag-

6Our model can also generate permanent information cascades when the support of the private signal distribution
is bounded.

7Both Vives (1993) and Vives (1997) show that learning happens slowly in models in which privately informed
agents learn from aggregates.

6



gregate fluctuations are due to shifts in expectation triggered by sunspot shocks. Our model,

instead, features a unique equilibrium and boom-bust cycles result from agents’ gradual learning

about the technology and the common noise.

Finally, a literature studies the emergence of boom-and-bust cycles in asset prices or in aggregate

economic activity after departing from rationality or rational expectations. This includes the

adaptive learning literature (Carceles-Poveda and Giannitsarou, 2008; Eusepi and Preston, 2011;

Adam et al., 2017) and, more recently, a literature that uses diagnostic expectations (Bordalo et al.,

2021).

Section 2 introduces a simple learning model that conveys the intuition for the mechanism. The

following section describes the forces at work in the model and discusses its welfare implications.

Section 4 presents our business cycle model. We calibrate the model in Section 5 and show several

empirical implications of the mechanism. We also discuss the role of policy. The final section

concludes.

2 Learning Model

We start by presenting our mechanism in a simplified dynamic investment game. This allows us to

provide intuition for why social learning can lead to an endogenous herd-driven boom-bust cycle

out of a single impulse shock. We also use this simplified model to derive analytical results and

discuss the policy implications

2.1 Notation

In what follows, whenever F x (x̃) = Pr (x ≤ x̃) denotes the cumulative distribution function (CDF)

of some random variable x, fx refers to its associated probability density function and F
x
its

complementary CDF, F
x
(x̃) = Pr (x > x̃).

2.2 Environment

Time is discrete and goes on forever, t = 0, 1, . . . . The economy is populated by a unit measure of

investors indexed by j ∈ [0, 1]. Investors are risk-neutral and discount future consumption at rate

0 < β < 1. Each investor has access to an investment technology that becomes available in period

0 and provides a period return

Rt = θ + ut, (1)

that is identical across agents, and where θ ∈ {θH , θL}, θH > θL, is the permanent component

of the technology, and ut is an i.i.d transitory component drawn from the cumulative distribution
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F u.8 We refer to θ as the technology fundamental. As we describe below, agents do not observe θ

directly but learn about it through a variety of signals.

Every period, investors must decide whether to invest in the technology (ijt = 1) or not (ijt =

0).9 Investing is costly and requires the payment every period of a cost c that is identical across

agents. We assume that agents have deep pockets and ignore any form of budget or financial

constraints. The total return to an investor j in any given period t is therefore

yjt = ijt (Rt − c) . (2)

2.3 Information

The permanent component θ of the investment technology is randomly drawn once and for all at

date 0. We denote by p0 the ex-ante probability that θ = θH . Investors do not observe θ directly

but receive various private and public signals about it.

Private signals

First, we assume that agents receive a private signal sj at date 0, upon the arrival of the new

technology. Importantly, we allow these private signals to feature not only idiosyncratic noise but

also common noise. This common noise might come, for instance, from sources of information

shared by agents (mass media, internet) that may report noisy signals about the initial success of

the investment technology (e.g., benchmark tests). Common noise is key to our mechanism as it

introduces the possibility that the average belief about θ varies for reasons that are orthogonal to

the true value of the fundamental. In other words, common noise is what allows agents, as a group,

to be sometimes overly optimistic or pessimistic about the technology. As a consequence, it is a

source of confusion for the investors who must figure out whether high investment rates result from

either good fundamentals or overoptimism. Boom-and-bust cycles are then caused by investors

mistakenly attributing high investment rates to good fundamentals when the technology is bad in

reality.

Common noise is captured by the random variable ξ, distributed according to the CDF F ξ.

Formally, we assume that the private signal sj of agent j is drawn from the CDF F sθ+ξ (s) =

Pr (sj ≤ s), where {F sx}x∈I is a family of distributions that admit the probability density functions

{f sx}x∈I . To prevent the possibility of trivial learning, we make the assumption that F sx has full

support over R, i.e., f sθ+ξ > 0 everywhere.10 Finally, in order to guarantee monotonicity in learning,

8While we model the fundamental θ as a shock to the productivity of an investment, it is straightforward to modify
the model so that the fundamental corresponds to other shocks such as demand, changes in taxation, etc.

9We assume in the main text that the investment decision is binary, but we show in Appendix A.4 that the model
also generates boom-bust cycles when firms can invest along an intensive margin.

10This full-support assumption rules out permanent information cascades in which, for instance, the public infor-
mation is so optimistic that even the most pessimistic agent prefers to invest. In that case, aggregate investment
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we assume that the family {F sx}x∈I satisfies the monotone likelihood ratio property (MLRP). That

is, for x1 < x2 ∈ I and s1 < s2, we must have

f sx2 (s2)

f sx1 (s2)
≥
f sx2 (s1)

f sx1 (s1)
. (MLRP)

Intuitively, the MLRP condition guarantees that a high signal s is more likely to be coming from a

high realization of x = θ+ξ. In other words, an investor observing a high private signal sj becomes

more optimistic and puts a higher probability on the value of the technology θ and the common

noise ξ being high.

Example. In most of our examples, we will use additive private signals so that

sj = θ + ξ + vj , with vj ∼ iid CDF F v. (3)

Well-known distributions that satisfy the MLRP condition include the exponential, binomial,

poisson or the Gaussian distributions.

Public signals

In addition to their initial private signal, investors collect public information over time by observing

market activity and investment returns. We first assume that all agents observe the return Rt, given

by (1). Since the transitory component in the investment return ut is unknown to the agents, the

total return Rt provides an exogenous noisy signal about θ, which offers a constant amount of

information over time. Second, and more importantly for our mechanism, we introduce a form

of social learning in the economy by allowing investors to observe an endogenous signal which

partially aggregates the private information of agents. This is to captures the type of information

that agents learn by observing aggregate quantities or prices, which result from the aggregation of

individual decisions.11 Specifically, we assume that investors receive a noisy measure of the total

number of investing agents mt, which we define as

mt =

∫ 1

0
ijtdj + εt, with εt ∼ iid CDF F ε. (4)

The noise εt can be interpreted as coming either from measurement errors or from the presence of

noise traders that make aggregate variables less informative. The presence of noise is required in

our setting to prevent agents form learning too quickly (or even immediately in some cases, as we

discuss later).

does not reveal any private information and social learning can stop altogether. See Appendix A.5 for an example.
11In particular, in our full business cycle model from Section 4, observing aggregate quantities or prices will provide

a public signal of the same form.
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Before going further, we would like to highlight some particular features of the signal mt. In

equilibrium, the decision to invest ijt is a nonlinear function of the investor’s individual beliefs. In

turn, beliefs are a function of public information up to time t, {Rt−1,mt−1, . . . , R0,m0}, and of

the private signal sj. As a result, since public information is shared and can be filtered out, mt

partially aggregates the private information across the population of investors. To that extent, mt

contains useful information regarding the fundamental θ and the common noise ξ.

As we explain in more details below, it is the presence of this endogenous signal that will allow

for herding to occur in our environment. As mt aggregates the dispersed information of private

agents, a particularly high draw ofmt will be interpreted as being indicative of a strong fundamental

θ and a high common noise ξ. As a results, agents will update their beliefs in favor of these states,

which might lead them to invest more, which will increase mt further, and so on.

Versions of an endogenous signal like mt have been studied in the literature, but usually under

an assumption of linearity (Vives, 1993, 1997; Amador and Weill, 2012). What makes the signal

mt particularly interesting in our setup is that it is nonlinear. Hence, the amount of information

it contains varies over time depending on the economy’s location in the state space (e.g., history

of shocks), opening up the possibility of a form of informational cascades in which agents rely

less on their private information and aggregate investment becomes less informative. Finally, the

endogeneity of mt is the source of an information externality, which provides a basis for government

intervention, as we discuss in section 3.3.

2.4 Belief Characterization

There are two aggregate shocks in this economy: the fundamental θ and the common noise ξ. The

beliefs of an individual investor j are described by a joint probability distribution that we denote

by

Λjt

(

θ̃, ξ̃
)

= Pr
(

θ = θ̃, ξ ∈
[

ξ̃, ξ̃ + dξ̃
]

| Ijt
)

,

in which we explicitly allow for ξ to take a continuum of values and where Ijt is agent j’s information

set at date t. Since investors receive different private signals, we should in principle keep track of

the whole distribution of beliefs in the economy (i.e., a distribution over distributions). Fortunately,

the information structure is simple enough that the model lends itself to a useful simplification. As

in Chapter 3 of Chamley (2004), it is enough to keep track of only one set of time-varying beliefs,

the public beliefs Λt

(

θ̃, ξ̃
)

= Pr
(

θ = θ̃, ξ ∈
[

ξ̃, ξ̃ + dξ̃
]

| It
)

. These public beliefs correspond to

the beliefs of an outside observer who only has access to public information It at time t, which is

the collection of past investment returns and measures of investors:

It = {Rt−1,mt−1, . . . , R0,m0} .
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In comparison to this outside observer, an investor’s information set also includes the private signal

sj, so that Ijt = It ∪ {sj}. Investor’s individual beliefs can easily be recovered from public beliefs

using Bayes’ rule and the private signal sj, according to

Λjt

(

θ̃, ξ̃
)

=
Λt

(

θ̃, ξ̃
)

f s
θ̃+ξ̃

(sj)
∫
Λt (θ, ξ) f

s
θ+ξ (sj) d (θ, ξ)

. (5)

This simplification comes from the fact that only public information evolves over time. Indeed,

since the private signals distribution f sθ+ξ is constant and known up to the realization of θ and ξ, it

is easy to recover the entire distribution of private beliefs across investors for a given combination

of (θ, ξ) at any point in time. As a result, the only object that we need to keep track of is the

public belief function Λt.

2.5 Timing and Investment Decision

The timing is as follows. At date 0, the fundamental θ, the common noise component ξ and the

private signals sj are drawn once and for all. At date t ≥ 0,

1. Each agent chooses whether to invest or not based on their individual beliefs Λjt,

2. Investment returns Rt are realized,

3. All agents observe {Rt,mt}, update their beliefs and move to the next period.

The investment decision can be characterized in an easy way. Because returns accrue in the same

period as the investment is made, the investment decision is a simple static problem. Investor j

invests in period t if and only if

E [Rt | Ijt] ≥ c. (6)

Defining

pjt = Pr (θ = θH | Ijt) =

∫

Λjt (θH , ξ) dξ (7)

as the probability that investor j puts on being in the good-technology state, the investment decision

(6) is characterized by a cutoff rule p∗ in the space of beliefs. That is, an agent invests if and only

if12 pjt ≥ p∗ where p∗ is the belief of the marginal investor such that

p∗θH + (1− p∗) θL = c. (8)

12To break indifference, we assume that indifferent agents invest in the technology. This assumption is innocuous
if F sθ+ξ has no mass points.
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The total measure of investing agents can then be expressed as

mt = me (Λt, θ, ξ) + εt (9)

where me (Λt, θ, ξ) =

∫

1I (pj (Λt, sj) ≥ p∗) f sθ+ξ (sj) dsj. (10)

The variable me is the expected measure of investing agents for a given state of the world (θ, ξ),

excluding the noise εt. Importantly for what follows, me is an object that any agent in the economy

can compute. To see this, note that since they know the structure of the model and the public

beliefs, all agents agree on the cutoff p∗. Second, thanks to the dichotomy between public beliefs

and the fixed distribution of private signals f sθ+ξ, all agents can compute the distribution of beliefs

pj given a realization of θ and ξ. This property is essential to tractably solve the inference problem

from the endogenous public signal, to which we now turn.

2.6 Evolution of Beliefs

After characterizing the investment decision, we can now describe how beliefs are updated over

time. Each end of period brings two new public signals for investors to process: Rt and mt. The

updating of information with Rt is straightforward as it is a simple exogenous signal. Applying

Bayes’ rule, we define the interim beliefs at the end of the period as

Λt|Rt

(

θ̃, ξ̃
)

=
Λt

(

θ̃, ξ̃
)

fu
(

Rt − θ̃
)

∫
Λt (θ, ξ) fu (Rt − θ) d (θ, ξ)

. (11)

We now turn to incorporating the information contained in mt. Solving the inference problem

from an endogenous signal like mt can be complicated in general because individual decisions need

to be inverted to back out their information content about θ and ξ. Fortunately, and as highlighted

at the end of the previous section, the inference problem is greatly simplified in our environment

since the expected measure of investors me in every state of the world is a simple function of the

public beliefs Λt (known by everyone) and of the true realization of (θ, ξ). Investors solely differ in

their assessment of the probability of each state (θ, ξ), encoded in Λjt, but there is no infinite regress

problem arising from the necessity to forecast the beliefs of agents after any history of shocks.13

Because of the equilibrium structure of the signal (9), Bayes’ rule gives us the simple updating

equation

13In the absence of the simplifications from our information structure, learning from mt would require to compute
a hypothetical mt and its probability in every state of the world after every history of shocks. Computing mt, in turn,
would require forecasting the beliefs of each individual at each date—themselves being the product of a sequence of
individual inference problems. Townsend (1983) provides a famous example why this sort of inference often leads to
an intractable infinite regress problem.
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Λt+1

(

θ̃, ξ̃
)

=
Λt|Rt

(

θ̃, ξ̃
)

f ε
(

mt −me
(

Λt, θ̃, ξ̃
))

∫
Λt|Rt (θ, ξ) f

ε (mt −me (Λt, θ, ξ)) d (θ, ξ)
. (12)

2.7 Equilibrium

We are now ready to define an equilibrium in this economy.

Definition 1. An equilibrium consists of history-contingent public beliefs Λt, a distribution of

private beliefs {Λjt}j∈[0,1] and a measure of investors mt for all t, such that, 1) the distribution of

private beliefs is derived from the public beliefs through (5) and (7); 2) the measure of investors

is consistent with investors decisions under their private beliefs as in (9); and 3) the public beliefs

follow the laws of motion (11)–(12).

With that definition in hand, the following proposition characterizes the set of equilibria.

Proposition 1. There exists a unique equilibrium.

The proof of the proposition is straightforward. It shows that from a given distribution of

public beliefs Λt, there is a unique mapping, given the realization of the shocks, to next period’s

public beliefs Λt. Starting from the initial Λ0 we can therefore reconstruct the unique equilibrium

sequence {Λ0,Λ1, . . . }. All other equilibrium quantities such as the measure of investors and the

distribution of private beliefs can then be reconstructed from the public beliefs in a unique way.

3 Endogenous Booms and Busts

We are now fully equipped to analyze the dynamics implied by the model. We start with a simple

special case that conveys the intuition about the emergence of i) a smooth form of information

cascades and ii) endogenous booms and busts. We then show that these results extend to a more

general setup. We also discuss the welfare properties of the model and describe how the efficient

allocation can be implemented using an investment tax.

3.1 The 3-state model

To simplify the exposition, we temporarily make the simplifying assumption that the pair (θ, ξ) can

only take three different values, the minimal number of states required for endogenous boom-bust

cycles to emerge in our model. Specifically, we assume

(θ, ξ) ∈
{
(θL, 0) , (θH , 0) ,

(
θL, ξ

)}
with θL < θL + ξ < θH .

We refer to (θL, 0) as the bad-technology state, (θH , 0) as the good-technology state and
(
θL, ξ

)

as the false-positive state. The latter is the state of interest as it is the one that will trigger a
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boom-and-bust cycle by having investors mistakenly assess the technology to be of high quality

before later realizing their mistake.

Having only three states reduces the number of state variables required to keep track of the

belief distribution Λt. Public beliefs are now summarized by the two variables

pt ≡ Λt (θH , 0) and qt ≡ Λt
(
θL, ξ

)
,

and the corresponding updating rules can be found in Appendix A.1.

We now establish a first result. Under our assumptions, the individual beliefs about the proba-

bility of the good technology, pjt = Λjt (θH , 0), is increasing in the private signal sj. As a result, the

investment decision can be further characterized by a cutoff rule s∗ (pt, qt) in terms of private sig-

nals, which simplifies the expression of the expected measure of investing agents me as the following

Lemma shows.

Lemma 1. In the three-state model, the optimal investment strategy is characterized by a cutoff

rule in the private signal s∗ (pt, qt) that is decreasing in pt. That is, an agent invests if and only if

sj ≥ s∗ (pt, qt). The expected measure of investing agents is given by

me (pt, qt, θ, ξ) = F
s
θ+ξ (s

∗ (pt, qt)) .

Learning from mt

To develop intuition on the way agents learn from the measure of investors, we propose an example

in Figure 1. Panel (a) displays the distribution of private signals sj in the three states of the

world. Due to the MLRP assumption, the three distributions are ordered in the sense of first-order

stochastic dominance. The expected measure of investing agents me is represented as the mass of

agents located to the right of the cutoff s∗t . We can see that me is small in the bad-technology state

(θL, 0) (in red), that agents expect more investment in the false-positive state
(
θL, ξ

)
(in green),

and that it is at its largest in the good-technology state (θH , 0) (in blue).

The three measures me being computed, we then present in panel (b) the three potential

distributions of mt in the three states of the world assuming that the noise ε is normally distributed

with mean 0. As the graph illustrates, agents expect very different distributions of investment mt,

each centered on their expected value me in the different states of the world (θ, ξ). We can split the

mt-space into three regions that indicate which state is attributed more probability after observing

mt. For instance, for low mt the likelihood of the state θL is greater than that of the other states, so

information updating will attribute it a higher probability. The two other states,
(
θL, ξ

)
and (θH , 0),

have their own higher likelihood region that are also represented on the graph. Importantly for the

emergence of boom-and-bust cycles, beliefs about the good state tend to increase after observing

high realizations of mt. It is in that sense that the model displays a form of “herding”: agents

14



become more optimistic (resp. pessimistic) after seeing high (resp. low) patterns of investment,

leading them to make inefficient investment decisions, as we will see in our welfare analysis.
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Notes: Panel (a) on the left displays the distribution of private signals sj across the population in the three possible states

of the world along with the corresponding expected measures of investing agents met = F
s
θ+ξ (s

∗ (pt, qt)), for some public

beliefs (pt, qt). Panel (b) on the right shows the distribution of mt = met + εt in the three states of the world assuming some

Gaussian-like distribution F ε with mean 0 and variance σ2ε .

Figure 1: Private beliefs and expected measure of investors

Signal-to-noise ratio and smooth information cascades

In the traditional herding literature (Banerjee, 1992; Bikhchandani et al., 1992), information cas-

cades arise when public beliefs are so extreme (pt extremely high or low, because of a particular

history of public signals), that agents end up neglecting their own private information. That is,

agents invest (or not) no matter what their private information is. As a result, observing previous

investors’ decisions becomes uninformative and the economy may end up being stuck in a situation

with mistaken beliefs forever.

Because social learning takes place through the observation of the continuous variable mt,

rather than the sequence of binary decisions by previous investors, the emergence of information

cascades is somewhat different in our setup. We show nonetheless that a similar form of “smooth”

information cascades may arise depending on assumptions about the distributions of signals.

The bottom-right panel of Figure 2 represents how the measure of investing agents mt varies in

expectation, along with its ±1-standard deviation error bands, as a function of the public belief pt,

holding qt constant. These curves are drawn by first connecting a given level of pt in the bottom-

right panel to the equilibrium signal threshold s∗ (pt, qt) (upper-right panel), itself connected to the

upper-left panel which shows how the measures me = F
s
θ+ξ (s

∗) vary with the cutoff s∗. As the

bottom panel shows, the expected measure of investing agents me is a monotonic transformation

of the CDF F sθ+ξ in the three different states.
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Notes: The top-left panel displays the distribution of private signals in the three states of the world along with the expected

measure of investing agents met = F
s
θ+ξ (s

∗
t ), as previously represented in Figure 1 rotated by 90◦. The top-right panel displays

an example of equilibrium threshold s∗ (pt, qt) as a function of public belief pt. The bottom right panel shows how the measure

of investors mt = met + ε varies with public belief pt, keeping qt constant in the background, under the assumption that

εt ∼ N (0, σε). The mean met is represented with a continuous line and the corresponding ±1-standard deviation σε error bands

with dashed lines.

Figure 2: Measure of investors mt as a function of public belief pt

The key feature to take away from this graph is that the signal-to-noise ratio in mt varies

nonmonotonically with the public beliefs. For intermediate values of pt, the three expected measures

me are far apart so that despite the noise εt, observingmt is highly informative about the underlying

state θ + ξ (i.e., the signal-to-noise ratio is high). For pt large (resp. small), almost all (resp. no)

agents invest, the three measures converge to lim
s∗→−∞

F
s
θ+ξ (s

∗) = 1 (resp. 0), so that the signal

mt is dominated by noise and becomes uninformative about the underlying fundamentals (i.e., the

signal-to-noise ratio is low). Note that this result is not an artifact of specific distributions or

functional forms but is instead a general feature of the model as long as s∗ varies sufficiently on

the support of F
s
θ+ξ.

14

14Figure 2 may give the wrong impression that the nonmonotonicity result highly depends on the sigmoidal shape
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The model offers a continuous and smooth analog to informational cascades when the equilib-

rium s∗ reaches the extreme regions of the state space where learning is slow. Suppose for instance

that public beliefs are optimistic (pt high) so that s∗ is very low. In such a situation, almost all

agents act in the same way and invest in the new technology. Only few agents use their private

information to “go against the crowd” and do not invest: the most pessimistic ones that have re-

ceived particularly low private signals. Unfortunately, their measure is so small that they are hard

to detect when looking at the aggregate investment patterns. As a result, markets are nearly unin-

formative and beliefs can remain wrong for an extended period of time. The main difference with

traditional herding models is that, under the assumption that private signals have full unbounded

support, the information flow is never exactly 0 so that there is always some learning taking place

through mt and Rt. Such a smooth form of information cascades is of interest to us for two reasons:

i) it explains why the economy may remain for an extended period of time in the booming region,

where agents understand that they could be wrong in their assessment of the true state of the world

but invest nonetheless, ii) it opens the door to the economy endogenously exiting the information

cascade and crashing when some threshold in beliefs is reached, as we will now describe.

Endogenous boom-and-bust cycle

We now present simulations of the model to illustrate its ability to generate endogenous boom-bust

patterns out of a single impulse shock. We do not attempt to make a realistic calibration but

merely pick parameters so as to highlight the model’s properties. We will examine later under

what general conditions one should expect the boom-bust cycles to occur.

We present the impulse responses of the measure of investors (mt) and the public beliefs (pt,

qt), keeping all other shocks to their mean levels (e.g., εt, ut = 0), when the economy is in the

false-positive state (θ, ξ) =
(
θL, ξ

)
, the case of interest for our purpose.15

Figures 3 and 4 present two examples of endogenous boom-and-bust patterns that may arise in

the model, depending on whether or not the economy falls into an information cascade. In both

examples, the emergence of boom-and-bust patterns hinges on two key assumptions: (i) θL + ξ

needs to be sufficiently close to θH , so that the two states are hard to distinguish; and (ii) the

prior q0 on the false-positive state
(
θL, ξ

)
needs to be sufficiently small relative to the true positive

(θH , 0) for agents to initially attribute most of the rising investment pattern to the true positive

state.

of the CDFs F sθ+ξ. While the regions with higher signal-to-noise ratio may change with the distribution, a robust
prediction for any distribution is that the measure mt is less informative for extreme public beliefs, when agents herd
on the same action, since F

s

θ+ξ (s
∗) → 1 (resp. F

s

θ+ξ (s
∗) → 0) when pt gets close to 1 (resp. 0) and the cutoff s∗

goes to minus infinity (resp. infinity) for any signal distribution.
15Figures 11 and 12 in the Appendix show the economy’s response to the good-technology and bad-technology

states. With our parametrization, these cases are relatively uninteresting: learning is fairly quick, and the dynamics
are close to the full information case.
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(a) Measure of investing agents
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(b) Evolution of public beliefs
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Notes: The simulation was performed with parameters: θH = 1, θL = 0.5, ξ = 0.4, c = 0.80. The priors are set to p0 = 0.25

and q0 = 0.05. All the distributions are Gaussian: F sθ+ξ ∼ N (θ + ξ, σs), F ε ∼ N (0, σε) and Fu ∼ N (0, σu) with standard

deviations σs = 0.5, σε = 0.2, σu = 2.5.

Figure 3: Slow boom, sudden crash

Figure 3 presents the evolution of an economy with a high cost of investing c. When the

economy starts in period t = 0, the measure of investing agents (panel 3a) is small (because of the

high cost c) but higher than expected. Seeing an unusually high investment rate, agents understand

that it is unlikely to come from the bad state and they reduce the probability assigned to it (red

curve in panel 3b). Agents also understand that the high investment rate could arise from either

the good-technology or the false-positive states. As a result, agents revise upward their probability

assessments of both states (pt and qt rise). Importantly, however, given that agents start with a low

prior on the false-positive state, the observed high level of investment is mostly attributed to the

good-technology state, so the rise in pt dominates their expectation. Consequently, agents become

more optimistic overall, investment continues to grow, and the rising investment pattern, in turn,

leads to further upward revisions in expectations, seemingly confirming the assessment that the

economy is in the good state. We refer to this first stage of the cycle, characterized by the joint

increase of investment rates and beliefs (pt, qt), as the “growth stage”.

Being rational, agents do understand the possibility that they may be mistaken and keep track

of the probability of the false-positive state qt in the background, which also rises throughout the

growth stage. Since signals are unbiased along the impulse response path, the belief qt rises in fact

faster than pt despite starting from a lower prior. Therefore, a time comes when qt is so high that

agents become reluctant to invest and aggregate investment begins to decline. This is the beginning

of the “crash” stage, which arises at an endogenous date without the need of an exogenous trigger.

As investment reaches a peak of about 30% given our parametrization, the measure of investing

agents mt attains the intermediate region depicted in Figure 2 where it becomes more informative.

As a consequence, agents learn the truth faster, investment drops, and the probability pt starts

declining until a belief reversal occurs later when the belief qt takes over. Note that the truth is

always learned in the end because of the strictly positive information flow.
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This example shows that the model is able to generate asymmetric cycles. The growth stage

is slow due to the low information flow when mt is close to 0. The crash, on the other hand, is

more sudden because it occurs in the region where i) uncertainty between the good state and the

false-positive state is high (pt and qt are close, so beliefs are more responsive to new information),

and ii) the signal mt is more informative at the peak.16

(a) Measure of investing agents
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Notes: The simulation was performed with parameters: θH = 1, θL = 0.5, ξ = 0.4, c = 0.79. The priors are set to p0 = 0.25

and q0 = 0.05. The distributions of all signals are Gaussian with standard deviations σs = 0.5, σε = 0.2, σu = 2.5. The shaded

area corresponds to the informational cascade period, loosely defined as periods when mt ≥ 75% in which learning is markedly

slower, given our calibration.

Figure 4: Endogenous boom and bust with information cascade

Information cascades

Whether the growth stage gives way to a sudden collapse or not depends on the parametrization

of the model. Figure 4 depicts an example of a cycle in which the economy grows so rapidly at

first that it reaches the low-informativeness region associated with a high mt. In that case, the

economy goes through an information cascade before the crash. This simulation uses the same

parametrization as Figure 3, but with a slightly lower cost c so that investment rises faster and

reaches higher levels than in the previous example. As a result, there comes a time at the end

of the growth stage when agents are so optimistic that they herd on investing and mt becomes

uninformative. The economy thus enters a period akin to an information cascade, as described

earlier, where almost all agents invest due to overly optimistic public beliefs, and in which markets

almost cease to provide information. Through this mechanism, the economy may remain stuck for

a long period of time with wrong beliefs and excessive investment. Because the flow of information

is never exactly zero, the economy eventually exits the cascade. This event occurs when the belief

about the false-positive state qt reaches a threshold at which a sufficient fraction of agents stop

investing, bringing back the economy to the region wheremt is informative. The crash takes place in

a manner similar to the previous example: because of the high flow of information, beliefs converge

16A similar mechanism is at work in Veldkamp (2005) where crashes, as they happen when information flows more
rapidly, occur suddenly but in response to exogenous shocks.
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more quickly to their true values and a belief reversal occurs in the later stages.17

Our model can also generate permanent information cascades, in line with the theoretical models

of herding in the spirit of Banerjee (1992) and Bikhchandani et al. (1992). Under the conditions

that the support of the private signals sj is bounded to a set [s, s] and that the exogenous public

signal is uninformative (σu → ∞), a situation can arise in which the public beliefs are so optimistic

that the investment threshold s∗ reaches s. In this case, all agents invest regardless of their private

signal. As a result, the endogenous public signalmt does not reveal any of the dispersed information

and the observation of the mass of investors is completely uninformative about the true state of

the world. The economy is then trapped in a constant state of massive investment even though

the true quality of the technology is bad. Similarly, if the public beliefs are sufficiently pessimistic,

the economy can remain in a permanently depressed state in which no investment takes place.

Appendix A.5 shows how a permanent information cascade can arise in this sample economy.

The importance of herding

To better understand the importance of the social learning channel for the dynamics of the economy,

we provide a simulation in which that mechanism is turned off (σε → ∞) so that agents no longer

learn by observingmt and, as a result, no herding takes place. That simulation is presented in panel

(a) of Figure 5. As we can see, without the herding mechanism the economy does not initially grow

into a boom, despite being in the false positive state and investors having an unusually optimistic

prior. In our previous examples, it was the slow diffusion of the information contained in private

signals into the public beliefs that led to an economic boom, but since this channel is shut down

here, the boom does not happen and the mass of investors mt quickly converges to zero.

To further highlight how our endogenous learning mechanism differs from more traditional

exogenous shocks, we provide another simulation, in panel (b), in which the economy is hit by an

exogenous ut shock immediately before t = 0 and the social learning channel remains shut down

(σε → ∞). Upon impact, this shock leads to an increase in mt, as expected, but the dynamics it

triggers is qualitatively different from that generated by the herding mechanism (red dashed curve).

As the figure illustrates, investment peaks immediately then gradually fades out as more information

is collected. The propagation is weak and does not lead to the feedback loop highlighted in the

case of herding, which showed a slow rising pattern of self-reinforcing investment and optimism.18

17The way the economy exits the cascade is reminiscent of the “wisdom after the fact” mechanism proposed by
Caplin and Leahy (1994) and its reinterpretation in Chapter 4 of Chamley (2004).

18Only a specific sequence of increasingly positive then negative exogenous shocks ut can replicate the type of
dynamics observed in Figure 3. In contrast, in our model, the boom and bust dynamic is the natural outcome of the
economic forces at work. The two models also have very different policy implications, as we discuss in section 3.3.
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(a) Measure of investing agents without social learning
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(b) Measure of investing agents after an exogenous infor-

mation shock
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Notes: Panel (a) The simulation was performed with parameters: θH = 1, θL = 0.5, ξ = 0.4, c = 0.80. The true state is

(θ, ξ) =
(

θL, ξ̄
)

. The priors are set to p0 = 0.25 and q0 = 0.05. All the distributions are Gaussian: F s
θ+ξ ∼ N (θ + ξ, σs),

F ε ∼ N (0, σε) and Fu ∼ N (0, σu) with standard deviations σs = 0.5, σε = 20 (uninformative endogenous signal), σu = 2.5..

Panel (b) has the same parameters and shows the impact of a shock to u−1 so that p0 = 0.35. In both panels the dashed red

lines represent mt from (3).

Figure 5: The role of endogenous learning and the impact of exogenous news shocks

3.2 Continuous Case

How general are the phenomena highlighted in the 3-state model? In this section, we discuss under

what conditions endogenous boom-and-bust cycles may arise in a less restrictive environment.

First, we relax the three-state assumption and return to the specification where ξ can take on

a continuum of values. Second, we wish to understand how our two key conditions, (i) θL + ξ

close to θH and (ii) low q0, translate to the more general case. To build intuition on this issue,

Figure 6 shows the impulse responses of the economy in the continuous-ξ case assuming that ξ is

independent of θ and is normally distributed with mean 0 and standard deviation σξ. As in the

previous section, we present the response of the economy in the bad-technology state θ = θL but

we vary the size of the ξ shock. Four shocks of various sizes are represented, with ξ expressed as

a multiple of the standard deviation, namely ξ = kσξ, k ∈ {1.5, 1.9, 2, 2.1}. The figure shows very

distinct behaviors depending on the size of the shock. When the shock is relatively small, ξ = 1.5σξ

(yellow dash-dotted line), the economy does not experience any herding behavior in which the high

initial investments leads to rising optimism. Agents put a sufficiently high likelihood on this ξ draw

and are, consequently, able to detect it relatively quickly. Things start to differ as we increase

the size of the shock. For an intermediate-sized shock, ξ = 2σξ (green dashed line), the economy

begins to experience a boom-bust cycle of the sort described earlier. Because of the low probability

of experiencing a shock close to two standard deviations, agents are initially fooled by the high

investment rates and the economy enters a growth stage with rising optimism and investment. The

growth stage is slow and the crash occurs around date t = 20, as in Figure 3. When the size of the

shock is larger, ξ > 2σξ (blue continuous line), the rise in investment is so large that the economy

goes through an information cascade after experiencing a short growth stage, as in Figure 4. The

economy exits the cascade endogenously at a date which is further delayed as the size of the shock
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increases.

(a) Measure of investing agents mt
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(b) Evolution of public beliefs pt
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Notes: Panel (b) shows the overall probability of the good state pt =
∫

Λt (θH , ξ) dξ. The simulation was performed with

parameters: θH = 1, θL = 0.5, c = 0.75. The priors are set to p0 = 0.25 and q0 = 0.05. All the distributions are Gaussian

as in Figure 3 with the additional assumption that ξ ∼ N
(

0, σξ
)

with standard deviations σs = 0.5, σε = 0.2, σu = 2.5 and

σξ = 0.25.

Figure 6: Boom-and-bust cycles in the continuous case

These simulations show that the dynamics depicted in the examples of Figures 3 and 4, in the

previous section, are not mere curiosities but regular fixtures of the more general model. Indeed,

the simulations show that the endogenous boom-and-bust phenomenon occurs whenever the shock

to ξ is unusually large, sufficiently so that agents underestimate its likelihood and initially attribute

the observation of high investments to the good-technology state.

We now show that there always exists a sufficiently large shock in ξ to trigger a boom-and-bust

cycle in beliefs, as long as the exogenous signal coming from the observation of Rt is not too precise.

Proposition 2. In the Gaussian case, i.e., F ξ ∼ N
(

0, σ2ξ

)

, F s|θ, ξ ∼ N
(
θ + ξ, σ2s

)
, F ε ∼

N
(
0, σ2ε

)
, F u ∼ N

(
0, σ2u

)
, for θ and ξ independent and signal Rt sufficiently uninformative (σu

low), there exists a ξ such that all shocks ξ ≥ ξ generate a boom-and-bust cycle in the impulse

response of beliefs pt to a false-positive shock (θL, ξ).

Note that the above discussion shows a restriction imposed by the theory: because they are

rational, agents cannot make systematic mistakes in their assessment of the probability of each

state. Hence, boom-bust cycles can only arise for shocks that have a low enough probability of

occurring. Our model thus offers a theory of infrequent booms-and-busts. Going beyond this

limitation may require the introduction of deviations from rationality.

3.3 Welfare

We now turn to the analysis of welfare in this economy. Since investors do not internalize that

their investment decisions affect the release of public information, the equilibrium is in general

not efficient and policy interventions can be beneficial. To show this formally, we introduce a

social planner that maximizes aggregate welfare under limited information. Specifically, we assume

that the planner only observes signals that are publicly available and cannot rely on the private
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information of the investors when making decisions. We impose these restrictions so that the

problem of the planner is not trivial and that it resembles that of a government trying to design

policy under uncertainty about the true value of a new technology.

We follow Angeletos and Pavan (2007) in assuming that the planner seeks to maximize the sum

of the investors’ expected utility, where the expectation is computed according to the investors’

private beliefs. In each period, the planner picks an investment threshold p∗t such that agents with

beliefs pjt ≥ p∗t invest. Written in recursive form, the problem of the social planner is

V (I) = max
p∗

Eθ,ξ

[
∫

pj≥p∗
E [θ − c | Ij] dF

pj
θ+ξ (pj) | I

]

+ βEθ,ξ
[
V
(
I ′ (p∗)

)
| I
]
, (13)

where I ′ is public information next period, which evolves according to the law of motion (12), and

where F
pj
θ+ξ (pj) is the CDF of the agents’ subjective probability that θ = θH when the true state

of the world is θ+ ξ. The expectation Eθ,ξ is then taking over these states using the public beliefs.

The first term in (13) captures the current-period returns from letting agents with private beliefs

above p∗ invest. To compute that term, the planner first uses the public beliefs I to evaluate the

likelihood of being in a given state θ+ ξ. Since the planner knows the structure of the economy, it

can then reconstruct the distribution F
pj
θ+ξ (pj) of private beliefs in that state, which is needed to

compute the mass of investors above p∗. The second term in (13), the continuation value, captures

the impact of a given investment threshold p∗ on the future public information. It is this term that

creates a gap between the equilibrium and the efficient allocation. In the competitive equilibrium,

individual investors are atomistic. Hence, investors disregard the impact that their individual

actions have on the release of public information. The planner, on the other hand, understands

that by changing the cutoff p∗, the mass of investors also changes, which affects the informativeness

of public signals.

The first-order condition of the planner with respect to p∗ can be written as

Eθ,ξ

[

(p∗θH + (1− p∗) θL − c) fpθ+ξ (p
∗) | I

]

= β
∂Eθ,ξ [V (I ′) | I]

∂p∗
. (14)

The left-hand side of this equation reflects the expected cost of increasing the threshold p∗ at the

margin. If the true state is θ+ ξ, increasing p∗ slightly pushes a mass fpθ+ξ (p
∗) of agents away from

investing, each of which loses p∗θH + (1− p∗) θL − c in expected returns. The planner takes the

expectation of these losses over all the states θ + ξ. The right-hand side of the equation reflects

the impact of increasing p∗ on the flow of public information that is released at the end of the

period. By changing p∗, the planner can, for instance, increase the gap between the expected

realizations of m in different states of the world. When it does so, m becomes more informative as

the signal-to-noise ratio increases. Notice that when β = 0 the first-order condition (14) collapses

to the equilibrium cut-off rule (8), such that the efficient allocation coincide with the equilibrium.
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Example: Efficiency in the 3-state model

To better understand the sources of inefficiencies in this environment, we now go back to the example

explored in Figure 4 and look at the solution of the planner’s problem. Again, we suppose that the

economy is in the false-positive state, and we plot the impulse responses of the mass of investing

agents and the public beliefs in the efficient allocation. The results are presented in Figure 7, which

shows the impulse responses in the efficient allocation (bold lines) and the equilibrium (thin dashed

lines). We see from Panel (a) that in period t = 0 the planner is more aggressive than the private

agents in pursuing the investment opportunity. The planner behaves in that way because pushing

the measure of investors towards intermediate values makes the signal more informative. Indeed,

we can see in Panel (b) that the public beliefs move more rapidly in the efficient allocation. In

other words, there is an initial phase of “experimentation”. In this particular example, the planner

quickly learns that the bad-technology state can be ruled out, as 1 − p − q declines sharply in the

first few periods.

But one surprising consequence of this faster learning is that the planner is also more rapidly

“fooled” into believing that the true state of the technology is θ = θH . Since the public signal m

is more informative, and that this signal is consistent with the good technology state, p increases

faster than in the competitive equilibrium. As a result, the efficient allocation can still feature

boom-bust cycles and information cascades.19 In turn, the bust tends to happen sooner in the

planner’s allocation, as Panel (a) illustrates. Indeed, during the boom, when public beliefs are very

optimistic, the planner attempts to curb the amount of investment in comparison to the competitive

equilibrium in order to collect more information. As a result, agents learn faster that the true state

of the world is θL and the boom comes to an end sooner.

(a) Measure of investing agents
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(b) Evolution of public beliefs
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Notes: Bold lines correspond to the efficient allocation and thin lines correspond to the equilibrium. The true value of the

fundamental is (θ, ξ) =
(

θL, ξ
)

, the false-positive state. The simulation was performed with parameters: θH = 1, θL = 0.5,

ξ = 0.4, c = 0.79, β = 0.5. The priors are set to p0 = 0.25 and q0 = 0.05. The distributions of all signals are Gaussian with

standard deviations σs = 0.4, σε = 0.2, σu = 2.5.

Figure 7: Endogenous boom-and-bust in the efficient allocation

19It might seem surprising that the planner rapidly pushes the economy into a boom, even though the true state of
the technology is bad, but recall that the planner, like the private agents, does not know the true state of the world
and that this early boom would be very beneficial in the good-technology state of the world.
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Optimal taxation

To gain further insight into the nature of the model’s inefficiencies, it is useful to look at a particular

implementation of the efficient allocation using an investment tax (or subsidy) τ∗ that increases

the effective cost of investment to c+ τ∗. The next proposition characterizes τ∗.

Proposition 3. The efficient allocation can be implemented as an equilibrium by an investment

tax

τ∗ =
(

Eθ,ξ

[

fpθ+ξ (p
∗) | I

])−1
β
∂Eθ,ξ [V (I ′) | I]

∂p∗
, (15)

and a lump-sum transfer to all investors.

The optimal tax τ∗ balances the distortion in investment it creates (first term in the product)

with the potential benefit on information acquisition (second term).

We plot in Figure 8 how this optimal tax varies with the public beliefs p in the example of

Figure 7.20 We see that the tax tends to be negative for low values of p and positive for larger

values. As we described in Section 3.1, when agents are pessimistic (low p), few of them invest

and the endogenous public signal does not reveal much information. The planner therefore sets

τ∗ < 0 to encourage entry and make the observed mass of investors a more precise signal. The

opposite happens when many investors invest (high p). In this case, the planner sets τ∗ > 0 to

discourage investment, once again to make the endogenous public signal more informative. The tax

for intermediate values of p reflects these information concerns. Note, however, that the planner

phases out the tax completely as p approaches 0 or 1. In these cases, the public beliefs are so

extreme that there is very little uncertainty about the true state of the world. Since there is not

much more to learn, the planner sets the tax close to zero to minimize the distortion in investment.

As we can see, the tax incentivizes agents to behave against the crowd in what amounts to a

leaning-against-the-wind pattern: the tax is negative when no agent wants to invest, and positive

when agents invest massively. We will see in our quantitative model that these same forces have

important consequences for the conduct of monetary policy.

4 A Business Cycle Model with Herding

After exploring the mechanism in the simple model, we now embed the same economic forces

in a business cycles framework. Our objective is threefold. First, our previous setup is highly

stylized and we want to examine the robustness of the mechanism in a more realistic environment

that involves more moving parts (e.g., prices and constraints). Second, we want to investigate

20To draw this plot, we fix q to some arbitrary value q = 0.01 and plot m in the good-technology state.
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Notes: Mass of investors and optimal tax as a function of p with the same parameters as 7. These curves are generated by

fixing q = 0.01. m is computed as 1− FθH (ŝ (p, q)).

Figure 8: Optimal tax as a function of the mass of investing agents p

under what conditions the evolution of beliefs characterized in the previous section may lead to

a macroeconomic expansion followed by a contraction deep enough to go below the trend. This

requires additional ingredients as we discuss below. Finally, a more realistic setup is required to

explore the quantitative implications of the theory, which we do in the next section.

4.1 Foreword

Generating business cycle fluctuations out of belief shocks has been the focus of the news (or noise)-

driven business cycle literature since Beaudry and Portier (2004). A key lesson from this literature

is that standard models have difficulty generating positive comovements across macroeconomic

aggregates out of sheer optimism, particularly between consumption and investment.

The failure to generate positive comovements stems from two main reasons. First, there is

a static problem, originally identified by Barro and King (1984), due to the intratemporal labor

market equilibrium: when agents become more optimistic about the technology, the expected higher

income encourages agents to cut on their labor supply which leads to a contraction in output.

Second, there is a dynamic problem arising from standard parametrizations with intertemporal

elasticity of substitution of consumption less than 1 (e.g., CRRA utility function with relative risk

aversion greater than 1): anticipating higher future income, agents smooth consumption by moving

resources from the future to the present and disinvest in response to a positive belief shock.

To circumvent the first difficulty, we follow Jaimovich and Rebelo (2009) and assume GHH

preferences (Greenwood et al., 1988) to remove the positive income effect on labor supply. We solve

the second difficulty by proposing a model of technology adoption with two types of capital: a new-

technology-specific capital (e.g., IT capital) and a traditional form of capital. Assuming that the

new technology is intensive in IT capital, a rise in IT investment is a prerequisite for agents to benefit

from the innovation, and we can observe a joint increase in aggregate consumption and investment

along the booming phase of the cycle. To finally ensure that aggregate output may expand in

response to this surge in demand, we introduce price stickiness. Under a sufficiently accommodative

monetary policy, a muted response of the real interest rate helps sustain the expansion in demand
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due to optimistic expectations.

4.2 Household

There are four types of agents: i) a representative household, ii) entrepreneurs, who face a technol-

ogy adoption choice, iii) retailers, who are the only agents facing price rigidities, and iv) a monetary

authority. The household lives forever, consumes, supplies labor and is the owner of all the firms

and capital stocks in the economy. The preferences of the household are given by

E

[
∑

βt log

(

Ct −
L1+ψ
t

1 + ψ

)]

, ψ ≥ 0,

where Ct is the consumption of the final good and Lt is labor. The household can save in a risk-

free one-period nominal bond, Bt, and in two different forms of capital: a traditional type (T) in

quantity KT
t and IT capital in quantity KIT

t . The household is subject to the real budget constraint

Ct +
∑

i=T,IT

Iit +
Bt
Pt

= wtLt +
∑

i=T,IT

zitK
i
t +

1 +Rt−1

1 + πt

Bt−1

Pt−1
+Πt,

where Iit , i = T, IT , is the investment in each capital type, zit is the corresponding real rental rate,

wt is the real wage, Πt is total profits, Rt−1 is the nominal interest rate on government debt issued

at date t− 1, Pt is the nominal price level and 1+ πt = Pt/Pt−1 is the inflation rate. As usual, the

law of motion for each type of capital, i = T or IT , is given by

Ki
t+1 = (1− δ)Ki

t + Iit ,

where δ is the depreciation rate.

4.3 Technology

There are four sectors: i) an entrepreneur sector, ii) a wholesale sector, iii) a retail sector and iv) a

final good sector. The most important one, the entrepreneur sector, is the analog of the investment

model from Section 2.

Entrepreneur sector

There is a unit continuum of entrepreneurs indexed by j ∈ [0, 1] who are monopolistic producers

of differentiated varieties sold to the wholesale sector. Until date 0, entrepreneurs have access to

a unique “old” production technology, which is Cobb-Douglas in some capital bundle Ko
jt, to be
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described shortly, and labor Lojt,

Y o
jt = Ao

(
Ko
jt

)α (
Lojt
)1−α

, 0 ≤ α ≤ 1.

In order to abstract from standard real business cycle-like fluctuations, we assume that the “old”

TFP, Ao, is constant over time. Unexpectedly, at date 0, a “new” technology becomes available

with production function

Y n
jt = Ant

(
Kn
jt

)α (
Lnjt
)1−α

.

The TFP of the new technology Ant is characterized by a constant fundamental θ ∈ {θH , θL},

θH > θL, whose value is initially unknown. Importantly, the new technology is not immediately

productive. To further isolate the economy from exogenous productivity fluctuations and focus

on belief-driven cycles, we make the assumption that the new technology is initially as productive

as the old one, Ant = Ao, until it matures with some fixed probability λ > 0 each period. Upon

maturation, the true nature of the technology is revealed. Maturation is a one-time event and all

uncertainty is resolved afterwards. That is,

Ant =







Ao before maturation

θ after maturation.

In addition to differing in TFP, the two technologies differ in the capital bundle they use as

input. The capital bundle used by each technology i = o, n is given by

Ki
jt = κi

(

ωi
(
KIT
it

) ζ−1
ζ + (1− ωi)

(
KT
it

) ζ−1
ζ

) ζ
ζ−1

, ζ > 0, (16)

where κi =
(

ωζi + (1− ωi)
ζ
)− 1

ζ−1
and with the assumption that the intensity in IT capital is greater

for the new than for the old technology, 0 ≤ ωo < ωn ≤ 1.21 We denote by zit , i = o, n, the rental

price of each bundle.

After date t ≥ 0, entrepreneurs face a technology choice problem. We assume that a fraction 0 ≤

µ ≤ 1 of entrepreneurs are “noise entrepreneurs”, that is, they are clueless regarding technological

adoption and behave randomly. Specifically, we assume that a fraction εt of them adopt the new

technology, where εt is i.i.d, distributed according to a CDF F ε with support [0, 1]. The remaining

1− µ entrepreneurs are rational and choose the best of the two technologies, based on public and

21The value of the parameter κi is set such that permanent changes in the measure of new technology adopters mt

have no effect on steady-state output for equal productivities.
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private information. There is no cost of switching, so the decision for entrepreneur j is static:

ijt = argmax
ijt∈{0,1}

(1− ijt)E [Πot |Ijt] + ijtE [Πnt |Ijt] ,

where Πit, i = o, n, are the profits from using technology i, Ijt is the information set of entrepreneur

j at time t, and ijt is a dummy capturing the technology adoption decision.

Wholesale sector

The wholesale, retail and final good sectors play no major role in the model other than separating

price rigidities from the technology choice problem of the entrepreneurs.

The wholesale sector is modeled as a representative firm which produces a wholesale good with

CES technology

Y w
t =

(∫ 1

0
Y

σ−1
σ

jt dj

) σ
σ−1

, σ ≥ 0, (17)

where Yjt is the quantity of inputs it purchases from the monopolistic entrepreneurs. The wholesale

sector is perfectly competitive, giving rise to the demand schedule, Yjt = (Pjt/P
w
t )−σ Y w

t , where

Pwt =
(∫ 1

0 P
1−σ
jt dj

) 1
1−σ

is the price of the wholesale good and Pjt the price of each differentiated

entrepreneur good.

Retail sector

The retail sector is composed of a unit continuum of monopolistic producers who buy the wholesale

good at Pwt and costlessly differentiate it using a one-to-one technology. Retail sector firms are the

only ones to face price rigidities. We assume that they face Calvo-style frictions: firms can only

reset their price with probability 1− χ, leading to a standard Phillips curve.

Final good sector

The final good sector, similar to the wholesale sector, is modeled as a representative firm that oper-

ates under perfect competition and produces the final good, used for consumption and investment,

using inputs from the retail sector. It uses the CES technology,

Yt =

(∫ 1

0

(
Y r
jt

)σ−1
σ dj

) σ
σ−1

,

where Y r
jt is the quantity purchased from each retail firm j and σ is the same elasticity of substitution

as in (17).
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4.4 Monetary Authority

To close the model, we need to specify the policy followed by the monetary authority. As is common

in the literature, we assume that the central bank follows a Taylor rule,

1 +Rt

1 +R
=

(
1 + πt
1 + π

)φπ (Yt

Y

)φy

, (18)

whereR, π and Y correspond to the values of, respectively, the target nominal interest rate, inflation

and output, which we define later.

4.5 Information

The information structure for entrepreneurs mimics the one in the simple model of Section 2. The

true technology θ is drawn once-and-for-all at date 0. The ex-ante probability that θ = θH is

denoted by p0. Agents in the economy cannot observe θ directly but receive various private and

public signals about it. After maturation, we assume that θ becomes common knowledge, so the

economy operates under full information from then on. The productivity of the old technology, Ao,

is known and there is common knowledge about the distributions of the various shocks.

Private information

We assume that entrepreneurs receive a private signal sj about θ at date 0 when the new technology

appears. As in the earlier model, entrepreneurs draw their signals from the CDF F sθ+ξ where ξ ∼ F ξ

is the common noise term and the family {F sx}x∈I satisfies the same conditions as before, including

the MLRP property.

Public information

In addition to observing their private signals, entrepreneurs and all other agents in the economy

(household, central bank, retailers, etc.) collect public information over time. As with the in-

vestment return in the simplified model, agents learn by observing an exogenous public signal

sut = θ+ut, centered around θ with noise distributed according to CDF F u and standard deviation

σu. Social learning takes place through the observation of endogenous market activity. In particu-

lar, we assume that agents observe the measure of entrepreneurs that adopt the new technology:

mt =

∫ 1

0
ijtdj =

∫ 1−µ

0
ijtdj

︸ ︷︷ ︸

+ µεt
︸︷︷︸

,

rational entrepreneurs noise entrepreneurs

with εt ∼ iid CDF F ε. (19)
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The measure of the new-technology adopters mt in (19) is almost identical to the measure of

investors in (9) with the exception that we now take a stand on the origin of the noise by assuming

that it arises from a fraction µ of noise entrepreneurs.22 Apart from that point, the informational

content of mt is identical to the earlier model up to some rescaling.

Because the productivity of the new technology is identical to Ao until maturation, there is

no other source of information in the economy. In equilibrium, prices and aggregate quantities

will solely be functions of mt and of the public information up to time t. As a result, prices and

quantities provide no other information than is already contained in mt.

Beliefs

As in the simple model, we denote by It =
{
mt−1, s

u
t−1, . . . ,m0, s

u
0

}
the public information avail-

able to non-entrepreneur agents (households, monetary authority, retailers and outside observers).

Public beliefs are captured by the joint distribution

Λt

(

θ̃, ξ̃
)

= Pr
(

θ = θ̃, ξ ∈
[

ξ̃, ξ̃ + dξ̃
]

| It
)

.

Finally, we denote by Ijt = Ijt ∪ {sj} the information set of entrepreneur j, and her beliefs by the

joint distribution Λjt

(

θ̃, ξ̃
)

= Pr
(

θ = θ̃, ξ ∈
[

ξ̃, ξ̃ + dξ̃
]

| Ijt
)

.

4.6 Timing

Before date 0, the economy is in a deterministic, no-inflation initial steady state that corresponds

to the economy before the introduction of the new technology. At date 0, the new technology

fundamental θ, the common noise component ξ and the private signals sj are drawn once-and-for-

all. For all date t ≥ 0,

1. Entrepreneurs choose whether to adopt the new technology based on the capital stocks
(
KIT
t ,KT

t

)
and their information set (Λt, sj) (Stage A),

2. The measure of technology adopters mt is realized,

3. The new technology matures with probability λ,

4. Simultaneously (Stage B),

(a) All agents observe {mt, s
u
t } and update their information,

(b) The household chooses consumption, investment and labor supply,

(c) Production takes place,

22In this general model, mt is a real quantity that enters many equations (resource constraints, market clearing
equations, etc.). For simplicity and to make sure that agents learn the same information from observing prices
and aggregate quantities as from the direct observation of mt, we choose to interpret εt as “real” noise coming
from the actions of noise entrepreneurs that contaminates the true quantity of technology adopters rather than pure
informational noise.
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(d) The monetary authority sets the policy rate,

(e) Markets clear.

The notation “Stage A” and “Stage B” is used in Appendix B.1 to identify when decisions are

made in the full equilibrium definition.

4.7 Investment Decision

The technology adoption decision is more complicated than in the simple model because of the

presence of general equilibrium effects. When choosing whether to use the new technology, agents

have to forecast the profits from either technology. Profits in equilibrium depend not only on

productivity but also on the level of demand from wholesalers Y w
t , prices and the real marginal

costs mcit =
1
Ajt

(
zit
α

)α (
wt
1−α

)1−α
from using each technology i = o, n:

Πit =
(
Pjt − Ptmc

i
t

)
Yjt. (20)

Solving the model by linearizing the equations of the DSGE model, entrepreneur j ultimately

chooses to invest if and only if

E
[

Ânt − αẑnt |Ijt
]

≥ E
[

Âo
︸︷︷︸

=0

− αẑot |Ijt
]

, (21)

where the hatted variables are log-deviations from a steady state that we define in the next section

and zit, i = n, o, are the rental rates on the capital bundles (16). As equation (21) demonstrates,

entrepreneurs not only have to forecast the technology Ant but also factor prices, as they are now

competing for the same inputs.

4.8 Belief Updating

The information structure in this general model is essentially the same as in the simple model

and we obtain the same simplification that allows us to split the static private part of beliefs from

their dynamic, time-varying public part. As a consequence, the technology decision ijt is a simple

function of the aggregate state variables Ωt =
(
KIT
t ,KT

t ,Λt
)
and the private signals sj. The

measure of new technology adopters is given by

mt = (1− µ)me (Ωt, θ, ξ) + µεt (22)

with me (Ωt, θ, ξ) =

∫

1I (ij (Ωt; sj) = 1) f sθ+ξ (sj) dsj . (23)
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In turn, the belief updating equation (12) needs to be amended in the following way

Λt+1

(

θ̃, ξ̃
)

=

Λt|sut

(

θ̃, ξ̃
)

f ε
(

1
µ

(

mt − (1− µ)me
(

Ωt, θ̃, ξ̃
)))

∫
Λt|sut (θ, ξ) f

ε

(

1
µ
(mt − (1− µ)me (Ωt, θ, ξ))

)

d (θ, ξ)

, (24)

where Λt|sut are the posterior beliefs after observing the public signal sut .

This concludes the exposition of the full quantitative model. A complete equilibrium definition

is provided in Appendix B.1 along with the full set of equations in Appendix B.2.

5 Quantitative Exercise

We now turn to the quantitative evaluation of our general macroeconomic model. After a brief

discussion of our resolution method, we calibrate the model to a specific episode in US history and

examine the ability of the model to endogenously generate a pattern of macroeconomic expansion

followed by a contraction. We finally explore some of the model’s implications for the conduct of

monetary policy.

5.1 Resolution Method

Our model can only be solved numerically. We follow a strategy common in the information friction

literature which consists in linearizing the equations of the model that are unrelated to the updating

of beliefs (Woodford, 2003; Angeletos and La’O, 2013). The main benefit of this approach is greater

tractability, allowing us to focus on the nonlinearities implied by the learning model while putting

aside the (usually weak) nonlinearities of the DSGE model. We carry out the linearization around

the non-stochastic zero inflation steady state that precedes period 0—before the new technology is

introduced.

Granted the benefits of the linearization approach, one difficulty remains in the need to keep

track of the potentially infinite-dimensional public belief Λt (θ, ξ). We use a simplification proposed

by Kozlowski et al. (2019) which exploits the fact that, due of the Law of Iterated Expectations,

beliefs follow a martingale, that is, Et

[

Λt+1

(

θ̃, ξ̃
)

| It
]

= Λt

(

θ̃, ξ̃
)

. The martingale property

implies that any equilibrium condition of the form Et [f (xt, xt+1,Λt,Λt+1)] = 0, where f is a

nonlinear function and xt a vector of model variables can be approximated to a first-order as

E [f (xt, xt+1,Λt,Λt+1) | It] ≃ E [f (xt, xt+1,Λt,Λt) | It] .

This implies that the model can be solved in each period as if current beliefs were constant going

forward. As a consequence, we solve the model every period using a standard linear solver, compute

the technology adoption decision and the evolution of beliefs in a nonlinear way, then repeat in the
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next period under the new beliefs. Section B.3 in the appendix provides additional details about

our resolution method.

5.2 Calibration

As we argued before, our model offers a theory of infrequent endogenous booms-and-busts. For that

reason, we do not expect our theory to explain general business cycle patterns in the absence of

other shocks, but rather to provide a narrative for certain episodes. We thus focus our calibration

exercise on a particular episode in recent US history that best fits the description of a technology-

driven boom and bust cycle: the late 1990’s dot-com bubble. We map the new technology in our

model to the introduction of IT technologies in the 1990s and we focus more specifically on the late

part of the cycle which covers the period that preceded the stock market collapse in the NASDAQ

composite index starting from a trough in 1995Q4 to the crash in 2001Q1.

Our goal with this exercise is not to show that the mechanism can precisely replicate the

behavior of the economy during the dot-com period. Rather, we want to determine whether a

reasonable calibration of the model is able to generate boom-bust cycles that are similar in terms

of magnitude and comovements to what we see in the data. Since we focus on a single historical

episode, there is limited data to pin down certain parameters with confidence. In these cases, we

rely on the best data available and provide extensive robustness tests in the appendix to show that

the mechanism does not hinge on specific parameter values. We are, however, careful to properly

discipline moments that are key for the mechanism such as the dispersion of private beliefs, as we

explain in more details below.

Parameter Value Target

α 0.36 Labor share

β 0.99 4% annual interest rate

ψ 2 Frisch elasticity of labor supply (Chetty et al., 2011)

χ 0.75 1 year price duration

σ 10 Markups of about 11%

φy 0.125 Clarida et al. (2000)

φπ 1.5 Clarida et al. (2000)

ζ 1.71 Elasticity between types of capital (Boddy and Gort, 1971)

Table 1: Standard parameters

The model is solved at a quarterly frequency. Table 1 lists a first set of standard parameters that

we take from the literature. The labor intensity α is set to target a standard labor share of 36%.

The discount factor β is set to match an annual real interest rate of about 4%. The household’s
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preference over consumption is logarithmic and the Frisch elasticity is set to 2, within the range of

standard macro-level estimates (Chetty et al., 2011). The Calvo price-setting parameter χ is set

to yield a standard average price duration of 1 year (Basu and Bundick, 2017). The elasticity of

substitution between varieties σ is set to 10 to match an average markup of 11%. The Taylor rule

parameters (φy, φπ) are within the estimates of Clarida et al. (2000). Finally, we pick the elasticity

ζ between the different types of capital within the firm from early estimates by Boddy and Gort

(1971).23

Table 2 below lists the more important parameters that attempt to match features of the dot-

com bubble. We set the IT-capital shares ωi, i = o, n, to match a share of IT capital of 3% before

the introduction of the new technology in 1991 and 14% in 2007 (Strauss and Samkharadze, 2011).

The probability of maturation for new technologies λ is set to 1/22 to match an average waiting

time of 22 quarters, corresponding to length of our period of interest 1995Q4-2001Q1. We now turn

to the technology parameters. Ao is normalized to 1. We use the Survey of Professional Forecaster

(SPF) mean real GDP growth forecast over the current quarter to discipline θH and θL. Under

the assumption that factors are fixed in the short run, this identifies changes in the productivity

parameter θ. The highest forecast for growth was 4.19% in 2000Q2 in annualized terms. Correcting

for a mean growth trend in GDP of 2.4% over 1991-1998, this yields θH = 1.099. Similarly, targeting

the lowest growth forecast of 0.80% in 2001Q1, we obtain an estimate of θL = 0.912.24

For the common noise, we adopt the same structure as in Section 3.1 and assume that that the

pair (θ, ξ) can only take the three values

(θ, ξ) ∈
{
(θL, 0) , (θH , 0) ,

(
θL, ξ

)}
with θL < θL + ξ < θH ,

where (θL, 0) is the bad-technology state, (θH , 0) is the good-technology state and
(
θL, ξ

)
is the

false-positive state. As before, we let pt and qt denote the public beliefs about the good-technology

and false-positive states. The distribution of private signals is assumed to be Gaussian, centered

on θ + ξ with standard deviation σs. To set the dispersion σs, we target the average dispersion

of growth forecasts in the SPF over 1995Q4-2001Q1, which yields σs = 0.156. Finally, we must

assume a distribution for the fraction of noise traders that adopt the new technology with support

over [0, 1]. We choose a beta distribution with parameters (2,2).25

Five parameters remain to calibrate for which there does not exist widely accepted estimates or

natural targets. The first one is the fraction of noise entrepreneurs µ, which controls the informa-

tiveness of the social learning channel. While some estimates exist in the literature regarding the

23We find that ζ does not have a large impact on our simulations so that, for instance, a more neutral Cobb-Douglas
parametrization (ζ = 1) leads to similar impulse responses.

24See Appendix B.4 for more details about how we calibrate θL and θH .
25The distribution Beta(1, 1) is uniform and produces a flat learning response. As a result, we pick a Beta(2, 2) dis-

tribution which is symmetric around its mode of 0.5. This assumption is relatively unimportant, while the important
parameter is µ, which governs the informativeness of the endogenous public signal.
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Parameter Value Target

ωo 0.11 Share of IT capital 1991 (3%)

ωn 0.26 Share of IT capital 2007 (14%)

λ 1/22 Duration of NASDAQ boom-bust 1995Q4-2001Q1

θH 1.099 SPF highest growth forecast over 1998-2001

θL 0.912 SPF lowest growth forecast over 1998-2001

sj N (θ + ξ, 0.156) SPF avg. dispersion in forecasts over 1998-2001

ε Beta(2, 2) Non-uniform distribution over [0, 1]

µ 15% Fraction of noise traders

p0 0.20 Prior on the “good technology” state

q0 0.15 Prior on the “false positive” state

ξ 0.95(θh − θl) See text

σu 3× σs See text

Table 2: Dot-Com episode related parameters

informativeness of markets (see for instance David et al., 2016), these estimates do not cover social

learning about new technologies. We conduct sensitivity analysis on this parameter but start with

a benchmark value of µ = 15%. We must also specify the priors p0 and q0 that agents associate

with the states of the world “good technology” and “false positive”. There is no obvious moment

that we can target for these parameters given that we focus on one historical episode. We start with

a benchmark parametrization that assigns relatively low values to those parameters and do some

robustness analysis in the appendix. Our benchmark parametrization attempts to capture the idea

that if new technologies can be invented frequently, only few of them lead to deep economic trans-

formations likes the ones considered in this paper. This suggests a small value for p0. Similarly, the

false-positive signal ξ cannot happen too frequently, otherwise agents would distrust their private

signals and the boom-bust cycles would never arise. As a benchmark, we therefore pick p0 = 0.2

and q0 = 0.15 but we show in Appendix B that boom-bust episodes are robust to some variation in

these values. We must also set a value for the common noise term ξ. Again, neither the literature

nor the data provides much guidance. Since one of our goals is to evaluate the potential of the

model in generating boom-bust cycles, we pick a relatively large shock and set ξ = 0.95 (θH − θL).

Finally, we need a value for the exogenous public signal about θ. For the mechanism to operate,

we need that signal to be mostly uninformative, otherwise agents know the true value of θ and

boom-bust cycles can obviously never arise. We set σu = 3 × σs in the benchmark simulations so

that a private signal has about the same information as three exogenous public signals. Appendix

B conducts sensitivity analysis over all the parameters mentioned in this paragraph. The results

are fairly robust.
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5.3 Boom-and-Bust Cycles

Figure 9 presents the impulse responses of the economy to a false-positive shock.26 In period t = 0,

a new technology is discovered and entrepreneurs receive encouraging private signals about the true

value of that technology. Since the false-positive state is initially deemed unlikely, entrepreneurs

begin to adopt the new technology and the economy goes through a growth phase with mt moving

upward. While this growth in mt is initially consistent with both the “good technology” and the

“false-positive” state, there comes a point at which agents start to realize that the data is more

consistent with θ = θL, and the likelihood pt starts to decline. As result, the mass of entrepreneurs

who adopt the new technology collapses around t = 5, pushing the economy into a crash.
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Notes: The impulse responses are reported in log-deviations from the initial non-stochastic steady state. All shocks

after the realization of (θ, ξ) are set to 0 (εt = 0 and the technology never matures exogenously).

Figure 9: Impulse response in the false-positive state of the world

26We set all shocks after the realization of (θ, ξ) to 0, i.e., εt = 0 and ut = 0 for all t. Similarly, the technology
never matures through the λ shock and the bust we observe is purely endogenous.
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While the behavior of the mass of adopters mt is similar to what we have observed in the

simplified model of Section 3.1, Figure 9 shows how this pattern and the evolution of beliefs translate

to other macroeconomic variables. As agents become more optimistic after observing people rushing

to adopt the new technology, the household anticipates higher productivity growth in the future and

higher income, resulting in upward pressure on consumption due to a positive income effect. With

expectations of higher productivity from the new technology, the demand for IT capital rises and

the household responds by increasing IT investment. The new technology being less intensive in the

other form of capital, the demand for traditional capital falls and so does traditional investment.

The rise in consumption and investment in IT capital, despite being accompanied by a moderate

decline in traditional investment, contribute to an overall rise in aggregate demand. Price rigidities

play an important role in turning this surge in demand into a general macroeconomic boom. In a

real business cycle model, the rise in aggregate demand should be offset by a sharp rise in the real

interest rate. With sticky prices, the interest rate response is muted if the monetary authority is

sufficiently accommodative. As a result, aggregate demand remains high. Firms, satisfying demand,

respond by raising output and employment. Because of a higher labor demand, wages increase,

but inflation remains low because firms anticipate greater productivity and lower marginal costs

in the future. As evidenced by the variable Q̂, which captures the value of the firms, the economy

also experiences a stock market boom along the expansion. These dynamic effects are reversed

when the crash occurs and agents realize that the new technology is actually of low quality. While

agents abandon the new technology, a recession occurs, with GDP falling below trend, because

agents wake up after having invested too much in IT capital and not enough in traditional capital.

This misallocation of resources creates a negative income effect which puts downward pressure on

aggregate demand, despite a recovery in traditional investment.

A few comments are in order at this point. First, while the model is able to generate a recession

with a significant peak-to-trough gap (about 2%), it remains smaller than the one in the data (about

3%). This result seems, however, a feature of belief-driven cycles that our model shares with most

of the news/noise-driven business cycle literature. Second, while the model is able to generate a

recession with output falling below trend, that effect is somewhat weak in our simulation. Given

that the capital stocks can be adjusted rapidly, the misallocation channel responsible for the dip

does not lead to a large drop in output. The introduction of debt and bankruptcy in the model

would provide another channel through which the crash could result in a deeper recession. Third,

we can also compute the frequency at which boom-and-bust cycle arise in our model. While the

existing consensus is that such cycles are rare in models with rational agents,27 our benchmark

calibration suggests that boom-bust cycles may arise in our calibrated model at the fairly high

frequency of q0 = 15% after the introduction of a new technology. We view this number as quite

27Chamley (2004) suggests that a boom-bust cycles arises with a probability of 10−6 in the traditional model of
herding of Avery and Zemsky (1998).
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encouraging for the ability of rational herding models in explaining the data.

Overall, the impulse responses of Figure 9 suggest that it is possible to generate a realistic

macroeconomic boom-bust cycle that is entirely driven by the internal forces of the model—without

the need of an exogenous shock to trigger the bust after the initial introduction of a new technology.

5.4 Monetary Policy Implications

We conclude this quantitative exercise with a discussion of the role of monetary policy during

boom-bust cycles. It has long been the subject of policy debates whether monetary authorities

should narrowly focus on output and inflation stabilization or, instead, intervene in response to

bubble-like phenomena in investment or in the stock market.

As we explained in the context of the simplified learning model, our theory justifies the use of

interventions that lean against the wind because of the presence of an informational externality.

While evaluating optimal monetary policy in our setup is beyond the scope of this paper, we ask

whether a monetary policy rule that leans against the wind would be desirable in our economy.28

The answer is mostly negative and we illustrate our argument with a simple example.

We augment our Taylor rule with an explicit mandate to increase interest rates when investment

in the new technology IITt rises:29

1 + rt
1 + r

=

(
1 + πt
1 + π

)φπ
(
Yt

Y

)φy
(
IITt

IIT

)φi

, φi ≥ 0. (25)

We compute ex-ante welfare using Monte-Carlo simulations with all the model shocks and compute

the coefficient φi that maximizes welfare. Note that the model is solved around the efficient steady

state corrected for monopolistic distortions. Any welfare gain thus arises mainly because of the

information externality and the suboptimality of the initial monetary policy. Figure 10 reports

the impulse responses to a false-positive shock with the benchmark case in blue and the welfare-

maximizing leaning-against-the-wind Taylor rule in red.

As the figure illustrates, the differences manifest themselves mostly in output, hours and wages,

and to a lesser extent in the inflation rate. The other series are nearly identical. The augmented

policy (25) with φi > 0 manages to reduce the volatility of output in response to the shock: the

28Computing the optimal monetary policy or the optimal investment tax would require to solve the model using
an entirely different, less tractable method. Since the nonlinearities in learning are essential for the result on leaning-
against-the-wind policies, the resolution method cannot rely on linearization and the state space reduction result
described in subsection 5.1 no longer holds.

29We also experimented with a Taylor ruled of the form 1+rt
1+r

=
(

1+πt
1+π

)φπ
(
Yt
Y

)φy (
mt

m

)φm , φm ≥ 0, but found

no parameter φm > 0 that increased welfare, due to the fact that mt lags the cycle by one period as it tracks the
dynamics of IT capital.
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Notes: The impulse responses are reported in log-deviations from the initial steady state. The blue curve represents

the response of the economy in our benchmark calibration. The red curve corresponds to the Taylor rule described

in (25) with the coefficient φi = 0, 3.84.10−5 that maximize ex-ante welfare.

Figure 10: Impact of leaning-against-the-wind monetary policy

economy expands slightly less during the growth stage of the cycle and the recession that would

normally follow is averted. Hours are similarly less volatile. The optimal coefficient φi = 3.84×10−5

is fairly small because this policy comes at the cost of slowing booms driven by good technologies,

which the monetary authority is reluctant to do because the probability of a false-positive episode

remains low. Accordingly, the welfare gain is small: +0.002% in consumption equivalent relative

to the benchmark calibration. Our results thus provide little support for this type of interventions.

Beyond these considerations, another reason why a monetary policy that leans against the

wind is not more effective is that it is an inappropriate tool to address the information externality

highlighted in subsection (3.3). We know from that section that the information externality shows

up as a distortion in s∗ and mt, which govern the amount of information released by the social

learning channel. In the current context, we see in the first panel of Figure 10 that monetary policy
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has virtually no effect on mt. The reason is that the technology adoption decision (21) is entirely

driven by beliefs about θ and the relative rental rates of capital zit, i = o, n. Since the monetary

authority cannot affect beliefs directly (they have no additional information to provide to investors),

the only channel by which it could operate is through the rental rates differential ẑnt − ẑot . We find

this channel quantitatively weak: by raising interest rates, the household’s incentives to accumulate

both types of capitals are affected, but in similar ways: the cost of the two capital bundles change

by an almost identical amount and technology adoption is left nearly unchanged. We thus find little

scope for the introduction of leaning-against-the-wind motives in monetary policy in a context like

ours and conclude that other policy instruments with a direct impact on technology adoption, like

the investment taxes and subsidies explored in subsection 3.3, are more promising.

6 Conclusion

This paper explores whether rational herding can generate endogenous business cycle fluctuations.

We propose a novel theory of herding which captures many essential features of more traditional

models (Banerjee, 1992; Bikhchandani et al., 1992; Chamley, 2004), while being tractable enough

to be embedded into a general equilibrium business cycle framework. We show that the model is

able to endogenously generate a boom-and-bust pattern without the need for a particular sequence

of shocks. Our model has predictions on the frequency, the timing and the conditions under which

such cycles emerge or burst. It can thus be used to analyze the role of stabilization policy, including

investment-specific taxes or monetary policy.

We have restricted our attention to technology-driven boom-and-bust cycles, but the impli-

cations of the theory go beyond this context and we believe our herding model can be used in

other environments to analyze herding behavior following any sort of innovation, be it financial

innovations or innovations to the demand for certain types of goods (new products, housing, etc).

Several extensions are worth investigating. First, our current macroeconomic model ignores the

role of debt. An interesting extension would be to study how the rising pattern of optimism during

the growth stage of the cycle could relax financial constraints and lead to an expansion in credit,

triggering a wave of bankruptcies at the time of the crash. Another natural extension would be to

consider a financial market application of our herding model and examine, in particular, the role

of speculation. We leave these ideas to future research.
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A Appendix of Section 2

A.1 Equations for the three-state model

This section provides the specific model equations that characterize beliefs in the three-state model.

Equation (5) that builds private beliefs from the public ones becomes

pjt = pj (pt, qt, sj) =
ptf

s
θH

(sj)

ptf sθH (sj) + qtf s
θL+ξ

(sj) + (1− pt − qt) f sθL (sj)
, (26)

qjt = qj (pt, qt, sj) =
qtf

s
θL+ξ

(sj)

ptf sθH (sj) + qtf s
θL+ξ

(sj) + (1− pt − qt) f sθL (sj)
.

Equation (11) that defines the interim beliefs after observing Rt is simply

pt|Rt =
ptf

u (Rt − θH)

ptfu (Rt − θH) + (1− pt) fu (Rt − θL)
,

qt|Rt =
qtf

u (Rt − θL)

ptfu (Rt − θH) + (1− pt) fu (Rt − θL)
.

Finally, in the three state model, the optimal investment strategy characterized by Equation (12)
that defines the law of motion of beliefs after observing mt becomes

pt+1 =
pt|Rt

fε
(

mt − F
s
θH

(s∗ (pt, qt))
)

pt|Rt
fε

(

mt − F
s
θH

(s∗ (pt, qt))
)

+ qt|Rt
fε

(

mt − F
s

θL+ξ (s
∗ (pt, qt))

)

+
(

1− pt|Rt
− qt|Rt

)

fε
(

mt − F
s
θL

(s∗ (pt, qt))
) ,

qt+1 =
qt|Rt

fε
(

mt −me

(

pt|Rt
, qt|Rt

, θL, ξ
))

pt|Rt
fε

(

mt − F
s
θH

(s∗ (pt, qt))
)

+ qt|Rt
fε

(

mt − F
s

θL+ξ (s
∗ (pt, qt))

)

+
(

1− pt|Rt
− qt|Rt

)

fε
(

mt − F
s
θL

(s∗ (pt, qt))
) .

A.2 Propositions

Proposition 1. There exists a unique equilibrium.

Proof. The threshold p∗ is uniquely determined by (8). The result is established recursively. Fix the fundamental

(θ, ξ) and the realization of the shocks {u0, ε0, u1, ε1, . . . }. At any date t, given public beliefs Λt, (5) and (7) yield

a unique distribution of private beliefs {Λjt}j∈[0,1] and {pjt}j∈[0,1]. Given these, under the tie-breaking rule that

indifferent agents invest, there is a unique me
t derived from (10) and, therefore a unique mt from (9). As a result,

updating beliefs through (11) and (12) yields unique Λt|R and Λt+1. We have shown that the updating of public

beliefs yields a unique Λt+1 from Λt and the realization of shocks {ut, εt}. Starting from public beliefs Λ0, there is

therefore a unique equilibrium path {Λ0,Λ1, . . . } for any history of shocks, and all other quantities can be uniquely

determined from it.

Lemma 1. In the three-state model, for θL < θL + ξ < θH and {F sx} satisfying the MLRP condition, the optimal

investment strategy in characterized by a cutoff rule in the private signal s∗ (pt, qt), decreasing in pt. That is, an

agent invests if and only if sj ≥ s∗ (pt, qt). The expected measure of investing agents is given by

me (pt, qt, θ, ξ) = F
s

θ+ξ (s
∗ (pt, qt)) .
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Proof. The proof is straightforward. Under the above conditions, rewrite the individual probability of the good-

technology state as

pj (pt, qt, sj) =
pt

pt + qt
fs
θL+ξ

(sj)

fs
θH

(sj)
+ (1− pt − qt)

fs
θL

(sj)
fs
θH

(sj)

.

Under the assumption of MLRP and θL < θL + ξ < θH , pj is clearly increasing in sj . Hence, for all (pt, qt), there

exists a cutoff s∗ (pt, qt) ∈ R∪{−∞,∞} such that sj ≥ s∗ (pt, qt) ⇔ pj (pt, qt, sj) ≥ p∗. Also, because pj is increasing

in pt, the implicit function theorem ensures that s∗ (pt, qt) is decreasing in pt. The measure of investing agents is

thus

me (pt, qt, θ, ξ) =

∫

1I (pj (pt, qt, sj) ≥ p∗) fsθ+ξ (sj) dsj = F
s

θ+ξ (s
∗ (pt, qt)) .

Proposition 2. In the Gaussian case, i.e., F ξ ∼ N
(
0, σ2

ξ

)
, F s|θ, ξ ∼ N

(
θ + ξ, σ2

s

)
, F ε ∼ N

(
0, σ2

ε

)
, Fu ∼ N

(
0, σ2

u

)
,

for θ and ξ independent and signal Rt sufficiently uninformative (σu low), there exists a large enough ξ such that all

shocks ξ ≥ ξ generate a boom-and-bust cycle in the impulse response of beliefs pt to a false-positive shock (θL, ξ).

Proof. Our strategy is to show that there exists a sufficiently large ξ, such that for all shock ξ ≥ ξ the public beliefs

about the good state in date 1, p1, increases after observing m0. Since beliefs must converge to the truth in the

long-run (pt → 0), due to the strictly positive flow of information, and the law of large numbers, this guarantees

the existence of a boom-and-bust cycle in beliefs. We start under the assumption that Rt is totally uninformative,

σu = ∞.

First, we establish that the optimal strategy in the Gaussian case follows a cutoff strategy in s∗. The probability

that individual j puts on the good state is given by

pj (p0, sj) =

∫
Λ0 (θH , ξ) f

s
θH+ξ (sj) dξ

∫
Λ0 (θH , ξ) fsθH+ξ (sj) dξ +

∫
Λ0 (θL, ξ) fsθL+ξ (sj) dξ

.

Since ξ is independent from θ, Λ0 (θH , ξ) = p0f
ξ (ξ) and Λ0 (θL, ξ) = (1− p0) f

ξ (ξ). Notice, then, that
∫
fξ (ξ) fsθ+ξ (sj) dξ

is the pdf of sj given θ, which is a normal, sj |θ ∼ N
(
θ, σ2

ξ + σ2
s

)
. Denote φ the pdf of a unit normal, we have:

pj (p0, sj) =
1

1 +
(1−p0)

∫

fξ(ξ)fs
θL+ξ(sj)dξ

p0
∫

fξ(ξ)fs
θH+ξ(sj)dξ

=
1

1 + 1−p0
p0

φ

(
sj−θL

√

σ2
ξ
+σ2

s

)

/φ

(
sj−θH

√

σ2
ξ
+σ2

s

) .

Since the Gaussian family satisfies the MLRP property, pj is increasing in sj . Hence, the optimal investment strategy

at date 0 takes a cutoff form ŝ0.

Under the assumption that Rt is uninformative, the public belief about the good state at the beginning of period

1, p1, is given by

p1 =

∫

Λ1 (θH , ξ) dξ =

∫
Λ0 (θH , ξ) f

ε (m0 −me (Λ0, θH , ξ)) dξ
∫
Λ0 (θH , ξ) fε (m0 −me (Λ0, θH , ξ)) dξ +

∫
Λ0 (θL, ξ) fε (m0 −me (Λ0, θL, ξ)) dξ

.

Using the independence property between θ and ξ and the cutoff property, the above formula can be rewritten as

p1 =
1

1 + 1−p0
p0

∫

fξ(ξ)fε
(

m0−F
s
θL+ξ(s∗0)

)

dξ

∫

fξ(ξ)fε
(

m0−F
s
θH+ξ(s∗0)

)

dξ

.

Denoting ξ0 the true shock, the impulse response in mt yields m0 = F
s

θL+ξ0 (s
∗
0), which goes to 1 as ξ0 → ∞.

Because the MLRP property implies first-order stochastic dominance, we have F
s

θL+ξ (s
∗
0) < F

s

θH+ξ (s
∗
0). Since f

ε (ε)
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is decreasing for ε ≥ 0, we have

fε
(
m0 − F

s

θL+ξ (s
∗
0)
)
< fε

(
m0 − F

s

θH+ξ (s
∗
0)
)

for all ξ ≤ θL − θH + ξ0. Decompose the difference between the denominator and numerator can be written

∫

fξ (ξ) fε
(
m0 − F

s

θH+ξ (s
∗
0)
)
dξ −

∫

fξ (ξ) fε
(
m0 − F

s

θL+ξ (s
∗
0)
)
dξ

−→
ξ0→∞

∫ ∞

−∞

fξ (ξ)
[
fε
(
1− F

s

θH+ξ (s
∗
0)
)
− fε

(
1− F

s

θL+ξ (s
∗
0)
)]
dξ > 0

The difference converges to a strictly positive term. Thus, there exists ξ such that for all ξ0 > ξ

∫

fξ (ξ) fε
(
F
s

θL+ξ0 (s
∗
0)− F

s

θL+ξ (s
∗
0)
)
dξ <

∫

fξ (ξ) fε
(
F
s

θL+ξ0 (s
∗
0)− F

s

θH+ξ (s
∗
0)
)
dξ

and p1 > p0. The shock is large enough for agents to attribute it mostly to the good state, initiating the growth

stage of the cycle. By continuity of the belief updating equations in σu. There must also exists a sufficiently large

σu (Rt sufficiently uninformative) for which p1 > p0 after ξ0 ≥ ξ.

Proposition 3. The efficient allocation can be implemented as an equilibrium by an investment tax

τ∗ =
(
Eθ,ξ

[
fpθ+ξ (p

∗) | I
])−1

β
∂Eθ,ξ [V (I′) | I]

∂p∗
, ((15))

and a lump-sum transfer to all investors.

Proof. We consider a tax τ that makes the effective cost of investing c + τ . Under that tax, (8) shows that the

marginal investor p∗ is such that p∗θH + (1− p∗) θL = c+ τ . Combining with (14) and reorganizing yields (15).

A.3 Additional figures

(a) Measure of investing agents
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(b) Evolution of public beliefs
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Notes: The simulation was performed with parameters: θH = 1, θL = 0.5, ξ = 0.4, c = 0.79. The priors are set to p0 = 0.25

and q0 = 0.05. The distributions of all signals are Gaussian with standard deviations σs = 0.4, σε = 0.2, σu = 2.5. The shaded

area corresponds to the informational cascade period, loosely defined as periods when mt ≥ 85% in which learning is markedly

slower, given our calibration.

Figure 11: Impulse response in the case of a true positive
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(a) Measure of investing agents
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(b) Evolution of public beliefs
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Notes: The simulation was performed with parameters: θH = 1, θL = 0.5, ξ = 0.4, c = 0.79. The priors are set to p0 = 0.25

and q0 = 0.05. The distributions of all signals are Gaussian with standard deviations σs = 0.4, σε = 0.2, σu = 2.5. The shaded

area corresponds to the informational cascade period, loosely defined as periods when mt ≥ 85% in which learning is markedly

slower, given our calibration.

Figure 12: Impulse response in the case of a true negative

A.4 Intensive margin of investment

In this appendix, we consider an extension of the 3-state version of the simplified learning model from section 2 in

which firms invest along the intensive margin. As a result, investment it can take on any values ijt ≥ 0 instead of

being limited to ijt ∈ {0, 1}. We will show that the boom-bust dynamics and the information cascades explored in

Section 3.1 survive to that change in investment technology.

Most of the equations of the model remain the same. The main change is that the return equation (2) now

becomes

yjt = Rtijt − c (ijt) , (27)

where, as before, Rt is (1) and where c is now a smooth investment cost function that we assume to be strictly

increasing and strictly convex with c (0) = 0 and c′ (0) = 0. To generate information cascades is is often convenient

to assume a large amount of curvature in the cost function c for higher values of investment. One simple way to

capture that feature is to assume that there is a threshold i such that ijt ≤ i. In a richer model, this threshold could

come from a budget constraint, a financial constraint, decreasing returns in production, etc.30

Under the return technology (27), agents pick ijt to maximize

(pjtθh + (1− pjt) θl) ijt − c (ijt) ,

and the first-order condition implies that the optimal investment decision is given by

ijt =







i if (c′)
−1

(pjtθh + (1− pjt) θl) ≥ i

(c′)
−1

(pjtθh + (1− pjt) θl) if pjtθh + (1− pjt) θl ≥ 0

0 otherwise,

(28)

where (c′)
−1

denotes the inverse of the marginal cost function. To simplify the notation, we define the investment

function i (Λt, sj) as the optimal investment, given by (28), of an agent with a private signal sj when the public

beliefs are Λt.

We also need to adapt the endogenous public signal to the new investment technology. We assume that firms

30This threshold is neither necessary to generate booms-and-busts, nor information cascades. We introduce it to
generate sharper information cascades.
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observe the total amount of investment in the economy, such that

mt = me (Λt, θ, ξ) + εt (29)

where me (Λt, θ, ξ) =

∫

i (Λt, sj) f
s
θ+ξ (sj) dsj . (30)

Under these assumptions, the updating of beliefs follows the same equations as Section 2.6, such that (11) and (12)

remain valid.

Simulations

It is straightforward to simulate this model numerically. For that purpose, we assume that c (i) = i2

2α
so that

i = min
{
α (pjtθh + (1− pjt) θl) , i

}

when investment takes place. Figure 13 shows the impulse response of total investment m and the public beliefs in

the false-positive state. As we can see, this model can also generate boom-bust cycles, with aggregate investment

rising for 64 periods before starting to decline. The logic is the same as in Section 2: agents rationally interpret the

large aggregate investment as evidence that the fundamental is θ = θh, which pushes for further investment. After

several periods, as more an more information is released, agents realize that the false-positive state is the most likely

and aggregate investment declines. The example also shows that slow booms and rapid busts are compatible with an

intensive investment margin.
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Notes: The simulation was performed with parameters: θH = 1, θL = 0.5, ξ = 0.48, α = 12, i = 7.5. The priors are set to

p0 = 0.05 and q0 = 0.04. All the distributions are Gaussian: F s
θ+ξ ∼ N (θ + ξ, σs), F ε ∼ N (0, σε) and Fu ∼ N (0, σu) with

standard deviations σs = 0.2, σε = 2.5, σu = 2.5.

Figure 13: Impulse response in the false-positive state with an intensive investment margin

The model with an intensive investment margin can also generate information cascades. Figure 14 provides an

example. We see that aggregate investment first goes through a rapid increase to a plateau in which firms all invest

at levels close to i. As in Figure 4 in the main text, an information cascade follows, in which little information is

transmitted through the observation of aggregate investment (agents still learn from the exogenous public signal).

As a result, the good and the bad states remain a likely possibility for an extended period of time, and agents have

to wait until period t = 50 for the false-positive state to becomes the most likely outcome. As we can see from

this example, information cascades remain even when agents are allowed to invest along an intensive margin. Note,

finally, that this type of information cascade due to binding constraints is reminiscent of the mechanism present in
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Straub and Ulbricht (2017; 2019).
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Notes: The simulation was performed with parameters: θH = 1, θL = 0.5, ξ = 0.45, α = 10, i = 7.5. The priors are set to

p0 = 0.25 and q0 = 0.05. All the distributions are Gaussian: F s
θ+ξ ∼ N (θ + ξ, σs), F ε ∼ N (0, σε) and Fu ∼ N (0, σu) with

standard deviations σs = 0.25, σε = 0.8, σu = 2.

Figure 14: Impulse response in the false-positive state with a bounded intensive investment margin

A.5 Permanent information cascades

In this appendix, we show that a slight modification of the environment considered in Figure 4 in the main text can

lead to a permanent information case in which no information is provided by the observation of the mass of investors.

We depart from that specification by imposing a lower bound s = 0 on the distribution of private signal and by

making the exogenous public signal uninformative (σu = ∞). Figure 15 shows the behavior of the economy in the

false-positive state under this new parametrization. As we can see, the economy quickly converges to a permanent

plateau at m = 1. The public beliefs are so optimistic at that point that even the most pessimistic agent (sj = 0)

invests. Since all agents invest regardless of the true state of the world, observing the mass of investors provides no

information and the economy remains in a permanently elevated state of investment.
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Notes: The simulation was performed with parameters: θH = 1, θL = 0.5, ξ = 0.4, c = 0.79. The priors are set to p0 = 0.25

and q0 = 0.05. The distributions of all signals are Gaussian with standard deviations σs = 0.5, σε = 0.2, σu = ∞. The private

signal distribution is bounded below by zero.

Figure 15: Impulse response in the false-positive state with permanent information cascades
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B Appendix of Section 5

This appendix contains additional details about the full quantitative model, our resolution method, the calibration

as well as exercises to test the robustness of the simulations of Figure 9.

B.1 Equilibrium definition

In what follows, to lighten notation, we denote by ΩAt the aggregate state space at the beginning of a period

upon making the technology adoption decision (stage A of the timing) and ΩBt the aggregate state space at the

end of the period when consumption, production and market clearing take place (stage B). Before maturation of

the technology, the state space that describes the information set of the household and any participant that is

not an entrepreneur is ΩAt =
(
KIT
t ,KT

t ,Λt
)
. The individual state space that describes the information set of

entrepreneurs at stage A is
(
ΩAt , sj

)
. Finally, the aggregate state space that describes the information set at stage

B is ΩBt =
(
KIT
t ,KT

t ,Λt,mt, s
u
t

)
. After maturation, all the uncertainty related to the technology is resolved, so the

aggregate state spaces can be described by ΩAt =
(
KIT
t ,KT

t , θ
)
and ΩBt =

(
KIT
t ,KT

t , θ,mt

)
.

We are now ready to define an equilibrium for the full quantitative model. All the model’s equations that the

definition refers to have been compiled in subsection B.2.

Definition 2. An equilibrium is a set of a) entrepreneur j’s technology adoption decision ijt
(
ΩAt , sj

)
, b) a measure of

new technology adoptersmt

(
ΩAt , θ, ξ, εt

)
, c) household decisions

{
Ct, Lt, I

IT
t , ITt , K

IT
t+1, K

T
t+t, Bt

}
which are functions

of ΩBt , d) firm decisions
{

Yt, Y
w
t , Y

n
t , Y

o
t , Y

r
jt, L

n
t , L

o
t ,K

n
t ,K

o
t ,K

n,IT
t ,Kn,T

t ,Ko,IT
t ,Ko,T

t ,ΠITt ,ΠTt

}

which are functions

of ΩBt , e) prices
{
Pt, P

w
t , P

n
t , P

o
t , wt, Rt, πt, z

n
t , z

o
t , z

IT
t , zTt , µt

}
which are functions of ΩBt for all t such that

1. The entrepreneurs’ technology adoption decision and the measure of new technology adopters solve (53)-(54);

2. The household decisions satisfy the household’s optimality conditions and constraints (37)-(43);

3. The firm’s decisions satisfy the its optimality conditions (44)-(52) and the production functions (31)-(36);

4. Prices satisfy (60)-(60), the Phillips curve (66), the (18) and the market clearing constraints (55)-(59).

B.2 Model equations

We provide below all the 37 nonlinear equations that characterize the full business cycle model (36 unknowns).31

1. Production functions and capital bundles

Y nt = Ant (K
n
t )
α (Lnt )

1−α (individual production new technology) (31)

Y ot = Ao (Ko
t )
α (Lot )

1−α (individual production old technology) (32)

Y wt =

(∫ 1

0

mt (Y
n
t )

σ−1

σ + (1−mt) (Y
o
t )

σ−1

σ

) σ
σ−1

(aggregate production wholesale sector) (33)

Yt =

(∫ 1

0

(
Y rjt
)σ−1

σ dj

) σ
σ−1

(aggregate production final good) (34)

Kn
t = κn

(

(1− ωn)
(

Kn,T
t

) ζ−1

ζ
+ ωn

(

Kn,IT
t

) ζ−1

ζ

) ζ
ζ−1

(new tech. capital bundle) (35)

Ko
t = κo

(

(1− ωo)
(

Ko,T
t

) ζ−1

ζ
+ ωo

(

Ko,IT
t

) ζ−1

ζ

) ζ
ζ−1

(old tech. capital bundle) (36)

31One equation is redundant because of Walras’ Law, but we keep it in the equilibrium definition for the sake of
completeness.
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2. Household optimality and constraints

C−1
t = βEt

[

C−1
t+1

1 +Rt
1 + πt+1

]

(Euler eq. nominal bonds) (37)

C−1
t = βEt

[

C−1
t+1

(

zITt+1 + 1− δ
)]

(Euler eq. IT capital (38)

C−1
t = βEt

[

C−1
t+1

(

zTt+1 + 1− δ
)]

(Euler eq. T capital) (39)

Lψt = wt (labor supply) (40)

KIT
t+1 = (1− δ)KIT

t + IITt (law of motion IT capital) (41)

KT
t+1 = (1− δ)KT

t + ITt (law of motion T capital) (42)

Ct +
∑

i=T,IT

Iit +
Bt
Pt

= wtLt +
∑

i=T,IT

zitK
i
t +

1 +Rt−1

1 + πt

Bt−1

Pt−1
+mtΠ

IT
t + (1−mt) Π

T
t (budget constraint)

(43)

3. Firm optimality

(

Ant (K
n
t )
α (Lnt )

1−α
) σ−1

σ
/Lnt =

(

Ao (Ko
t )
α (Lot )

1−α
) σ−1

σ
/Lot (wage equalization) (44)

α

1− α
=
znt
wt

Kn
t

Lnt
(cost minimization new tech.) (45)

α

1− α
=
zot
wt

Ko
t

Lot
(cost minimization old tech.) (46)

Kn,IT
t = κζ−1

n ωζn

(
zITt
znt

)−ζ

Kn
t (new tech. demand for IT capital) (47)

Kn,T
t = κζ−1

n (1− ωn)
ζ

(
zTt
znt

)−ζ

Kn
t (new tech. demand for T capital) (48)

Ko,IT
t = κζ−1

o ωζo

(
zITt
zot

)−ζ

Ko
t (old tech. demand for IT capital) (49)

Ko,T
t = κζ−1

o (1− ωo)
ζ

(
zTt
zot

)−ζ

Ko
t (old tech. demand for T capital) (50)

ΠITt =
1

σ − 1

(
σ

σ − 1

)−σ

P 1−σ
t (Pwt )σ Y wt

(

1

Ant

(
znt
α

)α (
wt

1− α

)1−α
)1−σ

(new tech. profits) (51)

ΠTt =
1

σ − 1

(
σ

σ − 1

)−σ

P 1−σ
t (Pwt )σ Y wt

(

1

Ao

(
zo

α

)α (
wt

1− α

)1−α
)1−σ

(old tech. profits) (52)

4. Technology adoption decisions

ijt = argmax
i∈[0,1]

iE
[

Πnt |Ω
A
t , sj

]

+ (1− i)E
[

Πot |Ω
A
t , sj

]

(optimal technology choice) (53)

mt =

∫ 1−µ

0

ijtdj + µεt (measure new tech. adopters) (54)
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5. Market clearing constraints

Yt = Ct + IITt + ITt (final good) (55)

Y wt =

∫

Y rjtdj (wholesale good) (56)

Lt = mtL
n
t + (1−mt)L

o
t (labor) (57)

KIT
t = mtK

n,IT
t + (1−mt)K

o,IT
t (IT capital) (58)

KT
t = mtK

n,T
t + (1−mt)K

o,T
t (T capital) (59)

6. Prices

znt =
1

κn

(

(1− ωn)
ζ
(

zTt

)1−ζ

+ ωζn

(

zITt

)1−ζ
) 1

1−ζ

(price new tech. capital bundle) (60)

zot =
1

κo

(

(1− ωo)
ζ
(

zTt

)1−ζ

+ ωζo

(

zITt

)1−ζ
) 1

1−ζ

(price old tech. capital bundle) (61)

Pnt/Pt =
σ

σ − 1

1

Ant

(
znt
α

)α (
wt

1− α

)1−α

(price new tech.) (62)

Pot/Pt =
σ

σ − 1

1

Ao

(
zot
α

)α (
wt

1− α

)1−α

(price old tech.) (63)

Pwt =
(

mt (P
n
t )

1−σ + (1−mt) (P
o
t )

1−σ
) 1

1−σ
(price wholesale) (64)

µt = Pt/P
w
t (markup retail sector) (65)

7. New Keynesian block (log-linearized)

π̂t = βEtπ̂t+1 −
(1− χ) (1− βχ)

χ
µ̂t (Phillips curve) (66)

R̂t = φππ̂t + φy
(

Ŷt − Y
)

(Taylor rule) (67)

B.3 Resolution method

Our resolution approach relies on linearizing the equations of the economic model while keeping the full nonlinear

equations that govern the evolution of beliefs. Besides providing greater tractability, this approach allows us to focus

on the nonlinearities implied by our learning model while putting aside those of the DSGE model, which are usually

weak.

Exploiting the martingale property of beliefs

As explained in Section 5.1, we exploit the property that beliefs follow a martingale under rational learning. Because

of this property coupled with the linearization, the linear system of equations that characterize the economy can be

solved at time t to a first-order approximation as if beliefs were held constant going forward, i.e., as if Λt+s (θ, ξ) =

Λt (θ, ξ) , ∀s ≥ 0. In other words, the beliefs Λt are no longer a state variable when solving the economic model

forward, avoiding the need to keep track of a potentially large object in the state space (infinite dimensional in the

case of continuous ξ).

Linearization around moving steady states

The interaction between technology adoption and beliefs is of a highly nonlinear nature and the economy can settle on

very different steady states in the long run. We have found that linearizing the economy around a fixed non-stochastic
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steady state produces poor results and that linearizing instead around a moving steady state that takes into account

these nonlinearities yields more accurate predictions.

Our preferred approach thus involves linearizing the model every period around the long-run non-stochastic

steady state in which all random variables are set equal to their means according to current beliefs.32 In particular,

the productivity of the new technology is equal to the current average public expectation at time t with A
n
(Λt) =

E [Ant+s|It] = (1− λ)Ao+λ (ptθH + (1− pt) θL), where pt =
∫
Λt (θH , ξ) dξ. We refer to this steady state as S.S (Λt).

In a non-stochastic steady state, the rental rates on the two types of capital are equalized and the threshold

s∗,S.S(Λt) which characterizes the marginal technology adopter solves

E
[

θ|Λt, s
∗,S.S(Λt)

]

= Ao.

The corresponding expected measure of new technology adopters is given by

mS.S(Λt) = E
[

(1− µ)F
s

θ+ξ

(

s∗,S.S(Λt)
)

+ µεt | Λt
]

.

Every period, the model is solved forward around the long-run steady state associated to current beliefs but the

variables are then translated back to a reference steady state which stays the same throughout the simulation in order

to construct the impulse responses.33

Technology adoption decision with GE effects

In each period, given the current capital stocks and public beliefs ΩAt =
(
KIT
t ,KT

t ,Λt
)
, we solve nonlinearly for the

marginal technology adopter threshold s∗t = s∗ (Ωt,Λt)
34 which solves

E
[

Ânt − αẑnt | Λt, s
∗
t

]

= E



 Âot
︸︷︷︸

=0

− αẑot | Λt, s
∗
t



 ,

where the hatted variables indicate log-deviations from the current steady state around which the economy is lin-

earized.

Solving for the threshold thus requires solving for the relative rental rates of capital. For a given stock of capital
(
KIT
t ,KT

t

)
, mt and productivity realization Ant , the relative rental rate of capital ẑnt − ẑot = ẑnt /z

o
t can be computed

by solving a static system of equations. We first combine the firms’ first-order conditions over capital and labor to

express the relative demands for capital

knt
kot

=

(
Ant
Ao

)σ−1(
znt
zot

)−σ(1−(1−α)σ−1

σ )
. (68)

Using the IT and traditional capital market clearing constraints

KIT
t = mtκ

ζ−1
n ωζn

(
zITt
znt

)−ζ

knt + (1−mt)κ
ζ−1
o ωζo

(
zITt
zot

)−ζ

kot (69)

KT
t = mtκ

ζ−1
n (1− ωn)

ζ

(
zTt
znt

)−ζ

knt + (1−mt)κ
ζ−1
o (1− ωo)

ζ

(
zTt
zot

)−ζ

kot , (70)

32This includes not only the productivity but also the signal noise and the mass of noise entrepreneurs.
33Note that the output gap in the Taylor rule (18), expressed in terms of the reference steady state, must be

translated to the current steady state in every period.
34Due to the presence of general equilibrium effects, even under the assumption of MLRP for {F sx}, the technology

adoption decision is not guaranteed to take the form of a cutoff rule. We check numerically that the necessary
monotonicity condition holds to ensure the existence of a cutoff s∗t .
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and definitions of the capital bundle prices

znt =
1

κn

(

(1− ωn)
ζ
(

zTt

)1−ζ

+ ωζn

(

zITt

)1−ζ
) 1

1−ζ

(71)

zot =
1

κo

(

(1− ωo)
ζ
(

zTt

)1−ζ

+ ωζo

(

zITt

)1−ζ
) 1

1−ζ

, (72)

we obtain a system of 5 equations (68)-(72) in 5 unknowns
(
knt , k

o
t , z

IT
t , zTt , z

n
t /z

o
t

)
which can be solved using a

nonlinear solver.

Our procedure to solve for mt in a given period with state variables
(
KIT
t ,KT

t ,Λt
)
involves a simple bisection

algorithm which we describe as follows:

1. Guess s∗t ;

2. Using certainty equivalence, set Ant ≡ E [Ant |Λt, s
∗
t ] and mt ≡ Et [mt|Λt, s

∗
t ] and solve for ẑnt − ẑot using the

system (68)-(72).35;

3. Check if
∣
∣
∣E
[

Ânt − α (ẑnt − ẑot ) |Λt, s
∗
t

]∣
∣
∣ < ε with ε small. If yes, stop, otherwise return to (1) with a lower s∗t

if the expectation strictly positive, or a higher s∗t if negative.

We denote the resulting technology adoption threshold by s∗
(
KIT
t ,KT

t ,Λt
)
.

Dynamics of mt

The previous paragraph explains how s∗t can be computed in a given period t for a certain state space
(
KIT
t ,KT

t ,Λt
)
.

One difficulty remains in the fact that agents in the economic model need to form expectations about future mt+s,

s > 0, and that one equation in our linearized system should govern the dynamics of mt. We do so by numerically

linearizing the expectation of mt+s as a function of
(
KIT
t+s,K

T
t+s,Λt

)
.

To fix notation, denote mexp the public expectation of m that corresponds to the technology adoption threshold

s∗
(
KIT ,KT ,Λt

)
:

mexp
(

KIT ,KT ,Λt
)

= E
[

(1− µ)F
s

θ+ξ

(

s∗
(

KIT ,KT ,Λt
))

+ µεt | Λt
]

.

In the long-run steady state around which the economy is linearized, the expected measure of new technology

adoptersmS.S(Λt) coincides withmexp when the stocks of capital have reached their steady states
(

KIT,S.S(Λt), KT,S.S(Λt)
)

:

mS.S(Λt) = mexp
(

KIT,S.S(Λt),KT,S.S(Λt),Λt
)

.

The linearized equation that governs the expectation of m is given by

E [mt+s|Λt] = mexp
(

KIT
t+s,K

T
t+s,Λt

)

= mS.S(Λt) +
∂mexp

∂KIT

(

KIT,S.S(Λt),KT,S.S(Λt),Λt
)(

KIT
t+s −KIT,S.S(Λt)

)

+
∂mexp

∂KT

(

KIT,S.S(Λt),KT,S.S(Λt),Λt
)(

KT
t+s −KT,S.S(Λt)

)

. (73)

We use numerical differentiation to evaluate the two derivatives ∂mexp

∂KIT and ∂mexp

∂KT and feed equation (73) to our linear

rational expectation model solver.

Resolution method step by step

We start by selecting a reference steady state (indicated with the upperscript ref) with respect to which all the

impulse responses are expressed. We choose the long-run nonstochastic steady state associated with the initial public

35Since the economy is eventually linearized, the use of certainty equivalence has no bearing on the results, which
remain correct to the first order.
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beliefs Λ0 at the time 0 with the corresponding technology adoption mS.S(Λ0).

In what follows, hatted variables x̂ref or x̂S.S(Λt) denote (log) deviations from the particular steady state it refers

to (ref or S.S (Λt)). The various steps of the resolution method can be described as follows:

1. At a given date t with state variables
(

K̂IT,ref
t , K̂T,ref

t ,Λt
)

, compute the long-run steady state associated

with current beliefs S.S (Λt):
(

Y S.S(Λt),mS.S(Λt),KIT,S.S(Λt),KT,S.S(Λt), ...
)

;

2. Translate the state variables
(

K̂IT,ref
t , K̂T,ref

t

)

to
(

K̂
IT,S.S(Λt)
t , K̂

T,ref(Λt)
t

)

;

3. Compute the threshold s∗
(
KIT
t ,KT

t ,Λt
)
and the realization of mt = (1− µ)F

s

θ+ξ

(
s∗
(
KIT
t ,KT

t ,Λt
))

+ µεt;

express it in deviation from the current steady state m̂
S.S(Λt)
t = mt −mS.S(Λt);

4. Use numerical differentiation to evaluate the law of mexp
(
KIT
t+s,K

T
t+s,Λt

)
and express it with respect to the

current steady state associated to Λt;

5. Using a linear rational expectation solver, solve for the economy linearized around the current steady state

S.S (Λt), keeping beliefs constant;

6. Evaluate the impulse response associated with the chosen set of shocks from t onward;

7. Collect the time-t variables
(

Ŷ
S.S(Λt)
t , K̂IT,S.S(Λt), K̂T,S.S(Λt), ...

)

and translate them back to the reference

steady state
(

Ŷ reft , K̂IT,ref
t , K̂T,ref

t , ...
)

. Store their values as the time-t realization of the desired impulse

response;

8. Update beliefs using the particular realization of the signals and mt;

9. Set t := t+ 1 and go back to (1).

B.4 Additional details about the calibration

We use data from the “nowcast” of real GDP in the Survey of Professional Forecasters as they capture beliefs about

net changes in productivity, net of changes in factors shares, because factors don’t have time to adjust over this

short time horizon. The average real GPD growth between between 1991 and 1998 (before the boom-bust cycle

started) is 2.4%, and we assume that we are on a balanced growth path with Aot, θHt and θLt growing at rate

γ = 1 + 0.024/4 = 1.006 per quarter.

To compute θH , we use the highest expectation of real GDP growth over our period, which is 4.19% in 2000Q2

in annualized term. We interpret this most optimistic scenario as a situation in which everybody is convinced that

the state of the new technology is good and so m = 1 and p = 1. In this case, we can write

γ (λθH + (1− λ)Ao)

Ao
= 1 + 0.0419/4

where recall λ = 1/22 is the likelihood that the new technology becomes operational. Since Ao is normalized to one

we find that θH =1.099.

We perform a similar computation to find θL but in this case relying on the most pessimistic (m = 1 and p = 1)

forecast (0.8% annualized in 2001Q1). We find

γ (λθL + (1− λ)Ao)

Ao
= 1 + 0.008/4

which yields θL = 0.912.

B.5 Mass of noise entrepreneurs µ

Figure 16 shows the benchmark simulation of Section 5 with a smaller (µ = 0.1) and larger (µ = 0.2) mass of

noise entrepreneurs. We see that when there are fewer noise entrepreneurs, the public signals that agents receive are

more precise which leads to a stronger boom that happens sooner. In contrast, if the public signals are more noisy
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(µ = 0.2), agents learn little by observing m and the economy does not go through a boom-bust cycle. This last

simulation emphasizes the importance of social learning for the mechanism.
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Figure 16: Simulations under different mass of noise traders µ

B.6 Size of common noise signal ξ

Figure 17 shows the same simulation as Section 5 but with various sizes for the common noise shock ξ. Unsurprisingly,

the size of the boom is correlated with ξ.When the common noise essentially mimics θH the increase in output reaches

3 percent. In contrast, when ξ = 0.9 × (θH − θL) aggregate output goes up by about 1.5 percent during the boom.

B.7 Prior p0 associated with the good state: θ = θH and ξ = 0

Figure 18 shows the simulations of Section 5 under various values for the prior p0 associated with the good state.

We see that the boom is much larger when entrepreneurs expect the good state to be more likely (p0 = 25). In that

case, the economy goes in the information cascades zone as in Figure 4. In contrast, when agents expect that the

good state is unlikely (p0 = 0.15) their pessimism is enough to prevent the economy from going through a boom-bust

cycle.
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Figure 17: Simulations under different size of the common noise signal ξ

B.8 Prior q0 associated with the false positive state: θ = θL and ξ = ξ

Figure 19 shows what happens to the benchmark simulations of Section 5 when the prior on the false positive state

changes. When that state is less likely (q0 = 0.1) the boom-bust cycle dynamics is stronger and the economy enters

the information cascades state, as in Figure 4. If instead, the false positive state is more likely (q0 = 0.2), agents are

particularly skeptical of good signal and the economy does go through a boom.

B.9 Standard deviation of the exogenous public signal σu

Figure 20 shows the benchmark simulation under different values for σu. When the exogenous public signal is less

information (σu = 4× σs), agents have a harder time figuring out that the economy is in the false positive state and

the boom in much larger, with output reaching a high of about 3 percent above trend. In contrast, when σu is small,

the exogenous public signal is very informative and agents learn rapidly that the technology is bad (θ = θL). In this

case, there is no room for our social learning mechanism to create a boom-bust cycle.
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Figure 18: Simulations under different priors p0
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Figure 19: Simulation under different priors q0
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Figure 20: Simulation under different informativeness for the exogenous public signal σu

63


	Introduction
	Literature Review

	Learning Model
	Notation
	Environment
	Information
	Private signals
	Public signals

	Belief Characterization
	Timing and Investment Decision
	Evolution of Beliefs
	Equilibrium

	Endogenous Booms and Busts
	The 3-state model
	Learning from mt
	Signal-to-noise ratio and smooth information cascades
	Endogenous boom-and-bust cycle
	Information cascades
	The importance of herding

	Continuous Case
	Welfare
	Example: Efficiency in the 3-state model
	Optimal taxation


	A Business Cycle Model with Herding
	Foreword
	Household
	Technology
	Entrepreneur sector
	Wholesale sector
	Retail sector
	Final good sector

	Monetary Authority
	Information
	Private information
	Public information
	Beliefs

	Timing
	Investment Decision
	Belief Updating

	Quantitative Exercise
	Resolution Method
	Calibration
	Boom-and-Bust Cycles
	Monetary Policy Implications

	Conclusion
	Appendix of Section 2
	Equations for the three-state model
	Propositions
	Additional figures
	Intensive margin of investment
	Simulations

	Permanent information cascades

	Appendix of Section 5
	Equilibrium definition
	Model equations
	Resolution method
	Exploiting the martingale property of beliefs
	Linearization around moving steady states
	Technology adoption decision with GE effects
	Dynamics of mt
	Resolution method step by step

	Additional details about the calibration
	Mass of noise entrepreneurs 
	Size of common noise signal 
	Prior p0 associated with the good state: =H and =0
	Prior q0 associated with the false positive state: =L and =
	Standard deviation of the exogenous public signal u


