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Abstract

This paper provides a theory of how the wealth distribution of an economy affects
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is observable. Second, returns to schooling depend on the ability-composition of agents
attending each school tier, for example, because of choices of common curricula. An
educational system is characterized by an assignment rule of agents to schools and by
endogenous sizes of tiers. I find that a benevolent planner seeking to maximize economic
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constrained, agents. Compared to the first best, the optimal solution features (i) relatively
low-ability, rich agents selecting into higher education and (ii) higher education schools
with less capacity. The same qualitative results obtain when only two commonly used
instruments are available to the planner: school fees and exams. In addition, I show that
economies with relatively tighter borrowing constraints rely more extensively on exams,
and that agents performing better on exams are rewarded with lower school fees.
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1 Introduction

Educational systems in developing and rich countries differ in many respects. In particular,

higher education in developing countries has lower attendance rates and lower educational

achievement as measured by international tests. Moreover, access to higher education re-

lies much more extensively on gate-keeping exams. A conventional view explaining these

differences is that “. . . in many developing countries governments lack either the financial

resources or the political will to meet their citizens’ educational needs. . . .”1 These differ-

ences in the provision of human capital have lead many observers to emphasize the role of

educational systems in developing countries as a means of generating and perpetuating the

ruling elites (e.g., Engerman and Sokoloff (2000, 2002)).

This paper presents an alternative theory for which these same differences in educational

systems occur even when governments seek to maximize aggregate welfare. The purpose of

this theory is to emphasize that, when there are borrowing-constrained agents with private

information on their valuation of education and wealth, there are economic forces pushing

benevolent governments to design seemingly elitist educational systems. I illustrate this by

showing that, even when education can be provided at no cost, a benevolent social plan-

ner implements a system in which higher education features (i) low attendance rates, (ii) a

dampened ability-composition of agents attending higher education, and (iii) an allocation

process for higher education that relies extensively on gate-keeping exams and rationing for

poor agents in the form of lotteries.

The intuition for this result stems from the fact that access to education is a source of

rents for agents. The combination of borrowing constraints and private information makes

it difficult to separate true valuations from willingness to pay. Thus, in order to separate

low-ability, unconstrained agents from high-ability but constrained agents, the educational

system adopts additional screening mechanisms. This results in the usage of lotteries for

poor people and extensive reliance on gate-keeping exams to access higher education (be-

cause it is less costly for high ability types to prepare exams). However, these are imperfect

screening mechanisms. Therefore, in equilibrium, the ability-composition of agents that se-

lect into higher education is worse and the capacity of the higher education tier is reduced

relative to an economy without borrowing-constrained agents.

The three stylized facts presented above, which emerge as the solution of the planner’s

problem in the presence of borrowing constraints, are well-documented features of educa-

tional systems in developing countries. First, there is ample evidence on more extensive

use of gate-keeping exams in developing countries relative to richer countries, especially in

Africa and Latin America, (Al-Samarrai and Peasgood, 1998; Kellaghan and Greaney, 1992;

1This excerpt is from an article by Hillman and Jenkner prepared for the IMF publication “Economic Issues”,
http://www.imf.org/external/pubs/ft/issues/issues33/index.htm
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(a) Percent of children not enrolled in primary school
in 2005. (Source: UNESCO)

5
10

15
20

S
ch

oo
l L

ife
 E

xp
ec

ta
nc

y 
(y

ea
rs

)

6 7 8 9 10 11
Log−Income per capita

(b) School life expectancy (in years) conditional on
attending primary school. (Source: UNESCO)

Figure 1: Differences in School Enrollment

Kellaghan, 2004; Lockheed and Mete, 2007; Mete, 2004). For example, Kellaghan (2004) and

Kellaghan and Greaney (1992) document that in most African countries, three (if not more)

major examinations are required to complete secondary education.2 Kellaghan emphasizes

the role of examinations as gatekeepers and argues that this is reflected in the large num-

bers of students who fail exams and repeat their grade. This is consistent with UNESCO’s

data for 2005, which shows that the repetition rate at fifth grade (before accessing secondary

education) in developing countries is 8.7% on average, versus 1.9% in rich countries.

Second, another difference between developing and rich countries is enrollment rates.

Figure 1a shows that the fraction of children not enrolled in primary school is higher in

low income countries. These differences in attendance rates are exacerbated as one moves

forward in the education system. Figure 1b shows that the expected number of years children

stay in school conditional on having some primary schooling is increasing in income per

capita.3

Third, differences in school quality are documented by Hanushek and Woessmann (2008,

2009) for a cross-section of countries. The authors construct an index based on results on a

set of international tests to proxy for school quality and find significant cross-country dif-

ferences.4,5 Figure 2a shows how their measure of education quality is positively correlated

2These examinations are typically at the end of primary schooling, after two or three years in secondary
school and around the end of secondary school. Kellaghan and Greaney (1992) document that in Francophone
African countries students tend to be subject to even more exams. In particular, additional examinations are
administered during primary school and, also, a competitive examination, termed the concours, is used to select
pupils for the next education level.

3The implicit assumption in this argument is that poorer countries have more borrowing constrained agents.
4Measures of school quality have been developed prior to these studies. For example, Hanushek and Kimko

(2000) use a similar approach. Note that this concept of school quality differs from the approach of Barro and
Lee (1993).

5Hanushek and Woessmann construct a cross-country comparable measure of acquired cognitive skills to
proxy for education quality. The international student achievement tests they use include the following. Trends
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tional tests and income per capita. (Source: Hanushek

and Woessmann (2009))
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Figure 2: Differences in School Quality

with income per capita. Nickell (2004) documents an additional correlation between wealth

inequality and dispersion in school quality. Countries with a more unequal wealth distribu-

tion tend to have more dispersion in quality measures. This is shown in Figure 2b.6

Next, I discuss in more detail the main elements and results of the paper. The theory

presented rests on two central elements. The first element is heterogeneity in agents’ char-

acteristics, ability and wealth, both of which are private information. The second element is

the existence of complementarities in human capital formation across agents with the same

level of education. A natural explanation for this complementarity is that the curriculum

requirement of each education tier adjusts to students’ ability.

In this context, an educational system is characterized by an assignment rule of agents

to schools, and capacities of tiers. I characterize the educational system that a social planner

would design and its decentralization under perfect capital markets and borrowing con-

straints. First, I show that in economies in which there are no borrowing constraints, private

information alone does not prevent the educational system from being first best. In these

economies, the educational system is meritocratic in the sense that agents are matched to

different school tiers according to their ability. Moreover, the first best educational system

can be decentralized through a market for schooling, even in the presence of private infor-

mation.

in International Mathematics and Science Study, Programme for International Student Assessment and Progress
in International Reading Literacy Study. In order to establish a baseline to compare the performance in different
tests, the authors use the United States National Assessment of Education Progress. The reason is that this is the
only test that has been administered consistently over a large period of time.

6Note that in this case the sample is limited to a particular international test in order to have a clear interpre-
tation of the variance in the data. The method in Hanushek and Woessmann (2009) is not designed to generate
comparable second moments.
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Then, I turn to the study of the main object of interest of the paper: economies with

borrowing constraints. Borrowing constraints generate a wedge between private valuation

of education and ability to pay, as agents are constrained in the maximal transfer they can

make. This distorts the matching of agents to schools because of the inability of agents to

effectively signal their true valuations. I find that the optimal mechanism involves random-

ization in access to schooling for high-ability, poor agents, while high-ability, rich agents do

not face any randomness in allocation. The capacity of the higher education tier is reduced

relative to the economy without borrowing constraints. This is consistent with the evidence

presented of low attendance rates in developing countries.

The comparative statics on wealth distribution show that in poorer countries the average

ability of agents selecting into higher education is reduced. Thus, due to the complemen-

tarities in human capital formation, this endogenously reduces the human capital obtained

in higher education in developing countries −which is consistent with worse performance

in international tests. Changes in wealth dispersion have opposite effects depending on

whether or not the median wealth type can afford higher education with certainty. If the

original equilibrium features an allocation in which only agents above the median wealth

can afford higher education without resorting to lotteries, an increase in wealth dispersion

makes it optimal to restrict even further access to higher education, making the educational

system more exclusive. Analogous comparative statics results obtain in the case that the

social planner can only use school fees as instruments.7

Finally, I study an environment in which both school fees and a signaling technology

(exams) can be used. There is a trade-off in using exams. They involve wasteful spending

in order to be prepared, but allow for an additional screening mechanism because it is less

costly for high ability agents to pass an exam. The optimal mechanism is such that agents

that perform better in an exam are rewarded with a lower school fee. Thus, this mechanism

resembles a scholarship scheme. The comparative statics on wealth distribution show that

poorer countries use relatively more exams, and that exams are particularly used in the range

in which there is more wealth inequality. These results fit with the evidence presented on

extensive use of gate-keeping exams in developing countries.

Related Literature This paper emphasizes the role of asymmetric information and borrow-

ing constraints to explain differences in the design of an educational system, and, ultimately,

human capital provision. In this sense, while I focus on a different set of factors, this paper

shares the approach of Banerjee (1997) and Esteban and Ray (2006) of focusing on asymmet-

ric information and borrowing constraints to rationalize differences in provision of goods.

The paper relates to a rich and diverse literature on the determinants of human capital

7In fact, Section 6 shows that if the social planner cannot commit to exclude some high-ability poor agents
from education once they reveal their type, the only credible instrument the planner can use are school fees.
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acquisition. To the best of my knowledge, however, this is the first attempt to provide a

theory of the design of an optimal educational system that focuses on the role of private

information and borrowing constraints in matching of agents to schools.

Fernández and Galí (1999) and Fernández (1998) are the closest papers in terms of the

framing of the problem. They study a matching problem with borrowing constraints and

compare two alternative mechanisms (prices and exams). This paper differs from theirs in

that it takes a mechanism design approach, thus endogenizing the usage of different in-

struments and the size of tiers. Moreover, this paper provides comparative statics results

on the wealth distribution. Another important difference is that, in this paper, educational

standards are set endogenously. In this respect, Costrell (1994) and Betts (1998) provide alter-

native theories on the determinants of educational standards, but they emphasize political

economy reasons rather than private information and borrowing constraints.

The problem of allocating heterogeneous agents to schools studied in this paper can be

interpreted as an extension of the assignment Roy’s model (Sattinger, 1993), in which private

information and borrowing constraints are introduced. With the exception of the aforemen-

tioned work of Fernández and Galí, the literature has typically analyzed other imperfections

in the assignment process. For example, Legros and Newman (2007) and Durlauf and Se-

shadri (2003) study conditions under which monotone matching obtains in environments

with non-transferabilities and endogenous coalition sizes. In this paper, the complementar-

ity between ability and school tier and the fact that agents appropriate all the surplus from

the match makes positive assortative matching efficient.8

The mechanism design problem considered in the presence of borrowing constraints con-

stitutes a bi-dimensional screening problem.This type of problem has been studied in auction

design by Che and Gale (1998, 2000) and Lewis and Sappington (2000, 2001).9 The problem

analyzed in this paper differs in that the objective function of the principal is not to maximize

profit but welfare, education is an indivisible good and there complementarities in payoffs

across agents. These two features make the solution differ from these papers. For exam-

ple there are bunching regions that would not be otherwise present. The conditions on the

wealth distribution that I find for uniqueness of the solution using the first order approach

in section 6 (MLRP and increasing hazard rate of the wealth distribution) are similar to the

results derived in an auction setting without non-convexities in Che and Gale (2000) and

Blackorby and Szalay (2007), respectively.

The optimal educational system implies a particular wage distribution and wage lev-

els. The role of the educational system as a determinant of inequality, income per capita

8Indeed, this is only a convenient simplification of reality (and a common benchmark used in the literature).
There are examples of reasonable technologies, as Kremer and Maskin (1996), that exhibit complementarities and
fail to satisfy positive assortative matching in general.

9Condorelli (2009) and Che and Gale (2009) compare the performance of market and non-market mechanisms.
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and growth has been studied by many authors. For example, Bénabou studies in a series of

papers (Bénabou, 1993, 1996a,b) patterns of community formation and its implications for in-

equality and growth. In these papers he emphasizes the role of human capital formation and

complementarities within types in the same community. This paper differs from Bénabou’s

in that the available mechanisms are endogenized and only a static problem is considered.10

Finally, this paper abstracts from the role of taxation and financing of education. This has

been analyzed, for example, in De Fraja (2002) , Fernández and Rogerson (2003) and Bénabou

(2002).

The rest of the paper is organized as follows. Section 2 presents a detailed outline of the

paper and summarizes the main results. Section 3 lays out the baseline model and Section

4 characterizes the first best educational system. Section 5 shows that under perfect capital

markets, asymmetric information on agents’ ability does not preclude the optimal mecha-

nism to attain the first best educational system and how it can be decentralized. Section 6

studies how the educational system changes under borrowing constraints and presents the

core results of the paper. Section 7 presents extensions of the baseline model to show the

robustness of the results and Section 8 concludes.

2 Outline of the Paper

Section 3 lays out the baseline economic environment. As discussed before, agents are het-

erogeneous in both ability and initial wealth levels. These two characteristics are agents’

private information. Agents obtain (linear) utility from a consumption good. The initial

wealth endowment is in terms of this consumption good, so it can be consumed if desired.

Additionally, final good is privately produced one-for-one with human capital and produc-

tion cannot be observed by the planner.

Agents obtain human capital attending school. The human capital an agent obtains is

jointly determined by its own ability, the school tier she attends and a spillover within the

types that attend the same school tier. In the baseline model, these spillovers take the form of

a “least common denominator”, i.e., they are determined by the lowest ability type attend-

ing a school tier. A rationale for this is that curriculum requirements adjust to accommodate

the lowest skill agent in a given school tier. Thus, this constitutes an endogenous margin

of adjustment by which the curriculum taught at a given school tier, and ultimately, school

quality, can differ from one economy to another. Moreover, there is a complementarity be-

tween ability and school tier: higher ability agents obtain relatively more human capital in

higher tier schools. Finally, to focus solely on the matching problem of agents to schools, the

10Epple and Romano (1998), Fernández and Rogerson (1996, 1998) and Glomm and Ravikumar (1992) provide
analysis of alternative (exogenously given) educational systems and their effect on growth, inequality, commu-
nity formation and the public-private provision dichotomy.

6



baseline environment abstracts from any costs of school provision.

In the baseline model, there are only two school tiers: basic and higher education.11 An

educational system is characterized by (i) an allocation rule that maps types of agents to

school tiers and (ii) school tier capacities. The linearity in the utility function implies that the

social planner seeks efficiency and abstracts from any redistributive concerns when design-

ing the educational system. In other words, the social planner implements the educational

system that maximizes aggregate consumption and, thus, final good production and aggre-

gate human capital.

I study the social planner problem and its decentralization in a variety of environments,

which are summarized in Table 1. Section 4 characterizes the first best educational system.

In this case, the allocation rule of agents to schools depends exclusively on ability. The mech-

anism is such that agents announce their ability type and have to make a (negative) transfer

conditional on the announced type. I refer to negative transfers as school fees in Table 1. As

discussed before, given the linearity in consumption of the objective function, the goal of the

social planner is to achieve efficiency in human capital production (because this maximizes

final good production). Given that the marginal cost of school provision is zero, the educa-

tional system can be decentralized by setting a negative transfer (tax) conditional on school

attended, so that the spillover is internalized. These results are summarized in line (1) of

Table 1.

Section 5 shows that in the absence of borrowing constraints, private information alone

does not preclude the social planner from achieving the first best educational system. This

result obtains because there is single-crossing in the human capital production function. As

a result, high ability agents have higher valuation of higher education and, thus, a simple

school fee can implement the first best educational system with private information. More-

over, the educational system can be decentralized. Similar to the first best case, in the decen-

tralized equilibrium, the spillover in human capital is priced using school-contingent taxes.

Thus, the allocation of agents to schools in an environment with private information coin-

cides with the first best. This is, lines (1) and (2) in Table 1 implement the same allocation of

agents to schools.

Section 6 contains the main results of the paper. It studies an economy with an extreme

form of borrowing constraints: financial autarky. This introduces a potential wedge between

private valuation of education and ability to pay, as agents can be constrained in the max-

imal transfer they can make. I characterize the optimal schooling system in the presence

of borrowing constraints in Subsection 6.1. Agents announce their type (ability and wealth)

and are assigned to schools according to a probability rule and a transfer conditional on their

(bi-dimensional) type. I show that conditional on an ability level, richer agents are offered a

11A more general form of the complementarity, a model with education costs and more than two tiers are
introduced in Section 7.
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Table 1: Summary of the Cases Considered in the Paper

Problem Planner Underlying Decentralization
Implementation Space (prices and taxes)

(1) Perfect Information School Fees A× S X

(2) Private Information School Fees A× S X

(3) Private Information
with Borrowing Constraints

(3.1) Constrained Optimum Lotteries A× Φ × S + Wealth Market

(3.2) No Commitment School Fees A× Φ × S X

(3.3) Private Outside Option School Fees A× Φ × S X

(3.4) No Comm. w/ Exams Fees, Exams A× Φ × T × S + Scholarships

higher probability of accessing higher education. The intuition for the use of lotteries is that

they effectively allow to relax borrowing constraints. By offering a lower school fee with

a corresponding lower probability of access to school, the social planner ensures that this

lottery generates the same ex-ante payoff as a certainty-equivalent transfer. The constrained

optimal mechanism has two important features compared to the first best: it admits agents

with lower ability into higher education and it reduces the total mass of agents accessing

higher education. Given the spillover in human capital formation across agents, this implies

an endogenous degradation of the human capital obtained for all agents attending higher

education.

In a comparative statics exercise, I show that the degradation in higher education quality

due the selection of low ability types into higher education increases in poorer countries.12

The flip side of this result is that, conditional on an ability and wealth level, the probability of

accessing higher education is higher in poorer countries. Thus, this resonates with two fea-

tures of educational systems in developing countries presented earlier: lower school quality

and lower capacity of higher education schools. Changes in wealth dispersion have oppo-

site effects depending on whether or not the median wealth type can afford higher education

with certainty. If the original equilibrium features an allocation in which only agents above

the median wealth can afford higher education without resorting to lotteries, an increase

in wealth dispersion makes it optimal to restrict even further access to higher education,

making the educational system more exclusive. The converse is true if the original equilib-

rium features agents with income below the median being able to afford higher education

with certainty. Finally, I show that the constrained optimal mechanism can be decentralized

through a market for wealth, in which agents play lotteries with each other over their wealth.

The optimal mechanism with borrowing constraints requires the commitment of the so-

12An economy is defined as being poorer than another if the wealth distribution of the poorer economy is
MLRP-dominated by the richer.
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cial planner to exclude from higher education some poor, high-ability agents that engage in

lotteries. Note that once agents that select into lotteries to access higher education have re-

vealed their types, the social planner would like to modify the allocation rule ex-post and al-

locate all these agents into higher education. The reason is that they have an ability (weakly)

higher than the lowest ability of unconstrained (rich) agents that attend higher education. If

the social planner cannot commit to exclude some of these agents from attending higher edu-

cation once they have revealed their type, then the only credible mechanism that can be used

are school fees (without lotteries).13 Subsection 6.2 shows that this environment delivers re-

sults that are qualitatively analogous to the environment with commitment. For example,

the optimal educational system admits agents with lower ability into higher education in-

stitutions. The comparative statics results are also analogous to the case with commitment:

there is endogenous degradation of human capital formation and less capacity of higher

education institutions in poorer countries. Decentralization in this case does not require a

market for wealth. A school-contingent tax in addition to prices of school suffices.

Finally, in this environment without commitment, Subsection 6.3 studies the design of the

schooling system when the social planner has access to a signaling technology, which I inter-

pret as exams. The usage of exams introduces a trade off: exams involve wasteful spending

but allow for additional screening power because the cost of obtaining a particular score is

decreasing in agents’ ability. The optimal mechanism consists of a schedule of school fees

and test scores contingent on agents’ reported type. Agents that perform relatively better in

an exam are rewarded with a lower school fee. Thus, the decentralization of the mechanism

involves a set of taxes conditional on test scores that resemble a scholarship scheme.

When the exam technology is merely of a fail/pass-type, I show that the solution of the

planner problem only makes use exams in sufficiently poor countries. The intuition for this

result is simple. Once exams are put in place, all agents above a particular ability (regardless

of whether they are rich or poor) take the exam. Thus, all agents that take the exam incur a

wasteful spending. The benefit of using exams only comes through the additional mass of

agents that access higher education thanks to exams. As a result, if borrowing constraints

are not very severe, the additional screening power gained by using exams may be too costly

to use. When the planner has access to a richer signaling technology, in which different test

scores can be obtained, the comparative statics of the optimal schooling system on the wealth

distribution show that, at any ability level, poorer countries use relatively more exams (i.e.,

require a higher score) and that the overall access cost to higher education (school fee plus

exam cost) is lower in poorer countries. Similarly, for changes in the dispersion in the wealth

distribution, I show that exams are relatively more used at the levels where inequality in-

13If instead of no-commitment, agents have limited communication and cannot announce their types, then
only a singleton can be used to allocate agents to higher education. If the planner has also limited communica-
tion, then only fees can be used.
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creases.

Section 7 relaxes some of the assumptions of the baseline model and shows that the main

insights derived from the baseline model hold in more general set-ups. In Subsection 7.1, I

allow for more general spillovers (for example, the case in which the spillover is determined

by the average type attending a school) and a CES production function for the final good.

Subsection 7.2 considers the case in which, within each school tier, there are a continuum of

sub-tiers. This extension allows for more robust predictions on the mass of agents attending

schools. Moreover, it provides a simple framework to study how the presence of an unreg-

ulated private provider of schooling may constrain the planner’s problem. I show that the

existence of a private unregulated sector undermines the capacity of the social planner to

provide education to borrowing constrained agents.

3 The Environment

This section describes the fundamentals of the economies studied in the paper.

Endowments. The economy is populated by a unit mass of agents. Each agent is endowed

with ability, a ∼ G(a), and initial wealth, φ ∼ F(φ). Initial wealth is distributed over the

support Φ = [0, φ̄] with cumulative distribution function F(φ), and associated density f (φ).

The upper bound on wealth, φ̄, can be either finite or infinite. Ability is distributed uniformly

over a support A = [a, ā] ⊆ [0, 1]. Ability and wealth are uncorrelated across agents and are

private information.

Technologies. In this economy, two technologies are used: a final good and a human cap-

ital production function. Final good is produced one-for-one with human capital H. Hu-

man capital is produced by the schooling system. There are S school tiers in the economy

s = {0, 1, . . . , S − 1}, with associated capacities c(s). School 0 provides the minimal, manda-

tory, level of education required for all the population, while schools s > 0 provide further

education. The two main cases of analysis in the paper will be case of two and infinite

schools. The marginal cost of school provision per student is κ(s).

An agent with ability a attending school tier s obtains human capital H(a, s), which is

determined by the combination two different factors, A(s) and h(a, s), according to

H(a, s) = A(s)h(a, s). (1)

The first factor is an intrinsic human capital production function h(a, s) associated with each

school tier. This production function is (weakly) increasing and concave in ability a and

(weakly) increasing in school index s. There is complementarity between schools and ability.

Let s > s̃, then
∂(h(a, s)− h(a, s̃))

∂a
≥ 0 for all s, s̃ ∈ S.

10



This means that high ability agents benefit relatively more from high index schools.

In addition to the intrinsic human capital production function, there is an spillover at

each school tier level, A(s). In the baseline model, this is modeled as an extreme comple-

mentarity between types

A(s) = min
a

{a ∈ s}. (2)

This can arise because the social planner cannot commit to exclude from education students

attending each education tier, and has to accommodate the curriculum level of each tier to the

ability of its students. With this interpretation in mind, it is natural to have the lowest ability

student attending a particular tier determining the spillover effect, because the curriculum

level of each tier has to adjust to its “least common denominator.” This implies that if the

spillover component, A(s), differs across countries, the human capital obtained by an agent

of ability a attending school tier s can differ across countries. It is in this sense that the model

rationalizes differences in education quality across countries. In Section 7.1, I discuss how

the results extend to more general type of spillovers, which include, among others, the mean

type attending school s, rather than the minimum.

Preferences and Aggregate Welfare. An agent chooses actions so as to maximize her utility

from consumption. Utility is linear in consumption and equals wage income, plus initial

wealth and a possible lump-sum transfer from the government, minus any expenditures in-

curred to educate. Aggregate welfare is defined as the sum of the utilities of the agents in the

economy. Throughout the paper, the social planner is assumed to be utilitarian and having

as objective to maximize aggregate welfare. The linearity of the objective function implies

that the social planner is concerned only by production efficiency and abstracts from any

distributional consideration. Moreover, as the only input for production is human capital,

this implies that the social planner objective is to maximize aggregate human capital and,

thus, implement a schooling system based on efficiency considerations alone.

From section 4 to 6, I analyze the case in which there are two school tiers, S = 2. The

main insights from the paper are obtained by this simple two-tier school model. As dis-

cussed before, the lower tier, s = 0, represents the basic or mandatory schooling, while s = 1

represents additional, non-compulsory education. Moreover, to highlight the frictions aris-

ing from private information, the cost of provision is assumed to be zero, κ(s) = 0. For the

sake of brevity, I refer to s = 1 as higher education. Section 7 extends the model to allow for

a richer production function, more general spillovers and a continuum of tiers within basic

and higher education.
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Figure 3: First Best Allocation. Agents are segregated by skill only.

4 First Best

In this section, I characterize the optimal schooling system when there is no private informa-

tion and assignments to basic (s = 0) and higher education (s = 1) can be made contingent on

types. Given the complementarity between skills and schools, segregation by skill is optimal.

To see this, consider two agents with abilities a1 and a0 with a1 > a0. It cannot be optimal that

agent 1 is in school 0 and agent 0 in school 1, as H(a1, 1)− H(a0, 0) > H(a1, 0)− H(a0, 1).

Given that it is mandatory to provide basic education to all agents in the economy, the prob-

lem of the social planner is to choose the lowest ability ã in s = 1,

max
ã

∫ ā

ã
ãh(a, 1)dG(a) +

∫ ã

a
ah(a, 0)dG(a),

which has as implicit solution14

∫ ā

aFB
h(a, s)da

︸ ︷︷ ︸

spillover benefit

= aFBh(aFB, 1)− ah(aFB, 0)
︸ ︷︷ ︸

marginal
output cost

. (3)

The social planner balances the spillover (quality) effect that is improved by increasing the

ability of the marginal type attending school 1, with the reduction in the mass of agents that

attend school 1. Note that the allocation is independent of agents’ wealth, see Figure 3.

Conceivably, it could be the case that it would be optimal to have all agents attending

higher education. For example, this could happen if the differences in ability in the popula-

14Sufficiency of the First Order Condition is shown in Appendix 10.
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tion where low (imagine the extreme case in which everybody has the same ability). This is

a pathological case of no interest for the discussion as, in this case, no theory of educational

systems would be needed. So, in what follows, I shall focus the discussion on the cases in

which both, basic and higher education coexist. Simple conditions that would ensure that

both school tiers are used are that either a = 0 or h(a, 0) = 0.

5 Private Information without Borrowing Constraints

In this section, I show that private information alone does not preclude the social planner

from achieving the first best educational system.15 As in Fernández and Galí (1999), I assume

perfect capital markets and that the interest rate paid by agents is constant and normalized

to one. This market operates when the educational system is put in place, so that agents,

if they desire to, can borrow and repay after production. Trades in this market cannot be

monitored by the planner.

The planning problem now is constrained by the fact that the assignment to schools can-

not be conditioned directly on agents’ ability. The planner problem is divided in two stages.

First, the social planner announces an assignment rule and school tier capacities. Second,

the economy unfolds: conditional on the educational system chosen in the first stage, agents

decide which school to attend (borrowing if necessary) and obtain human capital. Then,

they supply their human capital in a competitive labor market, obtain a wage, repay debt

(if any) and consume. Given the linearity of utility, the only concern of the social planner is

to achieve efficiency by matching agents to schools. Thus, the attention is restricted to the

design of the educational system.

Before proceeding, and to avoid the discussion of many cases, I shall make the exposi-

tional assumption that there are always “rich enough” agents in the economy.

Assumption 1 (Expositional simplifying assumption) There is a positive mass of rich agents that

can afford paying for extreme segregation,

φ̄ > āh(ā, 1)− ah(ā, 0).

This assumption implies that the spillover effect ã in school s = 1 is pinned down by the

choice of unconstrained agents for any a ∈ A.

In this environment, using school fees as an allocation device is enough to achieve the

first best allocation. The reason is that agents’ choices satisfy a single-crossing condition. Let

ψs denote the school fee of attending school s, the indirect utility u(a) ≡ maxs H(a, s)− ψs is

15This result is analogous to Fernández and Galí (1999) for the case in which the spillover effect A(s) is shut
down, i.e., A(s) = 1 for all s ∈ S.
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increasing in a. Moreover, the social planner cannot exclude agents from school 0 (ψ0 = 0).

As a result, the choice variable of the planner is to choose fee ψ1 ≡ ψ for school 1. The social

planner problem can be written as

max
ψ

∫ ā

ã(ψ)
ã(ψ)h(a, 1)dG(a) +

∫ ã(ψ)

a
ah(a, 0)dG(a), (4)

where the marginal type obtaining higher education ã is implicitly defined by

ãh(ã, 1)− ah(ã, 0) = ψ. (5)

Note that the fees incurred by agents to attend higher education are just transfers and, as

such, they are not wasted. The revenue that the social planner obtains from the transfers is

redistributed ex-post back to agents. The specifics of the redistribution do not matter given

the linearity of utility. For concreteness, I assume that revenue is redistributed back to agents

in a lump-sum manner.

Proposition 1 The marginal type obtaining education ã(ψ) is strictly increasing in ψ for all ψ ∈

Ψ = ( a(h(a, 1)− h(a, 0), āh(ā, 1)− ah(a, 0) ).

The First Best schooling system can be implemented under private information by setting a school

fee of ψPF = H(aFB, 1) − H(aFB, 0) to agents attending s = 1, where aFB is implicitly defined in

(3).16

This proposition implies that there is a one-to-one mapping from the school fee ψ (in the

relevant margin) to the marginal type selecting into higher education, ã(ψ). Using this prop-

erty, it follows that the First Best schooling system can be implemented by setting a school

fee of ψPF = H(aFB, 1) − H(aFB, 0). Section 7 shows that this result extends to the case of

S > 2 schools. Indeed, if there was no complementarity within agents in higher education,

it would be optimal to make everyone attend higher education.

Decentralization. Next, I discuss how the optimal educational system can be decentral-

ized. One can imagine the social planner running a procurement auction for both basic

and higher education tiers, and there being a competitive pool of firms willing to enter the

market. Firms would undercut each other and this would result in firms willing to supply

education at its marginal cost, which is zero in this case. A price of education equal to zero co-

incides with the optimal school fee for basic education. For higher education, the social plan-

ner would set a tax contingent on attending higher education equal to H(aFB, 1)− H(aFB, 0).

This ensures that the demand of schooling from the agents coincides with the first best allo-

cation of agents to schools. Thus, this discussion shows how the first best educational system

can be decentralized in the presence of private information.

16All proofs can be found in Appendix 10.

14



6 Private Information with Borrowing Constraints

This section analyzes an environment without perfect capital markets. The capital market

imperfection studied is an extreme one: financial autarky. This is, capital markets are shut

down entirely and agents have to self-finance their investments in education. Self-financing

can be interpreted literally, or as the effective disposable wealth agents have to finance edu-

cation after exhausting any potential way they have to obtain financing.

This section starts studying the mechanism design problem assuming that the social plan-

ner can commit to randomization. As I show below, this means that even though some agents

reveal to be of high ability type to the social planner and “deserving” to attend higher edu-

cation in the sense that agents with the same or even less ability attend higher education, it

is optimal for the social planner not to let them obtain education. Then, Section 6.2 studies

the case in which the social planner cannot commit to exclude from education all agents that

signal to have high ability. I show that this is isomorphic to a world in which no communi-

cation is possible, and the optimal mechanism used to allocate agents to schools consist of

just school fees. Finally, I allow for an exam technology to relax the commitment (or com-

munication) problem. The exam technology gives an additional screening mechanism to the

social planner and allows the planner to make the schooling allocation contingent on exam

performance.

6.1 The Mechanism Design Problem

This subsection studies the design of the optimal educational system when agents are bor-

rowing constrained. By the revelation principle, I restrict attention to direct-revelation mech-

anisms in which each type has an incentive to report private information truthfully. This

constitutes a bi-dimensional screening problem, as both ability a and wealth φ are private

information. The mechanism specifies a type-contingent transfer t(a, φ) ∈ R and probability

π(a, φ) ∈ [0, 1] of attending higher education. Formally, a mechanism is a mapping from

the type space to the transfers and probability space, 〈t, π〉 : A× Φ → [−∞, ∞]× [0, 1]. Any

feasible mechanism has to satisfy participation and incentive compatibility constraints for all

agents, in addition agents’ transfers cannot exceed their wealth (borrowing constraint) and

the social planner has to satisfy a break-even constraint.

Let w(a, φ) = π(a, φ)H(a, 1)+ (1−π(a, φ))H(a, 0) denote the expected return or wage of

an agent of type (a, φ). With this notation at hand, the participation constraint can be stated

as

w(a, φ) + t(a, φ) ≥ 0, ∀(a, φ). (6)

Note that the participation constraint is equivalent to the social planner being constrained

to supply at least basic education to all agents in the economy. The incentive compatibility
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constraint is

w(a, φ) + t(a, φ) ≥ π(ã, φ̃)H(a, 1) + (1 − π(ã, φ̃))H(a, 0) + t(ã, φ̃), ∀(a, φ) and (ã, φ̃).

(7)

The borrowing constraint implies that

φ + t(a, φ) ≥ 0 ∀(a, φ). (8)

Finally, note that if the social planner could use negative transfers, it would like to do so

to subsidize education and overcome the borrowing constraints. Thus, a budget constraint

condition needs to be imposed. As the planner has no access to additional resources, a nat-

ural benchmark is that no subsidization is possible. That is, transfers are restricted to be

negative,17

t(a, φ) ∈ R−. (10)

The social planner problem consists on finding the schedule of transfers t and associated

probabilities π that maximize the objective

∫ ā

a

∫ φ̄

0
[π(a, φ)a∗h(a, 1) + (1 − π(a, φ))ah(a, 0)] dG(a)dF(φ), (11)

subject to (6), (7), (8) and (10), where a∗ is defined by the lowest ability agent attending higher

education, a∗ = mina{a ∈ s = 1}.

Proposition 2 (Optimal Schedule) The optimal mechanism featuring agents of ability a ≥ a∗ in

higher education takes the form of a higher education fee menu t(φ), π(φ),

t(a, φ) =







−ψ for φ ≥ ψ, a ≥ a∗,

−φ for φ < ψ, a ≥ a∗,

0 otherwise,

and π(a, φ) =







1 for φ ≥ ψ, a ≥ a∗,

φ
ψ for φ < ψ, a ≥ a∗,

0 otherwise,

with ψ = a∗h(a∗, 1)− ah(a∗, 0).

The formal proof of the result can be found in Appendix 10. Here I provide a sketch of the

proof. Consider the case in which, due to spillovers in human capital production, the social

planner wants to segregate agents in the two school tiers. In this case, the social planner has

17Section 7 and Appendix 9 analyze an alternative setup in which the social planner can do “simultaneous”
redistribution and has only to break even on net,

∫ ā

a

∫ φ̄

0
t(a, φ)dG(a)dF(φ) ≤ 0, (9)

and show that the same qualitative results hold.
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Figure 4: Constrained efficient allocation

to choose the spillover level of higher education (i.e., the threshold type a∗). For a given a∗, it

would be optimal (in the first-best sense) to have all agents with a ≥ a∗ attending higher ed-

ucation. However, borrowing constraints prevent doing so because the transfer level needed

to separate agents according to their willingness to pay is too high for some agents (i.e.,

the borrowing constraint is binding for them). Note, however, that the constrained agents

cannot afford any mechanism that involves paying a fee higher than their wealth. In other

words, rich agents can always claim to be poor, but not the other way around. As a result,

the optimal mechanism can offer to rich, unconstrained agents the “best deal”, which is to

attend higher education with probability 1, provided that they are of ability greater than a∗.

This deal does not affect credit-constrained agents because they cannot afford it. For the

credit-constrained agents, then, the social planner provides a lottery that offers the highest

possible probability to access higher education (provided agents are of ability higher than

a∗). This lottery is decreasing in agents wealth to ensure incentive compatibility. In short,

the fact that poorer agents cannot afford better lotteries compartmentalizes the problem into

layers of wealth. The allocation patterns of the mechanism are represented graphically in

Figure 4.

Proposition 2 allows to rewrite the original planner’s problem (11) as an essentially uni-

dimensional optimization problem. For simplicity, I work with the negative of the transfers,

which I refer to as fees. The objective function of the planner can be expressed now as

max
ψ

∫ φ̄

ψ

∫ ā

a∗(ψ)
∆w(a, a∗)dG(a)dF(φ) +

∫ ψ

0

∫ ā

a∗(ψ)
π(φ, ψ)∆w(a, a∗)dG(a)dF(φ), (12)
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subject to ψ = a∗h(a∗, 1)− ah(a∗, 0), where I have used the notation ∆w(a, a∗) = a∗h(a, 1)−

ah(a, 0). The case of interest is when the problem has an interior solution, i.e., it is optimal to

have some agents with just basic education. In this case, the first order condition is18

(1 − F(ψ))

(

−
∂a∗

∂ψ
∆w(a∗, a∗)g(a∗) +

∫ ā

a∗

∂∆w

∂ψ
dG(a)

)

+

∫ ψ

0

(

−
∂a∗

∂ψ

φ

ψ
∆w(a∗, a∗)g(a∗) +

∫ ā

a∗

∂

∂ψ

(
φ

ψ
∆w

)

dG(a)dF(φ)

)

= 0. (13)

From this expression, it is apparent that the optimal solution balances costs and benefits of

raising tuition fees. The cost of raising the tuition fee is that it reduces the number of agents

attending higher education. This effect is captured in the first and third terms of (13), as the

threshold type a∗ moves with ψ. Moreover, this appears in the decrease in the probability

of accessing higher education for borrowing-constrained agents in the last term of (13) (i.e.,

φ/ψ being decreasing in ψ). The benefit of higher education fees comes through the spillover

effect. By increasing ψ, the spillover effect increases and, thus, makes all agents that attend

higher education obtain more human capital.

To investigate the effect of wealth distribution on the optimal schedule, condition (13)

can be rewritten so that the effect of the wealth distribution is encapsulated in one term,

1
ψ

∫ ψ
0 π(φ, ψ)dF(φ)

1 − F(ψ)
=

∫ ā
a∗(ψ)

∂∆w
∂ψ dG(a)− ∂a∗

∂ψ ∆w(a∗)g(a∗)
∫ ā

a∗(ψ)

(

∆w − ψ ∂∆w
∂ψ

)

dG(a) + ∂a∗

∂ψ ψ∆w(a∗)g(a∗)
. (14)

The left hand side of equation (14) contains all the influence of the wealth distribution on the

optimal solution. If there were no borrowing constraints this term would be zero, and the

optimal ψ would be given by equating the numerator of the right hand size to zero (which

coincides with the first best first order condition, equation 3).

To gain intuition on how the wealth distribution affects the optimal fee ψ (i.e., the left

hand side of (14)), suppose that no lotteries were used. In this case, the probability of at-

tending higher education would be given by a step function, π(φ, ψ) = 0 for φ < ψ and

π(φ, ψ) = 1 for φ ≥ ψ. This would simplify the left hand side to the hazard-rate of the

wealth distribution. In this case what would only matter in making the trade-off between

the mass of agents attending higher education and the spillover effect is the percent increase

in the mass of agents that can afford education at the margin, f (ψ), relative to the total mass

of agents educating, 1 − F(ψ). Now, going back to the original formulation, rather than just

having the density at ψ, thanks to the lottery, the mechanism can include some borrowing

constrained agents with wealth φ < ψ. Thus, the social planner considers a weighted aver-

age of the mass of agents that can attend higher education at different levels of wealth. To

18The derivation of the first order condition and the proof of its sufficiency is shown in Appendix 10.
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see that, note that
∫ ψ

0 π(φ, ψ)dF(φ) computes the total mass of constrained agents attending

higher education, while the term 1/ψ in front, implies that the planner takes into account the

average value of the integral relative to the total mass of unconstrained agents 1 − F(ψ).

The behavior of the left hand side term of (14) as a function of ψ can be, in general,

non-monotonic. However, it is monotonically increasing for log-concave functions that have

support in [0, ∞) such as the Weibull, Exponential, Gamma (with shape parameter greater

than one) and for some other distributions such as the Uniform and the Pareto distribution

with well defined mean and variance (i.e., with shape parameter, greater than 2). Given that

the left hand side term is monotonically increasing for the most usual distributions used

to model wealth distributions (except for the Log-Normal, for which is non-monotonic), I

restrict my attention to wealth distributions that generate an increasing left hand side term.

The right hand side of equation (14) is the ratio of the net marginal gain in output if all

agents were unconstrained relative to the net gain in output due to spillover gains evaluated

at the average-constrained agent.19 In Appendix 10, I show that under mild conditions on

the intrinsic production function h(a, s), the right hand side of (14) is strictly decreasing.

This is intuitive, the numerator captures the net marginal gain from segregation (as in the

first best), and it is decreasing in ψ because of the concavity in the human capital production

function. On the contrary, the denominator is increasing in ψ because the quality of the

higher education sector increases with the spillover. Thus, the right hand side of (14) is

decreasing in ψ.

6.1.1 Comparative Statics on the Wealth Distribution

With the previous discussion at hand, I begin to study the main question of the paper: how

optimal educational systems change with shifts in the wealth distribution? To do so, I intro-

duce a one-dimensional ranking of wealth distributions that is amenable to our purposes.

Definition (Wealth abundance) Consider two wealth distributions, F̃ and F, with associated

densities f̃ and f . A distribution f̃ is more wealth abundant than f , denoted by f̃ ≻w f , if

f̃ (φ1) f (φ0) ≥ f̃ (φ0) f (φ1) for all φ1 > φ0.

The interpretation of the notion of wealth abundance is intuitive. For non-vanishing values

of the density, the wealth abundance condition can be written as

f̃ (φ1)

f (φ1)
≥

f̃ (φ0)

f (φ0)
.

19The denominator is always positive. This follows from the concavity of ∆w, for which Appendix 10 provides
sufficient conditions. A concave function satisfies the following property (c.f. Varian (1992)) ∆w(0) +∆w′(ψ)ψ ≤
∆w(ψ). Note that if ψ = 0, a∗ = a = 1 and ∆w(0) = a(h(a, 1)− h(a, 0)) ≥ 0. Using this result with ∆w′(ψ) > 0,
it follows that ∆w′(ψ)ψ ≤ ∆w(ψ) for all a.
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Figure 5: Wealth Abundance and Dispersion Shift of a Weibull Distribution

This means that if one economy is more wealth abundant than another, there are relatively

more rich agents in this economy when comparing any arbitrary two wealth levels, φ1 and

φ0.20 This notion of wealth abundance requires that the two distributions satisfy a Monotone

Likelihood Ratio Property (MLRP). Figure 5 provides a graphical intuition. Having two

distributions ranked according to MLRP implies both hazard rate and first order stochastic

dominance between these two distributions.

Remark Consider two wealth distributions, F̃ ≻w F, then

1
ψ

∫ ψ
0 φ f (φ)dφ

1 − F(ψ)
≥

1
ψ

∫ ψ
0 φ f̃ (φ)dφ

1 − F̃(ψ)
.

Proof : Rewrite the previous expression as
(
ψ(1 − F(ψ0))(1 − F̃(ψ))

)−1 ∫ ψ
0 φ

(
f (φ)(1 − F̃(ψ))− f̃ (φ)(1 − F(ψ))

)
dφ.

Thus, a sufficient condition for the inequality condition to hold is that f (φ)(1 − F̃(ψ)) − f̃ (φ)(1 − F(ψ)) ≥ 0,

where φ ≤ ψ. Now, I show that this sufficient condition is implied by the definition of wealth abundance. From

the definition of wealth abundance, f̃ (φ1) f (φ0) ≥ f (φ1) f̃ (φ0) for all φ1 > φ0. Integrating both sides of the

inequality from φ1 = ψ ≥ φ0 up to φ̄,

∫ φ̄

ψ
f̃ (φ1) f (φ0)dφ1 ≥

∫ φ̄

ψ
f (φ1) f̃ (φ0)dφ1,

this implies that (1 − F̃(ψ)) f (φ0) ≥ (1 − F(ψ)) f̃ (φ0) for all φ0 ≤ ψ. �

With this definition at hand, I proceed to do comparative statics on the wealth distribu-

tion in terms of wealth abundance to derive the first main result of the paper.

Proposition 3 Consider a wealth abundance shift, F̃ ≻w F. The optimal maximal fee ψ under F̃ is

higher than under F.

The results follows immediately from the left hand side of equation (14) being increasing,

the right hand side being decreasing and the observation that a Wealth Abundance shift

20This notion of abundance is analogous to the skill abundance notion in Costinot and Vogel (2010).
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only moves downwards the left hand side of equation (14).

Proposition 3 implies that more wealth abundant countries have higher ability agents in

higher education because the threshold type a∗ is strictly increasing in ψ. That is, agents

accessing higher education in more wealth abundant economies have higher ability on av-

erage. Thus, the ability-composition of higher education is better in more wealth abundant

economies. Moreover, the level of randomization at all wealth levels is smaller in the wealth

abundant country π f̃ (φ) ≤ π f (φ) for all φ. This implies that it is less likely for borrowing

constrained agents to access higher education in relatively more wealth abundant countries.

Indeed, there are less agents constrained in wealth abundant economies, so the relative cost

of not providing them the right type of education is relatively low.

Another consequence of this result is that the the schooling system in wealth abundant

countries amplifies the dispersion in the earnings distribution compared to less wealth abun-

dant countries. To see this, note that the equilibrium spillover level is increasing in wealth

abundance. Thus, conditional on accessing higher education, wealth abundant countries

generate more human capital for an agent of a given ability. However, access to higher edu-

cation happens at higher levels of ability in more wealth abundant countries.

The previous discussion highlights another dimension of the effect of borrowing con-

straints: the mismatch of ability to schools. With borrowing constraints, there is an increasing

mass of mismatched agents. That is, higher ability agents that have to attend basic education

because of credit constraints. This results in a change in the ranking of earnings of agents

relative to the first-best. As an economy becomes less wealth abundant, high-ability low-

wealth agents tend to fall in the ranking at the expense of low-ability high-wealth agents

who rise.

I now provide a comparison of the mass of agents that are being educated in environ-

ments with and without borrowing constraints.

Proposition 4 There is a reduction in the mass of agents obtaining higher education when the econ-

omy transitions from no agents being effectively borrowing constrained to a (small) mass of agents

being borrowing constrained.

This result is intuitive. As the ability of agents to express their valuations of attending higher

education is hindered, the social planner finds better to reduce the capacity of higher edu-

cation. Note however that this is only true around the transition from no borrowing con-

strained agents to a small mass of borrowing constrained agents. The reason why the result

does not hold for all levels of borrowing constraints is that benefits from the spillover are

traded-off against the mass of agents attending higher education. With two school tiers, if

borrowing constraints are very prevalent, it could be the case that it is better to reduce the

spillover effect to be able to admit more students. In Section 7.2, I show that when there are

more school layers, tighter results are obtained. In particular, I show that the result is true
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at all levels of borrowing constraints for a positive measure of school tiers that contains the

highest level school.21

A related question that can be investigated is how changes in wealth dispersion affect the

educational system.

Definition (Wealth dispersion) Let φm denote the median wealth of an economy. A dis-

tribution with density F̃ has more wealth dispersion, denoted by F̃ ≻d F, if and only if

F̃(φ) ≻w F(φ) for φ > φm and F(φ) ≻w F̃(φ) for φ < φm.

This definition captures the idea that there are more agents with extreme wealth values.

Applying Proposition 3, the following result follows.

Proposition 5 Consider a wealth dispersion shift F̃ ≻d F. If the optimal fee under F featured ψ >

φm, a wealth dispersion shift increases the optimal fee, while if ψ < φm, a wealth dispersion shift

reduces ψ.

This result shows that changes in wealth dispersion have opposite effects depending on

whether the median wealth type can afford higher education with certainty. If the original

equilibrium featured an allocation in which only agents above the median wealth could af-

ford attending higher education with certainty, an increase in the wealth dispersion makes it

optimal to set the education fee even higher. This makes the average type attending school

1 higher and increases the school quality. Indeed, the increase in school quality is at the ex-

pense of making it less likely for poor people to access it. This change in the educational

system makes the earnings distribution more disperse than the original wealth distribution.

In other words, the optimal educational system enhances inequality. The opposite is true

if the original equilibrium featured agents with wealth below the mean. Upon a wealth

dispersion shift, the educational system becomes more inclusive and, in fact, the optimal

educational system tends to undo the increase in wealth dispersion, by making the ex-post

earnings distribution less disperse under the new optimal schooling system.

6.1.2 Decentralization: A Fair Lottery Market on Wealth

In this subsection, I discuss how to decentralize the previous allocation.22 Similar to Becker

et al. (2005) and Cole and Prescott (1997), I show that with a market for lotteries over income,

the optimal allocation can be decentralized. Given the working assumption of zero marginal

cost of provision, consider firms (schools) providing mandatory and higher education at

21When there is a cost of provision of schooling, this result in Proposition 4 is true when there is a large mass
of borrowing constrained agents even with only two schools. The reason is that the social planner cannot reduce
the price below the marginal cost of provision.

22I thank Iván Werning for suggesting this discussion.

22



price 0.23 Suppose that the social planner sets a school-contingent tax that has to be satisfied

to attend school s such that

τ(s) =







0 for s = 0,

ψ for s = 1.
(15)

Now, consider a market that opens after the social planner announces the school-contingent

taxes and before agents attend schools, in which fair lotteries l over wealth are traded. There

is a continuum of these lotteries, indexed by i ∈ [0, ψ]. A lottery li delivers ψ with probability

πi and 0 with probability 1 − πi. There is a competitive market for each lottery.24 Thus the

price of lottery i, pi, is given by the break even constraint (or the actuarially fair lottery),

pi = πiψ.

By the discussion on the previous section, the school-contingent tax τ(s) makes attending

higher education attractive for all agents with ability a ≥ a∗. Agents that are not borrowing

constrained, do not derive any gain from participating in the lottery market. If they had

to, they would purchase the lottery with corresponding price ψ, which returns wealth ψ

with probability 1. However, agents that are borrowing constrained derive positive gains

from participating in this market. Note that should they not participate, they would attend

school 0 with probability one, while by participating in the lottery market they can attend

school 1 with some positive probability.25 Moreover, purchasing a lottery with a higher

probability πi and, hence, a higher price pi is (weakly) better than purchasing a lottery with

lower probability. Thus, constrained agents exhaust their initial wealth when purchasing

lotteries. As a result, agents select into lotteries that have the same expected value of their

initial wealth endowment. This discussion shows the following result.

Proposition 6 (Wealth Market) The optimal schooling system can be decentralized with school-

contingent taxes and a market for wealth.

6.2 Solution with School Fees Only

In this section I show that in environments in which the social planner has no commitment

or limited communication, no lotteries can be used.

Proposition 7 (Credible Mechanism) Let the cost of reallocating agents to higher education be zero.

If the social planner has no commitment, the only credible mechanism are school fees. Similarly, if

the economy has limited communication such that no announcements can be made, the only feasible

mechanism are school fees.

23Section 7 shows that an analogous result holds when there is a positive marginal cost of provision.
24If each market is operated by more than one broker, the assumption is that each broker serves a positive

mass of agents, so that there is no uncertainty on the returns of the lottery.
25The formal argument is analogous to equation (7), πi∆w − pi + w(a, 0) ≥ w(a, 0), for all a ≥ a∗.
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Figure 6: Allocation with school fees only.

Note that the in the previous subsection, some borrowing constrained agents with a ≥ a∗

(that truthfully report their type) are not allocated to higher education. This would not hap-

pen in a first-best world, and it requires a commitment from the social planner of not reallo-

cating ex-post agents once they have announced their type.26 In this environment, the social

planner cannot use lotteries to relax the borrowing constraints, because agents anticipate that

if any randomization is announced, it is not credible. Thus, only school fees (without lotter-

ies) can credibly be used. For the case of limited communication, the result follows purely

from the constraints imposed from the limited communication in the transfer space.

The problem of the social planner reduces to decide the fee ψ that it charges to attend

higher education. As in the previous section, the optimal school choice of an individual of

type (a, φ) is to choose s = 1 if H(a, 1)− ψ ≥ H(a, 0) and φ ≥ ψ. Otherwise, either because

she does not have a high enough ability or enough wealth, she chooses s = 0. Figure 6

represents the region of agents that attend higher education in the type space.

The objective function of the Social Planner in the restricted problem is

max
ψ

∫ φ̄

ψ

∫ ā

a∗(ψ)
∆w (a, a∗(ψ)) dG(a)dF(φ) +

∫ φ̄

0

∫ ā

a
ah(a, 0)dG(a)dF(φ), (16)

where a∗(ψ) is implicitly defined by a∗h(a∗, 1) − ah(a∗, 0) = ψ, and the notation ∆w ≡

a∗h(a, 1) − ah(a, 0) has been used. The interpretation of the objective function is that all

agents obtain at least human capital ah(a, 0) while the mass of agents (1− F(ψ))(1−G(a∗(ψ))

26Note that the zero cost of reallocation is important. If there was an investment stage in which the number
of “seats” (capacity) of each tier are decided and they could not be changed ex-post, this would suffice to ensure
that lotteries are credible.
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attending school 1 obtain an additional amount of human capital. The goal of the Social Plan-

ner is to precisely maximize the additional gain coming from higher education.

Under regularity assumptions on the wealth distribution F to be discussed below, the

FOC gives a sufficient condition to the problem,

f (ψ)
∫ ā

a∗(ψ)
∆w dG(a)da = (1 − F(ψ))

(∫ ā

a∗(ψ)

∂∆w

∂ψ
dG(a)−

∂a∗

∂ψ
∆w(a∗, a∗)g(a∗)

)

. (17)

The left hand side term in equation (17) captures the costs that raising the tuition fee has in

reducing the number of agents attending school 1. The right hand side captures the marginal

benefit that increasing the tuition fee has on raising the spillover for agents in school 1.

The next proposition identifies sufficient conditions for the solutions implicitly defined

by the first order condition (17) to be local maxima.

Proposition 8 If the hazard rate of the wealth distribution,

f (φ)

1 − F(φ)
,

is increasing, then the first order condition (17) has a unique solution that is the maximum of the

planner’s objective function (16).27

Proposition (8) establishes a sufficient condition for the first order condition uniquely

pinning down the optimal fee ψ. This requires the hazard rate of the wealth distribution to be

increasing. Thus, any distribution with a log-concave density yields a unique solution. For

the purposes of the paper, the empirically relevant distributions with log-concave density are

the Beta, Weibull, Gamma and Exponential distributions.28 Note, however, that there can be

distributions that are not log-concave and have an increasing hazard rate.29 Finally, footnote

27 identifies a relaxed sufficient condition that allows to include the Pareto distribution in

the set of distributions for which the first order condition is sufficient.

27 If the wealth distribution satisfies the relaxed condition

−
d

dp

f (p)

ψ(p)
<

(
f (p)

ψ(p)

)2

, (18)

then, the solution of the first order condition (17) may not be unique but contains the solution that maximizes
the planner’s objective function (16). The interest on the relaxed formulation is that it accommodates Pareto
distributions with well defined mean, i.e., with shape parameter greater than one. This can be readily verified by
checking the condition directly. The hazard rate of a Pareto distribution with index α and support lower bound

xm, 1 − F(x) =
( xm

x

)α
, f (x) = α

xα
m

xα+1 , is equal to αx−1. Thus, condition (18) is satisfied if and only if and only if
α > 1.

28Except for the Exponential distribution, these distributions are log-concave when they have a hump-shape.
Bagnoli and Bergstrom (2005) provide a discussion of the parameter ranges in which these distributions have a
hump-shape.

29Bagnoli and Bergstrom (2005) show these results and provide further examples. Note that the log-normal
distribution has a non-monotonic hazard rate and proposition 8 does not apply.
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6.2.1 Comparative Statics on the Wealth Distribution

I now go back to the study of the behavior of the first order condition of the constrained

problem, (17), under changes in the wealth distribution. The discussion is brief, as this is

essentially a particular case of equation (14) with a degenerate lottery. To simplify the discus-

sion in the comparative statics exercise, I assume that the wealth distribution has increasing

hazard rate. Rearranging, equation (17) can be written as

f (ψ)

1 − F(ψ)
=

∫ ā
a∗(ψ)

∂∆w
∂ψ dG(a)− ∂a∗

∂ψ ∆w(a∗, a∗)g(a∗)
∫ ā

a∗(ψ) ∆w dG(a)
. (19)

The left hand side of equation (19) is the hazard rate of the wealth distribution. This is a

particular case of the discussion following the general case with lotteries, equation (14). The

right hand side is the ability-average marginal return of increasing segregation in higher

education divided by the ability-average of people who stay in higher education. Note that

the right hand side is independent of the wealth distribution. Moreover, the numerator is

decreasing in ψ while the denominator is increasing in ψ. Thus, the right hand side of (19) is

decreasing in ψ. This discussion yields to the following result.

Proposition 9 Consider two wealth distributions with F̃ ≻w F. The education fee ψ is higher under

F̃ than under F.

There is a reduction in the mass of agents obtaining higher education when the economy transi-

tions from no agents being effectively borrowing constrained to a (small) mass of agents being bor-

rowing constrained.

The first part of the proposition shows that the comparative statics derived in the previous

section hold when only school fees are used. However, in this case a weaker condition on

the ranking of wealth distribution suffices to ensure the result: as long as there is dominance

in terms of the hazard rate the result follows. The second part of Proposition 9 shows that

the comparative statics on the mass of agents attending higher education is inherited as well.

Similarly, changes in the wealth dispersion yield results analogous to the case with lotteries.

As a final remark, the decentralization of this schooling system is immediate. The planner

sets school contingent taxes equal to the optimal fees.

6.3 School Fees and Exams

This section studies an environment in which the social planner has access to a signaling

technology: exams. These can be used as an additional mechanism to screen agents that

access higher education. The reason why the social planner may want to use them is that

exams have screening power. This is, it is more costly for low ability agents to obtain a given
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test score. However, exam preparation implies a waste of resources (e.g., tutoring). This

introduces a trade-off between better screen capacity and wasteful spending. Obviously,

without borrowing constraints it is never optimal to use exams, because incentives can be

given perfectly with school fees, which do not convey wasteful spending.30

The signal technology considered is similar to Fernández and Galí (1999). It is repre-

sented by the mapping T : A × Φ → T with t(a, c) measuring the score generated by an

agent of type a who spends resources c, and T ⊆ R+. I shall be working with the associated

cost function, c(a, t), which is defined implicitly by t(a, c(a, t)) = t, for all a ∈ A and t ∈ T .

In this context t has the natural interpretation of a test level. The interpretation of the cost

function is that an agent with ability a has to spend an amount c(a, t) to obtain a test score t

in the exam. I assume that ca < 0, ct > 0, cat ≤ 0, c(a; t = 0) = 0 (i.e., not taking the exam

has zero cost).

I consider two different exam specifications. I begin by characterizing the optimal mech-

anism with a simple pass/fail exam in which the difficulty of passing is exogenously given.

Then, I consider an exam technology in which there is a continuum of possible test scores

and, thus, the difficulty of an exam to access higher education becomes endogenous. More-

over, more than one test score can give access to higher education (with different school fees

associated to different scores). I show that that the qualitative results derived in the simple

pass/fail exam hold in the general set-up.

A simple Pass/Fail Exam

The main insight of this section can be obtained by looking at a simple formulation in which

the government has access to a very limited technology, a pass-fail exam, T = {0, 1}. In

this environment, school fees can be indexed by whether or not an agent passes the exam

(i.e., invests in the signal technology) −if the social planner decides to use the signaling

technology.

When does the social planner want to use exams? Suppose only a small mass ε > 0 of

agents is constrained in an allocation that uses only fees. In this case, it is not optimal for the

social planner to use exams in the assignment mechanism. To see this, suppose that agents

can access education by either paying a fee ψ0 and not taking the exam (t=0) or by paying a

ψ1 and passing the exam (t = 1). With this mechanism at hand, all agents with ability a ≥ ã,

with ã defined by ψ0 = ψ1 + c(ã, t) prefer to take the exam. Note that the mechanism cannot

give incentives along the wealth dimension and thus all agents with ability a ≥ ã take the

30The assumption that the all exam preparation is wasteful spending is an extreme one. It could be the case
that agents learn by preparing an exam. In this sense, the exam component that the model is capturing is the
resources that are spent to do well in an exam that are orthogonal to knowledge acquisition. Fernández (1998)
argues that this is constitutes a sizable part of exam preparation. Other researchers, such as Bishop (1997), have
argued that exams can be beneficial because they are coordination devices. I abstract from this feature as well.
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exam. As a result, conditional on a ψ0 (which pins down the spillover level), the additional

gain in output of using exams comes from the additional mass of poor agents with wealth

between ψ0 and ψ1 + c(a, t) that can access school by taking the exam but would otherwise

be excluded,
∫ ā

ã

∫ ψ0

ψ1+c(a,t)
∆wdF(φ)dG(a). (20)

The cost of using exams is the wasteful spending incurred by all agents with a ≥ ã

∫ ā

ã

∫ φ̄

ψ1+c(a,t)
c(a, 1)dF(φ)dG(a). (21)

Thus, output gains are smaller than costs of introducing exams whenever the mass of addi-

tional agents that select into higher education relative to the original mass,
∫ ā

ã

∫ ψ0

ψ1+c(a,t)
dF(φ)/(1−

ψ0), is small. This discussion shows the following proposition.

Proposition 10 Consider a test technology T = {0, 1} and a family of wealth distributions that

can be ranked according to the wealth abundance criterion. Then, there exists a threshold distribution

F∗ such that for all F ≻w F∗ the optimal allocation mechanism does not use exams, i.e., a∗ = ã.

Moreover, if F1 ≻w F0, then a∗1 ≤ a∗0 and ã1 ≤ ã0.

Proposition 10 states the two key results of this section. First, sufficiently wealth abundant

economies do not use exams. Second, the less wealth abundant an economy is, the more it

relies on exams to allocate agents to higher education. To be more precise, the ability range

in which exams are used, [ã, ā], increases. Moreover, the comparative statics on the threshold

type attending higher education are the same as in the previous sections (propositions 3

and 9). Thus, less wealth abundant economies have a worse selection of agents into higher

education in terms of ability.

These results resonate with the empirical evidence presented in the Introduction. De-

veloping countries make relatively more extensive use of gate-keeping exams to complete

basic education and access higher levels of education. This is often coupled with tutoring to

prepare exams, especially in Asia, Africa, Latin America and Eastern Europe (Bray, 2000).

The pattern of selection of types that attend higher education is pictured in Figure 7. In

general, it can be the case that ã > a∗. This resonates as well with practices of access to

higher education. For example, in India, access to prestigious higher education institutions

can be done through two different paths. Access for the general body of students is through

an exam requirement and a tuition fee. But, in addition, there is access through school fees

only, known as management quotas.31 A similar finding is documented for Tanzania by

Al-Samarrai and Peasgood (1998).

31I thank Abhijit Banerjee for pointing out this example to me.
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Figure 7: Allocation with school fees and a pass/fail exam.

Full-Blown Exam Technology and Fellowship Schemes

I now consider the case in which the social planner has access to a continuum of exam tech-

nologies, T = [0, ∞). That is, the planner can ask an agent to obtain any score t ∈ T . I show

that in this environment the qualitative results of Proposition 10 hold. More specifically, it

is still optimal to reduce school quality and resort more extensively in exams in less wealth

abundant economies. Before proceeding, the following assumption on costs is made.

Assumption 2 The associated cost function to the exam technology takes the form c(t, a) = c1(t)c2(a),

where c1 and c2 are positive, twice-continuously differentiable functions. Moreover, c2(a) is log-

convex.

Using the revelation principle, I look for a schedule {ψ(a), t(a)}.The social planner problem

is

max
ψ(a),t(a)

∫ ā

a∗

∫ φ̄

ψ+c(t,a)
(∆H(a, a∗)− κ − c(a, t))dG(a)dF(φ), (22)

where ∆H(a, a∗) ≡ a∗h(a, 1)− ah(a, 0), subject to

∆H(a, a∗)− ψ(a)− c(t(a), a) ≥ 0 for all a ∈ [a∗, 1], (23)

∆H(a, a∗)− ψ(a)− c(t(a), a) ≥ ∆H(a, a∗)− ψ(â)− c(t(â), a), (24)

for all a, â ∈ [a∗, 1], where (23) and (24) are the participation and incentive compatibility

constraints. I adopt a first order approach to solve the problem. I first discuss the sufficient

conditions for implementability and then discuss the optimization part. The set of sufficient

conditions for implementability under the first order approach are as in a standard screening

problem (e.g., Bolton and Dewatripont (2005)). The incentive compatibility constraints are
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satisfied if and only if there is local incentive compatibility

ψ′(a) + ct(t, a)t′(a) = 0, (25)

and monotonicity,

t′(a) ≥ 0 and ψ′(a) ≤ 0. (26)

Note that the implementation problem is essentially one dimensional, because incentives

are provided along the ability dimension only. Calculating the difference of the second or-

der condition with the total derivative of the local incentive compatibility constraint only

involves t′(a). However, differently than the standard screening problem, one cannot get rid

of t and ψ in the objective function by integrating by parts. Finally, before proceeding to the

optimization stage, using the complementarity in the intrinsic human capital technology, the

participation constraint can be substituted by the condition that the marginal type accessing

higher education has to be indifferent,

∆H(a∗, a∗)− ψ(a∗)− c(t(a∗), a∗) = 0. (27)

The Social Planner problem needs to be solved in two steps because the optimization prob-

lem cannot be written exactly as an optimal control or calculus of variations problem. This

comes from the complementarity between the spillover and the intrinsic human capital pro-

duction function. That is, in addition to the initial boundary condition for a∗ to lie on the

curve defined by (27), any change in a∗ affects the value at any point of the integrand of

the objective function (22). Thus, first I solve an inner problem in which the spillover term

a∗ that enters in ∆H(a, a∗) is kept fixed at â∗. This problem is readily amenable to optimal

control techniques. Note that at this step, I obtain an optimal value for a∗(â∗) coming from

the initial condition problem. Then, I solve an outer problem for â∗ under the constraint that

a∗ = â∗.

Appendix 11 characterizes the optimal solution and the comparative statics in the wealth

distribution. The results are summarized below.

Proposition 11 Consider a family of log-concave wealth distributions. Let F̃ ≻w F, then (i) the total

cost of education ψ(a) + c(a, t(a)) at all ability levels a ∈ [a∗, ā] is greater under F̃, (ii) the test level

t(a) at all ability levels a ∈ [a∗, ā] is smaller under F̃, (iii) the threshold type a∗ is greater under F̃

and (iv) the optimal fee-test schedule does not have any bunching region.

These results generalize the ones obtained in Proposition 10 for the simple pass/fail exam

technology. Poorer economies rely more on exams to access higher education. The total

cost of education holding ability constant is increasing with a wealth abundance shift. This

means that the total cost of education (exam plus transfer) in poor countries is less than in
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rich countries. However, point (ii) of Proposition 11 shows that the test level required to an

agent of a given ability is higher in less wealth abundant countries. These two observations

imply that the ratio of exam cost to total cost

c(a, t(a))

c(a, t(a)) + ψ(a)

is decreasing upon wealth abundance shifts. Thus, exam expenditure relative to total school

expenditure is higher in poorer countries. This result relates to the stylized fact discussed in

the Introduction that developing countries rely more on exams than rich countries. Finally,

as in the previous comparative statics results, point (iii) shows that the ability-composition

of agents selecting into higher education is worse in poorer countries.

A corollary of Proposition 11 is the following. Consider a wealth distribution such that

higher education is provided to some agents with wealth below the median. Let F̃ ≻d F, then

the total cost of education ψ(a) + c(a, t(a)) decreases for agents below the median wealth

relative to those above, but test requirements increase. The difference in test scores required

to access schools increases for agents with wealth below the median relative to those above

it. That is, exam requirements (i.e., test levels) increase in the range in which the mass of

borrowing constrained agents rises. This comes as no surprise, exams are more intensively

used in the region where inequality changes are more pronounced, which is precisely where

their screening power has a higher relative benefit.

Decentralization. The previous mechanism gives incentives by rewarding (high ability)

agents that obtain high test scores with low school fees. In a decentralized equilibrium, (as

the marginal cost of provision is zero) this is implemented with a tax contingent on school

and test performance, so that agents that obtain better grades pay a lower tax. Thus, this

very much resembles the usage of scholarship schemes. The previous discussion implies that

poorer countries rely more in scholarship-like schedules to implement the optimal solution.

7 Extensions

The goal of this section is to show that the results highlighted in the baseline model hold in

more general environments. In Subsection 7.1, I consider a yeomen-farmer like economy, in

which each agent produces a differentiated intermediate good, and the final consumption

good is a CES composite of all intermediates. Then, I discuss how the results extend to more

general type of spillovers.

Subsection 7.2 analyzes an environment in which, within each education tier, there is

a continuum of sub-tiers, so that a school can be tailored to each ability level. Even though

this extension mutes the endogenous quality degradation margin, it provides a useful bench-

mark to analyze how the mass of mismatched agents and school capacities change at differ-

31



ent wealth levels. I use this simplified environment to show how the planner uses cross-

subsidization within schools to increase access of borrowing constrained agents to schools

and to show how the presence of an unregulated private sector provider may hamper its

ability to do so.

7.1 Yeomen farmers and general spillovers

Consider the following extension of the baseline model. Each agent produces a differentiated

intermediate good with her human capital. The final good is produced as an aggregator of

intermediates with elasticity ε,

Y =

(∫

y(i)
ε−1

ε di

) ε
ε−1

, ε > 1.

Thus, the technology specification in the baseline model is a limiting case in which all inter-

mediates are perfectly substitutable (ε → ∞).

Markets are competitive, and payments to factors of production are made according to

marginal productivity.32 Thus, an agent with ability a that attends school s, earns

w(a, s) = Y1/εH(a, s)
ε−1

ε = Y1/ε A(s)
ε−1

ε h(a, s)
ε−1

ε .

This payoff structure resembles the structure of Bénabou (1996b) in that there is a “local” and

“global” externality.

Next, I show that the same qualitative results hold in this generalized set-up. Define

h̃(a, s) = h(a, s)ε/(ε−1). Note that the complementarity between a and s is preserved as ε > 1.

Analogously, define Ã(s) = (mins{a ∈ s})ε/(ε−1). Let a∗ = mins{a ∈ s}. The derivative of

Ã(s) with respect to a∗ is positive. The argument that maximizes the value of Y(a∗) coincides

with Y(a∗)(ε−1)/ε. Thus, the problem of finding the argmax of Y(a∗)(ε−1)/ε is isomorphic to

the baseline model replacing h̃(a, s) for h(a, s), and Ã(s) for A(s). As a result, the same

methods and results derived in the linear technology case apply to this general set-up.33

Now, I discuss how the results extend in two different alternative specifications of the

spillover. The main lead theme of both specifications is to relax the “least common denom-

inator” specification to address the concerns that (i) agents may learn even if a curriculum

is tailored for higher ability agents (Duflo et al. (2008) offer evidence along these lines), (ii)

there are other forces that can generate the complementarity in human capital production.

A simple extension that generalizes the results presented in the baseline model without

32I maintain the assumption that the social planner cannot manipulate the production of goods, it can only
choose the educational system structure.

33Note, however, that in this case the sufficiency conditions derived for the baseline model need to be adjusted
by the presence of the additional factor ε/ε − 1.
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adding any complexity to the problem is to allow the spillover to be a convex combination

of the highest and lowest ability agent in a particular school,

A(s) = α min
s
{a ∈ s}+ (1 − α)max

s
{a ∈ s}, α ∈ [0, 1). (28)

Note that in this formulation, a reduction on the threshold type attending higher education

would affect both the spillovers at the basic and higher education. However, it is immediate

to check that the complementarity in the intrinsic human capital h is enough to ensure that

the results derived in the baseline hold with a spillover as in (28).

One might argue that specification (28) is blind to whether most of agents are close to the

maximum or the minimum, and that this is likely to matter. One can further generalize the

spillover to

A(s) =

(∫∫

a
σ−1

σ dZ(a, φ|s)

) σ
σ−1

, (29)

where Z(a, φ|s) is the joint ability-wealth distribution of types selecting into school s. This

spillover spans the range from a Leontief as 1/σ grows to infinity to a “best shot” as 1/σ

goes to minus infinity. Note that as σ → ∞ the spillover becomes the average type attending

the school. The results derived in the baseline section can be extended to a spillover with

this specification (29) if basic education is modeled as an outside option with its value nor-

malized to zero for all agents (i.e., h(a, 0) = 0). In this case, it is immediate to verify that

analogous results to the baseline follow. Intuitively, when the spillover is of the “best shot”

no segregation is optimal, while when it is Leontief, some segregation is always optimal.

An intermediate value of 1/σ, gives an intermediate level of segregation between these two

extremes.

If the outside option of basic education is not normalized to zero then the problem be-

comes more complicated and some additional structure to the human capital production

function and the distribution of types is needed in order to have clear comparative statics.

This comes from the fact that the difference in spillovers A(1)h(a, 1) − A(0)h(a, 0) may be

either concave or convex on changes in the marginal type obtaining education when there

are borrowing constraints.

7.2 Continuum of Schools

This section analyzes the optimal schooling system when within the two broad curricula of

basic and higher education, there are finer curriculum options. For example, higher edu-

cation can be subdivided in associate, bachelor, master and Ph.D. degrees. Even further, it

may be the case that different schools can have some margin to adapt their curricula. For

example, to the extent that educational institutions have some discretion in setting their own

standards, curriculum requirements may vary to some extent among institutions in the same
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education tier. I capture this richer environment by allowing for different sub-tiers in both

mandatory and higher education. These can be interpreted as either a finer partition across

different educational tiers or differences at school level. As it turns out, the most convenient

formulation is to allow for a continuum of sub-tiers within each educational tier.

The goal of this exercise is two-fold. First, it allows to investigate to which extent the

reduction in capacity of higher education schools and the mismatch of ability to schools

persists even when there is a school tailored to each ability level. Second, it provides a

natural framework to analyze competition between an education sector regulated by the

social planner and an unregulated sector.34

Compared to the baseline environment, in this section I allow for a marginal cost of pro-

vision of higher education κ. More importantly, I allow the planner to cross-subsidize across

schools. That is, the budget constraint of transfers has to break even on net, and not school

by school. That is, as opposed to the baseline model, the planner has the ability to do instan-

taneous redistribution, as in equation (9).

7.2.1 First Best characterization and no Borrowing Constraints

This section shows that the result derived in the two-tier case which stated that private infor-

mation alone does not prevent the social planner from implementing the first best allocation

system generalizes to more school tiers. The intuition for the result is the same: given the

complementarities between endogenous school quality and types, higher ability agents are

willing to pay more for higher quality education. This section proceeds as follows. I begin by

characterizing the first best. Then, I show how a mechanism can be designed to implement

the first best educational system when private information is present.

Given the complementarity of a and s, there is full segregation in the first best. That is,

the first best features one school for each type a. To see this, suppose to the contrary that two

types of different ability al < ah with associated mass mal
and mah

attend the same school

tier. Then, by segregating them, output can be increased as ah benefit from a higher spillover,

without reducing the output of al . Types with a ≤ a∗ attend school 0, where a∗ is defined by

a∗(h(a∗, 1)− h(a∗, 0)) = κ.

Next, I show that the first best educational system can be achieved with private informa-

tion using a school fee schedule. This is the continuous case counterpart to Proposition 1.

34As opposed to the two-tier framework, this framework allows to isolate the effect of competition. In the
two-tier system, additional provision from the unregulated sector generates a mechanical force towards having
gains from an additional private provider just because it allows more segregation. Moreover, a two-tier system
easily runs into the problem of multiple equilibria.
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The problem of the social planner is

max
ψ(a)

∫ a∗

a
H(a, 0)da +

∫ ā

a∗
(H(a, 1)− κ)da

subject to

ah(a,1(a))− ψ(a) ≥ 0 for all a ∈ [0, 1],

ah(a,1(a))− ψ(a) ≥ âh(a,1(â))− ψ(â)

for all a, â ∈ [0, 1]. And the break even constraint,

∫ ā

a
(ψ(a)− κ)da ≥ 0.

The fee schedule that solves the problem is,

ψ(a) =







∫ a
a h(a, 0)da for a ≤ a∗,

∫ a
a∗ h(a, 1)da +

∫ a∗

a h(a, 0)da for a > a∗.
(30)

where it is used the normalization that h(a = a, 0) = 0. Figure 8a provides a graphical rep-

resentation of the result. Note that the solution features standard properties from screening

mechanisms. “All rents” are extracted for the lowest ability type a = 0 and consumption

is increasing in ability, c′(a) = aha(a, ·). Moreover, it can be verified that the break even

constraint is satisfied with inequality.

Finally, this solution coincides with the First Best because there is complete segregation

in skill. The following proposition summarizes the previous discussion.

Proposition 12 The first best educational system features full-segregation. The optimal mechanism

with private information can implement the first best educational system.

Before proceeding note that there can be other price schedules that implement the first

best if h(a, 0) > 0. However, these are constrained to have the same slope as (30). The reason

is simple, at any other slope, there would be bunching of some types and this cannot be

optimal by the previous argument that segregation is always optimal. This is stated in the

next remark.

Remark Any transfer that implements truth-telling revelation of ability has to have slope in

ability given (almost everywhere) by either the slope of
∫ a

0 h(a, 0)da for s = 0 or
∫ a

a∗ h(a, 1)da

for s = 1.
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7.2.2 Decentralization without borrowing constraints

In this section I show that there exists an equilibrium that decentralizes the optimal schooling

system. Define a competitive schooling equilibrium as a supply of schools S, pricing function

p : S → R+ and agents’ choices c : A → S such that (i) agents’ school choices maximize

utility at the stated prices, (ii) firms maximize profits, (iii) markets clear.

First, I show that it exists an equilibrium in which prices coincide with fees set by the

social planner (30). The reason why sub-tiers can exist is that, despite using the same intrinsic

human capital production function, different schools offer different spillovers at different

prices. Thus, school prices p are indexed by both the intrinsic technology s and the spillover

level a ∈ A. Consider the following price schedule for p(a, s)







p(a, 0) =
∫ a

0 h(a, 0)da fora < ã,

p(a, 1) =
∫ a

ã h(a, 1)da + κ for a ≥ ã,
(31)

where κ is the marginal cost of school provision and ã is implicitly defined by ãh(ã, 1)− κ =

ãh(ã, 0)− p(ã, 0). Note that this price schedule, conditional on s, is convex in a. Agents utility

maximization,

max
â,s

{âh(a, s)− p(â, s), 0} (32)

can be solved sequentially. First, find the optimal demand of â in each school tier, and then

comparing utility at the optimal â(s) from attending basic and higher education (or not ed-

ucating at all). The solution to (32) is â = a. Thus an agent with ability a < ã chooses s = 0

and an agent with a > ã chooses s = 1, an agent with a = ã is indifferent, and no agent

decides not to educate.

Given this price schedule, education provision for any (a, s) is provided at no loss, as

p(a, 0) ≥ 0 and p(a, 1) ≥ κ. In fact, schools make positive profits in equilibrium and no

entrant can attract agents by offering lower prices. To see this, consider an entrant that

provides (a, s) at a price lower than p(a, s). At a lower price, agents with lower ability would

purchase the schooling good (a, s), but this would result in a spillover effect of lower ability

than a. Thus, no price lower than p(a, s) can be credibly offered. The question is that with

positive profits, there will always be schools willing to enter the market. One possibility to

discipline the model is to have a given measure of potential entrants, so that schools per

se become infinitesimal. Another is to have an additional type specific school production

input in fixed supply that is needed to provide education, so that as more and more firms

enter a particular school market, the price of the input goes up. This would pin down the

number of schools entering the market. The details of how to pin down the number of firms

is inessential for purposes of this discussion. In either case, the relevant part is that at the

stated prices, the demand for schooling at all ability levels is positive and is met by a supply.
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Thus, there is market clearing.

Remark Any price schedule that perfectly separates agents in terms of ability has to have

slope in ability given (almost everywhere) by either the slope of
∫ a

0 h(a, 0)da for s = 0 or
∫ a

a∗ h(a, 1)da for s = 1.

The equilibrium proposed as it stands does not coincide with the first best solution. In

this equilibrium there is more provision of higher education than in the first best, as the

lowest ability type attending higher education is

ah(a, 1)− κ = ah(a, 0)−
∫ a

0
h(a, 0)da, (33)

while in the social planner solution is ah(a, 1) − κ = ah(a, 0). This makes clear that a tax

contingent on attending school tier s = 1 of value τ =
∫ a

0 h(a, 0)da implements the same

assignment of agents to schools as in the first best.35

7.2.3 Private Information with Borrowing Constraints

I study the mechanism design problem when there are borrowing constrained agents. The

following result greatly simplifies the analysis.

Remark (No bunching) Whenever there exists an agent of ability a that can afford segrega-

tion, it is optimal to offer a school tailored for agents of ability a.

This result comes from the extreme complementarity in the spillover, which implies that

segregation of high-ability, unconstrained agents does not reduce the utility of high-ability

constrained agents. Segregation has the advantage of increasing output and increasing rev-

enue of the social planner (which implies a reduction on the schooling fee across-the-board).

An important corollary of this remark is that it is not optimal to use lotteries. The reason is

simple: given the Leontief spillover, this would involve bunching types. Thus, announce-

ments on the wealth dimension are not relevant to the social planner because there is no

added value on randomization.

With this results at hand, the mechanism to be used can be rewritten as follows. Let ψ(a)

denote the fee that agents of ability a pay if they announce to be of ability a. Then, given an

announcement (a, φ) the fee that any agent with φ > ψ(a) has to pay is ψ(a), while if the

35Note that if h(a, 0) = 0, this is the only equilibrium that features full segregation. If h(a, 0) > 0, there could be
other equilibria that decentralize the first best, which would be a translation p(a, s)+ β for some 0 ≤ β ≤ ah(a, 0).
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agent is constrained the fee is just φ. The problem of the social planner can be written as

max
ψ(a),1(a)

∫ ā

a

∫ ā

ψ(a)
(H(a,1(a))− 1(a)κ)dF(φ)dG(a) +

∫ ā

a

∫ ψ(a)

a
(ψ−1(φ)h(a,1(ψ−1(φ))− 1(ψ−1(φ))κ)dF(φ)dG(a),

subject to the participation and incentive compatibility constraints,

ah(a,1(a))− ψ(a) ≥ 0 for all a ∈ [a, ā],

ah(a,1(a))− ψ(a) ≥ âh(a,1(â))− ψ(â),

for all a, â ∈ [a, ā] that are unconstrained, and the break-even constraint

∫ ā

a

[

(1 − F(ψ(a))ψ(a) +
∫ ψ(a)

a
φdF(φ)

]

dG(a)

≥ κ(1 − F(ψ(a∗))
∫ ā

a∗
dG(a).

From the results in the previous section, a fee-schedule that achieves full segregation has to

have the slope of equation (30). In this case, the presence of borrowing constraints imply

that it is optimal to reduce as much as possible fees (conditional on the break even constraint

being binding). Thus, the level of the fee schedule ψ(a) is going to be reduced as much as

possible (up to the break-even constraint being binding) without changing the slope. More

specifically, the solution of the problem is given by

ψ(a) =







∫ a
0 h(a, 0)da − C for a ≤ a∗,
∫ a

a∗ h(a, 1)da +
∫ a∗

0 h(a, 0)da − C for a > a∗.
(34)

with a∗h(a∗, 1)− κ = a∗h(ã, 0), where C is pinned down by the break even constraint

∫ ā

a

[

(1 − F(ψ(a))ψ(a) +
∫ ψ(a)

0
φ f (φ)dφ

]

da = κ(1 − F(ψ(a∗))(1 − G(a∗)). (35)

Remark on impossibility of decentralization. The decentralization that can be achieved is exactly

the same as in the case without borrowing constraints and it is omitted from the discussion.

Note that this differs from the optimal mechanism, as the price level in the decentralized

equilibrium is too high. The reason is that while the planner uses revenue from schools to

reduce the price level, private providers cannot do that. Thus the social planner educational

system cannot be decentralized in this case.36

36Appendix 9 shows that the same result holds in the two school case if simultaneous redistribution is allowed.
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(a) Pricing without borrowing constraints.

κ

p

a

(b) Pricing with borrowing constraints and cross-
subsidization.

Figure 8: Optimal pricing with a continuum of schools and two technologies

7.2.4 Comparative Statics on the Wealth Distribution

This section analyzes how changes in wealth abundance and dispersion affect the mismatch

of agents to schools and school tier capacity. Note that the extreme assumption of the con-

tinuum of tiers washes out the endogenous deterioration of quality arising from changes in

the wealth distribution.

Proposition 13 (Mismatch of agents to school) Let F̃ ≻w F, the percentage of agents mismatched is

higher at all levels of schooling under F. Let F̃ ≻d F, the percentage of agents with wealth above the

median that are mismatched decreases relative to agents below the median.

This results are immediately interpretable, and generalize those of the baseline model. In

countries that are relatively poor, there are more agents mismatched in the sense that they

attend a school tailored for lower ability agents at all levels of education. In more unequal

countries, the mismatch is specially aggravated at low levels of education. The logic of the

proof is simple. Upon a wealth shift, planner’s revenue increases and this makes the fee level

to go down -this makes borrowing constraints less severe. The fraction of agents mismatched

in school a is
f (ψ(a))

1 − F(ψ(a))

∫ ā
a dG(a)

g(a)
, (36)

which decreases as well upon a wealth abundance shift. Thus, both effects go in the same di-

rection and the result follows. A similar reasoning applies for changes in wealth dispersion.

In this case, given the convexity of school fees, revenue of the social planner can increase.

In this case, this would reduce the fee level across the board. For agents above the median

wealth this amplifies the decrease in the fraction of mismatched agents. However, for agents

below the median wealth the effect would be ambiguous because of the dispersion shift and
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the reduction in fee levels going on opposite directions.

A related question that this model is better suited to answer than the baseline model is

how does the mass of agents attending each school-tier change with changes in the wealth

distribution.

Proposition 14 (Mass of agents attending school) Consider F̃ ≻w F, then the school capacity of all

schools with index a > am increases under F̃. Consider F̃ ≻d F, then the school capacity of all schools

with index a > am increases under F̃, the effect at the bottom is ambiguous.

This result implies that top schools (those with index greater than am) in poorer and unequal

societies feature less capacity than in richer countries. The exact value of am depends on the

specifics of the wealth distribution. It suffices to note that this result always holds for ā. Then,

by a continuity argument, it holds in some neighborhood of ā. The results in Proposition 14

are the analogous counterparts of the message provided in the baseline model that higher

education provision is reduced in poor, unequal economies. The continuum of schools case

allows to identify that the reduction in capacity is localized at the top schools within the

higher education tier.

7.2.5 Optimal Mechanism with (Unregulated) Private Schools Outside Option

Finally, I discuss the case in which the social planner has to design the optimal mechanism

facing a new additional constraint. There is a mass of private agents that have access to the

schooling technology and can escape from the regulation of the social planner. Thus, these

private agents are free to provide education at any sub-tier that they find profitable to. This

set-up is meant to be a first pass exercise in understanding possible interactions between

public and private education, with the caveat that public education needs not to coincide

with the social planner’s optimal educational system as it may be subject to additional con-

straints not modeled here.

The point I want to illustrate is simple: private provision undermines the capacity of

the social planner to cross-subsidize education. The reason is that private provision com-

petes with the planner only on the profitable segments of the market, which are precisely the

source the planner uses to provide subsidization. Put shortly, private firms cream-skim the

market for education. To illustrate the point, suppose that the social planner tried to imple-

ment the optimal mechanism described in (34). At all school levels in which p(a, 0) ≥ 0 and

p(a, 1) ≥ κ, private provision occurs, because at the stated fees private firms make positive

profits. These are the regions depicted in red in Figure 8b. Consider for now the extreme case

in which, ceteris paribus, agents prefer to attend private schools. In this case, all the sources

of positive revenue from the social planner would disappear and the social planner’s budget

constraint would not be satisfied. Thus, the conjectured equilibrium ceases to be an equi-
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librium in the presence of private schools. In this case, the planner, would have to increase

the fee level to ensure some positive revenue. However, this would backfire because all the

schools yielding positive profit would be captured by the private sector. As a result, the only

equilibrium that would survive is one in which there is only the private provision, as in (31).

In this case, there would not be any scope for school cross-subsidization.

On the opposite extreme, one can consider the case in which, ceteris paribus agents prefer

to attend public schools. By a similar argument, one can show that the (constrained) efficient

mechanism analyzed in the previous section can be implemented in this case. Presumably,

a realistic benchmark is somewhere between these two opposite poles. The point to take

away is that if private providers coexist with schooling provided by the planner, then private

school provision puts limits to-cross school subsidization. This suggests that the cream-

skimming of the sources of cross-subsidization by the private providers in poor countries

may hamper the capability of the social planner to cross-subsidize education, ultimately

reducing the effective level of education that can be provided to credit constrained agents.

8 Conclusion

Educational systems shape how human capital is produced and, thus, play a crucial role in

determining the human capital of an economy. This paper developed a framework to an-

alyze the role of the wealth distribution and borrowing constraints in molding educational

systems. It showed that many of the features of educational systems in developing countries

that may appear to involve inefficient rationing compared to rich countries, for example as

a result of an elite capture, can be rationalized within a mechanism design framework in

which the social planner maximizes aggregate welfare. Hence, the model provides a funda-

mental economic reason for why educational systems in developing countries need not be

the same as in rich countries. The two key ingredients for this result are the existence of poor,

borrowing-constrained agents and private information on ability and, thus, on the valuation

of schooling. The comparative statics results show that the educational system a benevolent

social planner implements in poor and unequal economies features reduced capacity and

quality of higher education relative to richer or less unequal countries. Moreover, in order

to improve allocative efficiency, the poorer a country is, the more the social planner relies on

the usage of lotteries and gate-keeping exams to give access to higher education.
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9 Appendix: Model with Negative Transfers

9.1 The mechanism design problem

In this appendix, I show how the same qualitative results of the baseline model hold when
the planner can make use of negative transfers subject to a global break-even constraint, (9).
First, I state the counterpart of Proposition 2 for the optimal mechanism.

Proposition 15 (Optimal Schedule with negative transfers) If transfers are unrestricted, i.e., t(a, φ) ∈
R, the optimal transfer schedule under unrestricted transfers tN(a, φ) is a translation of the restricted
schedule tN(a, φ) = t(a, φ)− k with

k =
∫ ā

a

∫ φ̄

0
t(a, φ)dG(a)dF(φ). (37)

The structure of the optimal probability remains unaltered with ψN = a∗h(a∗, 1) + k − ah(a∗, 0).

Proposition 15 highlights that the social planner effectively provides cross-subsidization be-
tween agents. This is, the social planner anticipates the revenue from transfers of rich agents
to reduce the level of all transfers (so that incentives are preserved)

Moreover, Proposition 15 allows to separate the problem in two stages. First, one can de-
fine a “virtual” fee and solve for the optimal mechanism ignoring the break-even constraint,
(9). Once the mechanism is obtained, there exists a one-to-one transformation to the “real”
fees, provided that a sufficient condition for uniqueness in the first stage of the problem is
met.

By construction, the virtual transfer is defined as

ψv = ψ −
∫ ā

a∗(ψ)
dG(a)

(∫ ψ

0
φdF(φ) + 1 − F(ψ)

)

. (38)

The problem can be solved as follows. First find the solution of the restricted problem (i.e.,
t(a, φ) ∈ R+ with virtual transfers, i.e., find the virtual transfers that maximize (12). By def-
inition, these coincide with the solution to the restricted problem. Then, given ψv, find the
optimal transfer ψ that solves (38). This second stage does not need to have unique solu-
tion.37 This shows that the same efficient allocation can be sustained by diverse educational
systems if the social planner can cross-subsidize agents. As the only relevant margin for
efficient allocation is the virtual fee, which determines the marginal type attending higher
education a∗, two seemingly different alternative mechanisms {ψh(ψ

v), ψl(ψ
v)} with ψh > ψl

can coexist. In the mechanism with ψh, the discount from the virtual fee k is high, but the
probability of attending higher education of borrowing constrained is low. On the contrary,
for ψl the discount k is low, but the probability of attending higher education of borrowing
constrained agents is relatively higher. In any event, is important to emphasize that because
the same virtual fee is implemented, the allocation of agents to schools is the same. Thus, the

37This can be seen by taking the derivative

∂ψv

∂ψ
= 1 +

∂a∗

∂ψ
g(a∗)

(∫ ψ

0
φdF(φ) + 1 − F(ψ)

)

+
∫ ā

a∗(ψ)
dG(a) f (ψ)(1 − ψ).

For ψ = 0 the derivative is unambiguously positive, while for ψ → ∞ it may be negative.
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main object of interest remains to be the solution the constrained problem, i.e., the virtual
transfer ψv.

9.2 Decentralization: A Fair Lottery Market on Wealth

In this subsection, I discuss how to generalize the decentralization to this relaxed environ-
ment. Following the discussion in the main text, the social planner sets a school-contingent
tax that has to be satisfied to attend school s such that

τ(s) =

{

−k for s = 0,

ψv − k for s = 1.
(39)

Now, consider a market that opens after the social planner announces the school-contingent
taxes and before agents attend schools, in which fair lotteries l over wealth are traded. There
is a continuum of these lotteries, indexed by i ∈ [0, φv − k]. A lottery li delivers ψv − k with
probability πi and 0 with probability 1 − πi. There is a competitive market for each lottery.
Thus the price of lottery i, pi is given by the break even constraint (or the actuarially fair
lottery), pi = πi(ψ

v − k).
The rest of the discussion to show how the decentralization is achieve mimics the main

text and is omitted.

9.3 School fees

The environment where the only credible mechanism are school fees can be solved in a sim-
ilar fashion as the full mechanism design problem. First, derive the solution of the restricted
problem, in which transfers being restricted to be negative t(a, φ) ∈ R−. Then, characterize
the unrestricted problem, in which t(a, φ) ∈ R.

Define the virtual fee as

ψv = ψ − (1 − F(ψ)
∫ ā

a∗(ψ)
dG(a). (40)

Solve the restricted planner’s problem (16) for the virtual price. Once it is found, use the
one-to-one positive relationship defined by (40) to determine the optimal fee. Note that this
result allows us to focus on ψv for the comparative statics with the wealth distribution, as ψ
inherits the shifts in ψv.

10 Appendix: Proofs

Proof of Proposition 1 The proof is relies on the implicit function theorem. Define I(a, ψ) =
ah(a, 1) − ah(a, 0) − ψ. Denoting derivatives with subindexs, it can be verified that Ia =
h(a, 1) + aha(a, 1) − aha(a, 0) > 0 (because of the complementarity of the intrinsic human
capital production function and the fact that a ≥ a) and Iψ = −1. The implicit function
theorem states that da/dψ = −Iψ/Ia > 0. �

Proof of Proposition 2 and 15 Start considering the environment in which transfers are
restricted to be negative, t(a, φ) ∈ R−. There are two cases to distinguish. The first case is
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the no-segregation, in which all agents attend higher education. In this case t(a, φ) = 0 and
φ(a, φ) = 1 for all a ∈ [a, ā] and φ ∈ [0, φ̄] implements the desired allocation. The second
case is the segregation case, in which some agents are excluded from higher education. In
what follows, let ã = mina{a ∈ s = 1}. The proof is presented in a series of lemmas.

Lemma 1 Conditional on a given ã and wealth level φ, it is optimal to maximize the amount of agents
with a ≥ ã that attend s = 1.

Proof By contradiction. Suppose that there exists a mechanism 〈t̂, π̂〉 that implements the
same allocation (respecting constraints (6), (7) and (8)) as the original mechanism 〈t, π〉, ex-
cept for agents with wealth φ̃, in which

∫ ā

ã
π̂(a, φ̃)ãh(a, 1)dG(a) +

∫ ã

a
(1 − π̂(a, φ̃))ah(a, 0)dG(a)

>

∫ ā

ã
π(a, φ̃)ãh(a, 1)dG(a) +

∫ ã

a
(1 − π(a, φ̃))ah(a, 0)dG(a).

If this is true, then 〈t, π〉 does not maximize the objective function (11), a contradiction. �

Lemma 2 Consider a mechanism that achieves truth-telling in the wealth dimension. The transfer
schedule as a function of the ability reported for a given wealth level φ is a step function with a jump
at ã.

Proof Consider first agents with a < ã. They are allocated in s = 0 with probability one.
Otherwise, the spillover effect for s = 1 would not be ã. Thus, conditional on being allocated
in school s = 0 the agent reports the ability that conditional on its wealth maximizes his
utility, this is, maximizes the transfer t(a, φ). Thus, for a ≤ ã, t(a, φ) = t(φ). Moreover,
given the single-crossing property of the intrinsic human capital production function, for
this allocation to be incentive compatible it has to be the case that

w(ã, 0) + t(φ) = π(ã, φ)w(ã, 1) + (1 − π(ã, φ))w(ã, 0) + t(ã, φ), (41)

because otherwise agents with a < ã would choose to report ability ã.

Next consider the case of agents with ã ≥ a. Given (t(ã, φ), π(ã, φ)) and the single-
crossing property, it is clear that they choose to report, at least, to be of type ã. If t(ã, φ) ≤
t(a, φ) and π(ã, φ) = π(a, φ) for a > ã, agents weakly prefer to report type ã, as the payoff
from attending s = 1 remains constant but the transfer schedule may not. From Lemma 1, it
follows that, π(ã, φ) = π(a, φ) for a > ã, as otherwise output can be increased. To see this,
suppose that π(ã, φ) ≤ π(a, φ) and t(ã, φ) ≤ t(a, φ) for for a > ã. Then, consider the alter-
native mechanism such that the highest probability and the lowest transfer are preserved,
π̃(ã, φ) = π(a, φ) and t(ã, φ) = t̃(a, φ). This alternative mechanism increases the value of
the objective function and implements the same allocation of agents to schools. Thus, this
analysis shows that it is optimal to set (t(a, φ), π(a, φ)) = (t(ã, φ), π(ã, φ)) for all a > ã. �

Lemma 3 All agents with a < ã attend school s = 0 with probability one, the associated transfer is
at most zero irrespective of agents’ wealth and ability.
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Proof The first claim is already shown in the proof of Lemma 2. For the second claim, con-
sider the poorest, lowest ability agent in the economy, (a, φ = 0). Given that he is borrowing
constrained, the maximal transfers he can afford is t = 0. Thus, to satisfy the participation
constraint (6) the maximal transfer for an agent of type t(a, 0) = 0. Note that this can be neg-
ative. But, given that it is optimal to set π(a, φ) = 0 for all a < ã irrespective of the wealth
level, agents with a < ã can always report being of type (a, φ = 0) and thus, only, one level
of transfers is implemented in equilibrium. �

Lemma 4 Conditional on a, agents’ payoff is maximal for agents with (a, φ̄), in particular for a ≥ ã.
This is implemented by a mechanism in which these agents pay the highest transfers and receive the
highest probability of attending s = 1.

Proof The intuition for the result is as follows. Agents with φ = φ̄ that are the “least”
borrowing constrained in the economy. Thus, from the incentive compatibility constraint,
(7), it follows that these agents can select the highest return announcement. As a result, the
truth-telling mechanism that induces agents to report their true wealth has to be “expensive”
enough for poorer agents not to be able to imitate them, and has to offer an attractive enough
reward, for rich agents being willing to self-select, hence the high probability. The next lines
make this intuitive reasoning more precise. Consider the announcement made by a type
(a, φ̄) with a ≥ ã, which has associated transfers and probabilities, (t(a, φ̄), π(a, φ̄)). By
construction, from the incentive compatibility constraint (7), denoting the expected wage of
reporting truthfully by w(a, φ), it is the case that w(a, φ) + t(a, φ) ≥ w(a, â, φ̂)− t(â, φ̂). Note
however that for types with φ < φ̄, if t(a, φ) > φ it is not possible to pretend that they are
richer than they actually are. Thus, given the operating assumption that it is optimal to have
some segregation, it has to be the case that the fee paid by agents with (a, φ̄) and a ≥ ã
is weakly higher than for agents with φ < φ̄ and a ≥ ã. As a result, given the incentive
compatibility constraint, wealthy agents have to be compensated to report a higher wealth
by a higher expected wage, which can only be achieved by a (weakly) higher probability π
of accessing school 1. �

Lemma 5 Given a threshold ã, it is optimal to allocate agents with φ ≥ φ̂ and a ≥ ã, where
ãh(a, 1)− ah(a, 0) = φ̂ to school 1 with probability 1.

Proof Note first that φ̂ is to be readily interpreted as t(a, φ) = −φ̂ for all φ ≥ φ̂ and a ≥ ã.
From Lemma (1) it is immediate to check that if this allocation is implementable it is optimal
provided that it does not distort the inframarginal allocation of types with φ < φ̂. But, by
construction, agents with φ < φ̂ cannot afford signaling themselves as having wealth φ̃. To
sastisfy the incentive compatibility, it has to be ensured that the expected return of reporting
(a, φ) with φ < φ̂ and a ≥ ã, w(a, φ) + t(a, φ) is less or equal to H(a, 1) + φ̂. Note that this
restriction does not impose additional constraints. The reason is simple: t(a, φ) = φ̂ is the
minimal transfer consistent with threshold ã. (And note again that by Lemma 1 it would not
be optimal to set a probability lower than one). �

Lemma 6 Given a threshold ã, the optimal mechanism for agents with φ < φ̂ and a ≥ ã is

t(a, φ) = −φ, π(a, φ) =
φ

φ̂
(42)
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Proof The optimal schedule comes from maximizing the mass of agents with a ≥ ã of a
particular wealth level that attends s = 1. Once this is done, it remains to be checked that
truth-telling is optimal.

Consider agents with wealth φ < φ̂. Note that these agents are borrowing constrained,
and thus cannot announce to be of type (a, φ̂) for a ≥ ã. Using Lemma 2, the transfer-
probability pair that maximizes attendance of agents above ã to school 1 has to satisfy the
condition at the boundary ã,

π(t(φ), φ̂)ãh(ã, 1) + (1 − π(φ, φ̂))ah(ã, 0) + t(φ) = ah(ã, 0) (43)

First, note that it is suboptimal to set t(φ) > −φ. Suppose, to the contrary, that the optimal
school fee is less than φ. As π(t(φ), φ̂) is a strictly increasing function of t, this implies that by
setting t(φ) < φ the mass of agents attending school 1 can be increased by setting t(φ) = φ.
Second, setting t(φ) = φ does not affect the incentives of agents with wealth strictly lower
than φ. For agents with wealth above φ, from equation (43) it can be verified that they are
indifferent (or strictly prefer if they have φ > φ̂) between the transfer-probability designed
for them and this alternative. From this analysis, equation (42) follows. �

The previous series of lemmas show that the optimal mechanism takes the form of a menu
of prices, as stated in the main proposition. I now discuss the case of unrestricted transfers,
t(a, φ) ∈ R. In this case, it is clear that it is always weakly better to set the transfers so that
the borrowing constraint of the social planner breaks-even. (If there are agents borrowing
constrained is strictly better). From the incentive compatibility conditions, equation (7), it is
clear that the only relevant object as far transfers are concerned for agents when considering
to deviate from truth-telling is the difference between transfers, t(a, φ)− t(a†, φ†). Thus, let-
ting k denote the revenue (in negative terms) from the transfers when they where constrained
to be negative,

k =
∫ ā

a

∫ φ̄

0
t(a, φ)dG(a)dF(φ), (44)

it is immediate to verify that a lump-sum decrease in the transfer schedule of the type
t(a, φ)− k, does not modify any of agents’ decisions. So, the threshold ã is still implemented.
Yet, now agents are effectively less borrowing constrained, and thus the mass of agents that
effectively can attend higher education increases. �

Derivation of equation 14 and proof of sufficiency of FOC The derivation of expression
(14) comes from taking the derivative of the objective function with respect to ψ. Note,
moreover, that for the first term in (14) the integration with respect to wealth is independent
of ability. Using the Leibniz rule, this can be written as

− f (ψ)
∫ ā

a∗
∆wdG(a) + (1 − F(ψ))

∫ ā

a∗

∂∆w

∂ψ
dG(a)− (1 − F(ψ))

∂a∗

∂ψ
(∆w|a=a∗)g(a∗) +

+ f (ψ)
∫ ā

a∗
∆wdG(a) +

∫ ψ

0

∫ ā

a∗

∂

∂ψ

(
φ

ψ
∆w

)

dG(a)dF(φ)−
∫ ψ

0

∂a∗

∂ψ

(
φ

ψ
∆w|a=a∗

)

g(a∗)dF(φ).

The terms appearing in the first line come from the derivative of the first term of the objective
function, and the terms on the second line, correspond to the derivative of the second term.
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Note that by the incentive compatibility constraints,
φ
ψ ∆w|a=a∗ − φ = 0 for all φ ≤ ψ. Next,

take the derivative of the integrand of the second term of the second line

∂

∂ψ

(
φ

ψ
∆w

)

= −
π(φ, ψ)

ψ

(

∆w − ψ
∂∆w

∂ψ

)

.

This allows to rewrite the integrand that contains this derivative as

∫ ψ

0

∫ ā

a∗

π(φ, ψ)

ψ

(

∆w − ψ
∂∆w

∂ψ

)

dG(a)dF(φ) = 0.

Noting that the second integral can be expressed as

∫ ψ

0

π(φ, ψ)

ψ
dF(φ)

∫ ā

a∗

(

∆w − ψ
∂∆w

∂ψ

)

dG(a),

the result stated in the main text, equation (14), follows.
For the concavity of the objective function, I provide a sufficient condition for concavity.

Instead of showing thatthe first order condition is decreasing, I analyze the stronger condi-
tion that the first order condition multiplied by an increasing function is still decreasing. The
increasing function chosen is 1/(1 − F(φ). Thus, I want to show that the following function
is decreasing in ψ:

∫ ā

a∗(ψ)

∂∆w

∂ψ
dG(a)−

∂a∗

∂ψ
∆w(a∗)g(a∗)

−

1
ψ

∫ ψ
0 π(φ, ψ)dF(φ)

1 − F(ψ)

(
∂a∗

∂ψ
ψ∆w(a∗)g(a∗) +

∫ ā

a∗(ψ)

(

∆w − ψ
∂∆w

∂ψ

)

dG(a)

)

(45)

In fact, as the next proof shows, this stronger condition ensures uniqueness of the solution
as well. Before proceeding, there is a need to introduce an intermediate result regarding the
concavity of a∗(ψ). �

Proposition 16 (Concavity of a∗(ψ)) The marginal type obtaining education ã(ψ) is concave in
ψ ∈ Ψ if and only if 2∂h(a, 1)/∂a + a|∂2h(a, 0)/∂a2| ≥ a|∂2h(a, 1)/∂a2| for all a ∈ [a, ā].

Proof The proof is relies on the implicit function theorem. Define I(a, ψ) = ah(a, 1) −
ah(a, 0) − ψ. Denoting derivatives with subindexs, it can be verified that Ia = h(a, 1) +
aha(a, 1)− aha(a, 0) > 0 (because of the complementarity of the intrinsic human capital pro-
duction function and the fact that a ≥ a, Iψ = −1, Iaψ = 0 and Iaa = 2ha(a, 1) + ahaa(a, 1)−
ahaa(a, 0). The implicit function theorem implies the second derivative that d2a/dψ2 =

−
(

Iψψ + 2Iaψda/dψ + Iaa (da/dψ)2
)

/Ia < 0, if and only if Iaa > 0. The sufficient condi-

tion mentioned in the next paragraph is obtained from ignoring the term 2ha(a, 1) in the
expression of Iaa. In this case, the condition for Iaa ≥ 0 is

a

a
haa(a∗, 1) ≥ haa(a∗, 0),

as a ≥ a, the sufficient condition stated in the text follows. �
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Proposition 16 identifies the conditions under which the threshold type ã is concave in
school fee ψ. This condition is trivially satisfied by intrinsic production functions of the
type h(a, s) = aĥ(s), as in this case haa(a, s) = 0. For more general human capital functions
whether this condition is satisfied depends on the shape of the production function and the
support of the ability distribution. For example if |∂2h(a, 1)/∂a2|/|∂2h(a, 0)/∂a2| ≤ a/ā. I
proceed making the assumption that a∗(ψ) is concave.

Assumption 3 a∗(ψ) is concave for ψ ∈ Ψ. This is,

2∂h(a, 1)/∂a + a|∂2h(a, 0)/∂a2| ≥ a|∂2h(a, 1)/∂a2| for all a ∈ [a, ā].

Consider terms in the first line of (45), direct differentiation shows that it is decreasing in
ψ,

d

dψ

(∫ ā

a∗(ψ)

∂∆w

∂ψ
dG(a)−

∂a∗

∂ψ
∆w(a∗)g(a∗)

)

=
∫ ā

a∗(ψ)
g(a)

(
∂2

∆w

∂ψ2

)

da −
∂a∗

∂ψ

(
∂∆w

∂ψ

)
∣
∣
∣
∣
∣

a=a∗

−
∂2a∗

∂ψ2
∆w(a∗)g(a∗)

−
∂a∗

∂ψ

∂∆w(a∗)

∂ψ
g(a∗) < 0. (46)

To obtain the result that the derivative is decreasing, note that the integrand in the first term

of right hand side of (46) is equal to ∂2a∗

∂ψ2 h(a, 1). Thus the difference between the first and

third terms is negative because h(a, 1) is weakly increasing in a, h(a, 1) ≥ ah(a, 1)− ah(a, 0)

(recall that ā ≤ 1) and the ability distribution is uniform. Note, moreover, that
∂g(a∗)

∂ψ = 0

because of the assumption that the ability distribution is uniform.

Consider the term in parenthesis in the second line of (45). Applying the Leibniz rule,

d

dψ

(∫ ā

a∗(ψ)
g(a)

(

∆w − ψ
∂∆w

∂ψ

)

dG(a) +
∂a∗

∂ψ
ψ∆w(a∗)g(a∗)

)

=

−
∫ ā

a∗(ψ)

∂2
∆w

∂ψ2
g(a)da − a∗

′
(ψ)

(

∆w − ψ
∂∆w

∂ψ

)
∣
∣
∣
∣
∣

a=a∗

g(a∗) (47)

+
∂2a∗

∂ψ2
ψ∆w(a∗)g(a∗) +

∂a∗

∂ψ
∆w(a∗)g(a∗) +

∂a∗

∂ψ
ψ

∂∆w(a∗)

∂ψ
g(a∗) > 0.

The result that the derivative is increasing follows from an analogous argument to the one
used in the previous derivative, equation (46).

Finally, note that the reminder term, in (45),

1
ψ

∫ ψ
0 π(φ, ψ)dF(φ)

1 − F(ψ)
,

is increasing by assumption in the text. This analysis shows that (45) is decreasing, and,
hence, the objective function is globally concave. �
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Analysis of equation 14 Consider the right hand side of (14). From previous proof, equa-
tions (46) and (47) show that the numerator of the right hand side is decreasing and the
denominator is increasing. Hence, the right hand side is decreasing.

For the left hand side, the main text already discusses under which conditions it is in-
creasing, which is the working assumption in any case. As the LHS is increasing and the
RHS is decreasing, they can cross almost once. Indeed, this is the case if the solution is
assumed to be interior, which is the environment of interest discussed in the main text. �

Proof of Proposition 3 The results follows immediately for the virtual fee ψv. The LHS
of equation (12) being increasing, the RHS, decreasing and the property that a Wealth Abun-
dance shift the whole LHS curve downwards. The RHS remains unaffected. As both the
LHS and RHS are continuous and monotone the result follows. �

Proof of Proposition 4 The mass of agents attending higher education is given by

∫ ā

a∗(ψ)
dG(a)

(∫ ψ

0
dF(φ) + 1 − F(ψ)

)

.

In the limiting case in which no agent is borrowing constrained, the mass of agents attending
school reduces to ∫ ā

a∗(ψ)
dG(a),

as f (φ) < ε for a small ε > 0 in the range φ ∈ [0, ψ]. The first order condition of the objective
function, (4), for the case without borrowing constraints can be written as

d

dψ
ln

(∫ ā

ã(ψ)
∆wdG(a)

)

= 0. (48)

Let ψunc denote the solution to the problem without borrowing constraints, (48). When bor-
rowing constraints start to bind, assuming

1
ψ

∫ ψ
0 π(φ, ψ)dF(φ)

1 − F(ψ)
≤ ε

for some “small” ε > 0 in the relevant range, the first order condition becomes approximately

d

dψ
ln

(∫ ā

a∗(ψ)
∆wdG(a)

)

= ε. (49)

Denoting the solution to the problem by ψbc, it follows that ψbc ≃ ψunc − δ(ε) for some
δ(ε) > 0, where the dependence on ε is carried over to emphasize the dependence in the
approximation of the solution. Now, approximating the integral

∫ ā

a∗(ψbc)
dG(a) ≃

∫ ā

ã(ψunc)
dG(a)−

∂ã

∂ψ
δ(ε)g(ã), (50)

the difference in the mass of agents attending higher education with borrowing constraints
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minus the mass without reduces to

(1− F(ψunc − δ))

(∫ ā

ã(ψunc)
dG(a)−

∂ã

∂ψunc
δ(ε)g(ã)−

∫ ā

ã(ψunc)
dG(a)

)

− F(ψunc − δ)
∫ ā

ã(ψunc)
dG(a),

(51)

where I have used the fact that borrowing constraints “start to bind” and thus
∫ ψunc−δ

0 φ f (φ) ≪
(1 − F(ψunc − δ)). Expression (51) is unambiguously negative. This shows the result stated
in the propostion. �

Proof of Proposition 8 I first show that the relaxed condition (which implies increasing
hazard rate) implies local concavity at the solution of the first order condition. Take the
derivative of (17) with respect to ψ. Before analyzing the sign of the LHS of the FOC (17),
it is convenient to take the derivative of the first term RHS of the FOC. Its derivative with
respect to ψ is unambiguously negative,

− f ′(ψ)
∫ ā

a∗(ψ)

d∆w

dψ
dG(a)− (1− F(ψ))g(a∗)

d∆w

dψ

∣
∣
∣
∣
∣

a=a∗

+ (1− F(ψ))
∫ ā

a∗(ψ)

d2
∆w

dψ2
dG(a)da < 0.

The analysis of the derivative of the second term is analogous to the previous proposition
and is omitted. The derivative of the LHS in the FOC (17) is

− f ′(ψ)
∫ ā

a∗(ψ)
∆wdG(a)− f (ψ)

∫ ā

a∗(ψ)

dw

dψ
dG(a) + f (ψ)

da∗

dψ

dw

dψ
g(a∗). (52)

The sum of the second term and third terms is negative for an analogous reason as in the
previous propostion. This first term has an ambiguous sign, as f ′() can be either positive
or negative. Take the expression of the derivative of the first term of the FOC, equation (52)
and use that, at the optimum ψ, the FOC (17) is satisfied to rewrite (the ambiguous part of)
equation (52) as

(

− f ′(ψ)− 2
f ′(ψ)2

1 − F(ψ)

) ∫ ā

a∗(ψ)
∆wdG(a).

As the integrand is always positive, the sign of this expression is the sign of the term mul-

tiplying the integral,
(

− f ′(ψ)− 2
f ′(ψ)2

1−F(ψ)

)

. The sign of this first term coincides with (1 −

F(ψ))′′(1 − F(ψ))− 2 f ′(p)2, which in turn implies the relaxed condition.

To ensure uniqueness of the solution with an increasing the hazard rate, divide through
the first order condition by 1 − F(ψ)) and proceed exactly as in the previous proposition.
Namely show that the without the hazard rate is decreasing in ψ and the term that is multi-
plying the hazard rate is increasing. Then a sufficient condition for uniqueness is an increas-
ing hazard rate. �

Proof of Proposition 9 The proof is analogous to the proof of Proposition 4 and it is omit-
ted.

Proof of Proposition 10 The analysis in the main text identifies that the exams may not
be used in wealth abundant countries. The problem of interest is the comparative statics

54



when they are used, which can be written as

max
a∗,ã

(1 − F(ψ0))
∫ ã

a∗
∆wdG(a) +

∫ ā

ã
dG(a)

∫ φ̄

ψ0−c(ã,1)+c(a,1)
dF(φ)(∆w − c(a, 1)) (53)

The problem can be thought as being solved in a “telescopic” way. That is, solve for the
optimal ã(a∗) and then solve for the optimal a∗. The FOC for ã is

c(ã, 1)

ca(ã, 1)
=

∫ ā

ã

f (ψ0)

1 − F(ψ0)
(∆w − c(t, a))dG(a). (54)

Note that the left hand side is increasing in a because of the concavity assumption caa ≤
0. The right hand side is decreasing in ã, increasing in a∗ and a wealth abundance shift.

To see this last point, note that one can rewrite
∫ ā

ã f (ψ0 − c(ã, 1) + c(a, 1))/(1 − F(ψ0)) as
∫ φ2

φ1
f (φ)dφ/(1 − F(φ2)), and thus one can apply directly the result from the remark. Thus, ã

is increasing in a∗ and decreasing in a hazard rate shift. Rewrite the objective function with
ψ0(a∗) and ã(a∗). Then, the first order condition can be written as,

0 = −
f (ψ0)

1 − F(ψ0)
ψ′

0(a∗)
∫ ã

a∗
∆wdG(a) +

∫ ã

a∗
∆wdG(a) (55)

−∆w(a∗)− ã′(a∗)
∫ φ̄

ψ0−c(ã,1)
(∆w(ã)− c(ã, 1))

dF(φ)

1 − F(ψ0)
∫ ā

ã(a∗)

dG(a)

1 − F(ψ0)

(

−(ψ′
0(a∗)− ca(ã, 1)ã′(a∗)) f (ψ1 + c(a, 1))(∆w − c(a, 1)) +

∫ ā

ψ1+c(a,t)

∂∆w

∂a∗
dF(φ)

)

One can use an analysis analogous to Proposition 3 to show that the first order condition

is decreasing provided that the same regularity condition on
∫ φ2

φ1
f (φ)dφ/(1 − F(φ2)) of the

mechanism design problem applies here to show that the first order condition is decreasing.
Using the MLRP property of the wealth abundance definition as in the Remark in page 20 it

follows that a∗ is decreasing in a wealth abundance shift that reduces
∫ b

a f (φ)dφ/(1− F(φ)).
Thus, ã decreases with a wealth abundance shift as both the direct effect in (54) and the effect
through a∗ in (55) go in the same direction. �

The omitted proofs and those corresponding to section 7.2 are discussed in the main text and
the formal proof is omitted.

11 Appendix: Optimal Test-Fee Schedule Problem

This appendix presents a general solution to the optiomal test-fee schedule that encompasses
the results in Section 6 and an analogous exam problem with a continuum of schools, as in
Subection 7.2. (The latter is not discussed in the main text.)

Consider a payoff structure in the objective function of the type

∫ ā

a∗
(w(a, a∗)− κ − c(t, a))(1 − F(p(a) + c(t, a)))dG(a), (56)
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subject to three constraints. (Note the use of p instead of ψ). First, the incentive compatibility
constraint

ξ(a)− ṗ(a)− ct(t, a)ṫ = 0, (57)

where the operator dot stands for the total derivative with respect to a, and the subindex t,
for the partial derivative with respect to t. Second, the possible levels for a∗ have to belong
to the family of curves of the type

g(a∗) ≡ w(a∗, a∗)− p(a∗)− c(a∗, t(a∗)) = 0. (58)

Third, the monotonicity constraints,

p′(a) ≤ 0, t′(a) ≥ 0 ∀a ∈ [a∗, ā]. (59)

The problem at hand is to

max
{a∗,p(a),t(a)}

∫ ā

a∗
(w(a, a∗)− κ − c(t, a))(1 − F(p(a) + c(t, a)))dG(a) (60)

subject to (57), (58) and (59). This problem almost fits the standard formulation of optimal
control/calculus of variation. The only difference is that the initial condition a∗ enters di-
rectly through w(·, a∗) the objective. In order to solve the problem fully, I proceed in two
steps. First, conditional on a threshold â∗ on w(·, â∗), I solve an inner optimization problem
and find the optimal p, t (and boundary conditions) conditional on â∗. This inner problem
is formulated as an optimal control problem in subsection 11.1 (and subsection 11.2 shows
the equivalence with a more intuitive formulation using calculus of variations). Then, the
outer problem simply consists on a pointwise maximization of the objective with respect to
â∗ subject to â∗ = a∗.

The following two lemmas simplify the analysis.

Lemma 7 Any optimal solution features t(a∗) = 0.

Proof By contradiction. Suppose the opposite, (p(a∗), t(a∗)) with t(a∗) > 0. Now, consider
an alternative plan with t̃(a∗) and p̃(a∗) = p(a∗) + c(a∗, t(a∗)) (note that by assumption
c(a, 0) = 0). By construction, constraint (58) is satisfied. Yet, the objective function (56)
increases under this alternative plan. A contradiction. �

Lemma 8 It is not optimal to set t(a) = 0 for a ∈ (a∗, a∗ + ε) with ε > 0.

Proof I show that for every a within a radius ε exists a positive exam level that improves
upon a zero test level. Suppose that the optimal solution features t(a) = 0. Consider the
alternative policy of t(a) = δ > 0. Use a first order approximation to write p(a) ≃ p(a∗) +
ṗ(a∗)ε and c(a, t) ≃ ct(a, 0)η. From equation (20), the difference in output from this change
in policy is proportional to

ε f (p(a∗))w(a∗, a∗)(− ṗ(a∗)ε − ct(a∗, 0)η). (61)

From equation (21), the wasteful spending is

ε f (p(a∗))ct(a∗, 0)η. (62)
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Thus, selecting a η such that

η <
(− ṗ(a∗)εw(a∗, a∗)

1 + w(a∗, a∗)
, (63)

increases the objective function without violating any constraint. �

11.1 Optimal Control Formulation of the Inner Problem

Define the state variable x(a) = p(a) + c(a, t), and the control variable as t(a). The incentive
compatibility condition (57) and the boundary condition can be written as

ẋ = ξ(a) + ca(t, a), (64)

0 = w(â∗)− x(a∗) + p0 ≡ g(â∗, x(a∗), p0) (65)

Note that at this inner stage of the problem â∗ is taken as given, and it will be optimized over
in the outer problem (subject to a∗ = â∗). As it is usually done in this types of problems,
I proceed by ignoring the monotonicity constraints (59) and verifying that they hold ex-
post. This allows to express the problem in a simpler manner and avoid discussing ironing
and bunching procedures. Moreover, as it will become apparent, the same properties of the
solution emphasized in the text arise when using monotonicity constraints in an optimal
control problem.

Define the following Hamiltonian,

H =
∫ ā

a∗
[(w(a, â∗)− κ − c(t, a))(1 − F(x)) + λ1(a) (ξ(a) + ca(t, a))] dG(a) + λ2g(x(a∗), â∗, p0).

The necessary conditions for an optimum are38

ẋ(a) = ξ(a) + ca(t, a), (66)

λ̇(a) = f (x)(w(a, a∗)− κ − c(t, a)), (67)

0 = −ct(t, a)(1 − F(x)) + λ1(a)cat(t, a), (68)

and the boundary conditions

λ1(a∗) = −λ2, (69)

λ1(ā) = 0. (70)

Equations (66) and (67) form a system of differential equations in x and λ, intermediated
through the control t, (68). This system is somewhat complicated by the fact that boundary
conditions are given at opposite ends. In any case, the system of equations (66) to (68), the
boundary conditions (69) and (70), and the constraint (65) characterize the solution of the
problem (there are 2 differential equations with two boundary conditions to pin down λ1

and x, and 2 additional equations to pin down t and λ2).
I now proceed to manipulate the system of differential equations in order to investigate

how the optimal solution depends on the wealth distribution. Similar to the cases analyzed
in the main text, the key element is the hazard ratio of the wealth distribution. Rearranging

38These can be found, for example, in Chachuat (2007) or Luenberger (1969)
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(68),

λ1(a) =
ct(t, a)

cat(t, a)
(1 − F(x)),

and taking the total derivative with respect to a,

λ̇(a) =
d

da

(
ct(t, a)

cat(t, a)

)

(1 − F(x))−
ct(t, a)

cat(t, a)
f (x)ẋ. (71)

This expression makes clear how the assumption that c(a, t) ≡ c1(t)c2(a) greatly simplifies
the analysis: in this case c/ca is independent of t. For example, equation (67) can be written
now as

c1(t) =
1

c2(a)

(

w(a)− κ −
λ̇(a)

f (x)

)

. (72)

Using (72) and (71) in (66), omitting dependence from a, and denoting c2 by just c,

ẋ = ξ +
ċ

c
(w − k)−

ċ

c f (x)

[
d

da

( c

ċ

)

(1 − F(x))− ẋ f (x)
ċ

c

]

, (73)

which results into

1 − F(x)

f (x)
=

1
ċ(a)
c(a)

d
da

(
c(a)
ċ(a)

)

(

ξ(a) +
ċ(a)

c(a)
(w(a)− k)

)

. (74)

It can be verified by direct derivation that log-convexity of c is sufficient to guarantee that

ċ(a)

c(a)

d

da

(
c(a)

ċ(a)

)

> 0.

Moreover, log-convexity implies that the terms in brackets in (72) is strictly increasing in a.
The assumptions made in the main text guarantee that the right hand side is increasing in a
and the left hand side decreasing. For the two school case, Section 6, ξ(a) = 0, and then it
follows from log-convexity that the right hand side is increasing. For the case in Section 7.2,
a sufficient condition for the left hand side to be increasing is that ξ(a) grows at a faster rate
than ċ/c. Thus, x is an increasing function of a.

Consider a family of wealth distributions f (x; s) that can be ranked in their hazard-rate
according to an index s ∈ R, so that the hazard rate is decreasing in s, (i.e., high s are
relatively wealth abundant countries). It is immediate to verify that

∂x

∂s
> 0. (75)

That is, more wealth abundant societies use higher x at each level of a. An analogous argu-
ment can be done for changes in the wealth dispersion. Now, integrating equation (66)

x =
∫

ẋda =
∫ a

a∗
ξ(a)da +

∫ a

a∗
ċ2(a)c1(t(a))da, (76)

it is immediate to verify that any increase in x(a) has to be accompanied with a decrease in
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t(a), as ċ2 < 0.

For the terminal condition, combine equation (69) and (68) to find that

(1 − F(x(a∗))) = −λ2
ċ2(a∗)

c2(a∗)
. (77)

The left hand side is decreasing in a while the right hand side is increasing. This makes
apparent that a more wealth abundant country chooses a higher a∗.

11.2 Calculus of Variations Formulation of the Inner problem

In this subsection, I briefly show how a calculus of variations approach in which explicitly
the two functions over which the problem is optimized are p and t yields the same set of
necessary conditions. Construct the following lagrangean

L =
∫ ā

a∗
[(w(a, a∗)− κ − c(t, a))(1 − F(p(a) + c(t, a)))− λ1(a)(ξ(a)− ṗ(a)− ct(t, a)ṫ)] dG(a)

Now, the problem under consideration is

max
t(a),p(a),λ1(a)

L s.t w(a∗)− p(a∗) = 0, (78)

where I have used the result of Lemma 7 to simplify constraint (58). The necessary conditions
for the solution are the Euler-Lagrange equations

d

da
Lẋ = Lx, (79)

where x = {t(a), p(a), λ1(a)}. These are

λ̇(a) = f (p(a) + c(a, t))(w(a, a∗)− κ − c(a, t)) (80)

λ̇(a) +
cat(t, a)

ct(t, a)
λ(a) = 1 − F(p(a) + c(a, t)) + f (p(a) + c(a, t))(w(a, a∗)− κ − c) (81)

0 = ξ(a)− ṗ(a)− ct(t, a)ṫ. (82)

Note that (80) is equivalent to (67). Combining (80) and (81) one obtains (68), while (82) is
merely the incentive compatibility constraint as (66). Thus the set of equations are equiva-
lent.

11.3 Formulation of the Outer Problem

Once the solution of the inner problem has been found, it remains to ensure that the optimal
a∗ has been selected. This can be done by point-wise optimization

max
â∗

∫ ā

a∗
[(w(a, â∗)− κ − c(t(a, â∗), a))(1 − F(x(a, â∗)))] dG(a) s.t. a∗ = â∗. (83)
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The dependence of x and t with respect to a∗ is through w (see equation (74), for instance).
The first order condition is

∫ ā

a∗

∂(w(a, â∗)− c(t(a, â∗), a))

∂â∗
(1 − F(x))dG(a) + λ = (84)

∫ ā

a∗
(w(a, a∗)− κ − c(t, a)) f (x)

∂x(a, a∗)

∂a∗
dG(a),

where λ is the Lagrange multiplier on the constraint. Using the specifics of the model of
interest (note that the problem with the continuum of schools only has the inner problem to
be solved), w(a, a∗) = a∗h(a, 1)− h(a, 0), it follows that

∂2w(a, a∗)

∂a∗2
= 0.

If the hazard rate of the wealth distribution is concave, the first term in the first line of equa-
tion (84) is decreasing in a∗. To ensure that the first order yields a maximum, it is necessary
to impose more structure on the wealth distribution. A sufficient condition is that the wealth
distribution is log-concave, see Bagnoli and Bergstrom (2005). In this case, the the second
line of equation (84) is increasing in â∗, as 1 − F(x) and the hazard rates are ensured to be
concave. (Note that x depends on the inverse hazard rate, from equation 74).
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