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1 Introduction

The chain of causal links that lie between monetary policy actions and their ultimate effects

on macroeconomic variables is broadly referred to as the monetary transmission mechanism.

Since the immediate effect of these policy actions is to influence an array of interest rates and

prices of financial and non-financial assets, it is difficult to imagine many economic decisions

that would be unaffected by monetary policy. Consequently, textbook treatments of the effects

of monetary policy contain extensive taxonomies of a myriad of transmission mechanisms.1

The broadest classification typically consists of three main transmission channels: the (direct

or traditional) interest-rate channel, the asset-price channel, and the credit channel.

The interest-rate channel is best described as a user-cost channel : Suppose there is an

unexpected increase in the nominal policy rate, and that (as is usually the case) some of the

increase passes through to real rates. Then, since the real rate is a key component of the user

cost of capital, and the user cost of capital is a key determinant of the demand for capital (e.g.,

as in Jorgenson (1963)), investment should fall as a result of the monetary policy action.2 The

asset-price channel is best described as a Tobin’s q channel : Suppose an unexpected decrease

in the nominal policy rate causes stock prices to rise (as is well documented empirically, e.g.,

Bernanke and Kuttner (2005)) relative to the replacement cost of capital. Then, since the

market yield of the stock is a key determinant of the cost of external financing in capital

markets, equity-financed investment should increase as a result of the monetary policy action

(e.g., as conjectured by Keynes (1936) and Tobin (1969)). The credit channel, which includes the

well-known balance-sheet channel, is best described as an amplification mechanism associated

to the other two channels: Suppose an unexpected increase in the nominal policy rate causes

asset prices to fall (e.g., through either of the previous two channels), which in turn deteriorates

borrowers’ net worth. Then the resulting increase in external finance premia on debt (Bernanke

and Gertler (1989)) or tightening of borrowing constraints (Kiyotaki and Moore (1997)) imply

debt-financed investment should fall as a result of the monetary policy action.

The user-cost channel is well-understood and present in most quantitative models used for

policy analysis. The credit channel has received much attention in the past decade, and is now

standard in theoretical and quantitative policy-oriented modelling. The asset-price channel was

1See, e.g., Mishkin (1995, 1996, 2001) and Boivin et al. (2010).
2Our focus here is on corporate investment, but all these channels have obvious counterparts for household

spending on consumption of durables and real estate.
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the key mechanism that Tobin (1969) sought to model by introducing his famous “q”. This

channel is described in undergraduate textbooks and discussed in policy circles, but there seems

to be no academic research on it. In this paper we study the transmission of monetary policy

to corporate investment through the asset-price channel activated by policy-induced changes

in Tobin’s q. We refer to this mechanism as q-monetary transmission or the q-channel. We

develop a model of the q-monetary transmission mechanism, provide identification and empirical

evidence for the q-channel, evaluate the ability of the quantitative theory to match the evidence,

and quantify the relevance of q-monetary transmission to aggregate investment.

The main challenge for estimating the q-channel is that monetary policy may affect stock

prices and investment through other channels. For example, a contractionary money shock may

lower a firm’s incentive to invest and its stock price through the user-cost channel. In this case,

investment and the stock price would fall concurrently due to higher discounting. As another

example, a firm’s investment and stock price may fall in response to a money shock that lowers

demand for the firm’s output, and profit. In this case, investment and the stock price would fall

concurrenlty due to lower demand. In both cases the monetary shock leads to a reduction in the

stock price and investment, but the fall in the stock price is not causing the fall in investment.

These examples illustrate we cannot hope to estimate the causal relationship between stock price

and investment—the hallmark of the q-channel—simply from the comovement of investment

and the stock price induced by monetary policy shocks.

We meet this empirical challenge by using stock turnover as a source of cross-sectional vari-

ation in the responses of stock prices to monetary shocks.3 Specifically, our empirical strategy

builds on the idea that, if the cross-sectional variation in stock turnover is uncorrelated with

other sources of cross-sectional variation in the responses of stock prices to monetary shocks,

then identified money shocks combined with heterogeneity in cross-sectional stock turnover can

be used as a source of exogenous (policy driven) cross-sectional variation in Tobin’s q. We use

this cross-sectional variation in the responses of stock prices to money shocks across firms with

different stock turnover to identify the effects of changes in stock prices on firms’ investment

and capital structure decisions. Specifically, we construct an instrument for the cross-sectional

variation in Tobin’s q by interacting monetary policy shocks with firm-specific stock turnover

(calculated in the quarter prior to the shock). Our main exercise consists of estimating whether

3Lagos and Zhang (2020b) provide evidence that stock turnover is a strong predictor of the cross-sectional
differences in the exposure of stock prices to monetary policy shocks.
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such instrumented variation in Tobin’s q has significant effects on firms’ equity issuance and

investment decisions. We find it does. We also find it has significant persistent effects on the

capital structure of firms, both for the mix of debt and equity, as well as for the composition

of assets and liabilities.

Our work makes contact with four distinct literatures. First, we contribute to the literature

on monetary transmission by filling the empirical and theoretical void on the asset-price channel

that operates through Tobin’s q. Second, we contribute to the literature on the causal effects

of changes in stock-market valuations on corporate investment decisions through an “equity

financing channel” (e.g., Keynes (1936), Brainard and Tobin (1968), Tobin (1969), Tobin and

Brainard (1976), Fischer and Merton (1984), Morck et al. (1990), Blanchard et al. (1993), Baker

et al. (2003), Gilchrist et al. (2005)). Our marginal contribution relative to this literature is

twofold. On the theory front, we develop an equilibrium model with two sectors: a productive

sector where firms are managed by entrepreneurs who make investment and equity issuance

decisions, and a financial sector where money and equity claims to the capital installed in

the firm are traded among investors with heterogeneous valuations of the marginal product of

firms’ capital. Our theory highlights the roles that financial constraints (as a determinant of

a firm’s dependence on equity financing) and heterogeneous valuations of capital play in the

transmission of monetary policy shocks to investment decisions through stock prices. On the

empirical front, we propose a new instrument for variations in Tobin’s q that are not caused by

firm-level variation in marginal q. As mentioned above, our innovation in this regard consists of

exploiting a combination of identified monetary policy shocks and the cross-sectional variation

in the responses of stock prices to these shocks due to differences in stock turnover. Third, our

theoretical and empirical results on the response of firms’ equity issuance and capital structure

to fluctuations in stock prices induced by monetary shocks contribute to the corporate finance

literature that studies the relationship between firms’ capital structure and macroeconomic

conditions in general, and stock prices in particular (e.g., Baker and Wurgler (2002), Korajczyk

and Levy (2003), Hovakimian et al. (2004)). Relative to this literature, our contribution is to

identify the persistent effects of monetary policy shocks on the capital structure of public firms.

Fourth, we contribute to the literature that studies new channels through which monetary policy

affects macroeconomic outcomes (e.g., Lagos (2011), Lagos and Zhang (2015, 2019, 2020a,b),

Rocheteau et al. (2018)).

The rest of the paper is organized as follows. Section 2 presents the basic model, Section
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3 defines equilibrium, and Section 4 characterizes the equilibrium for a special case that can

be solved analytically. Section 5 reports the empirical findings. In Section 6 we calibrate and

simulate the general model to assess the ability of the theory to fit the empirical estimates of

the effects of monetary-policy induced changes in Tobin’s q on equity issuance and investment.

In Section 7 we provide an estimate of the quantitative relevance of the q-channel for monetary

transmission to aggregate investment.

2 Model

Time is represented by a sequence of periods indexed by t ∈ {0, 1, ...}. Each time period is

divided into two subperiods where different activities take place. There is a continuum of agents

infinitely lived agents of two types: investors, each identified with a point in the set I = [0, 1],

and brokers, each identified with a point in the set B = [0, 1]. There is a continuum (with unit

measure) of entrepreneurs who live for a random number of periods. Each entrepreneur who

is alive at the beginning of period t is identified with a point in the set Et ⊂ R+. A fraction

1 − π ∈ [0, 1] of the population of entrepreneurs in the set Et dies (i.e., exits the economy)

at the beginning of the second subperiod of period t. The set of entrepreneurs who die is a

uniform random draw from the population, and each is immediately replaced by a newly born

entrepreneur.

There are three commodities at each date: two consumption goods, called good 1 and

good 2, and a capital good. The consumption goods are perishable: good 1 and good 2 can

only be consumed in the first and second subperiods, respectively. Capital is storable, but

depreciates at rate δ ∈ [0, 1] between periods. Upon entering the economy, an entrepreneur

i ∈ Et is endowed with wi0 ∈ R+ units of good 2 and k0 ∈ R+ units of capital. We use a

cumulative distribution function Ω to describe the heterogeneity in the initial endowment of

(claims to) good 2 relative to capital, ωi0 ≡ wi0/k0, across entrepreneurs. In the second subperiod

of every period, investors and brokers are endowed with a resource called labor (effort) that

they can use to produce good 2 one-for-one. There are two other production technologies that

can be managed only by entrepreneurs. The first, uses capital available at the beginning of

period t to produce good 1 in the first subperiod of period t. Specifically the capital stock kt

operated by an entrepreneur delivers zkt units of good 1 at the end of the first subperiod of t,

where z ∈ R++. The second production technology can be operated by an entrepreneur in the

second subperiod of period t, and uses good 2 and the capital the entrepreneur has in place
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at the beginning of period t to augment the capital that the entrepreneur will have in place

to produce good 1 in period t+ 1. Formally, this technology is represented by a cost function,

C (xt, kt) ≡ xt + Ψ (xt/kt) kt, interpreted as the cost (in terms of good 2) of producing and

installing xt units of capital for an entrepreneur whose current capital is kt. We assume 0 < Ψ′′,

and that there is a ι0 ∈ R+ such that Ψ (ι0) = Ψ′ (ι0) = 0. It is convenient to define c(xt/kt) ≡
C(xt, kt) /kt, i.e., the cost of investment per unit of installed capital. The assumptions on Ψ

imply c(ι0)− ι0 = c′ (ι0)− 1 = 0 < c′′ (·). Once installed, capital is entrepreneur-specific, i.e.,

capital installed by entrepreneur i ∈ Et is only productive when operated by entrepreneur i.

The asset structure is as follows. In the second subperiod of every period, in order to finance

the cost of investing in new capital, every entrepreneur can issue identical, durable, and perfectly

divisible equity claims to the future returns from the newly created capital. (Entrepreneurs are

also allowed to sell equity claims on any existing capital they currently own.) An equity share

issued by an entrepreneur in the second subperiod of t represents ownership of 1 unit of capital

along with the stream of dividends produced by that unit of capital. When an entrepreneur

dies, the outstanding equity claims she had previously issued disappear, and the underlying

capital plus any financial assets, physical capital, or claims owned by the entrepreneur are

distributed uniformly (lump sum) to the cohort of newly born entrepreneurs. There are two

other financial instruments: a one-period real pure-discount government bond, and money. A

unit of the bond issued in the second subperiod of t represents a risk-free claim to one unit of

good 2 in the second subperiod of t + 1. The stock of bonds outstanding at time t is Bt, and

all private agents take the sequence {Bt}∞t=0 as given. Money is intrinsically useless (it is not

an argument of any utility or production function, and unlike equity or bonds, money does not

constitute a formal claim to any resources). The nominal money supply at the beginning of

period t is denoted Amt , and we assume Amt+1 = µAmt , with µ ∈ R++ and Am0 ∈ R++ given.

The government injects or withdraws money via lump-sum transfers or taxes to investors in the

second subperiod of every period. At the beginning of period t = 0, each investor is endowed

with an equal portfolio of money. We assume brokers do not hold financial assets.4

The market structure is as follows. In the second subperiod, all agents can trade good

2, labor services, equity shares, bonds, and money, in a spot Walrasian market.5 In the first

4This assumption allows us to abstract from the broker’s portfolio problem in the first subperiod, which is
not essential for the questions we study in this paper. See Lagos and Zhang (2015, 2020b) for a treatment of the
broker’s portfolio problem in a related model.

5Notice that equity shares (i.e., the claims on installed capital and its returns) can be traded freely, but the

6



subperiod, investors can trade equity shares and money in a random bilateral over-the-counter

(OTC) market with brokers, while brokers can also trade equity shares and money with other

brokers in a spot Walrasian interbroker market. We use α ∈ [0, 1] to denote the probability

that an individual investor is able to make contact with a broker in the OTC market. Once

a broker and an investor have contacted each other, the pair negotiates the quantity of equity

shares and money that the broker will trade in the interdealer market on behalf of the investor,

and a fee for the broker’s intermediation services. The terms of the trade between an investor

and a broker in the OTC market are determined by Nash bargaining, where θ ∈ [0, 1] is the

investor’s bargaining power. We assume the fee is negotiated in terms of good 2, and paid at

the beginning of the following subperiod.6 The timing is that the round of OTC trade takes

place in the first subperiod and ends before equity pays out first-subperiod dividends.7 Equity

purchases in the OTC market cannot be financed by borrowing (e.g., due to anonymity and lack

of commitment and enforcement). This assumption and the structure of preferences described

below create the need for a medium of exchange in the OTC market.8

An individual broker’s preferences are given by

EB0
∞∑
t=0

βt(yt − ht),

where β ∈ (0, 1) is the discount factor, and yt and ht denote a broker’s consumption of good 2,

and utility cost from supplying ht units of labor in the second subperiod of period t, respectively.

The expectation operator, EB0 , is with respect to the probability measure induced by the random

trading process in the OTC market. Dealers get no utility from good 1.9 An individual investor’s

actual physical capital created and installed by a particular entrepreneur is assumed to be non tradable. The idea
is that, once installed by an entrepreneur, physical capital becomes entrepreneur-specific and cannot be operated
by another entrepreneur. An entrepreneur can, however, disinvest (which entails bearing the adjustment cost,
Φ) to turn installed capital into good 2, which can then be traded freely in the Walrasian market. Similarly,
when the entrepreneur dies, the quantity of good 2 obtained from unistalling the capital that the entrepreneur
used to manage is distributed to newly born entrepreneurs (net of adjustment costs).

6This is the specification used in Lagos and Zhang (2020b). Lagos and Zhang (2015) instead assume the
investor must pay the intermediation fee to the broker on the spot (with money or equity). The timing convention
in Lagos and Zhang (2020b) simplifies the exposition without affecting the mechanisms of interest.

7As in previous search models of OTC markets, e.g., Duffie et al. (2005) and Lagos and Rocheteau (2009), an
investor must own the equity in order to consume the dividend flow of consumption good in the OTC round.

8See Lagos and Zhang (2020a, 2019) for a similar model where investors can buy equity with margin loans.
9This assumption implies that dealers have no direct consumption motive for holding the equity share. It is

easy to relax, but we adopt it because it is the standard benchmark in the search-based OTC literature, e.g., see
Duffie et al. (2005), Lagos and Rocheteau (2009), Lagos et al. (2011), and Weill (2007).
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preferences are given by

EI0
∞∑
t=0

βt (εtct + yt − ht) ,

where yt and ht denote an investor’s consumption of good 2, and utility cost from supplying

ht units of labor in the second subperiod of period t, respectively, and ct is the investor’s

consumption of good 1 at the end of the first subperiod of period t. The variable εt denotes

the realization of an idiosyncratic valuation shock for good 1 that is distributed independently

over time and across investors with a differentiable cumulative distribution function G with

support [εL, εH ] ⊆ [0,∞], and mean ε̄ ≡
∫
εdG (ε). An investor learns the realization εt at the

beginning of the first subperiod of period t, immediately before the OTC trading round. The

expectation operator, EI0, is with respect to the probability measure induced by the investor’s

valuation shocks, and the trading process in the OTC market.

The preferences of an entrepreneur born in the second subperiod of t are given by
∞∑
j=t

(βπ)(j−t) (yj + βεecj+1) ,

where yj is the consumption of good 2 in the second subperiod of period j, and cj+1 is the

entrepreneur’s consumption of good 1 at the end of the first subperiod of period j + 1, and

εe ∈ R++ is the entrepreneur’s valuation of her own production of good 1.

3 Equilibrium

Consider the determination of the terms of trade in a bilateral meeting in the OTC round of

period t between a broker and an investor with valuation ε and portfolio at = (abt , a
m
t , a

s
t ), where

abt denotes bond holdings, amt money holdings, and ast holdings of shares. Let Wt (at, $t) denote

the maximum expected discounted payoff at the beginning of the second subperiod of period t of

an investor who is holding portfolio at and has to pay a broker fee $t. Let [at (at, ε) , $t (at, ε)]

represent the bargaining outcome in a bilateral trade at time t between a broker and an investor

with portfolio at and valuation ε, where at (at, ε) ≡
(
abt (at, ε) , a

m
t (at, ε) , a

s
t (at, ε)

)
denotes

the investor’s post-trade portfolio. That is,

[at (at, ε) , $t (at, ε)] = arg max
(at,$t)∈R4

+

Γ (at,at, ε)
θ$t

1−θ (1)

with

Γ (at,at, ε) ≡ εzast +Wt(a
b
t , a

m
t , π(1− δ)ast , $t)− εzast −Wt(a

b
t , a

m
t , π(1− δ)ast , 0),

8



at ≡ (abt , a
m
t , a

s
t ), and subject to

amt + pta
s
t ≤ amt + pta

s
t

0 ≤ Γ (at,at, ε)

abt = abt ,

where pt denotes the dollar price of an equity share in the interbroker market of period t. The

first and second constraints are the investor’s budget, and participation constraints, respectively.

The last constraint reflects the assumption that the real bond is illiquid in that it cannot be

directly used as means of payment in stock-market trades.

Let Vt (at, ε) denote the maximum expected discounted payoff of an investor with valuation

ε and portfolio at at the beginning of the first subperiod of period t. In the second subperiod

of period t, let φt ≡
(
φbt , φ

m
t , φ

s
t

)
, where φbt is the real price of a newly issued government bond,

φmt , is the real price of a unit of money, and φst is the real price of an equity share (all in terms

of good 2). At the beginning of the second subperiod the investor solves

Wt (at, $t) = max
(yt,ht,at+1)∈R5

+

[
yt − ht + β

∫
Vt+1 (at+1, ε) dG(ε)

]
(2)

s.t. yt + φtat+1 ≤ φ′tat + ht −$t + Tt,

where yt is consumption of good 2, ht is the disutility of labor, at+1 ≡ (abt+1, a
m
t+1, a

s
t+1),

φ′t ≡ (1, φmt , φ
s
t ), and Tt ∈ R is the real value of the lump-sum monetary transfer. The value

function of an investor who enters the first subperiod of t with portfolio at and valuation ε is

Vt (at, ε) = α
{
εzast (at, ε) +Wt

[
a′t (at, ε) , $t (at, ε)

]}
+ (1− α)

{
εzast +Wt

[
a′t (at) , 0

]}
, (3)

where a′t (at, ε) ≡ (abt (at, ε) , a
m
t (at, ε) , π(1− δ)ast (at, ε)) and a′t (at) ≡

(
abt , a

m
t , π(1− δ)ast

)
.

Let Jt (bt) denote the maximum expected discounted payoff at the beginning of the second

subperiod of period t, of an entrepreneur who currently has balance sheet bt ≡
(
abt , kt, st

)
,

composed of (claims to) abt units of good 2, installed capital kt, and st outstanding equity

claims on installed capital. The value function satisfies

Jt (bt) = max
yt,abt+1,et,xt

{yt + β [εez(kt+1 − st+1) + πJt+1 (bt+1)]} (4)
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s.t. yt + c (xt/kt) kt + φbta
b
t+1 ≤ φstet + abt (5)

kt+1 = (1− δ) kt + xt (6)

st+1 = (1− δ) st + et (7)

0 ≤ st+1 ≤ kt+1 (8)

yt, a
b
t+1 ∈ R+, (9)

where bt+1 ≡
(
abt+1, kt+1, st+1

)
, yt denotes consumption of good 2, xt is the quantity of good

2 invested to produce new capital (net of the installation cost), and et is the number of newly

issued equity shares. Condition (5) is the entrepreneur’s budget constraint (expressed in terms

of good 2), while (6) and (7) are the laws of motion for the stock of installed capital and out-

standing equity shares on the entrepreneur’s installed capital, respectively. The first inequality

in (8) states that an entrepreneur cannot buy claims on her own dividend of good 1 issued by

other agents.10 The second inequality in (8) states that entrepreneurs cannot sell claims on cap-

ital that are not backed by capital owned by the entrepreneur, i.e., equity issuance must satisfy

et ≤ xt + (1− δ) (kt − st). The nonnegativity constraints in (9) rule out negative consumption

and borrowing by shorting the government bond. The formulation (4) assumes an entrepreneur

does not hold cash.11 Let the function gt : R3
+ → R2

+ × R2 denote the optimal decision rule

corresponding to (4), i.e., gt (bt) ≡
(
gyt (bt) , g

b
t (bt) , g

e
t (bt) , g

x
t (bt)

)
gives the entrepreneur’s op-

timal choices of second-subperiod consumption, bond holdings, equity issuance, and investment,

as a function of her initial balance sheet, bt. Then, conditional on survival, the optimal path

for the entrepreneur’s balance sheet is described by bt+1 = ḡt (bt) ≡
(
ḡbt (bt) , ḡ

k
t (bt) , ḡ

s
t (bt)

)
,

with ḡbt (bt) ≡ gbt (bt), ḡ
k
t (bt) ≡ (1− δ) kt + gxt (bt), and ḡst (bt) ≡ (1− δ) st + get (bt).

Let j ∈ {E, I} denote the agent type, i.e., “E” for entrepreneurs and “I” for investors,

and let h ∈ {b,m, s} denote the type of financial asset, i.e., “b” for bonds, “m” for money,

and “s” for equity shares. Then let AhIt denote the quantity of financial asset h held by all

investors at the beginning of period t. That is, AhIt =
∫
aht dFIt (at), where FIt is the cumulative

distribution function over portfolios at =
(
abt , a

m
t , a

s
t

)
held by investors at the beginning of

period t. Similarly, let F̄Et denote the joint cumulative distribution function over entrepreneur’s

balance sheets, bt =
(
abt , kt, st

)
, at the beginning of the second subperiod of period t. Let

10Equivalently, with (7) the constraint 0 ≤ st+1 can be written as − (1− δ) st ≤ et, i.e., the entrepreneur can
buy back her own equity shares, but cannot buy back more than the quantity of shares outstanding.

11This assumption merely simplifies the exposition. In this environment, entrepreneurs are not involed in
transactions for which cash is used as a medium of exchange, so we can anticipate that an entrepreneur will
never choose to carry cash given she has the option to hold interest-bearing government bonds.
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AbEt denote the quantity of bonds held by entrepreneurs at the beginning of period t. Let

Kt and St denote the beginning-of-period t capital stock managed by all entrepreneurs, and

outstanding equity claims on all installed capital, respectively. Then, we have the beginning-

of-period t aggregates, AbEt =
∫
abtdFEt (bt), Kt =

∫
ktdFEt (bt), and St =

∫
stdFEt (bt). Let

ĀmIt and ĀsIt denote the quantities of money and shares held after the first-subperiod round

of trade of period t by all the investors who are able to trade in the first subperiod. Then

we have ĀhIt = α
∫
aht (at, ε)dHIt(at, ε) for h ∈ {m, s}, where HIt denotes the joint cumulative

distribution of portfolios and valuation shocks across investors at the beginning of period t. We

are now ready to define equilibrium.

Definition 1 An equilibrium is a sequence of prices, {φt}∞t=0, terms of trade in the first-

subperiod, {āt (·) , $t (·)}∞t=0, investor end-of-period portfolio choices, {at+1}∞t=0, and decision

rules for entrepreneurs, {gt (·)}∞t=0, such that: (i) the terms of trade {āt (·) , $t (·)}∞t=0 solve

(1); (ii) taking prices and the bargaining protocol as given, the portfolios {at+1}∞t=0 solve the

individual investor’s optimization problem (2), and the decision rules {gt (·)}∞t=0 solve (4); and

(iii) prices, {φt}∞t=0, are such that all Walrasian markets clear, i.e., AbEt+1 +AbIt+1 = Bt+1 (the

end-of-period t Walrasian bond market clears), AmIt+1 = Amt+1 (the end-of-period t Walrasian

market for money clears), AsIt+1 = St+1 (the end-of-period t Walrasian market for equity clears),

ĀmIt = αAmt (the market for money in the first subperiod of t clears), and ĀsIt = αSt (the market

for equity in the first subperiod of t clears). An equilibrium is “monetary” if φmt > 0 for all t

and “nonmonetary” otherwise.

4 Theoretical results

Throughout we focus on stationary equilibria in which the aggregate supply of equity and

aggregate real money balances are constant over time, i.e., St = S and φmt A
m
t ≡Mt = M for all

t, and real equity prices are time-invariant linear functions of the dividend, i.e., φst = φs ≡ ϕsz
and ptφ

m
t = ϕ̄sz, for all t.12 In order to derive the main theoretical insights analytically, in this

section we assume π = 0, i.e., entrepreneurs live for one period.13

To study equilibrium it is useful to define the marginal valuation in the stock market of the

12Intuitively, φst and ptφ
m
t are the ex- and cum-dividend real equity prices (in terms of good 2), respectively.

13The general formulation with π ∈ [0, 1] is analyzed quantitatively in Section 6.
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first subperiod of t, ε∗t ≡ ptφmt /z, and the nominal interest rate between period t and t+ 1,

rt+1 ≡
φmt
βφmt+1

− 1. (10)

The marginal valuation ε∗t is the one that makes an investor indifferent between holding equity or

selling it for cash in the first subperiod.14 In a stationary equilibrium with π = 0, ε∗t = ε∗ ≡ ϕ̄s

for all t. The nominal interest rate rt+1 is the nominal yield of a one-period risk-free nominal

bond issued in the second subperiod of t and redeemed in the second subperiod of t+ 1 that is

illiquid (in the sense that it cannot be used to purchase stocks in the first-subperiod of t+ 1).

In a stationary equilibrium, rt+1 = r ≡ (µ−β)/β for all t, so we regard r as the nominal policy

rate, which can be implemented by changing the growth rate in the money supply, µ.

For an entrepreneur who enters with initial conditions w and k in the context of a stationary

equilibrium of an economy with π = 0, (4)-(9) specialize to

J (w, k, 0) = max
x,y,s+1

[y + βεez(k+1 − s+1)] (11)

s.t. y + c (x/k) k ≤ φss+1 + w

k+1 = (1− δ) k + x

0 ≤ s+1 ≤ k+1

0 ≤ y.

Let gx (w, k), gy (w, k), and ge (w, k) denote the levels of investment, consumption, and equity

issuance that solve (11). Define x∗ ≡ gx (w, k) /k, y∗ ≡ gy (w, k) /k, s∗+1 ≡ ge (w, k) /k, ω ≡
w/k, and φse ≡ βεez. The following result characterizes (x∗, y∗, s∗+1).

Lemma 1 Let ι(φ) denote the unique number, ι, that solves c′ (ι) = φ for any φ ∈ R+. Assume

δ − ι0 ≤ 1 ≤ min(φs, φse). (i) If φse ≤ φs,

x∗ = ι(φs)

s∗+1 =

{
1− δ + x∗ if φse < φs[
max

{
0, c(x∗)−ω

φs

}
, 1− δ + x∗

]
if φse = φs.

14In general, for π ∈ [0, 1], ε∗t would be defined as ε∗t ≡ (ptφ
m
t − π(1 − δ)φst )/z. To see the role that this

marginal valuation will play in the equilibrium, consider an investor with valuation ε who, in the stock market
of the first subperiod of period t, is deciding whether to keep an equity share or sell it for cash. If he keeps the
share, his payoff is εz + π(1− δ)φst , namely his valuation of the period dividend, εz, plus the expected value (in
terms of good 2) of the share of undepreciated capital in the following subperiod, π(1 − δ)φst . If he sells it for
cash, he gets payoff ptφ

m
t (i.e., sells the share for pt dollars, worth φmt units of good 2 in the following subperiod).

Hence, the investor keeps the share if εz + π(1− δ)φst > ptφ
m
t , sells it for cash if εz + π(1− δ)φst < ptφ

m
t , and is

indifferent if ε = ε∗t .
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(ii) If φs < φse,

x∗ =


ι(φse) if c(ι(φse)) ≤ ω
c−1(ω) if c(ι (φs)) < ω < c(ι(φse))
ι(φs) if ω ≤ c (ι (φs))

s∗+1 =

{
0 if c(ι (φs)) < ω
c(ι(φs))−ω

φs if ω ≤ c (ι (φs))

In every case, y∗ = ω + φss∗+1− c(x∗)

In Lemma 1, φse is the entrepreneur’s marginal value of investing capital, while φs can be

interpreted as the marginal value of investing in capital to the outside investors who price

the entrepreneur’s equity in the market. Part (i) focuses on the case in which the market

valuation of the marginal investment in capital is higher than the entrepreneur’s. In this case

the entrepreneur chooses the investment rate, x∗, so that the marginal cost, c′(x∗), equals the

market value of the marginal investment, φs. Moreover, because the entrepreneur’s valuation is

lower than the market valuation, the entrepreneur issues equity shares on any capital she owns

at the beginning of the period, and finances new investment entirely by equity issuance, i.e.,

she chooses s∗+1k = (1 − δ + x∗)k. (In the knife-edge case with φse = φs, the entrepreneur is

indifferent between financing by equity issuance or out of her own funds, ωk.)

Part (ii) of Lemma 1 focuses on the case in which the entrepreneur’s valuation of the

marginal investment in capital is higher than the market valuation, i.e., φs < φse. In this

case the investment, financing, and consumption decisions of the entrepreneur depend on her

own valuation of investment, on the market valuation, and on the entrepreneur’s “financial”

wealth, represented by the ω endowment of good 2. First, if c(ι(φse)) ≤ ω, the entrepreneur is

financially unconstrained: she chooses her first-best investment rate, ι(φse) (the x∗ that equates

the marginal cost of investment, c′(x∗), to her own marginal valuation, φse), finances it entirely

with her own funds, i.e., s∗+1 = 0 (issues no equity), and consumes the unspent wealth, i.e.,

sets y∗ = ω− c(ι(φse)). On the opposite extreme, if the entrepreneur’s own financial wealth

is very low, specifically ω ≤ c(ι (φs)), i.e., lower than what would be needed to self-finance

the level of investment that would be chosen based on outside investors’ marginal valuation of

investment, φs, then she chooses the investment rate ι(φs) (the x∗ that equates the marginal

cost of investment, c′(x∗), to the market valuation, φs), uses all of her own funds to finance

investment (sets y∗ = 0), and resorts to equity issuance. Finally, if the entrepreneur’s financial

wealth is too low to self-finance her first-best investment rate but high enough to self-finance the
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investment rate that would be chosen based on outside investor’s valuations, i.e., if c(ι (φs)) <

ω < c(ι(φse)), then the entrepreneur invests the maximum that can be financed with her internal

funds, i.e., the investment rate x∗ that satisfies c(x∗) = ω, sets y∗ = 0, and issues no equity.

For what follows, let x∗ (ω) and s∗+1 (ω) denote the optimal investment and equity issuance

decisions taken by an entrepreneur who enters with a ratio of financial wealth to physical capital

equal to ω, as characterized in Lemma 1. With this notation, we can write the aggregate

investment chosen by all active entrepreneurs at the end of a period as

X∗ =

∫
x∗ (ω) dΩ (ω) , (12)

and the aggregate stock of equity shares outstanding at the beginning of a period as

S∗ =

∫
s∗+1 (ω) dΩ (ω) . (13)

For the remainder of this section, we assume δ − ι0 ≤ 1 ≤ min(φs, φse), where φs ≡ βε̄z. The

following proposition characterizes the nonmonetary equilibrium.

Proposition 1 A nonmonetary equilibrium exists for any parametrization. In the nonmon-

etary equilibrium, money has no value, i.e., M = 0, and the price of an equity share is φs.

Moreover: (i) If φse < φs, then X∗ = ι(φs), and S∗ = 1− δ + ι(φs). (ii) If φs < φse, then

X∗ = Ω[c(ι(φs))]ι(φs) +

∫ c(ι(φse))

c(ι(φs))
c−1(ω)dΩ (ω) + {1− Ω[c(ι(φse))]}ι(φse),

and

S∗ =
1

φs

∫ c(ι(φs))

0
[c(ι(φs))− ω]dΩ (ω) .

The following proposition characterizes the monetary equilibrium. Before stating the result,

it is convenient to define φ
s ≡ β [ε̄+ αθ (εH − ε̄)] z and r̄ ≡ αθ (ε̄− εL) /εL.

Proposition 2 Assume r ∈ (0, r̄). (i) There exists a unique stationary monetary equilibrium.

(ii) The equity price is

φs (r) = β

[
ε̄+ αθ

∫ ε∗

εL

(ε∗ − ε) dG(ε)

]
z, (14)

where ε∗ ∈ (εL, εH) is the unique solution to

αθ

∫ εH

ε∗

ε− ε∗

ε∗
dG(ε) = r. (15)
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(iii) If φse ∈ (φs, φ
s
), let r̂ ∈ (0, r̄) be defined by φs (r̂) = φse. Then: (a) If r ∈ (0, r̂), then

X∗ = ι(φs (r)), and S∗ = 1− δ + ι(φs (r)). (b) If r ∈ (r̂, r̄), then

X∗ = Ω[c(ι(φs (r)))]ι(φs (r))) +

∫ c(ι(φse))

c(ι(φs(r)))
c−1(ω)dΩ (ω) + {1− Ω[c(ι(φse))]}ι(φse),

and

S∗ =
1

φs (r)

∫ c(ι(φs(r)))

0
[c(ι(φs (r)))− ω]dΩ (ω) .

(iv) If φse < φs, X∗ and S∗ are as in part (iii)(a). (v) If φ
s
< φse, X

∗ and S∗ are as in part

(iii)(b). (vi) In every case, aggregate real money balances are given by M = G(ε∗)ε∗z
1−G(ε∗) S

∗.

The following corollary of Proposition 2 documents how asset prices and the investment

rate respond to changes in the monetary policy rate, r.

Corollary 1 In the stationary monetary equilibrium: (i) As r → r̄, M → 0, and φs → φs.

(ii) As r → 0, φs → φ
s
. (iii) dε∗/dr < 0 and dφs (r) /dr < 0. (iv) dι(φs (r)))/dr < 0, (v)

d2φs (r) / (drdα̂) < 0, where α̂ ≡ αθ.

The results in Corollary 1 are interpreted as follows. Part (i) states that as the opportunity

cost of holding money (represented by the policy rate r) approaches r̄, the monetary equilibrium

of Proposition 2 converges to the nonmonetary equilibrium of Proposition 1. Part (ii) is a

version of the celebrated Friedman rule: as monetary policy drives the opportunity cost of

holding money toward zero, investors’ liquidity needs are satiated, which implies the equilibrium

equity price is set by the highest investor valuation. Part (iii) complements parts (i) and (ii)

by showing that the market price of equity is decreasing in the policy rate r. Part (iv) shows

that if the marginal value of the entrepreneur’s investment is determined by the stock market,

then increases in the nominal policy rate, r, discourage investment. Finally, part (v) states that

the magnitude of the equity-price response to changes in the policy rate is increasing in the

liquidity of the stock (e.g., as measured by the parameter α, which determines the frequency

of trade of the stock).

4.1 Implications

In this section we derive the main implications of the theory that will guide our empirical anal-

ysis. First, we describe the relationship between an individual firm’s investment rate, Tobin’s

15



marginal q, and Tobin’s average q. We then discuss the role of the stock turnover rate in the

transmission of monetary shocks to a firm’s equity prices, and ultimately, a firm’s investment

rate. We then we use the equilibrium conditions of the model to derive the relationship be-

tween investment rates, equity prices, turnover, and monetary policy shocks that motivate the

regression specification and guide identification strategy we use in Section 5.

4.1.1 Tobin’s q, monetary policy, and investment

The following corollary of Lemma 1 establishes the conditions under which the marginal value

of capital that the entrepreneur uses to make the optimal investment decision, which we denote

q∗, is equal to Tobin’s q, which in this model is equal to the stock-market price of a claim to a

unit of capital installed in the firm, φs.

Corollary 2 The optimal investment rate, x∗, satisfies c′ (x∗) = q∗. If φse ≤ φs, q∗ = φs. If

φs < φse,

q∗ =


φse if c(ι(φse)) ≤ ω
c′(c−1 (ω)) if c(ι (φs)) < ω < c(ι(φse))
φs if ω ≤ c (ι (φs)) .

In well-known proposition, Hayashi (1982) showed that for a competitive firm with constant

returns to scale in both production and installation, the marginal value of capital that the firm

uses to make the optimal investment decision, which Hayashi refers to as (Tobin’s) marginal q,

is equal to the ratio of the market value of the capital intalled in the firm to the replacement

cost of capital, i.e., Tobin’s q, which Hayashi refers to as (Tobin’s) average q. Corollary 2

is a generalization of this proposition to our environment, which differs from Hayashi’s more

traditional neoclassical setting in two ways. First, we allow for heterogeneous valuations of the

fundamental marginal revenue of capital installed inside the firm: these valuations may differ

across investors as well as between investors and the entrepreneur who runs the firm. Second,

firms in our model face financing constraints that, if binding, will affect investment decisions.

In Corollary 2 we define q∗ as the marginal value of capital that the entrepreneur uses to

make the firm’s optimal investment decision, so the optimal investment rate always satisfies

c′ (x∗) = q∗. Thus, q∗ corresponds to what Hayashi refers to as marginal q in his neoclassical

interpretation of Keynes and Tobin. In our model, the market price of k units of capital installed

in a firm is φsk (expressed in terms of good 2), and the replacement cost of k units of capital

is k (also in terms of good 2), so Tobin’s q (what Hayashi refers to as average q) is equal to φs.
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The main takeaway from Lemma 1 and Corollary 2 is that, unless φs < φse and c (ι (φs)) < ω,

the firm’s investment and equity issuance depend on the market price of equity, which in turn

depends on the monetary policy rate, r. For firms run by entrepreneurs who assign a lower

value to investment than the market, as in part (i) of Lemma 1, the relationship is simple: a

lower policy rate leads to a higher stock price, which in turn induces these firms to invest more

and to finance investment with equity issuance. For firms run by entrepreneurs who assign a

higher value to investment than the market, as in part (ii) of Lemma 1, the relationship is more

nuanced. On the one hand, investment and equity issuance are increasing in the market price

of equity (and therefore decreasing in the monetary policy rate) for firms run by entrepreneurs

who are sufficiently financially constrained, in the sense that ω ≤ c (ι (φs (r))). On the other

hand, investment and equity issuance decisions are independent of monetary policy for firms

run by entrepreneurs who are financially unconstrained in the sense that c (ι (φs (r))) < ω. In

the following section we take these theoretical predictions to the data.

4.1.2 Monetary policy and stock prices: the turnover liquidity channel

Corollary 1 characterizes how monetary policy affects the market prices of equity and how

the effects depend on microstructure. We focus on how microstructure is determined by the

parameters that regulate trading frequency and the relative bargaining strengths of traders, α

and θ, respectively.15 The real price of equity in a monetary equilibrium is in part determined

by the option available to low-valuation investors to resell the equity to high-valuation investors.

If the nominal interest rate r increases, the equilibrium real money balances decline and the

marginal investor valuation, ε∗, decreases. This reflects the fact that under the higher nominal

rate, the investor valuation that was marginal under the lower rate is no longer indifferent

between carrying cash and equity out of the OTC market – he prefers equity. Since the marginal

investor who prices equity in the OTC market has a lower valuation, the value of the resale

option is smaller, meaning the turnover liquidity of the asset is lower, which in turn makes the

real equity price smaller.

In the OTC market, α is the probability an investor is able to contact a dealer, and θ is the

investor’s share of the gain from trade conditional on trading with a dealer. Thus, a larger αθ

implies a larger expected gain from trade for low-valuation investors when they sell the asset to

15Lagos and Zhang (2020b) also provide a characterization of how a mean-preserving spread in the distribution
of valuations G(ε) affects equity prices in a similar framework.
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dealers. In turn, this makes investors more willing to hold equity shares in the previous period,

as they anticipate larger gains from selling the equity in case they were to draw a relatively low

valuation in the following OTC round. Thus, real equity prices φs are increasing in α and θ.

Following Lemma 6, all investors with ε < ε∗ who have a trading opportunity in the OTC

market sell all their equity holding. Therefore, in a stationary equilibrium, the quantity of

assets sold by investors to dealers in the OTC market is αG(ε∗)AsI . Since the OTC market has

to clear, the quantity of assets purchased by investors from dealers is also αG(ε∗)AsI . So the

total quantity of equity shares traded in the OTC market is 2αG(ε∗)AsI . Or, measured as the

turnover rate, i.e. relative to total equity outstanding, T =
2αG(ε∗)AsI

AsI
= 2αG(ε∗).

In taking our theoretical predictions to the data, we take the standpoint that the empirically

relevant parametrization, as referring to parameter conditions in Proposition 2, is that φse ∈
(φs, φ

s
) and r ∈ (r̂, r̄). The assumption φse < φ

s
requires that there exist some outside investors

who value investment sufficiently more than the entrepreneurs. In our quantitative analysis of

the structural model, we will assume that ε is lognormal, so that εL = 0 and εH = +∞, and

therefore φ
s

= +∞, r̄ = +∞, and the assumptions φse < φ
s

and r < r̄ are immediately satisfied.

More importantly, the assumption that φse > φs is equivalent to assuming that the average

outside investor values investment less than the entrepreneur. This is necessary for there to

exist firms that are not 100 percent financed by outside equity – an empirical motivation for the

assumption. In Appendix B we incorporate a simple agency problem between entrepreneurs and

investors to show that, in order to have an equilibrium with φs < φse, one need not assume that

the fundamental value of the investment is higher for entrepreneurs than for outside investors.16

Finally, r > r̂ is also a necessary condition for there to exist firms that are not 100 percent

outside equity financed.17

In the following, we provide a model-based motivation of our main empirical exercises.

4.1.3 Theoretical foundation for an empirical identification strategy

According to the theory, the real equity price decreases in response to an entirely unanticipated

increase in the nominal interest rate. This happens due to a reduction in the resale option

value accompanied by a fall in turnover liquidity. In addition, as stated in Corollary 1, the

16Intuitively, the agency problem makes outside equity a relatively more costly source of financing than inside
equity, a suggested by the so-called pecking order theory (e.g., Myers and Majluf (1984)).

17Note that for any given set of parameters, including r > 0, one can always set εe high enough so that φse → φ
s

and r̂ → 0, yielding r > r̂.
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strength of the effect on the price depends on the turnover liquidity of the stock (as captured

by η ≡ αθ). This is because the component of the asset price associated with the expected

value of the resale option discussed above is increasing in the turnover of the asset.

The first order effect of unanticipated increases in the nominal rate reducing equity prices

has been widely studied empirically and would be implied by various other monetary transmis-

sion channels (e.g., the traditional interest-rate channel), based on which monetary policy can

affect investment also in other ways than through equity prices, as discussed in the Introduc-

tion. However, a distinguishing feature of our framework is that stocks with higher turnover

liquidity are predicted to exhibit stronger price responses to monetary policy. This prediction

has been studied in depth by Lagos and Zhang (2020b), and tested empirically using daily stock

return data on U.S. public firms. Stock turnover can thus be considered as a measure of firms’

stock price exposure to monetary policy shocks. We will identify and estimate the q-monetary

transmission channel, isolating it from other transmission channels, by focusing exclusively on

this cross-sectional, between-firm variation in outcomes as predicted by stock turnover. In the

following, we lay out how.

Our empirical approach relies on studying how firms’ investment choices are explained, first

and foremost, by variation in nominal interest rates across time and in stock turnover across

firms. As the empirical counterparts of unanticipated changes in the nominal interest rate,

we will consider identified monetary policy shocks, as discussed in Section 5.1 below. As for

cross-sectional variation, in order to first fix ideas, we will think of explicit heterogeneity across

firms generated only by their idiosyncratic ω’s drawn from Ω(ω), and by differences across

firms i in ηi ≡ αiθi.18 We think of these differences in ηi being driven mainly by firm-specific

characteristics that are unrelated to other exogenous features and parameters of the firm, such

as the distribution Ω(ω), or the firms’ productivity in operating capital z. Below, we discuss

concerns that may be raised if this is not the case and the cross-sectional variation in ηi was

related to other firm-specific characteristics. A firm’s optimal choices in the theoretical model

can still naturally depend, either directly or indirectly, on its individual ηi. Since cross-sectional

variation in ηi translates directly into variation in observed turnover rates T i ≡ 2αiG(εi∗)

through εi∗, we will proxy for ηi in the data using observed stock turnover rates as discussed

18As in Lagos and Zhang (2020b), the theoretical model can be generalized to include multiple types of stocks
with different characteristics. For each stock type, corresponding versions of (14) and (15) will still determine
εi∗ and the market stock price φs,i. We think of these different types of stocks capturing firms with different
stock η’s.
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in Section 5.1 below.19

In the following discussion, for brevity, we focus on firms’ stock prices and investment rates

as the main outcomes of interest, although our model also has predictions for equity issuance

rates and we study these in our empirical exercises. As stated above, our main empirical

exercises employ variation in nominal interest rates across time and in stock turnover across

firms. In order to notationally emphasize these sources of empirical variation, we introduce the

sub- and superscripts on rt and ηi in the following. To make our theoretical results operational,

we use the results from Proposition 2, specified to stocks heterogeneous in ηi, and define the

following objects:

φs(rt, η
i) ≡ β

[
ε̄+R(rt, η

i)
]
z

where R(rt, η
i) ≡ ηi

∫ ε∗(rt,ηi)

εL

(
ε∗(rt, η

i)− ε
)
dG(ε),

with R referring to the resale option value and ε∗(rt, η
i) defined as the unique ε∗ ∈ (εL, εH)

that solves

ηi
∫ εH

ε∗

ε− ε∗

ε∗
dG(ε) = rt

Following Proposition 2 and our discussion above on the empirically relevant parameter as-

sumptions, let us also use the changes of variables `(φ) ≡ log(ι(φ)) and ĉ(`) ≡ c(exp(`)) and

define:

X∗(rt, η
i) ≡ Ω[ĉ(`(φs(rt, η

i)))]`(φs(rt, η
i))) +

∫ ĉ(`(φse))

ĉ(`(φs(rt,ηi)))
ĉ−1(ω)dΩ(ω)

+{1− Ω[ĉ(`(φse))]}`(φse)

The objects φs(rt, η
i) and X∗(rt, η

i) are simply the real equity price and average log investment

rate of firms with αiθi = ηi, conditional on the nominal interest rate rt. We focus on the

average investment rate because our baseline empirical approach employs variation in r and

η, not controlling for other firm-level covariates such as the liquid financial wealth level ω.

However, later we will also consider splitting firms based on an empirical proxy for ω, in which

case the corresponding object of interest is the average log investment rate conditional on ω

lying in some interval. We focus on the log investment rate since it will provide a better fit of

the data given the skewness in the firm-level investment rates, as discussed in Abel and Eberly

19To be precise, this is the case as long as αi and αiθi = ηi are not sufficiently negatively related in the
cross-section.
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(2002). We verify in robustness tests that all our empirical findings hold when using investment

rate levels as outcomes instead.

Our identification and estimation approach relies on assessing how the effects of exogenous

variations in nominal interest rates on firms’ outcomes are explained by their stock turnover.

That is, we will essentially be estimating the relevance of a “cross-term” in ηi and shocks to rt,

and we will let all first-order variation across time and firms be captured by time and firm fixed

effects.20 Because of this, we find it most helpful to organize the discussion of identification

and drawing a parallel between the theory and our reduced form empirical regressions using a

second order approximation of the functions φs and X∗ in (rt, η
i).

In what is to follow, we will use the notation ỹ ≡ y(r̃, η̃), ỹr ≡ ∂y
∂rt

(r̃, η̃) or ỹrη ≡ ∂y
∂rt∂ηi

(r̃, η̃)

to refer to any function y(rt, η
i) and its derivatives, evaluated at the reference point (r̃, η̃). In

the case of composite functions, such as X∗(rt, η
i) = X∗(φs(rt, η

i)), in order to elaborate upon

the channels of transmission, with a slight abuse of notation we also introduce terms along the

lines of X̃∗φs ≡
∂X∗

∂φs (φs(r̃, η̃)). When explicit distinction between total and partial derivatives

becomes necessary later on, we will use ỹr to denote the partial derivative of y with respect to

rt, and dy
drt

(r̃, η̃) for the total derivative.

Lemma 2 The second order Taylor approximations of φs(rt, η
i) and X∗(rt, η

i) around a ref-

erence point of (r̃, η̃) take the following forms:

φs(rt, η
i) ≈ dφs,t + f iφs + φ̃srη · rtηi (16)

X∗(rt, η
i) ≈ dX,t + f iX + X̃∗rη · rtηi (17)

where dφs,t and dX,t include constants and terms that vary only in rt, including the first order

effects φ̃sr · rt and X̃∗r · rt, respectively. f iφs and f iX include terms that vary only in ηi. The

20Because in the empirics of Section 5 and in the quantitative theoretical model of Section 6, firms live more
than one period and the data consists of a panel of firms, there will also be firm-level controls that vary across
time.
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relevant coefficients are given by:

φ̃srη = βzR̃rη < 0

X̃∗rη = X̃∗φs × φ̃srη + X̃∗φsφs × φ̃sη × φ̃sr
where

φ̃sr = βzR̃r < 0, φ̃sη = βzR̃η > 0

X̃∗r = X̃∗φs × φ̃sr
X̃∗φs = Ω[ĉ(`(φ̃s))]`′(φ̃s)

X̃∗φsφs = Ω′[ĉ(`(φ̃s))]ĉ′(`(φ̃s))[`′(φ̃s)]2 + Ω[ĉ(`(φ̃s))]`′′(φ̃s)

and R̃η > 0, R̃r < 0, and R̃rη < 0 are the derivatives of the resale option value at (r̃, η̃).

If Ω[ĉ(`(φ̃s))] > 0, then X̃∗φs > 0. If, in addition, `′′(φ̃s) ≥ 0, then X̃∗φsφs ≥ 0 and X̃∗rη < 0.

Lemma 2 formalizes how we view our reduced form empirical regressions of Section 5.2

through the lense of our model. We think of φ̃srη as a theoretical analogue for the empirical

regression coefficient on the interaction term between an identified shock in nominal rates rt

and a measure of firm i’s stock turnover just before the rate shock, when firms’ market-based

q is regressed on this interaction and a collection of time and firm fixed effects. Because in

our model the effective market purchase price for capital goods is constant across firms and

time, fluctuations in φs correspond to fluctuations in market-based average q. X̃∗rη is the

corresponding coefficient when the outcome variable of interest is the firm’s log investment

rate.

As per Corollary 1, φ̃srη < 0 means that firms with higher stock turnover experience a larger

drop in equity prices after exogenous nominal rate increases. This happens because higher stock

turnover, as captured by ηi, implies a larger resale option value component R of the stock price

φs, which falls more severely in response to a contractionary monetary shock (R̃rη < 0). Note

also that the first order “level effect” of an increase in rt that moves all stock prices down either

directly or through general equilibrium effects common to all firms is captured within the term

dφs,t, a theoretical analogue of a time fixed effect.

Equation (17) captures, through X̃∗rη, how exogenous changes in nominal rates affect the

investment of firms with different stock turnover differently. In our basic model of the q-

monetary transmission channel, the only way that changes in the nominal rate r (or in η) can
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affect investment is by changing the stock price φs. Because of this, the partial derivatives of

X∗ with respect to φs, denoted as X̃∗φs and X̃∗φsφs , play a central role in monetary transmission.

Note that X̃∗φs and X̃∗φsφs are the first and second order causal effects of market equity

prices φs on the average log investment rate X∗. The first order effect X̃∗φs , captures the fact

that in response to an increase in φs, the mass of entrepreneurs Ω[ĉ(`(φs))] = Ω[c(ι(φs))]

for whom ω < c(ι(φs)), all issue equity and invest at rate ι(φs), or `(φs) in logs. When φs

increases, each of them increases their log investment by `′(φs). Whenever `′(φs) > 0 and

Ω[c(ι(φs))] > 0, meaning that there exists a non-zero mass of entrepreneurs issuing equity, we

have that X̃∗φs > 0. The second order effect X̃∗φsφs consists of two components. First, a higher

φs increases the log optimal investment rate following the outside investors’ marginal valuation,

`(φs), by `′(φs). This increases the financial wealth cutoff ĉ(`(φs)) = c(ι(φs)) below which all

entrepreneurs issue equity, in turn generating an extensive margin effect by increasing the mass

of entrepreneurs Ω[ĉ(ι(φs))] who invest at `(φs). All these entrepreneurs respond to increases

in φs by `′(φs). These effects constitute the term Ω′[ĉ(`(φ̃s))]ĉ′(`(φ̃s))[`′(φ̃s)]2 ≥ 0. The second

term, Ω[ĉ(`(φ̃s))]`′′(φ̃s), appears whenever equity issuing entrepreneurs’ log investment `(φs)

is nonlinear in φs. As soon as `′′(φ̃s) ≥ 0, we have that Ω[ĉ(`(φ̃s))]`′′(φ̃s) ≥ 0 and necessarily

X̃∗φsφs ≥ 0.

To unpack the heterogeneous effects of monetary transmission to firms’ investment, let us

decompose the contents of X̃∗rη in parts. First, following the above discussion, the component

X̃∗φs×φ̃srη ≤ 0 captures the fact that stocks with higher turnover experience a larger drop in price

when r increases (φ̃srη < 0). And this drop in equity prices has a first order effect decreasing

average log investment (X̃∗φs ≥ 0). These effects are strictly different from zero whenever there is

a non-zero mass Ω[c(ι(φs))] > 0 of firms issuing equity. The second component, X̃∗φsφs×φ̃sη×φ̃sr,
can be easiest explained by the fact that a higher η in the cross-section implies a higher stock

price φs, by φ̃sη > 0. For reasons discussed above, e.g. due to a changing mass of equity issuing

firms, the marginal effect of changes in the stock price φs on X∗ can itself depend on the level

of φs, as captured by X̃∗φsφs . So when there is an increase in r that decreases stock prices by

φ̃sr < 0, the resulting effect on the investment of firms with higher η is stronger by X̃∗φsφs × φ̃sη.
Again, as soon as, `′′(φ̃s) ≥ 0, we have that necessarily, X̃∗φsφs × φ̃sη × φ̃sr ≤ 0.

Our model thus predicts that whenever there is a non-zero mass of firms issuing equity and

the log investment policy function log(φs) is not (“too”) concave, we have that X̃∗rη < 0 and the

investment of firms with higher stock turnover drops relatively more in response to increases
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in the nominal interest rate. This happens because of their stock prices being relatively more

responsive to the interest rate, and their higher stock prices making their investment more

responsive to any given stock price changes.

Finally, note that for market equity prices (and monetary policy) to have an effect on

firms’ investment in our basic model, it must be the case that there exist firms who use equity

financing for investment at the margin. Given our empirically relevant parameter assumption

that entrepreneurs value investment relatively more than the average outside investor, this

means that there must exist firms with sufficiently low financial wealth available for purchasing

capital. If all firms in a (sub)sample with liquid financial wealth distribution Ω(ω) had so much

wealth that, at the margin, none of them were issuing equity, i.e. Ω[ĉ(`(φ̃s))] = Ω′[ĉ(`(φ̃s))] = 0,

then by Lemma 2, X̃∗rη = 0 since nominal rates have no effects on investment whatsoever. On

the contrary, if one were able to focus on a (sub)sample of firms with a low level of financial

wealth Ω(ω), then for these firms, the implications for heterogeneous monetary transmission

become considerably more clear-cut. This becomes most evident in the following Corollary for

an especially low financial wealth distribution.

Corollary 3 If Ω[c(ι(φ̃s))] = 1 and `′′(φ̃s) = 0, then the cross-term coefficient in approxima-

tion (17) is X̃∗rη = X̃∗φs × φ̃srη, with X̃∗φs = `′(φ̃s).

Corollary 3 motivates our focus on splitting firms into subsamples based on their relative

liquid financial wealth in the empirical work of Section 5 below. Although the Corollary’s

assumption of Ω[c(ι(φ̃s))] = 1, meaning all considered firms rely on external equity issuances

due to low financial liquidity is extreme, it is an insightful limiting case for informing our

empirical approach for two reasons.

First, the fact that the coefficient X̃∗rη equals exactly X̃∗φs×φ̃srη, means that by first estimating

φ̃srη from the empirical equivalent of (16), the ratio X̃∗rη/φ̃
s
rη would exactly identify the first order

causal effect of equity prices on log investment, X̃∗φs . Based on basic two stage instrumental

variables regression logic, this observation is the motivation for our IV regressions of Section

5.3, where firms’ log investment rates are projected onto market-based measures of average

q, instrumented with an empirical equivalent of rtη
i. The empirical equivalent of (16) will

constitute the first stage of this IV approach, and the focus on cross-sectional variation is

ensured by the inclusion of time fixed effects throughout.

The second reason for why focusing on firms with relatively low liquid financial wealth can
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be useful in empirical work, is that by maximizing the fraction of firms that rely on equity

financing Ω[ĉ(`(φs))] = Ω[c(ι(φs))] in a given subsample, we are increasing the first order

causal effect of stock prices on the average log investment rate, i.e. X̃∗φs = Ω[ĉ(`(φ̃s))]ι′(φ̃s),

and thus increasing the likelihood of finding statistically and economically significant estimates.

Moreover, Ω[ĉ(`(φ̃s))]→ 1 should also imply that the estimated effect of stock prices on average

log investment rates in the subsample approximates the effect stock prices on log investment

conditional on issuing equity, X̃∗φs → `′(φ̃s).

4.1.4 Identifying q-monetary transmission in the presence of a traditional interest-
rate channel

A fundamental part of the q-monetary transmission channel is the causal effect of stock prices on

firms’ investment. While the cross-sectional heterogeneity in investment responses to exogenous

nominal rate changes, X̃∗rη, is informative of these effects denoted by X̃∗φs and X̃∗φsφs , it might

not be immediately obvious why one should necessarily focus on this cross-sectional variation.

In our basic model which features only the q-monetary transmission channel, it would be enough

to just use identified monetary policy shocks to identify and estimate the first-order effects of

r on φs and on X∗, captured by φ̃sr and X̃∗r = X̃∗φs × φ̃sr. The ratio X̃∗r /φ̃
s
r, or a corresponding

IV coefficient, would then provide an estimate of the first order causal effect of stock prices on

investment, X̃∗φs .

However, such an approach relying on first order “level effects” of monetary shocks will not

suffice to identify or measure the q-channel as soon as there are other transmission channels

through which nominal rate changes can affect investment, potentially through intricate general

equilibrium effects. For example, by lowering demand for the firm’s production and decreasing

profits, a contractionary monetary shock can cause stock prices and investment to fall. But

it is not necessarily the case that investment falls because the stock price falls. Rather, both

are endogenous outcomes responding to a worsening of demand. Thus, by simply observing

the comovements of q and investment in the aftermath of monetary shocks, one cannot hope

to make any causal statements. We will illustrate these ideas by introducing into our basic

model a notion of the most common alternative in the monetary transmission literature – the

“traditional” interest-rate channel, based on which increases in nominal monetary policy rates

lead to increases in real interest rates.

In our basic model, the net real interest rate is pinned down by the agents’ linear utility
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functions and their time discount rate at 1
β − 1. In order to introduce a notion of exogenous

changes in the nominal policy rate affecting real rates, and to investigate how this would affect

our identification and estimation of the q-monetary transmission channel, we will assume that

the subjective time discount factor β, shared by all agents in the economy, is a decreasing

function of the nominal rate r, with β′(r) < 0.21 Thus, any exogenous increase in r will also

increase the effective real interest rate, and purely through higher discounting, have an effect

on both market equity prices and investment, with the causality not necessarily running from

the former to the latter. This becomes clear in the following analogue of Lemma 2.

Lemma 3 Suppose that β is a decreasing function of r, and define β̃ ≡ β(r̃), β̃r ≡ β′(r̃). The

second order Taylor approximations of φs(rt, η
i) and X∗(rt, η

i) around a reference point of (r̃, η̃)

take the following forms:

φs(rt, η
i) ≈ dφs,t + f iφs + φ̃srη · rtηi (18)

X∗(rt, η
i) ≈ dX,t + f iX + X̃∗rη · rtηi (19)

where dφs,t and dX,t include constants and terms that vary only in rt, including the first order

effects φ̃sr · rt and X̃∗r · rt, respectively. f iφs and f iX include terms that vary only in ηi. The

relevant coefficients are given by:

φ̃srη = [β̃R̃rη + β̃rR̃η]z < 0

X̃∗rη = X̃∗φs × φ̃srη + X̃∗φsφs × φ̃sη × φ̃sr
where

φ̃sr = [β̃R̃r + β̃r(ε̄+ R̃)]z < 0, φ̃sη = βzR̃η > 0, φ̃se,r = β̃rzεe < 0

X̃∗r = X̃∗φs × φ̃sr + X̃∗φse × φ̃
s
e,r

X̃∗φse = {1− Ω[ĉ(`(φ̃se))]}`′(φ̃se)

and R̃η > 0, R̃r < 0, and R̃rη < 0 are the derivatives of the resale option value at (r̃, η̃). The

functional forms of the partial derivatives X̃∗φs and X̃∗φsφs remain unchanged from Lemma 2.

If Ω[ĉ(`(φ̃s))] > 0, then X̃∗φs > 0. If, in addition, `′′(φ̃s) ≥ 0, then X̃∗φsφs ≥ 0 and X̃∗rη < 0. If

Ω[ĉ(`(φ̃se))] < 1, then X̃∗φse > 0.

21 Note that since β appears in the equilibrium conditions of our basic model with one-period-lived firms always
alongside capital productivity as the term βz, all of the insights in this section apply if monetary policy operated
through a “demand channel” with higher nominal rates decreasing the real average (and marginal) product of
capital.
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Several key differences between the terms in Lemmas 3 and 2 arise. First, when the nominal

rate r increases, naturally due to stronger discounting, market equity prices fall through the

effect of r on β, and not only due to the fall in the resale option value R. Moreover, because β

and R appear in the equity price φs in a multiplicative manner, there is an additional reason

why stocks with higher turnover experience a larger unit drop in real price, β̃rR̃η < 0. Thus,

both φ̃sr and φ̃srη are now more negative compared to the baseline case with β′(r) = 0. However,

the heterogeneity in semi-elasticities ∂ log(φs)
∂r explained by cross-sectional variation in ηi would

be identical in the two cases.

As for average log investment, note that it is still the case that X∗ does not directly depend

on r, η or β. However, it does depend on the entrepreneurs’ fundamental valuation of investment

φse, which is itself a function of β. If the real rate increases, i.e. β falls, entrepreneurs discount

the future more and value capital less (φ̃se,r < 0). As a result, unconstrained entrepreneurs

with ω > c(ι(φse)) want to reduce investment even though they do not finance themselves

with equity at the margin and thus do not care about equity prices (X̃∗φse ≥ 0). We view

this as the manifestation of a traditional interest-rate channel of monetary transmission in

our model. Most importantly, because of this force, whenever there exist unconstrained firms

(Ω[ĉ(`(φ̃se))] < 1), the first order effect of r on average investment, X̃∗r , is “contaminated” by

the term X̃∗φse × φ̃
s
e,r < 0 introduced by the traditional interest-rate channel. So even if one used

well-identified nominal interest rate shocks to estimate φ̃sr and X̃∗r , or ran an IV regression of X∗

on market-based q where the latter was instrumented with the monetary shocks, the resulting

coefficient ratio X̃∗r /φ̃
s
r = X̃∗φs +X̃∗φse× φ̃

s
e,r/φ̃

s
r no longer allows to claim identification of a causal

effect of stock prices on investment, X̃∗φs . It would capture both the effects of the q-monetary

and the traditional interest-rate channel, with the latter not operating through stock prices.

The benefits of employing investment response heterogeneity as explained by stock turnover

now become clear. Note that the functional forms of X̃∗rη, X̃
∗
φs , and X̃∗φsφs in Lemma 3 are

identical to those in Lemma 2. The key insight for why this happens is that the traditional

interest-rate channel effect of r on investment does not depend on η, and is “differenced out”

when comparing the investment responses between firms with different stock turnover. Al-

though it is the case that for reasons discussed above, equity price responses to r are larger and

more heterogeneous (φ̃sr and φ̃srη are more negative) in the presence of the interest-rate channel,

and this translates to a more negative X̃∗rη, firms with higher stock turnover exhibit stronger

investment responses to nominal rate changes still only due to a causal effect of equity prices on
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investment. And conditional on equity price responses, X̃∗rη is still equally informative about

the causal effects of equity prices on investment as in the absence of the real rate channel. Most

importantly, note that even if β′(r) < 0, Corollary 3 remains unchanged. And an estimate of

the ratio X̃∗rη/φ̃
s
rη, or an equivalent IV regression coefficient, among low-wealth firms would still

identify the first order causal effect of equity prices on investment, X̃∗φs .

4.1.5 Identifying q-monetary transmission with endogenous financial wealth

The above discussion has illustrated how cross-sectional variation in firms’ stock turnover can

be useful in the empirical identification of the q-monetary transmission channel and how it

can allow to “difference out” other transmission channels, such as the traditional interest-rate

channel. However, owing to the stylized nature of the model with one-period-lived firms, the

prior analysis has also relied on the implicit assumption that the cross-sectional variation in

stock turnover driven by η is unrelated to individual firm characteristics which could either

be exogenous themselves (e.g. productivity), or the result of firms’ choices made in the past

(e.g. financial wealth distributed as Ω(ω)). This would be a valid empirical assumption if stock

turnover at any point in time were assigned randomly across firms in the data. But as soon as

stock turnover is correlated with any firm characteristics which could affect firms’ investment

responsiveness to nominal rate changes for reasons other than the q-monetary transmission

channel, then our empirical estimates might be biased and would not provide a precise measure

of the channel or the causal effects of stock prices on investment.

In our basic model of q-monetary transmission, between-firm differences in η naturally lead

to heterogeneity in the levels of their equity prices φs. If firms live for more than one period, this

can affect their willingness to accumulate financial wealth ω, in turn influencing their exposure

to any future changes in stock prices caused by nominal rate movements. The following Lemma

shows that if the entrepreneurs’ distribution of liquid financial wealth ω is correlated with stock

turnover η in our basic model, the interpretation of our main estimate can change slightly, but

it still allows to provide a measure of the q-monetary transmission channel.

Lemma 4 Suppose that the financial wealth of entrepreneurs with turnover parameter η is

distributed according to the cumulative distribution function Ω(ω, η). The second order Taylor

approximation of X∗(rt, η
i) around a reference point of (r̃, η̃) takes the following form:

X∗(rt, η
i) ≈ dX,t + f iX +

d2X∗

drtdη
(r̃, η̃) · rtηi (20)
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where dX,t includes constants and terms that vary only in rt, including the first order effect

X̃∗r · rt. f iX includes terms that vary only in ηi. The relevant coefficient is given by:

d2X∗

drtdη
(r̃, η̃) = X̃∗φs × φ̃srη + (X̃∗ηφs + X̃∗φsφs × φ̃sη)× φ̃sr

where

X̃∗ηφs = Ωη[ĉ(`(φ̃s)), η̃]`′(φ̃s)

and Ωη(ω, η) ≡ ∂Ω
∂η (ω, η). The functional forms of the partial derivatives X̃∗r , X̃∗φs and X̃∗φsφs,

and the second order Taylor approximation of φs(rt, η
i), including the derivatives φ̃sr, φ̃

s
η, and

φ̃srη remain unchanged from Lemma 2.

The general way of how an increase in r can have heterogenous effects on the investment

of firms with different η is unchanged compared to the baseline model covered by Lemma

2: a higher η leads to stronger equity prices responses (φ̃srη < 0) to which investment then

responds (by X̃∗φs ≥ 0); and a higher η predicts different investment sensitivity to equity prices

(by X̃∗ηφs + X̃∗φsφs × φ̃sη) which fall in response to nominal rate increases (φ̃sr < 0). Now,

this second channel includes an additional reason for why a higher η predicts differences in

the responsiveness of average investment to equity prices: because the distribution Ω directly

depends on η, a change in η, all else equal, changes the mass of firms who issue equity and

invest at `(φs) at any given stock price (by Ωη[ĉ(`(φ̃s)), η̃]). So if there is a fall in φs caused

by a higher r, and each equity issuer decreases log investment by `′(φs) as a result, the average

log investment response is affected because of the direct effect of η on the mass of issuers. If

Ωη[ĉ(`(φ̃s)), η̃] ≥ 0, meaning that higher stock turnover is associated with lower liquid financial

wealth in the cross-section of firms, all else equal, then X̃∗ηφs ≥ 0 and the main coefficient of

interest on the cross-term rtη
i is more negative than in the baseline scenario.

Even though there is now an additional force that could potentially generate a (more)

negative coefficient on the cross-term rtη
i and make firms with higher stock turnover exhibit

more responsive investment rates to changes in r, it is still the case that this force appears

because stock prices have a causal effect on investment. Because of this, our basic model says

that estimates of stock turnover predicting stronger investment responsiveness should provide

proof of the q-monetary transmission channel even in cases when financial wealth positions are

correlated with stock turnover. Moreover, if we were able to focus on an extreme subsample

with such low liquid financial wealth that Ω[ĉ(`(φ̃s)), η̃] = 1 provides a valid approximation,

then this added extensive margin effect disappears, and Corollary 3 again remains unchanged.
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4.1.6 Identifying q-monetary transmission when other transmission channels are
correlated with η

The discussion in Section 4.1.5 illustrates how firms’ investment sensitivity to changes in the

nominal rate, as explained by cross-sectional variation in stock turnover, allows to identify and

assess the q-monetary transmission channel and the causal effects of equity prices on investment

even if stock turnover and financial wealth are correlated in the cross-section. Yet these insights

still rely on a model with only the q-monetary transmission channel being present and on the

key identifying assumption that cross-sectional variation in stock turnover is not related to any

reasons for investment to respond heterogeneously to changes in r, other than through equity

prices.

If stock turnover was truly assigned randomly immediately prior to the realization of mon-

etary shocks, the assumption for our approach identifying q-monetary transmission and the

causality of stock prices affecting investment would be satisfied. The fact that this is unlikely

to be the case in reality leads to potential concerns in the validity of a causal interpretation of

our estimates. The randomness of variation in stock turnover could be violated in either of two

main ways:

a) Certain firm characteristics cause their stocks to be traded relatively more or less. For

example, the stocks of bigger firms may provide a more liquid market and invite higher

trading activity, even relative to their potentially large market capitalizations.

b) For reasons not related to firm characteristics, stocks may experience heterogeneous trad-

ing activity. As suggested by the model, this can lead to differences in stock prices which

in turn can affect firm behavior, for example their financing or portfolio decisions.

Either of these scenarios can introduce covariance between certain firm characteristics and

stock turnover. If these characteristics are in turn predictive of firms’ responsiveness to mon-

etary policy shocks in their own right through other channels, as for example leverage could

be (Anderson and Cesa-Bianchi, 2020), then any heterogeneous behavior predicted by turnover

alone could instead be explained by reasons other than heterogeneous stock price changes,

violating the assumptions necessary for identification.

To formally illustrate how such concerns would materialize in our empirical approach, and

how we aim to alleviate them with additional controls in robustness analysis, suppose that
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there was another firm characteristic ϑ which affected the strength of the transmission of the

traditional interest-rate channel to each individual firm.22 That is, suppose that the discount

rate applied to firm i’s next period returns was β(r, ϑi), with βrϑ ≡ ∂2β
∂r∂ϑ 6= 0. Moreover, suppose

that in the cross-section of firms, ϑi and stock turnover ηi were correlated. To formalize this idea,

let us assume that firm i’s ϑi and stock turnover ηi are related through the function ϑi = ϑ(ηi).

Finally, suppose that we can observe a proxy for ϑi in the firm-level data. Part (i) of the

following Lemma shows how this scenario could compromise our basic empirical approach for

identifying q-monetary transmission and the causal effects of stock prices on investment. Part

(ii) shows how controlling for ϑi in empirical regressions can help in improving the identification.

Lemma 5 Suppose that β(r, ϑ) is a decreasing function of r and the effects of r on β depend

on a firm-specific characteristic ϑ. Suppose that ϑ is a function of the firm’s stock turnover η.

Define ϑ̃ ≡ ϑ(η̃), ϑ̃η ≡ ϑ′(η̃), β̃ ≡ β(r̃, ϑ̃), β̃r ≡ ∂β
∂r (r̃, ϑ̃), β̃ϑ ≡ ∂β

∂ϑ(r̃, ϑ̃), β̃rϑ ≡ ∂2β
∂r∂ϑ(r̃, ϑ̃), etc.

(i) The second order Taylor approximations of the composite functions φs(rt, η
i) and X∗(rt, η

i)

around a reference point of (r̃, η̃) take the following forms:

φs(rt, η
i) ≈ dφs,t + f iφs + φ̃srη · rtηi (21)

X∗(rt, η
i) ≈ dX,t + f iX + X̃∗rη · rtηi (22)

where dφs,t and dX,t include constants and terms that vary only in rt, including the first order

effects φ̃sr · rt and X̃∗r · rt, respectively. f iφs and f iX include terms that vary only in ηi. The

relevant coefficients are given by:

φ̃srη = {[β̃rϑ(ε̄+ R̃) + β̃ϑR̃r]ϑ̃η + β̃R̃rη + β̃rR̃η}z

X̃∗rη = X̃∗φs × φ̃srη + X̃∗φsφs × φ̃sη × φ̃sr + X̃∗φse × φ̃
s
e,rη + X̃∗φseφse × φ̃

s
e,η × φ̃se,r

where

φ̃sr = [β̃R̃r + β̃r(ε̄+ R̃)]z, φ̃sη = [β̃R̃η + β̃ϑϑ̃η(ε̄+ R̃)]z

φ̃se,r = β̃rzεe, φ̃se,η = β̃ϑϑ̃ηzεe, φ̃se,rη = β̃rϑϑ̃ηzεe

(ii) Treating ϑi as an explicit observable argument of all relevant functions, the second order

Taylor approximations of the functions φs(rt, η
i, ϑi) and X∗(rt, η

i, ϑi) around a reference point

22For brevity, we are currently illustrating these ideas by assuming a heterogeneous pass-through of nominal
rate changes to the effective discount rate applied to firms’ future payoffs. As pointed out in Footnote 21, in our
most basic model the analysis would be identical if nominal rate changes instead had heterogeneous effects on
firms’ effective productivity z, e.g. due to heterogeneous effects on firms’ demand dictated by ϑ.
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of (r̃, η̃, ϑ̃) take the following forms:

φs(rt, η
i, ϑi) ≈ dφs,t + f iφs + φ̃srη · rtηi + φ̃srϑ · rtϑi (23)

X∗(rt, η
i, ϑi) ≈ dX,t + f iX + X̃∗rη · rtηi + X̃∗rϑ · rtϑi (24)

where dφs,t and dX,t include constants and terms that vary only in rt, including the first order

effects φ̃sr · rt and X̃∗r · rt, respectively. f iφs and f iX include terms that vary only across firms i,

including terms in ηi, ϑi, and ηiϑi. The relevant coefficients are given by:

φ̃srη = {β̃R̃rη + β̃rR̃η}z

φ̃srϑ = {β̃rϑ(ε̄+ R̃) + β̃ϑR̃r}z

X̃∗rη = X̃∗φs × φ̃srη + X̃∗φsφs × φ̃sη × φ̃sr
X̃∗rϑ = X̃∗φs × φ̃srϑ + X̃∗φsφs × φ̃sϑ × φ̃sr + X̃∗φse × φ̃

s
e,rϑ + X̃∗φseφse × φ̃

s
e,ϑ × φ̃se,r

where

φ̃sr = [β̃R̃r + β̃r(ε̄+ R̃)]z, φ̃sη = β̃R̃ηz, φ̃sϑ = β̃ϑ(ε̄+ R̃)z

φ̃se,r = β̃rzεe, φ̃se,ϑ = β̃ϑzεe, φ̃se,rϑ = β̃rϑzεe

In both parts (i) and (ii) above, X̃∗φseφse and X̃∗r take the functional forms:

X̃∗φseφse = −Ω′[ĉ(`(φ̃se))]ĉ
′(`(φ̃se))[`

′(φ̃se)]
2 + {1− Ω[c(`(φ̃se))]}`′′(φ̃se)

X̃∗r = X̃∗φs × φ̃sr + X̃∗φse × φ̃
s
e,r

R̃η > 0, R̃r < 0, and R̃rη < 0 are the derivatives of the resale option value at (r̃, η̃). And

the functional forms of the partial derivatives X̃∗φs, X̃
∗
φsφs, and X̃∗φse remain unchanged from

Lemmas 2 and 3.

Part (i) of Lemma 5 shows that if one does not control for monetary transmission operating

through other channels in a manner correlated with ϑi (and thus with ηi), then any observed

response heterogeneity predicted by stock turnover (as captured by φ̃srη) could reflect these

other channels instead of q-monetary transmission. For example, if it was the case that β̃rϑ < 0

and ϑ̃η > 0, then firms with higher stock turnover would exhibit more responsive equity prices

because they have a higher ϑi. And this in turn implies a stronger pass-through of the traditional

interest-rate channel to their equity prices. Also in this case, the valuation of investment by

entrepreneurs whose equity has a higher turnover falls relatively more in response to nominal
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rate increases (φ̃e,rϑ < 0). This makes the average log investment rate of entrepreneurs with

higher stock turnover fall relatively more for reasons completely unrelated to equity prices

or issuance. The unconstrained high-η (and high-ϑ) entrepreneurs would simply be reducing

investment due to the stronger impact of the traditional interest-rate channel on their effective

discount rate, even though they are not using equity issuance to finance investment.

Part (ii) of Lemma 5 illustrates the basic regression logic that if we could observe proxies

for ϑi in the data, we can add controls rtϑ
i to capture the ways that ϑi predicts response

heterogeneity through channels other than q-monetary transmission. The functional forms in

part (ii) show that after doing this, the main coefficients of interest, φ̃srη and X̃∗rη, on the

rtη
i-interaction have exactly the form as in Lemma 3, thus allowing to identify q-monetary

transmission and the causal effects of equity prices on investment.

Motivated by the existing literature on heterogeneous monetary transmission to firms’ in-

vestment and our discussion above on why stock turnover is likely correlated with other firm-

level covariates because a) turnover is affected by other firm characteristics, and b) exogenous

variation in turnover affects firms’ portfolio and financing decisions, we include firm size and

age (point a) and leverage and liquid asset holdings (point b) as the empirical counterparts of

ϑi in the robustness analysis of our regressions.

In the following Section, we will take our predictions and the empirical approach motivated

by our theoretical model to the data. We will first investigate whether firms with different stock

turnover exhibit heterogeneous responsiveness to monetary shocks both in q and in their equity

issuance and investment behavior. We do so by estimating ‘reduced form’ OLS regressions that

are the dynamic empirical analogues of equations (16) and (17), providing estimates of the

coefficients φ̃srη and X̃∗rη. The corresponding OLS regression for q will also serve to illustrate

the first stage of our IV approach. Having established whether and when firms with higher

turnover exhibit differential equity issuance and investment responses to identified monetary

shocks, we move to IV regressions which, based on the discussion above, provide an assessment

of the causal effects of equity prices on firms’ issuances and investment.
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5 Empirical analysis

5.1 Data

Our empirical baseline uses firm-level measures of Tobin’s q, equity issuances, and investment

rates, financial-market data on trade volume for individual firms’ stocks, and a short-term

nominal interest rate proxy for the monetary policy rate.

Our sample consists of the Compustat universe of publicly listed U.S. incorporated non-

financial firms, and covers the period 1990Q1–2016Q4.23 For each individual common stock

from the Center for Research in Security Prices (CRSP), we construct the daily turnover rate

as the ratio of daily trade volume (total number of shares traded) to the number of outstanding

shares. We average the daily turnover rate into a quarterly turnover series for firm i in quarter

t (denoted xit), and merge it with the corresponding firm-level quarterly data from Compustat.

The key objects of interest from Compustat are: investment rates, equity issuances, and

Tobin’s q. We compute Tobin’s q as the book value of total assets (VBA ) plus the market value

of common equity (VME ) minus the book value of common equity (VBE ), scaled by the book

value of total assets, i.e., q = 1 + (VME − VBE )/VBA .24 Our measure of (net) equity issuances for

firm i in quarter t (denoted Eit), consists of the equity sales minus equity purchases reported in

Compustat. We normalize these quarterly net issuances by the total balance sheet size of firm i

at the beginning of quarter t (denoted Bi
t).

25 For investment of firm i in quarter t (denoted Iit)

we use capital expenditures reported by Compustat. We normalize this measure of investment

for firm i in quarter t with Compustat’s net property, plant, and equipment at the beginning of

the quarter (denoted Ki
t). In robustness analysis, we also employ measures of firms’ size, age,

leverage, and liquidity ratios as additional controls.26

As a proxy for the nominal policy rate we use the tick-by-tick nominal interest rate implied

by the 3-month ahead fed funds futures contract with nearest maturity after each regular

monetary-policy announcement of the Federal Open Market Committee (FOMC). The use of a

23Since our regression specifications include simple firm fixed effects in a dynamic panel setting, we only include
firms that are in the dataset for at least 40 consecutive quarters during the sample period.

24This is the definition of average q in Kaplan and Zingales (1997), except that as in Baker et al. (2003) and
Cloyne et al. (2018), we do not subtract deferred taxes from the numerator (due to many missing values in our
data). We follow Eberly et al. (2012) and use the natural logarithm of q in our regressions. This provides a
better fit given the skewness in the firm-level data, as discussed in Abel and Eberly (2002).

25We measure the “beginning of quarter t” values of firms’ stock variables with the values reported in Com-
pustat as of the end of quarter t− 1.

26To construct a measure of firm age, we follow the approach of Cloyne et al. (2018) and use data from Thomson
Reuters’ WorldScope database to infer time since the firm’s incorporation.
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futures rate allows us to focus on the unanticipated component of the interest rate change on

FOMC policy announcements dates, which we regard as monetary-policy shocks.27

In order to identify the impact of these monetary shocks, we follow the event-study method-

ology that consists of estimating the changes that occur in a 30-minute window around the time

of the FOMC announcement.28 The identification assumption is that in such a narrow window

around the press release, futures rates are not affected by variables or news other than the

FOMC announcement. We consider alternative shock series in our robustness analysis.29

Since the firm-level data from Compustat is quarterly, we sum up the high-frequency changes

in the federal funds futures rate by quarter to arrive at a quarterly series of monetary policy

shocks for quarter t (denoted εmt ). We interpret a positive value of εmt as a contractionary

monetary shock, i.e., an unexpected policy-induced increase in the nominal interest rate.30

5.2 Results from reduced-form regressions

Our empirical analysis builds on local projections in the spirit of Jordà (2005), applied in a

panel setting. As mentioned, we first estimate what we refer to as ‘reduced form’ specifications.

The main goal of these regressions is to verify whether in our sample, firms with different

stock turnover, as measured prior to monetary policy shocks, exhibit differential responses in q,

27The importance of focusing on the unanticipated component of policy announcements in order to identify
the response of asset prices to monetary policy was originally pointed out by Kuttner (2001) and has been
emphasized by the literature since then, e.g., Bernanke and Kuttner (2005) and Rigobon and Sack (2004).

28In the context of monetary policy, the event-study approach was originally used by Cook and Hahn (1989),
and has been followed by a large number of papers, e.g., Bernanke and Kuttner (2005), Cochrane and Piazzesi
(2002), Kuttner (2001), and Thorbecke (1997). Most recent applications follow Gürkaynak et al. (2005), who
use time windows consisting of only a few minutes before and after the announcement (rather than consisting of
the whole announcement day, as was common in earlier work).

29High-frequency movements in federal funds futures rates may encode additional information about the con-
duct of monetary policy, such as the implicit revelation of the monetary authority’s information about economic
fundamentals imperfectly observed by the private sector. See, for example, Nakamura and Steinsson (2018),
Miranda-Agrippino and Ricco (2019), and Jarociński and Karadi (2020). To contemplate this possibility, we
also carry out our main estimations with a proxy for the monetary shock computed using the method proposed
by Jarociński and Karadi (2020). Their approach employs a structural vector autoregression that uses high-
frequency changes in federal funds futures rates alongside sign restrictions imposing that conventional monetary
policy shocks generate opposite-signed surprises in futures rates and returns in the S&P500 index. The idea
is that this sign restriction would purge the proxy series from informational components that generate positive
high-frequency comovement between interest rates and stock returns.

30To construct the various measures of εmt we use the dataset used by Jarociński and Karadi (2020), which is
in turn based on an updated version of the dataset used by Gürkaynak et al. (2005). Since εmt is possibly a noisy
measure of the true monetary shocks, it should be used as an instrument in IV regressions (see, e.g., Stock and
Watson (2018)). In our reduced-form specifications (Section 5.2) we treat εmt as if it were an accurate measure of
the true monetary shocks. In our main empirical IV specifications (Section 5.3), we instead use εmt to construct
an instrument for changes in stock prices.
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equity issuances, and investment.31 Given that in our theoretical model of the turnover channel,

stock prices affect investment because firms adjust their equity issuances to fluctuations in the

former, we also analyze equity issuances to test whether there is evidence of such “market

timing” behavior (Baker and Wurgler, 2002). As our baseline, we estimate panel regression

specifications of the following form on our full sample of firm-level data:

yit+h = f ih + ds,h,t+h + ρhy
i
t−1 + βhT it−1 + γhT it−1ε

m
t + uih,t+h (25)

h = 0, 1, . . . ,H denotes the horizon at which the shock impact effects are being estimated. yit

refers to firm i’s outcome variable of interest in quarter t. Based on the notation introduced

above, yit is one of log(qit), e
i
t/b

i
t, or log(xit/k

i
t).

f ih denotes firm i’s fixed effect in the projection at horizon h. ds,h,t+h is shorthand for

industry-quarter dummies at the SIC 2-digit level, given the h-quarter projection horizon and

the outcome variable being measured in period t+h. εmt is a measure of the quarterly monetary

policy shock as discussed above. uih,t+h is the error term in the projection of the outcome variable

in period t + h, given the h-quarter projection horizon. ρh, βh, γh are regression coefficients.

The main object of interest is the estimate for γh which captures any heterogeneity in shock

responsiveness predicted by stock turnover.

We lag firm controls to ensure they are unaffected by the realization of εmt and can be

thought of as measures of shock-exposure. As long as there is persistence in stock turnover

from one quarter to another, the turnover measured in t− 1 proxies for turnover immediately

before the FOMC announcement in quarter t. As discussed above, our focus is on cross-

sectional differences in how firms’ stock turnover predicts their responsiveness to monetary

policy shocks. Including a detailed industry-time dummy ds,h,t+h allows for a flexible way to

isolate this cross-sectional variation. Thus, the identification of the mechanism of interest is

driven by within-industry between-firm variation across time.

We multiply all the yit considered by 100 for convenience, so the coefficients for changes in q

and investment ratio can be interpreted in percentage terms and the issuance ratio in percentage

points. We standardize the turnover measure T it by the standard deviation of turnover in the

cross-section of firms, averaged across time over our sample. And we standardize the monetary

shock measures εmt by their standard deviation between 1990Q1–2016Q4 of approximately 9.66

bp, as measured by changes in federal funds futures rates.

31In doing so, we are also providing a test for whether the main empirical findings of Lagos and Zhang (2020b)
hold when measuring equity valuations based on q at a quarterly frequency, instead of using daily stock returns.
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Figure 1 presents the point estimates and 95% confidence intervals for γh given the three

outcome variables of interest. As one would expect based on financial markets incorporating

the FOMC announcements virtually immediately, the heterogeneity in stock price responses

predicted by turnover is strongest in the quarter of the monetary policy shock. The point

estimate of approximately -0.5 says that an increase in stock turnover by 1 sd predicts a 0.5%

stronger contraction in the firm’s q in the quarter of a 1 sd contractionary monetary policy

shock.32 And the predicted differences between stock prices persist for about up to a year after

the shock.

Heterogeneity in the responsiveness of equity issuances predicted by stock turnover appears

about three quarters after the shock. Yet the estimated heterogeneity is just marginally sta-

tistically insignificant at the 95% confidence level. In terms of quantitative magnitudes, the

coefficient of approximately -0.03 implies that a 1 sd increase in stock turnover predicts a 0.03

pp larger drop in net equity issuances relative to book assets three quarters after a 1 sd con-

tractionary monetary shock. The negative predictive effect of turnover for quarterly issuances

in the full sample of firm-quarters appears to be persistent and yields statistically significant

estimates 7 and 10 quarters after the shock. Finally, the estimates in the last panel of Figure 1

indicate that firms with higher stock turnover do exhibit relatively lower investment rates after

contractionary monetary shocks. The differences are statistically significant in the first and

third quarter after the shock, with a 1sd increase in stock turnover predicting an approximately

1% larger drop in investment rates after a 1 sd contractionary monetary shock.

The theoretical model presented above provides a stark prediction about which firms’ choices

should be affected by the q-monetary transmission mechanism. Firms which have few liquid

resources available, relative to their size, are more likely to rely on external equity financing and

expose themselves to fluctuations in stock prices. Firms that do not issue equity are isolated

from these fluctuations. So even though among such firms stock prices respond to monetary

policy shocks, and more so for those with high turnover, their choices of equity issuance and

investment are unaffected by this. And therefore, no heterogeneous responses of issuances and

investment conditional on turnover should be observed.

To test the empirical validity of these predictions and allow for differences in the strength of

the q-channel across groups of firms, we define the indicator IiL,t which equals 1 if firm i belongs

in the bottom half of the liquidity ratio distribution of the cross-section of firms in quarter t,

32More precisely, given specification (25), a negative γh only allows to infer a drop in q relative to other firms.
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Figure 1: Heterogeneity in responses to monetary policy shock conditional on stock turnover
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Notes: Point estimates and 95% confidence intervals for γh from estimating specification (25). Confidence

intervals constructed based on two-way clustered standard errors at firm and SIC 3-digit industry-quarter levels.

and 0 otherwise. We define the liquidity ratio for firm i in quarter t as the ratio of Compustat

reported cash and short-term investments to i’s total assets in t, meant to capture the holdings

of various assets that firms use to manage their liquidity and financial savings. And we estimate

the following specification:

yit+h =f ih + ds,h,t+h + αhIiL,t−1 +
(
ρh + ρ̃hIiL,t−1

)
yit−1

+
(
βh + β̃hIiL,t−1

)
T it−1 +

(
γh + γ̃hIiL,t−1

)
Ti,t−1ε

m
t + uih,t+h (26)

In this case, γh measures the predictive power of turnover heterogeneity for firms with high

liquidity ratios prior to the shock, and γh + γ̃h for those with low liquidity ratios. Figure 2

presents the point estimates and 95% confidence intervals for γh and γh+γ̃h from the estimation

of (26) for the three outcome variables of interest.

The first panel in Figure 2 indicates that the predictive power of turnover heterogeneity

for stock price responses is similar across the two liquidity ratio groups. As predicted by the

model, the turnover-liquidity channel is operative for all stocks, with the high-turnover ones

responding relatively more in the quarter of a monetary shock, independently of the firms’

liquid asset positions. The point estimates for γ0 are close to the estimates of the full sample

of firms in specification (25). While the differences in stock prices persist for about a year after

the shock, the statistical significance of the estimates for the high liquidity group in quarters

after the shock is weakened slightly.

The middle panel of Figure 2 shows that the relation between turnover and equity issuance
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Figure 2: Heterogeneity in responses to monetary policy shock conditional on stock turnover,
across liquidity ratio groups

0 2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

Quarters (h)

γ h
, γ

h
+

γ~ h

●

●

●

●

●

●
●

●

● ●

●

●

●

●

high liq
low liq

(a) yit = log(qit)

0 2 4 6 8 10 12−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05

Quarters (h)

γ h
, γ

h
+

γ~ h

●

●

●

●
●

● ●

●

●
●

●

●

●

●

high liq
low liq

(b) yit = eit/b
i
t

0 2 4 6 8 10 12

−
2

−
1

0
1

Quarters (h)

γ h
, γ

h
+

γ~ h

●

●

●

●

●

●

●

●

●

●

●

●

●

●

high liq
low liq

(c) yit = log(xit/k
i
t)

Notes: Point estimates and 95% confidence intervals for γh and γh + γ̃h from estimating specification (26).

Confidence intervals constructed based on two-way clustered standard errors at firm and SIC 3-digit

industry-quarter levels.

responses to monetary policy shocks during the first two years is driven by firms with low

liquid asset holdings. Among firms with below-median liquidity ratios prior to the shock, higher

stock turnover predicts significantly stronger contractions in equity issuance both in the shock

impact quarter and two and three quarters after a contractionary shock. Among such firms, an

increase of 1 sd in turnover predicts an approximately 0.05 pp larger decrease in equity issuances,

measured as a fraction of total assets, both immediately and two and three quarters after a 1 sd

contractionary monetary shock. Also, among firms with high liquidity ratios, higher turnover

predicts lower equity issuances in the aftermath of policy rate increases, although this relation

is weaker over the two-year horizon, and becomes more pronounced at longer horizons. The

extended version of our model with long-lived firms below provides a potential rationale for why

firms with high liquidity ratios at the time of the shock may respond with a considerable delay.

This happens whenever they draw down their liquid assets and engage in equity financing in

subsequent quarters, while the effects of the shock on stock prices have not yet dissipated. Also,

this empirical finding is not robust in our IV regressions when controlling for other firm-level

covariates.

Finally, the estimates in the last panel of Figure 2 indicate that among firms with below

median liquid asset holdings, those with higher turnover exhibit relatively lower investment

rates after a contractionary monetary policy shock. For these firms, a 1 sd higher stock turnover
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predicts approximately 1.4% lower investment rates, three quarters after a 1 sd contractionary

monetary policy shock. As for equity issuances, the differences in investment rate responses

predicted by turnover are persistent, with higher turnover predicting statistical differences in

investment responses up to six quarters after a monetary shock. Yet among firms with high

liquidity ratios, heterogeneity in stock turnover does not predict any differential responses in

investment, apart from a marginally significant effect 3 quarters after the shock.

5.3 Results from IV regressions

We now turn to our main exercise of interest. We combine the cross-sectional heterogeneity in

the monetary shock responses of Tobin’s q, equity issuances and investment explained by stock

turnover into an instrumental variables specification, in order to evaluate the effects of stock

price fluctuations on equity issuances and investment. To do so, we construct the analogue of

specification (25) by replacing the interaction term between turnover and the monetary shock

T iεm with the firm’s measure of q, which is then instrumented with the T iεm-term.

As suggested by the OLS estimates for the reduced form specification, the heterogeneity in

the monetary shock responses of q, equity issuances, and investment as explained by turnover

heterogeneity can materialize at different horizons. Because of this, we consider allowing for the

possibility that the variation in q instrumented by turnover and the monetary shock in period

t is measured in period t+ hq, and the predicted effects on issuances and investment measured

in period t+h, with 0 ≤ hq ≤ h. For example, if the effect of a monetary shock on stock prices

required 1 quarter to fully materialize, yet the effects of stock price fluctuations on investment

take 3 quarters to transmit, the main interest would be to study how heterogeneous variation

in q in period t + 1 explains investment in t + 4 after a monetary policy shock in t. However,

given that the heterogeneity in stock prices appears strongest in the impact quarter, as seen in

Figures 1a and 2a, we focus the main estimations below on the case of hq = 0.

Our baseline instrumental variable specification is as follows:

yit+h = f ih + ds,h,t+h + ρhy
i
t−1 + βhT it−1 + γh,hq log

(
qit+hq

)
+ uih,t+h (27)

where log
(
qit+hq

)
is instrumented with Ti,t−1ε

m
t , and 0 ≤ hq ≤ h for some hq, with h =

0, 1, . . . ,H.

Figure 3 depicts the point estimates and 95% confidence intervals for γh,hq from the es-

timation of (27) with 2SLS, given hq = 0, for equity issuances and investment as dependent
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variables. The IV estimates are in line with what one would expect based on the reduced

form OLS results in Section 5.2. The cross-sectional variation in q instrumented with turnover-

based monetary shock exposure predicts higher equity issuances after increases in q caused by

monetary shocks. Or, in light of the identification assumptions and formalization discussed in

Section 4.1, this suggests that firms’ equity issuances respond positively to exogenous increases

in Tobin’s q. The point estimates, although just barely statistically insignificant, indicate that

a 1% increase in q leads to an approximately 0.02 pp increase in equity issuances relative to

total assets three quarters later. The instrumented variation in q predicts statistically signifi-

cantly higher issuances 7 and 10 quarters later, although these estimates are not robust to all

specifications. As expected based on the reduced form estimates, cross-sectional variation in q

instrumented with monetary shocks and stock turnover does predict slightly higher investment

in the sample of all firm-quarters, with estimates being statistically significant in the impact

quarter and three quarters after.

Figure 3: Issuances and investment predicted by instrumented q
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Notes: Point estimates and 95% confidence intervals for γh,hq from estimating specification (27). Vertical red

dashed line marks the value of hq = 0. Confidence intervals constructed based on two-way clustered standard

errors at firm and SIC 3-digit industry-quarter levels.

Following the predictions of our model and the evidence presented in Section 5.2, we finally

turn to estimating the IV specification by allowing for differences in coefficient estimates for
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firms with high versus low liquid asset holdings. Employing the indicator IiL,t of having a

below-median liquidity ratio in t, defined in Section 5.2, we consider the following specification:

yit+h =f ih + ds,h,t+h + αhIiL,t−1 +
(
ρh + ρ̃hIiL,t−1

)
yit−1

+
(
βh + β̃hIiL,t−1

)
T it−1 +

(
γh,hq + γ̃h,hqIiL,t−1

)
log
(
qit+hq

)
+ uih,t+h (28)

where the vector
[
log
(
qit+hq

)
, IiL,t−1 log

(
qit+hq

)]
is instrumented with

[
T it−1ε

m
t , IiL,t−1T it−1ε

m
t

]
.

Figure 4 presents the point estimates and 95% confidence intervals for γh,hq and γh,hq + γ̃h,hq

from the estimation of (28) given hq = 0, for equity issuances and investment as dependent

variables. Again, the IV estimates confirm the findings from the reduced form regressions.

Among firms with low liquid asset holdings, the cross-sectional variation in q instrumented

with turnover and identified monetary policy shocks predicts significant heterogeneity in equity

issuances. A 1% increase in q leads to an approximately 0.05 pp increase in equity issuances

relative to total assets in the same quarter. Similar, statistically significant point estimates are

implied for equity issuances also two and three quarters later. For firms with high liquidity

ratios, the positive relation between instrumented variation in q and equity issuances is weaker

at the two year horizon, but becomes more evident later on.

Finally, increases in instrumented q predict higher investment for firms with low liquid asset

holdings. For these firms, a 1% increase in q implies an elevated investment rate for up to six

quarters after, with the peak effect of approximately 1.2% higher investment rate at the three

quarter horizon. For firms with liquidity ratios above the median, instrumented variation in q

predicts higher investment only 3 quarters later, with the coefficient just marginally statistically

significant.

Robustness. In Appendix C.1, Figure 7 we include additional firm-level controls interacted

with the monetary shock measure in specification (28) to verify that the predicted heterogeneity

in issuance and investment responsiveness is not in fact explained by other firm-level covariates.

Based on the discussion in Section 4.1.6, we consider as the main controls measures of size,

leverage and liquidity ratios. Comparing the results in Figures 4 and 7, it is clear that while

the confidence intervals on the estimates of γh,hq and γh,hq + γ̃h,hq widen due to cross-sectional

correlation between stock turnover and the various firm-level controls, the point estimates are

in large part unchanged and our main results hold. In Figure 8 in Appendix C.1, we further

add firm age as a control. Because of worse coverage of the age variable, we lose almost a

fifth of the firm-quarter observations from the full sample behind the results in Figure 4, so
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Figure 4: Issuances and investment predicted by instrumented q, across liquidity ratio groups
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Notes: Point estimates and 95% confidence intervals for γh,hq and γh,hq + γ̃h,hq from estimating specification

(28). Vertical red dashed line marks the value of hq = 0. Confidence intervals constructed based on two-way

clustered standard errors at firm and SIC 3-digit industry-quarter levels.

the estimates are again slightly less precise. But the main finding remains. An increase in

firms’ q, as instrumented by stock turnover and monetary policy shocks, leads to significantly

higher investment among low-liquidity firms, and this finding cannot be explained by the other

firm-level covariates predicting heterogeneous responsiveness to monetary shocks.

In Figure 9 in Appendix C.1, we present the main OLS and IV coefficient estimates for an

alternative εmt series identified based on the ‘poor man’s sign restrictions’ by Jarociński and

Karadi (2020).33 As seen from the figures, our main findings hold when potential informational

effects of policy announcements are purged from the monetary shock series. Figure 10 in Ap-

pendix C.1 illustrates that our main findings are robust to alternative variable transformations,

such as using qit instead of log
(
qit
)

as the measure of q, or the level of investment rates as

outcome, instead of log investment rates.

33We focus on the ‘poor man’s sign restrictions’ series by Jarociński and Karadi (2020) since their benchmark
identification approach relies on (set-)identification with a linear model which can lead to further imprecisions
during the financial crisis and zero lower bound periods after 2008 during which nonlinear dynamics most likely
played a central role in the economy.
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5.3.1 Capital structure dynamics

By applying our empirical IV approach, we can not only study how instrumented changes in

Tobin’s q lead firms to adjust their equity issuances and investment, but also trace out the

effects on firms’ capital structure and the allocation of funds in assets other than productive

capital. The corresponding estimates, resulting from the estimation of specification (28) with

various broad balance sheet entries as outcomes are shown in Figure 5.

Figure 5: Capital structure and assets predicted by instrumented q, across liquidity ratio groups
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(a) yit = log(bit)
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(b) yit = log(bit − s
T,i
t )

0 2 4 6 8 10 12

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Quarters (h)
γ h

,h
Q
, γ

h,
h Q

+
γ~ h,

h Q

●

●

●

●

●

● ●

●
●

● ●
●

●

●

high liq
low liq

(c) yit = (bit − s
T,i
t )/bit
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(d) yit = kit/b
i
t
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(e) yit = ab,it /bit
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t )/bit

Notes: Point estimates and 95% confidence intervals for γh and γh + γ̃h from estimating specification (28). bit

refers to Total assets; (bit − sT,it ) refers to Total liabilities, with sT,it being Total stockholders’ equity ; kit refers to

Net property, plant, and equipment ; ab,it refers to Cash and short-term investments; (bit − kit − ab,it ) refers to all

other assets. Confidence intervals constructed based on two-way clustered standard errors at firm and SIC

3-digit industry-quarter levels.

Firms with below median liquid asset holdings respond to an increase in Tobin’s q by

increasing their size, as measured by their total asset holdings (panel (a)), suggesting that the

higher equity issuances seen in Figure 4 do not immediately flow out of the firms. Also, firms
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do not seem to do any active rebalancing or readjusting of the level of their liabilities (panel

(b)), naturally implying that the share of funding by liabilities falls (panel (c)), and the firms

become more equity-financed in terms of their capital structure.34 On the assets side of the

firms’ balance sheets, no significant shifts in the relative allocation of funds across asset classes

appear, apart from a slight increase in the share of cash and other liquid financial assets (panel

(e)). This suggests that firms use the additional funds raised from equity issuances at higher

Tobin’s q to scale up their operations. Initially, the raised funds are held mostly in the form

of liquid financial assets, allocated as investments into physical capital and other assets over

time, and eventually returning to an asset structure similar to before the increase in q, only now

at a larger scale (panel (a)). Firms with high liquidity ratios do not exhibit any statistically

significant responses in capital structure nor asset holdings to the instrumented changes in

Tobin’s q.

6 Quantitative analysis

In this section we use a quantitative version of the model presented in Section 2 to assess the

ability of the theory to match the dynamic responses of investment documented in Section

5. The theory consists of two building blocks: an asset-pricing block that determines equity

prices given monetary policy, and an investment block that determines the capital structure

and investment decisions of firms.

We extend the theory of Section 2 and introduce monetary policy shocks in the form of

an unexpected change in the path of the nominal interest rate (10). The shock we consider is

an unexpected increase of εm in rt+1 in period t = 0, after which the nominal rate follows an

autoregressive path back to its steady state value according to: rt+1 = r̄+ρn (rt − r̄) where r̄ is

the steady state net nominal rate. We choose εm so as to generate a 1% increase in firms’ stock

prices at the time of the announcement of the shock, conditional on other parameter values.

We extend the problem of the entrepreneurs seen in Section 2 in two ways. First, we

introduce stochastic fixed equity issuance costs. More specifically, we assume that for an en-

trepreneur with capital stock kit to issue new equity in period t, i.e. choose eit > 0 in the second

subperiod of t, he must exert effort and suffer a disutility of ξitk
i
t. The stochastic cost ξit is i.i.d.

across entrepreneurs and time, distributed uniformly ξit ∼ U
[
0, ξ̄
]
,∀(i, t), and is drawn at the

34The dynamics of Total debt, Long-term debt, and Short-term debt, both in log-levels and relative to total
assets (currently not presented) are very similar to those of Total liabilities in panels (b) and (c) of Figure 4.
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beginning of the second subperiod of t by each entrepreneur.

Second, we assume that a unit of capital available at the beginning of period t also delivers

a ∈ R+ units of good 2 in the second subperiod of t, in addition to producing z units of good 1

at the end of the first subperiod. A share issued by entrepreneur i in the second subperiod of t

now represents ownership of 1 unit of capital along with the stream of dividends of both good

1 and good 2. That is, holding 1 share in period t constitutes the right to receive z units of

good 1 in subperiod 1, and a units of good 2 in subperiod 2. We make an additional simplifying

assumption by imposing that instead of receiving the a units of good 2, an investor who owns a

share of entrepreneur i’s capital at the beginning of subperiod 2 is instead given new shares ẽit

in i’s capital stock. And the size of this equity distribution is such that the market value of the

new shares is equal to the market value of the dividends, i.e. φitẽ
i
t = a, and thus the investor is

indifferent. This means that we are implicitly imposing that the returns of capital in subperiod

2 remain within the firm and shareholders are compensated by an increase in the value of their

shares they own, i.e. the firm simply retains all earnings in subperiod 2.35 Since this operation

constitutes a firm growing by retaining earnings, the distribution of ẽit > 0 is not subject to

fixed equity issuance costs.

As illustrated by the analytical example in Section 4, the introduction of the equity issuance

costs and capital’s ability to produce good 2 in subperiod 2 are in no way necessary to produce

our main qualitative results. Rather, their main purpose to, in a straighforward manner,

improve the quantitative characteristics and flexibility of the model. The equity issuance cost

allows the model to yield a realistic fraction of firms issuing equity at any given point in time

and a nontrivial stationary distribution of liquid asset holdings. With the productivity a > 0,

firms in the quantitative model can invest and grow not only using new equity issuances, but

also using retained earnings, thus allowing the model to yield realistic average investment rates

while matching the empirical frequency and size of equity issuances by public firms.

As for the remaining functional forms in the model, we assume quadratic capital adjust-

ment costs Ψ(x/k) = κ
2

(
x
k

)2
, and a lognormal distribution G for ε ∼ logN (µε, σε). For the

entrepreneur’s problem, the relevant idiosyncratic state variable is the ratio of bond holdings to

its capital stock.36 For the exercises relevant below, because of this, the characteristics of newly

35It can be shown that in the stationary equilibrium of the model, retaining earnings and distributing equity
is strictly preferred by all entrepreneurs over paying out any of the dividends a to outside investors.

36The entrepreneur’s problem is homogeneous of degree 1 in kit. So choices of investment rates, equity issuance
rates, and bond holdings relative to capital are independent of the incoming capital stock.
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born entrepreneurs simply need to be specified in terms of the distribution of initial endowment

of good 2 to capital. As ex post heterogeneity of entrepreneurs is generated by the stochastic

equity issuance costs and the occurrence of death, we simply assume that all entrepreneurs are

born with a given ω0 ≡ w0/k0 ∈ R++, dictating the liquidity of the entrepreneurs’ balance

sheets at birth.

As the main exercise, we compare the impulse responses of log investment rates for firms

with high and low liquidity ratios in the stationary distribution of our model to the estimates

from the data. The empirical IV coefficients from Section 5.3 estimate how much log investment

rates respond to a 1% increase in q generated by a monetary policy shock. In our stylized model,

the only channel of monetary transmission from nominal rates to stock prices and investment is

the turnover-liquidity channel. Therefore, we can simply study the impulse responses of ex ante

identical firms (who also have identical stock turnover), with ex post heterogeneous liquidity

positions. In contrast, in the data, it was necessary to employ cross-sectional variation in the

monetary shock responses of firms with different stock turnover in order to identify and isolate

the turnover-liquidity channel.

The parameter values we currently use for the quantitative exercise are chosen based on

one time period being a quarter: β = 0.995, δ = 0.025, 1 − π = 0.017 (exit rate targeted by

Begenau and Salomao (2019)), α = θ = 1, ρn = 0.5, r̄ = 0.04/4. As Lagos and Zhang (2020b),

we consider a baseline calibration θ = 1 to abstract from micro-level pricing frictions induced

by bargaining. Also, given that the current quantitative exercise does not rely on turnover

heterogeneity among firms in the model, we consider a baseline α = 1. We calibrate σε in the

distribution of ε so that the stock price sensitivity of the firms (with α = 1) in the model matches

the impact effects of monetary policy shocks on the prices of the 10% highest turnover stocks

in our empirical work.37 And we normalize µε = −σ2
ε
2 . We use ω0 = 2/3 which is consistent

with the approximate average cash-to-assets ratio of 0.40 for firms “entering” Compustat, i.e.

engaging in an IPO and entering our sample of public firms during the period that we study,

following Begenau and Palazzo (2020).

We calibrate the values of the remaining parameters εe, z, a, ξ̄, and κ to match moments

yielded by the stationary equilibrium of our model to the sample of Compustat firms used in

our empirical analysis of Section 5. More specifically, we target: the median liquidity (cash-

37Given that in this simple model, the only real effect of nominal rate shocks works through their effect on
firms’ stock prices and we normalize the monetary shock size in our main exercise so that stock prices respond
by 1%, this choice simply governs the size of the required nominal rate shock in the background.
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to-assets) ratio, the average investment rates for firms with below-median and above-median

liquidity, the unconditional frequency of equity issuance across firms and time, and the average

ratio of equity issuance relative to total assets conditional on positive equity issuance.38 Table

1 provides an overview of the employed structural parameter values and calibration targets.

Table 1: Calibrated parameter values and calibration targets

Parameter Value Target / Source

Externally calibrated

β 0.995 2% annual real rate

r̄ 0.04/4 4% annualized nominal rate

δ 0.025 Conventional

1− π 0.017 Compustat exit (Begenau and Salomao, 2019)

σε 2.56 Top 10% turnover φit response to MP

(α, θ, µε)
(

1, 1,−σ2
ε
2

)
Normalization (Lagos and Zhang, 2020b)

ω0 2/3 Average cash-to-assets at IPO (Begenau and Palazzo, 2020)

Internally calibrated

z 0.031 med
(

cashi

assetsi

)
= 7.96% (model: 7.81%)

a 0.038 avg(xi/ki)|IL,t−1=1 = 2.74% (2.80%)

εe 4.21 avg(xi/ki)|IL,t−1=0 = 3.69% (3.68%)

ξ̄ 0.244 freq(ei/bi > 0.01) = 0.0714 (0.0719)

κ 27.80 avg(ei/bi)|ei/bi>0.01 = 9.57% (9.73%)

Figure 6 depicts the model impulse responses of log investment rates alongside the corre-

sponding point estimates and confidence intervals already presented in panel (b) of Figure 4 in

Section 5.3. Low-liquidity firms increase their investment rates by roughly 1% in response to a

monetary shock that increases q by 1%. And both qualitatively and quantitatively, the whole

path of the average response of investment rates is very similar in the model and the data.

For high-liquidity firms, the average investment rate response in the model is considerably

smaller, consistent with no evidence of the q-channel affecting such firms’ investment in the data.

Although, their investment response in the model is not exactly zero. This happens for two

38We follow convention in the corporate finance literature and define the incidence of a firm issuing equity in
our sample as the net equity issuance to asset ratio eit/b

i
t exceeding some chosen cutoff. For example Leary and

Roberts (2005) use a cutoff of 5% when working with annual Compustat data. For our analysis with quarterly
data, we consider the cutoff of 1%. One reason for employing such a cutoff rule is that, as McKeon (2015) points
out, the proceeds from sales of stock reported on firms’ statements of cash flows often come from employees
excercising options, rather than a managerial decision to sell stock as we are interested in identifying. Since
firm-initiated issuances tend to be large and infrequent, he shows that using relative issuance size can with high
reliability identify equity issuance proceeds that contain a firm-initiated component.
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main reasons. First, in any given period, some firms designated as “high-liquidity” may get low

enough draws of the equity issuance cost ξit and take advantage of the beneficial circumstances

to issue equity. Although, they are significantly less likely to issue equity than the low-liquidity

firms. But if they happen to do so exactly at the time of the monetary shock, their investment

will respond to the change in the price of equity and is thus not “isolated” from the shock.

Second, whenever not issuing equity, high-liquidity firms draw down their liquid assets, slowly

becoming “low-liquidity”, and experience an increase in their probability of issuing equity over

time. If the monetary shock is persistent and its effect on stock prices lasts for several periods,

the direct effect on these firms simply appears with a lag and to a smaller extent, depending on

the shock’s persistence. Moreover, because the high-liquidity firms anticipate this immediately

when the shock is revealed, and they want to smooth investment due to the convex adjustment

costs, they respond already at shock impact. To do so, they invest more out of their liquid

asset holdings, even though they are not yet accessing the equity market.

Figure 6: Comparison of investment rate responses from model and data estimates

(a) Low liquidity ratio firms (b) High liquidity ratio firms

Notes: Data refers to point estimates and 95% confidence intervals for γh,hq and γh,hq + γ̃h,hq from estimating

specification (28) with yit = log(xit/k
i
t) as the outcome variable. Model response is computed as the average

firm-level impulse response of log investment rates, averaged over a large panel of firms drawn from the

stationary distribution of the model. High and low liquidity ratios are defined as above or below the

cross-sectional median cash-to-assets ratio in both model and the data.
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7 Aggregate relevance in monetary transmission

Having established that our empirical estimates of the q-monetary channel are both qualitatively

and quantitatively consistent with the calibrated theoretical model, we proceed to provide

a back-of-the-envelope assessment of the importance of the turnover-q channel for monetary

transmission to aggregate investment.39 We do so by directly employing our empirical regression

estimates from Section 5, instead of relying on the calibrated structural model.

We first provide a brief discussion on how our empirical estimates based on between-firm

variation can allow us to take the extra step and give an assessment of the overall effect of

monetary transmission working through the turnover-q channel. To fix notation, let us use
dy
dx

∣∣∣TC
to denote the effect of variable x on y through the turnover-q channel. This is in contrast

to dy
dx by which we mean the effect of x on y through all possible transmission channels. For

concreteness, let us first focus the discussion on the effects that monetary policy shocks have

on q. The estimates of γh from the reduced form OLS regressions of Section 5.2 provide an

estimate of
d2 log(qit+h)
dεmt dT it−1

. That is, γ̂h captures how the estimated effect of εmt on log
(
qit+h

)
differs

conditional on past turnover T it−1. By the identifying assumption that differences in firms’

responses, as predicted by turnover, appear only because of the turnover-q channel, we can

attribute these differences in full to the turnover-q channel, i.e.
d2 log(qit+h)
dεmt dT it−1

=
d2 log(qit+h)
dεmt dT it−1

∣∣∣TC
,

estimated by γh.

However, without further moment restrictions or identifying assumptions, regressions relying

on between-firm differences in responses only allow to identify these cross-derivatives: they tell

us how the monetary shock affects the q of firms with different turnover differently (through

the turnover channel). Yet the ultimate goal is to evaluate how the monetary shock affects

firms’ q through the turnover channel. That is, we would like to identify the first derivative
d log(qit+h)

dεmt

∣∣∣TC
. Continuing with imposing linearity, one could “integrate out” T it−1 from the

cross-derivatives and write:
d log

(
qit+h

)
dεmt

∣∣∣TC
= γ̄ih + γhT it−1

where γ̄ih could be thought of as a “missing intercept”, referring to the (potentially firm specific)

effect of monetary shocks on qit+h through the turnover channel that is not explained by variation

in turnover. γ̄ih cannot be identified solely based on our empirical regressions. But it can

39Here, we refer to the “turnover-q channel” as monetary transmission operating through reducing stock prices
by reducing turnover liquidity in stock markets, which in turn has an effect on investment through the q-channel.
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be identified based on our theoretical model of the turnover channel: for all stocks with zero

turnover, the turnover channel is inactive. So the effect of monetary shocks on the corresponding

firms through the channel must be zero. And we can pin down the missing empirical “intercept”

as:
d log

(
qit+h

)
dεmt

∣∣∣TC

T it−1=0
= 0 =⇒ γ̄ih = 0 and

d log
(
qit+h

)
dεmt

∣∣∣TC
= γhT it−1

Note, importantly, that due to the stylized nature of our theoretical model, there exist no gen-

eral equilibrium effects through which responsive firms can affect market prices, which in turn

influence firms with zero stock turnover. So based on our model, this additional moment re-

striction is precise. In reality, its validity depends on whether such general equilibrium feedback

effects are negligible or not.

Having established that
d log(qit+h)

dεmt

∣∣∣TC
can be gauged using γ̂hT it−1, we compute that in our

Compustat sample, across time and firms, the average effect of a 25 bp contractionary shock in

εmt , as measured by quarterly aggregated 3m Federal funds futures rate changes, is to decrease

qit by 1.65% at impact through the turnover-q channel.

Next, we can use the IV estimates from Section 5.3 to evaluate the effects of monetary

shocks through the turnover channel on firms’ investment. For illustration, let us first consider

the specification that does not split the sample into firm-quarters with high and low liquidity

ratios. Based on our identification assumption, the IV coefficient γh,0 in specification (27) for

yit = log(xit/k
i
t) provides an estimate of

d log(xit+h/k
i
t+h)

d log(qit)

∣∣∣TC
. By the chain rule, we can therefore

write:

d log
(
xit+h/k

i
t+h

)
dεmt

∣∣∣TC
=
d log

(
xit+h/k

i
t+h

)
d log

(
qit
) ∣∣∣TC

·
d log

(
qit
)

dεmt

∣∣∣TC
= γh,0 · γ0T it−1

where γh,0 refers to the coefficient on the instrumented log
(
qit+hq

)
in specification (27) for

yit = log(xit/k
i
t), with hq = 0. And γ0 refers to the coefficient on T it−1ε

m
t in specification (25)

for yit = log
(
qit
)
. More precisely, since our estimates indicate that monetary shocks transmit

to investment through the q-channel only for firms with low liquid asset holdings, we use the

following calculation to condition on the liquidity positions:

d log
(
xit+h/k

i
t+h

)
dεmt

∣∣∣TC
=
[
(1− IiL,t−1) · γh,0 · γ0 + IiL,t−1 · (γh,0 + γ̃h,0) · (γ0 + γ̃0)

]
· T it−1

where γh,0 and γ̃h,0 are estimated in specification (28), for yit = log(xit/k
i
t) with hq = 0. And γ0

and γ̃0 come from estimating specification (26) for yit = log
(
qit
)
. Based on this, we compute that
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in our Compustat sample, across firms and time, the average effect of a 25 bp contractionary

shock in εmt is to decrease xit+4/k
i
t+4, i.e. the investment rate four quarters after the shock, by

0.65% through the turnover-q channel.

Finally, to assess the relevance of the turnover-q channel in monetary transmission to ag-

gregate investment, we employ the implied semi-elasticity of firm i’s quarterly investment rate

xit+4/k
i
t+4 with respect to εmt , i.e. the estimate of

d log(xit+4/k
i
t+4)

dεmt

∣∣∣TC
, as a proxy for the semi-

elasticity of the firm’s quarterly investment level xit+4. For each quarter t, we compute the

cross-sectional average of these semi-elasticities, weighted by firms’ capital expenditures xit−1,

in our Compustat panel, to get an estimate of the semi-elasticity of aggregate public firm in-

vestment in quarter t + 4 with respect to a monetary shock in t. Taking the average of these

aggregate semi-elasticities across time and adjusting for the share of approximately 46.5% of

US aggregate nonresidential investment being done by public firms (Asker et al., 2011), we find

that in response to a 25 bp unexpected increase in the Federal funds rate, aggregate invest-

ment drops by 0.14% four quarters later due to the turnover-q channel. For comparison, the

corresponding peak effect on aggregate investment estimated by Christiano et al. (2005) is ap-

proximately 0.45%. We can thus conclude that the effects of monetary policy shocks on public

firms’ investment due to equity price responses have the potential to explain a considerable

fraction of overall monetary transmission to aggregate investment in the US.
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A Proofs

A.1 Investor’s portfolio and bargaining problems

Lemma 6 Let

ε∗t ≡
ptφ

m
t − π(1− δ)φst

z
(29)

and define the correspondence χ : R2 ⇒ [0, 1] as

χ (ε∗t , ε)


= 1 if ε∗t < ε
∈ [0, 1] if ε∗t = ε
= 0 if ε < ε∗t .

Consider a bilateral meeting in the first subperiod of period t between a dealer and an investor

with portfolio at and valuation ε. The investor’s post-trade portfolio,

ā (at, ε) ≡ (abt (at, ε) , a
m
t (at, ε) , a

s
t (at, ε)),

is given by

abt (at, ε) = abt

amt (at, ε) = [1− χ (ε∗t , ε)] (amt + pta
s
t )

ast (at, ε) = ast +
1

pt
[amt − amt (at, ε)],

and the intermediation fee charged by the dealer is

$t (at, ε) = (1− θ) (ε∗t − ε) z
1

pt
[amt (at, ε)− amt ].

Proof. The value function (2) can be written as

Wt (at, $t) = φ′tat −$t + W̄t (30)

= abt + φmt a
m
t + φsta

s
t −$t + W̄t,

where

W̄t ≡ Tt + max
at+1∈R3

+

[
−φtat+1 + β

∫
Vt+1 (at+1, ε) dG(ε)

]
. (31)

With (30) we can write

Γ (at,at, ε) = abt + φmt a
m
t + (εz + π(1− δ)φst ) ast

−
[
abt + φmt a

m
t + (εz + φstπ(1− δ)) ast

]
−$t,
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so the solution to (1) is

abt (at, ε) = abt

ast (at, ε) = ast +
1

pt
[amt − amt (at, ε)]

$t (at, ε) = (1− θ) (ε∗t − ε) z
1

pt
[amt (at, ε)− amt ]

amt (at, ε) = arg max
0≤amt ≤ptast+amt

[
(ε∗t − ε) z

1

pt
(amt − amt )

]
.

This concludes the proof.

Lemma 7 Let
(
abt+1, a

m
t+1, a

s
t+1

)
denote the portfolio chosen by an investor in the second sub-

period of period t. This portfolio must satisfy the following first-order necessary and sufficient

conditions:

φbt ≥ β, with “ = ” if abt+1 > 0 (32)

φmt ≥ β

[
φmt+1 + αθ

∫ εH

ε∗t+1

(
ε− ε∗t+1

)
zdG(ε)

1

pt+1

]
, with “ = ” if amt+1 > 0 (33)

φst ≥ β

[
ε̄z + π(1− δ)φst+1 + αθ

∫ ε∗t+1

εL

(
ε∗t+1 − ε

)
zdG(ε)

]
, with “ = ” if ast+1 > 0. (34)

Proof. With (30) and the bargaining outcome described in the statement of Lemma 6, (3) can

be written as

Vt (at, ε) = abt + (εz + π(1− δ)φst ) ast + φmt a
m
t + W̄t

+αθ (ε− ε∗t ) z
1

pt
[amt − amt (at, ε)].

Hence, using the expression for amt+1 (at+1, ε) from Lemma 6,∫
Vt+1 (at+1, ε) dG(ε) = abt+1 +

[
ε̄z + π(1− δ)φst+1 + αθ

∫ ε∗t+1

εL

(
ε∗t+1 − ε

)
zdG(ε)

]
ast+1

+

[
φmt+1 + αθ

1

pt+1

∫ εH

ε∗t+1

(
ε− ε∗t+1

)
zdG(ε)

]
amt+1 + W̄t+1

.

Thus, the necessary and sufficient first-order conditions corresponding to the maximization

problem in (31) are as in the statement of the lemma.
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A.2 Stock-market clearing

Lemma 8 In period t, the first-subperiod market-clearing condition for equity is

[1−G (ε∗t )]
1

pt
Amt = G (ε∗t )St. (35)

Proof. Recall that ĀsIt = α
∫
ast (at, ε)dHIt(at, ε), so using the bargaining outcomes in Lemma

6, we have

ĀsIt = α [1−G (ε∗t )]

(
St +

1

pt
Amt

)
.

With this expression, the market-clearing condition for equity in the first subperiod of period

t, i.e., ĀsIt = αSt, can be written as (35).

A.3 Equilibrium characterization: stock prices and real money balances

The following result characterizes the equilibrium paths {Mt}∞t=0 and {φst}
∞
t=0 taking as given

the path for the outstanding aggregate quantity of stocks, {St}∞t=0.

Corollary 4 In equilibrium, aggregate real money balances, {Mt}∞t=0, and the real price of

equity shares, {φst}
∞
t=0, satisfy the following conditions:

Mt ≥
β

µ

[
1 + αθ

∫ εH

ε∗t+1

ε− ε∗t+1

ε∗t+1z + π(1− δ)φst+1

zdG(ε)

]
Mt+1, with “ = ” if Mt+1 > 0 (36)

φst = β

[
ε̄z + π(1− δ)φst+1 + αθ

∫ ε∗t+1

εL

(
ε∗t+1 − ε

)
zdG(ε)

]
, (37)

where for all t ≥ 0, ε∗t satisfies

1−G (ε∗t )

ε∗t z + π(1− δ)φst
Mt = G (ε∗t )St. (38)

Proof. Conditions (36), (37), and (38) follow from (33), (34), and (35), respectively, using

Mt ≡ φmt Amt , Amt+1/A
m
t = µ, and (29).

The following result characterizes the equilibrium paths {Mt}∞t=0 and {φst}
∞
t=0 taking as

given the path for the outstanding aggregate quantity of stocks, {St}∞t=0—in the context of a

stationary equilibrium.
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Corollary 5 In a stationary equilibrium, St = S, ε∗t = ε∗, φst = ϕsz, and Mt = M for all t,

and (ε∗, ϕs,M) satisfy the following conditions:

r ≥ αθ

∫ εH

ε∗

ε− ε∗

ε∗ + π(1− δ)ϕs
dG(ε), with “ = ” if M > 0 (39)

ϕs =
β

1− βπ(1− δ)

[
ε̄+ αθ

∫ ε∗

εL

(ε∗ − ε) dG(ε)

]
, (40)

where ε∗ satisfies
1−G (ε∗)

[ε∗ + π(1− δ)ϕs] z
M = G (ε∗)S. (41)

Proof. Conditions (36)-(38) follow immediately from (39)-(41) imposing the stationarity con-

ditions described in the statement.

Lemma 9 Let S > 0 be given. Then:

(i) There always exists a solution to (39)-(41) in which money is not valued, i.e., M = 0,

ε∗ = εL, and ϕs = β
1−βπ(1−δ) ε̄.

(ii) Let

r̄ ≡ αθ (ε̄− εL)

εL + βπ(1−δ)
1−βπ(1−δ) ε̄

.

If r ∈ (0, r̄) there exists a unique solution to (39)-(41) with M > 0, i.e.,

M =
G (ε∗) [ε∗ + π(1− δ)ϕs] z

1−G (ε∗)
S (42)

ϕs =
β

1− βπ(1− δ)

[
ε̄+ αθ

∫ ε∗

εL

(ε∗ − ε) dG(ε)

]
, (43)

where ε∗ ∈ (εL, εH ] is the unique solution to

αθ
∫ εH
ε∗ (ε− ε∗) dG(ε)

ε∗ + βπ(1−δ)
1−βπ(1−δ)

[
ε̄+ αθ

∫ ε∗
εL

(ε∗ − ε) dG(ε)
] = r. (44)

Moreover:

(a) As r → r̄, ε∗ → εL, M → 0, and ϕs → β
1−βπ(1−δ) ε̄.

(b) As r → 0, ε∗ → εH and ϕs → β
1−βπ(1−δ) [ε̄+ αθ (εH − ε̄)].

(c) ∂ε∗

∂r < 0, ∂M
∂r < 0, and ∂ϕs

∂r < 0.
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Proof. To establish part (i), simply set M = 0 in (39)-(41). To establish part (ii), proceed

as follows. Assume M > 0; then (39) holds with equality, and using (40) to substitute ϕs from

(39) gives T (ε∗; r) = 0, where

T (ε∗; r) ≡
αθ
∫ εH
ε∗ (ε− ε∗) dG(ε)

ε∗ + βπ(1−δ)
1−βπ(1−δ)

[
ε̄+ αθ

∫ ε∗
εL

(ε∗ − ε) dG(ε)
] − r.

First, notice that

∂T (ε∗; r)

∂ε∗
= −

[1−G(ε∗)]
{
ε∗+ βπ(1−δ)

1−βπ(1−δ)

[
ε̄+αθ

∫ ε∗
εL

(ε∗−ε)dG(ε)
]}

+[
∫ εH
ε∗ (ε−ε∗)dG(ε)]

[
1+

βπ(1−δ)
1−βπ(1−δ)αθG(ε∗)

]
1
αθ

{
ε∗+ βπ(1−δ)

1−βπ(1−δ)

[
ε̄+αθ

∫ ε∗
εL

(ε∗−ε)dG(ε)
]}2 < 0.

Assume r ∈ (0, r̄). Then

T (εH ; r) = −r < 0 < T (εL; r) = r̄ − r. (45)

Since T is a continuous function of ε∗, ∂T (ε∗; r) /∂ε∗ < 0 and (45) imply that for any r ∈ (0, r̄)

there exists a unique ε∗ that solves T (ε∗; r) = 0 on the interval (εL, εH). Given the ε∗ that

solves T (ε∗; r) = 0, M and φst are given by (42) and (43), respectively.

Part (ii)(a) is immediate from (42) and (43), and the observation that T (εL; r̄) = 0. Part

(ii)(b) is immediate from (43), and the observation that T (εH ; 0) = 0. Part (ii)(c), follows

from

∂M

∂r
=

G′ (ε∗)

[1−G (ε∗)]2
S
∂ε∗

∂r
+

G (ε∗)

1−G (ε∗)

∂S

∂r

∂ϕs

∂r
= αθ

β

1− βπ(1− δ)
G (ε∗)

∂ε∗

∂r

together with the fact that
∂ε∗

∂r
=

1
∂T (ε∗;r)
∂ε∗

and ∂T (ε∗; r) /∂ε∗ < 0.

A.4 Economy with π = 0

A.4.1 Entrepreneur’s choice of investment and capital structure

Proof of Lemma 1. The Lagrangian for the optimization problem of the one-period-lived

entrepreneur at entry, i.e., (11), is

L = y + φse [(1− δ) k + x− s+1]

+ξ [φss+1 + w − y − c (x/k) k]

+ζeLs+1 + ζeH [(1− δ) k + x− s+1] + ζcLy,
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where ξ, ζeL, ζeH , and ζcL are the Lagrange multipliers on the entrepreneur’s budget constraint,

nonnegativity constraint on equity issuance, upper bound on equity issuance, and nonnegativity

constraint on consumption, respectively.

The first-order conditions are

0 = 1− ξ + ζcL (46)

0 = φse − ξc′ (x/k) + ζeH (47)

0 = −φse + ξφs + ζeL − ζeH (48)

0 = ξ [φss+1 + w − y − c (x/k) k] (49)

0 = ζcLy (50)

0 = ζeLs+1 (51)

0 = ζeH [(1− δ) k + x− s+1] . (52)

Conditions (46)-(48) are the first-order conditions with respect to y, x, and s+1, respectively.

Condition (46) implies ξ = 1 + ζcL > 0, so (49) implies

0 = φss+1 + w − y − c (x/k) k. (53)

There are potentially eight cases depending on whether the multipliers (ζcL, ζ
e
L, ζ

e
H) are positive

or equal to zero. We consider each in turn. Recall ι0 is the investment rate that satisfies

c′ (ι0) = 1, so c′′ > 0 and the assumption in the statement of the lemma imply

δ − 1 ≤ ι0 ≤ min{ι (φs) , ι(φse)}. (54)

Case 1: ζeL = ζeH = 0 < ζcL. In this case condition (50) implies

y = 0,

condition (53) implies

φss+1 = c (x/k) k − w, (55)

and conditions (47) and (48) imply

c′ (x/k) = φs.

For this case to be a solution we need three conditions to be satisfied. First, 0 < ζcL, which by

(46) is equivalent to ξ > 1, which by (48) is equivalent to

φs < φse.
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Second, since the solution must satisfy the constraints 0 ≤ s+1 ≤ (1− δ) k+ x, (55) implies we

must have

Ξ (ι (φs)) ≤ ω ≤ c (ι (φs)) ,

where

Ξ (ι) ≡ c (ι)− c′ (ι) (1− δ + ι) . (56)

Notice Ξ (ι0) = δ − 1 ≤ 0 and Ξ′ (ι) = − c′′ (ι) (1− δ + ι) ≤ 0 for all ι ≥ ι0, so (54) implies the

condition Ξ (ι (φs)) ≤ ω is satisfied for any ω ≥ 0.

Case 2: ζcL = ζeH = 0 < ζeL. In this case (46) implies ξ = 1, (47) implies

c′ (x/k) = φse,

(48) implies

ζeL = φse − φs, (57)

(51) implies

s+1 = 0,

and (53) implies

y = w − c(ι(φse))k. (58)

For this case to be a solution we need three conditions to be satisfied. First, 0 < ζeL, which by

(57) is equivalent to

φs < φse.

Second, 0 ≤ y, which by (58) is equivalent to

c(ι(φse))k ≤ w.

Third, 0 ≤ k+1 − s+1, is equivalent to

0 ≤ 1− δ + ι(φse).

This condition is implied by (54).

Case 3: ζcL = ζeL = 0 < ζeH . In this case (46) implies ξ = 1, (48) implies

ζeH = φs − φse, (59)
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and this together with (47) implies

c′ (x/k) = φs.

Then condition (52) implies

s+1 = [1− δ + ι (φs)] k (60)

and (53) implies

y = {φs [1− δ + ι (φs)] + ω − c (ι (φs))} k. (61)

For this case to be a solution we need three conditions to be satisfied. First, 0 < ζeH , which by

(59) is equivalent to

φse < φs.

Second, 0 ≤ s+1, which by (60) is equivalent to

0 ≤ 1− δ + ι (φs) .

This condition is implied by (54). Third, 0 ≤ y, which by (61) is equivalent to

Ξ (ι (φs)) ≤ ω, (62)

where Ξ (·) is as defined in (56). Notice Ξ (ι0) = δ − 1 ≤ 0 and Ξ′ (ι) = − c′′ (ι) (1− δ + ι) ≤ 0

for all ι ≥ ι0, so (54) implies (62) is satisfied for any ω ≥ 0.

Case 4: ζeH = 0 < min (ζcL, ζ
e
L). In this case (50) implies

y = 0,

(51) implies

s+1 = 0,

and hence (53) implies

x/k = c−1 (ω) .

Conditions (46) and (47) imply

ζcL =
φse − c′(c−1 (ω))

c′(c−1 (ω))
, (63)

and conditions (47) and (48) imply

ζeL =
c′(c−1 (ω))− φs

c′(c−1 (ω))
φse. (64)
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For this case to be a solution we need three conditions to be satisfied. First, 0 < ζcL, which by

(63) is equivalent to

c′(c−1 (ω)) < φse ⇔ c−1 (ω) < ι(φse) (65)

Second, 0 < ζeL, which by (64) is equivalent to

φs < c′(c−1 (ω))⇔ ι (φs) < c−1 (ω) . (66)

Notice that conditions (65) and (66) can both be satisfied only if

φs < φse.

The third condition that needs to be satisfied for this case to be a solution is 0 ≤ k+1 − s+1,

which by (52) is equivalent to

0 ≤ 1− δ + c−1 (ω) . (67)

From (66), we know that c(ι (φs)) < ω, which together with (54) implies

ι0 = c(ι0) ≤ c(ι (φs)) < ω.

Hence, ι0 < c−1 (ω), which implies condition (67) is satisfied.

Case 5: ζeL = 0 < min (ζcL, ζ
e
H). In this case (50) implies

y = 0,

and conditions (47) and (48) imply

c′ (x/k) = φs.

Then (52) implies

s+1 = [1− δ + ι (φs)] k. (68)

For this case to be a solution we need four conditions to be satisfied. First, 0 ≤ s+1, which

with (68) is equivalent to

0 ≤ 1− δ + ι (φs) .

This condition is implied by (54). Second, (49) and (52) require that

ω = Ξ (ι (φs)) (69)
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with Ξ (·) as defined in (56). As argued in Case 3, the assumptions in the statement of the

lemma imply Ξ (ι (φs)) ≤ 0. Since ω ≥ 0, (69) implies this case is only possible if ω = 0. Third,

0 < ζcL requires that 1 < ξ. Fourth, 0 < ζeH requires that ζeH = ξφs−φse > 0. There exist values

of ξ that satisfy both these conditions.

Case 6: ζcL = 0 < min (ζeL, ζ
e
H). In this case (51) implies

s+1 = 0

and then (52) implies

x/k = δ − 1,

and condition (49) implies

y = [ω − c (δ − 1)] k. (70)

Conditions (47) and (48) imply

ζeL = c′ (δ − 1)− φs (71)

ζeH = c′ (δ − 1)− φse. (72)

For this case to be a solution, we need three conditions to hold. First, 0 ≤ y, which by (70) is

equivalent to

c (δ − 1) ≤ ω.

And 0 < min (ζeL, ζ
e
H), which by (71) and (72) are equivalent to

max(φs, φse) < c′ (δ − 1) . (73)

Notice (54) implies

c′ (δ − 1) ≤ c′(ι0) ≤ c′(min{ι (φs) , ι(φse)}) = min(φs, φse), (74)

which contradicts (73), so this case cannot be a solution.

Case 7: 0 < min (ζcL, ζ
e
L, ζ

e
H). In this case (50)-(52) imply

y = 0

s+1 = 0

x/k = δ − 1.
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For this to be a solution, we need the following conditions to hold

w = c (δ − 1) k

1 < ξ

ζeL = ξ
[
c′ (δ − 1)− φs

]
> 0 (75)

ζeH = ξ
[
c′ (δ − 1)

]
− φse > 0. (76)

The first is implied by (49), the second by the condition 0 < ζcL, and the third and fourth by

the conditions (47) and (48), and the requirement that 0 < min (ζeL, ζ
e
H). Notice (54) implies

(74), which contradicts (75) and (76), so this case cannot be a solution.

Case 8: ζcL = ζeL = ζeH = 0. In this case conditions (47) and (48) imply

c′ (x/k) = φse = φs,

condition (53) implies

y = φss+1 + [ω − c (ι (φs))] k,

and s+1 is any number that satisfies that satisfies

max

{
0,

c (ι (φs))− ω
φs

k

}
≤ s+1 ≤ [1− δ + ι (φs)] k.

Cases 1, 2, and 4, are summarized in part (ii) of the statement of the lemma, while part (i)

summarizes cases 3, 5, and 8. This concludes the proof.

Proof of Corollary 2. The Lagrangian for (11) can be written as

L = y + φse(k+1 − s+1)

+q̂ [(1− δ) k + x− k+1]

+ξ [φss+1 + w − y − c (x/k) k]

+ζeLs+1 + ζeH (k+1 − s+1) + ζcLy,

where ξ, ζeL, ζeH , and ζcL are the Lagrange multipliers on the entrepreneur’s budget constraint,

nonnegativity constraint on equity issuance, upper bound on equity issuance, and nonnegativity

constraint on consumption, respectively. The Lagrange multiplier q̂ is associated to the law of
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motion of the capital stock, and is interpreted as the shadow price of a margial unit of capital to

the entrepreneur. The first-order conditions with respect to y, x, s+1, and k+1 are, respectively,

0 = 1− ξ + ζcL (77)

0 = q̂ − ξc′ (x/k) (78)

0 = −φse + ξφs + ζeL − ζeH (79)

0 = φse − q̂ + ζeH . (80)

Condition (80) implies the shadow price of capital to the entrepreneur, q̂, is at least as large

as the discounted value that she assigns to the return on capital, φse, but could exceed it if the

entrepreneur is facing a binding financing constraint, i.e., in the form of a binding upper bound

on equity issuance (0 < ζeH). If we use (80) to substitute q̂ in (78), then (77)-(79) become

identical to (46)-(48) in the proof of Lemma 1. For what follows, it is convenient to define

q ≡ q̂

ξ
. (81)

Intuitively, ξ is the shadow price to the entrepreneur of a unit of good 2 (in terms of second-

subperiod marginal utility). Since the entrepreneur’s utility for good 2 is linear, this shadow

price equals 1 in an interior solution. But it will exceed 1 if the entrepreneur is financially

constrained in the sense that it would like to be able to borrow good 2 to invest but is unable

to do so. This “binding financial constraint” manisfests itself with 0 < ζcL, i.e., a situation in

which the nonnegativity constraint on consumption binds. In sum, the q defined in (81) is the

return (gross of adjustment costs) to the entrepreneur from investing an additional unit good

2 into capital. When investing an additional unit of good 2, the entrepreneur pays utility cost

ξ to get payoff q̂. Condition (78) then says that at an optimum, c′ (x/k) = q, i.e., the marginal

(technological) cost of investing, c′ (x/k), must equal the marginal return to investing, q. Next,

we derive the value of q corresponding to every case in Lemma 1.

Case 1. This case corresponds to the lowest endowment range (i.e., ω ≤ c(ι (φs))) in part

(ii) of Lemma 1. In this case the Lagrange multipliers are:

ζeL = ζeH = 0 < ζcL =
φse
φs
− 1 = ξ − 1

q̂ = φse

q = φs,
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and the optimal investment rate, x∗, satisfies

c′ (x∗) = φs.

Case 2. This case corresponds to the highest endowment range (i.e., c(ι(φse)) ≤ ω) in part (ii)

of Lemma 1. In this case the Lagrange multipliers are:

ζcL = ζeH = 0 = ξ − 1 < φse − φs = ζeL

q̂ = φse

q = φse,

and the optimal investment rate, x∗, satisfies

c′ (x∗) = φse.

Case 4. This case corresponds to the intermediate endowment range (i.e., c(ι (φs)) < ω <

c(ι(φse))) in part (ii) of Lemma 1. In this case the Lagrange multipliers are:

0 = ζeH

0 < ζcL = ξ − 1 =
φse

c′ (x∗)
− 1

0 < ζeL =

[
1− φs

c′ (x∗)

]
φse

q̂ = φse

q = c′ (x∗) ,

and the optimal investment rate, x∗, satisfies

c (x∗) = ω.

Case 3. This case corresponds to the case with φse < φs in part (i) of Lemma 1. In this case

the Lagrange multipliers are:

ζcL = ζeL = 0 < ζeH = φs − φse
ξ = 1

q = q̂ = φs,
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and the optimal investment rate, x∗, satisfies

c′ (x∗) = φs.

Case 5. This case corresponds to the case with y∗ = 0 < φs − φse in part (i) of Lemma 1. In

this case the Lagrange multipliers are:

0 < ξ − 1 = ζcL

0 < q̂ − φse = ζeH

q = φs,

and the optimal investment rate, x∗, satisfies

c′ (x∗) = φs.

Case 8. This case corresponds to the case with φs = φse in part (i) of Lemma 1. In this case

the Lagrange multipliers are:

0 = ζcL = ζeL = ζeH = ξ − 1

q = q̂ = φs = φse,

and the optimal investment rate, x∗, satisfies

c′ (x∗) = φs.

By collecting all cases we obtain the expressions in the statement.

Corollary 6 The value function (11) can be written as

J (w, k, 0) = [y∗ + φse(1− δ + x∗ − s∗+1)]k,

with (x∗, y∗, s∗+1) as given in Lemma 1.

(i) If φse ≤ φs,
J (w, k, 0)

k
= φs [1− δ + ι(φs)] + ω − c (ι (φs)) .

(ii) If φs < φse,

J (w, k, 0)

k
=


φse[1− δ + ι(φse)] + ω − c(ι(φse)) if c(ι(φse)) ≤ ω
φse[1− δ + c−1(ω)] if c(ι (φs)) < ω < c(ι(φse))

φse[1− δ + ι(φs)− c(ι(φs))−ω
φs ] if ω ≤ c (ι (φs)) .

In every case, the value function can be written as J (ω) k, where J (ω) ≡ J (ωk, k, 0) /k.
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A.4.2 Equilibrium characterization

Proof of Proposition 1. In a stationary nonmonetary equilibrium, we know from Lemma 9

that M = 0, ε∗ = εL, and φs = ϕsz, with ϕs = β
1−βπ(1−δ) ε̄. In this case π = 0, so φs = βε̄z ≡ φs.

The expressions forX∗ and S∗ in parts (i) and (ii) follow from (12) and (13), and the expressions

in parts (i) and (ii) of Lemma 1.

Proof of Proposition 2. The existence and uniqueness claim in part (i) follows from the fact

that there exists a unique ε∗ that satisfies (15), as established in Lemma 9. Parts (ii) and (vi)

also follow from Lemma 9. To establish parts (iii), (iv), and (v) we again rely on Lemma 9,

which shows that ϕs (r) is continuous, with ∂ϕs(r)
∂r < 0, φs (0) = φ

s
, and φs (r̄) = φs. From this

it follows that for every φse ∈ (φs, φ
s
) there exists a unique r̂ ∈ (0, r̄) that satisfies φs (r̂) = φse,

with φs (r) > φse for all r ∈ (0, r̂), and φs (r) < φse for all r ∈ (r̂, r̄). Given this, the expressions

for X∗ and S∗ then follow from (12), (13), and Lemma 1.

B Adverse selection

In this section we formalize a simple agency problem between entrepreneurs and investors to

show that in order to have an equilibrium with φs < φse, one need not assume that the funda-

mental value of the dividend of good 1 is higher for entrepreneurs than for outside investors.

Consider a generalization of the model of Section 4 in which the productivity of a unit of

capital created in the second subperiod of period t is a random variable Zt ∈ {0, z}. A fraction

1 − λ of the entrepreneurs draw productivity Zt = 0, while the remaining draw Zt = z > 0.40

The timing of information is that an entrepreneur makes the investment and equity issuance

decisions at the end of period t, having observed the realization of Zt, while outside investors

learn this realization at the beginning of period t+1 (before the round of stock-market trades in

the first subperiod). We maintain the assumption of competitive trade in the second subperiod,

so the stock price in the second subperiod of period t (i.e., at the time the investment in

physical capital is made and equity claims on these units of capital are issued) is determined

in a competitive market in which all shares trade at the same price.41

40The model of Section 4 corresponds to the special case with λ = 1. For simplicity, we assume this random
variable is independent across entrepreneurs and uncorrelated with the entrepreneur’s characteristics (e.g., her
capital, k, and claims to good 2, w).

41This would be a natural market outcome in a context in which investors know the probability distribution
over Zt but have no way of obtaining entrepreneur-specific information. One could instead set the model up as
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As in Section 4, we focus on stationary equilibria, and maintain the assumption π = 0

(entrepreneurs live for one period). In addition, to simplify the exposition, in this section

we assume δ = 1 (capital only lasts one period), and ι0 = 0. Under these conditions, the

entrepreneur’s problem (analogous to (11)) is:

max
x,y,s+1

[y + βεeZ(x− s+1)] (82)

s.t. y + c (x/k) k ≤ φss+1 + w (83)

0 ≤ s+1 ≤ x (84)

0 ≤ y. (85)

Let g̃x (Z,w, k), g̃y (Z,w, k), and g̃e (Z,w, k) denote the levels of investment, consumption of

good 2, and equity issuance that solve (82)-(85) for an entrepreneur with productivity realization

Z ∈ {0, z}. Define x∗ ≡ gx (Z,w, k) /k, y∗ ≡ gy (Z,w, k) /k, s∗+1 ≡ ge (Z,w, k) /k, and ω ≡ w/k.

The following result, which is analogous to Lemma 1, characterizes (x∗, y∗, s∗+1) as a function

of the entrepreneur’s marginal valuation, φse ≡ βεeZ, and the market valuation, φs.

Lemma 10 Consider the economy with adverse selection, and assume π = 1− δ = ι0 = 0. Let

ι(φ) denote the unique number, ι, that solves c′ (ι) = φ for any φ ∈ R+.

(i) If max (φse, φ
s) < 1, then x∗ = s∗+1 = 0.

(ii) If 1 ≤ max (φse, φ
s) and φse ≤ φs, then

x∗ = ι(φs)

s∗+1 =

{
x∗ if φse < φs[
max

{
0, c(x∗)−ω

φs

}
, x∗
]

if φse = φs.

(iii) If 1 ≤ φs < φse, then

x∗ =


ι(φse) if c(ι(φse)) ≤ ω
c−1(ω) if c(ι (φs)) < ω < c(ι(φse))
ι(φs) if ω ≤ c (ι (φs))

s∗+1 =

{
0 if c(ι (φs)) < ω
c(ι(φs))−ω

φs if ω ≤ c (ι (φs)) .

a signalling game in which entrepreneurs play the role of senders and investors play the role of receivers.
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(iv) If φs < 1 ≤ φse, then

x∗ =

{
ι(φse) if c(ι(φse)) ≤ ω
c−1(ω) ω < c(ι(φse))

s∗+1 = 0.

(v) In every case, y∗ = ω + φss∗+1− c(x∗).

Proof. Since the constraint (83) will bind at an optimum, the problem (82)-(85) implies

(x∗, s∗+1) = arg max
x,s+1

[φsex− c (x) + (φs − φse) s+1] (86)

s.t. max

(
0,

c (x)− ω
φs

)
≤ s+1 ≤ x (87)

and

y∗ = ω + φss∗+1 − c (x∗) . (88)

The Lagrangian for (86)-(87) is

L = φsex− c (x) + (φs − φse) s+1 + ζeLs+1 + ζeH (x− s+1) + ζcL [ω + φss+1 − c (x)] ,

where ζeL, ζeH , and ζcL are the Lagrange multipliers on the nonnegativity constraint on equity

issuance, the upper bound on equity issuance, and the nonnegativity constraint on consumption

of good 2, respectively. The first-order conditions are

0 = φse − (1 + ζcL) c′ (x) + ζeH (89)

0 = (1 + ζcL)φs − φse + ζeL − ζeH (90)

0 = ζeLs+1 (91)

0 = ζeH (x− s+1) (92)

0 = ζcL [ω + φss+1 − c (x)] . (93)

There are eight cases depending on whether the multipliers (ζeL, ζ
e
H , ζ

c
L) are positive or equal to

zero. We consider each in turn. In every case, we suppose 0 < min (φs, φse).

Case 1: ζeL = ζeH = 0 < ζcL. In this case (89)-(93) imply the optimum is characterized by

c′ (x∗) = φs < φse (94)

s∗+1 =
c (x∗)− ω

φs
. (95)
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Recall that c′ (0) = 1 and c′′ > 0, so 1 ≤ c′ (x) for all x ≥ 0 (with “=” only if x = 0). Hence

for (94) to hold it is necessary that

1 ≤ φs < φse. (96)

Also, for (94)-(95) to be a solution it must satisfy 0 ≤ s∗+1 ≤ x∗, or equivalently,

c (x∗)− c′ (x∗)x∗ ≤ ω ≤ c (x∗) . (97)

The second inequality in (97) is equivalent to

ω ≤ c (ι (φs)) . (98)

Next, we show that the first inequality in (97) is redundant. Since c is strictly convex, we have

c (x) ≥ c (x∗) + c′ (x∗) (x− x∗) , (99)

with “=” only if x = x∗. Since c(0) = 0, evaluating (99) at x = 0 implies

c (x∗)− c′ (x∗)x∗ ≤ 0, (100)

so the first inequality in (97) is satisfied for all ω ∈ R+.

Case 2: ζcL = ζeH = 0 < ζeL. In this case (89)-(93) imply the optimum is characterized by

φs < φse = c′ (x∗) (101)

s∗+1 = 0. (102)

Recall that c′ (0) = 1 and c′′ > 0, so 1 ≤ c′ (x) for all x ≥ 0 (with “=” only if x = 0). Hence

for (101) to hold it is necessary not only that φs < φse, but also that 1 ≤ φse, which together

can be written as

max (1, φs) ≤ φse, with “ < ” if max (1, φs) = φs. (103)

Also, for (101)-(102) to be a solution, it must satisfy

c (x∗)− ω
φs

≤ s∗+1 ≤ x∗,

or equivalently,
c (x∗)− ω

φs
≤ 0 ≤ x∗. (104)
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The first inequality in (104) is equivalent to

c (ι (φse)) ≤ ω, (105)

and the second inequality in (104) is implied by (103).

Case 3: ζcL = ζeL = 0 < ζeH . In this case (89)-(93) imply the optimum is characterized by

φse < φs = c′ (x∗) (106)

s∗+1 = x∗. (107)

Recall that c′ (0) = 1 and c′′ > 0, so 1 ≤ c′ (x) for all x ≥ 0 (with “=” only if x = 0). Hence

for (106) to hold it is necessary not only that φse < φs, but also that 1 ≤ φs, which together

can be written as

max (1, φse) ≤ φs, with “ < ” if max (1, φse) = φse. (108)

Also, for (106)-(107) to be a solution, it must satisfy

0 ≤ s∗+1 and 0 ≤ ω + φss∗+1 − c (x∗) ,

which using (106) and (107) are equivalent to

0 ≤ x∗ and 0 ≤ ω + c′ (x∗)x∗ − c (x∗) . (109)

The first inequality in (109) is redundant since it follows from (106), (108), c′ (0) = 1, and

c′′ > 0, which imply

c′ (0)− φs = 1− φs ≤ 0 = c′ (x∗)− φs.

The second inequality in (109) is satisfied for all ω ∈ R+ since the maintained assumptions

c(0) = 0 < c′′ imply (100).

Case 4: ζeH = 0 < min (ζcL, ζ
e
L). In this case (89)-(93) imply the optimum is characterized

by

ω = c (x∗) (110)

s∗+1 = 0. (111)

For (110)-(111) to be a solution, it must also satisfy s∗+1 ≤ x∗ and

φs < c′ (x∗) < φse. (112)
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With (111), the condition s∗+1 ≤ x∗ is equivalent to 0 ≤ x∗, which is implied by (110) for any

ω ∈ R+, since c(0) = 0 < c′. For (112) to hold it is necessary that

max (1, φs) < φse. (113)

Under assumption (113) we can write φse = c′ (ι (φse)), and write the second inequality in (112)

as

c′ (x∗) < c′ (ι (φse)) ,

which is equivalent to

ω < c (ι (φse)) . (114)

If φs < 1, then the first inequality in (112) holds for all ω ∈ R+. Conversely, if 1 ≤ φs, then we

can write φs = c′ (ι (φs)) and the first inequality in (112) can be written as

c′ (ι (φs)) < c′ (x∗) ,

which is equivalent to

c (ι (φs)) < ω if 1 ≤ φs. (115)

Conditions (114) and (13) can be written jointly as

ω ∈
{

(c (ι (φs)) ,c (ι (φse))) if 1 ≤ φs
(−∞,c (ι (φse))) if φs < 1.

(116)

Case 5: ζeL = 0 < min (ζcL, ζ
e
H). In this case (89)-(93) imply

c′ (x∗) = φs (117)

s∗+1 = x∗. (118)

For (117)-(118) to be a solution, it must also satisfy

ω = c (x∗)− c′ (x∗)x∗ (119)

and 0 ≤ x∗. Also, 1 ≤ φs is necessary for (117) to hold (since c′ (x) ≥ 1 for all x ≥ 0). The

maintained assumptions c(0) = 0 < c′′ imply (100), so (119) can only hold if x∗ = 0 and

ω = 0. (120)
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Together with (117), x∗ = 0 implies we must also have

φs = 1, (121)

while φse can take any nonnegative value. To summarize, if (120) and (121) hold, the solution

for this case is

s∗+1 = x∗ = 0. (122)

Case 6: ζcL = 0 < min (ζeL, ζ
e
H). In this case (89)-(93) imply the optimum is characterized

by

s∗+1 = x∗ = 0 (123)

provided

max (φse, φ
s) < 1. (124)

Case 7: 0 < min (ζcL, ζ
e
L, ζ

e
H). In this case (89)-(93) imply the optimum is characterized by

s∗+1 = x∗ = 0 (125)

provided

ω = 0 (126)

and

φs < 1 (127)

while φse can take any nonnegative value.

Case 8: ζcL = ζeL = ζeH = 0. In this case (89)-(93) imply the optimum is characterized by

c′ (x∗) = φs (128)

s∗+1 ∈
[
max

{
0,

c (x∗)− ω
φs

}
, x∗
]

(129)

provided

1 ≤ φse = φs. (130)

Part (i) in the statement of the lemma corresponds to Case 6 and Case 7. Part (ii) corresponds

78



to Case 3 and Case 8. Part (iii) corresponds to Case 1, Case 2, and Case 4. Part (iv) corresponds

to Case 2 and Case 4. Part (v) is the same as (88).

In this model, the outside investor’s Euler equations for money and equity analogous to (33)

and (34) are

φmt ≥ β

[
φmt+1 + αθ

∫ εH

ε∗t+1

(
ε− ε∗t+1

)
zdG(ε)

1

pt+1

]
, with “ = ” if amt+1 > 0 (131)

φst ≥ βΛ

[
ε̄z + αθ

∫ ε∗t+1

εL

(
ε∗t+1 − ε

)
zdG(ε)

]
, with “ = ” if ast+1 > 0, (132)

where Λ ∈ [0, 1] is the investor’s belief that a traded equity share represents a claim to a

productive unit of capital. The stock-market clearing condition in the first subperiod (analogous

to (38)) is
1−G (ε∗)

ε∗z
Mt = G (ε∗) ΛSt.

As in Section 4, we focus on stationary equilibria in which the aggregate supply of equity

and aggregate real money balances are constant over time, i.e., St = S and φmt A
m
t ≡ Mt = M

for all t, and real equity prices are time-invariant linear functions of the (expected) dividend,

i.e., φst = φs ≡ ϕsz for all t. Thus (again imposing π = 0), the stationary-equilibrium conditions

in Corollary 5 become

r ≥ αθ

∫ εH

ε∗

ε− ε∗

ε∗
dG(ε), with “ = ” if M > 0 (133)

ϕs = βΛ

[
ε̄+ αθ

∫ ε∗

εL

(ε∗ − ε) dG(ε)

]
(134)

M =
G (ε∗)

1−G (ε∗)
ε∗zΛS. (135)

The equilibrium conditions (133)-(135) for the economy with adverse selection are a simple

generalization of conditions (39)-(41) (with π = 0) for the economy without adverse selection

(both sets of conditions coincide if Λ = 1). The following result is analogous to Lemma 9, but

for an economy with π = 0 and adverse selection.

Lemma 11 Let S > 0 and Λ ∈ [0, 1] be given. Then:

(i) There always exists a solution to (133)-(135) in which money is not valued, i.e., M = 0,

ε∗ = εL, and ϕs = Λβε̄.
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(ii) Let r̄ ≡ αθ (ε̄− εL) /εL. If r ∈ (0, r̄), there exists a unique solution to (133)-(135) with

M > 0, i.e.,

M =
G (ε∗) ε∗z

1−G (ε∗)
ΛS

ϕs = Λβ

[
ε̄+ αθ

∫ ε∗

εL

(ε∗ − ε) dG(ε)

]
, (136)

where ε∗ ∈ (εL, εH ] is the unique solution to

αθ

∫ εH

ε∗

ε− ε∗

ε∗
dG(ε) = r. (137)

Moreover:

(a) As r → r̄, ε∗ → εL, M → 0, and ϕs → Λβε̄.

(b) As r → 0, ε∗ → εH and ϕs → Λβ [ε̄+ αθ (εH − ε̄)].
(c) ∂ε∗

∂r < 0, ∂M
∂r < 0, and ∂ϕs

∂r < 0.

(d) ∂M
∂Λ > 0, and ∂ϕs

∂Λ > 0.

Proof. Immediate from the equilibrium conditions (133)-(135) by following steps similar to

those in the proof of Lemma 9.

Part (i), and parts (ii), (a), (b), and (c), of Lemma 11 are results analogous to their

counterparts in Lemma 9. Part (ii) (d) shows how real money balances and the equity price

change with the investor’s belief about the proportion of outstanding shares that are claims to

the productive capital.

For what follows, let x∗Z (ω) and s∗Z (ω) denote the optimal investment and equity issuance

decisions of an entrepreneur with productivity realization Z ∈ {0, z} and a balance sheet with

financial wealth per unit of own capital equal to ω. We can write the aggregate investment

chosen at the end of a period by all entrepreneurs with productivity Z ∈ {0, z}, as

X∗Z = λZ

∫
x∗Z (ω) dΩ (ω) ,

and the aggregate stock of equity claims on the capital of entrepreneurs with productivity

Z ∈ {0, z} outstanding at the beginning of a period as

S∗Z = λZ

∫
s∗Z (ω) dΩ (ω) ,
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where λZ ≡ λI{Z=z} + (1− λ) I{Z=0} for Z ∈ {0, z}. The following lemma characterizes the

behavior of the entrepreneurs’ optimal investment and equity issuance decisions as a function

of the market belief Λ, for a given policy rate, r. To state the result it is convenient to make

explicit the dependence of the equity price on the belief, Λ, and the nominal rate, r, by defining

the price function φs (Λ, r) ≡ ϕsz, where ϕs is given in Lemma 11, i.e.,

φs (Λ, r) =

{
Λβ
[
ε̄+ αθ

∫ ε∗
εL

(ε∗ − ε) dG(ε)
]
z, with ε∗ given by (137) if 0 ≤ r ≤ r̄

Λβε̄z if r̄ < r.
(138)

Lemma 12 Assume 1 < max {φsz, φs (1, r̄)}, where φsZ ≡ βεeZ for Z ∈ {0, z}. For any r ∈ R+,

let Λ′ ∈ (0, 1) be the number that satisfies φs (Λ′, r) = 1.

(i) If φs (1, r) < φsz, then:

(a) If Λ′ ≤ Λ,

X∗z = λ

[
Ω [c (ι (φs (Λ, r)))] ι(φs (Λ, r)) +

∫ c(ι(φsz))

c(ι(φs(Λ,r)))
c−1(ω)dΩ (ω) + {1− Ω [c(ι(φsz))]} ι(φsz)

]

S∗z = λ

∫ c(ι(φs(Λ,r)))

0

c(ι(φs (Λ, r)))− ω
φs (Λ, r)

dΩ (ω)

and

X∗0 = S∗0 = (1− λ) ι (φs (Λ, r)) .

(b) If Λ < Λ′,

X∗z = λ

[∫ c(ι(φsz))

0
c−1(ω)dΩ (ω) + {1− Ω [c(ι(φsz))]} ι(φsz)

]
S∗z = 0

and

X∗0 = S∗0 = 0.

(ii) If φsz < φs (1, r), let Λ′′ ∈ (Λ′, 1) be the number that satisfies φs (Λ′′, r) = φsz. Then:

(a) If Λ′′ ≤ Λ, X∗z = λι (φs (Λ, r)), X∗0 = S∗0 = (1− λ) ι (φs (Λ, r)), and

S∗z

{
= X∗z if Λ′′ < Λ

∈
[
λ
∫ c(ι(φs(Λ,r)))

0
c(ι(φs(Λ,r)))−ω

φs dΩ (ω) , X∗z

]
if Λ = Λ′′.

(b) If Λ′ ≤ Λ < Λ′′, X∗Z and S∗Z for Z ∈ {0, z} are as in part (i)(a).

(c) If Λ < Λ′, X∗Z and S∗Z for Z ∈ {0, z} are as in part (i)(b).
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Proof. (i) (a) The expressions for x∗z (ω) and s∗z (ω) used to compute X∗z and S∗z are from part

(iii) of Lemma 10, and the expressions for x∗0 (ω) and s∗0 (ω) used to compute X∗0 and S∗0 are

from part (ii) of Lemma 10.

(i) (b) The expressions for x∗z (ω) and s∗z (ω) used to compute X∗z and S∗z are from part (iv)

of Lemma 10, and the expressions for x∗0 (ω) and s∗0 (ω) used to compute X∗0 and S∗0 are from

part (i) of Lemma 10.

(ii) (a) The expressions for x∗Z (ω) and s∗Z (ω) used to compute X∗Z and S∗Z for Z ∈ {0, z}
are from part (ii) of Lemma 10.

(ii) (b) The expressions for x∗z (ω) and s∗z (ω) used to compute X∗z and S∗z are from part

(iii) of Lemma 10, and the expressions for x∗0 (ω) and s∗0 (ω) used to compute X∗0 and S∗0 are

from part (ii) of Lemma 10.

(ii) (c) The expressions for x∗z (ω) and s∗z (ω) used to compute X∗z and S∗z are from part (iv)

of Lemma 10, and the expressions for x∗0 (ω) and s∗0 (ω) used to compute X∗0 and S∗0 are from

part (i) of Lemma 10.

The assumption 1 < max {φsz, φs (1, r̄)}, or equivalently, 1 < max {εe, ε̄}βz, in the state-

ment of Lemma 12 ensures that, in the absence of adverse selection, entrepreneurs and outside

investors would want to invest a positive amount under any monetary policy (i.e., even in the

nonmonetary equilibrium that obtains for r > r̄).42

To be part of an equilibrium, an investor’s belief, Λ, that a traded equity share represents

a claim to productive unit of capital that yields dividend z > 0 (as opposed to a claim to an

unproductive unit of capital that yields zero dividend) must satisfy Λ ∈ [0, 1] and

Λ = Υ (Λ) ,

where

Υ (Λ) ≡ S∗z
S∗0 + S∗z

, (139)

with S∗Z for Z ∈ {0, z} as described in Lemma 12. Next, we provide a more explicit characteri-

zation of the mapping Υ (·).
42The condition 1 < φsz says that the entrepreneur with the high productivity realization has an incentive to

invest because the entrepreneur’s private return from investing a marginal unit of capital is higher than the price
of capital (in terms of good 2, which equals 1). The condition 1 < φs (1, r̄) says that in the absence of adverse
selection, an outside investor’s discounted expected marginal return from investment under no equity trade, i.e.,
βε̄, is higher than the price of capital (in terms of good 2, which equals 1).
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Lemma 13 Let φs (Λ, r) be given by (138), define φsZ ≡ βεeZ for Z ∈ {0, z}, and assume 1 <

max {φsz, φs (1, r̄)}. For any r ∈ R+, let Λ′ (r) ∈ (0, 1) be the number that satisfies φs (Λ′, r) = 1,

and for any (Λ, r) ∈ [Λ′ (r) , 1]× R+ define

Θ (Λ, r) ≡
∫ c(ι(φs(Λ,r)))

0

c(ι(φs (Λ, r)))− ω
φs (Λ, r) ι (φs (Λ, r))

dΩ (ω) .

(i) If φs (1, r) < φsz,

Υ (Λ) =

{
λ

λ+(1−λ) 1
Θ(Λ,r)

for Λ′ (r) < Λ

0 for Λ = Λ′ (r) ,

and equity is not issued if Λ < Λ′ (r).

(ii) If φsz < φs (1, r), let Λ′′ (r) ∈ (Λ′ (r) , 1) be the number that satisfies φs (Λ′′, r) = φsz.

Then:

Υ (Λ)



= λ for Λ′′ (r) < Λ

∈
[

λ
λ+(1−λ) 1

Θ(Λ,r)

, λ

]
for Λ′′ (r) = Λ

= λ
λ+(1−λ) 1

Θ(Λ,r)

for Λ′ (r) < Λ < Λ′′ (r)

= 0 for Λ = Λ′ (r) ,

and equity is not issued if Λ < Λ′ (r).

Proof. The expression for Υ (Λ) for the case with Λ′ (r) < Λ in part (i) follows from (139) and

parts (i)(a) and (i)(b) of Lemma 12. The expression for Υ (Λ) in part (ii) for the cases with

Λ′ (r) < Λ follow from (139) and parts (ii)(a), (ii)(b), and (ii)(c) of Lemma 12. To show that

Υ (Λ′ (r)) = 0, both for Λ′ (r) < Λ in part (i), and for Λ ∈ (Λ′ (r) ,Λ′′ (r)) in part (ii), proceed

as follows. Write Θ (Λ, r) as

Θ (Λ, r) =

∫ c(ι(φs(Λ,r)))
0 [c(ι(φs (Λ, r)))− ω] dΩ (ω)

φs (Λ, r) ι (φs (Λ, r))
,

notice that

lim
Λ↓Λ′(r)

φs (Λ, r)− 1 = lim
Λ↓Λ′(r)

ι(φs (Λ, r)) = lim
Λ↓Λ′(r)

c(ι(φs (Λ, r))) = 0, (140)

so

lim
Λ↓Λ′(r)

∫ c(ι(φs(Λ,r)))

0
[c(ι(φs (Λ, r)))− ω] dΩ (ω) = lim

Λ↓Λ′(r)
φs (Λ, r) ι (φs (Λ, r)) = 0.
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By L’Hôpital’s rule,

lim
Λ↓Λ′(r)

Θ (Λ, r) = lim
Λ↓Λ′(r)

d
dΛ

∫ c(ι(φs(Λ,r)))
0 [c(ι(φs (Λ, r)))− ω] dΩ (ω)

d
dΛ [φs (Λ, r) ι (φs (Λ, r))]

= lim
Λ↓Λ′(r)

∫ c(ι(φs(Λ,r)))
0 c′(ι(φs (Λ, r)))∂ι(φ

s(Λ,r))
∂φs(Λ,r)

∂φs(Λ,r)
∂Λ dΩ (ω)

ι (φs (Λ, r)) ∂φ
s(Λ,r)
∂Λ + φs (Λ, r) ∂ι(φ

s(Λ,r))
∂φs(Λ,r)

∂φs(Λ,r)
∂Λ

=
limΛ↓Λ′(r)

[
c′(ι(φs (Λ, r)))∂ι(φ

s(Λ,r))
∂φs(Λ,r) Ω (c (ι (φs (Λ, r))))

]
limΛ↓Λ′(r)

[
ι (φs (Λ, r)) + φs (Λ, r) ∂ι(φ

s(Λ,r))
∂φs(Λ,r)

]
= lim

Λ↓Λ′(r)
Ω (c (ι (φs (Λ, r)))) = 0,

where the last two equalities follow from (140) and

lim
Λ↓Λ′(r)

c′ (ι(φs (Λ, r)))− 1 = 0.

The following proposition considers an economy in which the equilibrium market valuation

of marginal investment would be higher than the entrepreneur’s valuation if there were no

adverse selection, and shows that the presence of adverse selection causes the equilibrium market

valuation of marginal investment to fall below the entrepreneur’s valuation.

Proposition 3 For any Λ ∈ [0, 1], let φs (Λ, r) be given by (138), and define φsZ ≡ βεeZ

for Z ∈ {0, z}. Assume 1 < max {φsz, φs (1, r̄)} and φsz < φs (1, r). For any r ∈ R+, let

Λ′ (r) ∈ (0, 1) be the number that satisfies φs (Λ′, r) = 1, and let Λ′′ (r) ∈ (Λ′ (r) , 1) be the

number that satisfies φs (Λ′′, r) = φsz. If Λ′′ (r) < λ < 1, there exists an equilibrium with

equity issuance, (φs (Λ∗, r) ,Λ∗), with Λ∗ ∈ (Λ′ (r) ,Λ′′ (r)], that is characerized by (138) and

Λ∗ = Υ (Λ∗) (with Υ as specified in Lemma 13), provided Ω [c (ι (φs (Λ∗, r)))] > 0. Moreover,

φs (Λ∗, r) ≤ φsz, with “<” if

Λ′′ (r) <
λ

λ+ (1− λ) 1
Θ(Λ′′(r),r)

. (141)

Proof. In an equilibrium with equity issuance, the equity price is given by (138) (by Lemma

11), and the equilibrium belief, Λ∗, satisfies Λ∗ = Υ (Λ∗) (with Υ as specified in Lemma

13). The assumption 1 < max {φsz, φs (1, r̄)} ensures that investment is always positive. The

assumption φsz < φs (1, r) means that in the absence of adverse selection, the equilibrium market
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valuation of marinal investment would be higher than the entrepreneur’s valuation of marginal

investment, as in part (ii) of Lemma 13. In this case, it is immediate from part (ii) of Lemma

13, that if Λ′′ (r) < λ < 1, then there exists at least one value Λ∗ ∈ (Λ′ (r) ,Λ′′ (r)] that satisfies

Λ∗ = Υ (Λ∗). Condition (141) implies Λ∗ < Λ′′ (r), which is equivalent to φs (Λ∗, r) < φsz.

C Data and robustness of empirical findings

C.1 Robustness of regression estimates

Figure 7: Issuances and investment predicted by instrumented q, across liquidity ratio groups,
with additional firm controls

0 2 4 6 8 10 12

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

0.
20

Quarters (h)

γ h
,h

Q
, γ

h,
h Q

+
γ~ h,

h Q

●

●

●

●

●

●
● ●

●

●

●

●

●

●

high liq
low liq

(a) yit = eit/b
i
t

0 2 4 6 8 10 12

−
3

−
2

−
1

0
1

2
3

Quarters (h)

γ h
,h

Q
, γ

h,
h Q

+
γ~ h,

h Q

●
●

●

●

●

●

●

●

● ●

●

●

●

●

high liq
low liq

(b) yit = log(xit/k
i
t)

Notes: Point estimates and 95% confidence intervals for γh,hq and γh,hq + γ̃h,hq from estimating specification

yit+h =f ih + ds,h,t+h + αhIiL,t +
(
ρh + ρ̃hIiL,t−1

)
yit−1 +

(
Λh + Λ̃hIiL,t−1

)
Zit−1 +

(
Ψh + Ψ̃hIiL,t−1

)
Zit−1ε

m
t

+
(
βh + β̃hIiL,t−1

)
T it−1 +

(
γh,hq + γ̃h,hq I

i
L,t−1

)
log

(
qit+hq

)
+ uih,t+h

where Zit is a vector containing the firm’s liquidity ratio, log total assets as a measure of firm size, and
total debtit

total assetsit
as a measure of leverage. log

(
qit+hq

)
is instrumented with T it−1ε

m
t . Vertical red dashed line marks

the value of hq = 0. Confidence intervals constructed based on two-way clustered standard errors at firm and

SIC 3-digit industry-quarter levels.
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Figure 8: Issuances and investment predicted by instrumented q, across liquidity ratio groups,
with additional firm controls including age
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Notes: Point estimates and 95% confidence intervals for γh,hq and γh,hq + γ̃h,hq from estimating specification

yit+h =f ih + ds,h,t+h + αhIiL,t +
(
ρh + ρ̃hIiL,t−1

)
yit−1 +

(
Λh + Λ̃hIiL,t−1

)
Zit−1 +

(
Ψh + Ψ̃hIiL,t−1

)
Zit−1ε

m
t

+
(
βh + β̃hIiL,t−1

)
T it−1 +

(
γh,hq + γ̃h,hq I

i
L,t−1

)
log

(
qit+hq

)
+ uih,t+h

where Zit is a vector containing the firm’s liquidity ratio, log total assets as a measure of firm size,
total debtit

total assetsit
as

a measure of leverage, and time since incorporation as a measure of age. log
(
qit+hq

)
is instrumented with

T it−1ε
m
t . Vertical red dashed line marks the value of hq = 0. Confidence intervals constructed based on two-way

clustered standard errors at firm and SIC 3-digit industry-quarter levels.
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Figure 9: OLS and IV regression estimates, across liquidity ratio groups, given Jarociński and
Karadi (2020) ‘poor man’s sign restrictions’
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Notes: Point estimates and 95% confidence intervals for γh and γh + γ̃h from estimating specification (26) in

panel (a), and specification (28) in panels (b) and (c) with yi,t+h as dependent variable. εmt is the shock series

inferred based on the ‘poor man’s sign restrictions’ of Jarociński and Karadi (2020), for 1990Q1–2016Q4.

Confidence intervals constructed based on two-way clustered standard errors at firm and SIC 3-digit

industry-quarter levels.

Figure 10: IV regression estimates with alternative variable transformations
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Notes: Point estimates and 95% confidence intervals for γh and γh + γ̃h from estimating specification (28) with

yit+h as dependent variable. In panels (a) and (b), qit is included in the regression in levels, in panel (c) as

log(qit). Confidence intervals constructed based on two-way clustered standard errors at firm and SIC 3-digit

industry-quarter levels.

87


	Introduction
	Model
	Equilibrium
	Theoretical results
	Implications
	Tobin's q, monetary policy, and investment
	Monetary policy and stock prices: the turnover liquidity channel
	Theoretical foundation for an empirical identification strategy
	Identifying q-monetary transmission in the presence of a traditional interest-rate channel
	Identifying q-monetary transmission with endogenous financial wealth
	Identifying q-monetary transmission when other transmission channels are correlated with 


	Empirical analysis
	Data
	Results from reduced-form regressions
	Results from IV regressions
	Capital structure dynamics


	Quantitative analysis
	Aggregate relevance in monetary transmission
	Proofs
	Investor's portfolio and bargaining problems
	Stock-market clearing
	Equilibrium characterization: stock prices and real money balances
	Economy with =0
	Entrepreneur's choice of investment and capital structure
	Equilibrium characterization


	Adverse selection
	Data and robustness of empirical findings
	Robustness of regression estimates


