
From Fixed-event to Fixed-horizon Density Forecasts: Obtaining

Measures of Multi-horizon Uncertainty from Survey Density

Forecasts

Gergely Ganics1, Barbara Rossi2 and Tatevik Sekhposyan3

1Central Bank of Hungary and Neumann János University*

2ICREA – Univ. Pompeu Fabra, Barcelona School of Economics, and CREI†

3Texas A&M University‡

September 27, 2021

Abstract

The US Survey of Professional Forecasters produces precise and timely point forecasts for key macroeco-
nomic variables. However, the accompanying density forecasts are not as widely utilized, and there is
no consensus about their quality. This is partly because the density forecasts are mostly conducted for
“fixed events”. For example, in each quarter panelists are asked to forecast output growth and inflation
for the current calendar year and the next, implying that the forecast horizon changes with each survey
round. The fixed-event nature limits the usefulness of survey density predictions for policymakers
and market participants, who often wish to characterize uncertainty a fixed number of periods ahead
(“fixed-horizon”) or for alternative definitions of the target relative to what is used in the survey. Is it
possible to obtain fixed-horizon density forecasts using the available fixed-event ones? We propose a
density combination approach that weights fixed-event density forecasts according to uniformity of
the probability integral transform criterion, aiming at obtaining a correctly calibrated fixed-horizon
density forecast. We show that our combination method produces competitive density forecasts relative
to widely used alternatives based on historical forecast errors or Bayesian VARs. Finally, we elaborate
on alternative uses of the proposed methodology to demonstrate the usefulness of our framework for
researchers and policymakers.
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1 Introduction

Surveys of professional forecasters, in particular, the quarterly US Survey of Professional

Forecasters (SPF, currently administered by the Philadelphia Fed) provide precise and timely

point forecasts for key macroeconomic variables (see, for example, Ang et al., 2007), justifying

their use as a base for the construction of predictive densities as in Clark et al. (2020). Panelists

in the US SPF also provide probabilistic forecasts for several variables; for some of them, such

as output and prices, even dating back to the first survey round of 1968:Q4. However, these

predictions are not widely utilized.

One of the reasons why density forecasts from the US SPF are not used extensively is due to

the format of the survey. In each quarter, survey participants communicate their probabilistic

forecasts about real GDP growth and inflation (among other variables) for the current and next

calendar years via density forecasts. Thus, by construction, the density forecasts are fixed-event

forecasts: this means that the forecast horizon changes with survey rounds, limiting their

usefulness for policymakers and market participants who instead often seek to characterize

uncertainty for a fixed number of periods ahead. In addition, at times policymakers care about

target variables other than what is used in the SPF (for example, year over year growth rates

of annual averages in the case of GDP growth). In some cases, such as in the Federal Open

Market Committee’s quarterly Summary of Economic Projections (SEP), the density forecasts

are fixed-event ones, but for fourth quarter over fourth quarter growth rates. Further, it is

unclear how to use the SPF densities for this alternative definition of a target variable.

This paper makes two contributions. First, it proposes a density combination approach

to obtain fixed-horizon density forecasts from fixed-event ones. We use a novel weighting

strategy to combine the current and the next year density forecasts into a (multi-step-ahead)

fixed-horizon density forecast. Several methods have been proposed to transform fixed-event

point forecasts into fixed-horizon ones, but none have addressed how to do so in the context

of density forecasts. For instance, Dovern et al. (2012) use an approach where the weights

are assigned to the current and the next year point forecasts proportionally to their share

of the overlap with the forecast horizon, resulting in deterministic weights. Their method,

in principle, could be applied to densities as well; however, the properties of the resulting

density combination are not known. Knüppel and Vladu (2016), on the other hand, estimate

the weights of a linear combination of fixed-event point forecasts with the objective to obtain

2



optimal fixed-horizon point forecasts from a mean squared forecast error (MSFE) perspective.

Their approach is not directly applicable to density forecasts. We, instead, propose to estimate

the weights with the objective to obtain a correctly calibrated combined predictive density,

based on the uniformity of the probability integral transform (PIT) criterion. Our estimator

minimizes the distance between the uniform distribution and the empirical distribution of

the combined-density-forecast-implied PIT in the Anderson–Darling sense, following Ganics

(2017). Our second contribution lies in an extensive investigation of how to best approximate

SPF histograms. We investigate the fit of the normal distribution, and extend the empirical

literature by considering skew t distributions. The resulting combined (fixed-horizon) density

is a mixture, thus flexible, possibly featuring asymmetry, multi-modality and fat tails.

In our paper, we focus on obtaining correctly calibrated fixed-horizon density forecasts.

Alternatively, a practitioner can also optimize the weights of the density combination having

some other objective function in mind. For instance, it could be of interest to combine two

fixed-event density forecasts such that the resulting combined density maximizes either the

log score or continuous ranked probability score (CRPS), two scoring rules typically used

for density evaluation. It is important to know that, from a policymaker’s point of view,

the correctly calibrated density might be more useful than the alternatives (for instance, the

combined density which maximizes either the log score or the CRPS) since, as shown in

Diebold et al. (1998) and Granger and Pesaran (2000), the correctly calibrated density will

be preferred by all forecast users, regardless of their loss function. It is also important to

note that empirically we might not achieve correct calibration, but we can obtain the “best"

calibrated fixed-horizon density forecast — a combination of fixed-event density forecasts

whose PIT is the closest to the uniform distribution, and not the density that outperforms

certain alternatives according to a particular scoring rule or loss function. For completeness,

however, we investigate how our estimated densities perform relative to commonly used

alternatives in the literature.

Our results can be summarized as follows. When using the real GDP growth- and GDP

deflator-based inflation density forecasts from the US SPF between 1981:Q3 and 2020:Q1, we

find that our proposed method indeed delivers correctly calibrated predictive densities for both

output growth and inflation in real time, evaluated based on out-of-sample performance criteria.

In terms of relative accuracy of density forecasts, our combination method is competitive

against the Bayesian Vector Autoregressive (BVAR) model with stochastic volatility recently
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proposed by Clark and Ravazzolo (2015), densities based on past forecast errors (Clements,

2018), as well as the ones based on Clark et al.’s (2020) stochastic volatility model using nowcast

errors and expectational updates. Furthermore, on average there is little gain from fitting the

more flexible skew t distributions to the density forecasts provided by the survey histograms

as opposed to using normal densities, although the skew t does appear to fit better in the

Great Recession episode. On the other hand, our combined fixed-horizon densities are often

asymmetric, in particular during the recent financial crisis. This asymmetry is in line with

the findings of Adrian et al. (2019) and Manzan (2015), who estimate conditional predictive

densities for US real GDP growth using a quantile regression model.

In terms of decision making, our fixed horizon density forecasts are useful, since in general

they are more precise than some of the regularly considered models such as the BVARs

or distributions based on historical errors. In addition, our fixed horizon densities can be

asymmetric and multi-modal — features that appear to be more pronounced around turning

points. These are important for the characterization of the balance of risks at times which are

crucial for the economy. A particular episode of such kind is around the financial crisis and

the Great Recession in the late 2000s. Our densities emphasize the severity of the situation and

need for action, which could be masked when one restricts attention to unimodal densities.

Although our current paper is mainly concerned with constructing four-quarter-ahead

year-over-year SPF-based fixed horizon density forecasts for output growth and inflation, our

methodology is more general. It can be used to construct densities for quarter-over-quarter

growth rates, for other forecast horizons. Overall, our methodology makes SPF density forecast

more usable for both policymaking and research. We provide a procedure to obtain timely

parameterization of uncertainty while creating a historical dataset that could be used by

researchers to use in their models.

The rest of the paper proceeds as follows. Section 2 lays out the proposed methodology.

Section 3 discusses the SPF data and the models, while Section 4 presents our results. Section 5

more broadly discusses the usefulness of our framework in other applications. We conclude

with Section 6. Additional robustness checks and results are collected in the Online Appendix.
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2 The Proposed Methodology

In this section, we describe the forecasting environment and introduce the relevant notation.

The notation is defined consistently with the structure of the US SPF.1

2.1 Econometric framework

At each survey round t taking place in quarter q ∈ {1, 2, 3, 4}, the survey provides a pair

of predictive distributions (cumulative distribution functions or CDFs) corresponding to

the variable of interest in the current and the next calendar years, denoted by F0
t,q(·) and

F1
t,q(·), respectively. Since the target variable for these forecasts does not change as we move

throughout the year, i.e. for quarters q = 1, 2, 3, 4, these density forecasts are known as

fixed-event forecasts in the literature.2

We are interested in constructing a density forecast for a variable that is h quarters ahead of

the quarter preceding t, whose CDF is Fh,C
t,q (·).3 We estimate this CDF as a convex combination

of F0
t,q(·) and F1

t,q(·), hence the C superscript. To accommodate the fact that in each year there

are four quarterly survey rounds with different horizons, the weights are allowed to differ

across the quarters in which the survey took place. Let wh
q ≡ (wh

q,0 , wh
q,1)

′ denote the unknown

(2 × 1) weight vector in quarter q for the current and next calendar year forecasts, respectively.

The combined predictive distribution we consider is in the class of linear opinion pools, and is

given by

Fh,C
t,q (y) ≡ wh

q,0F0
t,q(y) + wh

q,1F1
t,q(y) , (1)

such that

0 ≤ wh
q,0 , wh

q,1 ≤ 1 , wh
q,0 + wh

q,1 = 1 , q ∈ {1, 2, 3, 4} . (2)
1The European Central Bank’s euro area SPF has a richer structure that provides both fixed-horizon and

fixed-event probabilistic forecasts. Our notation is also consistent with the fixed-event forecasts of the euro area
SPF, keeping in mind the different data release schedules.

2The US SPF provides the users with histograms. Some papers in the literature have chosen to fit a PDF over
the histograms, while others have taken the route of fitting a CDF over cumulative histograms. The latter is the
approach of the current paper since by cumulating the histograms, we get directly the CDF, while we would need
further assumptions on where the probability mass is (say, at the midpoint of the histogram bin, for example) if we
were to fit the PDF on the histograms.

3Our empirical implementation takes into account the fact that in survey round t, panelists have access to data
of the previous but not the current quarter since we are interested in real-time properties of the combined density.
The framework could be adapted to alternative timing assumptions.
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2.2 Proposed estimator

We propose estimating {wh
q,0}4

q=1 using the estimator of Ganics (2017), which builds on the

fact that a density forecast is probabilistically well-calibrated if and only if the corresponding

probability integral transform or PIT (Rosenblatt, 1952; Diebold et al., 1998; Bai, 2003; Corradi

and Swanson, 2006; Rossi and Sekhposyan, 2013, 2019) is uniformly distributed. In practice,

the weights are estimated by minimizing the distance between the PITs of the combined

distribution and the uniform distribution, hence aiming for probabilistic calibration. This

requires recording the h-period-ahead realizations of the variable of interest, denoted by yh
t,q,

and forming the PITs. The PIT is the combined CDF evaluated at the realization, formally:

PITh
t,q ≡ Fh,C

t,q (yh
t,q) = wh

q,0F0
t,q(y

h
t,q) + wh

q,1F1
t,q(y

h
t,q) . (3)

We should note that in the empirical application we use h-quarter-ahead (from the quarter pre-

ceding t) year-on-year growth rates for the quarterly economic variables of interest. However,

the framework is general, and could be applied to any definition of a realization. In other

words, the realization does not have to be consistent with the definition of the target in the

input densities — the density combination weights serve as an adjustment device for obtaining

an optimally calibrated fixed-horizon-density forecast for the target definition of researcher’s

choice.

Consider the vertical difference between the empirical distribution function of the PITs and

the CDF of the uniform distribution at quantile r ∈ [0, 1]:

ΨT (r, wh
q) ≡ |T |−1 ∑

t∈T
1
[
PITh

t,q ≤ r
]
− r , (4)

where T is the index set of an appropriate sample of size |T | and 1[·] is the indicator function.

One might take T as all the years in a sample for which there is an observed realization of yh
t,q

and estimate the weights separately for each quarter. However, this would possibly result in

considerable estimation uncertainty and make the construction of the out-of-sample density

forecasts infeasible.

To accommodate the small sample sizes often encountered in practice, we parametrize the
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weights as flexible exponential Almon lag polynomials (Andreou et al., 2010):

wh
q,0 ≡ exp(θ1q + θ2q2) , q ∈ {1, 2, 3, 4} , (5)

and adopt a rolling window estimation scheme by taking T = s − R + 1, s − R + 2, . . . , s,

where s = R, R + 1, . . . , T is the last observation of a rolling window of size R, and T is the last

available density forecast observation in the full sample. The parametrization in Equation (5)

guarantees that the weights are positive and allows us to pool together PITs from different

quarters, using an exponential polynomial.4 We rely on a rolling window estimation scheme

for two reasons. The first is the instabilities in the correct calibration of the SPF density

forecasts as documented in Rossi and Sekhposyan (2013), which rolling windows can capture

better. In addition, the asymptotic theory for the PIT-based estimator we use is formalized

for a rolling window forecasting environment in Ganics (2017). The weights are collected

in the vector wh ≡ (wh
1,0, wh

2,0, wh
3,0, wh

4,0)
′. Accordingly, we estimate weights via a modified

version of the Anderson–Darling-type weight estimator of Ganics (2017), which is defined as

the minimizer of the scaled quadratic distance:

ŵh
q,0 ≡ exp(θ̂1q + θ̂2q2) , q ∈ {1, 2, 3, 4} , (6)

(θ̂1, θ̂2)
′ ≡ argmin

θ1,θ2∈Θ

∫
ρ

Ψ2
T (r, wh)

r(1 − r)
dr , (7)

where the parameter space Θ is set to ensure that the weights satisfy 0 < ŵh
q,0 ≤ 1 for

q ∈ {1, 2, 3, 4}, and they are non-increasing in q.5 The motivation for the latter restriction is

that, intuitively, as we progress through the year from quarter q to (q + 1), we do not wish

to give more weight to current year’s forecast in (q + 1) than we did in q.6 Finally, ρ ⊂ [0, 1]

is a finite union of neither empty nor singleton, closed intervals on the unit interval, where

we wish to minimize the Anderson–Darling-type discrepancy between the empirical CDF

4Alternative parametrizations are also known in the literature, e.g. Ghysels et al. (2007) proposed the beta
function.

5In particular, in order to make the weights non-increasing in q, we restrict the domain of θ1 and θ2 by imposing

the following constraints. Let K =


1 1
1 3
1 5
1 7

, b = (0, 0, 0, 0)′. Imposing the constraint K
(

θ1
θ2

)
≤ b ensures ŵh

1,0 ≤ 1

(thanks to the first inequality of the constraint), and that ŵh
1,0 ≥ ŵh

2,0 ≥ ŵh
3,0 ≥ ŵh

4,0 (implied by the second to fourth
inequalities of the constraint).

6We discovered this pattern when we estimated the weights using the full sample. The restrictions ensure that
the real-time weight estimates mimic a similar pattern.

7



of the PIT and the uniform CDF.7 In the empirical application, we use ρ = [0, 1], and the

minimization is implemented numerically (via MATLAB’s fmincon function).

Ganics (2017) proves the consistency of the weights obtained by a similar minimiza-

tion problem, where the weights are estimated directly, without the exponential Almon lag

parametrization under some regularity and identification conditions. The former ensures that

a weak law of large numbers holds for the empirical CDF of the PITs and that the PIT is

continuously distributed, while the latter guarantees the uniqueness of the true weight vector.

The exponential Almon lag parametrization requires that the identification condition holds

in the parameter space Θ instead of the unit simplex where the weights themselves are. It is

important to notice that the weight estimator does not require the individual F0
t,q(y) and F1

t,q(y)

distributions to be correctly calibrated, but rather the combination procedure itself serves as a

device to achieve the best correctly calibrated combined distribution.

3 An Overview of the Data and Models

In this section, we discuss how to obtain a fixed-horizon predictive density for the SPF

dataset in real-time. We then outline alternative approaches that have been shown to produce

competitive density forecasts. Some of these approaches rely on the point forecasts provided

by the professional forecasters.

3.1 The data

We construct four-quarter-ahead density forecasts of quarterly year-on-year US real GDP

growth and inflation measured by the GDP deflator, based on the US SPF. In what follows, we

will refer to these variables as GDP growth and inflation, respectively.

For both variables, we use SPF surveys between 1981:Q3 and 2020:Q1. In the US SPF,

panelists are asked to provide their probabilistic forecasts of the growth rate of the average

level of real GDP and the GDP deflator from the previous calendar year to the current calendar

year, and from the current calendar year to the next calendar year. We choose the beginning of

the sample period in order to obtain the longest possible sample for (approximately) the same

key variables. In particular, the SPF documentation (Federal Reserve Bank of Philadelphia,

7We use the Anderson–Darling objective function because Ganics (2017) shows via Monte Carlo simulations
that it performs better than some of the alternatives, such as Cramér–von Mises- or Kolmogorov–Smirnov-type
objective functions. For further details on the estimator, see Ganics (2017).
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2017) states, “The old version (prior to 1981:Q3) asked for the probability attached to each of 15 possible

percent changes in nominal GNP and the implicit deflator, usually from the previous year to the current

year. The new version (1981:Q3 on) asks for percent changes in real GNP and the implicit deflator,

usually for the current and following year.” It also asserts that “Then, in 1992:Q1, the number of

categories was changed to 10 for each of the two years, and output was changed from GNP to GDP.” To

mitigate the effect of these changes, our sample starts in 1981:Q3.

The probabilistic forecasts in the SPF take the form of probabilities assigned to pre-specified

bins, and we must transform these into a continuous PDF prior to the analysis in order to

satisfy the continuity assumption for the weight estimator. In what follows, we describe the

procedure to obtain these continuous density forecasts.8 To simplify the notation, we suppress

time indices t and q.

Using the average of individual survey respondents’ predictions for each bin, in each

quarter (survey round) we calculate the empirical CDF for the GDP growth and inflation

forecasts separately, for both the current year and the next. In our analysis, by taking the

average of individual survey responses, we form a “consensus” forecast, similarly to how

the Philadelphia Fed formulates the consensus forecast, and we do not investigate individual

panelists’ beliefs.9 For a Bayesian approach focusing on that problem, see Del Negro et al.

(2018). Formally, in a given quarter, let {si}S
i=1 denote the set of endpoints associated with

the intervals/bins specified by the survey and let F(si) denote the value of the empirical CDF

implied by the SPF histogram at si. This set contains the right endpoints of all the bins except

the last bin, whose left endpoint is the only one included. The survey is designed such that

the leftmost (rightmost) bin is open from the left (right), and we do not impose an arbitrary s0

or sS+1, where F(s0) = 0 and F(sS+1) = 1.

3.2 The models

We fit both a normal and Jones and Faddy’s (2003) skew t distribution (hereinafter JF distribu-

tion) to the resulting CDF. The normal distribution is frequently used in the literature10 (see

8Alternatively, we could use the results in Kheifets and Velasco (2017) to estimate PITs for discrete distributions.
We choose our approach because all of the empirical literature we are aware of looking at the SPF density forecasts
uses continuous approximations of the histograms.

9In principle, our proposed methodology could be applied to individual panelists’ forecasts, provided we can
obtain a panel of forecasters that provide fixed-event density forecasts for both current and next calendar years.
Furthermore, it could be used as an optimal method of aggregation across the forecasters.

10An interesting alternative is the generalized beta/triangular distribution used by Engelberg et al. (2009) and
Clements (2014). When using a beta distribution, one would need to close the open tail bins of the SPF histograms.
Using a normal and skew t distribution has the advantage that the tail probabilities are well defined, thus there is
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e.g. Giordani and Söderlind, 2003, D’Amico and Orphanides, 2008, Clements, 2014 or Rossi

et al., 2017), but to the best of our knowledge, we are the first to use the aforementioned skew

t distribution to model survey forecasts. The use of the skew t distribution is motivated by

the observation that, as we will illustrate later on, the survey forecast histograms seem to be

better approximated by a skewed underlying distribution in several cases. The JF distribution

generalizes Student’s t distribution by introducing the parameters a, b > 0 regulating skewness

and tail behavior at the same time. It encompasses as special cases both the usual Student’s t

(when a = b) and the normal distribution (when a, b → ∞). After introducing a location and a

scale parameter, denoted by µ and σ > 0 respectively, the PDF at x ∈ R is given by

f (x; µ, σ, a, b) =
1
σ

C−1
a,b (1 + τ)a+1/2 (1 − τ)b+1/2 , (8)

Ca,b = 2a+b−1B(a, b)(a + b)
1
2 , (9)

τ =
x − µ

σ

(
a + b +

(
x − µ

σ

)2
)− 1

2

, (10)

while the CDF is given by

F(x; µ, σ, a, b) = Iz(a, b) , (11)

z =
1
2

1 +

(
x−µ

σ

)
√

a + b +
(

x−µ
σ

)2

 , (12)

where B(·, ·) is the beta function and Iv(·, ·) is the regularized incomplete beta function (also

known as the incomplete beta function ratio).11

Let d = {N, JF} index the normal and the JF distributions, respectively. Let θ collect

the parameters of either the normal distribution, corresponding to θN = (µ, σ2)′, or the JF

distribution, where θJF = (µ, σ, a, b)′. In the former case, the parameter space is ΘN = R × R+,

while in the latter case we restrict the skewness parameters to a, b > 2 to ensure the existence

of the first four moments, implying ΘJF = R × R+ × (2, ∞)× (2, ∞). The parameters of each

distribution are estimated using non-linear least squares, given the set of endpoints {si}S
i=1

no need to close the tail bins of the histograms in an arbitrary manner.
11Azzalini and Capitanio (2003) proposed an alternative skew t distribution. When using that distribution, our

results are largely unchanged, demonstrated in Online Appendix B. The JF distribution is appealing as its CDF
can be evaluated quickly, while the CDF of Azzalini and Capitanio’s (2003) skew t requires numerical integration,
hence more computation time. For brevity, the formulas for the PDF and the CDF of the normal distribution are
omitted.
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associated with the intervals/bins specified by the survey, in the spirit of Engelberg et al.

(2009):

θ̂d = argmin
θd∈Θd

S

∑
i=1

(Fd(si; θd)− F(si))
2 . (13)

By estimating the distributions in each quarter, the procedure described above gives us

sequences of predictive CDFs F0
t,q,d(y) and F1

t,q,d(y) for each variable of interest. Analogously,

the corresponding predictive PDFs are denoted by f 0
t,q,d(y) and f 1

t,q,d(y). For example, take the

2009:Q2 survey round and consider forecasts of GDP growth. Figure 1 shows the empirical

CDFs and histograms for the current year and next year GDP growth, together with the fitted

normal and skew t CDFs and PDFs (skew t denoted by Skew tJF). The fitted distributions

range from the 1981:Q3 survey round to the 2020:Q1 round, but we did not use the 1985:Q1

and 1986:Q1 surveys due to an error (documented in Federal Reserve Bank of Philadelphia

2017, p. 25). Hence, the full sample contains 142 quarterly surveys.

Figure 2 shows the skewness (standardized third central moment) of the fitted distributions

between the 1981:Q3 and 2020:Q1 survey rounds. It is interesting to note that current year’s

forecasts are usually more asymmetric than next year’s forecasts; furthermore, GDP growth

forecasts are mostly negatively skewed, while inflation forecasts are usually positively skewed.

To form the sequence of PITs, we used GDP growth and GDP deflator data (both seasonally

adjusted) from the Philadelphia Fed’s Real-Time Data Research Center. In line with the

information set of the survey respondents, in any given quarter, the latest measurement of

the variable of interest that the forecaster has access to corresponds to the previous quarter,

which we take as the point of reference. Hence, by four-quarter-ahead forecasts we mean four

quarters after the quarter preceding the survey round (h = 4 in the notation of Section 2).

The four-quarter-ahead realizations are calculated based on the first/advance estimates

of GDP and the GDP deflator. For example, the first GDP growth realization in our sample

(corresponding to the 1981:Q3 survey round) is constructed as follows. The quarter preceding

the survey is 1981:Q2, while the date four quarters later is 1982:Q2. The first estimate of GDP

corresponding to 1982:Q2 was published in 1982:Q3. The percentage growth rate of the GDP

estimates in 1982:Q2 and 1981:Q2 according to the 1982:Q3 vintage gives us the first realization

of real-time GDP growth. Thus, the full sample ranges from 1982:Q2 to 2020:Q4. While it is not

unequivocally clear that SPF respondents target the first release, they tend to more accurately

forecast the earlier releases (see Stark, 2010), which motivated our choice of the target variable.
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Figure 1: Fitting normal and skew t CDFs to the SPF empirical CDFs of GDP growth in 2009:Q2

(a) CDF, current year (b) PDF, current year
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(c) CDF, next year (d) PDF, next year
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Note: The figures show the empirical CDFs and histograms of the SPF forecasts of GDP growth for 2009 and 2010,
according to the 2009:Q2 survey round, and the fitted skew t (solid green curve) and normal (dashed orange curve)
distributions’ CDFs and PDFs.

We estimate the combination weights in rolling windows of R = 60 quarters using the

Anderson–Darling-type objective function in Equation (7), with ρ = [0, 1]. For example, take

the case of GDP growth. The first out-of-sample prediction, corresponding to 1998:Q3, is

obtained as follows. To estimate the combination weights in Equation (6), we use the fitted

distributions (either normal or JF) between the 1981:Q3 and 1996:Q4 survey rounds, and the

GDP growth realizations between 1982:Q2 and 1997:Q3. These weights would have been

available in 1997:Q4 at the earliest due to the publication lag of the 1997:Q3 GDP figure. We

combine the fixed-event predictive distributions of the 1997:Q4 survey round using these

combination weights (ŵ4
4,0, ŵ4

4,1)
′.12 We repeat this estimation procedure in a rolling window

12For simplicity we did not label the weight estimates according to the estimation sample.
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Figure 2: Skewness of fitted skew t distributions between 1981:Q3 and 2020:Q1

(a) GDP growth (b) Inflation

Note: Dates correspond to US SPF survey rounds. Solid green lines (dashed orange lines) show the skewness of the
fitted JF skew t distributions corresponding to current year’s (next year’s) GDP growth or inflation. Shaded areas
denote NBER recession periods.

manner until the end of the sample, where the weights are used to combine densities from the

2020:Q1 survey round, predicting GDP growth for 2020:Q4. As a result, we obtain fixed-horizon

density estimates in real-time.

In the next section, the models using the normal or the skew t distribution are denoted

by N or STJF, respectively. We compare our suggested weight estimation procedure against

the deterministic, fixed weights given in Equation (14). When the deterministic mixture

weights are used, we add “(det)” after the distribution’s abbreviation, while the models using

estimated weights are not accompanied by additional notation. It should be noted that both

the estimated as well as the deterministic weights generate combined densities which are

mixtures of either normal or skew t distributions and, thus, are potentially flexible and have

the ability to showcase multi-modality, asymmetry, fat tails, etc. As discussed earlier, the latter

weights come with the advantage that they do not need to be estimated, the disadvantage

being that it is not obvious how to derive such weights for general cases (see Footnote 13).

3.3 Benchmark models

To illustrate the merits of the proposed density combination procedure, we compare it to

alternative approaches typically used in the literature, which we describe in this section.
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3.3.1 Deterministic weight combinations

An alternative method for assigning weights to fixed-event point forecasts to obtain one-year-

ahead (fixed-horizon) point forecasts is proposed by Dovern et al. (2012). They suggest using

deterministic weights proportional to the share of the overlap that fixed-event forecasts have

with the chosen fixed forecast horizon. Dovern et al. (2012) combine fixed-event point forecasts

available at a monthly frequency. Rossi et al. (2017) consider an extension of this method to

one-year-ahead (h = 4) quarterly density forecasts. Based on this approach, in quarter one, the

current year density receives a weight of one and the next year density a weight of zero, while

in quarter two those weights would be three fourth and one fourth, respectively, and so on.

Formally, in a particular quarter q the weights are

w4
q,0 =

5 − q
4

, w4
q,1 =

q − 1
4

, q ∈ {1, 2, 3, 4} . (14)

One advantage of Dovern et al.’s (2012) method is that the weights are given and need not be

estimated, which is useful when the sample is too short to allow estimation. However, it is

unclear whether an analogous combination scheme is applicable in situations with different

forecast horizons or frequencies.13 Furthermore, these weights the same for any density

combination and do not take into account the specific features of the data generating process

or the input densities. As mentioned earlier, Knüppel and Vladu’s (2016) estimator overcomes

this problem, but it is specifically designed for point forecasts and the MSFE criterion only.

3.3.2 BVAR with stochastic volatility

The second benchmark model is a BVAR with stochastic volatility based on Clark and Ravaz-

zolo (2015), which includes: GDP (100 times logarithmic difference), the GDP deflator (100

times logarithmic difference), the unemployment rate (quarterly average of monthly data) and

the 3-month Treasury bill rate (quarterly average of monthly data). The BVAR has 4 lags, and is

re-estimated in rolling windows of 60 quarterly observations. The raw GDP and GDP deflator

data are obtained as before, the 3-month Treasury bill rate is from the website of the Federal

Reserve Board of Governors (H.15 Selected Interest Rates, series H15/H15/RIFSGFSM03_N.M),

and the unemployment rate is from the FRED database (mnemonic: UNRATE).

13For instance, it is not obvious how the deterministic weights would look like for, say, a five-quarter-ahead
forecast horizon. It is unclear if the researcher would discard the current year forecasts in the density combination
approach or, if not, what weight he or she would assign to it.
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In the real-time spirit of the forecasts, the estimation procedure only uses data available

up to the previous quarter at each forecast origin. The first rolling window BVAR forecasts

of four-quarter-ahead GDP growth and inflation are for 1998:Q3. We use the same prior

specification as Clark and Ravazzolo (2015), except that the parameters of the prior distribution

are re-estimated in each rolling window. We simulate 80,000 draws (after 20,000 burn-in) from

the four-quarter-ahead predictive density and retain one out of 8 draws. In the BVAR model,

GDP and GDP deflator enter as quarterly growth rates. We transform the draws from these

predictive distributions to obtain distributions for year-on-year growth rates.

3.3.3 The Past Forecast Error (PFE) model

As a third benchmark model, we estimate predictive distributions based on past forecast errors

(PFE) using the SPF point forecasts. Clements (2018) has shown that this approach performs

well, in particular for annual average output growth at the one-quarter-ahead horizon, and

annual average inflation from one to three quarters ahead. However, unlike Clements (2018),

we are interested in fixed-horizon rather than fixed-event forecasts.

The predictive density is Gaussian and obtained as follows. At each survey round, we

calculate four-quarter-ahead year-on-year forecast errors using the past 60 forecast–observation

pairs. For example, in the case of GDP growth, in the 1997:Q4 survey round, we take the

1997:Q4 vintage of GDP (in levels) and calculate the year-on-year growth rate of GDP between

1982:Q4 and 1997:Q3. Then, we take the four-quarter-ahead year-on-year GDP growth point

forecasts between the 1982:Q1 and 1996:Q4 surveys.14 Next, we estimate the mean squared

forecast errors and set the variance of the predictive distribution equal to this estimate. The

mean of the predictive distribution, on the other hand, is obtained as the four-quarter-ahead

point forecast of the actual 1997:Q4 survey. In fact, Clark et al. (2020) use a similar benchmark

and show that it performs well, particularly in the sample period considered in our analysis.

3.3.4 Clark et al.’s (2020) (CMM) model

Our final benchmark is the model recently proposed by Clark et al. (2020), who use historical

forecast errors to obtain multi-step-ahead density forecasts. They do so by modeling the

multi-step-ahead forecast errors as a sum of the nowcast error (based on the first-release

14The growth rate forecasts are constructed from the levels point forecasts of the SPF in order to adhere to the
year-on-year definition of the target variable.
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data, as is in our case) and expectational updates (that is, the changes in the point forecast

for the same target variable from one survey round to the next) extracted from the US SPF.

The model — henceforth referred to as CMM — is estimated in a rolling manner, using 60

quarterly observations. We focus on their baseline specification, which assumes a martingale

difference property for the expectational updates, where the innovations are random variables

with stochastic volatility. As their model generates one-quarter-ahead predictive distributions

of the forecast errors, we first simulate the time-path of the forecast errors four quarters ahead,

then obtain draws for the forecasts by adding them to the point forecasts readily available

from the SPF (as suggested in the description of the forecasting algorithm on p.23 of Clark

et al., 2020), and finally convert these into quarterly year-on-year forecasts of GDP growth and

inflation. At each forecast origin, after discarding a burn-in of 10,000 draws, we store every

100th draw from the Markov Chain Monte Carlo output, resulting in 10,000 draws used in our

analysis. For further details on the model and the estimation procedure, see Clark et al. (2020).

3.3.5 Relationship between our approach and the benchmark approaches

It is important to note that the benchmark approaches imply unimodal and symmetric

predictive distributions for the quarter-on-quarter growth rates of the variables of interest, at

least in large samples. In the case of the BVAR, departures from unimodality and symmetry

could be observed due to parameter estimation error in small samples as well as from

transforming the original quarter-on-quarter growth rate forecasts into year-on-year ones.

On the other hand, the (quarter-on-quarter) CMM and the PFE predictive distributions are

unimodal and symmetric by construction, while our more general mixture densities can

display multi-modality and asymmetry due to the properties of the component distributions

as opposed to arising from parameter estimation error only. The transformation from quarter-

on-quarter growth rates to year-on-year ones could result in departures from symmetry in the

case of the CMM model, although empirically this does not seem to be relevant, see Section 4.

4 Empirical Results

In this section, we present the empirical results of our density combination method.

Figure 3 shows the weights on current year’s distribution that are used for density combi-

nation in each quarter. Recall that in each SPF round, Equations (6) and (7) provide weight
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estimates ŵ4
q,0 for q = 1, . . . , 4, displayed in Figure A.1 in Online Appendix A. However, when

we combine the densities, we only use the value which corresponds to the quarter of the

particular SPF round. In the case of GDP growth, we can see in Panel a that the estimated

weights display substantial time-variation, and seasonality, with local peaks (troughs) in the

first (fourth) quarter of each year. Panel b, instead, displays an entirely different pattern for

inflation, where current year’s density forecast receives almost all the weight at all time periods,

with minor exceptions in the case where the underlying histograms are approximated with a

normal distribution. The seasonal pattern seen in the case of GDP growth is due to the fact

that the information content of current year’s forecast decreases as one goes from one quarter

to the next. Intuitively, as one progresses through a calendar year, next year’s density forecast

should receive a larger weight as long as it is not so miscalibrated that including it with a

positive weight would deteriorate the calibration of the combined density. This happens for

inflation, where next year’s density is heavily miscalibrated, shown in Online Appendix C.15

Figure 3: Weights on current year’s density forecast

(a) GDP growth (normal and skew t)
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Note: The panels in the figure depict the estimated combination weights one would apply in each SPF round
(horizontal axis) to current year’s density to combine the forecasts.

Panels a, c, and e of Figure 4 show the mean, standard deviation and skewness of the

combined fixed-horizon predictive densities and the benchmark models for GDP growth,

while Panels b, d, and f display the same for inflation forecasts. We can see that the mean of

the survey-based forecasts accurately trace the realizations for both variables. In particular,

it is interesting to see that the BVAR consistently underpredicted inflation before the Great

15We have investigated whether this behavior of weights for inflation is due to the lack of identification of
the weights. As it turns out, in general, the objective function is not flat in the neighborhood of the estimated
parameters, suggesting at least local identification (see an example in Figure C.2).
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Recession, and overpredicted it afterwards. In terms of standard deviations, in the case of GDP

growth the PFE provides by far the most dispersed predictive distribution, usually followed

by the BVAR model, while for inflation the BVAR model stands out with a high standard

deviation for only a short period after the Great Recession. For GDP growth, the CMM model

usually has one of the lowest standard deviations (apart from a period following the recession

in the early 2000s), and its predictive distribution became more dispersed during the Great

Recession. For inflation, its standard deviation is often lower than that of the combination

methods before the recession, but after the crisis the CMM model displays similar standard

deviations. As for asymmetry, the mixtures of normal distributions (which could be skewed

in theory) display very little skewness for both GDP growth and inflation apart from a few

periods. However, the mixture of skew t distributions shows a markedly different pattern:

GDP growth forecasts are considerably negatively skewed, while inflation forecasts are most

often strongly positively skewed. On the other hand, the CMM model and the BVAR display

very little skewness, apart from two brief instances in the case of the BVAR, shown in Panel e.

Figure 5 shows the predictive distributions (as opposed to the first three central moments)

in 2009:Q2 as well as the corresponding target realization of the GDP growth. It is interesting

to see that the mixture densities exhibit strong bimodality, with one mode being very close to

the actual realization, regardless of how the underlying densities are approximated. Moreover,

based on the skew t mixtures, there is a higher probability associated with the “bad" mode.

The BVAR, CMM, as well as the PFE provide unimodal distributions, where the modes for

the CMM and PFE are below the actual realization as well as the second, rightmost mode

of the mixture distributions. The predictive distribution implied by the BVAR is particularly

dispersed. Adrian et al. (2021) also document bimodality in the conditional (on financial

conditions) predictive distribution of the GDP growth around the Great Recession.

The bimodality discussed above stems from our procedure — we are mixing densities and

bimodality will occur when these densities are considerably different from each other. This

certainly does not imply that the consensus survey forecasts would have been multi-modal

if predictions about fixed-event (four-quarter-ahead) densities had been elicited directly. In

fact, our objective is to obtain a correctly calibrated fixed-horizon density: multi-modality may

be optimal in this case, particularly, when we have a constrained information set in terms of

input densities. However, multi-modality, at least in the sample we consider, is a rare and

short-lived event and does not heavily influence the average performance of the models.
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Figure 4: Mean, standard deviation and skewness of four-quarter-ahead density forecasts

(a) GDP growth, mean (b) Inflation, mean

(c) GDP growth, standard deviation (d) Inflation, standard deviation

(e) GDP growth, skewness (f) Inflation, skewness

Note: The figures show the mean, standard deviation and skewness (standardized third central moment) of the
four-quarter-ahead GDP growth (Panels a, c and e) and inflation (Panels b, d and f) forecasts of various models at
the corresponding target dates, ranging from 1998:Q3 to 2020:Q4. For an explanation of the different abbreviations,
see the main text. Shaded areas denote NBER recession periods.
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Figure 5: Comparison of predictive densities for GDP growth in 2009:Q2
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Note: The figure shows the four-quarter-ahead predictive densities of various models for GDP growth, as of
2009:Q2. The solid vertical line indicates the actual realization of GDP growth in 2010:Q1. For an explanation of
the different abbreviations, see the main text.

Figure 6 shows various quantiles associated with our combined density for inflation and

output growth. For instance, the 90% interval in the figures is defined as the interval between

the 5% and 95% quantiles. In what follows, we refer to these intervals as equal-tailed ones. In

the case of GDP growth, the combinations of normals or skew t distributions are very similar

and smooth over time. Additionally, the predictive distributions are fairly tight. On the other

hand, inflation forecasts display more high-frequency time-variation, and the combination

of skew t distributions are somewhat more dispersed than their normal counterparts. For

analogous figures using the benchmark models, see Online Appendix A.

The panels in Figure 6 communicate uncertainty in terms of quantile-based, equal-tailed

forecast intervals. When the predictive density is not unimodal and symmetric, these intervals

could mask some information. More particularly, given that in our case the mixture densities

(see Online Appendix A) could be skewed and, at times, multi-modal, other summary metrics

could potentially be more useful. For instance, as considered in Wallis (1999) and Mitchell and

Weale (2019), the Bank of England’s fan charts display the highest density regions (“HDR”),

referred to as “best critical regions,” instead of the equal-tailed prediction intervals. The

HDRs are the intervals of shortest length with a given target coverage, say 90%. When the

distributions are unimodal and symmetric, these two measures are the same. To see whether

asymmetry and multi-modality are important in some periods, Figure 7 shows the 50%, 70%

and 90% HDRs, calculated using the density quantile approach of Hyndman (1996).
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Figure 6: Predictive intervals of four-quarter-ahead combined predictive densities, using
estimated weights

(a) GDP growth, normals (b) Inflation, normals

(c) GDP growth, skew t (d) Inflation, skew t

Note: The figure shows 90%, 70%, and 50% bands, corresponding to the 90%, 70%, and 50% equal-tailed predictive
intervals of the combined four-quarter-ahead predictive densities for GDP growth (left column) and inflation (right
column) based on the US SPF, using the proposed weight estimator. The dotted (blue) lines mark the realized
values of the variable of interest according to the first release. The forecast target dates on the horizontal axis range
from 1998:Q3 to 2020:Q4. Shaded areas denote NBER recession periods.

When we compare Figure 6 to Figure 7, respectively, there are some noticeable differences.

For instance, in the case of the GDP growth forecasts, right after the Great Recession (at

the end of 2009 and in early 2010), the highest density region communicates tighter and,

at times, disjoint intervals relative to the equal-tailed intervals with the same coverage. On

the other hand, for inflation, the 50% HDR region does not display any disjoint intervals,

communicating unimodality. This result is not surprising since our density forecast approach

almost exclusively puts all the weight on the current year density (the best calibrated density
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Figure 7: Highest density regions of four-quarter-ahead combined predictive densities, using
estimated weights

(a) GDP growth, normals (b) Inflation, normals

(c) GDP growth, skew t (d) Inflation, skew t

Note: The figure shows 90%, 70%, 50% highest density regions for GDP growth and inflation. The dotted blue lines
mark the realized values of the variable of interest. The forecast target dates on the horizontal axis range from
1998:Q3 to 2020:Q4. Shaded areas denote NBER recession periods.

among the inputs). Consequently, the resulting density is not a mixture, but it is mainly

the consensus density associated with current year inflation. As discussed in Wallis (1999),

HDR regions would be more informative relative to equal-tailed intervals for an agent with

an all-or-nothing loss function (which is minimized by the mode of the distribution). In the

case of the BVAR and CMM models, we find no major differences between the equal-tailed

intervals and HDRs (see Online Appendix A).
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4.1 A formal comparison of fixed-horizon predictive densities

Which fixed-horizon predictive density should researchers use in practice? We compare them

by using Rossi and Sekhposyan’s (2019) test on the uniformity of the PITs, using both the

Kolmogorov–Smirnov (KS) and the Cramér–von Mises (CvM) test statistics with bootstrapped

critical values.16 Table 1 shows the results. Each cell displays the p-value of testing the null

hypothesis of the uniformity of the PIT against the alternative of miscalibration. The cases

in which uniformity cannot be rejected at the 10% level are in bold. We can see that, for

GDP growth, uniformity cannot be rejected for the mixtures of both the normal and the

skew t distributions when the weights are estimated using our proposed method, while the

deterministic combination delivers uniform PITs only for GDP growth but not for inflation.

Moreover, the BVAR, PFE and CMM models show evidence of incorrect specification for GDP

growth according to at least one of the test statistics.

[Table 1 about here.]

To gain a better understanding of the absolute performance of the various density forecast

approaches, we report the empirical coverage rates at the 50%, 70% and 90% nominal rates.

For each variable and forecasting method, we determined e.g. the 25th and 75th percentiles

(50% nominal rate) of the predictive distributions in each quarter (as displayed in Figure 6,

and Figures A.3 and A.4 in Online Appendix A), and calculated the ratio of cases when the

realization of a particular variable fell inside these intervals. Then, we performed a two-sided

t-test to test the null hypothesis that a given coverage rate equals its nominal counterpart.17

The results in Table 2 show interesting patterns. For both GDP growth and inflation, the

mixture densities with estimated weights deliver correct coverage rates at both the 50% and

the 70% nominal levels (at the 10% significance level). However, the deterministic mixtures

for GDP growth display significant undercoverage. For GDP growth, both the BVAR and the

CMM model deliver correct coverage (except at the 70% level in the case of the latter), while

the PFE model significantly overcovers at the 50% rate. On the other hand, for inflation, only

the CMM model displays correct coverage at all levels but not the BVAR or the PFE models.

[Table 2 about here.]
16We use the block weighted bootstrap proposed by Rossi and Sekhposyan (2019), with block length ℓ = 4 and

10,000 bootstrap replications to take into account the serial correlation associated with multi-step-ahead PITs.
17The asymptotic variance is calculated using the Newey and West (1987) heteroskedasticity and autocorrelation

consistent (HAC) estimator with one lag. The sequences of 0–1 indicators corresponding to realizations outside
and inside the predictive intervals display low serial correlation.
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The Continuous Ranked Probability Score (CRPS) has been used in several studies to

evaluate competing forecasts (e.g. Clark et al., 2020). Formally, for the h-quarter-ahead density

forecast made in year t and quarter q using model m, it is defined as

CRPSh,(m)
t,q ≡

∫ ∞

−∞

(
Fh,(m)

t,q (y)− 1
[
yh

t,q ≤ y
])2

dy , (15)

where Fh,(m)
t,q (y) is the predictive CDF. The average full-sample CRPS is given by

CRPSh,(m) ≡ |T |−1 ∑
t∈T

CRPSh,(m)
t,q . (16)

Lower values of the CRPS correspond to better models. For the mixture densities, we numer-

ically calculate the integral in Equation (15), while for the MCMC-based densities, such as

those obtained from a BVAR and CMM, we used the empirical CDF-based approximation

proposed by Krüger et al. (2017). Following Gneiting and Raftery (2007), we can analytically

evaluate the CRPS for the PFE since the predictive density is normal.

The top panel in Table 3 shows the CRPS of the proposed density combination, along with

various benchmarks. The bottom panel in Table 3 reports the Diebold and Mariano (1995)

and West (1996) test statistics and the corresponding p-values (in parentheses) when equal

predictive ability is measured by the CRPS against a one-sided alternative. Negative values

mean that the first model is better than the second one. The test statistics were calculated

using the Newey and West (1987) HAC variance estimator with one lag (due to low serial

correlation). The p-values were calculated based on the standard normal approximation to the

asymptotic distribution of the test statistic, with rejection region in the left tail.

[Table 3 about here.]

As we can see, for GDP growth, our proposed combination scheme achieves the second

best CRPS value, after the CMM model. For inflation, the CRPS values are much less dispersed,

and the CMM model is the best, very closely followed by the PFE model and the mixture

distributions. Furthermore, for GDP growth, our mixture densities are better (although not

significantly) than their deterministic counterparts, and they significantly outperform the

BVAR at the 5% significance level. When predicting inflation, our method beats the BVAR,

while the deterministic combination and the PFE model are marginally, but not significantly,

better than our proposal. The CMM model, while providing the lowest CRPS statistics, is not
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significantly better than our method. In sum, the mixture densities are sometimes significantly

better than their benchmark competitors, and never significantly worse.

4.2 Predicting extreme events

Density forecasts can be used to predict the probability of extreme events, which are of special

interests to researchers and policymakers. To evaluate how each model performs in forecasting

extreme events, we performed the following exercise. Using each model, we calculated the

probability of two events: GDP growth being lower than (or equal to) 1% and inflation being

lower than (or equal to) 1%. The former is an indicator of weak economic activity, while the

latter signals “dangerously” low inflation. Figure 8 shows the probabilities for each event

(scaling on the left axis), along with the actual realizations of the variable (scaling on the right

axis).18 The shaded grey areas highlight the periods when the predicted event did in fact occur.

For GDP growth, Panel a demonstrates that the PFE model consistently signaled a relatively

high probability, in line with its overly dispersed predictive distributions, while the density

combination models displayed a considerably lower “baseline” probability in tranquil times.

Interestingly, the CMM model’s implied probability moves very closely together with that of

the mixture using estimated weights. Furthermore, all models react with a lag, and the BVAR

did not detect the transitory economic downturn in the early 2000s. When forecasting low

inflation instead, we can see that the spikes in Panel b in Figure 8 (and especially the BVAR

model’s predictions) actually correspond to episodes of low inflation, although the BVAR’s

predictions show considerable persistence. On the other hand, the density combinations’ and

even the PFE model’s forecasts adapt fairly quickly both before and after low inflation periods.

We can see that the CMM model’s predictions are very similar to those of the mixtures.

We formally evaluated each model’s predictions for the aforementioned extreme events

using the Brier (or quadratic) score (Gneiting and Raftery, 2007). For the h-quarter-ahead

density forecast made in year t and quarter q using model m and at threshold k (in our case,

k = 1%), it is defined as

BSh,(m)
t,q (k) ≡

(
Fh,(m)

t,q (k)− 1
[
yh

t,q ≤ k
])2

, (17)

which is precisely the integrand in Equation (15). Lower values of the Brier score correspond

18The probabilities implied by the mixtures of normal distributions are available upon request.
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Figure 8: Predicted probabilities of low growth and low inflation

(a) Pr(GDP growth ≤ 1%) (b) Pr(Inflation ≤ 1%)

Note: The figure shows according to each model the probabilities of either GDP growth or inflation being less
than or equal to 1% (left axis), along with the actual realization of the respective variable (solid blue line, right
axis). For an explanation of the different abbreviations, see the main text. The forecast target dates on the
horizontal axis range from 1998:Q3 to 2020:Q4. Shaded grey areas denote the periods when the predicted event
(e.g. GDP growth ≤ 1%) did in fact occur.

to better predictions. The full-sample Brier score is defined analogously as

BSh,(m)(k) ≡ |T |−1 ∑
t∈T

BSh,(m)
t,q (k) . (18)

In the upper panel of Table 4 we can see the Brier scores of each model for predicting

economic downturns and low inflation. For both events, the CMM model is the most precise

(in bold), closely followed by the model based on past forecast errors. The lower panel of

Table 4 displays the Diebold and Mariano (1995) and West (1996) test statistics for equal

predictive ability based on the Brier score and the corresponding p-values (in parentheses).

The p-values are calculated analogously to the forecast comparison based on the CRPS earlier.

When forecasting GDP growth, the combination schemes with estimated weights outperform

the BVAR, significantly so when combining normals, while the rest of the comparisons are

not significant (although the CMM model would be significantly better than the combinations

with estimated weights, based on a two-sided test). When predicting low inflation, we can see

again that most of the differences are not significant at the 5% level (although the deterministic

weighting scheme, the PFE and the CMM models would outperform our proposed method).

On the other hand, our proposed weight estimation scheme significantly outperforms the
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BVAR. However, these results should be interpreted with caution, as Figure 8 shows that these

were indeed very rare events. We expect that the predictability of tail events could be improved

if weights are estimated targeting correct calibration in the tails.

[Table 4 about here.]

5 Alternative Uses of the Proposed Method

We have proposed a methodology that uses the information in the fixed-horizon SPF density

forecasts to obtain four-quarter-ahead density forecasts. In this section, we highlight briefly

that while in our view this is an important use of the methodology, as it provides a timely

description of future uncertainty, but not the only one. As mentioned in the Introduction,

there are a number of ways our method can be used.

First, one could use our methodology to obtain fixed-event density forecasts, but for other

targets. For instance, in the SEP, the Federal Reserve produces fixed-event forecasts, but for

fourth-quarter over fourth-quarter growth rates as opposed to annual average over annual

average growth rates.19 Figure 9 contrasts our combined-density-implied intervals with those

reported in the SEP. Given that the SPF is a quarterly survey, we use the survey round closest

to the Federal Open Market Committee meeting date for which the SEPs were prepared. The

SPF densities we use have a survey deadline date of February 7, 2017. The SEP intervals are

for the FOMC meeting of March 14-15, 2017.

In this example, our densities are skewed to the left, regardless of whether the underlying

histograms are proxied with a normal or a skew t distribution. Moreover, they are centered on

a higher mean value, which is closer to the realization. In addition, there is less uncertainty

about GDP growth since the 70% predictive intervals are tighter. Overall, it appears that the

density we obtain is shifted to the right relative to the SEP density. The SEP also includes an

auxiliary question about GDP uncertainty to gauge whether the uncertainty perceived by each

FOMC member is lower, broadly similar, or higher than that reported in the figure. During

this particular meeting, 12 participants reported broadly similar perceived uncertainty, while

four participants reported higher and no participant reported lower uncertainty. Overall, our

combined densities suggest lower level of uncertainty than reported in the SEP and perceived

by the FOMC participants.

19Data on SEP densities are available at https://www.federalreserve.gov/monetarypolicy/fomcminutes20170315ep.htm.
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Figure 9: Density combination and SEP densities for GDP growth in 2017:Q1
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Note: The figure shows our combined densities where we combine SPF histograms, approximated either by a
normal (N) or a skew t distribution (ST). Importantly, the target variable is a Q4 over Q4 growth rate of GDP
(realization). We provide the 70% equal-tailed predictive intervals and contrast it to what is reported in the SEP.

This particular application is important since, for instance, in June of 2020, the SEP did not

contain predictive intervals given that the historical forecast errors would not be representative

of the uncertainty in times of a pandemic. In fact, the Federal Reserve did not communicate

predictive intervals in the first half of 2020. On the other hand, the SPF still provides density

forecasts, and we can still produce predictive densities to complement the policy analysis.

Second, a researcher can choose to minimize the distance between the CDF of the combined

distribution and some other distribution. For instance, a researcher can choose to extract

one-step-ahead forecast information from the current-year and next-year forecasts in each

quarter. The information on the one-quarter-ahead forecasts is embedded in the current-year

and next-year forecasts. However, the weight associated with that informational component is

unknown. A researcher can address this issue by considering a density combination approach,

where the current-year and next-year densities are weighted to match the one-quarter-ahead

density forecasts provided by SPF participants at least once a calendar year (say the current year

forecasts in the fourth quarter of the year). This approach will provide quarterly time series of

one-step-ahead density forecasts, which could be more useful than the annual frequency data
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that is typically used in the literature (see Andrade et al., 2016 for a sub-sampling exercise in

the context of point forecasts provided by the Blue Chip Financial Forecasts).

Finally, while one might think that an easy solution to the lack of fixed-horizon density

forecasts or predictive distributions for alternative target variables is to modify the survey,

the issue would be that variables can only be added going forward and not backward (for

example, in 2007 the SPF was extended by fourth-quarter over fourth-quarter CPI and PCE

inflation probability forecasts). These surveys are used not only for characterizing uncertainty

into the future, but also for disciplining economic models, in which case, a long time series

is crucial. For example, it is often of interest to use historical time series of survey density

forecasts to discipline learning dynamics, as in Chatterjee and Milani, 2019. Our framework

provides a viable solution for this situation.

6 Conclusion

This paper proposes a density combination methodology to extract information from fixed-

event densities to construct correctly calibrated fixed-horizon density forecasts. Survey density

forecasts are an important application for this methodology, in particular the US Survey of

Professional Forecasters, for which fixed-horizon predictive densities are not available. We

show that our procedure achieves correct calibration for predictive densities in a real-time

out-of-sample exercise. In relative terms, our combination scheme is fairly competitive and

on par with the historical distribution of point forecast errors or a stochastic volatility model

fitted to forecast errors, and outperforms a Bayesian VAR with stochastic volatility. Since our

predictive distributions are based on survey information, they are timely. Moreover, they are

precise and due to the flexible mixture specification, they are informative about the balance of

risks particularly at turning points. Our approach makes fixed-event density forecasts more

useful for research, policy analysis and communication.
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Table 1: Absolute forecast evaluation: uniformity of PIT

GDP growth Inflation

KS CvM KS CvM

N 0.54 0.46 0.17 0.12
ST 0.41 0.36 0.18 0.16

N (det) 0.32 0.34 0.03 0.02
ST (det) 0.31 0.32 0.03 0.03

BVAR 0.00 0.00 0.18 0.30
PFE 0.05 0.08 0.12 0.09

CMM 0.09 0.09 0.16 0.13

Note: The table displays the p-values of Kolmogorov–Smirnov (KS) and
Cramér–von Mises (CvM) tests of the null hypothesis of uniformity of
PITs for different target variables (in the column headers) and models (in
rows). N and ST correspond to the combinations of normal and skew t
distributions using our proposed weight estimates (see Section 3.2), while N
(det) and ST (det) denote their conterparts using deterministic weights (see
Section 3.3.1). PFE corresponds to the normal distribution based on past
forecast errors (Section 3.3.3), BVAR is the Bayesian VAR of Section 3.3.2,
while CMM is the stochastic volatility model based on point forecast revi-
sions (Section 3.3.4). The p-values are calculated using the block weighted
bootstrap proposed by Rossi and Sekhposyan (2019), with block length
ℓ = 4 and 10,000 bootstrap replications. The cases in which uniformity
cannot be rejected at the 10% level are reported in bold. The survey dates
range from 1997:Q4 to 2020:Q1, with corresponding realizations between
1998:Q3 and 2020:Q4.
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Table 2: Absolute forecast evaluation: coverage

GDP growth Inflation

50% 70% 90% 50% 70% 90%

N 46.7(0.58) 66.7(0.59) 76.7(0.01) 51.1(0.85) 68.9(0.84) 85.6(0.27)
ST 45.6(0.46) 63.3(0.29) 81.1(0.07) 48.9(0.85) 68.9(0.84) 86.7(0.42)

N (det) 40.0(0.08) 57.8(0.06) 76.7(0.01) 57.8(0.20) 76.7(0.20) 91.1(0.75)
ST (det) 40.0(0.08) 57.8(0.06) 78.9(0.03) 55.6(0.36) 76.7(0.20) 91.1(0.73)

BVAR 47.7(0.59) 68.9(0.84) 85.6(0.35) 40.0(0.09) 57.8(0.05) 77.8(0.02)
PFE 65.6(0.01) 75.6(0.33) 91.1(0.77) 61.1(0.07) 76.7(0.22) 95.6(0.02)

CMM 47.8(0.73) 58.9(0.08) 82.2(0.10) 48.9(0.86) 70.0(1.00) 87.8(0.57)

Note: The table displays empirical coverage rates and the two-sided p-values of the null hypothesis that
a given coverage rate equals its nominal counterpart (in parentheses) for different target variables at
different nominal coverage rates (in the column headers) and models (in rows). For the definition of the
model abbreviations, see Table 1. The test statistics were calculated using the Newey and West (1987)
HAC estimator with one lag. The cases in which the null hypothesis cannot be rejected at the 10% level
are reported in bold. The survey dates range from 1997:Q4 to 2020:Q1, with corresponding realizations
between 1998:Q3 and 2020:Q4.
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Table 3: Relative forecast evaluation: CRPS

GDP growth Inflation

N 0.92 0.35
STJF 0.91 0.35

N (det) 0.95 0.34
STJF(det) 0.94 0.34

BVAR 1.06 0.44
PFE 0.91 0.33

CMM 0.89 0.33

N vs N (det) −0.96(0.17) 1.24(0.89)
ST vs ST (det) −1.24(0.11) 1.46(0.93)

N vs BVAR −2.07(0.02)∗∗ −3.01(0.00)∗∗∗

ST vs BVAR −2.19(0.01)∗∗ −2.92(0.00)∗∗∗

N vs PFE 0.16(0.56) 0.92(0.82)
ST vs PFE −0.06(0.48) 1.14(0.87)

N vs CMM 0.91(0.82) 1.00(0.84)
ST vs CMM 0.58(0.72) 1.21(0.89)

Note: The target variable used for both estimation and forecast
evaluation is shown in the column headers. The top panel displays
the Continuous Ranked Probability Score (CRPS) of various density
combination methods in the rows. For each variable, the lowest
value is in bold. For the definition of the model abbreviations,
see Table 1. The bottom panel displays the Diebold and Mariano
(1995) and West (1996) test statistics and p-values (in parentheses,
with rejection region in the left tail) comparing predictive accuracy
measured by the CRPS. Negative values indicate that the first
method outperforms the second one, ∗, ∗∗ and ∗∗∗ denote rejection
at the 10%, 5% and 1% significance level, respectively. The test
statistics were calculated using the Newey and West (1987) HAC
estimator with one lag. The survey dates range from 1997:Q4 to
2020:Q1, with corresponding realizations between 1998:Q3 and
2020:Q4.
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Table 4: Relative forecast evaluation: Brier score

GDP growth ≤ 1% Inflation ≤ 1%

N 0.072 0.124
STJF 0.073 0.122

N (det) 0.076 0.115
STJF(det) 0.076 0.113

BVAR 0.096 0.140
PFE 0.070 0.108

CMM 0.063 0.108

N vs N (det) −0.59(0.28) 2.63(1.00)
STJF vs STJF(det) −0.55(0.29) 2.70(1.00)

N vs BVAR −1.33(0.09)∗ −1.62(0.05)∗

STJF vs BVAR −1.26(0.10) −1.78(0.04)∗∗

N vs PFE 0.21(0.58) 2.37(0.99)
STJF vs PFE 0.36(0.64) 2.30(0.99)
N vs CMM 2.13(0.98) 3.26(1.00)

STJF vs CMM 2.14(0.98) 2.92(1.00)

Note: The target variable used for both estimation and forecast evaluation and the corre-
sponding extreme event are shown in the column headers. The top panel displays the Brier
score of various density combination methods in the rows. For each variable, the lowest
value is in bold. For the definition of the model abbreviations, see Table 1. The bottom
panel displays the Diebold and Mariano (1995) and West (1996) test statistics and p-values (in
parentheses, with rejection region in the left tail) comparing predictive accuracy measured
by the Brier score. Negative values indicate that the first method outperforms the second
one, ∗, ∗∗ and ∗∗∗ denote rejection at the 10%, 5% and 1% significance level, respectively. The
test statistics were calculated using the Newey and West (1987) HAC estimator with one lag.
The survey dates range from 1997:Q4 to 2020:Q1, with corresponding realizations between
1998:Q3 and 2020:Q4.
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Appendix A Additional Results

Recall that in each SPF round, Equations (6) and (7) provide weight estimates ŵ4
q,0 for q =

1, . . . , 4, displayed in Figure A.1.

Figure A.1: Weights on current year’s density forecast

(a) GDP growth (skew t)
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(b) Inflation (skew t)
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(c) GDP growth (normal)
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(d) Inflation (normal)

2000Q1 2005Q1 2010Q1 2015Q1 2020Q1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q1 Q2 Q3 Q4

Note: The four panels in the figure depict the estimated combination weights on current year’s density forecast
corresponding to every quarter for each variable. Qj denotes the jth quarter in the year.

Figure A.2 displays the fixed-horizon densities for GDP growth and inflation over time. In

Panel a, we can clearly see that during the recent Great Recession, the mean of the predictive

distribution of GDP growth decreased and its dispersion increased. Furthermore, the densities

are strikingly skewed during that period, in line with the findings of Adrian et al. (2019). In

the case of inflation (Panel b), it is remarkable to see that as our estimator “selects” current

year’s inflation forecast in most periods, the predictive distributions are fairly tight around the

actual realizations, yet there is noticeable time-variation in these densities over time.
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Figure A.2: Four-quarter-ahead combined skew t predictive densities

(a) GDP growth

(b) Inflation

Note: The figures show the combined four-quarter-ahead predictive densities of GDP growth (upper panel) and
inflation (lower panel) based on the US SPF, using the proposed weight estimator. The vertical (green) bars mark
the realized values of the variable of interest based on the first release. The forecast target dates on the horizontal
axis range from 1998:Q3 to 2020:Q4.
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Figure A.3 displays the various quantiles of the combined densities using the deterministic

weights. In the case of inflation, comparing Panels b and d of Figure A.3 relative to Panels b

and d of Figure 6 reveals that when the densities are combined based on the fixed weights,

the quantiles are smoother and the combined density is more dispersed. For GDP growth,

however, the density based on deterministic weights is much tighter, thus this combination,

overall, understates the uncertainty relative to the combined density with estimated weights.

Figure A.4 shows that the uncertainty embedded in the BVAR and in the PFE is much

higher compared to the combined densities. Furthermore, the PFE predictive distribution of

both GDP growth and inflation is relatively stable over time, while the time-varying nature

of uncertainty appears to be common to densities obtained with the BVAR. For GDP growth,

the CMM model provides somewhat tighter distributions than the skew t distribution with

estimated weights (apart from a brief period after the recession in the early 2000s), and it is

considerably less dispersed than the PFE model’s distribution; the latter highlights the gains

from explicitly modeling the time-variation (as in Clark et al., 2020) versus simply proxying

the variance of the predictive distribution by the mean squared forecast error associated with

past forecasts. In the case of inflation, our combination method implies wider distributions

(see Panel d in Figure 6) than the CMM model’s before the Great Recession, but this reverses

after the crisis.20

Figure A.7 displays the empirical CDF of the PITs along with the 95% confidence intervals,

visually demonstrating the findings of Section 4.1 for the density combination schemes.

We have also evaluated the out-of-sample performance of the models using the quantile-

weighted CRPS measure proposed by Gneiting and Ranjan (2011).21 As Table A.1 shows,

focusing attention on specific parts of the predictive distribution leads to similar results. This

demonstrates that equal or superior predictive ability is not concentrated in specific regions of

the predictive distributions, but rather it appears across the whole support.

20Figure B.6 in Online Appendix B shows that the results from BVAR and CMM models, estimated recursively,
are similar.

21We thank an anonymous referee for the suggestion.
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Figure A.3: Predictive intervals of four-quarter-ahead combined predictive densities, using
deterministic weights

(a) GDP growth, normals (b) Inflation, normals

(c) GDP growth, skew t (d) Inflation, skew t

Note: The figure shows 90%, 70%, and 50% bands, corresponding to the 90%, 70%, and 50% equal-tailed predictive
intervals of the combined four-quarter-ahead predictive densities for GDP growth (left column) and inflation (right
column) based on the US SPF, using deterministic weights. The dotted (blue) lines mark the realized values of
the variable of interest according to the first release. The forecast target dates on the horizontal axis range from
1998:Q3 to 2020:Q4. Shaded areas denote NBER recession periods.
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Figure A.4: Predictive intervals of four-quarter-ahead predictive densities of BVAR, PFE and
CMM models

(a) GDP growth, BVAR (b) Inflation, BVAR

(c) GDP growth, PFE (d) Inflation, PFE

(e) GDP growth, CMM (f) Inflation, CMM

Note: The figure shows 90%, 70%, 50% bands, corresponding to the Bayesian VAR’s (or the PFE model’s or the
CMM model’s) 90%, 70% and 50% equal-tailed predictive intervals for GDP growth and inflation. The dotted blue
lines mark the realized values of the variable of interest according to the first release. The forecast target dates on
the horizontal axis range from 1998:Q3 to 2020:Q4. Shaded areas denote NBER recession periods.
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Figure A.5: Highest density regions of four-quarter-ahead combined predictive densities, using
deterministic weights

(a) GDP growth, normals (b) Inflation, normals

(c) GDP growth, skew t (d) Inflation, skew t

Note: The figure shows 90%, 70%, 50% highest density regions for GDP growth and inflation. The dotted blue lines
mark the realized values of the variable of interest. The forecast target dates on the horizontal axis range from
1998:Q3 to 2020:Q4. Shaded areas denote NBER recession periods.

7



Figure A.6: Highest density regions of four-quarter-ahead predictive densities of BVAR and
CMM models

(a) GDP growth, BVAR (b) Inflation, BVAR

(c) GDP growth, CMM (d) Inflation, CMM

Note: The figure shows 90%, 70%, 50% highest density regions for GDP growth and inflation. The dotted blue lines
mark the realized values of the variable of interest. The forecast target dates on the horizontal axis range from
1998:Q3 to 2020:Q4. Shaded areas denote NBER recession periods.

8



Figure A.7: Uniformity of the PITs of the combined skew t distributions

(a) GDP growth, skew t, estimated weights
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(b) Inflation, skew t, estimated weights
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(c) GDP growth, skew t, deterministic weights
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(d) Inflation, skew t, deterministic weights
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Note: The figure shows the empirical CDFs of PITs of the combined skew t distributions for GDP growth and
inflation based on our weight estimation scheme (upper panels) and the deterministic weighting procedure (bottom
panels), the CDF of the PITs under the null hypothesis of correct calibration (the 45 degree line) and the 5% critical
values bands (dotted lines) based on the Kolmogorov-Smirnov test in Rossi and Sekhposyan (2019), using their
bootstrapped critical values.
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Table A.1: Relative forecast evaluation: CRPS

GDP growth

full central tails left right

N vs N (det) −0.96(0.17) −1.08(0.14) −0.34(0.37) −0.79(0.21) −0.93(0.18)
ST vs ST (det) −1.24(0.11) −1.40(0.08)∗ −0.40(0.34) −1.18(0.12) −0.90(0.18)

N vs BVAR −2.07(0.02)∗∗ −2.07(0.02)∗∗ −1.98(0.02)∗∗ −1.82(0.03)∗∗ −1.98(0.02)∗∗

ST vs BVAR −2.19(0.01)∗∗ −2.17(0.02)∗∗ −2.10(0.02)∗∗ −2.00(0.02)∗∗ −2.00(0.02)∗∗

N vs PFE 0.16(0.56) 0.07(0.53) 0.23(0.59) −2.22(0.01)∗∗ 1.46(0.93)
ST vs PFE −0.06(0.48) −0.05(0.48) −0.06(0.48) −2.29(0.01)∗∗ 1.35(0.91)

N vs CMM 0.91(0.82) 0.87(0.81) 0.93(0.82) 0.52(0.70) 1.04(0.85)
ST vs CMM 0.58(0.72) 0.63(0.74) 0.48(0.68) 0.18(0.57) 0.80(0.79)

Inflation

full central tails left right

N vs N (det) 1.24(0.89) 1.12(0.87) 1.28(0.90) −0.36(0.36) 1.99(0.98)
ST vs ST (det) 1.46(0.93) 1.49(0.93) 1.14(0.87) −0.28(0.39) 2.30(0.99)

N vs BVAR −3.01(0.00)∗∗∗ −3.13(0.00)∗∗∗ −2.47(0.01)∗∗∗ −2.74(0.00)∗∗∗ −2.60(0.00)∗∗∗

ST vs BVAR −2.92(0.00)∗∗∗ −2.98(0.00)∗∗∗ −2.55(0.01)∗∗∗ −2.59(0.00)∗∗∗ −2.67(0.00)∗∗∗

N vs PFE 0.92(0.82) 0.77(0.78) 1.19(0.88) −0.27(0.39) 1.62(0.95)
ST vs PFE 1.14(0.87) 1.02(0.85) 1.32(0.91) 0.06(0.52) 1.74(0.96)

N vs CMM 1.00(0.84) 0.82(0.80) 1.43(0.92) 0.34(0.63) 1.55(0.94)
ST vs CMM 1.21(0.89) 1.06(0.86) 1.58(0.94) 0.63(0.74) 1.66(0.95)

Note: The top panel displays displays the Diebold and Mariano (1995) and West (1996) test statistics and
p-values (in parentheses, with rejection region in the left tail) comparing predictive accuracy measured
by Gneiting and Ranjan’s (2011) weighted CRPS for GDP growth, and the bottom panel for inflation. In
the headers, “full” refers to the standard CRPS, “central”, “tails”, “left” and “right” emphasize attention
on specific regions of interest. For an explanation of the different abbreviations, please see the main text.
Negative values indicate that the first method outperforms the second one, ∗, ∗∗ and ∗∗∗ denote rejection
at the 10%, 5% and 1% significance level, respectively. The test statistics were calculated using the Newey
and West (1987) HAC estimator with one lag. The survey dates range from 1997:Q4 to 2020:Q1, with
corresponding realizations between 1998:Q3 and 2020:Q4.

Appendix B Robustness Checks

B.1 An alternative skew t distribution, and recursively estimated BVAR and CMM

models

As explained in Section 3, the probabilistic GDP growth and inflation forecasts in the US SPF

are recorded in the form of probabilities assigned to pre-specified bins. However, for our

analysis it is necessary to have continuous predictive distributions as mixture components.

As we mentioned, several distributions are used in the literature, with the normal being the

simplest and most popular choice. Given the importance of skewed predictive distributions,

based on both a number of visibly skewed SPF histograms and the recent paper by Adrian et al.

(2019), we also performed our analysis using Jones and Faddy’s (2003) skew t distribution.

However, this is not the only skewed variant of distributions related to Student’s t distribution.
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In the statistics literature, the skew t distribution proposed by Azzalini and Capitanio (2003)

is a popular choice. Therefore, we examined the robustness of our results by performing the

analysis in Section 3 using Azzalini and Capitanio’s (2003) skew t distribution. In its general

form with location parameter µ, scale parameter σ > 0, skewness parameter α and degrees of

freedom parameter ν > 0, its PDF at x ∈ R is given by

f (x; µ, σ, α, ν) =
2
σ

tν

(
x − µ

σ

)
Tν+1

α
x − µ

σ

√√√√ ν + 1

ν +
(

x−µ
σ

)2

 , (19)

where tν(·) and Tν+1(·) are the PDF of Student’s t distribution with degrees of freedom

parameter ν, and the CDF of Student’s t distribution with degrees of freedom parameter ν + 1,

respectively.

Let θ = (µ, σ, α, ν)′ collect the parameters of this distribution. Unfortunately, the CDF of

this skew t distribution cannot be expressed in such a simple form as the CDF of Jones and

Faddy’s (2003) skew t distribution. Therefore, we numerically calculated the integral of the PDF

when fitting the CDF of Azzalini and Capitanio’s (2003) skew t distribution to the empirical

CDFs of the SPF predictions. Furthermore, we restricted the degrees of freedom parameter ν to

be greater than or equal to 4 to ensure the existence and finiteness of the fourth moment of the

fitted distribution. Hence, we considered the parameter space ΘAC = R × R+ × R × (4, ∞).

In the following analysis, we used the abbreviation STAC to index models whose mixture

components are skew t distributions of this form.

First, the estimated weights associated with the Azzalini and Capitanio (2003) skew t

distribution shown in Figure B.1 are very similar to their counterparts in Figure A.1.
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Figure B.1: Weights on current year’s density forecast with Azzalini and Capitanio’s (2003)
skew t distribution

(a) GDP growth (skew t)
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(b) Inflation (skew t)
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Note: The two panels in the figure depict the estimated combination weights on current year’s density forecast
corresponding to every quarter for each variable. Qj denotes the jth quarter in the year.

Figure B.2 shows that when using Azzalini and Capitanio’s (2003) skew t distribution, the

means and standard deviations of the mixture distribution are very similar to the case when

using Jones and Faddy’s (2003) skew t distribution in the main text, both for GDP growth and

inflation.

Figures B.3 and B.4 show the predictive intervals obtained as mixtures of Azzalini and

Capitanio’s (2003) skew t distribution, for both GDP growth and inflation. As we can see,

the predictive intervals are visually indistinguishable from the ones in the main text obtained

using mixtures of Jones and Faddy’s (2003) skew t distribution. The same is true about the

predicted probabilities in Figure B.5.

Figure B.6 shows the predictive bands of BVAR and CMM models, where the parameters

are estimated in a recursive fashion, where the first estimation window coincides with the first

rolling window.

Tables B.1 to B.4 display the same forecast evaluation statistics as in the main text, adding

the results with the Azzalini and Capitanio (2003) distribution. Furthermore, we show results

for the BVAR and CMM models, where the parameters are estimated based on a recursive

estimation scheme. As we can see, the main conclusions are unchanged.
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Figure B.2: Mean and standard deviation of four-quarter-ahead GDP growth and inflation
forecasts

(a) GDP growth, mean (b) GDP growth, standard deviation

(c) Inflation, mean (d) Inflation, standard deviation

Note: The figures show the mean and the standard deviation of the four-quarter-ahead GDP growth forecasts
(subfigures a and b) and inflation forecasts (subfigures c and d) of various methods at the corresponding target
dates ranging from 1998:Q3 to 2020:Q4. For an explanation of the different abbreviations, please see the main text.
Shaded areas are NBER recession periods.

13



Figure B.3: Predictive intervals of four-quarter-ahead combined predictive densities, mixtures
of Azzalini and Capitanio’s (2003) skew t distribution using estimated weights

(a) GDP growth, skew t (b) Inflation, skew t

Note: The figure shows 90%, 70%, and 50% bands, corresponding to the 90%, 70%, and 50% equal-tailed predictive
intervals of the combined four-quarter-ahead predictive densities for GDP growth (left column) and inflation (right
column) based on the US SPF, using the proposed weight estimator. The dotted (blue) lines mark the realized
values of the variable of interest according to the first release. The forecast target dates on the horizontal axis range
from 1998:Q3 to 2020:Q4. Shaded areas denote NBER recession periods.

Figure B.4: Predictive intervals of four-quarter-ahead combined predictive densities, mixtures
of Azzalini and Capitanio’s (2003) skew t distribution using deterministic weights

(a) GDP growth, skew t (b) Inflation, skew t

Note: The figure shows 90%, 70%, and 50% bands, corresponding to the 90%, 70%, and 50% equal-tailed predictive
intervals of the combined four-quarter-ahead predictive densities for GDP growth (left column) and inflation (right
column) based on the US SPF, using deterministic weights. The dotted (blue) lines mark the realized values of
the variable of interest according to the first release. The forecast target dates on the horizontal axis range from
1998:Q3 to 2020:Q4. Shaded areas denote NBER recession periods.
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Figure B.5: Predicted probabilities of low growth and low inflation with Azzalini and Capi-
tanio’s (2003) skew t distribution

(a) Pr(GDP growth ≤ 1%) (b) Pr(Inflation ≤ 1%)

Note: The figure shows according to each model the probabilities of either GDP growth or inflation being less
than or equal to 1% (left axis), along with the actual realization of the respective variable (solid blue line, right
axis). For an explanation of the different abbreviations, see the main text. The forecast target dates on the
horizontal axis range from 1998:Q3 to 2020:Q4. Shaded grey areas denote the periods when the predicted event
(e.g. GDP growth ≤ 1%) did in fact occur.
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Figure B.6: Predictive intervals of four-quarter-ahead predictive densities of recursively esti-
mated BVAR and CMM

(a) GDP growth, recursive BVAR (b) Inflation, recursive BVAR

(c) GDP growth, recursive CMM (d) Inflation, recursive CMM

Note: The figure shows 90%, 70%, 50% bands, corresponding to the recursively estimated Bayesian VAR’s (Panels a
and b) and recursively estimated CMM’s (Panels c and d) 90%, 70% and 50% equal-tailed predictive intervals for
GDP growth and inflation. The dotted blue lines mark the realized values of the variable of interest according to
the first release. The forecast target dates on the horizontal axis range from 1998:Q3 to 2020:Q4. Shaded areas are
NBER recession periods.
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Table B.1: Absolute forecast evaluation: uniformity of PIT

GDP growth Inflation

KS CvM KS CvM

N 0.93(0.51) 0.19(0.60) 1.16(0.27) 0.40(0.23)
STJF 0.94(0.52) 0.25(0.48) 0.91(0.48) 0.30(0.32)

STAC 0.96(0.49) 0.25(0.48) 1.02(0.36) 0.32(0.30)

N (det) 0.96(0.47) 0.26(0.46) 1.68(0.06) 0.90(0.05)
STJF(det) 1.03(0.40) 0.29(0.42) 1.71(0.05) 0.82(0.06)

STAC(det) 1.03(0.40) 0.30(0.41) 1.71(0.05) 0.82(0.06)

BVAR (rolling) 2.29(0.00) 1.87(0.00) 1.27(0.28) 0.28(0.50)
BVAR (recursive) 1.47(0.12) 0.64(0.13) 1.01(0.41) 0.24(0.45)

PFE 1.72(0.05) 0.62(0.12) 1.45(0.18) 0.53(0.18)
CMM (rolling) 1.72(0.05) 0.73(0.12) 1.44(0.17) 0.46(0.25)

CMM (recursive) 1.69(0.06) 0.78(0.11) 1.40(0.19) 0.43(0.27)

Note: The table displays the p-values of Kolmogorov–Smirnov (KS) and Cramér–von Mises
(CvM) tests of the null hypothesis of uniformity of PITs for different target variables (in the
column headers) and models (in rows). N and ST correspond to the combinations of normal and
skew t distributions using our proposed weight estimates (see Section 3.2), while N (det) and ST
(det) denote their conterparts using deterministic weights (see Section 3.3.1). PFE corresponds to
the normal distribution based on past forecast errors (Section 3.3.3), BVAR is the Bayesian VAR
of Section 3.3.2, while CMM is the stochastic volatility model based on point forecast revisions
(Section 3.3.4). The p-values are calculated using the block weighted bootstrap proposed by
Rossi and Sekhposyan (2019), with block length ℓ = 4 and 10,000 bootstrap replications. The
cases in which uniformity cannot be rejected at the 10% level are reported in bold. The survey
dates range from 1997:Q4 to 2020:Q1, with corresponding realizations between 1998:Q3 and
2020:Q4.

Table B.2: Absolute forecast evaluation: coverage

GDP growth Inflation

50% 70% 90% 50% 70% 90%

N 49.4(0.92) 67.1(0.66) 78.5(0.04) 55.7(0.36) 73.4(0.54) 88.6(0.73)
STJF 48.1(0.77) 63.3(0.31) 83.5(0.18) 53.2(0.61) 73.4(0.52) 88.6(0.74)

STAC 48.1(0.77) 63.3(0.31) 82.3(0.13) 53.2(0.61) 73.4(0.52) 89.9(0.98)

N (det) 41.8(0.19) 57.0(0.06) 78.5(0.03) 63.3(0.04) 81.0(0.03) 92.4(0.48)
STJF(det) 41.8(0.19) 57.0(0.06) 81.0(0.08) 60.8(0.09) 81.0(0.03) 91.1(0.75)

STAC(det) 41.8(0.19) 57.0(0.06) 79.8(0.05) 60.8(0.09) 81.0(0.03) 92.4(0.48)

BVAR (rolling) 46.8(0.62) 69.6(0.95) 88.6(0.76) 40.5(0.14) 55.7(0.03) 76.0(0.01)
BVAR (recursive) 49.4(0.93) 67.1(0.66) 88.6(0.76) 51.9(0.78) 68.4(0.78) 83.5(0.15)

PFE 65.8(0.02) 77.2(0.22) 93.7(0.29) 63.3(0.04) 77.2(0.20) 96.2(0.01)
CMM (rolling) 49.4(0.93) 59.5(0.12) 84.8(0.26) 51.9(0.77) 69.6(0.95) 87.3(0.54)

CMM (recursive) 48.1(0.78) 59.5(0.11) 84.8(0.26) 51.9(0.77) 73.4(0.56) 89.9(0.97)

Note: The table displays empirical coverage rates and the two-sided p-values of the null hypothesis that a given
coverage rate equals its nominal counterpart (in parentheses) for different target variables at different nominal
coverage rates (in the column headers) and models (in rows). For the definition of the model abbreviations, see
Table 1. The test statistics were calculated using the Newey and West (1987) HAC estimator with one lag. The cases
in which the null hypothesis cannot be rejected at the 10% level are reported in bold. The survey dates range from
1997:Q4 to 2020:Q1, with corresponding realizations between 1998:Q3 and 2020:Q4.
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Table B.3: Relative forecast evaluation: CRPS

GDP growth Inflation

N 0.75 0.34
STJF 0.75 0.34

STAC 0.75 0.54
N (det) 0.79 0.33

STJF(det) 0.79 0.33
STAC(det) 0.79 0.34

BVAR (rolling) 0.90 0.45
BVAR (recursive) 0.88 0.39

PFE 0.76 0.32
CMM (rolling) 0.72 0.32

CMM (recursive) 0.72 0.32

N vs N (det) −0.99(0.16) 0.98(0.84)
STJF vs STJF(det) −1.35(0.09)∗ 1.19(0.88)

STAC vs STAC(det) −1.37(0.09)∗ 1.08(0.86)
N vs BVAR (rolling) −1.93(0.03)∗∗ −3.22(0.00)∗∗∗

N vs BVAR (recursive) −1.90(0.03)∗∗ −1.76(0.04)∗∗

STJF vs BVAR (rolling) −2.04(0.02)∗∗ −3.14(0.00)∗∗∗

STAC vs BVAR (rolling) −1.94(0.03)∗∗ 0.47(0.68)
STJF vs BVAR (recursive) −1.96(0.03)∗∗ −1.63(0.05)∗

STAC vs BVAR (recursive) −1.82(0.04)∗∗ 0.79(0.78)
N vs PFE −0.16(0.44) 0.74(0.77)

STJF vs PFE −0.32(0.37) 0.94(0.83)
STAC vs PFE −0.24(0.41) 1.12(0.87)

N vs CMM (rolling) 0.84(0.80) 0.92(0.82)
N vs CMM (recursive) 1.07(0.86) 0.88(0.81)
STJF vs CMM (rolling) 0.55(0.71) 1.12(0.87)

STAC vs CMM (rolling) 0.60(0.73) 1.14(0.87)
STJF vs CMM (recursive) 0.76(0.78) 1.07(0.86)

STAC vs CMM (recursive) 0.80(0.79) 1.13(0.87)

Note: The target variable used for both estimation and forecast evaluation is
shown in the column headers. The top panel displays the Continuous Ranked
Probability Score (CRPS) of various density combination methods in the rows.
For each variable, the lowest value is in bold. For the definition of the model
abbreviations, see Table 1. The bottom panel displays the Diebold and Mariano
(1995) and West (1996) test statistics and p-values (in parentheses, with rejection
region in the left tail) comparing predictive accuracy measured by the CRPS.
Negative values indicate that the first method outperforms the second one, ∗, ∗∗

and ∗∗∗ denote rejection at the 10%, 5% and 1% significance level, respectively.
The test statistics were calculated using the Newey and West (1987) HAC es-
timator with one lag. The survey dates range from 1997:Q4 to 2020:Q1, with
corresponding realizations between 1998:Q3 and 2020:Q4.
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Table B.4: Relative forecast evaluation: Brier score

GDP growth ≤ 1% Inflation ≤ 1%

N 0.072 0.124
STJF 0.073 0.122

STAC 0.072 0.121
N (det) 0.076 0.115

STJF(det) 0.076 0.113
STAC(det) 0.076 0.113

BVAR (rolling) 0.096 0.140
BVAR (recursive) 0.092 0.128

PFE 0.070 0.108
CMM (rolling) 0.063 0.108

CMM (recursive) 0.062 0.107

N vs N (det) −0.59(0.28) 2.63(1.00)
STJF vs STJF(det) −0.55(0.29) 2.70(1.00)

STAC vs STAC(det) −0.64(0.26) 2.67(1.00)
N vs BVAR (rolling) −1.33(0.09)∗ −1.62(0.05)∗

N vs BVAR (recursive) −1.30(0.09)∗ −0.75(0.23)
STJF vs BVAR (rolling) −1.26(0.10) −1.78(0.04)∗∗

STAC vs BVAR (rolling) −1.30(0.10)∗ −1.81(0.04)∗∗

STJF vs BVAR (recursive) −1.22(0.11) −1.04(0.15)
STAC vs BVAR (recursive) −1.27(0.10) −1.09(0.14)

N vs PFE 0.21(0.58) 2.37(0.99)
STJF vs PFE 0.36(0.64) 2.30(0.99)

STAC vs PFE 0.28(0.61) 2.29(0.99)
N vs CMM (rolling) 2.13(0.98) 3.26(1.00)

STJF vs CMM (rolling) 2.14(0.98) 2.92(1.00)
STAC vs CMM (rolling) 2.10(0.98) 2.89(1.00)
N vs CMM (recursive) 2.28(0.99) 3.19(1.00)

STJF vs CMM (recursive) 2.30(0.99) 2.93(1.00)
STAC vs CMM (recursive) 2.26(0.99) 2.91(1.00)

Note: The target variable used for both estimation and forecast evaluation and the
corresponding extreme event are shown in the column headers. The top panel
displays the Brier score of various density combination methods in the rows. For each
variable, the lowest value is in bold. For the definition of the model abbreviations,
see Table 1. The bottom panel displays the Diebold and Mariano (1995) and West
(1996) test statistics and p-values (in parentheses, with rejection region in the left tail)
comparing predictive accuracy measured by the Brier score. Negative values indicate
that the first method outperforms the second one, ∗, ∗∗ and ∗∗∗ denote rejection at
the 10%, 5% and 1% significance level, respectively. The test statistics were calculated
using the Newey and West (1987) HAC estimator with one lag. The survey dates
range from 1997:Q4 to 2020:Q1, with corresponding realizations between 1998:Q3
and 2020:Q4.
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Appendix C Further Robustness Results

This section shows further robustness studies, where we assess the correct calibration of the

component as well as combined densities in Figure C.1, show an example of local identification

of the combination weights in Figure C.2, and in display the weight estimates when using

R = 80 observations instead of R = 60 observations in each rolling window.

Figure C.1: Calibration of component distributions

(a) GDP growth, current year
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(b) Inflation, current year
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(c) GDP, next year
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(d) Inflation, next year
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(e) GDP growth, four-quarter-ahead
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(f) Inflation, four-quarter-ahead
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Note: The figure shows the empirical CDFs of the current year and next year densities for GDP growth and inflation
from the Survey of Professional Forecasters (after fitting the Jones and Faddy, 2003 skew t distribution), the CDF of
the PITs under the null hypothesis of correct calibration (the 45 degree line) and the 5% critical values bands based
on the Kolmogorov-Smirnov test in Rossi and Sekhposyan (2019), using their bootstrapped critical values. The last
row depicts similar results for four-quarter-ahead density combinations, where components are based on a skew t
approximation and combined with optimal weights.

20



Figure C.2: Local identification of parameter vector in the 1997:Q4 SPF round, inflation

Note: The figure shows the value of the objective function in Equation (7) (vertical axis) as a function of the
parameter vector (θ1, θ2) when combining Jones and Faddy (2003) skew t distributions of inflation in the 1997:Q4
SPF round. The vertical spike at (0.0015,−0.0015) marks the optimum.

Figure C.3: Weights on current year’s density forecast using, rolling window size R = 80

(a) GDP growth (normal and skew t)
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(b) Inflation (normal and skew t)
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Note: The panels in the figure depict the estimated combination weights one would apply in each SPF round
(horizontal axis) to current year’s density to combine the forecasts.
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Appendix D An Application to BVAR Forecasts

To investigate the properties of our proposed density combination scheme, we performed the

following exercise. We estimated the BVAR model in a rolling window scheme, aligning the

BVAR’s information set with that of the SPF panelists between the 1981:Q3 and 2020:Q1 SPF

rounds. Then we constructed the BVAR’s fixed-event forecasts for GDP growth and inflation

for the current and the next calendar year, mimicking the SPF questionnaire, to obtain annual

average over annual average growth rate forecasts, and fitted a normal distribution to the

resulting MCMC draws. Next, we applied our proposed weight estimation scheme on these

fitted distributions, in exactly the same manner as we did in the case of the SPF forecasts (see

Section 2).

Figure D.1 shows the results of Rossi and Sekhposyan’s (2019) test on the uniformity of

the PITs. As we can see, next year’s (fixed-event) forecasts are better calibrated, and (our

combination method) delivers correctly calibrated fixed-horizon density forecasts by putting

more weight on next year’s forecasts relative to this year’s forecasts.

As Table D.1 demonstrates, our combination method (third row) can indeed improve upon

the individual components’ calibration (first two rows), but it certainly has limitations, and if

the component densities are considerably miscalibrated, then the optimal weighting scheme

cannot fully correct for this fact. It should be noted that the tests in this table are carried out at

10%, slightly more liberal than the 5% significance level used in Figure D.1.

Table D.1: Absolute forecast evaluation: uniformity of PIT

GDP growth Inflation

KS CvM KS CvM

BVAR (current year) 2.87(0.00) 2.80(0.01) 2.97(0.00) 3.42(0.02)
BVAR (next year) 2.01(0.03) 1.65(0.02) 1.74(0.10) 0.84(0.21)

BVAR (optimal weights) 1.87(0.04) 1.32(0.04) 1.93(0.06) 1.12(0.15)
BVAR (original) 2.29(0.00) 1.86(0.00) 1.27(0.28) 0.28(0.50)

Note: The table displays the Kolmogorov–Smirnov (KS) and Cramér–von Mises (CvM) test statistics
and p-values of the null hypothesis of uniformity of PITs (in parentheses) for different target variables
(in the column headers) and models (in rows). The p-values are calculated using the block weighted
bootstrap proposed by Rossi and Sekhposyan (2019), with block length ℓ = 4 and 10,000 bootstrap
replications. The cases in which uniformity cannot be rejected at the 10% level are reported in bold.
The forecast origins range from 1997:Q4 to 2020:Q1, with corresponding realizations between 1998:Q3
and 2018:Q1.

Considering GDP growth, Figures D.2 and D.3 show the BVAR’s fixed-event forecasts

(Figures D.2a, D.2b, D.3a and D.3b), and the optimally weighted combination (solid blue line)

22



Figure D.1: Calibration of BVAR component distributions

(a) GDP growth, current year
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(b) Inflation, current year
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(c) GDP, next year
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(d) Inflation, next year
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(e) GDP growth, four-quarter-ahead
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(f) Inflation, four-quarter-ahead
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Note: The figure shows the empirical CDFs of the current year and next year densities for GDP growth and
inflation based on the BVAR (after fitting a normal distribution), the CDF of the PITs under the null hypothesis of
correct calibration (the 45 degree line) and the 5% critical values bands based on the Kolmogorov-Smirnov test
in Rossi and Sekhposyan (2019), using their bootstrapped critical values. The last row depicts similar results for
four-quarter-ahead density combinations, where components are combined with optimal weights.

along with the BVAR’s fixed-horizon forecasts (dashed magenta line) in Figures D.2c and D.3c.

Essentially, the blue solid line is what our proposed procedure would predict if we were given

annual average over annual average forecasts from the BVAR, while the dashed magenta line

would be the outcome of the original BVAR that is forecasting four-quarter-ahead, quarter

over quarter growth rates. As the picture shows, our mixing strategy can result in multi-modal

(in this case bimodal) densities (Figure D.2c for GDP growth), even if the underlying model
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Figure D.2: BVAR forecasts of GDP growth and their combination as of 2008:Q2
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Note: The plots display the BVAR’s fixed-event forecasts (panels (a) and (b)), along with their optimally weighted
combination (solid blue line in panel (c)), and the BVAR’s fixed-horizon forecast (dashed magenta line in panel (c)).
The dashed vertical red line corresponds to the actual realization.

Figure D.3: BVAR forecasts of GDP growth and their combination as of 2009:Q2

(a) Current year
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Note: The plots display the BVAR’s fixed-event forecasts (panels (a) and (b)), along with their optimally weighted
combination (solid blue line in panel (c)), and the BVAR’s fixed-horizon forecast (dashed magenta line in panel (c)).
The dashed vertical red line corresponds to the actual realization.

does not prescribe multi-modality to the fixed-horizon density forecasts. Part of the reason is

that the current year and next year GDP growth forecasts, depicted in Figures D.2a and D.2b,

respectively, appear to be dramatically different from each other. However, we argue that when

we operate with the objective of obtaining correct calibration of the predictive densities, then

allowing for multi-modality is a desired feature. Importantly, our objective is not obtaining

the BVAR’s underlying fixed-horizon predictive density, but rather a correctly calibrated

one, which might easily differ from the BVAR’s density. It is worth to emphasize that the

distributions based on the original BVAR are not obtained based on correct calibration criterion

either.

The estimated weights that are used to generate Figure D.2c and Figure D.3c are 0.04 and

0.96 for the current year and next year forecasts in 2008:Q2, and 0.00 and 1.00 in 2009:Q2.

Figure D.4 shows the estimated weights over time for both GDP growth (Figure D.4a) and
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Figure D.4: Estimated combination weights of BVAR forecasts

(a) GDP growth
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(b) Inflation
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Note: The four lines in the figure depict the estimated combination weights on current year’s density forecast
corresponding to every quarter for each variable. Qj denotes the jth quarter in the year.

inflation (Figure D.4b), to be interpreted analogously to Figure A.1.
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