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Abstract

We investigate the long-run e↵ects of permanent corporate tax reforms on aggregate cap-

ital behavior. In an investment model with fixed adjustment costs and partial irreversibility,

we show that corporate taxes and investment frictions jointly determine three interconnected

macroeconomic outcomes: (i) capital allocation, (ii) capital valuation, and (iii) capital fluctu-

ations around steady-state. Using corporate tax and firm-level investment data from Chile,

we discover that a lower corporate income tax improves the allocation of capital, reduces

capital valuation, and accelerates capital fluctuations.
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1 Introduction

Corporate tax reforms are back in the spotlight. Current economic developments—massive gov-

ernment debts accumulated to finance the recovery from the COVID-19 pandemic, heightened tax

competition for foreign direct investment, and a secular increase in business profits—have revived

the interest in corporate taxation among policymakers and academics. Since addressing these

issues will likely require persistent changes in countries’ corporate tax structures, which in turn

will structurally change private investment behavior, it is critical to understand and quantify the

long-run macroeconomic e↵ects that these reforms may bring.

We study the e↵ects of permanent corporate tax reforms on the long-run behavior of aggregate

capital: its allocation across firms, its market valuation, and its fluctuations around steady-state.

We develop a parsimonious investment model with firm heterogeneity, empirically-relevant invest-

ment frictions, including a fixed capital adjustment cost (Caballero and Engel, 1999) and a wedge

between the purchase and resale prices of capital that makes investment partially irreversible (Abel

and Eberly, 1996), and a comprehensive corporate tax schedule (Summers, 1981; Abel, 1982). Our

model’s tax schedule includes a corporate income tax, a personal income tax, a capital gains tax,

and depreciation deductions. This environment enables us to formalize the mechanisms through

which the interaction of corporate taxes and investment frictions distort the allocation of capital

across firms, and in turn, how the capital allocation shape its valuation and fluctuations.

We o↵er three new insights. First, corporate taxes a↵ect aggregate capital behavior through

two distinct channels: (i) a neoclassical frictionless user-cost channel, which determines the steady-

state level of capital, and (ii) a frictional dynamic optimization channel, which shapes the allocation

of capital across firms. Specifically, we show that after-tax investment frictions—namely, the

fixed cost relative to the after-tax frictionless profits and the price wedge relative to the after-tax

frictionless profit-capital ratio—are the key objects a↵ecting dynamic investment decisions. For

instance, reducing the corporate income tax rate raises frictionless profits and thus decreases firms’

e↵ective fixed costs. These results imply that, up to re-scaling, an economy with corporate taxes

is isomorphic to an economy without them. Consequently, in order to assess the dynamic e↵ects

of taxation, one needs only to understand the role of investment frictions.

Our second insight is that capital misallocation, defined as the cross-sectional dispersion in

log marginal revenue products (Hsieh and Klenow, 2009; Restuccia and Rogerson, 2013) and

proportional to the dispersion of capital-productivity ratios, is the common driver behind capital

valuation and capital fluctuations.1 We measure capital valuation as the capital-weighted average

of individual Tobin’s marginal q. And following Álvarez and Lippi (2014), we measure capital

fluctuations around steady-state as the cumulative impulse response (CIR) to an unanticipated

1In our setup, dispersion in marginal products arises exclusively due to dynamic input optimization under
adjustment frictions. This assumption is consistent with Asker, Collard-Wexler and De Loecker (2014) who show
that adjustment costs have a predominant role in shaping the dispersion of static measures of capital misallocation.
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small shock to aggregate productivity.2 We show analytically that aggregate q decreases with

capital misallocation, the average capital-productivity ratio, and the price wedge. In contrast,

we show that the CIR increases with capital misallocation, the relative cost of downsizing vs.

upsizing the capital stock, and the price wedge. Together, these results suggest that an economy

with lower after-tax investment frictions—which manifest in lower capital misallocation—feature

higher asset valuations (higher q) and faster propagation of productivity shocks (smaller CIR) if

the relative strength of the misallocation channel dominates other forces.

Our third insight is that a few observable micro-moments of the joint distribution of investment

and duration of inaction spells encode the distinct forces that shape capital behavior. These

moments are easily computed in microdata panels and serve two purposes. First, they disentangle

the separate roles of fixed costs and price wedges in generating misallocation. Disentangling the

role of each friction is a necessary step in understanding the e↵ects of corporate tax reforms, as each

friction interacts di↵erently with each tax instrument (for instance, we show that the corporate

income tax a↵ects the fixed cost but not the price wedge). Second, these micro-moments serve

as su�cient statistics for measuring capital misallocation, q, and the CIR, and thus predict the

direction in which the aggregate capital measures will move after a tax reform by looking at

the changes in these micro moments. The main advantage of our approach is that it only uses

investment data. To the extent that revenues are noisier than investment, for example, due to

measurement error or transitory shocks, our “micro-moments” approach provides researchers with

a suitable alternative to estimating capital misallocation.

We apply these three insights to examine the macroeconomic consequences of a regime shift

from high to low corporate taxes. We focus on changes to the top marginal corporate income tax

rate, which showed a median decrease of 17 percentage points from 42% in 1980 to 25% in 2020

across OECD countries.3 According to our theory, a decline in the corporate income tax rate is

equivalent to a reduction in the after-tax fixed cost. While this decline should unambiguously

reduce misallocation, the e↵ects on valuation and fluctuations depend on the magnitude of other

forces, which in turn, rest on the size of investment frictions.

We discipline investment frictions by matching the model-consistent micro-moments from

Chilean investment data.4 Using the calibrated model, we examine the elasticity of aggregate

capital measures to the corporate income tax. Our results suggest that, other things equal, a

2The CIR summarizes the impact and persistence of the economy’s response in one scalar, which represents a
multiplier of aggregate shocks. A higher CIR implies slower propagation and larger e↵ects of the aggregate shock.
Álvarez, Le Bihan and Lippi (2016), Baley and Blanco (2019), Álvarez, Lippi and Oskolkov (2020), and Alexandrov
(2021) use the CIR in the context of price-setting models to assess the e↵ects of monetary shocks.

3While the median corporate income tax rate has continuously decreased during this period, reforms at the
country level are very infrequent. In the US, for instance, only four reforms occurred in the last 40 years. The
US statutory federal corporate tax rate was 46% from 1979-1986, 40% in 1987, 34% from 1988-1993, 35% from
1994-2017, and has been 21% since 2018. See Data Appendix E.

4The Chilean context and establishment-level data have various advantages to study changes in the corporate
income tax rate, as we explain in Section 5.

3



lower corporate income tax rate decreases capital misallocation across tax regimes. It also reduces

the CIR so that the propagation of aggregate productivity shocks accelerates. Surprisingly, we

find that a lower corporate income tax rate decreases capital valuation. On the one hand, lower

taxes reduce misallocation, which increases q; on the other hand, lower taxes raise the average

level of capital, which decreases q. We find that the second e↵ect dominates quantitatively.

In summary, we propose a laboratory for examining the macroeconomic e↵ects of permanent

corporate tax reforms focusing on the interaction of taxes with investment frictions. Our anal-

ysis puts forward a new channel for policy intervention. Corporate tax policy can change the

e↵ective size of fixed costs or irreversibility wedges—technological constraints or market prices

typically outside the control of a policymaker—and structurally change the steady-state behavior

of aggregate capital and the macroeconomy more broadly.

Contributions to the literature. The long-run e↵ects of permanent corporate tax reforms

on aggregate capital have been widely studied. Early contributions (Summers, 1981; Abel, 1982;

Poterba and Summers, 1983; King and Fullerton, 1984; Auerbach, 1986; Auerbach and Hines,

1986), and more recently Barro and Furman (2018), used a neoclassical model with a representative

firm suitable to understand the user-cost channel of taxation. Subsequent work incorporated firm

heterogeneity and non-convex adjustment costs (Miao, 2019; Gourio and Miao, 2010; Miao and

Wang, 2014) to investigate the frictional dynamic channel of taxation. We contribute showing

how to reduce the complex interactions between corporate taxes and investment frictions to a

rescaling of the appropriate friction. This idea considerably simplifies the analysis and highlights

the channels through which corporate tax reforms a↵ect private investment.

We also contribute to the literature investigating the short-run stimulus of corporate tax policy

on average investment (see Hall and Jorgenson, 1967, for early work). Within this literature, our

work is closely related to the structural frameworks in Winberry (2021), who studied the stimulus

e↵ects of bonus depreciation in the US, and to Chen, Jiang, Liu, Suárez Serrato and Xu (2019),

who studied the stimulus e↵ects of the 2009 VAT reform in China.5 As corporate tax policies

often exhibit high persistence, our study of permanent tax reforms directly complements previous

research on short-run stimulus e↵ects. Additionally, we derive predictions for new dimensions of

capital behavior (misallocation, valuation, and fluctuations), characterize the mechanisms that

shape them, and show how to tighten calibrations with microdata.

Finally, we contribute to the literature studying the role of micro-level adjustment frictions for

economic fluctuations (see Caplin and Spulber, 1987; Caballero and Engel, 1991, 1993, for early

contributions). Recent work identifies a small set of observable micro-moments that capture the

5Other work assessing the short-run stimulating role of di↵erent corporate tax policies, from an applied public
finance perspective, includes Hassett and Hubbard (2002); House and Shapiro (2008); Yagan (2015); Zwick and
Mahon (2017); Ohrn (2018); Boissel and Matray (2019); Ma�ni, Xing and Devereux (2019) and Lerche (2019).
More recently, Rotemberg (2019) and Aneja, Kulkarni and Ritadhi (2021) study the e↵ects of corporate tax reforms
on misallocation and productivity.
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role of adjustment frictions for the propagation of aggregate shocks (see Álvarez, Le Bihan and

Lippi, 2016; Baley and Blanco, 2021). We contribute to this line of work in three ways. First,

we consider the role of corporate taxes in shaping the observable micro-moments. Second, we

characterize additional macroeconomic outcomes, such as aggregate q, with a few micro-statistics.

Third, we show how to handle history dependence (or reinjection, as labeled by Álvarez and

Lippi, 2021) arising from partial irreversibility to generate mappings from microdata to aggregate

outcomes. In this way, we expand the breadth of the micro-moments methodology to the realm

of models with irreversibility (Bertola and Caballero, 1994; Abel and Eberly, 1996; Ramey and

Shapiro, 2001; Veracierto, 2002; Lanteri, 2018; Lanteri, Medina and Tan, 2020) and other sources

of history dependence.

2 Investment With Fixed Costs and a Price Wedge

In this section, we develop a parsimonious investment model with the following features: idiosyn-

cratic productivity shocks, fixed capital adjustment costs, a wedge between the purchase and resale

prices of capital, and a constant interest rate.

2.1 The problem of an individual firm

Time is continuous, extends forever, and it is denoted by s. The future is discounted at rate ⇢ > 0.

We first present the problem of an individual firm and then consider a continuum of ex-ante iden-

tical firms to characterize the aggregate behavior of the economy.

Technology and shocks. The firm produces output ys using capital ks according to a produc-

tion function with decreasing returns to scale

(1) ys = u
1�↵
s k

↵
s , ↵ < 1.

Flow profits equal ⇡s ⌘ Ays, where A > 0 is a profitability parameter. Idiosyncratic productivity

us follows a geometric Brownian motion with drift µ > 0 and volatility � > 0,

(2) log us = log u0 + µs+ �Ws, Ws ⇠ Wiener.

The capital stock, if uncontrolled, depreciates at rate ⇠
k
> 0.

Investment frictions. The firm can control its capital stock through buying and selling invest-

ment goods at prices pbuy and p
sell. We assume an exogenous price wedge p

buy � p
sell

> 0 which

reflects adverse selection, specificity of capital goods, or other frictions in the market for used
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capital that make investment partially irreversible.6 For every investment is ⌘ �ks = ks � ks� ,

the firm must pay an adjustment cost proportional to its productivity ✓s = ✓us, where ✓ > 0

is constant and it is measured in consumption units.7 To simplify notation, we define the price

function

(3) p (is) = p
buy

{is>0} + p
sell

{is<0}.

Investment problem. Let V (k, u) denote the value of a firm with capital stock k and produc-

tivity u. Given initial conditions (k0, u0), the firm chooses a sequence of adjustment dates {Th}1h=1

and investments {iTh
}1h=1, where h counts the number of adjustments, to maximize its expected

discounted stream of profits. The sequential problem is

(4) V (k0, u0) = max
{Th,iTh}

1
h=1

E
"Z 1

0

e
�⇢s

⇡s ds�
1X

h=1

e
�⇢Th (✓Th

+ p (iTh
) iTh

)

#
,

subject to the production technology (1), the idiosyncratic productivity shocks (2), the investment

price function (3), and the law of motion for the capital stock

log ks = log k0 � ⇠
k
s+

X

h:Ths

⇣
1 + iTh

/kT�
h

⌘
,(5)

which describes a period’s capital as a function of its initial value k0, the physical depreciation

rate ⇠
k, and the sum of all adjustments made at prior adjustment dates.

2.2 Capital-productivity ratios k̂

To characterize the investment decision, it is convenient to reduce the state-space and recast the

firm problem using a new state variable, the log capital-productivity ratio:

(6) k̂s ⌘ log (ks/us) .

The problem admits this reformulation because the production function is homothetic and the

adjustment costs are proportional to productivity8. Note that in the absence of investment fric-

tions, k̂s is a constant. With investment frictions, between any two consecutive adjustment dates

6Lanteri (2018) endogenizes the price wedge in the market of used capital goods. Additional tax-related sources
of a price wedge include non-deductible VAT tax (Chen, Jiang, Liu, Suárez Serrato and Xu, 2019) and investment
tax credits (Altug, Demers and Demers, 2009).

7For any stochastic process qs, we use the notation qs� ⌘ limr"s qr to denote the limit from the left.
8We can also reformulate the problem using the capital-productivity ratio assuming that adjustment costs scale

with output or the capital stock.
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[Th�1, Th], the capital-productivity ratio k̂ follows a Brownian motion

(7) dk̂s = �⌫ ds+ � dWs,

where the drift ⌫ ⌘ ⇠
k + µ reflects the depreciation rate and productivity growth rate. At any

adjustment date Th, the log capital-productivity ratio changes by the amount

�k̂Th
= log

⇣
1 + iTh

/kT�
h

⌘
.(8)

Using the Principle of Optimality, Lemma 1 rewrites the sequential problem in (4) as a recur-

sive stopping-time problem. It also shows that the value of the firm equals a function of the log

capital-productivity ratio k̂ that scales with productivity, that is, V (k, u) = uv(k̂). Since �k̂s and

is have the same sign, we write the investment price as p(�k̂). All proofs appear in Appendix A.

Lemma 1. Let r ⌘ ⇢�µ��
2
/2 be the adjusted discount factor and let v(k̂) : R ! R be a function

of the log capital-productivity ratio equal to

(9) v(k̂) = max
⌧,�k̂

E
Z ⌧

0

Ae
�rs+↵k̂s ds+ e

�r⌧
⇣
�✓ � p(�k̂)(ek̂⌧+�k̂ � e

k̂⌧ ) + v(k̂⌧ +�k̂)
⌘ ���k̂0 = k̂

i
.

Then the firm value equals V (k, u) = uv(k̂).

2.3 Optimal investment policy

The optimal investment policy is characterized by four numbers, K ⌘ {k̂�  k̂
⇤�  k̂

⇤+  k
+},

which correspond to the lower and upper borders of the inaction region

(10) R =
n
k̂ : k̂�

< k̂ < k̂
+
o
,

and two reset points k̂⇤�
< k̂

⇤+. A firm adjusts if and only if its log capital-productivity ratio falls

outside the inaction region, that is, k̂s /2 R. Conditional on adjusting, the firm purchases capital

to bring its state up to k̂
⇤� if it hits the lower border k̂�, and sells capital to bring its state down

to k̂
⇤+ if it hits the upper border k̂+. Given R, the optimal adjustment dates are

(11) Th = inf
n
s � Th�1 : k̂s /2 R

o
with T0 = 0.

The duration of a complete inaction spell ⌧h and the time elapsed since the last adjustment as (or
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the age of the capital-productivity ratio) are

⌧h = Th � Th�1,(12)

as = s�max {Th : Th  s} .(13)

To save on notation, we write the reset points and the stopped capitals (an instant before adjust-

ment) as functions of the adjustment sign:

k̂
⇤(�k̂) =

8
<

:
k̂
⇤� if �k̂ > 0

k̂
⇤+ if �k̂ < 0,

(14)

k̂⌧ (�k̂) = k̂
⇤(�k̂)��k̂.(15)

Lemma 2 characterizes the value function and the optimal investment policy through the standard

su�cient optimality conditions. The firm value and the policy must satisfy: (i) the Hamilton-

Jacobi-Bellman equation in (16), which describes the evolution of the firm’s value during periods

of inaction, (ii) the value-matching conditions in (17) and (18), which set the value of adjusting

equal to the value of not adjusting at the borders of the inaction region, and (iii) the smooth-

pasting and optimality conditions in (19) and (20), which ensure di↵erentiability at the borders

of inaction and the two reset points.

Lemma 2. The value function v(k̂) and the optimal policy K ⌘ {k̂�
, k̂

⇤�
, k̂

⇤+
, k̂

+} satisfy:

(i) In the inaction region R, v(k̂) solves the HJB equation:

rv(k̂) = Ae
↵k̂ � ⌫v

0(k̂) +
�
2

2
v
00(k̂).(16)

(ii) At the borders of the inaction region, v(k̂) satisfies the value-matching conditions:

v(k̂�) = v(k̂⇤�) � ✓ � p
buy(ek̂

⇤� � e
k̂�),(17)

v(k̂+) = v(k̂⇤+) � ✓ + p
sell(ek̂

+ � e
k̂⇤+).(18)

(iii) At the borders of the inaction region and the two reset states, v(k̂) satisfies the smooth-pasting

and the optimality conditions:

v
0(k̂) = p

buy
e
k̂
, k̂ 2

n
k̂
�
, k̂

⇤�
o
,(19)

v
0(k̂) = p

sell
e
k̂
, k̂ 2

n
k̂
⇤+
, k̂

+
o
.(20)
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The optimal policy in terms of capital is recovered as {k�
, k

⇤�
, k

⇤+
, k

+} = u ⇥ exp{k̂�
, k̂

⇤�
, k

⇤+
, k

+}.

2.4 Individual Tobin’s q

Next, we express the optimal investment decision using Tobin’s q, namely, the shadow price of

installed capital. Following Abel and Eberly (1994), we identify a firm’s Tobin’s q as the marginal

valuation of an extra unit of installed capital, which is equal to

(21) q(k̂) ⌘ @V (k, u)

@k
= v

0(k̂)e�k̂
.

In contrast to its standard definition, the replacement cost of capital (the investment price) does

not divide Tobin’s q in (21). The reason is that, with partial irreversibility, the price depends on

the direction of the next adjustment. Thus, it varies depending on the position of k̂.

Figure I describes the optimal investment policy using q(k̂). Moreover, we can use this diagram

to describe how each investment friction a↵ects the firm’s optimal policy. Let’s consider first an

environment with partial irreversibility and no fixed costs. Without the fixed adjustment cost

(✓ = 0), a firm purchases capital if q(k̂) � p
buy (or k̂  k̂

⇤�) and sells capital if q(k̂)  p
sell (or

k̂ � k̂
⇤+) without any delay. When q(k̂) lies between the two prices (or the state between the two

reset points), it is optimal to remain inactive. At that productivity level, it is too expensive to

purchase capital and too cheap to sell it. This gives rise to an “inner” inaction region [k̂⇤�
, k̂

⇤+] due

exclusively to partial irreversibility. Next, let’s consider an environment with fixed costs and no

partial irreversibility. Without a price wedge (pbuy = p
sell), the “inner” inaction region collapses to

a unique reset point k⇤. However, the fixed adjustment cost generates an “outer” inaction region

[k̂�
, k̂

+] that prevents firms from adjusting, even if q(k̂) lies above or below the investment price.

When both frictions are active, the policy features both “outer” and “inner” inaction regions and

two reset points.

The interaction of the investment frictions generates two interesting features in the optimal

investment behavior. First, as argued by Caballero and Leahy (1996), individual q(k̂) is not

monotonic in k̂. Without fixed costs, q(k̂) monotonically decreases with k̂ due to decreasing

returns to scale ↵ < 1. With fixed costs, however, firms anticipate large adjustments when

approaching the inaction thresholds. As k̂ approaches the lower threshold k̂
�, firms anticipate

that a future tiny change in the state dk̂ < 0 will trigger a large positive adjustment �k̂ > 0.

The future positive investment lowers future q(k̂) and feeds back into lower current q(k̂), bending

down the function. A reverse argument explains why q(k̂) bends up as k̂ approaches the upper

threshold k̂
+. As a result, individual q(k̂) is not a su�cient statistic for individual investment, in

contrast to the postulate in Tobin (1969).

Second, optimal investment features an endogenous positive serial correlation in the sign of

adjustments. A firm is more likely to buy capital if it bought capital recently, and it is more
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Figure I – Optimal Investment Policy

Individual q(k̂)

k̂
�

k̂
⇤�

k̂
⇤+

k̂
+

p
buy

p
sell

outer
inaction

outer
inaction

inner
inaction

buy sell

1

Notes: The figure plots the individual q(k̂) = v
0(k̂)/ek̂ and the investment policy K = {k̂�, k̂⇤�, k̂⇤+, k̂+}.

likely to sell capital if it sold capital recently. This correlation arises because the inner inaction

region generated by the price wedge widens the distance between the two borders of inaction but

shortens the distance between each border of inaction and its corresponding reset point. Thus, it

is more likely to reach k̂
� from the nearby k̂

⇤� than from the further k̂⇤+. The serial correlation in

adjustment sign generates history dependence, which is technically challenging. Below, we show

how to handle history dependence with distributions conditional on the last reset point.

2.5 Economy with a continuum of firms

Consider an economy populated by a continuum of ex ante identical firms that face the investment

problem from the previous section. Idiosyncratic shocks Ws are independent across firms. As a

result, the economy features stationary cross-sectional distributions of capital-productivity ratios

and investment. Here, we define and discuss the characteristics of these distributions to build

intuition for the results in later sections. The analytical characterization of the macroeconomic

outcomes and the mappings to the microdata derived in Section 3 hinge completely on how we

deal with partial irreversibility when characterizing the cross-sectional behavior of the economy.

Specifically, our strategy consists of conditioning on the last reset point and using relative frequen-

cies of upward and downward adjustment to back out the unconditional behavior.

Distribution of firms. Let G(k̂) be the distribution of firms over their log capital-productivity

ratio and let g(k̂) be its continuous marginal density. Also, let N�, N+, and N = N�+N+ be the

frequencies of positive, negative, and non-zero adjustments in the total population, which are equal

10



to the mass of firms that adjust to k̂
⇤�, to k̂

⇤+, or to either point.9 The density and frequencies

solve the following system, which includes: a Kolmogorov forward equation that describes the

evolution of capital-productivity ratios inside the inaction region (excluding the two reset points)

(22) ⌫g
0(k̂) +

�
2

2
g
00(k̂) = 0, for all k̂ 2 (k̂�

, k̂
+) \ {k̂⇤�

, k̂
⇤+};

three border conditions

g(k̂) = 0, for k̂ 2 {k̂⇤�
, k̂

⇤+},(23)
Z k̂+

k̂�
g(k̂) dk̂ = 1;(24)

two resetting conditions

�
2

2
lim
k̂#k̂�

g
0(k̂)

| {z }
N�

=
�
2

2


lim
k̂"k̂⇤�

g
0(k̂)� lim

k̂#k̂⇤�
g
0(k̂)

�
,(25)

��
2

2
lim
k̂"k̂+

g
0(k̂)

| {z }
N+

=
�
2

2


lim
k̂"k̂⇤+

g
0(k̂)� lim

k̂#k̂⇤+
g
0(k̂)

�
,(26)

and two continuity conditions at the reset points (not reported). Condition (23) sets the mass of

firms at the inaction thresholds equal to zero. Condition (24) ensures that g is a density. Conditions

(25) and (26) relate the masses of upward and downward adjustments to the discontinuities in

the derivative of g at the reset points. In a small period of time ds, the mass N� that “exits”

the inaction region by hitting the lower threshold—equal to �2

2 limk̂#k̂� g
0(k̂)—must coincide with

the mass of firms that “enters” at the reset point k̂⇤�—equal to the jump in g
0. This argument is

analogous for N+; in fact, it is straightforward to verify that conditions (22) to (25) jointly imply

condition (26), and thus it is redundant.

To handle the history dependence that manifests in the autocorrelation of the investment sign,

we define densities conditional on the last reset point. We let g�(k̂) and g
+(k̂) denote the stationary

density of k̂ conditional on the last reset point being k̂
⇤� or k̂

⇤+, respectively. In particular, g�

satisfies the same KFE in (22) for all k̂ 2 (k̂�
, k̂

+) \ k̂
⇤� (there is no entry at k̂

⇤+), the border

conditions (23) and (24), and continuity at k̂
⇤�.10 An analogous characterization applies to g

+.

Panel A in Figure II plots the three densities g, g� and g
+ (these are proper densities and integrate

to 1). We denote expectations computed with these distributions as E, E�, and E+.

9To avoid any confusion with our notation, we emphasize that the sign in the exponent of an object refers to
the last reset point, not to the sign of the adjustment.

10Besides the border conditions, there is one reseting condition relating the mass of adjusters to the unique
discontinuity in the derivative of g�, but it is implied by the border conditions.
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Figure II – Unconditional and Conditional Distributions of k̂ and �k̂

(A) Distribution of k̂
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(B) Distribution of �k̂
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Notes: Panel A plots the unconditional density g(k̂) and the densities conditional on the last reset g±(k̂). Panel B

plots the unconditional distribution H(�k̂) and the distributions conditional on the last reset H±(�k̂).

Distributions of actions. Next, we consider the distribution over actions—adjustment size

and the duration of inaction—denoted by H(�k̂, ⌧), and the distributions of actions conditional

on the last reset point : H
�(�k̂, ⌧) and H

+(�k̂, ⌧). Panel B of Figure II plots the marginal

distributions of adjustment size, H(�k̂), H�(�k̂), H+(�k̂), where we have integrated out the

duration ⌧ ; these distributions correspond to probability masses at two points �k̂ = k̂
⇤+� k̂

+
< 0

and �k̂ = k̂
⇤� � k̂

�
> 0. We denote with bars the expectations computed with the distributions

of adjusters: E, E�
and E+

.

Panel B in Figure II illustrates two key characteristics of the distribution of adjustments. First,

the mass of upward adjustments H(k̂⇤� � k̂
�) is larger than the mass of downward adjustments

H(k̂⇤+ � k̂
+). This is because the drift shrinks capital-productivity ratios over time prompting

upward adjustments and because partial irreversibility penalizes downward adjustments. This

asymmetry is also observed in the firms’ distribution, as g is closer to g
�. Second, the conditional

masses reflect the autocorrelation in the investment sign; for instance, H�
> H

+ at �k̂ > 0 means

that the probability of reseting to k̂
⇤� is larger whenever the last reset point was also k̂

⇤�. In

other words, positive investments beget future positive investments.

From conditional to unconditional distributions. Define the shares of upward N�
/N and

downward N+
/N adjustments within the population of adjusters. By Bayes’ law, the uncondi-

tional and conditional distribution of adjusters satisfy

(27) H(�k̂, ⌧) =
N�

N H
�(�k̂, ⌧) +

N+

N H
+(�k̂, ⌧).
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This relationship is useful to compute moments of adjusters. For example, the average duration

of inaction equals the weighted sum of the average conditional durations:

(28) E[⌧ ] = E
⇥
E[⌧ |�k]

⇤
=

N�

N E�
[⌧ ] +

N+

N E+
[⌧ ].

However, we need to leverage another approach to recover the unconditional distribution of firms.

In that case, the shares must be rescaled by the relative durations of inaction:

g(k̂) =
N�

N
E�

[⌧ ]

E[⌧ ]
g
�(k̂) +

N+

N
E+

[⌧ ]

E[⌧ ]
g
+(k̂) = N� E�

[⌧ ] g�(k̂) + N+ E+
[⌧ ] g+(k̂),(29)

where we simplify the expression using E[⌧ ] = N�1, that is, the average duration of inaction

equals the inverse of the total frequency of adjusters. This implies that the duration-adjusted

frequencies also sum up to one, i.e., N� E�
[⌧ ] + N+ E+

[⌧ ] = 1. Why do we need to rescale by

duration? The answer is the fundamental renewal property: The average behavior in the economy is

attributable to firms with longer periods of inaction (which are observed less frequently). Adjusting

the shares with their relative duration corrects this observational bias. In environments with

partial irreversibility, the slowly-adjusting firms are coincidentally those that make downward

adjustments.

Illustrative example. Consider an economy in which most firms make frequent upward adjust-

ments. The durations of inaction are E[⌧ ] = 2, E�
[⌧ ] = 1.5, and E+

[⌧ ] = 4, and the frequencies

are N = 0.5, N� = 0.4, and N+ = 0.1.11 The shares of upward and downward adjustments

are N�
/N = 0.8 and N+

/N = 0.2, and the relative durations are E�
[⌧ ]/E[⌧ ] = 0.75 and

E+
[⌧ ]/E[⌧ ] = 2. While only 20% of adjustments are downward, they happen after longer inactions

spells with twice the average duration, implying that the underlying states k̂ generating those

adjustments are occupied for longer periods of time. To account for this higher occupancy, the

implied duration-modified frequencies, N� E�
[⌧ ] = 0.6 and N+ E+

[⌧ ] = 0.4, are the appropriate

weights to recover the unconditional distribution of firms as g = 0.6 g
� + 0.4 g

+.

Remarks on the fixed costs. Following Cooper and Haltiwanger (2006), fixed capital adjust-

ment costs ✓s reflect disruptions arising from the installation (or disinstallation) of capital, costly

learning, time-to-build, search frictions, among other factors. We specify fixed costs to be deter-

ministic, symmetric (the same costs are paid indistinctly for positive and negative investments),

and equal across firms. We abstracted from other frictions and heterogeneity to keep the presen-

tation simple. However, we prove all the results for the generalized hazard model proposed by

Caballero and Engel (1999, 2007) and examined in contemporaneous work by Álvarez, Lippi and

11Note that E[⌧ ] = 1/N but E±
[⌧ ] 6= 1/N±.
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Oskolkov (2020). This generalized hazard model accommodates asymmetric fixed costs, random

fixed costs, as well as time-dependent adjustments motivated with information frictions (Verona,

2014) or search frictions (Kurmann and Petrosky-Nadeau, 2007; Ottonello, 2018). Appendix B

presents and discusses the generalized hazard model. Also see Baley and Blanco (2021) for ex-ante

heterogeneity in fixed adjustment costs across sectors.

3 Three macroeconomic outcomes

How do investment frictions shape aggregate capital’s allocation, valuation, and fluctuations? This

section defines these macroeconomic outcomes and provides characterizations using moments of

the cross-sectional distribution g(k̂) and observable statistics.

3.1 Capital allocation

Following the development literature, we define capital misallocation as the cross-sectional variance

of the log marginal revenue product of capital. In our model all firms produce the same good and

the output price is normalized to one. Thus, we measure the variance of marginal products instead.

From the production function (1), the log of the marginal product of capital is collinear to a firm’s

capital-productivity ratio k̂, that is, logmpks = log↵ � (1 � ↵)k̂s. Therefore, misallocation is

proportional to Var[k̂]:

(30) Var[logmpk] = (1� ↵)2Var[k̂].

In a frictionless environment, k̂s is constant and Var[logmpk] = 0. With frictions, however, dis-

persion in the marginal product of capital arises, as in Asker, Collard-Wexler and De Loecker

(2014). Given the collinear relationship established in (30), we will use the term misallocation

when referring to Var[k̂].

Measuring misallocation with microdata. The challenge in measuring misallocation is that

the distribution g(k̂) is not observed. As economists, however, we have access to detailed panel

data ⌦ = {�k̂, ⌧} with information on the actions of adjusters: the size of discrete adjustments

�k̂ in (8) and the duration of completed inaction spells ⌧ in (12). We present mappings that

use micro investment data ⌦ to recover the level of capital misallocation in the economy. We

proceed in two steps. Proposition 1 recovers the parameters of the stochastic process and the two

reset points through a system of equations incorporating several moments from the distribution

of adjusters.12 Then, given the reset points, Proposition 2 recovers the population mean E[k̂] and
variance Var[k̂] of capital-productivity ratios.

12Appendix E.4 develops an iterative method to solve the non-linear system in equations (31) to (34).
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Proposition 1. Let �(⌫, �2) ⌘ log (↵A/(r + ↵⌫ � ↵
2
�
2
/2)). The parameters of the stochastic

process for productivity (⌫, �2) and the reset points (k̂⇤�
, k̂

⇤+) are recovered from the microdata

⌦ ⌘ (�k̂, ⌧) through the following system:

⌫ =
E[�k̂]

E[⌧ ]
,(31)

�
2 =

E[(k̂⌧ + ⌫⌧)2]� E[(k̂⇤)2]

E[⌧ ]
,(32)

k̂
⇤� =

1

1� ↵

2

4�(⌫, �2) � log(pbuy) + log

0

@
1� E�

h
e
�r̂⌧+↵(k̂⌧�k̂⇤+)

i

1� E�
h
p(�k̂)
pbuy e�r̂⌧+k̂⌧�k̂⇤+

i

1

A

3

5 ,(33)

k̂
⇤+ =

1

1� ↵

2

4�(⌫, �2) � log(psell) + log

0

@
1� E+

h
e
�r̂⌧+↵(k̂⌧�k̂⇤�)

i

1� E+
h
p(�k̂)
psell e

�r̂⌧+k̂⌧�k̂⇤�
i

1

A

3

5 .(34)

Expression (31) recovers the drift from the average adjustment size times the frequency of

adjustment (the inverse of the expected duration of inaction N = E[⌧ ]�1), while expression (32)

recovers the volatility from the variance in adjustment size.13 Expressions (33) and (34) recover

the reset points. The first term �(⌫, �2) reflects the ratio of marginal product to the user cost of

capital. Through this ratio, both reset states increase with profitability A and idiosyncratic risk

�
2 and decrease with the discount r and the drift ⌫. The second term shows that reset points

decrease with the corresponding investment price: firms invest more the lower is the purchasing

price p
buy and disinvest less the lower is the selling price p

sell. Lastly, the third term shows how

investment frictions shape the reset points through the marginal profits accrued during periods of

inaction (in the numerator) and the resale value (in the denominator). As long as (⌧,�k̂) depend

on the last reset point, endogenous irreversibility arises beyond the exogenous price wedge.

With the reset points and parameters in hand, we proceed to recover the unconditional mean

E[k̂] and variance Var[k̂] of capital-productivity ratios k̂.

Proposition 2. Let ⌦ ⌘ (�k̂, ⌧) be a panel of observations. For each inaction spell find the

departing point k̂⇤ and the ending point k̂⌧ using (14) and (15). Then the unconditional mean and

variance of k̂ are recovered from the microdata as follows:

13We obtained similar mappings from the data to the parameters in Baley and Blanco (2021) for the case without
irreversibility. Irreversibility does not change the mapping to the drift, but it changes the mapping to the volatility.
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E[k̂] = E
"
E
" 

k̂
⇤ + k̂⌧

2

! 
k̂
⇤ � k̂⌧

E[�k̂]

!������k̂

##
+

�
2

2⌫
,(35)

Var[k̂] = E
"
E
" 

(k̂⇤ � E[k̂])(k̂⌧ � E[k̂]) + (k̂⇤ � k̂⌧ )2

3

! 
k̂
⇤ � k̂⌧

E[�k̂]

!������k̂

##
.(36)

The mapping in (35) recovers the population mean E[k̂] from the average midpoint between the

departing and the ending points of an inaction spell (k̂⇤ + k̂⌧ )/2, where the average is computed

under a change of measure induced by the renewal weights (k̂⇤ � k̂⌧ )/E[�k̂]. To recover the

population mean, the renewal measure overweighs the midpoints of adjusters with longer periods

of inaction, which are more representative in the population.14 The term �
2
/2⌫ corrects for the

accumulated drift between adjustments. Similarly, the mapping in (36) recovers the population

variance Var[k̂] from the average distance between the departing point and the mean (k̂⇤ �E[k̂]),
the ending point and the mean (k̂⌧ � E[k̂]), and the between departing and ending points (k̂⇤ �
k̂⌧ )2, again computed using the renewal distribution. In these expressions, we compute the inner

expectation with H
� or H+ depending on the sign of the last adjustment and compute the outer

expectation with shares of upward N�
/N and downward N+

/N adjustment in the population.

Economic forces shaping capital misallocation. Using the law of total variance, we decom-

pose misallocation Var[k̂] into two terms that condition on the last adjustment:

(37) Var[k̂]| {z }
total

= E
h
Var[k̂|�k̂]

i

| {z }
within

+ Var
h
E[k̂|�k̂]

i

| {z }
between

.

The decomposition in (37) is useful to assess the relative importance of each investment friction

in generating capital misallocation. Later in the paper, we come back to this decomposition to

examine the interaction of corporate taxation and investment frictions in generating misallocation.

The first term is the average of the variance within each conditional distribution g
+ and g

�,

that is, the average of Var�[k̂] and Var+[k̂] (computed from (36) conditioning on the sign of

�k̂ and using the conditional renewal measure as in (28)). Both investment frictions add to this

dispersion. The second term reflects the distance between the conditional means E�[k̂] and E+[k̂]

(computed from (35) conditioning on the sign of �k̂ and using the conditional renewal measure).

This term arises exclusively from the price wedge that generates two di↵erent means. The larger

the price wedge, the further apart are the conditional means and the larger the between variance.

Note that this term is zero when only fixed costs are present as there is a unique reset point.

Next, we show that the relative size of frictions a↵ects the response of misallocation to an

14Without the price wedge, the renewal weights are equal to the relative size of adjustment �k/E[�k̂].
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Figure III – Misallocation and Investment Frictions
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Notes: Panel A plots the steady-state distribution of capital-productivity ratios, normalized by their mean. Triangle

= only fixed costs; Rectangle = only price wedge; Parallelogram = both frictions. Panel B plots misallocation

against the fixed cost for a zero (orange) and a large (black) price wedge. Panel C plots misallocation against the

price wedge for a zero (blue) and a large (black) fixed cost. Variances: total (T), within (W) and between (B).

increase in these frictions. Figure III illustrates the e↵ects of each adjustment friction on the

total, within, and between variances of capital-productivity ratios. To sharpen the exposition, we

assume zero drift (⌫ = 0) and a symmetric price wedge (pbuy � p = p � p
sell). Panel A plots the

stationary density g(k̂). Panels B and C are log-log plots of misallocation against one friction,

setting the other friction either at zero or at a large value. We use a log-log scale to facilitate the

visual analysis and to highlight the linearity that arises in certain relationships. We also mark

within (W), between (B), and total (T) variances.

Consider an environment where the fixed cost is the only investment friction (orange lines).

The density is a triangle that concentrates at the unique reset point and decreases linearly toward

the boundaries of the inaction region. A higher fixed cost widens the inaction region and increases

misallocation in a log-log linear way (Panel B). Now consider an environment where the price

wedge is the only investment friction (blue lines). The density is a rectangle between the two

reset/inaction points. In this case, a higher price wedge increases all components of misallocation

(within and between) in a log-log linear way (Panel C).

With both frictions active (black lines), the density is a trapezoid. The relationship between

misallocation and frictions is now flattened in the following sense. Consider the case with fixed

costs and a large price wedge. Misallocation is at a higher level but the relationship between

misallocation and the fixed cost flattens out. A higher fixed cost still widens the distance between
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inaction thresholds, increasing the within variance, but simultaneously reduces the distance be-

tween the reset points, decreasing the between variance. These opposing forces compensate each

other cancelling the e↵ects on misallocation (see the dotted and dashed black lines in Panel B

which move in opposite directions). Now consider the case with partial irreversibility and a large

fixed cost. Again, misallocation is at a higher level and the relationship between misallocation and

the price wedge flattens out. The between variance disappears (its log becomes very negative).

3.2 Capital valuation

Following the finance literature, we define capital valuation as the weighted average of individual

q(k̂) in (21) with weights !(k̂) ⌘ e
k̂
/K̂, divided by the average investment price p ⌘ E[p(�k̂)]:

(38) q ⌘ 1

p

Z k̂+

k̂�
q(k̂)!(k̂)g(k̂) dk̂ =

E[v0(k̂)]
pK̂

.

In contrast to the individual q(k̂), the definition of the aggregate q divides by the investment

price. Aggregate q is a measure of the average propensity to invest. Without frictions, there is

a unique investment price, and optimality implies that q = 1 always. That is, all investment

or disinvestment opportunities are immediately implemented, eliminating any possibility for q to

deviate from 1. With frictions, q may di↵er from one. If q > 1, the average marginal valuation of

capital is larger inside the firms than outside them, and the average propensity to invest is positive.

Characterization of aggregate q. We proceed to characterize the aggregate q in terms of

moments of k̂. But first, we consider the average capital gains or loses P(k̂) accrued to a firm

that trades capital at the state k̂ (that is, assuming fixed costs are zero). To the left of the inner

inaction region, the firm would buy capital making an average capital loss of pbuy/p� 1 per unit

bought. To the right of the inner action region, the firm would sell capital making an average

capital gain of psell/p � 1 per unit sold. Within the inner inaction region, even in the absence of

fixed costs, firms would never adjust their capital stock. However, we extend capital gains within

the inner action region [k̂⇤+
, k̂

⇤�] to facilitate the computation of expected capital gains. Inside

the inner inaction region, P(k̂) sets a price determined by a di↵erentiability requirement.15

Formally, we let P(k̂) 2 C2 be a twice continuously di↵erentiable function in the domain

[k̂+
, k̂

�] such that:

P(k̂) ⌘
(

p
buy

/p� 1 if k̂ 2 [k̂�
, k̂

⇤�],

p
sell

/p� 1 if k̂ 2 [k̂⇤+
, k̂

+].
(39)

Since P(k̂) equals the deviations from the average price, it averages zero: E[P(k̂⇤)] = 0.

15The exact definition of P(k̂) in the inner inaction region does not matter as firms never adjust in that region.
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With the definition of the auxiliary price-deviation function, Proposition 3 expresses the aggre-

gate q in terms of cross-sectional moments and parameters. The proof combines the HJB equation

for v
0(k̂) in (16), which specifies firms’ optimal behavior, with the KFE for g(k̂) in (22), which

describes the evolution of firms through the cross-sectional distribution, into a single “master

equation.” Then we integrate the master equation to eliminate idiosyncratic noise and recover

aggregate variables.

Proposition 3. Aggregate q equals:

(40) q =
1

r

 
↵AŶ

pK̂
+

✓
�
2

2
� ⌫

◆

| {z }
productivity

+ E

1

ds
Es

h
d(P(k̂s)!(k̂s))

i�

| {z }
irreversibility

!
,

where aggregate productivity Ŷ /K̂ is equal, up to second order, to

(41)
Ŷ

K̂
=

E[e↵k̂]
E[ek̂]

= exp
n
�(1� ↵)

⇣
E[k̂] + ↵

2
Var[k̂]

⌘o
+ o(k̂3),

and the irreversibility term is negative, and up to first order, it is equal to

(42) E

1

ds
Es

h
d(P(k̂s)!(k̂s))

i�
⇡ �

Cov
h
�k̂,P(k̂⇤)

i

E[⌧ ]
< 0.

Economic forces shaping capital valuation. Aggregate q in (40) equals the perpetuity value

of three terms. The first term is aggregate productivity Ŷ /K̂ equal to the average output-

productivity ratio divided by the average capital-productivity ratio.16 Observe that q increases

with aggregate productivity; in turn, because of decreasing returns to scale ↵ < 1, aggregate pro-

ductivity decreases with the average E[k̂] and the dispersion Var[k̂] of capital-productivity ratios

(see equation (41)). Consequently, aggregate q also decreases with the level and the dispersion of

k̂. Both the fixed cost and the price wedge a↵ect q indirectly through this channel.

The second term reflects the expected change in the average capital-productivity ratio, which

takes into account the deterministic trend ⌫ and the risk �
2. Since firms can upsize to exploit good

outcomes and can downsize to insure against bad outcomes, they are e↵ectively risk loving (Oi,

1961; Hartman, 1972; Abel, 1983). Thus, an increase in idiosyncratic risk �
2 directly increases q.

At the same time, an increase in idiosyncratic risk indirectly a↵ects q by increasing misallocation

and thus lowering the aggregate output-capital ratio in (41). The overall e↵ect of risk on q depends

on the relative strength of these two opposing forces.

In addition to irreversibility’s indirect e↵ect on q through misallocation, it also has a direct

negative e↵ect on q, as in Sargent (1980). The irreversibility term equals the expected price

16Aggregate productivity di↵ers from the average output-capital ratio E[y/k] = E[e(↵�1)k̂] due to heterogeneity.
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deviations from the average price weighted by the capital stock. Expression (42) maps it to minus

the covariance of investment �k̂ and price deviations P(�k̂). This covariance is positive since

firms purchase capital at a price above the average and sell capital at a price below the average.

Since the covariance is positive, irreversibility reduces q. Intuitively, firms seek to avoid histories in

which, after upsizing, negative productivity shocks will force them to downsize and face the penalty

of selling their capital at a discount. Firms also seek to avoid histories in which, after downsizing,

positive productivity shocks will force them to upsize and face the penalty of purchasing back

capital at a higher price. To minimize the likelihood of these “switching” situations, firms under-

invest and under-disinvest, e↵ectively reducing capital valuation.

Individual vs. aggregate q. In Section 2.4 we showed that individual q(k̂) is a non-monotonic

function of k̂. This observation has led some economists to argue that the individual non-

monotonicity translates into aggregate non-monotonicity, discarding q as a su�cient statistic for

aggregate investment.17 Expression (40) shows that this argument is flawed. Fixed adjustment

costs and partial irreversibility do not break the decreasing relation between aggregate q and ag-

gregate K̂. While this result is counterintuitive, it is a natural consequence of aggregating the

behavior of individual firms. The anticipatory e↵ects that bend individual q(k̂) in the vicinity of

the borders of the inaction region disappear when aggregating the cross-section, as positive and

negative stances of expected changes in q(k̂) cancel each other out in the aggregate. As a result,

aggregate q is a su�cient statistic for aggregate investment.

3.3 Capital fluctuations

Following the business cycle literature, we define capital fluctuations as the transitional dynamics

of aggregate capital following an aggregate productivity shock. Starting from the steady state, we

introduce a small, permanent, and unanticipated decrease in the (log) level of productivity of

size � > 0 to all firms (see Alexandrov (2021) for the characterization of transitional dynamics

following large aggregate shocks). We normalize the arrival date of the aggregate shock to s = 0,

so all firms’ productivity and capital-productivity ratios change to

(43) log(u0) = log(u0�) � �; log(k̂0) = log(k̂0�) + �.

Panel A of Figure IV plots the initial density following the � productivity shock (black line) next to

the steady-state density g(k̂) (blue line). The new distribution displaces horizontally to the right

relative to the steady-state distribution. Our exercise consists in tracking the mean Es[k̂] as it

makes its way back to its steady-state value E[k̂]. By assuming a constant interest rate, investment

17See Tobin (1969); Abel (1979); Hayashi (1982); Abel and Eberly (1996) and Caballero and Leahy (1996) for
alternative views on the role of q as a su�cient statistic for aggregate investment.
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Figure IV – Distribution Dynamics and Cumulative Impulse Response

(A) Cross-Sectional Density g(k̂)

steady state after �-shock

k̂
�

k̂
⇤�

k̂
⇤+

k̂
+

CIR(�) =
R1
0 IRFs(�)ds

Time

(B) Cumulative Impulse Response

IRFs(�) = Es[k̂]� E[k̂]

1

Notes: Panel A shows the steady-state distribution g(k̂) (blue line) and the initial distribution following a produc-

tivity shock (blue line). Panel B shows the IRF(�, s) (solid blue line) and the CIR (area).

policies do not respond to changes in the distribution and remain fixed along the transition path.

Therefore, our analysis measures the strength of the partial equilibrium response to aggregate

shocks.18

We define the impulse-response function, denoted by IRF(�, s), measured s periods after an

aggregate productivity shock of size � as follows:

(44) IRF(�, s) ⌘ Es[k̂]� E[k̂],

where Es[·] denotes expectations with the time-s distribution.

We define the cumulative impulse response CIR(�), as the area under the IRFs(�) function

across all dates s 2 (0,1)

(45) CIR(�) ⌘
Z 1

0

IRFs(�) ds.

Panel B in Figure IV plots these two objects. The solid line is the impulse-response function

IRF(�, s), and the area underneath it is the cumulative impulse response function CIR(�). The

CIR is a useful metric. It summarizes both the impact and persistence of the response, eases

the comparison across di↵erent models, and represents a “multiplier” of aggregate shocks. It is

illustrative to compare the CIR with and without adjustment frictions. Without frictions, firms

respond instantly to the aggregate shock and the CIR is zero. With frictions, the larger the CIR

18While assuming a constant interest rate (and investment policies) along the transition is an extreme assumption,
Winberry (2021) shows that the interest rate response to aggregate productivity shocks is small and even coun-
tercyclical. Appendix C relaxes this assumption and presents a general equilibrium model that delivers constant
prices as an equilibrium outcome.
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the longer it takes firms to respond to the aggregate shock and the slower the transitional dynamics.

Characterization of the CIR. Next, we expresses the CIR as a function of cross-sectional mo-

ments of k̂. We use a strategy analogous to the one we employed above to characterize aggregate

q, where by we define an auxiliary function that allow us to characterize the role of irreversibility.

As a first step, we define two values Mbuy
< 0 < Msell that measure the expected cumula-

tive deviation of the capital-productivity ratio relative to the mean E[k̂] conditional on the last

adjustment:

Mbuy ⌘ (E�[k̂]� E[k̂])E�
[⌧ ]

E[P+]

P�+
< 0,(46)

Msell ⌘ (E+[k̂]� E[k̂])E+
[⌧ ]

E[P�]

P+� > 0.(47)

Before we proceed further, let us explain how Mbuy in (46) captures upsizing firms’ behavior

(analogously, Msell in (47) captures firms’ downsizing behavior). Upsizing firms reset their capital-

productivity ratio below the unconditional mean and, on average, remain below the mean for the

duration of their inaction spell. The average deviation accumulated during one inaction spell is

then (E�
[k̂] � E[k̂])E�

[⌧ ]. Since investment sign is serially correlated, upsizing firms remain in

an upsizing phase contributing to negative deviations for several periods; they would only leave

this phase after a series of negative shocks makes them downsize. The ratio E[P+]/P�+ exactly

reflects the average time spent in the transient upsizing phase, where E[P+] ⌘ Pr[�k̂
0
< 0] is

the unconditional probability of downsizing and P�+ ⌘ Pr[�k̂
0
< 0|�k̂ > 0] is the probability of

downsizing conditional on being currently in an upsizing phase.19

As a second step, we define an auxiliary function M(k̂) 2 C2 that characterizes the cumulative

deviations within the inner inaction region. This function is identical to P(k̂) in (39), but replacing

the price deviations with the quantities Mbuy and Msell:

(48) M(k̂) =

8
<

:
Mbuy if k̂ 2 [k̂�

, k̂
⇤�]

Msell if k̂ 2 [k̂⇤+
, k̂

+].

Note that E[M(k̂⇤)] = 0 because M(k̂) equals the cumulative capital deviations from the steady-

state. Using the auxiliary capital-deviation function M(k̂), Proposition 4 characterizes the CIR.

Proposition 4. The CIR of the average log capital-productivity ratio E[k̂] following a marginal

19The unconditional probability of downsizing is measured in the data as E[P+] = E[⌧I(�k̂ < 0)]/E[⌧ ].
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aggregate productivity shock of size � > 0 is equal, up to first order, to

(49)
CIR(�)

�
=

Var[k̂]
�2| {z }

variance

+
⌫Cov[k̂, a]

�2| {z }
covariance

+ E

1

ds
Es[d(M(k̂s)k̂s)]

�

| {z }
irreversibility

+ o(�),

where the variance is recovered from the microdata in (36), the covariance is recovered as

(50) Cov[k̂, a] =
1

2⌫

 
Var[k̂] � E[(k̂⌧ � E[k̂])2⌧ ]

E[⌧ ]
+

�
2

2

E[⌧ ]
2

(1 + CV2
[⌧ ])

!
,

and the irreversibility term is equal to

(51) E

1

ds
Es

h
d(M(k̂s)k̂s)

i�
= �Cov[�k̂,M(�k̂)]

E[⌧ ]
> 0.

Economic forces shaping capital fluctuations. According to (49), the CIR equals a linear

combination of two steady-state moments and an irreversibility term. The moments are the cross-

sectional variance of capital-productivity ratios Var[k̂] and the covariance of capital-productivity

ratios k̂ with the time elapsed since the last adjustment Cov[k̂, a]. These steady-state moments

are informative about transitional dynamics because aggregate shocks � and idiosyncratic shocks

u enter symmetrically into k̂, and as a consequence, how firms respond to idiosyncratic shocks

inform how they respond to aggregate shocks. Specifically, the variance Var[k̂] reflects insensitivity
to idiosyncratic shocks, while the covariance Cov[k̂, a] reflects asymmetric costs of downsizing vs.

upsizing.20 Our work in Baley and Blanco (2021) established the relationship between the CIR and

these two steady-state moments in environments with drift, asymmetric fixed costs, and random

opportunities of free adjustment, but without partial irreversibility. In those environments, the

irreversibility term equals zero.

Let us now discuss the role of irreversibility for the CIR, which slows down the propagation

of aggregate shocks according to positive sign of (51). The irreversibility term measures the

change in cumulative deviations Msell and Mbuy due to the aggregate shock. Concretely, the

aggregate shock � increases the probability of downward adjustments as firms need to downsize to

reflect the reduction in aggregate productivity. Due to the serial correlation of investment sign, a

downsizing phase commences. Recall that, after downsizing, firms remain above the steady-state

average capital-productivity ratio. Thus, after an aggregate shock, firms are more likely to remain

above the average than before the shock, slowing down the convergence of the average Es[k̂] to its

long-run value E[k̂].
Besides its direct e↵ect, irreversibility has an indirect e↵ect on the CIR which increases the

20Fang (2021) uses the covariance Cov[k̂, a] to calibrate a model with asymmetric fixed costs and assess the role
of firm-level uncertainty for the e↵ectiveness of monetary policy.
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cross-sectional moments Var[k̂] and Cov[k̂, a]. In the data, this indirect e↵ect dominates. Identi-

fying and characterizing the irreversibility term in the CIR is one of the key contributions of our

analysis, as it opens to door to study transitional dynamics in environments with history depen-

dence, that is, where the first stopping time does not fully absorb the e↵ects of an aggregate shock.

This type of problems are labeled as problems with reinjection by Álvarez and Lippi (2021).

CIR of functions of k̂. Our characterization of average capital fluctuations in (49) can be

generalized to consider the transitional dynamics of any continuous function f(k̂) following an

aggregate shock �. In the generalized formula the valuesMbuy andMsell behind the functionM(k̂)

are appropriately redefined to track the deviations of the time-s average value of f , Es[f(k̂)], from

its steady-state value E[f(k̂)]. This generalization could in principle be useful to study fluctuations

in capital misallocation as in Bachmann and Bayer (2014), Ehouarne, Kuehn and Schreindorfer

(2016), and Lanteri (2018), by setting the function to f(k̂) = (k̂�E[k̂])2, or dynamics of aggregate

marginal valuation (the numerator of aggregate q) by setting f(k̂) = v
0(k̂).

4 The Macroeconomic E↵ects of Corporate Taxes

This section introduces a comprehensive tax schedule into the firm problem and analytically

characterizes the role of corporate taxation in shaping macroeconomic outcomes. We do this

in three steps. First, we show that taxes change four parameters: profitability A, the discount

factor ⇢, the fixed cost ✓, and the investment prices p(�k̂). Once we redefine these parameters,

the investment problem is identical to the one described in Section 2. Second, we decompose

the firm investment policy into a neoclassical component, which reflects the e↵ects of taxation

through the user cost of capital, and a dynamic component, which reflects the interaction of taxes

and investment frictions. Third, we isolate the various mechanisms at play by considering two

benchmark cases: a driftless case where irreversibility has an important role and a large-drift case

where irreversibility is innocuous.

4.1 A comprehensive tax schedule

Following Summers (1981) and Abel (1982), we introduce a corporate tax system into the firm

problem. It includes a corporate income tax t
c, deduction allowance ⇠

d, personal income tax t
p,

and capital gains tax t
g.21

The firm pays the corporate income tax rate t
c on its cash flow Ays net of deductions ⇠

d
ks,

where ⇠
d denotes the deduction rate. Since the physical and the legal depreciation rates di↵er,

we distinguish deductions from the capital stock and denote these with ds. The state space now

21This taxation schedule is also used in the investment models by Poterba and Summers (1983); King and
Fullerton (1984); Auerbach (1986); Auerbach and Hines (1986); Hassett and Hubbard (2002).
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includes deductions V (k, u, d). The corporate income tax and deductions jointly determine the

after–tax profit rate

(52) ⇡s = Ays � t
c(Ays � ⇠

d
ds) = (1� t

c)Ays + t
c
⇠
d
ds,

and the evolution of deductions22

log ds = log d0 � ⇠
d
s+

X

h:Ths

 
1 +

✓Th
+ p(iTh

)iTh

dT�
h

!
.(53)

The personal income tax t
p and the capital gain tax t

g alter the firms’ discount factor. We

assume that equity is purchased by a representative investor with access to a riskless bond with

return ⇢ per unit of time. Let Ds be the dividend per share, Ps the equity price per share, and

Es = 1 the number of shares, which we normalize to unity without loss of generality. From

the investor’s perspective, dividends and bond returns are taxed at the rate t
p, while capital

gains arising from changes in equity prices are taxed at the rate t
g. For any dividend process,

no-arbitrage implies equal after-tax returns:

(54) (1� t
p)⇢ ds = (1� t

g)
E[dPs]

Ps
+ (1� t

p)
Ds

Ps
ds.

Condition (54) pins down the time-0 value of the firm, which equals the equity price:

(55) V (k0, u0, d0) = P0 =
1� t

p

1� tg
E0

Z 1

0

e
�⇢ 1�tp

1�tg sDs ds

�
.

This expression says that the firm maximizes the cum-dividends market value of equity P0 using

the investor’s after-tax discount factor ⇢(1 � t
p)/(1 � t

g), as in Auerbach (1979). We follow the

“tax capitalization” view of the dividend decision and consider dividends as residuals, equal to

the cash flow ⇡s net of investment and capital adjustment costs23

(56) Ds ds = ⇡s ds� (✓s + p(is)is)D(s = Th), D(·) ⇠ Dirac.

Given the tax schedule, Lemma 3 characterizes the problem with corporate taxation. The strat-

egy consists of defining the discounted value of deductions per unit of investment z and using it

to rewrite the 3-state problem as the 1-state problem with the capital-productivity ratio solved

22We assume that the fixed adjustment cost are capitalized and enter into the expression for deductions. We
thank Jim Hines for helpful advice on this modelling assumption.

23In the previous sections without corporate taxes, the Modigliani-Miller theorem holds, that is, the firms’ values
and investment policies—and the implicit dividend policy—were independent of the capital structure. Introducing
taxes, in principle, could break this independence (for example, under the trade-o↵ theory of the capital structure,
see Hines and Park, 2017). Nevertheless, following the arguments in Miller (1977), and more recently in Abel
(2018), we continue working under the Modigliani-Miller paradigm.
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before in Section 2.3, under four parametric changes and an additive term that reflects deductions.

Lemma 3. Define the discounted value of deductions as

(57) z ⌘ ⇠
d

⇢
1�tp

1�tg + ⇠d
< 1.

The firm value with taxes can be decomposed as:

(58) V (k, u, d) =
1� t

p

1� tg

h
uv(k̂) + t

c
zd

i
,

where v(k̂) solves the investment problem in Lemma 2 with the following four parametric changes:

A ! (1� t
c)A,(59)

⇢ ! (1� t
p)

(1� tg)
⇢,(60)

✓ ! (1� t
c
z)✓,(61)

p(�k̂) ! (1� t
c
z) p(�k̂).(62)

The parametric changes established in Lemma 3 highlight the di↵erent channels through which

taxes a↵ect the firm value and optimal policy. The corporate income tax t
c directly a↵ects after-

tax profitability A in (59). The personal income tax t
p and the capital gains tax t

g scale the

discount factor ⇢ in (60).24 The discounted value of deductions z a↵ects the firm value through an

income e↵ect, as deductions increase additively the firm value in (58), and a substitution e↵ect, as

deductions promote investment by reducing the after-tax adjustment costs and after-tax prices in

(61) and (62). Additionally, tp and t
g operate indirectly through z. Next, we formalize the channels

through which taxes a↵ect investment through their interaction with investment frictions.

4.2 Frictionless and frictional e↵ects of corporate taxation

Proposition 5 decomposes the optimal investment policy into a neoclassical frictionless component

and a dynamic component that comprises the investment frictions. It shows that, from a firm’s

perspective, what matters for investment decisions is the fixed cost and the price wedge relative

to after-tax profits. To simplify the notation, we define the after-tax discount r̃ and the after-tax

24The factor (1� t
p)/(1� t

g) also scales A, ✓, and p(k̂). However, these parameters divide each other in all the
expressions that follow, so we can safely ignore this factor.
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user cost of capital Ũ as:

r̃ ⌘ 1� t
p

1� tg
⇢� µ� �

2

2
,(63)

Ũ ⌘ 1� t
p

1� tg
⇢+ ⇠

k � �
2
.(64)

In particular, the after-tax user cost Ũ is determined by the the personal income and capital gains

taxes, the discount rate, the depreciation rate, and idiosyncratic volatility. For the problem to be

well-defined, we assume r̃ > 0 and Ũ > 0.

Proposition 5. Let K ⌘ {k̂�
, k̂

⇤�
, k̂

⇤+
, k̂

+} denote the firms’ optimal investment policy charac-

terized in Lemma 2. Consider the static log capital-productivity ratio k̂
ss that firms would set in

the absence of the fixed cost and the price wedge:

(65) k̂
ss =

1

1� ↵
log

✓
1� t

c

1� tcz

↵A

pŨ

◆
.

With the static policy k̂
ss, define the e↵ective fixed cost ✓̃ (scaled by the after-tax static profits)

and the e↵ective prices p̃
sell and p̃

buy (scaled by the after-tax static profit-capital ratio):

✓̃ ⌘ 1� t
c
z

1� tc

✓

Ae↵k̂
ss
,(66)

(p̃buy, p̃sell) ⌘ 1� t
c
z

1� tc

(pbuy � p, p
sell � p)

Ae(↵�1)k̂ss
.(67)

Consider the normalized capital-productivity ratio x ⌘ k̂� k̂
ss. Then the optimal investment policy

can be decomposed as the sum of a static and a dynamic component

(68) K = k̂
ss + X ,

where the dynamic component X ⌘ {x�
, x

⇤�
, x

⇤+
, x

+} solves the following stopping problem:

V(x) = max
⌧,�x

E
Z ⌧

0

e
�r̃⌧ (e↵xs � ↵e

xs) ds(69)

+ e
r̃⌧
⇣
�✓̃ + p̃(�x)(ex⌧+�x � e

x⌧ ) + V(x⌧ +�x)
⌘ ���x0 = x

i
,

dxt = �⌫ dt+ � dWt,(70)

p̃(�x) = p̃
buy

{�x>0} + p̃
sell

{�x<0}.(71)

Proposition 5 provides several insights regarding the e↵ects of corporate taxation on invest-

ment. The static optimal policy k̂
ss in (65) sets the capital-productivity ratio to a constant, and
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its value reflects after-tax profitability (1� t
c)↵A, the average after-tax user cost of capital Ũ in

(64), and the average after-tax investment price (1� t
c
z)p. Studying the e↵ects of corporate taxes

on a frictionless investment policy and its implications for aggregate capital accumulation have

been widely studied (see Summers, 1981, for early work).

By definition, investment frictions do not a↵ect the static choice k̂ss. In contrast, the dynamic

policy X characterized by (69), (70), and (71) takes into account the fixed cost and the price

wedge, but these frictions enter scaled by after-tax static profits or by after-tax profit-capital

ratio (recall the definition of e↵ective frictions in (66) and (67)). Moreover, the flow payo↵ in the

dynamic problem e
↵xs � ↵e

xs only depends on the curvature of the profit function ↵, and thus

it is tax invariant. Together, these observations imply that taxes have e↵ects on the dynamic

component X of the optimal policy exclusively through the e↵ective investment frictions.

The fact that after-tax frictions are the key determinants for investment puts forward a novel

channel for policy intervention: Corporate tax policy can change the e↵ective size of fixed adjust-

ment costs and the price wedge—technological constraints typically considered outside the control

of a policymaker—and thus a↵ect the dynamic component of investment. Proposition 6 formal-

izes the channels through which the corporate tax schedule shapes firm investment and signs the

relationships with investment frictions.

Proposition 6. The e↵ective fixed cost ✓̃ and e↵ective price wedge p̃
buy � p̃

sell relate to the funda-

mental frictions as follows:

✓̃ =

✓
1� t

c
z

1� tc

1

A

◆ 1
1�↵

 
pŨ
↵

! ↵
1�↵

✓,(72)

p̃
buy � p̃

sell =
↵

Ũ
p
buy � p

sell

p
.(73)

If tc > 0 and Ũ > 0, corporate taxes have the following e↵ects on the after-tax investment frictions:

1. The e↵ective fixed costs ✓̃ increases with t
c and t

g; it decreases with ⇠
d and t

p.

2. The e↵ective price wedge p̃
buy � p̃

sell increases with t
p and decreases with t

g. It does not

change with t
c or ⇠

d as long as p = E[p(�k̂)] is fixed.

We focus the explanation on the e↵ects of the corporate income tax. We derive three lessons

from Proposition 6. First, a higher corporate income tax t
c reduces profits and therefore increases

the e↵ective fixed cost that are scaled by after-tax profits. This e↵ect is mediated by the depre-

ciation allowance rate, being lowest when z = 1 (in this case t
c is a pure profit tax) and highest

when ⇠
d = z = 0.

Second, the corporate income tax t
c does not a↵ect the e↵ective price wedge as long as the

average price p remains fixed. This is because the profit-capital ratio (1�t
c)Ae(↵�1)k̂ss that divides
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the price wedge is invariant to t
c as tc also enters the static policy k̂

ss. If the average price p does

change, which would only happen if the relative shares of upward and downward adjustments react

to the tax, then the e↵ective price wedge would change as well. However, this e↵ect is second

order and quantitatively small.

And third, the e↵ective fixed cost ✓̃ in (72) equals the fixed cost ✓ scaled by (1� t
c
z)/(1� t

c),

and its derivative with respect to t
c is increasing in ✓ (for z < 1):

(74) ✓̃ /
✓
1� t

c
z

1� tc

◆ 1
1�↵

✓.

This result suggests that cross-sectional di↵erences in ✓ (say across firms, industries, or sectors)

bring heterogenous responses to an identical change in t
c across the board. In particular, industries

with large fixed costs should be very sensitive to tax reforms; correspondingly, industries with

zero fixed costs should be the ideal control group.25 These observations o↵er a complementary

identification strategy that exploits ex-ante heterogeneity instead of heterogeneity in the treatment.

In summary, to study the e↵ects of corporate taxation on the macroeconomy, one can separate

the static and dynamic components; and to study the dynamic component, it su�ces to assess

how corporate taxes change the e↵ective investment frictions.

4.3 Two benchmark cases

The dynamic policy X solves the stopping time problem in (69) which closely resembles the price-

setting and investment problems with fixed costs, analyzed first by Barro (1972), Sheshinski and

Weiss (1977), Dixit (1991), but with the addition of a price wedge. We leverage on this work

to characterize analytically the e↵ect of taxes on individual policies and aggregate outcomes, ex-

tending previous results to the case with partial irreversibility. We consider two benchmark cases

that isolate di↵erent mechanisms at play. Specifically, we show that the relative size of frictions

matters and that the role of the price wedge crucially depends on the size of the drift. In what

follows, recall that we now work with normalized capital-productivity ratios x ⌘ k̂ � k̂
ss.

Zero drift. We begin by characterizing the investment policy and the macroeconomic outcomes

in driftless environments, that is, with zero drift and a symmetric price wedge. In this case, we

demonstrate that capital misallocation (Var[x]) is a su�cient statistic for the role of corporate

taxation on capital valuation (q) and capital fluctuations (CIR). Additionally, these driftless and

symmetric environments clearly showcase the role of irreversibility. Specifically, the price wedge

constitutes an important friction as firms expect to purchase and sell capital with equal probability.

25Alternatively, cross-sectional di↵erences in depreciation allowances z, as documented in House and Shapiro
(2008) and Zwick and Mahon (2017), should bring heterogenous responses to t

c, controlling for fixed costs. We
thank Thomas Winberry for pointing out this observation.
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As in Figure III, we consider three cases: only fixed cost, only price wedge, and both frictions.

Proposition 7 characterizes these cases with a second-order approximation to the profit function.

Proposition 7. Assume ⌫ ! 0 and symmetric e↵ective price deviations p̃
buy = �p̃

sell = p̃.

Without drift, the after-tax user cost of capital is Ũ = 1�tp

1�tg ⇢� �
2 and the after-tax discount factor

is r̃ = 1�tp

1�tg ⇢� �
2
/2. In all symmetric cases we have: E[x] = 0, E[k̂] = k̂

ss and Cov[x, a] = 0.

(i) Only fixed cost: The inaction thresholds are x̄ = ±
⇣

6✓̃�2

↵(1�↵)

⌘1/4
, the reset point is x

⇤ = 0,

and the macro outcomes are:

Var[x] =
x
2

6
; q = 1� Ũ

r̃

↵(1� ↵)

2
Var[x]; CIR(�)

�
=

Var[x]
�2

.(75)

(ii) Only price wedge: The inaction thresholds and reset points coincide x
⇤ = ±

⇣
3p̃�2

2↵(1�↵)

⌘1/3
,

and the macro outcomes are:

Var[x] = x
⇤2

3
; q = 1�

✓
1 +

2

↵

◆
Ũ
r̃

↵(1� ↵)

2
Var[x]; CIR(�)

�
=

✓
1 +

1

�2

◆
Var[x].(76)

(iii) Both frictions: The thresholds of the inaction region ± x and the reset points ± x
⇤ solve:

xx
⇤(x+ x

⇤) =
3p̃�2

↵(1� ↵)
; x

4 � x
⇤4 =

3p̃�2

↵(1� ↵)
(x� x

⇤) (1 + x+ x
⇤) +

6✓̃�2

↵(1� ↵)
,(77)

and the macro outcomes are:

Var[x] =
x
2 + x

⇤2

6
(78)

q = 1� Ũ
r̃

↵(1� ↵)

2

✓
Var[x] +

2

↵

xx
⇤

3

◆
(79)

CIR(�)

�
=

Var[x]
�2

+
x
⇤
x

3
.(80)

When only one friction is active, a marginal increase in the other friction has no e↵ect on

the macro outcomes:

(81)
dVar[x]

dp̃

����
✓̃>0, p̃=0

= 0; and
dM

d✓̃

����
✓̃=0, p̃>0

= 0, for M 2 {Var[x], q,CIR}.

When only one friction is active, in cases (i) and (ii), there is a positive relationship between

the corresponding e↵ective investment friction (✓̃ or p̃) and capital misallocation Var[k̂]. This

relationship results from the expressions for the inaction region and the cross-sectional variance.

In turn, higher misallocation reduces q by lowering aggregate productivity Ŷ /K̂, and increases the
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CIR, slowing down the propagation of aggregate productivity shocks. If e↵ective frictions were of

the same size, that is ✓̃ = p̃, expressions (75) and (76) reveal that a price wedge generates a higher

Var[x], a lower q, and a larger CIR compared to the case with only fixed costs.

Now let us discuss case (iii) in which both frictions are present. In this case, the su�cient

statistics for q and CIR are misallocation Var[x] and the product xx⇤. When x ⇡ x
⇤ this product

is proportional to Var[x] (as in the case with only partial irreversibility). The first observation

is that the inaction region (�x, x) and the reset points {�x
⇤
, x

⇤} are jointly determined by the

size of both frictions. Frictions have opposing e↵ects on the within and between components

of misallocation, so the e↵ect on the total misallocation is ambiguous. When the price wedge

is positive, introducing a fixed cost shrinks the distance between the two reset points, reducing

between variance. When the fixed costs is positive, introducing a price wedge generates two

di↵erent reset points, increasing the between variance. In the limits where only one friction is

active, the result in (81) teaches us that a marginal increase in the other friction has no e↵ect on

the macro outcomes (recall our earlier discussion around Figure III).

Large drift. Next we characterize the case with a large drift relative to idiosyncratic shocks. In

this case, we demonstrate that the price wedge is irrelevant. The reason is that firms upsize by

actively purchasing capital but downsize by letting the drift shrink its capital-productivity ratio.

Thus the purchase price p̃
buy is the only relevant price. Proposition 8 shows this result.26

Proposition 8. Let ⌫ > 0 and �
2 ! 0 such that ⌫/�2 ! 1. In this case, the after-tax user cost

is Ũ = 1�tp

1�tg ⇢ + ⇠
k and the after-tax discount is r̃ = 1�tp

1�tg ⇢� µ. The policy is a one-sided inaction

region with lower threshold x
� and one reset point x⇤. The cross-sectional distribution is Uniform

over [x�
, x

⇤] with moments:

E[x] =
(x⇤ + x)

12
; Var[x] =

(x⇤ � x)2

12
.(82)

The policy solves the non-linear system

E[x]
p

Var[x] = � r̃✓̃p
12↵(1� ↵)

;
E[x]

Var[x] + E[x]2 = �
✓
r̃

⌫
+

↵ + 1

2

◆
,(83)

and the macro outcomes are

q = 1 � Ũ
r̃
(1� ↵)

⇣
E[x] + ↵

2
Var[x]

⌘
;

CIR(�)

�
= 0.(84)

The case with a large drift reveals new mechanisms absent in symmetric environments. As we

have already mentioned, the price wedge has no e↵ect. Comparing the expression for aggregate

26Instead of taking the drift to infinity, we take an equivalent limit towards zero idiosyncratic shocks.
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q and the CIR with large drift against the three driftless cases in Proposition 7, we see how the

average E[x] now matters in this environment. Moreover, it is the frictional average E[x] and
not the frictionless average E[k̂] the relevant statistic for the marginal value of capital. The non-

linear system in (83) that pins down the investment policy shows that larger e↵ective fixed costs

✓̃ increase both the average E[x] (in absolute value) and the variance Var[x] of the normalized

capital-productivity ratios x. In fact, the first equation is an indi↵erence curve that mediates the

trade-o↵ between these two moments.27 The same system shows that the average E[x] is negative,
thus E[k̂] = k̂

ss +E[x] < k̂
ss. As the mean becomes more negative, q goes up; but as the variance

increases, q goes down. The overall e↵ect depends on the relative elasticities of these moments

with respect to ✓̃. Lastly, as shown in Corollary 2 of Baley and Blanco (2021), the CIR equals

zero: aggregate productivity shocks are immediately absorbed by firms and there are no deviations

from steady-state.

The benchmark cases with zero and large drift teach us two lessons. First, the importance of

the e↵ective price wedge (and the taxes that shape it) crucially depends on the drift. Without

drift, the price wedge is an important source of misallocation; in environments with large drift

relative to idiosyncratic shocks, it is not. Second, the e↵ect of taxes on q depend on the relative size

of the mean E[x] and the variance Var[x] of normalized capital-productivity ratios. In symmetric

environments, the mean is zero and thus higher misallocation always decreases q. With a large

drift, the mean is negative, reflecting capital scarcity. Scarcity increases q and could in principle

dominate the misallocation e↵ect that reduces q.

5 Empirical application

In this section, we put the theory to work. The goal is to examine the macroeconomic consequences

of a shift from a high to a low tax corporate tax regime. We use microdata to discipline the

magnitude of the various forces identified in the theory and predict the direction in which the

capital measures will move. We do this in two steps. First, we discipline the size of investment

frictions and quantify the di↵erent forces through which corporate taxes operate. To do this, we

use Chilean investment micro data leveraging on the fact that the Chile has several advantages

to evaluate our theory (as described next). Second, we use the calibrated model to conduct

comparative statics across steady-states focusing on changes to the corporate income tax rate.

5.1 Data description

Using Chilean data has several advantages to apply our theory. Chile is a small open economy

27A larger fixed cost lengthens the inaction period and firms accumulate more drift, reducing the average capital-
productivity ratio relative to a frictionless economy. As firms anticipate a larger drift, they increase the reset point
widening the distance between x

� and x
⇤, increasing the variance.
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with an exogenous interest rate, as our theory assumes. Chile does not feature a specific tax on

capital gains tg, which are taxed at the personal income tax rate t
p. As these rates are identical,

the ratio (1�t
p)/(1�t

g) equals one and does not a↵ect the discount factor. Moreover, depreciation

deductions z in Chile in our sample period are very small relative to other OECD countries (Asen,

2020). A low z amplifies the e↵ects of the corporate income tax t
c on the e↵ective fixed costs, as

discussed in Proposition 6. Finally, the corporate income tax rate has fluctuated considerably in

the last four decades. Appendix E provides all the details on the data.

Data sources. We use yearly investment data on manufacturing plants in Chile from the Annual

National Manufacturing Survey (Encuesta Nacional Industrial Anual) for the period 1980 to 2011.

To construct the capital series, we use information on depreciation rates and price deflators from

Chilean national accounts and Penn World Tables. The sample considers plants that appear in

the sample for at least 10 years (more than 60% of the sample) and have more than 10 workers.

Data on the corporate income tax comes from Vegh and Vuletin (2015), which we cross-checked

and updated using several sources.

Capital stock and investment rates. We construct the capital stock series using the perpetual

inventory method. We include structures, machinery, equipment, and vehicles. Following the

theory, a plant’s capital stock in year s, ks, evolves as

(85) ks = (1� ⇠
k)ks�1 + Is/(p(Is)Ds),

where ⇠
k is the physical depreciation rate; Is is the nominal value of investment; p(Is) is the

investment pricing function, which considers di↵erent prices for capital purchases and sales; Ds is

the gross fixed capital formation deflator, and k0 is a plant’s self-reported nominal capital stock

at current prices for the first year in which it is nonnegative. Note that the ratio Is/(p(Is)Ds) is

the real investment in capital units (the data counterpart to is = �ks in the model). We set a

price wedge of 5%, which is an intermediate value in the literature.28

We construct gross nominal investment is with information on purchases, reforms, improve-

ments, and sales of fixed assets, and define the investment rate ◆s as the ratio of real gross invest-

28Ramey and Shapiro (2001) study the reallocation of capital previously operated by closing aerospace plants.
They find a discount of 0.28 cent per dollar. Khan and Thomas (2013) set a discount of 0.03 cent per dollar and
Lanteri, Medina and Tan (2020) set a discount of 0.07 cent per dollar. Kermani and Ma (2020) document much
lower liquidation recovery rates consistent with very high average levels of asset specificity. We set a value of 0.05
which lies in between these studies. Note that only the price wedge matters for computing investment, not the
price level.
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ment to the capital stock:29

(86) ◆s ⌘ Is/(p(Is)Ds)

ks�1
.

Variable construction. For each plant and each inaction spell h, we record the change in the

capital-productivity ratio upon action �k̂h and the spell’s duration ⌧h. We construct �k̂h with

investment rates from (86):

(87) �k̂h =

8
<

:
log (1 + ◆h) if |◆h| > ◆,

0 if |◆h| < ◆.

The threshold ◆ > 0 reflects the idea that small maintenance investments should be excluded.

Following Cooper and Haltiwanger (2006), we set ◆ = 0.01, such that all investment rates below

1% in absolute value are considered to be part of an inaction spell. Then we define an adjustment

date Th from �k̂Th
6= 0 and compute a spell’s duration as the di↵erence between two adjacent

adjustment dates: ⌧h = Th�Th�1. Finally, we truncate the investment distribution at the 2nd and

98th percentiles to eliminate outliers.30

Figure V plots the resulting cross-sectional distribution of non-zero changes of the capital-

productivity ratios �k̂ and completed inaction spells ⌧ , conditional on a past positive or negative

investment. The data shows investment patterns that are consistent with partial irreversibility.

In particular, the distribution of investment conditional on a last negative investment H+(�k) is

skewed toward the left of the distribution conditional on a last positive investment H�, meaning

that the probability of a negative investment is larger after a negative investment and vice versa.

5.2 Aggregate capital behavior: 1980-2011

With the microdata at hand, we now assess the nature and size of investment frictions and the

magnitude of the various mechanisms that shape aggregate capital behavior. There are several

parameters that we calibrate externally before applying the theoretical mappings to recover the

capital behavior from the microdata. These parameters include taxes, the discount factor, tech-

nological constants, and investment prices. We set these parameters to match average statistics

from the Chilean economy between 1980 and 2011. The parameterization is summarized in Table I.

29Note that the investment rate equals ◆Th ⌘ iTh/kT�
h

= (kTh � kT�
h
)/kT�

h
, where kT�

h
= lims"Th ks. In contrast

to the continuous-time model, in which investment is computed as the di↵erence in the capital stock between two
consecutive instants, in the data we compute it as the di↵erence between two consecutive years.

30Table I in the Data Appendix presents descriptive statistics on investment rates. In particular, the inaction
rate (|◆| < 0.01) equals 40.1%.
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Figure V – Empirical Distribution of Observable Actions
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Notes: Own calculations using establishment data from Chile. Panel A plots the distribution of non-zero changes in

capital-productivity ratios and Panel B plots the duration of inaction spells. Solid bars = conditional on departing

from k̂
⇤+ (last negative investment); white bars = conditional on departing from k̂

⇤� (last positive investment).

Sample: Firms with at least 10 years of data, truncation at 2nd and 98th percentiles of investment rate distribution,

and inaction threshold of ◆ = 0.01.

Externally-calibrated parameters. One period equals a year. We set the real interest rate to

6.6% (⇢ = 0.066) to match the average real interest rate computed by the IMF. The productivity

growth rate is 3.3% (µ = 0.033) to match the average GDP growth rate. The returns-to-scale

parameter is ↵ = 0.72 to match an elasticity of output to capital of 0.3 taking into account labor.31

We set investment prices to p
buy = 2 and p

sell = 1.90 to match an average aggregate output-capital

ratio of Ŷ /K̂ = 0.36 and an irreversibility wedge of 5% as above. Finally, we normalize A = 1.

Taxes. We set the tax schedule to match the average values in Chile between 1980 to 2011. The

personal income and capital gain tax rates are identical and equal to t
p = t

g = 0.471. We set the

depreciation deduction rate to ⇠
d = 0.07 to match the PDV of depreciation allowances under the

Chilean straight-line system. Lastly, the corporate income tax rate (the highest marginal rate) is

on average t
c = 0.26 during the sample period. The implied PDV of deductions is z = 0.547.

Estimated parameters. Using the mappings from the microdata to the parameters of the

productivity process in (31) and (32), we recover a drift of ⌫ = 0.118 and a volatility of �2 =

0.054. Together with the productivity growth rate, the value for the drift ⌫ implies a physical

31To set this parameter, we consider a generalized production function that includes labor l as a frictionless input,

y = u
1�⌘↵̃

�
k
↵̃
l
1�↵̃

�⌘
. Static maximization over labor implies y / k

⌘↵̃
1�(1�↵̃)⌘ . Assuming standard parameters in the

literature, ⌘ = 0.90 and ↵̃ = 0.3, the implied value for the output-capital elasticity is ↵ = (⌘↵̃)/(1�(1�↵̃)⌘) = 0.72.
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Table I – Parametrization

Taxes Technology Productivity

⌧
p

⌧
g

⌧
c

⇠
d

z µ ↵ ⇢ p
buy

p
sell

⌫ �
2

0.471 0.471 0.260 0.070 0.547 0.033 0.720 0.066 2.000 1.900 0.118 0.054

Notes: Baseline parameterization of the model. Average tax rates in Chile in the period 1980-
2011. Other parameters are set externally or recovered from the microdata through the lens of
the theory, see text for details.

depreciation rate of ⇠k = ⌫ � µ = 0.085. Given these values, the implied after-tax discount is

r̃ = ⇢� µ� �
2
/2 = 0.006 and the after-tax user cost is Ũ = ⇢+ ⇠

k � �
2 = 0.097.

Putting the theory to work. We are ready to assess the nature and magnitude of investment

frictions and the role of the various forces in shaping the average macro outcomes. Table II shows

the average investment policy and macro outcomes in Chile for the period between 1980 and 2011.

We begin by examining the investment policy. From (33) and (34), we recover the gap between

the two reset points, k̂⇤+ � k̂
⇤� = 0.372, is a tell-tale sign of partial irreversibility.32 This gap is

almost equally explained by the exogenous price wedge, log(pbuy/psell) = 0.183, and the endogenous

behavior of firms reflected in the PDV of the capital-productivity ratio 0.189 (computed as a

residual). Next, we recover the average macro outcomes during the sample period.

Table II – Aggregate Capital Behavior

Investment Policy Capital Allocation

Di↵erence in reset capitals (k̂⇤+ � k̂
⇤�) 0.372 Variance 0.099

Exogenous price wedge 0.183 Within 0.067
PDV of capital-productivity ratio 0.189 Between 0.032

Capital Valuation Capital Fluctuations

Tobins q 1.041 CIR 2.509
Productivity 1.050 Variance 1.821
Irreversibility -0.009 Covariance 0.604

Irreversibility 0.083

Notes: Objects recovered from theory mappings applied to establishment-level data
from Chile. Parameters described in Table I.

Using (35) and (36), we estimate an average misallocation of Var[k̂] = 0.099, where 67% comes

from within-dispersion and 33% comes from between-dispersion driven by the price wedge (this

implies that ignoring the price wedge underestimates misallocation in at least 33%). We use (40)

to recover an average capital valuation of q = 1.041. While q is not far from its frictionless value

32Caballero and Engel (2007) and Lanteri, Medina and Tan (2020) propose complementary methodologies to
diagnose the pervasiveness of irreversibility in capital reallocation.
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(unity), it would be erroneous to conclude that dynamic frictions are not present; in fact, they

are both important but compensate one another. The productivity component in (41) is 1.050

and the irreversibility component in (42) is �0.009. As predicted by the theory, irreversibility

decreases q. Lastly, using (49), we recover an average CIR of 2.509, meaning that a 1% decrease

in aggregate productivity generates a total deviation of aggregate capital above its steady-state

value of 2.5% (that is, the average multiplier of productivity shocks is 2.5).

We further decompose the CIR into its three components: variance 1.821 from (36), covari-

ance 0.604 from (50), and irreversibility 0.083 from (51). As predicted by the theory, the CIR’s

irreversibility term is positive; however, it is quantitatively small and most of its e↵ects operate

indirectly by increasing the steady-state moments. This observation implies that irreversibility

operates primarily by reducing the sensitivity to idiosyncratic shocks (increasing Var[k̂]) and in-

creasing the relative cost of downsizing the capital stock (increasing Cov[k̂, a]).

5.3 A regime shift from high to low taxes

This section explores the macroeconomic e↵ects of a regime shift from high to low taxes, focusing

on the corporate income tax rate.33 We motivate this exercise with the observation that the top

marginal corporate income tax rate experienced a median drop of 17 percentage points across

OECD countries, from 42% in 1980 to 25% in 2020.34According to the theory, a decline in the

corporate income tax rate is equivalent to a reduction in the after-tax fixed cost. While this reform

should have unambiguously reduced misallocation, other things equal, the consequences for capital

valuation and capital fluctuations depend on the magnitude of the various counteracting forces

that we characterized in Section 4.

To discipline these forces, we use the parameterization that matches the average Chilean ex-

perience summarized in Table I. Additionally, we must take a stand on the size of the fixed cost ✓

in order to map the changes in the corporate tax into changes in the after-tax fixed cost ✓̃ in (72).

Note that taking a stand on the size of the fixed cost was not necessary for applying the mappings

from microdata to macro outcomes in the previous section. Here, we search for a fixed-cost pa-

rameter using the method of moments to minimize the relative distance between two moments in

the model and the data: the variance of capital-productivity ratios Var[k̂] and the covariance of

capital-productivity ratios with the time elapsed since their last adjustment Cov[k̂, a] (below we

discuss these choices and the implied model fit). We obtain a fixed cost of ✓ = 0.2.

Figure VI illustrates the macroeconomic consequences of a drop in the corporate tax rate.

Panel A shows capital misallocation Var[k̂] (solid line) and its decomposition into within (dashed

33Appendix D conducts similar analysis for the other three tax instruments.
34In Chile, the evolution of the corporate tax rate is U-shaped. It was 40% in 1980, dropped to 10% in 1984, and

then consistently (but infrequently) moved upward until reaching 20% in 2020 (see Appendix E). In this exercise,
we identify the high-tax regime with 1980 and the low-tax regime with 2020.
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Figure VI – Macro Outcomes in High (1980) and Low (2020) Tax Regimes
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Notes: Panels A, B, and C show capital allocation, valuation, and fluctuations for various levels of the corporate

income tax rate in the range t
c 2 [0.1, 0.5]. Parameterization from Table I and fixed costs of ✓ = 0.2. Stars

correspond to the median values of the top corporate tax rate t
c in the OECD: 1980 = 42%, 2020 = 25%.

line) and between (dotted line) variances following (37). In this parameterization with a relatively

large drift, fixed costs are the primary investment friction and the within-variance is almost the

only source of misallocation. We observe that a decline in the tax rate improves the allocation

of capital. As predicted by equation (72) and Propositions 7 and 8, lower tc reduces the e↵ective

fixed cost ✓̃ and shrinks inaction regions, lowering firms’ tolerance for mismatch between their

capital and their productivity and decreasing the dispersion of capital-productivity ratios.

Panel B shows capital valuation q (in black) and its decomposition into productivity (in orange)

and irreversibility components according to (40). As predicted by the theory, the irreversibility

term (marked with a downward arrow) is negative and reduces q below 1 for all levels of tc. We

discover that q moves in the same direction as the tax rate. To understand why this is the case,

we use expression (84) and plot the two margins a↵ecting productivity Ŷ /K̂ in (41): the average

(green) and the variance (blue) of centralized of capital-productivity ratios. When t
c decreases,

firms invest more and the average capital-productivity ratio E[k̂] goes up. Abundant capital is

less valuable and q goes down. At the same time, the allocation of capital improves, Var[k̂] falls
(see Panel A) and q goes up. In this parameterization, the first e↵ect dominates and q follows tc.

Panel C shows capital fluctuations measured by the CIR (in black) and decomposed into three

terms following (49): variance (in blue), covariance (in orange), and irreversibility (in gray). The

variance term reflects misallocation (see Panel A). The positive covariance term says that firms

with old capital have a large desire to downsize, but they do not sell their capital to avoid the
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penalty of the price wedge. The positive irreversibility term increases the CIR beyond the sum

of the other two terms. We find that the CIR also moves in line with the tax rate, meaning that

aggregate productivity shocks propagate more quickly when taxes are low.35 The variance and

covariance terms move in opposite directions with t
c: the variance falls due to lower e↵ective fixed

costs ✓̃, whereas the covariance increases because the price wedge plays a larger role vis-à-vis the

fixed costs. Overall, for this parameterization, the variance dominates and the CIR follows tc.

In summary, this calibrated version of our parsimonious model suggests that a drop in the

corporate income tax rate reduces capital misallocation, reduces capital valuation (due to a larger

stock of capital), and accelerates the propagation of aggregate productivity shocks.

A remark on the calibration of fixed costs. Let us compare the values for the macro

outcomes reported in Table II—recovered directly from the microdata mappings assuming an

average corporate tax rate of tc = 0.26—with the corresponding values in Figure VI—obtained by

simulating the model. We see that all values in the data are consistently larger than those produced

by the model. The reason for this discrepancy is that our model with a symmetric fixed cost is

extremely parsimonious and cannot reproduce the large variance of capital-productivity ratios

Var[k̂] and the large covariance of capital-productivity ratios and their age Cov[k̂, a] recovered
from the data. The simulated method of moments strikes a balance between these two moments

in the data, but falls below their empirical values.

In previous work (Baley and Blanco, 2021), we demonstrated that the symmetric fixed cost

model is unable to replicate the empirical values of these two moments and showed how it should

be augmented in order to match them. Introducing a time-dependent component in adjustment,

such as random opportunities for free adjustment, increases the variance Var[k̂]. Introducing

asymmetric fixed costs that depend on the adjustment sign increases the covariance Cov[k̂, a] (the
price wedge already pushes the variance up, but it is not quantitatively enough). Augmenting

the model in these two directions is straightforward and necessary to conduct a fully-fledged

quantitative analysis. Nevertheless, we have opted to keep the model as simple as possible to

facilitate its exposition and to highlight the key mechanisms at work in the cleanest way.

6 Final remarks

We propose a new laboratory to study the macroeconomic e↵ects of permanent corporate tax

reforms. We find that reductions in the corporate income tax rate improve the allocation of

capital across firms, which in turn reduces capital valuation and accelerates the capital response

to productivity shocks.

We also put forward after-tax investment frictions as the appropriate notion to evaluate the

35The CIR goes down by 1.13% from 1.77 at tc = 0.42 to 1.75 at tc = 0.25.
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e↵ects of corporate tax reform; specifically, our theory predicts that sectors with higher fixed

costs are more sensitive to tax reforms and thus experience a larger variation in aggregate capital

measures following change in the corporate income tax rate. We leave for future work testing this

prediction with cross-sectional data.

We foresee three avenues for developments that would extend the scope of our analysis. A

first avenue broadens the notion of after-tax frictions to investigate the role of entry and exit,

imperfect information, and other investment frictions that may interact with corporate taxation

and distort the allocation of capital (David and Venkateswaran, 2019). A second avenue enriches

the financial structure of the model, either by introducing financial frictions at the firm-level (Khan

and Thomas, 2013; Kehrig and Vincent, 2019; Ottonello and Winberry, 2020) or considering

general equilibrium e↵ects (Khan and Thomas, 2008; Bachmann, Caballero and Engel, 2013;

Winberry, 2021; Miao, 2019; Koby and Wolf, 2020). These additional financing channels could

mitigate or exacerbate the economic forces put forward by our analysis. Lastly, a third avenue

examines the transitional dynamics between two corporate tax regimes (Gourio and Miao, 2011),

as well as the response of the monetary policy rate in shaping transitional dynamics.
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