
Journal of Economic Literature 2021, 59(4), 1135–1190
https://doi.org/10.1257/jel.20201479

1135

1.  Introduction

Instabilities are widespread in economic 
time series. For example, casual obser-

vation points to the sharp reduction in 
the volatility of several macroeconomic 

aggregates around the mid-1980s, marking 
the beginning of a period called the “Great 
Moderation”; followed a couple of decades 
later by a large financial crisis, the “Great 
Recession,” during which the relationship 
among macroeconomic variables changed 
abruptly; and finally, the recent COVID-19 
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crisis. More broadly, in a series of papers, 
Stock and Watson (1996, 2003) point to the 
existence of instabilities in a wide variety of 
macroeconomic and financial time series. 
What are the consequences of such instabil-
ities for forecasting and evaluating models’ 
predictive ability?

We answer four important questions that 
arise when forecasting in unstable environ-
ments. The first question is: What are fore-
cast instabilities and why should we care 
about them? We will answer this question by 
illustrating the importance of instabilities in 
four empirical and highly relevant economic 
examples: (i) the great recession of 2007–08 
(Ng and Wright 2013, Alessi et al. 2014); 
(ii) instabilities in forecasting asset returns 
and exchange rates (Goyal and Welch 2008, 
Rossi 2013); (iii) instabilities in predicting 
inflation; and (iv) instabilities in survey den-
sity forecasts. The examples anticipate the 
themes of this article: (a) the forecasting 
ability of economic predictors does change 
over time; and (b) evaluating forecasting 
models using traditional methods fails in 
the presence of the instabilities that we typ-
ically observe in macroeconomic and finan-
cial data. Additional theoretical examples 
help clarify what we mean by instabilities in 
forecasting performance. Note that, in this 
article, we interpret instabilities in a broad 
sense, including time variation in forecast-
ing performance. Importantly, we show that 
breaks in models’ parameters that are of 
interest to the researcher are neither nec-
essary nor sufficient to generate time vari-
ation in models’ forecasting performance: 
thus, one should not test for breaks in such 
parameters, but rather evaluate their fore-
casting ability in a robust way.

In fact, the second important question 
that we address is: How should one evaluate 
whether a model forecasts well in the presence 
of instabilities? Our emphasis is on stable and 
satisfactory forecast performance, rather than 
stable forecasts. We illustrate how to evaluate 

the forecasting performance of a model either 
in isolation (“absolute” forecasting ability) or 
relative to its competitors (“relative” fore-
casting ability).

A third, crucial question is: How may we 
improve forecasts in the presence of instabil-
ities? We review strategies that help improve 
models’ forecasting performance by either 
explicitly including instabilities at the model 
estimation stage or by exploiting big data.

Finally, the fourth question is: How does 
one correctly measure and assess forecast 
uncertainty in unstable environments? 
The latter is an important question for pol-
icy makers, who frequently add fan charts 
around their forecasts or confidence inter-
vals around their historical path to convey an 
assessment of their uncertainty.

It is important to note that this survey is 
useful not only for forecasters and practi-
tioners, who routinely produce and use fore-
casts, but more broadly for researchers whose 
goal is to evaluate the performance of their 
models. In fact, out-of-sample forecasts are 
not only a useful guide for investors and fore-
casters, but also a diagnostic tool and a reality 
check on models’ performance. Indeed, eval-
uating models’ performance in sample faces 
the risks of over-fitting, data snooping, and 
lack of robustness to the presence of instabil-
ities: evaluating models’ in terms of their out-
of-sample forecasting ability helps alleviate 
these problems.1 On the other hand, Diebold 
(2015) argues in favor of a more cautionary 
use of forecast tests: while they are appro-
priate for evaluating forecasts, they may not 
always be the best option for evaluating spe-
cific features of a model, as they may involve 
a loss of power. If a researcher has clearly 
in mind which features he/she would like 
to evaluate (e.g., instabilities in the model’s 

1 See Clark and McCracken (2005). It is also true that 
even out-of-sample forecast evaluation procedures might 
be subject to strategic data mining in finite samples. See, 
e.g., Inoue and Kilian (2005) for a discussion.
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parameters), there might be better in-sample 
tests to achieve such a goal.

This survey is also relevant for central banks 
and policy institutions, given the challenges 
they face in the presence of instabilities. Their 
models can be broadly divided into two cat-
egories: reduced-form (statistical) and struc-
tural (behavioral) models. The former are 
typically used for forecasting and the latter for 
policy counterfactuals. As we will explain in 
more detail in section 3, while the examples 
in section 2 focus on a simple linear model for 
clarity of exposition, all the forecast evaluation 
methodologies reviewed in section 3 and the 
forecast combinations described in section 
4.2.3 are loosely analogous in reduced-form 
and structural models. For the latter, robust-
ness to instabilities is indeed a crucial feature 
in light of the Marschak–Timbergen–Lucas 
critique. According to the critique, if the 
parameters of a model are not structural (i.e., 
not invariant to policy), then they necessarily 
change as a consequence of policy changes. 
In Lucas’s (1976, p. 41) own words: “Given 
that the structure of an econometric model 
consists of optimal decision rules of economic 
agents, and that optimal decision rules vary 
systematically with changes in the structure 
of series relevant to the decision maker, it 
follows that any change in policy will system-
atically alter the structure of econometric 
models.” Thus, if one forecasts the effects of 
changes in policy using a model whose param-
eters endogenously change after a change in 
policy, the policy recommendations based on 
such models may potentially be misleading. 
Forecast evaluation may provide a useful real-
ity check for such models. On the other hand, 
however, if policy is conducted with the goal 
of eliminating predictable variation, reduced-
form models may not predict the economic 
variables targeted by policy makers exactly 
because of their own actions—see McLeay 
and Tenreyro (2019).

Another area where this survey is rele-
vant is finance. Sometimes, the perception 

that asset returns are predictable is due to 
backtesting, in-sample over-fitting, or data 
snooping. Evaluation methods based on 
out-of-sample forecasting ability provide 
an effective way to protect against these 
concerns. Thus, this survey also discusses 
empirical examples that are relevant in both 
finance and international finance.

In several cases, the model that gener-
ated the forecasts may be unknown; such 
is the case of survey-based forecasts, which 
recently attracted a lot of attention given 
their good empirical performance (see 
Faust and Wright 2013; and Ang, Bekaert, 
and Wei 2007, among others). While mod-
el-based forecasts are forecasts produced 
by using a model, survey-based forecasts 
are forecasts collected from survey partici-
pants. Although survey participants may use 
models to forecast, in practice such forecasts 
typically include a large amount of judgment 
(Stark 2013). The empirical examples dis-
cussed in section 2 include both model-based 
and survey-based forecasts. The evaluation of 
models’ forecasts in section 3 is also discussed 
in the context of both model-based as well as 
survey-based forecasts. We can only discuss 
how to improve model-based forecasts if 
alternative predictors can be included or the 
time variation can be explicitly modeled, and 
this is possible only for model-based fore-
casts; however, survey forecasts can be, and 
often are, combined with other model-based 
forecasts to improve their performance, as 
discussed in section 4.2.3.

Finally, there are several surveys on fore-
casting and instabilities: how does this sur-
vey differ from the existing ones? This survey 
provides a broad and informal introduction 
to the difficulties faced by forecasters and 
researchers in the presence of instabilities. 
It aims at increasing awareness of the chal-
lenges that they face by focusing on a series of 
empirical examples of interest to economists as 
well as researchers at economic, financial, and 
policy institutions. It also illustrates a variety of 
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recently developed approaches to overcome 
such difficulties and robustify the empirical 
findings. For more details on the practical 
implementation and the formal justification of 
several of the methods illustrated in this sur-
vey, see the technical review by Rossi (2014a). 
Other surveys target more specific topics: 
Goyal and Welch (2008) and Timmermann 
(2008) focus on asset predictability; Stock and 
Watson (2003) on macroeconomic variables 
and asset prices; Faust and Wright (2013) on 
inflation; Rossi (2013) on exchange rates; Ng 
and Wright (2013) and Alessi et al. (2014) on 
the great recession.

This article is organized as follows. 
Section 2 motivates why instabilities are 
important in forecasting using four key illus-
trative empirical examples; it also clarifies 
what we mean by instabilities in forecast-
ing performance and how they differ from 
in-sample structural breaks. Section 3 over-
views methodologies to assess whether mod-
els forecast well in the illustrative examples 
previously introduced. Section 4 discusses 
strategies for improving models’ forecasting 
performance. Section 5 focuses on how to 
report measures of uncertainty around fore-
casts, and section 6 concludes.

2  Why Should We Care about Instabilities 
When Forecasting?

Why are instabilities important when 
forecasting? In what follows, we discuss 
four empirically relevant examples, which 
include both model-based forecasts as well 
as surveys’ forecasts. Each one of the exam-
ples is motivated by four key areas that are 
of particular interest to forecasters and 
economists, and where instabilities are pre-
dominant: forecasting the great recession of 
2007–09 and the slow recovery afterwards; 
predicting inflation dynamics; forecasting 
asset prices; and forecasting the whole prob-
ability distribution of output growth. Each of 
the examples will, in turn, illustrate four key 

themes in forecasting under instabilities that 
will be the focus of the next sections: assess-
ing whether a given model forecasts well 
in the presence of instabilities; evaluating 
which model forecasts best among compet-
ing models; which strategies have been most 
successful in improving models’ predictive 
ability; and assessing as well as improving 
measures of uncertainty around forecasts, 
such as predictive densities and forecast con-
fidence intervals.

2.1	 Forecasting the Great Recession of 
2007–09 and the Slow Recovery

The Great Recession of 2007–09 was the 
largest recession faced by the United States 
after World War II. Ng and Wright (2013) 
and Alessi et al. (2014) investigate to what 
extent the crisis was forecastable in real time. 
In particular, Ng and Wright (2013) overview 
the effectiveness of a series of economic pre-
dictors as well as survey forecasts made by 
professional forecasters (such as the Survey 
of Professional Forecasters—SPF hereafter) 
and policy institutions (such as the Federal 
Reserve’s Greenbook forecasts). They find 
that some predictors would have been poten-
tially useful, but, at the same time, those that 
would have been useful at the time of the 
crisis were different from those in normal 
times. Alessi et al. (2014) focus on the mac-
roeconomic forecasts of the Federal Reserve 
Board (the Fed) and the European Central 
Bank (ECB) around the time of the crisis, and 
compare them with surveys. They note that 
the central banks’ forecasts were aligned to 
survey participants’ before the crisis, but that 
they behaved very differently at the time of 
the crisis: surveys underestimated the sever-
ity of the crisis more than the central bank.

We revisit the empirical evidence using the 
most recent data. Figure 1 plots forecasts of 
real output growth (measured as the growth 
rate of real Gross Domestic Product—GDP 
in short) made by the Federal Reserve 
(labeled “Greenbook,” dashed line) as well 
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as the SPF (labeled “SPF,” dotted line) 
together with the actual realizations of out-
put growth. The forecast horizon is three 
quarters. At any point in time, the vertical 
gap between the realization (depicted by 
the solid line) and the forecast is the forecast 
error: a positive gap means that the forecast 
is under-predicting the target variable.2

2 The data are available from the Federal Reserve 
Bank of Philadelphia. The end date is constrained by the 
availability of the Greenbook (Tilebook) forecasts, which 
are only published with a delay of five years.

The figure shows several features that 
suggest the presence of instabilities in sur-
veys’ and Federal Reserve’s forecasting per-
formance. On the one hand, both forecasts 
were roughly on target between 2003 and 
2007, that is, up to the Great Recession. On 
the other hand, the magnitude of the large 
recession was difficult to forecast by the 
Federal Reserve and the SPF, both of which 
substantially under-predicted the severity of 
the decrease in output growth. The figure 
confirms that, indeed, survey participants 
underestimated the severity of the crisis 

Figure 1. Forecasting the Great Recession

Notes: The figure plots three-quarters-ahead forecasts of US  GDP  growth made by the Federal Reserve 
(the dashed line, labeled “Greenbook”) and the Survey of Professional Forecasters (the dotted line, labeled 
“SPF”), together with the actual realization of GDP growth (the continuous line, labeled “Realization”). 
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more than central banks, as noted by Alessi 
et al. (2014); however, since the end of the 
financial crisis, central banks overestimated 
the recovery more than survey participants.

Hence, the forecasting performance 
appears to have been subject to a serious 
deterioration at the time of the latest finan-
cial crisis. This example raises an important 
question: how to improve models’ forecasts 
in the presence of instabilities. Which esti-
mation strategies and, more generally, 
which approaches to model and forecast 
specification can help guard against forecast 
breakdowns? Section 4 will tackle this issue. 

It is important to note that the poor fore-
casting performance is conditional on the 
model used by the researcher and that the 
forecast might be poor because either the 
conditional mean or the volatility are incor-
rectly specified (or both). In particular, when 
the volatility is time varying, the model spec-
ified by the researcher may produce poor 
forecast densities if it does not include such 
time variation. While models in finance typ-
ically allow time-varying volatilities (stochas-
tic volatility or generalized autoregressive 
conditional heteroskedasticity [GARCH]), 
as the latter is widely understood to be a key 
feature of returns, macroeconomic mod-
els may or may not let volatilities be time 
varying, and in fact a large part of the lit-
erature assumes constant volatility. Thus, if 
a researcher specifies a constant volatility 
model and the volatility turns out to be time 
varying, this is a source of forecast break-
down, conditional on the model estimated 
by the researcher. In section 5, we discuss 
forecast densities and review several prom-
inent models developed in the last decade 
that explicitly allow for time variation in the 
volatility.

2.2	 Forecasting Inflation

Inflation is a key variable for central banks, 
the private sector, and financial institutions. 
In fact, firms forecast inflation to set their 

prices; financial institutions forecast inflation 
to predict real returns of investments; and an 
important concern for central banks is to tar-
get inflation to a suitable level.

The behavior of inflation has changed over 
time. Early on, Stock and Watson (1999a) 
argued that the coefficients of the Phillips 
curve—a model where the current level 
of unemployment is used to predict future 
inflation—are time varying; furthermore, 
the Phillips curve model can be improved 
by including additional measures of real 
aggregate activity. Others have argued that 
the long-run inflation trend is time varying 
(Cogley and Sbordone 2008).

These findings suggest that inflation 
forecasts’ properties changed over time. 
Indeed, this is the case. Figure 2 shows two-
quarters-ahead forecasts of US inflation in 
the last four decades. The measure of quar-
terly inflation that we consider is the (annu-
alized) quarter-over-quarter GNP deflater 
growth rate up to 1991 and the (annual-
ized) quarter-over-quarter GDP deflater 
growth rate afterwards, consistently with 
the Greenbook forecasts. The data are from 
the Federal Reserve Bank of Philadelphia, 
and are matched to the timing of the SPF, 
also provided in their dataset. The realized 
values are the second revision from the 
real-time dataset by Croushore and Stark 
(2001). Again, the dashed line depicts the 
forecasts made by the Federal Reserve and 
the dotted line those made by the SPF. The 
solid line in the figure shows the realized 
inflation rate. The figure highlights inter-
esting time-varying patterns in the Federal 
Reserve and SPF’s forecasting perfor-
mance. Both forecasts under-predict actual 
inflation between 1970 and 1980, a time 
when unforecastable oil prices persistently 
hit the economy; after 1980, however, both 
forecasts consistently over-predict inflation 
for two decades. Hence, the predictive abil-
ity of the SPF as well as that of the Federal 
Reserve did substantially change over time.
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This example raises a second, import-
ant question, namely: How can one assess 
models’ ability to accurately predict the 
target variable when the predictive abil-
ity changes over time? This is a question 
related to the evaluation of a forecast, 
rather than its construction or estimation. 
In other words, if a model’s forecasting per-
formance shows time-varying features, are 
its forecasts “unbiased”—in the sense of dis-
playing a good performance in tracking the 
ex post realizations? We discuss this topic 
in section 3.1.

2.3	 Forecasting Asset Returns and 
Exchange Rates

Financial returns—whether asset prices, 
the stock market, exchange rates, or equity 
premia—are notoriously very difficult to 
forecast. Part of the difficulty in forecast-
ing financial returns is again related to the 
presence of time variation. As summarized 
in Goyal and Welch (2008), when predict-
ing the equity premium: “Different articles 
use different techniques, variables, and 
time periods. (…) Some articles contradict 
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Figure 2. Forecasting Inflation

Notes: The figure plots two-quarter-ahead forecasts of US inflation made by the Federal Reserve (the dashed 
line, labeled “Greenbook”) and the Survey of Professional Forecasters (the dotted line, labeled “SPF”) together 
with the actual realization of inflation (the continuous line, labeled “Realization”).
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the findings of others. Still, most readers 
are left with the impression that ‘prediction 
works’—though it is unclear exactly what 
works. . . .”  Goyal and Welch (2008) find 
that most models that performed well in the 
past (especially during the oil shock period 
in the early 1970s) nowadays have poor out-
of-sample forecasting performance relative 
to the historical mean: again, the predic-
tive ability of the models has changed over 
time, but in relative terms. Goyal and Welch 
(2003) found similar results for the dividend 
ratio. Pesaran and Timmermann (1995) and 
Rapach and Wohar (2006) find that stock 
market return predictability is present only 
in a few subsamples; Paye and Timmermann 
(2006) find breaks in the coefficient of stock 
return predictive regressions; and Pesaran 
and Timmermann (2000) note that oil prices 
were an important predictor for stock prices 
during the 1970s but that their importance 
subsequently vanished. Similarly, Rossi 
(2013) finds that the predictive ability of 
exchange rate models is ephemeral and 
changes over time.

The time variation that makes asset prices 
so difficult to predict comes from many 
sources: external shocks that continuously 
hit the markets, dynamic changes in the 
economy, the low power of the economic 
predictors, and it may also be due to pre-
dictability being endogenously affected by 
forecasters’ own attempts to identify and 
exploit it.3 According to Timmermann (2008, 
p. 2), predictability is “a moving target that 
is changing over time. Just when a forecaster 
may think that he has figured out how to pre-
dict returns, the dynamics of market prices 
will, in all likelihood, have moved on—possi-
bly as a consequence of the forecaster’s own 
efforts.” In other words, forecasters attempt 
a variety of different approaches to predict, 
and the most successful models “will be 

3 Data snooping may also be another source; we will dis-
cuss it separately in section 4.2.5.

rapidly adopted by other forecasters, there-
fore affecting the dynamic evolution of the 
returns over time and dissipating whatever 
predictability there was in the first place.” 
Supporting Timmermann’s (2008) conjec-
ture, Sullivan, Timmermann, and White 
(1999) find that the performance of some 
trading rules disappeared shortly after their 
publication. The competition among fore-
casters implies that any forecasting method 
will have poor out-of-sample performance 
over a long time period; however, for the 
same reason, any given model may work well 
for very short periods of time. Again, accord-
ing to Timmermann (2008), “there appear 
to be pockets in time where there is mod-
est evidence of local predictability; … the 
identity of the best forecasting method can 
be expected to vary over time, and there 
are likely to be periods of model breakdown 
where no approach seems to work.”

We consider two illustrations of instabil-
ities in financial variables. The first focuses 
on forecasting the equity premium. Figure 3 
depicts realizations of US equity premia, 
together with forecasts based on several of 
Goyal and Welch’s (2008) economic predic-
tors. The benchmark model is the historical 
mean, calculated in a rolling window over 
the previous twenty years. The rolling mean 
attempts to capture a slowly changing mean 
in equity returns in an agnostic way. The other 
forecasts, also based on a twenty-year roll-
ing window, are based on: the book-to-mar-
ket ratio, calculated as the ratio of the book 
value and the market value of the Dow Jones 
Industrial Average (labeled “BookToMkt”); 
the default yield spread, calculated as the 
difference between BAA and AAA-rated 
corporate bond yields (labeled “DFY”); the 
investment to capital ratio (labeled “Inv/K”); 
the consumption, wealth, and income 
ratio (Lettau and Ludvigson 2001, labeled 
“CAY”); the long term government bond 
yield (labeled “LongYield”); and the term 
spread, calculated as the difference between 
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Figure 3. Forecasting the Equity Premium

Notes: Realized values of US equity premia (continuous line, labeled “Realization”) together with forecasts 
based on the historical mean (dotted line) as well as models with predictors, depicted by the dashed line, 
including: book to market ratio (“BookToMkt”); the default yield spread (“DFY”); the investment capital ratio 
(“Inv/K”); the consumption, wealth and income ratio (“CAY”); the long-term yield (“Long yield”); and the 
term spread (“Spread”).
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the long-term yield on government bonds 
and the Treasury bill (labeled “Spread”).4

Figure 3 visually confirms that, most of 
the time, asset return predictability seems 
elusive and local. For example, note how 
the book-to-market ratio seems to provide 
a good fit in the mid-1950s, but completely 
missed the large drops in the early 2000s; in 
contrast, the default yield spread did catch 
some of the upturns in the mid-1970s, but 
also missed the large drops on the early 
2000s. 

In international finance, a similar prob-
lem is faced by researchers attempting to 
predict exchange rate returns. Figure 4 
depicts realizations of the rate of growth of 
the UK pound/US dollar exchange rate (solid 
line, labeled “Realization”) together with the 
one-month-ahead forecasts of two models. 
The first model is the random walk, a typ-
ical benchmark in the literature, according 
to which exchange rates are unpredictable. 
Hence, its forecasts are always zero, depicted 
by the dotted line. The second model is 
uncovered interest rate parity (dashed line, 
labeled “UIRP”), according to which the 
interest rate differential between two coun-
tries should predict their bilateral exchange 
rate.5 The picture suggests that, in the first 
part of the sample and up to the end of 1990, 
UIRP forecasts track the subsequent down-
ward and upward swings of realized exchange 
rates somewhat better than the random 
walk. However, the model’s performance 
seems to worsen afterward, suggesting that 
the predictive power of relative interest rates 
may have disappeared after 1990. 

4 The data are available on A. Goyal’s website: http://
www.hec.unil.ch/agoyal/.

5 The data sources are: 3-Month Rates and Yields: 
Treasury Securities for the interest rate in the United 
Kingdom (available up to 2017); the 3-Month US Treasury 
Bill: Secondary Market Rate (TB3MS) for the US interest 
rate; and the US/UK Foreign Exchange Rate (EXUSUK) 
for the exchange rate. All data are monthly from the 
Federal Reserve Bank of St. Louis’s FRED database.

In both the equity premium and the 
exchange rate prediction examples, the 
empirical evidence indicates that the pre-
dictive ability of the economic variables may 
be time varying relative to the benchmark 
model. This is an issue regarding the eval-
uation of the forecasting ability of a model 
relative to a benchmark. In other words, the 
models’ relative forecasting performance 
seems to have changed over time. But, did 
it actually change? How to formally eval-
uate whether that is the case? And how to 
identify the best model under these circum-
stances? We will tackle this topic in sec-
tion  3.2. It is also important to note that, 
while the failure of economic models to 
beat simple benchmarks is often ascribed 
to instabilities, another interpretation is the 
following. Data snooping (or data mining) 
could lead researchers to find an apparent 
predictive relation that is not stable exactly 
because it is a fluke. Section 4.2.5 discusses 
the importance of being robust to data 
snooping.

2.4	 Instabilities in Predictive Densities and 
Forecast Confidence Intervals

Instabilities are present not only in point 
forecasts, but in predictive densities as well. 
Figure 5 depicts the one-year-ahead SPF 
prediction of output growth together with 
the 50 percent, 90 percent, and 95 percent 
quantiles of the SPF’s predictive density 
(the lightest, medium, and darkest bands, 
respectively).6 The darkest continuous line 
plots realized output growth. The forecasting 
performance of the survey densities appears 
to be time varying: it generally encompasses 
the realization in normal times, but is overly 

6 The average is calculated as the average probability 
attributed by the sample of forecasters to each bin; then 
the average predictive density over bins is smoothed out 
using a Gaussian distribution. The fixed-event predictive 
densities are transformed to a fixed horizon by taking a 
weighted average across forecast horizons—see Rossi, 
Sekhposyan, and Soupre (2016) for details.

http://www.hec.unil.ch/agoyal/
http://www.hec.unil.ch/agoyal/
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optimistic during the two recessions in the 
sample—the 2001 recession and the 2007–
09 financial crisis. Aastveit et al. (2017) also 
find evidence of instabilities during the 
recent financial crisis in both point and den-
sity forecasts. Alessi et al. (2014) find that 
central banks’ density forecasts were aligned 
with central banks’ survey forecasts before 
2007, but much more pessimistic afterwards, 
suggesting that central banks were quicker in 

recognizing the downside risks of the finan-
cial crisis than survey participants.

This example motivates the need for 
methods to assess and improve forecast 
densities (as opposed to point forecasts, 
which were the focus of the previous exam-
ples). As the performance of predictive 
densities changes over time, how to assess 
whether predictive densities are correctly 
specified in the presence of time-variation? 
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Figure 4. Exchange Rate Forecasts

Notes: The figure plots realizations of the rate of growth of the UK pound/US dollar exchange rate (solid 
line, labeled “Realization”) as well as the one-month-ahead forecasts of the random walk (dotted line, labeled 
“Random walk”) and Uncovered Interest Rate Parity (dashed line, labeled “UIRP”).
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And how to compare predictive densi-
ties? These issues will be investigated in  
section 5.

2.5	 What Are Instabilities in Forecasting 
Performance? Definitions and Examples

What do we mean by instabilities in 
forecasting ability? And how do they 
differ from breaks in models’ parame-
ters? The following theoretical examples 
provide illustrations as well as clarifications. 

Throughout this survey, we measure fore-
casting ability in terms of the out-of-sam-
ple square forecast error (its average will 
be referred to as the mean square forecast 
error, or MSFE). The sequence of forecast 
errors are obtained in a pseudo out-of-sam-
ple forecast environment by mimicking 
what a forecaster would have done in real 
time: estimating the model using observa-
tions up to a certain point in time to predict 
the value of a target variable after ​h​ periods, 
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density forecasts, together with the mean prediction (the central line) and the realized value (the darkest 
continuous line).
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and then taking the difference between the 
ex post realization of that variable and the 
forecast. The resulting sequence of out-
of-sample forecast errors will be denoted 
by ​​ε​t+h|t​​​, for ​t  =  R, … , T​. Conditional on 
a choice of loss function, we define fore-
cast instabilities as instabilities in the loss. 
Since in our case we assume a quadratic 
loss,7 forecast instabilities are instabilities 
in the squared forecast errors, ​​ε​ t+h|t​ 2 ​​ . Such 
instabilities can be smooth and continuous 
or discrete and abrupt; they can take the 
form of structural breaks, regime switches, 
et cetera.

Instabilities in the forecasting perfor-
mance are often linked to structural breaks 
in the models’ parameters that are of direct 
interest to researchers—for example, the 
conditional mean parameter ​β​  in the case 
of a linear model where ​​E​t​​ ​y​t+h​​  =  β ​x​t​​​. 
However, as argued in Giacomini and Rossi 
(2010) and Rossi (2014a), while structural 
breaks in the parameters of direct economic 
interest to researchers (i.e., ​β​) might cause 
instabilities in forecasting, they are neither 
necessary nor sufficient. They are not nec-
essary because the effect of instabilities in 
several parameters could cancel themselves 
out, resulting in a constant MSFE over time. 
Also, it is well known that the MSFE can 
be decomposed into two components: the 
squared bias and the variance. A bias origi-
nating from structural breaks in the param-
eters of one model might counterbalance a 
higher parameter estimation error variance 
in the competing model, resulting in the two 
models having the same MSFE. They are not 
sufficient either, because the model might be 
misspecified, or because the instabilities do 
not appear in the part of the model that the 
researcher is considering. Although this is a 
very simple point, it is often misunderstood 

7 Other loss functions can be used—see Elliott and 
Timmermann (2008)—for example, the absolute loss, 
which corresponds to the absolute forecast error.

or underappreciated; therefore, this sec-
tion formally discusses several examples to  
clarify it.

It is important to clarify at the onset that 
the definition of forecast instabilities in this 
article refers to the forecast performance 
rather than the forecasts themselves. The 
forecasts may be stable, yet the forecast 
performance may display instabilities. For 
example, suppose a country’s output growth 
forecast is always the average growth for 
that country. This forecast is constant, but 
its performance might be good in normal 
times and bad in expansions and recessions. 
Thus, the model’s predictive ability is time 
varying and the performance is, at times, 
poor: in fact, the forecast errors are zero in 
normal times, positive in expansions, and 
negative in recession. Furthermore, accord-
ing to traditional procedures, the forecasts 
of this model may appear unbiased, as the 
positive forecast errors in expansions could, 
on average, cancel out the negative forecast 
errors in recessions. However, from time to 
time, the model is not predicting well, and 
the techniques robust to instabilities dis-
cussed in this article would highlight such 
poor forecasting performance. It is also 
important to clarify that, as discussed in the 
previous section, the forecast performance 
is conditional on the model estimated by 
the researcher. For simplicity, and in line 
with typical macroeconomic approaches, 
we distinguish between the parameter of 
direct interest to the researcher (that is, the 
parameters in the conditional mean of the 
forecast, ​β​), whose time variation may or 
may not be modeled, and other parameters 
whose time variation is un-modeled (the 
volatilities).8

8 Other examples with similar conclusions can be 
worked out for more general loss functions and estimated 
time-varying volatilities while letting other moments of the 
data change over time.
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Let the variable to be forecasted at time 
 ​​(t + h)​​ be denoted by ​​y​t+h​​​ and the fore-
cast made at time ​t​ be denoted by ​​y​t+h|t​​​,  
where ​h > 0​ is the forecast horizon; thus,  
​​ε​t+h|t​​ = ​y​t+h​​ − ​y​t+h|t​​​, for ​t = R,​ ​R + 1, …,​​T.​ 
When necessary, superscripts refer to a model, 
generically denoted by ​m​, where, in this sec-
tion, ​m  =  1,​ ​2​. The first example shows that 
parameter instability does not necessarily 
result in unstable forecasting performance.

EXAMPLE 1 (Parameter Instability ​⇏​ 
Unstable Forecast Performance): Let the 
data observed by the researcher be generated 
as follows:

(1)	​​ y​t​​  = ​ β​t​​ ​x​t−1​​ + ​ε​t​​,​

(2)	​​ x​t​​  ∼  independent N​(0, ​σ​ X,t​ 2 ​ )​,​

(3)	​​ ε​t​​    ∼  independent N​(0, ​σ​ ε,t​ 2 ​ )​,​

and ​​x​t​​​ and ​​ε​t​​​ be scalar vari-
ables, independent of each other. 
The forecasting model assumes that ​​y​t​​​ is 
unpredictable. The researcher evaluates 
the model according to its one-step-ahead, 
out-of-sample forecasts. The squared fore-
cast error at time ​​(t + 1)​​ equals ​​σ​ ε,t+1​ 2 ​  + ​
β​ t+1​ 2 ​ ​ σ​ X,t​ 2 ​​ . Hence, the model’s forecast perfor-
mance can be constant even if the param-
eters of the model (​​β​t​​​) are time varying, 
as long as the variability in the parameter 
cancels out the variability in the predictor 
or in the error term, resulting in a constant 
value of ​​σ​ ε,t+1​ 2 ​  + ​β​ t+1​ 2 ​ ​ σ​ X,t​ 2 ​​ . That is, when ​​
σ​ ε,t+1​ 2 ​  − ​σ​ ε,t​ 2 ​   ≃  − ​β​ t+1​ 2 ​ ​ σ​ X,t​ 2 ​  + ​β​ t​ 2​ ​σ​ X,t−1​ 2 ​​ . 
Note that the predictability can be constant 
even if the underlying true model changes 
over time. For example, when ​​β​t​​  =  0​ and 
​​σ​ ε,t​ 2 ​  = ​σ​ ε​ 2​​ constant for ​t ≤ τ​, while ​​β​t​​ ≠ 0​  
and ​​σ​ ε,t​ 2 ​ ,​ ​​σ​ x,t​ 2 ​​  are time varying such  
that ​​σ​ ε,t+1​ 2 ​  − ​σ​ ε,t​ 2 ​  ≃ − ​β​ t+1​ 2 ​ ​ σ​ X,t​ 2 ​  +​β​ t​ 2​ ​σ​ X,t−1​ 2 ​​  for 
​t  >  τ​, the model switches from ​y​ being 
unpredictable to being predictable using past 
values of the ​x​ terms​​.

The next example, taken from Giacomini 
and Rossi (2010), shows that structural 
breaks in the parameters need not neces-
sarily result in unequal nor unstable relative 
predictive performance.

EXAMPLE 2 (Parameter Instability ​⇏​ 
Unstable Relative Forecast Performance): 
The data are generated as follows:

(4)	​​ y​t​​  = ​ β​t​​ ​x​t​​ + ​ε​t​​,​

	​​ x​t​​  =  0.5 ​x​t−1​​ + ​ν​t​​,​

	​​ ν​t​​  ∼  i.i.d. N​(0, 1)​, ​ ε​t​​  ∼  i.i.d. N​(0, ​σ​ ε​ 2​)​, 

	  independent of each other,​

and, for simplicity, ​​x​t+1​​​ is known at time ​t​. 
The researcher compares one-step-ahead, out-
of-sample forecasts of two models. The first 
model is equation (4), where the parame-
ter ​β​ is estimated in sample by ordinary least 
squares (OLS) over a rolling window using 
the last ​R​ observations (​​​β ˆ ​​t,R​​​), where ​R​ is finite 
and fixed. Hence, its forecast at time ​t​ is:

(5)	​​ y​ t+1|t​ ​(1)​ ​   = ​​ β ˆ ​​t,R​​ ​x​t+1​​.​

The second model instead assumes that ​​y​t+1​​​ is 
unpredictable; hence, its forecast is:

(6)	​​ y​ t+1|t​ ​(2)​ ​   =  0.​

The relative forecasting performance, mea-
sured by the expected squared forecast error 
difference, is the same if:

(7)  ​  E​[​​(​y​t+1​​ − ​y​ t+1|t​ ​(1)​ ​ )​​​ 
2
​]​ 

	     =  E​[​​(​y​t+1​​ − ​y​ t+1|t​ ​(2)​ ​ )​​​ 
2
​]​.​

Condition (7) is satisfied if

(8)	​​ β​t+1​​  = ​ 
​ 
​​(​∑ j=t−R+1​ t  ​​​β​j​​ ​x​ j​ 2​)​​​ 

2
​
  ___________ 

​∑ j=t−R+1​ t  ​​ ​x​ j​ 2​
 ​  + ​σ​ ε​ 2​

  ________________  
2​∑ j=t−R+1​ t  ​​ ​β​j​​ ​x​ j​ 2​

 ​ ,  

	 t  =  R, … , T − 1​.9

9 See Giacomini and Rossi (2010).
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Thus, the models’ expected relative fore-
casting performance can be the same at each 
point in time even though the parameters in 
the conditional mean of the true model are 
time varying.

Note that, in this case as well, the true 
model could switch over time, yet the relative 
predictive ability does not change: this would 
be the case if, for example, ​​x​t​​  =  1​, ​​β​t​​  = ​
σ​ ε​ 2​ / t​ for ​t  ≤  τ​ and, for ​t  >  τ​, ​​x​t​​, ​β​t​​​ are time 
varying such that equation (8) holds. 

On the other hand, one could also encoun-
ter situations where the parameters of 
the model that are of direct interest to the 
researcher are constant, yet a model’s fore-
casting performance or its forecasting per-
formance relative to a competitor is time 
varying, as the following examples show.

EXAMPLE 3 (Unstable Forecast Perform-
ance with Constant Parameters): Let the 
data be generated as in Example 1, except 
that ​​β​t​​  =  β​ is constant. The researcher 
evaluates the one-step-ahead out-of-sample 
forecasts of a model that assumes that ​​y​t​​​ is 
unpredictable. Its expected one-step-ahead 
squared forecast error at time ​​(t + 1)​​ equals ​​
σ​ ε,t+1​ 2 ​  + ​β​​ 2​ ​σ​ X,t​ 2 ​​ , which can be time varying 
even if ​β​ is constant. Hence, a model’s fore-
casting performance can be time varying even 
if the parameter in the conditional mean of the 
model (​β​) is constant. Note that the model’s 
forecasting performance will be time varying 
even if the variance of the errors is constant, 
as long as the variance of the regressor is time 
varying.

EXAMPLE 4 (Unstable Relative Forecast 
Performance with Constant Parameters): 
Let the data be generated as follows:

(9) ​​ y​t​​  =  β ​x​t−1​​ + ​ε​t​​,​

	​​ x​t​​  ∼  independent N​(0, ​σ​ X,t​ 2 ​ )​,​

	​​ ε​t​​   ∼  i.i.d. N​(0, ​σ​ ε​ 2​)​,​

where ​​x​t​​​ and ​​ε​t​​​ are independent of each 
other. The researcher compares the one-
step-ahead, out-of-sample forecasts of two 
models: a model where the predictor is 
just a constant and the true model (equa-
tion (9)) where the researcher knows the 
true value of ​β​ when making the fore-
cast. The forecast error of the first model  
is ​​y​t+1​​ − ​R​​ −1​ ​∑ j=t−R+1​ t  ​​​y​j​​​​  =  β ​x​t​​ + ​ε​t+1​​ −  
​[​R​​ −1​ ​∑ j=t−R+1​ t  ​​​(β ​x​j−1​​ + ​ε​j​​)​]​​, while that of the 
second model is ​​ε​t+1​​​. Since the regressors are 
independent of the error term and both are 
independent over time, the expected squared 
forecast error of the first model at time ​​

(t + 1)​​ is ​​β​​ 2​​[​σ​ X,t​ 2 ​  + ​(​R​​ −2​ ​∑ j=t−R+1​ t  ​​ ​σ​ X,j−1​ 2 ​ )​]​​​+ ​
σ​ ε​ 2​ + ​σ​ ε​ 2​ / R​. The second model has an expected 
squared forecast error equal to ​​σ​ ε​ 2​​. Hence, the 
expected relative forecasting performance 
of the two models at time ​​(t + 1)​,​ measured  
by  ​E​[​​(​y​t+1​​ − ​y​ t+1|t​ ​(1)​ ​ )​​​ 2​ − ​​(​y​t+1​​ − ​y​ t+1|t​ ​(2)​ ​ )​​​ 2​]​,​  

equals ​​β​​ 2​​[​σ​ X,t​ 2 ​  + ​(​R​​ −2​ ​∑ j=t−R+1​ t  ​​ ​σ​ X,j−1​ 2 ​ )​]​​​+ ​

σ​ ε​ 2​ / R​, and can be time varying even if the 
parameters of the model are constant.

This fourth example shows that the rela-
tive forecasting performance could be time 
varying even if the parameters of the model 
that are of direct interest to the researcher ​​
(β)​​  are constant. Instabilities in fore-
casting performance may also be due to 
model mis-specification or data snooping. 
For example, estimating a linear model 
when the model is nonlinear (e.g. Markov-
switching) may produce time-varying fore-
cast errors. Importantly, structural break 
tests on ​β​ in equation (9)—such as Hansen’s 
(2000) test—would not be able to signal the 
presence of time variation. The lesson to be 
learned from these examples is the follow-
ing: if one is interested in forecasting perfor-
mance, then one should not test for structural 
breaks in the parameters, but rather evaluate 
models’ forecasting ability in a way robust to 
instabilities.
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Similar examples hold for other non- 
quadratic loss functions as well as density 
forecasts, which will be the topic of sec-
tion 5. Regarding the latter, consider the 
case where: ​​y​t+1​​  = ​ β​ t​  ​ ​x​t​​ + ​ε​t+1​​,​  and the 
researcher compares the performance 
of two normal predictive densities, with 
mean equal to the point forecasts ​​y​ t+1|t​ ​(1)​ ​​  and ​​
y​ t+1|t​ ​(2)​ ​​   in equations (5) and (6) in example 
2,  calibrating their variances to be one (for 
simplicity). Assume that the relative predic-
tive performance of the forecast densities 
is evaluated using a log score, which is the 
logarithm of the forecast density evaluated 
at the actual realization. Then, the expected 
relative forecasting performance at time ​t​ is 
the same if: ​E​{ln​(2π)​ − ​ 1 _ 2 ​ ​​(​y​t+1​​ − ​y​ t+1|t​ ​(1)​ ​ )​​​ 2​}​​​ 

= E​{ln​(2π)​ − ​ 1 _ 2 ​ ​​(​y​t+1​​ − ​y​ t+1|t​ ​(2)​ ​ )​​​ 2​}​​. The lat-
ter condition is equivalent to equation (7); 
hence, the relative performance of predic-
tive densities can be the same at each point 
in time even though the parameters of the 
conditional mean of the true model are time 
varying, as in example 2. Conclusions simi-
lar to those in examples 1, 3, and 4 can be 
reached for density forecasts.

So what do we mean by instabilities in 
forecasting performance? It is not just, nor 
necessarily, time variation in the parameters 
of direct interest to the forecaster ​​(β)​​. The 
forecasting performance depends on the 
forecast errors and how they are evaluated: 
instabilities in the forecasting performance 
could originate not only from changes in the 
parameters in the conditional mean of the 
model, but also from changes in the unpre-
dictable component (e.g., the mis-specified 
component in the forecasting model in 
example 3), changes in the variance of the 
predictors, changes in the volatility of the 
shocks, and so forth.

In addition, there is an important distinc-
tion between the goal of evaluating fore-
casts out of sample and that of evaluating 

models in sample. Forecast performance 
refers to the out-of-sample predictive abil-
ity of a model, judged according to a loss 
function (e.g., the squared out-of-sam-
ple forecast error) while model evaluation 
typically aims at its correct specification  
in sample.

It is important to note that, as in the pre-
dictive density example above, time-varying 
volatility may cause unstable forecast per-
formance in models that have been esti-
mated without taking such time variation 
into account. In fact, it is quite common 
in standard macroeconomic applications 
not to model volatility explicitly; thus, this 
implies that time-varying volatility could 
be a source of forecast instability in such 
applications. However, a researcher might 
choose to model time variation in the vol-
atility explicitly, in which case, when done 
appropriately, the forecasting performance 
may not be unstable. Time-varying volatility 
is typically modeled in finance via GARCH 
or stochastic volatility; more recently, sev-
eral studies have highlighted the empiri-
cal importance of modeling time-varying 
volatilities for predicting densities in mac-
roeconomic data as well. We will discuss 
the latter in section 4. On the other hand, 
note that, should the forecaster use a loss 
function different from the quadratic one, 
instabilities in other, potentially higher 
moments of the data may become important 
as well.

3  How to Assess whether a Model 
Forecasts Well in the Presence of 

Instabilities?

The examples above point to an import-
ant difference in how to evaluate forecasting 
models. It might be of interest to evaluate 
their forecasting performance in isolation 
(as in examples 1 and 3) or, alternatively, 
evaluate their performance relative to a 
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competitor (as in examples 2 and 4). The 
first is referred to as “absolute forecasting 
performance” and the latter as “relative 
forecasting performance.” In what follows, 
we illustrate how to assess both. In the next 
two subsections we first focus on forecasts 
aimed at targeting a scalar value of a macro-
economic variable (i.e., point forecasts), such 
as the inflation rate and asset prices. Section 
5 discusses how to evaluate forecasts of the 
whole probability distribution. Notation is as 
in the previous section: the forecast of a vari-
able ​y​ at time ​t + h​ made at time ​t​ is denoted 
by ​​y​t+h|t​​​; the realized value is denoted by ​​
y​t+h​​​; ​h  >  0​ is the forecast horizon; and the 
forecast error is ​​ε​t+h|t​​  = ​ y​t+h​​ − ​y​t+h|t​​​. When 
necessary, superscripts denote models.

3.1	 Absolute Forecasting Ability

A minimum requirement that forecasts 
should satisfy is to track the realizations—
that is, the forecast error should be small. 
The forecast error should also not be pre-
dictable on the basis of any variable observed 
at the time the forecast is made (including 
the forecast itself). Forecast rationality tests 
are designed exactly to evaluate these mini-
mal requirements. Forecast rationality tests 
are F-tests to evaluate whether ​α  =  β  =  0​ 
in the regression:

(10)	​​ y​t+h​​ − ​y​t+h|t​​  =  α + β ​y​t+h|t​​ + ​u​t,h​​​

where ​​u​t,h​​​ is the regression error.
We evaluate rationality of the Federal 

Reserve and SPF inflation forecasts, 
described in section 2.2. Given the poten-
tial presence of instabilities, we implement 
the fluctuation rationality test. The test 
involves repeatedly testing forecast rational-
ity in rolling windows, then comparing the 
largest value with the appropriate critical 
value (Rossi and Sekhposyan 2016). That is, 
one calculates the F-statistic (​​W​t,m​​​) for test-
ing ​a  =  β  =  0​ in rolling windows of, say, 
size ​m​ centered around the forecast time ​t​, 

and repeats the test for all available points in 
time ​t​; then, the fluctuation rationality test is ​​
sup​t​​ ​W​t,m​​​. More details are provided in algo-
rithm 6 in the appendix.

Figure 6 plots ​​​t,m​​​ for the SPF (continu-
ous line, labeled “SPF”) and for the Federal 
Reserve forecasts (dashed line, labeled 
“Greenbook”). Both are above the 5 percent 
critical value (depicted by the dotted line, 
labeled “cv”); hence, forecast rationality is 
indeed rejected.

Conversely, the value of the traditional 
forecast rationality test not robust to insta-
bility (Mincer and Zarnowitz 1969)10 is 
0.41 for the Federal Reserve forecasts (its 
p-value equals 0.81) and 0.44 for the SPF (its 
p-value is 0.80). That is, there is no evidence 
against forecast rationality according to the 
non-robust test. Yet, the forecasts depicted 
in figure 2 clearly suggest a systematic bias: 
both the central bank and the survey fore-
casts under-predict inflation in the 1970s 
and 1980s and over-predict inflation in the 
last three decades. The reason why non-ro-
bust tests are unable to find evidence of 
biases is that the positive forecast errors in 
the 1970–80s compensate the negative fore-
cast errors in the last three decades, so that 
forecast errors are, on average, zero. Simply 
put, non-robust tests may lack the ability 
to detect deviations from rationality when 
there are instabilities in the forecasting per-
formance—see Rossi (2005) for a formal 
discussion.11 Thus,  local measures (tests) of 
forecast performance are more appropriate 
than average measures (tests) in the presence 
of instabilities.

10 This is F-statistic for testing ​α  =  β  =  0​ in sam-
ple using all the observations. See West and McCracken 
(1998) for forecast rationality tests that explicitly take into 
account models’ parameter estimation errors.

11 Other forecast rationality requirements are that no 
other variables should predict the forecast errors or that 
the forecast errors be uncorrelated. Such requirements 
can be tested in a similar fashion.
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One might hope that structural models’ 
forecasts would be rational; however, the 
empirical evidence shows that popular struc-
tural models’ forecasts are also not rational 
(Edge and Gürkaynak 2010; Gürkaynak, 
Kısacıko​​g ̆ ​​lu, and Rossi 2013).

3.2 	Relative Forecasting Ability

Similar problems affect the comparison 
of competing forecasts in the presence of 
instabilities. In section 2.3, we discussed the 

predictability of asset prices and exchange 
rates. We noted that economic predictors 
may, at times, forecast equity premia or 
exchange rates above and beyond the bench-
mark model—the historical mean for equity 
premia and the random walk for exchange 
rate returns. In this subsection, we formally 
investigate whether this is the case using the 
fluctuation test (Giacomini and Rossi 2010).

The fluctuation test is based on the rel-
ative forecast error loss of a model versus 
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Figure 6. Forecast Rationality Tests /Robust to the Presence of Instabilities

Notes: The figure shows the results of the fluctuation rationality test for two-quarters-ahead inflation forecasts 
from the Federal Reserve (labeled “Greenbook”) and the Survey of Professional Forecasters (labeled “SPF”). 
The figure depicts ​​W​t,m​​​; the fluctuation rationality test statistic is ​​sup​t​​ ​W​t,m​​​; when the latter is above the critical 
value line (labeled “5 percent crit. value”), the forecasts are not rational. 
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a benchmark’s, scaled by a measure of its 
variance, calculated locally in rolling win-
dows to follow their relative forecasting 
performance over time. Thus, the fluc-
tuation test is appropriate for small and 
continuous reversals in forecasting per-
formance. In our example, the loss is the 
difference between the squared forecast 
errors of the two competing models in roll-
ing windows (​Δ​​t,h​​  ≡ ​​ (​y​t+h​​ − ​y​ t+h|t​ ​(1)​ ​ )​​​ 2​− 
​​(​y​t+h​​ − ​y​ t+h|t​ ​(2)​ ​ )​​​ 2​)​. Consistently with the pre-
vious sections, the average relative forecast 
error loss will be the difference of the MSFEs 
of the two models. Unlike the recursive ​​R​​ 2​​ 
or the recursive MSFE measures sometimes 
used in the literature (see Goyal and Welch 
2008, Timmermann 2008), the fluctuation 
test offers a procedure to formally evaluate 
the relative out-of-sample forecasting per-
formance of competing models. Formally, 
the test involves repeatedly calculating the 
t-test on ​α​ in the regression ​Δ ​L​j,h​​  =  α + ​
u​j​​​, where ​​u​j​​​ is the regression error. The 
t-test (​​F​t,m​​​) is calculated in rolling windows 
of, say, size ​m​ centered around the forecast 
time ​t​, and then repeated for all available 
points in time ​t​. Then, the fluctuation ratio-
nality test is ​​sup​t​​ ​F​t,m​​​ and its critical values 
are in Giacomini and Rossi (2010). More 
details are provided in algorithm 7  in the  
appendix.

We use the fluctuation test to compare 
the model with predictors with the histori-
cal average benchmark as well as a random 
walk benchmark. While there is no evidence 
in our yearly data of any predictability of the 
macroeconomic predictors relative to the  
historical average, there is some evidence 
of predictability relative to the random walk 
benchmark. In fact, figure 7 plots the fluctu-
ation test for comparing the economic pre-
dictors versus the random walk benchmark. 
Each panel in the figure reports the values of ​​
F​t,m​​​ for one of the economic predictors con-
sidered in section 2.3 (the continuous line), 
together with the critical value of the test 

(the dashed line). When the fluctuation test 
is above the critical value, there is evidence 
that the model with predictors performs bet-
ter than the random walk benchmark.

The results clearly show the presence of 
“pockets of predictability” (Timmermann 
2008): using the DFY, for example, it is pos-
sible to beat the random walk benchmark in 
our yearly data. However, the predictability 
only appears sporadically (especially in the 
1950s). Results are similar across predictors 
with the exception of the long yield, which 
never shows any ability to forecast better 
than the benchmark. Odendahl, Rossi and 
Sekhposyan (forthcoming) also find evi-
dence of pockets of predictability relative to 
the historical mean benchmark in monthly  
data.

As a second example, consider the problem 
of forecasting exchange rates. It is well known 
that the random walk is the toughest bench-
mark when forecasting exchange rates. For 
example, using monthly data from 1973:III 
for the British pound/US dollar, one finds 
that the random walk MSFE is 0.0245 while 
the MSFE for UIRP is 0.0249. But, has the 
random walk consistently been a better pre-
dictor? Figure 8 reports the fluctuation test 
results: it plots ​​F​t,m​​​ (dark line) together with 
its critical value (light line). Positive values 
indicate that UIRP produces more compet-
itive forecasts than the random walk. Again, 
it appears that there are “pockets” of predict-
ability: UIRP was a better predictor than the 
random walk in the mid-1980s, but not after 
that.

The fluctuation test is designed for small, 
continuous changes in models’ forecast-
ing performance; the one-time reversal 
test (Giacomini and Rossi 2010) is instead 
more appropriate in case of large, discrete 
reversals. The test evaluates whether the 
forecast performance is the same at each 
point in time against the alternative of a 
large reversal in the relative forecasting 
performance at some point in time, causing 
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Figure 7. Forecasting Equity Premia: Economic Predictors versus a Random Walk Benchmark

Notes: The figure depicts ​​F​t,m​​​ (labeled “Fluctuation test Statistic”) for the following equity premium predic-
tors relative to the historical mean: book-to-market ratio (“Book to mkt.”); the default yield spread (“DFY”); 
the investment capital ratio (“Inv/K”); the consumption, wealth and income ratio (“CAY”); the long-term yield 
(“Long yield”); and the term spread (“Spread”). Positive, significant values indicate that the model with the 
economic predictor forecasts better than the random walk. The fluctuation test statistic is ​​sup​t​​​|​F​t,m​​|​​; when the 
latter is above the critical value line (labeled “Fluctuation test critical value”), the forecast obtained by using 
the economic predictor is better than the random walk.

Fluctuation test statistic                      Fluctuation test critical value

1950 1960 1970 1980 1990 2000 2010
Time

1950 1960 1970 1980 1990 2000 2010
Time

1950 1960 1970 1980 1990 2000 2010
Time

1950 1960 1970 1980 1990 2000 2010
Time

1950 1960 1970 1980 1990 2000 2010
Time

1950 1960 1970 1980 1990 2000 2010
Time

-2

-1

0

1

2

3

4 Book to mkt.
T

es
t s

ta
tis

tic
T

es
t s

ta
tis

tic
T

es
t s

ta
tis

tic

T
es

t s
ta

tis
tic

T
es

t s
ta

tis
tic

T
es

t s
ta

tis
tic

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5 DFY

0.5

1

1.5

2

2.5

3

3.5 Inv/K

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4 CAY

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3 Long yield

0

0.5

1

1.5

2

2.5

3

3.5

4 Spread



1155Rossi: Forecasting in the Presence of Instabilities

one of the two models to predict better.12 
In other words, the relative performance of 
the models may switch at an unknown point 
in time; under this assumption, the test can 
pinpoint the time of the switch. The test is 
implemented by jointly checking whether 
the (expected) squared forecast error 

12 The test is robust to the presence of multiple rever-
sals in the relative forecasting performance.

differences in any two subsamples of the 
data are constant and equal to zero via an 
F-test, then taking the largest value across 
the F-tests over time. That is, one calculates 
the F-statistic (​​W​t​​​) for testing ​a  =  δ  =  0​ 
in the regression ​Δ ​L​j,h​​  =  α + δ ​d​j,t​​  + ​
u​j​​​, where ​​u​j​​​ is the regression error and 
​​d​j,t​​​ is a dummy variable equal to unity 
if ​j  ≤  t​. Then, the test is repeated for var-
ious values of ​t​. The one-time reversal 
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Figure 8. Forecast Comparison Tests Robust to the Presence of Instabilities

Notes: The figure depicts ​​F​t,m​​​ (labeled “Fluctuation test”) for comparing the uncovered interest rate parity 
model’s forecasts to those of a random walk. The fluctuation test statistic is ​​sup​t​​​|​F​t,m​​|​​; when the latter is above 
the critical value line (labeled “Fluctuation test critical value”), the model forecasts better than the random 
walk.
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test is ​​sup​t​​ ​W​t​​​ and its critical values are  
reported in Giacomini and Rossi (2010). 
More details are provided in algorithm 8 in 
the appendix.

Again, it is important to use tests that are 
robust to the presence of instabilities: in fact, 
when applied to the US dollar/UK pound 
exchange rate data, tests not robust to insta-
bilities (e.g., Diebold and Mariano 2002; 
West 1996, 2006; Giacomini and White 
2006) conclude that UIRP is not significantly 
different from a random walk—the reason 
being that such tests are not robust to rever-
sals in relative forecasting performance.

The relative forecasting performance of 
structural models against a constant mean or 
against central banks’ own forecasts has also 
been the subject of several studies. Edge 
and Gürkaynak (2010) find that structural 
models forecast worse than a simple mean 
in the last two decades before the financial 
crisis, and Gürkaynak, Kısacıko​​g ̆ ​​lu, and Rossi 
(2013) find that they forecast inflation worse 
than a simple autoregressive model.

In this survey, we focus on out-of-sample 
measures of forecast evaluation; alternatively, 
as in Stock and Watson (1999b, 2001), one 
could evaluate forecasting ability in sample 
via Granger causality tests (Granger 1969). 
A Granger causality test robust to instability 
has been developed by Rossi (2005).13

3.3	 Special Issues and Technicalities

The previous section discussed evaluation 
strategies in the simplest and most intuitive 
way, that is, via simple regressions. However, 
this required glancing over a variety of 
technicalities, which are discussed in this 
subsection.

13 See also Rossi and Wang (2019) for VAR-based tests 
of Granger causality and their implementation in Stata as 
well as Giacomini and Rossi (2006) for applications and 
Giacomini and Rossi (2016) for in-sample model compari-
sons in unstable environments.

A distinction that runs throughout the 
forecast evaluation literature is between 
forecast accuracy “in population” (i.e., at 
the true parameter values)14 and “in finite 
samples” (i.e., at the estimated parameter 
values). Forecast accuracy in population 
measures predictive ability that would be 
present if the researcher knew the parame-
ters of the model—or, if he/she could esti-
mate them in a large enough sample so that 
they could be treated as known for practical 
purposes. Forecast accuracy in finite sam-
ples is the actual predictive ability that the 
researcher obtains in finite samples.

Forecast accuracy in population is use-
ful typically in academic contexts, when 
the researcher is interested in discover-
ing which economic model is the correct 
description of reality. Forecast accuracy in 
finite samples is useful typically for prac-
titioners who are interested in the actual 
forecasting ability that a model has in the 
finite samples that are available—no matter 
how well the model could have performed 
if one had been able to estimate the true 
parameters.

There are two practical differences 
between the two approaches. The first is the 
economic interpretation of the empirical 
results, as discussed above: since they test 
two different hypotheses, the results have to 
be interpreted in the appropriate way. The 
second is that the estimate of the variance 
has to be corrected for parameter estima-
tion error in the former approach, but not 
in the latter. The fluctuation and fluctuation 
rationality tests are valid in both approaches 
by using the appropriate variance estimate. 
This implies that, as we anticipated in the 
introduction, while the example in this sec-
tion focus on a simple linear model for sim-
plicity of exposition, all the methodologies 

14 Or, at the pseudo-true parameter values, if the model 
is misspecified. The discussion in this subsection applies 
equally to true and pseudo-true parameter values.
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are equally applicable to both reduced-
form as well as structural models. In fact, 
for example, in the finite sample approach, 
versions of the fluctuation, fluctuation 
rationality, and one-time reversal tests can 
be directly used on forecasts produced by 
any model—be it reduced form, structural, 
survey based, DSGE based, regime switch-
ing, or time-varying parameter, under some 
technical assumptions.15 On the other 
hand, versions of the fluctuation and fluc-
tuation rationality tests can also, in princi-
ple, be applied to all these models in the 
“population approach” as well, although 
their practical implementation might be  
challenging.16

Another issue that requires special care 
involves the presence of real-time data 
(see Croushore 2006 for an introduction). 
Out-of-sample forecasts are typically imple-
mented in order to verify the actual predic-
tive ability that would have been achieved 
by a researcher when producing the fore-
casts in real time. When using a model with 
predictors, it is important that not only the 
forecasting model be reestimated in real 
time, but also that the predictors be exactly 
those available at the time the forecast was 
made. In fact, the value of, say, GDP  in 
December 2000 that would be used by a 
researcher using historical data retrieved 

15 In particular, we refer to the versions of the fluctua-
tion, one-time reversal, and fluctuation rationality tests in 
propositions 1 and 2 of Giacomini and Rossi (2010) and 
proposition 6 in Rossi and Sekhposyan (2016), respectively. 
The technical assumptions require that, for example, the 
squared out-of-sample forecast error differences (in the 
case of a MSFE evaluation) should not have unit roots—
see the cited papers for more details. Also, see Odendahl, 
Rossi, and Sekhposyan (forthcoming) for techniques to 
specifically evaluate regime-switching time-varying fore-
casting ability.

16 In particular, the versions of the fluctuation and 
fluctuation rationality tests in algorithm 1 of Giacomini 
and Rossi (2010) and theorem 5 in Rossi and Sekhposyan 
(2016), respectively, can be applied to all the cited models, 
although their practical implementation might be chal-
lenging due to the parameter estimation error component. 
A similar reasoning holds for the one-time reversal test.

in December 2001 might be different from 
the value he/she would have used if he/she 
had retrieved the data in December 2000. 
The reason is that there are data revisions 
that continuously update GDP, due to 
seasonal adjustment, new sources, changes 
in definitions such as base-year changes, 
etc. For the United States, Croushore and 
Stark (2001, 2003) discuss datasets of real-
time vintages that collect predictors’ values 
exactly as they were available at each point 
in time. The ECB has a similar dataset for 
European data.

Clearly, the use of real-time vintages of 
predictors is an important step in the out-
of-sample validation of models’ forecasting 
ability. However, at the same time, the use of 
real-time data may introduce additional chal-
lenges in the evaluation of the forecasts. In 
particular, when evaluating forecasts in pop-
ulation, the variance adjustment has to be 
specifically tailored to the real-time nature of 
the data. See Clark and McCracken (2009b) 
for the details on implementing such adjust-
ments, which will result in a correct imple-
mentation of the fluctuation and fluctuation 
rationality tests. When evaluating forecasts 
in finite samples, no adjustment is required.

4.  How to Improve Models’ Forecasting 
Performance: Strategies for Forecasting in 

the Presence of Instabilities

Instabilities are known for being harmful 
to forecasting ability. Clements and Hendry 
(1999, 2006) importantly argue that deter-
ministic breaks, in particular location ones, 
are the most detrimental in terms of forecast 
accuracy.

There are two main estimation strat-
egies to guard against instabilities. The 
first is to model instabilities explicitly. The 
second is to guard against instabilities 
by using additional “dimensions” of the 
data, such as enlarging the set of predic-
tors or exploiting “external information,” 
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such as survey forecasts. In what follows, 
we consider each of these two options in 
detail and highlight their advantages and  
disadvantages.

4.1	 Modeling Instabilities Explicitly: 
Estimation Methods Robust to 
Instabilities

One might think that, in the presence of 
instabilities, modeling the instability explic-
itly in the models’ parameters might improve 
their forecasting performance. Note, how-
ever, that the examples in section 2.5 show 
that this may not necessarily be the case. In 
fact, as the examples suggest, instabilities 
in models’ forecasting performance are 
not necessarily equivalent to instabilities 
in models’ parameters; therefore, by the 
same token, explicitly modeling instabilities 
in models’ parameters may not necessarily 
improve their forecasting performance. In 
other words, while the main goal of the lit-
erature on time-varying parameters models 
is to provide the best in-sample fit, a good 
in-sample fit does not automatically guaran-
tee good out-of-sample forecasting perfor-
mance—see Clements and Hendry (1998) 
on discrepancies between in-sample fit and 
out-of-sample forecasting performance 
(i.e., “forecast breakdowns”) and Giacomini 
and Rossi (2009) for formal tests of forecast 
breakdowns.

More in detail, the reasons why a satis-
factory in-sample fit may not translate into 
a satisfactory out-of-sample performance 
are discussed in Pesaran and Timmermann 
(2007), Clark and McCracken (2008), and 
Giacomini and Rossi (2009), among others. 
Pesaran and Timmermann (2007) made 
the important, but often underappreciated, 
point that, in the presence of structural 
breaks, including too distant information 
may increase the bias but reduce the fore-
cast variance, while the opposite is true 
when discarding the oldest observations. 

As we discuss below, they formally show 
that it is not necessarily optimal to discard 
data before the breakpoint if the objective 
is to minimize the MSFE. This suggests 
that tests for structural breaks may not 
necessarily be the best approach for esti-
mating the parameters when forecasting; 
rather, it is best to estimate the parameters 
directly targeting the out-of-sample perfor-
mance. A similar point was made by Clark 
and McCracken (2008), who note that iden-
tifying breaks and using the most recent 
data since the break should theoretically 
lead to good forecasts. However, practical 
difficulties in detecting breaks and their 
timing in finite samples may prevent such 
improvements. Giacomini and Rossi (2009) 
find that causes of forecast breakdowns 
include several kinds of estimation uncer-
tainty and overfitting, in addition to param-
eter instabilities. Again, this implies that, if 
one wants to improve models’ out-of-sam-
ple forecasting ability, the objective is not 
to fit the model with the highest likelihood 
(i.e., a measure of in-sample fit), but to find 
the model that minimizes the squared fore-
cast errors (or, more generally, a measure 
of out-of-sample forecasting performance). 
In other words, if the forecasting ability is 
judged by the MSFE, even a correctly spec-
ified model might produce poor forecasts if 
the estimation results in a sufficiently high 
variance. Furthermore, one of the biggest 
difficulties in dealing with forecast insta-
bilities is that they are easier to detect in 
hindsight than in real time at the end of the 
sample, when they are most useful.17 This is 
the reason why, in this review, we focus on 
strategies for modeling instabilities with the 
explicit goal to improve the out-of-sample 

17 See Andrews (2003) for end-of-sample instability 
tests. Again, the latter focuses on parameter instability 
rather than out-of-sample forecasting ability. For real-time 
procedures to monitor predictive ability, see Inoue and 
Rossi (2005) and Harvey et al. (2021).
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forecasting ability, and thus de-emphasize 
forecasts obtained after fitting models with 
breaks, nonlinearities, or time-varying 
parameters in sample.18 The latter, however, 
might offer common baseline models, and 
we discuss them at the end of this section. 
We will refer to the former approach as “out 
of sample, forecast-based” and to the latter 
as “in sample, model fit based.”

4.1.1	 Out-of-Sample, Forecast-based 
	 Approaches to Modeling Instabilities

Forecasters typically guard against the 
presence of time variation in the parameters 
by re-estimating them each time a forecast 
is made. At each point in time, they use past 
observations within a certain window of 
data, potentially assigning different weights 
to recent/older observations according to a 
chosen “weight” function. Again, throughout 
this section, we assume that their objective 
is to minimize the expected squared forecast 
error.19

We illustrate these techniques in the 
Pesaran, Pick, and Pranovich (2013) frame-
work. Assume that the forecaster uses a lin-
ear model with ​​(N × 1)​​ exogenous predictors 
(​​x​t​​​) to forecast a target variable ​h​ periods into 
the future (​​y​t+h​​​). The model is:

(11)�​​ y​t+h​​  = ​ β​ t,h​ ′  ​ ​x​t​​ + ​ε​t+h​​,  t  =  1, 2, … , T,​

where ​​β​t,h​​​ is a ​​(N × 1)​​ vector of potentially 
time-varying parameters and ​​ε​t+h​​​ are the 
unforecastable disturbances.20 The parame-
ters are estimated locally using a weighting 

18 For a classic review of in-sample estimation of models 
with structural breaks, see Stock (1994).

19 The reason is that the majority of the theoretical 
results are derived for this case.

20 Forecasting models typically include a constant, lags 
of the dependent variable, and lags of the predictors. For 
simplicity, we will ignore the latter, although the general 
conclusions in the chapter do carry over to more general 
linear, as well as nonlinear and more complicated, struc-
tural models.

scheme with possibly time-varying weights ​​
ω​t,j;R​​​ that may depend on time ​t​, the initial 
observation ​j​, and the window size used for 
estimation, ​R​:

(12) ​​​ β ˆ ​​t,h​​ = ​​(  ​ ∑ 
j=1

​ 
t−h

​​ ​ω​t,j;R​​ ​x​j​​ ​x​ j​ ′​)​​​ 
−1

​

	 × ​( ​ ∑ 
j=1

​ 
t−h

​​ ​ω​t,j;R​​ ​x​j​​ ​y​j+h​​)​.​

For example, by choosing ​​ω​t,j;R​​​​= ​(1 / R)​ ×  
1​(t − h − R + 1  ≤  j  ≤  t − h)​​, a function 
that gives weight equal to ​1 / R​ to each of 
the past ​R​ observations, one obtains the  
“rolling” window estimation scheme: ​​β​t,h;R​​  = 
​​(​∑ j=t−h−R+1​ t−h  ​​​x​t​​ ​x​ t​ ′​)​​​ −1​​​​(​∑ j=t−h−R+1​ t−h  ​​​x​t​​ ​y​t+h​​)​​. 
The rolling estimation scheme estimates the 
parameter locally over a window of ​R​ obser-
vations, giving each observation the same 
weight. When ​​ω​t,j;R​​  =  1 / ​(t − h)​​, the esti-
mation scheme is called “recursive” and all 
available past observations are used to esti-
mate the parameters at each point in time, 
although more distant observations receive a 
lower weight. 

Clearly, the choice of the weights is cru-
cial, and the optimal choice depends on the 
(unknown) type of instability in the data. The 
literature has developed several techniques 
to choose the weights, either by deriving 
explicit formulas under specific assump-
tions or by developing robust approaches to 
choose them; we review each of these below.

Large, Discrete Breaks.—Clements and  
Hendry (2006) and Pesaran, Pick, and 
Pranovich (2013) explicitly derive theoreti-
cal results in the presence of large, discrete, 
and deterministic breaks for specific models. 
Ideally, if the break date were known, only 
observations after the most recent break 
should be used. In fact, Pesaran, Pick, and 
Pranovich (2013) show that, ideally, the 
same weight should be given to observa-
tions within the same stable subsample/
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regime.21 However, the break date is typi-
cally unknown. An alternative approach is 
intercept correction (Clements and Hendry 
1996, 1998, 1999). Since large, discrete 
breaks introduce a bias in the forecast, inter-
cept corrections adjust the model’s forecast  
(​​y​t+h|t​​​) with an estimate of the intercept based 
on the most recently estimated forecast error 
(​​​ε ˆ ​​t|t−h​​​). The forecast after the intercept cor-
rection is: ​​y​ t+h|t​ c  ​  = ​ y​t+h|t​​ + ​​ε ˆ ​​t|t−h​​​.22 The vari-
ance of the intercept-corrected forecast will 
be larger than that of the uncorrected fore-
cast, in particular because the adjustment is 
estimated using only one observation. One 
possibility to decrease the variability is to 
estimate the model using all the data since 
the most recent break. However, the esti-
mated break date may not be precisely esti-
mated; also, if the post-break sample is small, 
the strategy of using only post-break data 
may not minimize the MSFE, as pointed 
out by Pesaran and Timmermann (2007). 
Thus, the latter recommend using observa-
tions both before and after the break, and 
provide explicit formulas to optimally weight 
the observations for specific models. They 
focus on the rolling estimation scheme, 
where there is only one tuning parameter, 
the estimation window size ​R​; thus, the chal-
lenge is to choose the optimal window size, ​​
R​​ ⁎​​. They propose several methods to esti-
mate ​​R​​ ⁎​​. A first method is analytical: under 
some assumptions,23 it is possible to work out 
explicit formulas to choose an optimal win-
dow size to minimize the MSFE by manag-
ing the trade-off between bias and variance. 
Another method is cross validation, which 
reserves a fraction of the most recent obser-
vations to select the window in a pseudo-out-
of-sample exercise. Other methods involve 

21 Their assumptions include strictly exogenous regres-
sors and independent errors as well as ​h  =  1​.

22 Hendry (2006) recommends double differencing if 
the data are already in differences.

23 Their framework assumes serially uncorrelated errors 
and strictly exogenous regressors, and sets ​h  =  1​.

estimating the parameters using all possible 
values of ​R​ and then averaging the forecasts 
using cross-validation or equal weights. In 
their Monte Carlo simulations, they find that 
combination methods perform well, espe-
cially when the break is small and difficult to 
detect. Pesaran, Pick, and Pranovich (2013) 
instead suggest weighting across the regimes 
when the break date is not known.

Small, Continuous Breaks.—Models’ 
parameters can change continuously and 
smoothly24 instead of abruptly and discretely. 
In that case, a large literature (Holt 1957, 
Brown 1959, and Harvey 1989) recommends 
estimation strategies where all past obser-
vations are used, but are down-weighted 
depending on how relevant they are for fore-
casting. The weight might be monotonic—
that is, the farther in the past, the less weight 
the observations receive. However, they 
need not be monotonic: if regimes repeat 
over time, it might be beneficial to give 
higher weight to observations that are fur-
ther in the past if they belong to the regime 
that helps forecast the best. But how should 
the weights be chosen?

Giraitis, Kapetanios, and Price (2013) pro-
pose a cross-validation method. Their model 
does not include regressors; that is, in equa-
tion (12), ​​x​t​​​ is the constant, and ​h  =  1​. To 
simplify notation, for the one-step-ahead 
forecast horizon, we let ​​β​t,1;R​​​ be denoted by ​​
β​t;R​​​. Thus, in their model, the forecast is a 
simple mean of past observations,

(13)	​​​ β ˆ ​​t;R​​  = ​  ∑ 
j=1

​ 
t−1

​​ ​ω​t,j;R​​ ​y​j+1​​,​

where ​​ω​t,j;R​​ ≥ 0​,  ​​∑ j=1​ t−1 ​​​ω​t,j;R​​ = 1​, and the  
weights depend on a continuous and dif-
ferentiable kernel, ​K​(u)​​, such that ​​ω​t,j;R​​  
= K​( j / R)​/​∑ s=1​ t−1 ​​K​(s / R)​​. The simple con-
stant rolling window approach weights 

24 This kind of break is necessarily stochastic.
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equally the most recent ​R​ observations, that 
is, the kernel is flat: ​K​(u)​ = 1​(0 ≤ u ≤ 1)​.​  
The exponentially weighted moving average 
approach (EWMA) instead uses all the 
observations but increasingly down-weights 
the more distant ones, such that ​K​(u)​  
= ​e​​ −u​​ and, thus, ​​ω​t,j;R​​  = ​ e​​ −j/R​/​∑ s=1​ t−1 ​​ ​e​​ −s/R​​; 
see Harvey (1989).25 Triangular window 
weights are such that ​K​(u)​ = 2​(1 − u)​1​(0  
≤ u ≤ 1)​​. Giraitis, Kapetanios, and Price 
(2013) estimate ​R​ by minimizing the MSFE 
of all the forecasts.26 Pesaran, Pick, and 
Pranovich (2013) demonstrate that, in the 
presence of small and continuous breaks, the 
optimal weight is indeed EWMA.27 In Monte 
Carlo simulations, Eklund, Kapetanios, and 
Price (2010) also find that EWMA performs 
well when breaks are not deterministic. 

Farmer, Schmidt, and Timmermann 
(2018) consider the more general linear 
model with predictors in equation (11). 
They focus on a smooth kernel that weights 
all observations, but progressively down-
weights those further in the past. The 
estimator is thus a weighted least-square 
estimator, a generalization of equation (12), 
where ​​ω​t,j;R​​​ depends on the kernel weight, 
​K​( · )​​.28 Alternatively, Hirano and Wright 
(forthcoming) propose a cross-validation 
method to choose the window size at the end 
of the sample, in a situation where the insta-
bilities captured by (12) are small enough 
that they cannot be detected with standard 
methods.

All the above papers rely on one-step-
ahead forecasts and cannot be used for 

25 Exponential smoothing (Holt 1957, Brown 1959) 
implies ​​​β ˆ ​​t;R​​  =  α ​​β ˆ ​​t−1;R​​ + ​(1 − α)​ ​y​t​​​.

26 Generalizations based on Kalman filters were pro-
posed by Hyndman et al. (2008).

27 Their assumptions include strictly exogenous regres-
sors and independent errors, as well as ​h  =  1.​

28 In practice, they focus on the Epanechnikov kernel.

multi-step-ahead ones (i.e., ​h  >  1​).29 An 
approach that can be used in the more gen-
eral model, equation (11), and for multi-
step-ahead forecasts is Inoue, Jin, and Rossi 
(2017). They focus on the flat kernel, and 
propose to estimate the window size ​​R​​ ⁎​​ 
to minimize the approximate conditional 
MSFE in a situation where the parameters 
are modeled as smooth functions of time 
and the functional form is unknown.30 Clark 
and McCracken (2009a) suggest instead 
combining rolling and recursive parameter 
estimates; their method can be used for mul-
tiple-step-ahead forecasts as well.

4.1.2	 In-sample, Model Fit-based 
	 Approaches

A researcher might think that, if the 
source of instability is time variation in 
the parameters, nonlinear or time-varying 
parameter models could offer a robust 
approach: we refer to this practice as the 
“in-sample, model fit”-based approach. This 
approach, that explicitly models non-linear-
ities and time variation in the parameters 
to fit models in sample, markedly differs 
from the previously discussed “out-of-sam-
ple, forecast-based” approach, whose goal 
is explicitly to produce good out-of-sample  
forecasts.

Examples of in-sample, model fit-based 
approaches to instabilities can be sum-
marized by a general nonlinear model 
(Teräsvirta 2006):

29 Multiple-step-ahead forecasts can be implemented 
using direct or iterated methods. Direct estimation means 
that ​h​-period-ahead forecasts are based on parameters 
estimated by regressing on predictors lagged ​h​-periods. 
Iterated estimation means that ​h​-period-ahead forecasts 
are based on parameters estimated by regressing on pre-
dictors lagged one period and then iterating the procedure. 
Direct multi-step procedures are more robust than iter-
ated under some DGP designs (Chevillon 2016).

30 Their framework is also more general, since the error 
term and the regressors can be weakly dependent, and the 
regressors could potentially include both exogenous and 
lagged dependent variables.
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(14) ​​ y​t+h​​  =  α ​x​t​​ + θ ​x​t​​ G​(γ, c; ​s​t​​)​ + ​ε​t+h​​,​

where    ​​ε​t+h​​ ∼ i.i.d.​(0, ​σ​​ 2​)​​ and   ​​σ​​ 2​ = var​(​ε​t+h​​)​​.31  
Threshold, smooth-transition, Markov-
switching and time-varying parameter mod-
els are special cases of the general model 
in equation (14), corresponding to specific 
choices of the function ​G​( · )​​.32

In the in-sample, model fit-based 
approach, the best nonlinear/in-sample 
model is first fit in sample via maximum 
likelihood or Bayesian methods;33 the 
model is subsequently validated with either 
in-sample predictive ability tests or out-of-
sample forecasts. In-sample predictive abil-
ity tests evaluate whether the predictor is 
significant. Rewrite the general nonlinear 
model in equation (14) as follows (Teräsvirta 
2006, p. 418): ​​y​t+h​​  = ​ β​t​​ ​x​t​​ + ​ε​t+h​​​, where ​​β​t​​  

31 Specific assumptions on the error term, such as 
i.i.d.-ness, are often necessary in order to estimate such 
models. As a consequence, models are typically estimated 
for ​h  =  1​, then iterated to produce forecasts at longer 
horizons.

32 For example: (i) Markov-switching models 
(Hamilton 1989), where ​G​(γ, c; ​s​t​​)​  =  1​(​s​t​​  =  1)​​ and ​​
s​t​​  = ​ {0, 1}​​  is a regime indicator that follows a Markov 
chain. In this case, the parameter changes randomly 
between ​α​  and ​α + θ​  between regimes. (ii) (Logistic) 
smooth transition regression models (Bacon and 
Watts 1971; Teräsvirta 1994, 1998), where ​G​(γ, c; ​s​t​​)​ 
= ​​ (1 + exp​[− γ​(​s​t​​ − c)​]​)​​​ −1​​, and ​​s​t​​​  is the transition vari-
able. In this case, the parameter changes from ​α​ to ​α + θ​ as 
a function of the transition variable. (iii) Switching regres-
sion/threshold models (Tong 1993), where ​G​(γ, c; ​s​t​​)​ 
=  1​(​s​t​​  ≥  c)​​. In this case, the parameter switches when ​​
s​t​​​  is above ​c​. (iv) Time-varying parameter models, where ​​
θ​t​​  ≡  θG​(γ, c; ​s​t​​)​​ and ​​θ​t​​​ can be either deterministic or sto-
chastic—as an example of the latter: ​​θ​t​​  = ​ θ​t−1​​ + ​η​t​​​, where 
the volatility can also be stochastic if ​var​(​ε​t+h​​)​  = ​ σ​ t+h​ 2 ​​ . 
For simplicity of exposition, we have focused on models 
with one transition or one regime. The models described 
below may also impose restrictions on the parameters 
(e.g., ​γ  >  0​ in the smooth transition model) or focus 
on specific special cases (e.g., Hamilton 1989 focuses on 
the case where ​​x​t​​​ is the lagged value of ​y​). The reader is 
referred to the cited references for more details and a dis-
cussion of more general models.

33 This typically requires making distributional 
assumptions. For example, see D’Agostino, Gambetti, 
and Giannone (2013) estimate models with time-varying 
parameters that, subsequently, perform well out of sample.

≡ ​ [α + θG​(γ, c; ​s​t​​)​]​​. In linear models, where 
​G​( · )​  =  0​, the predictor’s significance can 
be evaluated via a simple t-test on ​β​, that is, 
the Granger causality test, as ​β​  is constant; 
in nonlinear and time-varying parameter 
models, this requires testing ​​β​t​​  =  β  =  0​; 
Rossi (2005) proposes such a robust Granger 
causality specifically for models with insta-
bilities. The latter tests differ from model 
specification tests, which evaluate whether 
the model is linear versus nonlinear, or time 
varying versus constant; in fact, as example 
4 clarified, testing for time variation in the 
models’ parameters (i.e., ​​β​t​​  =  β​) is not 
necessarily the same as testing for instabil-
ity in the forecasting performance: structural 
break tests that detect instabilities in models’ 
parameters do not necessarily detect instabil-
ities in forecasting performance. In addition, 
as previously mentioned, models may overfit 
in sample and result in poor out-of-sample 
forecasts, resulting in forecast breakdowns. 
See Giacomini and Rossi (2009) for forecast 
breakdown tests.34

More complicated models are available 
too. Pesaran, Pettenuzzo, and Timmermann 
(2006) consider the case of stochastic breaks. 
They assume that, if a break happened in 
the past, it might likely happen again in the 
future, and they explicitly model the break 
process allowing the information from past 
break dynamics to guide forecasts of future 
breaks. By modeling the break process itself, 
their method not only produces forecasts, but 
also information about how many breaks are 
likely to occur in the future, how large they 
are, and when they are most likely to happen. 

34 They define surprise losses as the difference between 
the in-sample sum of squared residual and the out-of-sam-
ple squared forecast error, and propose tests for forecast 
breakdowns that evaluate whether the surprise loss is zero. 
Note that we have adapted the discussion to the quadratic 
loss function considered in this article as the main exam-
ple—see Giacomini and Rossi (2009) for the applicability 
to more general loss functions.
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Koop and Potter (2007) also estimate models 
with stochastic breaks for forecasting.35

4.2	 Exploiting Additional Dimensions and 
Big Data 

There exists a vast literature on methods 
whose goal is to improve models’ forecast-
ing ability by exploiting information from 
additional dimensions of the data, such as 
large datasets of predictors, frequencies, 
cross-sectional data, or, more generally, 
models—in short, “big data.”36 Since our 
focus is on the dangers of time variation in 
predictive ability, the omission of potentially 
important predictors is especially problem-
atic when their ability to forecast shows up 
only in subsamples, thus making it difficult 
to detect and exploit. As we mentioned, 
Timmermann (2008) refers to this situation 
as “pockets of predictability.” Large dimen-
sional models allow researchers to simulta-
neously use many predictors, thus avoiding 
missing important ones. Big data may also 
help in protecting against mis-specification 
more generally. Furthermore, by allowing 
parameters to be time varying in addition 
to considering large dimensional models, 
researchers can also potentially follow the 
predictors’ forecasting ability over time, 
including them at times when they are useful 
and discarding them when they are not.

However, estimating models with many 
predictors comes at a cost. First, when 
jointly including all the variables, the OLS 

35 Among the Bayesian approaches, Giordani, Kohn, 
and van Dijk (2007) propose models with threshold, smooth 
transition, and Markov-switching that include structural 
changes in the parameters as well as outliers. Models with-
out regressors, but with time-varying parameters, are often 
referred to as unobservable component stochastic volatil-
ity models—see Koop and Potter (1998), Harvey (1989), 
Stock and Watson (2007), and Giordani and Villani (2010), 
among others, for applications and references.

36 In the case of structural models, “big data” means 
either a large dimensional structural model or a large num-
ber of models.

estimator in equation (11) is ​​​(​​Σ ̄ ​​j​​ ​x​j​​ ​x​ j​ ′​)​​​ −1​ 
×​(​​Σ ̄ ​​j​​ ​x​j​​ ​y​ j​ ′​)​​, where ​​​Σ ̄ ​​j​​​  denotes the sample 
average in the chosen window of observations 
up to time ​t − h​. Hence, it involves inverting 
​​(​​Σ ̄ ​​j​​ ​x​j​​ ​x​ j​ ′​)​​, which  might simply be infeasible 
when the number of predictors ​N​ is large. 
In fact, when ​N​ is much larger than ​T​, one 
cannot invert ​​(​​Σ ̄ ​​j​​ ​x​j​​ ​x​ j​ ′​)​​ altogether. In addi-
tion, multicollinearity among the predictors 
becomes more likely the larger the number of 
predictors,37 and a high number of lags might 
worsen the problem as well.38 Furthermore, 
in finite samples, jointly including all the 
variables has a cost in terms of forecasting, 
as it implies less precise estimates. In fact, 
recall that the MSFE can be decomposed 
into the sum of (squared) bias and variance: 
by estimating models with many predic-
tors, one minimizes the mis-specification 
bias from omitting potentially important 
predictors. At the same time, however, one 
generates a high variance due to the larger 
parameter estimation error incurred while 
estimating large models. Aggregation and 
dimensionality reduction are key to prevent 
parameter proliferation from negatively 
affecting the forecasting process, and the 
choice of how to perform the aggregation 
process is crucial. Again, we will direct our 
attention mainly to the strand of the litera-
ture explicitly focusing on forecasting in the 
presence of instabilities. Aggregation can be 
performed before, during, or after the fore-
casting process; hence, we will distinguish 
among the following strategies in the next 
subsections: (a) “aggregate then forecast”; 
(b) “forecast while aggregating”; (c) “forecast 
(the disaggregates) then aggregate.” Note 
that aggregation does not need to necessar-
ily be among large datasets of predictors, or 

37 In fact, including more predictors increases the pos-
sibility that the additional predictors might contain similar 
(or highly correlated) information to that in the predictors 
that are already included in the model.

38 For example, in a VAR with ​N​ dependent variables 
and ​p​ lags, the number of parameters is at least ​​N​​ 2​ p.​
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models, but also across frequencies, as in the 
mixed-data sampling (MIDAS) approach 
(Andreou, Ghysels, and Kourtellos 2013)—
we consider such cases in section 4.2.4.

4.2.1	 “Aggregate then Forecast”: 
	 (Unsupervised) Factor Models

The strategy of “aggregating then forecast-
ing” when dealing with many predictors can 
be summarized as follows: first, summarize 
the information contained in a large dataset 
of predictors in a parsimonious number of 
indices, thus reducing the dimensionality; 
then, use the indices for forecasting. One 
common way to aggregate information in a 
large-dimensional dataset of predictors is to 
use factor models:

(15)	​​ x​i,t​​  = ​ λ​ i​ ′​ ​f​t​​ + ​η​i,t​​​,

(16)	​​ y​t+h​​  = ​ β ′ ​ ​f​t​​ + ​v​i,t​​,​

where ​​f​t​​​ is an ​​(r × 1)​​ vector, ​​η​i,t​​, ​v​i,t​​​ are 
uncorrelated disturbances, and ​r​ is much 
smaller than ​N​.39 Factor models summarize 
the information in a large cross-section of 
predictors (the ​x​s) in a few principal com-
ponents (the ​f  ​s), which explain the largest 
amount of the variability of the predictors.

An important parameter to choose when 
estimating factor models is how many fac-
tors to use: the larger the number of factors, 
the lower the bias but, also, the lower the 
benefits from the dimensionality reduction. 
In fact, using all the factors is equivalent 
to OLS using all the predictors.40 Typically, 
the number of factors is selected in order 

39 Many of the methods discussed in this section perform 
better if the regressors are orthogonalized; we therefore 
assume in this section that the predictors are orthogonal-
ized and that a constant is included in equation (16). See 
Stock and Watson (2002) and Doz, Giannone, and Reichlin 
(2012) on forecasting with factor models.

40 This follows from the fact that the factors are rota-
tions of the predictors.

to explain a large portion of the variance of 
the predictors while excluding irrelevant fac-
tors—see Bai and Ng (2002) for widely used 
information criteria to correctly estimate ​r​.

Modeling instabilities could potentially be 
important, and one may want to give more 
weight to predictors at times in which they 
forecast well. Most of the literature focuses 
on in-sample approaches, although the next 
section discusses recent methodologies that 
focus on forecasting.41

4.2.2	 “Forecast while Aggregating”: Big 
	 Data, Model Selection, and Shrinkage 
	 Methods

An alternative approach to that described 
in the previous subsection is to use a large 
number of predictors (i.e., “big data”) 
directly in the forecasting procedure (rather 
than aggregating the predictors prior to 
forecasting): we will refer to this approach 
as “forecast while aggregating.” This is an 
emerging field: while we focus on applica-
tions in forecasting with instabilities in eco-
nomics and finance, there are many uses of 
big data in fields such as population dynam-
ics, crime, energy, media, environmental and 
biomedical sciences—see Hassani and Silva 
(2015), among others, for examples.

The relationship between the “forecast 
while aggregating” approach and the “aggre-
gate then forecast” approach described in the 
previous subsection is as follows. Traditional 
factor models assume that each predictor is 

41 A large literature proposes in-sample methodologies 
to allow for time variation in the parameters of the fac-
tor models. Breitung and Eickmeier (2011); Corradi and 
Swanson (2014); Han and Inoue (2015); Chen, Dolado, 
and Gonzalo (2014); and Cheng, Liao, and Schorfheide 
(2016) develop tests for instabilities in factor models, and 
Stock and Watson (2012) analyze the stability of factor 
models around the Great Recession. Corradi and Swanson 
(2014) disentangle forecast failure of factor-augmented 
models into instability in factor loading and instability in 
regression coefficients, and propose techniques to jointly 
test for both. Bates et al. (2013) derive theoretical results 
on the size and magnitude of instabilities that induce 
inconsistency in parameter estimates in factor models.
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potentially correlated with the factors; the 
dimension reduction is achieved by select-
ing only a small number of factors. Since the 
factors are typically selected with the objec-
tive of explaining the largest portion of the 
variance of the predictors in equation  (15), 
the information is not directly extracted 
with the goal of forecasting the target vari-
able—namely ​​y​t+h​​​ in equation (16). In other 
words, when forecasting output or inflation, 
the selected factor would be the same. In 
addition, the model may or may not have an 
underlying factor structure, in which case 
traditional information criteria would select 
the wrong number of factors. The alterna-
tive way to aggregate information in the “big 
data” literature is to use all available data 
while performing shrinkage—that is, replac-
ing selected parameters with smaller, or even 
zero, values—to handle the large dimension-
ality of the data, where the amount of shrink-
age is directly chosen to lower the MSFE. 
The estimate of ​β​ may thus be biased, but 
the variance would decrease because of 
the reduction in dimensionality; when the 
shrinkage is done appropriately to trade off 
bias and variance, the resulting estimator has 
a lower MSFE than OLS.42

There are a variety of methods available 
to perform shrinkage; often, such methods 
are based on machine learning. In fore-
casting, machine learning refers to auto-
mated predictive algorithms, especially in 
out-of-sample contexts, typically dealing 
with a large number of models and pre-
dictors in complex environments.43 Ridge 
(Hoerl and Kennard 1970), lasso (Tibshirani 
1996), elastic nets (Zou and Hastie 2005, 
Zou and Zhang 2009), and neural networks 
(White 1992; Swanson and White 1997a,b) 

42 As previously noted, the MSFE equals bias squared 
plus variance.

43 For example, textual analyses—see Choi and Varian 
(2012) for an early use of trends in Google searches for 
particular words when forecasting.

are all shrinkage methods that have machine 
learning features.44 The use of big data in 
forecasting economic time series, pioneered 
by Swanson and White (1995, 1997a,b), 
raises important questions, such as whether 
including hundreds of predictors in a pre-
dictive regression or a vector autoregression 
(VAR) using automated “machine learning” 
methods improves forecasts, and, in partic-
ular, whether it may result in less evidence 
of forecast instabilities or breakdowns. At 
the same time, there are several challenges 
when forecasting with big data: (i) predictors 
may appear significant just by chance if the 
researcher tests many specifications without 
taking into account the search across specifi-
cations;45 (ii) the chances of over-fitting the 
data might be higher, given the larger num-
ber of predictors; and (iii) the large number of 
predictors might create more noise and more 
signal distortions than when the numbers of 
predictors is small (Bańbura and Modugno 
2014).46 Although, in what follows, we will 
review several machine learning techniques 
among the most widely used in economics 
and finance, a comprehensive discussion is 
beyond the scope of this article—see, e.g., 
Hastie, Tibshirani, and Friedman (2016) for 
a thorough overview.

Model selection assigns weights that 
are either zero or one to each of the OLS 
coefficients. Thus, model selection induces 
sparsity, in the sense that only some pre-
dictors are used and others are discarded. 
A traditional way to discard predictors is 

44 Other machine learning techniques include boost-
ing (Schapire and Freund 2012), bagging (Breiman 1996, 
Inoue and Kilian 2008), adaptive lasso (Zou 2006), and 
nonparametric regression trees and forests (Breiman et al. 
1984; Breiman 2001). Several of the techniques we review 
in the next section also have machine learning features.

45 See subsection 4.2.5 for a discussion of this issue.
46 A possibility is to filter out the noise first (e.g., Hassani, 

Heravi, and Zhigljavsky 2009, 2013), while being vigilant 
that the filtering is done in real time to avoid contaminating 
the out-of-sample forecasting exercise by including future 
data in the estimation.
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via multiple testing, that is, by starting 
with the largest possible set of predictors 
and then discarding the unimportant ones 
via repeated testing procedures. It then 
becomes important to control the probabil-
ity of erroneously finding at least one predic-
tor.47 While this approach might be feasible 
in small dimensions, it presents difficulties 
when a large number of tests must be per-
formed. A more sophisticated approach (Bai 
and Ng’s 2008 “targeted predictors”) selects 
a subset of predictors based on the outcome 
of individual t-tests, then extracts principal 
components from this subset.48 Model selec-
tion can be automated in adaptive ways (see 
Swanson and White 1995, 1997a, b for a 
pioneering example in economics). Another 
way to perform model selection is via infor-
mation criteria that select factors with the 
purpose of directly targeting improvements 
in models’ forecasting ability.  Information 
criteria minimize the (log) sum of squared 
residuals from equation (16) while penaliz-
ing less parsimonious models, that is, models 
that include too many factors. This way, the 
choice of factors is “supervised.” Traditional 
information criteria can be used, such as 
the Akaike information criterion (AIC)  or 
Bayesian information criterion (BIC) (Stock 
and Watson 2002). Carrasco and Rossi 
(2016) propose information criteria based 
on generalized cross-validation and Mallows 
(1973), and show that they improve forecasts 
in the presence of structural breaks. While 
AIC and BIC assume a factor structure, 
cross validation and Mallows’s (1973) criteria 
are valid no matter whether the large dataset 

47 Procedures that control the probability of making at 
least one false discovery (such as Bonferroni) are said to 
control the family-wise error rate—see also section 4.2.5 
below.

48 Giovannelli and Proietti (2015) instead choose the 
factors that best correlate with the target variable, after 
controlling for the error rate.

of predictors can be well approximated by a 
factor model or not.49

Shrinkage methods, on the other hand, 
apply weights to OLS coefficients that are 
not necessarily zero or one. Shrinkage can 
be imposed either in a frequentist or in a 
Bayesian way. Frequentist shrinkage meth-
ods include, among others: ridge (Hoerl 
and Kennard 1970); lasso (Tibshirani 1996); 
and elastic nets (Zou and Hastie 2005; Zou 
and Zhang 2009). A useful representation 
of these estimators is as penalized OLS 
estimators:

(17) ​​​ β ˆ ​​t​​ = ​arg min​ 
β
​ ​ ​​ Σ ̄ ​​j​​ ​​(​y​j+h​​ − ​β​ t,h​ ′  ​ ​x​j​​)​​​ 2​ + g​(β)​,​

where the penalty function ​g​(β)​​ equals 
​γ​∑ i=1​ N  ​​​​(​β​i​​ − 0)​​​ 2​​ for ridge;50 ​γ​∑ i=1​ N  ​​|​β​i​​ − 0|​  
for lasso; and ​γ​∑ i=1​ N  ​​​​(​β​i​​ − 0)​​​ 2​ + ​(1 − γ)​ 
× ​∑ i=1​ N  ​​|​β​i​​ − 0|​ for elastic nets. It follows that 
ridge shrinks all coefficients toward zero by a 
similar amount, while not setting any of them 
exactly to zero. Therefore, ridge imposes 
shrinkage but does not perform model selec-
tion. Lasso, instead, combines the features 
of both model selection and shrinkage, as 
it shrinks some coefficients to zero and sets 
others to zero, thus creating sparsity. 

An alternative representation where 
the forecasts are viewed as special cases 
of weighted principal components (as 
in Carrasco and Rossi 2016) provides an 
illuminating way to understand the rela-
tionship among some of these estimators. 
The information in the second moments 
of the ​N​ predictors can be summarized by 
its eigenvalues ​​​λ ˆ ​​ i​ 2​​ and eigenfunctions ​​​ψ ˆ ​​i​​​: 
​​(​​Σ ̄ ​​j​​ ​x​t​​ ​x​ t​ ′​)​ ​​ψ ˆ ​​i​​  = ​​ λ ˆ ​​ i​ 2​ ​​ψ ˆ ​​i​​,​ ​i  =  1, 2, …, N​.  The 
forecast, written as a function of a weighted 

49 See Carrasco and Rossi (2016) for a comparison of 
information criteria for forecasting purposes.

50 Note that the sample mean corresponds to ​γ  →  ∞​ 
(when a constant is included) and OLS to ​γ  →  0​.
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average of the eigenfunctions (instead of the 
predictors), is:

(18)	​​ y​t+h|t​​  = ​  1 _ 
T

 ​ ​  ∑ 
i=1

​ 
min​(N,T)​

​​​​q ˆ ​​i​​ ​​ψ ˆ ​​i​​ ​​ψ ˆ ​​ i​ ′​ y,​

where ​y​ is the vector of in-sample ​​y​t​​​ terms  
and ​​​q ˆ ​​i​​  ≡  q​(α, ​​λ ˆ ​​ i​ 2​)​​. Note that ​​​q ˆ ​​i​​  =  1​ 
corresponds to forecasts obtained using 
the usual OLS estimator with all the 
predictors. Ridge is a special case 
when  ​​​q ˆ ​​i​​  = ​ λ​ j​ 2​/(​λ​ j​ 2​ + α​). Factor mod-
els assume ​​​q ˆ ​​i​​  =  1​(​λ​ i​ 2​  ≥  α)​​. Landweber 
and Friedman (see Carrasco, Florens, 
and Renault 2007) corresponds to 
​​​q ˆ ​​i​​  =  1 − ​​(1 − d ​λ​ j​ 2​)​​​ 1/α​​.51 In factor models 
with ​r​ principal components, ​​​q ˆ ​​i​​ = 1​(i ≤ r)​​.

In the Bayesian approach, shrinkage 
is achieved by using priors in Bayesian 
VARs to control parameter proliferation. 
Computational issues can also be resolved 
by choosing an appropriate prior structure. 
Bańbura, Giannone, and Reichlin (2010) 
are among the first to attempt to use large 
dimensional Bayesian VARs, while Koop 
(2013)  focuses on investigating the role 
played by the priors. There is an interesting 
connection between ridge, lasso, and elastic 
nets, on the one hand, and Bayesian shrink-
age on the other. Under some assumptions,52 
the ridge estimator is the posterior mode 
using a Gaussian prior (De Mol, Giannone, 
and Reichlin 2008). This result provides an 
interesting interpretation in factor models: 
if the prior has the same variance on all the 
​β​ terms in equation (11), that is uniform 
shrinkage on all the ​βs​, then the prior on the 
principal components version of the model 

51 The parameters ​α​ and ​d​ are tuning parameters—see 
Carrasco and Rossi (2016) for practical suggestions on how 
to choose them. For partial least squares with ​r​ factors, 
the formula for ​​​q ˆ ​​i​​​ is provided in Carrasco and Rossi (2016, 
equation 13).

52 The assumptions include i.i.d., Gaussian data and a 
linear model. Note that equation (11) for ​h  =  1​ is one 
equation of a VAR system, where ​​x​t​​​ includes the same 
number of lags for both ​​y​t​​​ and ​​x​t​​​.

is proportional to the eigenvalues. Thus, the 
prior further shrinks the most unimportant 
factors even if the prior on the ​βs​ assigns 
equal weight to each of them. Under the 
same assumptions, the lasso estimator is the 
posterior mode using a Laplace prior.53 The 
elastic net estimator is the posterior mode 
obtained using a combination of a Gaussian 
and Laplace priors.

It is also possible to induce parsimony in 
models with factors as well, for example by 
allowing the factor loading matrices to be 
sparse (i.e., have zeros), resulting in so-called 
sparse factor models. Kim and Swanson 
(2014) comprehensively compare the per-
formance of sparse factor models with tra-
ditional (unsupervised) factor models, and 
find that the former are better at forecast-
ing at short horizons, while the latter are 
better at longer horizons.54  As they argue, 
this result might be due to the fact that tra-
ditional factor models could be more robust 
to structural changes, since they always use 
all the predictors, while sparse models would 
perform well only if their coefficients swiftly 
adapt to structural changes. In this sense, 
traditional (unsupervised) factor models 
are akin to forecast combinations, which 
we discuss in the next subsection and which 
have been shown to perform very well in 
forecasting.55

Yet another possibility is to use both a large 
dimension of predictors as well as time-vary-
ing parameters, where, typically, the empha-
sis is on letting the volatility also change over 
time. The latter becomes especially advan-
tageous when modeling predictive densities. 

53 Note that, in the Bayesian approach, the posterior 
mode is sparse while the posterior itself is never sparse.

54 They also consider independent component analysis, 
which constructs factors with non-Gaussian distributions.

55 Groen and Kapetanios (2016) compare factor mod-
els, ridge, and partial least squares (PLS) when the model 
has a weak factor structure. Kelly and Pruitt (2015) pro-
pose instead to use proxies for forecasting. See also Kim 
and Swanson (2015, 2018) and Swanson, Xiong, and Yang 
(2020) for other big data approaches to forecasting.
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We will therefore tackle this issue in  
section 5.2.2.

Finally, note that, on the one hand, the 
shrinkage methods we discussed have 
“machine learning” features to them; on the 
other hand, they all have different properties, 
which we have overviewed. However, it is 
important to notice that the theoretical prop-
erties of many of these methods are really not 
known in a time-series context, which is in the 
context that is relevant for forecasting—let 
alone in the context of forecasting in the pres-
ence of instabilities. A large component of the 
current theory has been developed for inde-
pendent observations—and a large part of it 
under the assumption of orthogonal regres-
sors.  While this section has reviewed what 
is currently known, this is an area in need of 
theoretical analyses and it will most likely see 
important developments in the near future.

4.2.3	 “Forecast then Aggregate”: Forecast 
	 Combination

Forecasters face substantial uncertainty 
regarding which model to use in practice, 
which means that they most likely end up 
combining a variety of forecasting models. 
The strategy of “forecasting then aggregat-
ing” means using the models one at a time 
to produce a set of forecasts, then aggregat-
ing (combining) the forecasts via a weighted 
average:

(19) ​​ y​t+h|t​​ = ​ ∑ 
m=1

​ 
M

  ​​​ω​m,h​​ ​y​ t+h|t​ ​(m)​ ​ , ​ ω​m,h​​ ∈ ​[0, 1]​,

	​  ∑ 
m=1

​ 
M

  ​​​ω​m,h​​  =  1​,

where ​​y​ t+h|t​ ​(m)​ ​​  is the forecast of model 
​m​, ​m  =  1, 2, … , M​, ​​ω​m,h​​​ is the weight 
(between zero and one) associated to the 
forecast of model ​m​, and the forecast is 
obtained by reestimating the parameters 
over time. One common way to implement 
forecast combinations in a dataset with ​N​ 

predictors is to include them one at a time, that 
is, ​​y​t+h​​  = ​ β​i​​ ​x​i,t​​​, for ​i  =  1, 2, … , N​; see Stock 
and Watson (2003).56 Relative to Bayesian 
VARs with time-varying parameters, forecast 
combinations are relatively straightforward 
and easy to implement. The weights can be 
chosen to be either: (i) equal across models  
(​​ω​m,h​​  =  1 / M​, as in Bates and Granger 1969, 
and, more recently, Stock and Watson 2003); 
(ii) trimmed (​​ω​m,h​​  =  0​ for models with past 
MSFEs above a certain threshold, and the 
rest of the weights equal to one divided by 
the number of remaining models); or esti-
mated by either (iii) the inverse of the past 
MSFE of each model (as in Stock and Watson 
2004, Timmermann 2006); (iv) each model’s 
posterior probability, as in Bayesian model 
averaging (Wright 2008, 2009); (v) mini-
mizing the Mallows (1973) and cross-val-
idation criteria in factor-augmented VAR 
models (Cheng and Hansen 2015); (vi) the 
probability that the squared forecast error 
from the alternative model is smaller than 
the benchmark (Granziera and Sekhposyan 
2019). As an alternative, Elliott, Gargano, 
and Timmermann (2013) propose estimat-
ing the weights ​​ω​m,h​​​ using complete subset 
regressions; that is, first combining forecasts 
from all possible linear regression models 
that have the same number of predictors 
using equal weight; then, in a second step, 
using an optimal procedure to determine the 
number of predictors. The latter provide an 
indication of model complexity and can be 
selected to trade off bias and variance of 
the forecast errors. Complete subset regres-
sions impose different degrees of shrinkage 
on each predictor.57 Koop, Korobilis, and 
Pettenuzzo (2019) instead propose randomly 
compressing the predictors first to shrink 
their dimension and produce forecasts, then 

56 Again, models may include a constant and lags.
57 Interestingly, ridge is a special case of complete sub-

set regressions.
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aggregating the forecasts using Bayesian 
model averaging.58

Instead of weighting each model with a 
weight between zero and one, each model 
can also be either included or excluded 
using weights that are either zero or one: 
​​ω​m,h​​  = ​ {0, 1}​​. This is the approach taken by 
Groen, Paap, and Ravazzolo (2013).59 They 
find that there is substantial uncertainty in 
the model specification and that allowing for 
breaks results in a much smaller number of 
predictors in the individual regressions. Thus, 
large-dimensional models can be thought 
of as a substitute for time-varying parame-
ters, and time variation in the parameters 
might be due to the model mis-specification 
incurred by a small model. They also find 
that more parsimonious models forecast 
(inflation) better at longer horizons.

Survey forecasts are themselves forecast 
combinations, as typically one uses the aver-
age across a cross-section of forecasters, each 
of which, in turn, may be obtained using 
different models. Survey datasets, however, 
may be available only for selected variables 
or countries. Importantly, survey-based fore-
casts can be, and often are, used as one of 
the models to combine. In fact, Faust and 
Wright (2013) and Ang, Bekaert, and Wei 
(2007), among others, demonstrate that sur-
vey forecasts are very competitive and can 
enhance combined forecasts.

Time variation can be built explicitly in 
the forecast combinations as well using time- 
varying weights: ​​y​t+h|t​​ = ​∑ m=1​ M ​​  ​ω​m,t,h​​ ​y​ t+h|t​ ​(m)​ ​​ , 

58 That is, they create several “models” ​m​, ​m = 1, … , M,​ 
where ​​x​ t​ ​(m)​​  = ​ Ψ​​ ​(m)​​ ​x​t​​​ and ​​Ψ​​ ​(m)​​​ is an ​​(r × N)​​ non-estimated 
matrix with coefficients randomly simulated. Forecasts 
​​y​ t+h|t​ ​(m)​ ​​  are then generated using ​​x​ t​ ​(m)​​​, and then aggregated as 
in equation (19) using Bayesian model averaging.

59 In addition, in their framework, the forecasts of each 
model are obtained by letting the parameters be possi-
bly time varying, ​​y​t+h|t,m​​  = ​ β​ t,m​ ′  ​ ​x​t,m​​​, and the parameter 
evolution follows a random walk when the parameter 
changes. The parameter is allowed to change at each point 
in time, although it does not have to. They also allow the 
variances of each model to change over time.

where the inclusion of each model is itself 
time varying. Elliott and Timmermann (2005) 
let the weights be driven by a regime-switch-
ing process in a latent-state variable. 
Hoogerheide et al. (2009) focus on the case 
of smooth transition across models over time 
by letting the time-varying weights ​​ω​m,t,h​​​ fol-
low a random walk.60 Koop and Korobilis 
(2012) instead allow for swift changes across 
models over time in addition to smooth time 
variation; to avoid parameter proliferation, 
they use forgetting factors, which operate 
like an exponential smoothing.61 Guerron-
Quintana and Zhong (2017) instead propose 
a clustering approach based on machine 
learning techniques where the data are first 
divided in subsamples (or clusters), then 
the forecasts are adjusted using forecast 
errors from past clusters that are most sim-
ilar to recent observations. A similar idea 
is followed by Dendramis, Kapetanios, and 
Marcellino (2019), who cluster past data that 
are the best match for the current economic 
conditions and, hence, could be more infor-
mative for forecasting.

4.2.4	 Other Dimensions

The above discussion focused on using 
large datasets of models/predictors to guard 
against instabilities. There are alternative 
dimensions that can be exploited as well. 
One such important dimension is mixed 
frequencies. For data available at differ-
ent frequencies (such as daily and monthly, 
for example), the “aggregate then forecast” 
strategy involves first aggregating the data 
at the lowest common frequency (monthly, 
in the example), then forecasting the tar-
get variable at the lowest frequency (e.g., 
Stock and Watson 2003). Alternatively, in 

60 See also Ravazzolo, Verbeek, and van Dijk (2007) for 
forecast combinations under time-varying weights.

61 Both Hoogerheide et al. (2010) and Koop and 
Korobilis (2012) allow for breaks in models’ parameters as 
well as the variance of the overall combination.
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the spirit of the “forecasting while aggregat-
ing” approach, one could use both high- and 
low-frequency variables directly to forecast. 
MIDAS models are frequently used to pro-
duce forecasts when the predictor is sampled 
at a frequency higher than the target variable 
(Andreou, Ghysels, and Kourtellos 2013). To 
allow the predictive ability to change over 
time across regimes, Galvão (2013) proposes 
a smooth transition MIDAS model that also 
allows for taking nonlinearities into account; 
she finds gains when forecasting output 
growth using high-frequency financial vari-
ables. Carriero, Clark, and Marcellino (2015) 
use Bayesian regressions with stochastic vol-
atility and mixed frequencies to improve 
nowcasts of GDP growth, and show that 
stochastic volatility is an essential ingredi-
ent. Alternatives to MIDAS models include 
jointly modeling variables at different fre-
quencies via a Kalman filter approach: this is 
the strategy pursued in the nowcasting liter-
ature—see Bańbura et al. (2013).

Forecast combinations can also be used 
to robustify forecasts over the choice of 
the estimation window size. Pesaran and 
Timmermann (2007) propose to combine 
forecasts based on many window sizes; 
the combination can be obtained either by 
weighting the forecasts of each window size 
by the inverse of its past MSFE or by using 
equal weights. Their “average” forecast at 
time ​t​ is simply: ​​y​t+h|t​​  = ​ ∑ r=​R 

̅
 ​​ ​R ̄ ​  ​​​ω​r,t,h​​ ​y​ t+h|t​ ​(r)​ ​​ , 

where ​​ω​r,t,h​​​ are the weights, and ​​y​ t+h|t​ ​(r)​ ​​  is the 
forecast based on the window size ​r​, where ​r​ 
ranges from a minimum (​​R 

̅
 ​​) to a maximum 

(​​R ̄ ​​). The latter method turns out to perform 
empirically well (Rossi 2013).62

4.2.5	 The Dangers of Data Snooping

When considering a large number of pre-
dictors, the dangers of multiple testing and 

62 See also Hubrich and Hendry (2011) for the interplay 
between structural breaks and disaggregate data.

data snooping become particularly relevant. 
According to White (2000): “Data snooping 
occurs when a given set of data is used more 
than once for purposes of inference or model 
selection. When such data reuse occurs, 
there is always the possibility that any satis-
factory result obtained may simply be due to 
chance rather than any merit inherent in the 
method yielding the results.” Here is an illu-
minating example of how data snooping may 
generate inexistent predictive ability. The 
example is taken from White (2000).

EXAMPLE 5 (Data Snooping): Consider 
the following newsletter scam: the forecaster 
“selects a large number of individuals to 
receive a free copy of a stock market news-
letter; to half the group one predicts the mar-
ket will go up next week; to the other, that 
the market will go down. The next week, [the 
forecaster] sends the free newsletter only 
to those who received the correct predic-
tion; again, half are told the market will go 
up and half down. The process is repeated 
[… and] after several months [there is a] 
group of people who received the perfect 
prediction and is willing to pay for such 
‘good’ forecasts.” (White 2000) Clearly, the 
forecaster did not identify the true model 
that generates stock market returns, and 
any forecasts he produces are random; 
hence, the predictive ability of his “model” is  
a fluke.

While out-of-sample forecasts guard to 
some extent against data snooping, as they 
avoid evaluating models in-sample, still, 
if many models are repeatedly evaluated 
using the same dataset, the empirical find-
ings may not be robust to data snooping. 
White (2000) and Hansen (2005) propose 
bootstrap procedures to protect against the 
dangers of data snooping when evaluating 
the best-performing models (against a 
benchmark) within a large set of compet-
ing models. Sullivan, Timmermann, and 
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White (1999) evaluate the performance 
of trading rules when forecasting the 
stock market and conclude that the pre-
dictability from the best trading rules did 
disappear over time. Similarly, Sullivan, 
Timmermann, and White (2001) find 
no predictability from calendar effects 
in stock returns once data snooping has 
been taken into account. Hansen, Lunde, 
and Nason (2011) propose ways to con-
struct confidence sets of the best forecast-
ing models when considering a large set  
of them.

5.  Measures of Forecast Uncertainty 
and Predictive Densities in Unstable 

Environments

Predictions are typically communicated 
via “point forecasts,” that is, by reporting the 
expected, average value of the future target 
variable. However, the uncertainty around 
point forecasts is crucial. In fact, in a highly 
uncertain environment, forecasts may be far 
away from their targets and could be highly 
unreliable. Measures of uncertainty around 
forecasts—such as confidence intervals, 
quantiles, or density forecasts—are more 
informative and, at the same time, provide 
hedging in an uncertain world.63 After all, as 
Neils Bohr reportedly said, “it is very diffi-
cult to predict—especially the future.”

Several central banks routinely commu-
nicate measures of “confidence intervals” 
around their predictions via fan charts.64 Fan 
charts depict percentiles of the forecast dis-
tribution over a sequence of forecast hori-
zons. In general, central banks’ fan charts 
are the result of convoluted methodologies 

63 For a basic introduction to density forecasts in eco-
nomics and policy making, see Rossi (2014b).

64 For example, the Bank of England Inflation Report, 
the Economic Bulletin of the Bank of Italy, and the pub-
lications by the Bank of Canada, the Reserve Bank of 
Australia, and the European Central Bank.

that involve a variety of models and subjec-
tive assessments, although fan charts can be 
based on specific models as well. For exam-
ple, a model that has been used by the Bank 
of England is the split-normal distribution, 
a non-symmetric distribution that is com-
pletely characterized by three parameters, 
thus reducing the subjective assessment 
to only a few parameters and avoiding  the 
necessity that policy makers agree on all the 
forecast percentiles. For example, the skew-
ness summarizes the monetary policy com-
mittee’s assessment of the balance of risk on 
upside/downside uncertainty (Wallis 1999, 
2004). Other institutions provide measures 
of predictive uncertainty based on the root 
mean square forecast error (RMSFE) of his-
torical forecasts.65

There are two main ways to report fore-
cast uncertainty: one is to report uncertainty 
around a forecast over time for a given fore-
cast horizon (forecast confidence intervals); 
the second is to report uncertainty around 
a sequence of forecasts across horizons, 
fixing the point in time in which the fore-
cast is made (fan charts). Both measures of 
uncertainty can, in principle, be obtained 
as percentiles from a sequence of predic-
tive densities or, alternatively, as quantiles 
or forecast confidence intervals.  A predic-
tive density is the conditional distribution 
of the target variable, say ​​y​t+h​​​, given a con-
ditioning set of variables, say ​​x​t​​​, and will be 
denoted by ​​ϕ​t+h|t​​  ≡  Pr​(​y​t+h​​ | ​x​t​​)​​. Predictive 
densities provide a complete description of 
the uncertainty associated with a forecast. 
They can be obtained from parametric mod-
els or nonparametrically (e.g., survey density 
forecasts).

Note, however, that it is not obvi-
ous how one should construct fan charts 

65 For example, the US Federal Open Market 
Committee (FOMC) Summary of Economic Projections 
(SEP), which calculates them in rolling windows over the 
previous twenty years.
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based on the percentiles of the predictive 
density. Symmetric percentiles may only 
be appropriate under special assump-
tions (Diebold, Gunther, and Tay 1998; 
Mitchell and Weale 2019). For example, 
some central banks66 report the “best crit-
ical region”, that is, the interval of shortest 
length with a given target coverage rate, 
which differs from the central interval 
unless the predictive density is symmetric 
and uni-modal. Predictive densities can 
also be obtained from best critical regions. 
Mitchell and Weale (2019) show that best 
critical regions result in censored predictive 
densities where no probability is defined 
on the outer tails. The latter might induce 
robustness against instabilities and extreme 
events that cannot be quantified, and could 
be related to Knightian uncertainty (see 
Rossi, Sekhposyan, and Soupre 2016 and 
Galvão and Mitchell 2019 for attempts to 
link Knightian uncertainty and predictive 
densities).

How to correctly quantify forecast uncer-
tainty in the presence of instabilities? And 
how to evaluate these measures of uncer-
tainty? This section addresses both of these  
issues.

5.1	 Density Forecast Evaluation

When attempting to evaluate density 
forecasts,67 an important issue is how 
to evaluate whether they are correctly 
specified (calibrated). Testing the correct 
specification of a predictive density means 
understanding whether the description of 
uncertainty provided by the forecast model 
is accurate given the ex post realizations. 
Diebold, Gunther, and Tay (1998); Corradi 
and Swanson (2006a, b, c); and Rossi and 
Sekhposyan (2019) develop methodologies 
based on the result that, if densities are 

66  For instance, the Bank of England.
67 We will use the terms predictive densities and fore-

cast densities interchangeably,

correctly calibrated, the areas below each 
predictive density up to the subsequent 
realization (the probability integral 
transforms, or PITs) should be a sequence 
of i.i.d. uniform observations (Diebold, 
Gunther, and Tay 1998). Thus, the latter 
papers test properties of the PITs, such 
as independence and uniformity, which 
imply the correct specification of the 
predictive density. This ensures that the 
percentage of realizations in each quantile 
of the predictive density corresponds to 
the probability assigned by the model. For 
example, uniformity follows from the fact 
that, in the fifth quantile of the density, 
one should observe about 5 percent of 
the realizations, ex post. The papers differ 
depending on whether and how parameter 
estimation error is taken into account when 
evaluating the forecasts: in the pioneering 
approach by Diebold, Gunther, and Tay 
(1998) and Diebold, Tay, and Wallis (1999), 
parameter estimation error is ignored, 
while it is taken into account in Corradi 
and Swanson (2006b, c) and Rossi and 
Sekhposyan (2019), who use expanding 
and fixed parameter estimation windows, 
respectively. Alternative approaches include 
tests on raw moments of the distribution, 
such as Berkowitz’s (2001) likelihood 
ratio and Knüppel’s (2015) generalized 
method of moments (GMM). The trade-
off between PIT-based and raw-moments-
based approaches is that the former jointly 
test the correct specification of the whole 
predictive density (hence, all the moments 
at the same time), while the latter focus on 
a selected subset of the moments—if the 
researcher does not select all the relevant 
moments, the raw-moments-based tests 
suffer from mis-specification, while they 
are more powerful than PIT-based tests if 
the correct subset of moments is selected. 
Importantly, Mitchell and Wallis (2011) 
emphasize that models that correctly 
condition on an incomplete information 
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set—and hence might be poor forecasting 
models—would still have uniform PITs. 
Thus, they propose using additional criteria 
beyond the uniformity of the PITs, such as 
checks of serial correlation.68

However, the presence of instabilities is 
potentially problematic in all the tests above, 
which are not robust. Rossi and Sekhposyan 
(2013) develop PIT-based tests robust to 
instabilities, which we use to evaluate the 
correct calibration of GDP growth fore-
casts from the SPF (described in section 
2.4). Their ​​κ​P​​​ test statistic is 2.7907 and is 
significant at the 5 percent level, thus high-
lighting strong evidence in favor of lack of 
correct calibration. The instability detected 
by the test is in 2008:I, exactly in the middle 
of the financial crisis.69

If SPF forecasts do not predict the reces-
sion well, are there other econometrics mod-
els that can? And which ones? We consider a 
Bayesian VAR model with stochastic volatility 
(Clark and Ravazzolo 2015) and compare it 
to the SPF predictive density.70 We evaluate 
their relative forecasting performance using 
Giacomini and Rossi’s (2010) fluctuation test. 
To implement the fluctuation test, one needs 
to choose a loss function, such as the contin-
uous rank probability score (CRPS), the log 
score, or quantile scores (Manzan 2015); here 
we use the CRPS—see Gneiting and Raftery 
(2007) for a discussion of scoring rules.71 

68 They also recommend Kullback–Leibler information 
criterion (KLIC) -based measures as well as correlations of 
log-score differences with external explanatory variables—
see section 5.2.1 for details on the latter.

69 If one implemented tests ignoring potential instabili-
ties, such as Rossi and Sekhposyan (2019), in this example 
one would still find evidence of incorrect calibration: the 
value of the Rossi and Sekhposyan (2019) test statistics is 
1.7041 and its critical value is 0.7258.

70 We consider fixed-horizon SPF predictive densi-
ties constructed using optimal weights that target correct 
specification; see Ganics, Rossi, and Sekhposyan (2019). 
The predictive density is smoothed using a Gaussian 
distribution.

71 The MSFE is only appropriate for point forecasts. 
Density forecasts are instead evaluated by scoring rules. 

The results are reported in figure 9, which 
depicts the difference between the SPF and 
the Bayesian VAR’s performance: negative 
values indicate that the SPF performs best. 
The results indicate that, in the early 2000s, 
the SPF and the Bayesian VAR  performed 
similarly. However, closer to the financial 
crisis in 2007–08 the SPF starts forecasting 
better than the Bayesian VAR, and its rela-
tive performance further improves in 2016.72

5.2	 Strategies for Improving Predictive 
Density Performance in the Presence of 
Instabilities

Similarly to the case of point forecasts, 
strategies for improving density forecasts in 
the presence of instabilities include either 
using large datasets of predictors or modeling 
instabilities explicitly. We will consider each 
of these strategies in turn in what follows.

5.2.1	 Exploiting Additional Dimensions and 
	 Big Data

Combining densities from a large set 
of models or predictors is one way to 
guard against instabilities in density fore-
casts.73 The combined predictive density 
(​​ϕ​t+h|t​​​) is obtained from aggregating each of 

In the log score case, the performance of a model is mea-
sured by the logarithm of the predictive density evaluated 
at the actual realization; thus, a higher log score implies a 
better predictive density, as the best forecast density asso-
ciates the highest ex  ante probability to the value that is 
indeed realized ex post. The CRPS is instead the average 
(quadratic) distance between the cumulative distribution 
functions of the predictive density and that of the perfect 
forecast—a step function equal to zero for values below 
the realization and one above it. Thus, a model with a bet-
ter predictive density has a lower CRPS. In both the log 
score and the CRPS cases, the relative performance of two 
models is measured by the difference of their respective 
log scores or CRPS.

72 Amisano and Giacomini (2007) propose a widely  
used forecast density comparison test that is not robust to 
instabilities.

73 Again, we consider combinations of different predic-
tors as a special case of combinations of different models, 
where ​m  =  i​ and ​i  =  1,​​2,​​… ,​​M​.
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the ​M​ individual models’ predictive densities 
(​​ϕ​ t+h|t​ ​(m)​ ​ ,​​m  =  1, 2, …, M​):

(20)	​​ ϕ​t+h|t​​  = ​  ∑ 
m=1

​ 
M

  ​​ ​w​m,t,h​​ ​ϕ​ t+h|t​ ​(m)​ ​ ,​

where ​​w​m,t,h​​  ≥  0​ and ​​∑ m=1​ M  ​​ ​w​m,t,h​​  =  1​.74

74 Imposing nonnegative weights that sum to unity 
ensures that the combined predictive density is a density.

Again, the choice of the weights is crucial for 
obtaining successful forecasts. The weights 
considered in the literature can be either 
constant or time varying. Constant weights 
include: (i) equal weights (​​w​m,t,h​​  =  1 / M​), 
in which case the resulting forecast density 
is known as the “linear opinion pool” (Hall 
and Mitchell 2007, Timmermann 2006); 
(ii) trimming (​​ω​m,t,h​​  =  0​ for the worst- 
performing models and equal weights 

Figure 9. Forecast Density Comparisons

Notes: The figure depicts ​​F​t,m​​​ (labeled “Fluctuation test: SPF versus BVAR”) for comparing the Bayesian VAR 
and the Survey of Professional Forecasters predictive densities using the CRPS loss function. The fluctuation 
test statistic is ​su​p​t​​​|​F​t,m​​|​​; when the latter is above (below) the critical value line, the Bayesian VAR forecasts 
are better (worse) than the SPF. The forecast densities are four-quarters-ahead. The realizations are from 
1998:III to 2018:I and the window size is ​m  =  30​ quarters.
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for the remaining models). Estimated,  
time-varying weights include: (i) recursive 
log-score weights (Jore, Mitchell, and Vahey 
2010), where the weights are estimated in 
recursive windows,

​​w​m,t,h​​  = ​ 
exp​(​∑ j=1​ t−h ​​ln ​ϕ​ j+h|j​ ​(m)​ ​​ (​y​t+h​​)​)​

  ____________________  
​∑ m=1​ M  ​​exp​(​∑ j=1​ t−h ​​ln ​ϕ​ j+h|j​ ​(m)​ ​​ (​y​t+h​​)​)​

 ​​; 

(ii) posterior probabilities (Bayesian model 
averaging); (iii) KLIC-based weights 
(Mitchell and Hall 2005);75 and (iv) 
copula-based weights (Smith and Vahey 
2016).76 An appealing property of the linear 
opinion pool is that, if all models have the 
same forecast density, then that is also the 
combined forecast density. Another property 
is that, if forecast densities are different from 
each other, then the combined density can 
be quite different from each one of them.77 
The latter can either be viewed as an advan-
tage or a disadvantage; it may be an advan-
tage since it produces a flexible combined 
density; it could be a disadvantage since 
the combined density does not mimic any 
model. In the latter case, Garratt, Henckel, 
and Vahey (2019) propose an empirically 
transformed linear opinion pool that better 
preserves the characteristics of the indi-
vidual predictive densities. The appealing 

75 In the KLIC-based approach:

 ​​w​m,t,h​​  = ​ 
exp​(− ​(KLI​C​m​​ − ​min​m​​ KLI​C​m​​)​)​

   _________________________   
​∑ m=1​ M  ​​exp​(− ​(KLI​C​m​​ − ​min​m​​ KLI​C​m​​)​)​

 ​​, 

where ​KLI ​C​m​​​ is the Kullback–Leibler measure for 
model ​m​.

76 Alternatively, Ganics (2017) proposes PIT-based 
weights and Bassetti, Casarin, and Ravazzolo (2018) pro-
pose forecast combinations of predictive densities that also 
take into account calibration.

77 For example, since the weighted average of Gaussian 
distributions is Gaussian, then the linear opinion pool of 
independent Gaussian distributions (with different means 
and variances) with fixed weights is a Gaussian distribu-
tion. However, when the weights are stochastic and have 
to be estimated, the forecast combination of independent 
Gaussian distributions is a mixture of normals, and hence 
can have skewness and kurtosis that the Gaussian distribu-
tion does not have.

property of log-score weights is that they 
give a higher weight to densities that assign 
a high probability to the ex post realizations. 
As discussed in Jore, Mitchell, and Vahey 
(2010), this is equivalent to Bayesian model 
averaging using equal prior weights across 
models. A possible concern with log score 
weights is that they might be sensitive to tail 
events (Gneiting and Raftery 2007).78 KLIC-
based weights instead minimize the distance 
between ​​ϕ​t+h|t​​​ in equation (20) and the true 
predictive density. When, due to model 
mis-specification, none of the forecasting 
models is the true model, KLIC-based fore-
cast combinations provide forecasts from the 
model closest to the true one.79 It is import-
ant to note that different weighting proce-
dures may result in density combinations 
with very different properties, especially in 
the presence of time variation, a topic that 
will be important to explore in the future. 
Alternatively, one could also model the 
time variation in the weights parametrically: 
Billio et al. (2013) propose to use multivari-
ate time-varying combinations of predictive 
densities, where the weight dynamics are 
driven by the densities’ past performance 
using learning. Del Negro, Hasegawa, and 
Schorfheide (2016) propose instead dynamic 
prediction pools to combine predictive den-
sities using time-varying weights, which are 
treated as unobservable components and 
where the degree of time variation in the 
parameters is driven by the data. Waggoner 
and Zha (2012) let the combination weights 
follow a Markov-switching model.

78 See Geweke and Amisano (2011) for theoretical 
results on log-score weights.

79 In Bayesian model averaging, the latter might be 
problematic, since one typically has to assume that one 
of the combined models is the true model. McAlinn et al. 
(2020) introduce a multivariate combination that allows 
all models to be mis-specified as well as interdependence 
between both variables and models/forecasts. Such fea-
tures deliver relatively large gains in terms of forecast accu-
racy during the Great Recession.
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It is also possible to exploit different fre-
quencies as additional dimensions. Carriero, 
Clark, and Marcellino (2015) and Aastveit, 
Foroni, and Ravazzolo (2017) consider pre-
dictive densities based on mixed frequency 
data. Aastveit, Ravazzolo, and van Dijk (2018) 
introduce a combined density nowcasting 
approach to factor models that takes into 
account the time-varying uncertainty of the 
models and explicitly allows for model incom-
pleteness. Their approach provides accurate 
and complete density nowcasts of US GDP 
growth, especially for the two first months 
of the quarter, where the data uncertainty is 
relatively high and model mis-specification 
is more likely. Pettenuzzo and Ravazzolo 
(2016) instead perform combinations with 
the objective of choosing portfolios. See 
Aastveit et al. (2019) for a detailed survey.80

Survey-based density forecasts are among 
the most used nonparametric predictive 
densities. For example, in the United States, 
the Philadelphia Fed maintains the SPF; 
in Europe, the ECB maintains a European 
SPF. In the case of survey forecasts, ​​ϕ​ t+h|t​ ​(m)​ ​​  is 
the predictive density of the ​m-​th forecaster; 
hence, aggregation is across forecasters, 
whose models and information sets could 
potentially differ. Survey forecasts provide 
both aggregate predictive densities, from 
which one can obtain actual measures of 
aggregate forecast uncertainty, and individ-
ual forecasters’ predictions, from which one 
can obtain measures of disagreement that are 
sometimes interpreted as uncertainty. Note, 
however, that, as Lahiri and Sheng (2010) 
showed, dispersion across forecasters is not a 
measure of uncertainty in their average fore-
cast. Bruine de Bruin et al. (2011) show that, 
in their data, predictive densities elicited via 
surveys come out to be internally consistent 

80 Alternative combination strategies involve using 
disaggregate data. For example, Proietti, Marczak, and 
Mazzi (2017) combine density estimates from GDP 
subcomponents to predict GDP growth.

and provide reliable information on the indi-
viduals’ actual perceived uncertainty; they 
also find that dispersion across forecasters 
may overestimate the uncertainty associated 
with predictive densities, confirming that 
the two are substantially different concepts. 
One drawback of predictive densities from 
surveys is that they are often conducted for 
“fixed events.”81 For example, in each quarter 
panelists are asked to forecast GDP growth 
and inflation for the current calendar year 
and the next, implying that the forecast hori-
zon shrinks over time as they approach the 
end of the year. The fixed-event nature limits 
the usefulness of survey density predictions 
for policy makers and market participants, 
who often wish to characterize uncertainty a 
fixed number of periods ahead (“fixed hori-
zon”). Ganics, Rossi, and Sekhposyan (2019) 
develop fixed-horizon density forecasts from 
combining fixed-event probabilistic predic-
tions. It is also possible to combine density 
and point forecasts, as in Krüger, Clark, and 
Ravazzolo (2017), who minimize the dis-
tance between the true distribution and the 
estimated density subject to the constraints 
imposed by the point forecasts.82

5.2.2	 Modeling Instabilities Explicitly and 
	 Technical Aspects in Large- 
	 Dimensional Models

Most, if not all, of the literature on insta-
bilities in density forecasts takes an in-sam-
ple,  model fit-based approach to predictive 
densities. Hence, we will focus on that, not-
withstanding the caveats expressed in the 
previous sections. Predictive densities can 
be easily derived from parametric models 
after making assumptions on the distribution 

81 For example, the US SPF  is conducted for fixed 
events; the Blue Chip Economic Indicators (BCEI) is also 
conducted for fixed events, for some variables. However, 
the European SPF is conducted for both fixed events and 
fixed horizons.

82 Additional dimensions include disaggregate data 
(Ravazzolo and Vahey 2014).
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of the forecast errors. For example, assume 
that ​​y​t+h​​  = ​ β​ t​ ′​ ​x​t​​ + ​ε​t,t+h​​​. A conditional pre-
dictive density can be obtained by assuming 
a parametric distribution for the error term, ​​
ε​t,t+h​​​. For example, suppose that, condi-
tional on information at time ​t​, the errors 
are Gaussian, that is, ​N​(0, ​σ​ t,h​ 2 ​ )​​. Then, ​​ϕ​t+h|t​​  
=  N​(​β​ t​ ′​ ​x​t​​, ​σ​ t,h​ 2 ​ )​​ is the predictive density. 
Note that, in real-time forecasting, the pre-
dictive density at time ​t​ is estimated using 
only data up to time ​t​ and then a forecast is 
made for time ​​(t + h)​​, similarly to point fore-
casts. For a technical introduction to density 
forecasts from parametric models, see Elliott 
and Timmermann (2016, ch. 13).

There is widespread evidence that the 
MSFEs are time varying—for example, Stock 
and Watson (2003) and Rossi (2006, 2014a). 
Hence, it is important to allow the variance 
of the forecast errors to change over time. 
Note that the MSFEs could be time vary-
ing in spite of the parameters of the model 
being constant—for example, if the volatil-
ity changes over time and its evolution is not 
included in the model. Changes in macro-
economic volatility are particularly import-
ant when producing density forecasts: unlike 
point forecasts, where the mis-specification 
of the volatility may result in inefficient esti-
mates, ignoring changes in volatilities may 
result in a mis-specified predictive density, 
and, hence, the wrong assessment of uncer-
tainty around point forecasts. Clark (2011) 
shows that density forecasts from small-di-
mensional Bayesian VARs with stochastic 
volatility predict well relative to models with 
constant volatility.

One could combine large-dimensional-
ity and time-varying parameters and take 
advantage of both. This is typically done in 
linear regression models with many pre-
dictors or large VARs, allowing for time- 
variation in the coefficients. However, esti-
mation is complicated by the fact that the 
number of parameters increases drastically: 
in addition to having ​N​ predictors, one also 

has to include parameters describing the 
forecast distribution and model their varia-
tion over time, which introduces additional 
parameters, computation problems, poten-
tial over-fitting, and large uncertainty in the 
parameter estimates. Hence, dimensionality 
reduction is key when forecasting with such 
models.

Again, this can be done via either fore-
cast combinations or shrinkage in large-scale 
models. In the shrinkage approach, proposed 
methodologies to handle time-varying param-
eters differ depending on how the shrink-
age is performed and which parameters are 
allowed to be time varying, although, overall, 
the estimation is typically computationally 
intensive and typically relies on Bayesian 
methods. In large-dimensional VARs with 
time-varying volatility but constant mean 
and autoregressive coefficients, Carriero, 
Clark, and Marcellino (2016) achieve dimen-
sionality reduction by letting volatilities be 
driven by a single common factor, while 
Carriero, Clark, and Marcellino (2019) allow 
for a nonfactor structure letting volatilities 
evolve according to a random walk. The lat-
ter develop a computationally clever method 
that triangularizes large-dimensional covari-
ance matrices and makes them easily tracta-
ble. Bańbura and van Vlodrop (2018) instead 
develop methods to estimate VARs with 
time variation in both the mean and the vari-
ance, while maintaining the autoregressive 
parameters constant; the mean is a random 
walk and the volatility is modeled via sto-
chastic volatility.83 Koop and Korobilis (2013, 
2018) allow for time variation in either the 
conditional mean coefficients or in the vol-
atilities. Koop and Korobilis (2013) focus on 
large-dimensional VARs using forgetting fac-
tors as a way to discard predictors when they 

83 Allowing the coefficients on the lagged variables to 
be constant keeps the problem tractable. In their empir-
ical analysis, they also incorporate survey expectations to 
reduce the uncertainty on the conditional mean.



Journal of Economic Literature, Vol. LIX (December 2021)1178

become unimportant. Their specification 
implies, roughly speaking, an exponential 
smoothing over the time-varying volatili-
ties that makes estimation in large dimen-
sions feasible.84 Koop and Korobilis (2018) 
and Korobilis (2021) instead focus on sin-
gle equation estimation rather than VARs. 
They develop computationally efficient 
algorithms for estimating large, time-vary-
ing parameter linear regression models: 
in their largest empirical application, they 
can handle a dependent variable along 
with as many as one hundred regressors. 
The method performs dynamic variable 
selection at each point in time, searching for 
the best predictors and discarding the rest. 
Relative to Koop and Korobilis (2013), their 
approach can provide a full characteriza-
tion of the distribution of the volatility pro-
cess, instead of a point estimate. Korobilis 
(2021) uses graphical approaches which, in 
selected Monte Carlo simulations, performs 
well even with hundreds of predictors. 
Eisenstat, Chan, and Strachan (2016) esti-
mate VARs with time-varying parameters 
and stochastic volatility using an indicator 
that chooses whether a parameter is con-
stant or time varying using shrinkage priors 
with lasso, focusing, however, on small- 
dimensional VARs.

The computational costs of including 
time-varying parameters and estimating 
large-dimensional Bayesian VARs are daunt-
ing and especially challenging in small sam-
ples, however, where researchers face the 
perils of over-parameterization. Thus, the 
choice of the prior becomes very important. 
There have been many types of priors used 
in Bayesian forecasting, with an important 
distinction being between traditional subjec-
tive priors (such as the Minnesota prior—see 

84 As noted in Carriero, Clark, and Marcellino (2019), 
Koop and Korobilis’s (2013) approach is not fully Bayesian, 
and hence cannot be used to estimate the uncertainty in 
the volatility in a coherent way.

Koop 2003, for a general introduction) and 
more modern automatic variable selection 
priors, especially when modeling parameter 
changes in the volatility (see Chan [2020] 
for a recent survey that covers these devel-
opments). For example, Carriero, Clark, and 
Marcellino (2016) and Chan (2019) design 
algorithms that adapt the choice of priors 
to model time-varying and heteroskedas-
tic variances, respectively, in parsimonious 
ways,85 while Korobilis and Pettenuzzo 
(2019) explore the role of adaptive priors in 
large dimensional settings.

5.2.3	 MSFE-based and Quantile-based 
	 Confidence Intervals

An alternative way to report measures of 
forecast uncertainty is to use the historical 
forecast errors, like several central banks 
do. For example, the FOMC SEP includes 
fan charts with uncertainty bands computed 
using the MSFEs of past historical forecasts, 
assuming uncertainty is constant within a 
certain rolling window of past data. In the 
latter case, the time variation is not directly 
modeled. Clark, McCracken, and Mertens 
(2020) improve such estimates by explicitly 
modeling the time variation in the forecast 
error variances using a multiple-horizon 
stochastic volatility model. Their model 
includes the forecast error from the previous 
quarter and forecast updates for subsequent 
quarters to summarize the information in the 
set of forecast errors at all horizons.

Another way to obtain forecast confidence 
intervals is to directly model the quantiles of 
the distribution using quantile autoregressive 
models. Quantile autoregressions directly 
model the quantile of a distribution as a 
function of the lags of the predictors, where 
the lag coefficients may differ depending on 

85 The latter considers non-Gaussianity and heteroske-
dastic and serially correlated errors, while the former lets 
the time-varying volatility be driven by a common factor.
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the quantile, as different variables may be 
important in different parts of the distribu-
tion. Manzan (2015) uses quantile autore-
gressive models, including information from 
a large dataset of predictors, such as the fac-
tors extracted from the dataset or a subset of 
variables selected by lasso. He finds consid-
erable improvements in the tail of the dis-
tribution, especially at long horizons, when 
forecasting output and employment. Adrian, 
Boyarchenko, and Giannone (2019) instead 
use quantile models as a first step to obtain 
predictive densities, which are estimated by 
subsequently smoothing across quantiles. 
They focus, however, on a small number of 
models.  Lerch et al. (2017) directly model 
tail densities.86

Note that confidence intervals are sum-
mary statistics of a distribution, hence they 
contain less information than a predictive 
density. Only in special cases are they as 
informative as a predictive density: for exam-
ple, when the predictive density is Gaussian, 
knowing a confidence interval implies knowl-
edge of the mean (which corresponds to the 
center of the confidence interval) and the 
variance of the distribution (as the extremes 
of, say, a 95 percent confidence interval 
equal the mean plus/minus 1.96 times the 
standard deviation) and, hence, knowledge 
of the whole predictive density.

In practice, data revisions are also import-
ant and affect the uncertainty around point 
forecasts as well as policy making (Orphanides 
2001, Croushore 2011). Galvão, Mitchell, 
and Runge (2019) find that the public does 
understand that output growth point fore-
casts are uncertain, due to data revisions, and 
that communicating uncertainty improves 
their understanding—especially when using 
intervals, quantiles, and bell curves.87

86 Delle Monache and Petrella (2017) consider instead 
score-driven models.

87 Clements and Galvão (2017) and Galvão and Mitchell 
(2019) study how professional forecasters quantify data 

6.  Conclusions

This survey article aimed at answering 
four main questions. The first question was: 
“What are forecast instabilities and why 
should we care about them?” As discussed in 
section 2, forecast instabilities are structural 
changes (smooth and continuous or abrupt 
and discrete) in forecasting ability, defined as 
a function of the models’ forecast errors (e.g., 
the squared forecast error). It is important to 
carefully take them into account because, in 
the presence of such instabilities, standard 
tests for forecast evaluation are invalid, as 
are methods to measure uncertainty around 
those forecasts. After all, evaluating models 
according to their out-of-sample predictive 
ability—as opposed to their in-sample fit—is 
an important “reality check.”

The second question was: “How should 
one assess whether a model forecasts well in 
the presence of instabilities?” In the presence 
of instabilities, it is not appropriate to test 
models’ forecasts using methods that are not 
robust to instabilities. In fact, as we showed 
in section 3, traditional tests may be invalid in 
the presence of forecast instabilities and more 
powerful tests should be used—see table 1 
for a summary of robust tests. Importantly, 
changes in models’ forecasting ability may be 
due to time variation in the parameters, but 
the latter are neither necessary nor sufficient; 
thus, if a researcher worries about time vari-
ation in the models’ forecasting performance, 
he/she should use forecast evaluation meth-
ods robust to instabilities rather than tests for 
instabilities in models’ parameters.

The third question was: “How can we 
improve forecasts in the presence of instabil-
ities?” We overviewed two main approaches: 
a first strategy is to allow time variation at the 
model estimation stage, with the explicit goal 

uncertainty due to data revisions. More generally, Haldane 
and McMahon (2018) find that monetary policy commu-
nication might affect inflation expectations by the public.
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of improving forecasting ability. The sec-
ond is to use “big data,” that is, to include a 
large dataset of predictors/models to “guard” 
against instabilities, where again the choice 
of which predictors/models to include is 
designed with the ultimate goal of improving 
forecasting performance. Table 2 summa-
rizes the two approaches. Both are empiri-
cally successful options. As we mentioned, 
however, a lot of the theoretical properties of 
many of the shrinkage methods developed to 
handle “big data” are really not known in the 
forecasting context, let alone in the presence 

of instabilities. As we discussed in section 
4.2.2, this is an area in need of theoretical 
analysis and will most likely see important 
developments in the near future. In terms 
of empirical findings, several works (among 
which are Clark and McCracken 2008; Clark 
and McCracken 2010; Rossi 2014a; Kotchoni, 
Leroux, and Stevanovic 2019; Stevanovic, 
Surprenent, and Coulombe 2019) empiri-
cally evaluate the performance of machine 
learning and large-dimensional methods for 
forecasting; combinations are among the 
best performers. Although the best method 

TABLE 1 
Forecast Evaluation Tests

Approaches Traditional approach Approach robust to instabilities

Out-of-sample absolute 
forecast performance

Forecast rationality tests (Mincer and 
Zarnowitz 1969; West and McCracken 1998)

Fluctuation rationality test (Rossi 
and Sekhposyan 2016)

Out-of-sample relative 
forecast performance

Equal predictive ability tests (Diebold 
and Mariano 2002; West 1996; Clark and 
McCracken 2001; Clark and West 2007; 
Giacomini and White 2006)

Fluctuation and one-time reversal 
tests (Giacomini and Rossi 2010)

In-sample correlations Granger-causality tests (Granger 1969) Granger-causality tests robust to 
instabilities (Rossi 2005)

TABLE 2 
Strategies for Forecasting in the Presence of Instabilities

Strategies Approaches

Panel A. Modeling instabilities explicitly
Large, discrete breaks Clements and Hendry (1996, 1998)

Pesaran and Timmermann (2007)

Small, continuous breaks Giraitis, Kapetanios, and Price (2013)
Inoue, Jin, and Rossi (2017)

Small and large breaks Pesaran, Pick, and Pranovich (2013)

Stochastic breaks Pesaran, Pettenuzzo, and Timmermann (2006)

Panel B. Exploiting additional dimensions, machine learning, and big data
Aggregate then forecast (Unsupervised) factor models

Forecast while aggregating Model selection shrinkage

Forecast then aggregate Forecast combinations surveys
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often varies, depending on which target vari-
able and horizon are being considered, some 
general patterns arise: forecast combinations 
and Bayesian shrinkage consistently perform 
among the best forecasting methods across 
a wide variety of variables.88 Furthermore, 
and perhaps not surprisingly, out-of-sample 
forecast accuracy is not strongly correlated 
with measures of in-sample fit.

Finally, the fourth question was: “How 
should one correctly measure and assess 
forecast uncertainty in unstable environ-
ments?” Again, allowing for instabilities is 
crucial. Section 5 overviewed several meth-
odologies for reporting predictive densities 
and confidence intervals in the presence 
of instabilities, as well as evaluating their 
correct calibration and performing com-
parisons. See table 3 for a summary. The 
construction of predictive densities is a lively 
area of research that has recently attracted 
a lot of interest. It is important especially 
(but not only) for policy makers who wish 
to convey their assessment of uncertainty 
around their projections and increase pub-
lic’s confidence in their assessment. In terms 
of empirical findings, several papers (e.g., 
Jore, Mitchell, and Vahey 2010; Clark 2011; 
Aastveit, Carriero, Clark, and Marcellino 
2017, among others) find that allowing for 

88 Forni et al. (2018) find empirical evidence in favor of 
factor models.

time variation in the conditional variance 
is crucial for obtaining accurate density 
forecasts in a wide set of macroeconomic 
variables, and especially during the latest 
financial crisis. Among alternative models of 
time-varying volatility, VARs with stochastic 
volatility are typically among the best mod-
els (Clark and Ravazzolo 2015) while, among 
density combination methods, equal-weight 
combinations are among the best for macro-
economic data (Kasha and Ravazzolo 2010, 
Rossi and Sekhposyan 2014). Overall, the 
empirical findings suggest that either fore-
cast combinations or a careful modeling of 
time-varying volatilities are important ingre-
dients for securing successful predictive den-
sities in unstable environments—although 
with some exceptions, most of the evaluation 
is still performed using forecast evaluation 
methods that are not robust to instabilities 
and more work needs to be done to draw 
broader conclusions.

Overall, we have shown that instabili-
ties in forecasting are extremely important, 
both empirically and theoretically; there-
fore, it is crucial to take them into account 
when forecasting as well as when evaluating 
forecasts and their uncertainty. Thus, the 
topics reviewed in this article are import-
ant for practitioners, policy institutions, and 
researchers alike: after all, forecasting is not 
just predicting the future, but it also offers 
the ultimate model validation.

TABLE 3 
Forecast Density Evaluation Tests

Approaches Traditional approach Approach robust to instabilities

Correct calibration of the density 
forecast

PIT-based tests
(Diebold, Gunther, and Tay 1998; 
Corradi and Swanson 2006 b, c; 
Rossi and Sekhposyan 2016)

​​κ​P​​​ test
(Rossi and Sekhposyan 2013)

Relative density forecast 
performance

Equal predictive ability tests
(Amisano and Giacomini 2007)

Fluctuation and one-time reversal tests
(Giacomini and Rossi 2010)
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Technical Appendix

This appendix collects details on how to 
calculate the tests discussed in section 3.

ALGORITHM 6 (Fluctuation rational-
ity test, Rossi and Sekhposyan 2016): The 
fluctuation rationality test is: ​​sup​t​​ ​​t,m​​​, 
where ​​​t,m​​​ is a sequence of F-statistics for 
testing ​α = β = 0​ calculated in rolling sam-
ples of size ​m​ centered at time ​t​. (If the first  
forecast is made at time ​R​, that is, the 
firstforecast is ​​y​R+h|R​​​, then ​t = R + 
m / 2, … , T − m / 2​).The test rejects forecast 
rationality when ​​sup​t​​ ​​t,m​​​ is larger than 
the critical values reported in Rossi and 
Sekhposyan (2016).

ALGORITHM 7 (Fluctuation test, Giacomini 
and Rossi 2010): The fluctuation test is 
​su​p​t​​​|​F​t,m​​|​,​ where ​​F​t,m​​​ is a t-test on ​α​ in the 
regression ​Δ ​​j,h​​  =  α + ​u​j​​​ estimated in roll-
ing samples of size ​m​ centered at time ​t​, and ​​
u​j​​​ is the regression error.89 (If the first forecast 
is made at time ​R​, that is, the first forecast 
is ​​y​R+h|R​​​, then ​t  =  R + m / 2, … , T − m / 2​). 
The test rejects equal predictive ability when  
​​sup​t=R+m/2,…,T−m/2​​​|​F​t,m​​|​​ is larger than the 
critical values reported in Giacomini and 
Rossi (2010).

ALGORITHM 8 (One-time reversal test, 
Giacomini and Rossi 2010): The one-
time reversal test is ​su​p​t​​ ​W​t​​,​ where ​​W​t​​​ is a 
joint F-test on ​α​ and ​δ​ in the regression 
​Δ ​​j,h​​  =  α + δ​(​d​t​​ − t)​ + ​u​j​​​, ​​u​j​​​ is the regres-
sion error, and ​​d​t​​​ is a dummy variable 
equal to unity if ​j  ≤  t​, for ​t  = ​ [0.15T]​, ​
[0.15T]​ + 1, … , ​[0.85T]​.​ (If the first forecast 
is made at time ​R​, that is, the first forecast 

89 Heteroskedasticity and autocorrelation consistent 
(HAC) standard errors are recommended. Since the mod-
els are nested, in practice we perform a correction to the 
out-of-sample squared error differences (​Δ ​​j,h​​​) due to 
Clark and West (2006, 2007). See Giacomini and Rossi 
(2010) for the derivation of the test and its critical values.

is ​​y​R+h|R​​​, then ​t = R + ​[0.15T]​, … , R + ​
[0.85T]​​).90 The test rejects equal predictive 
ability when ​su​p​t​​ ​W​t​​​ is larger than the crit-
ical values reported in Giacomini and Rossi 
(2010).
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