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Abstract

We study the cross-country evolution of technology diffusion over the last two centuries.

We document that adoption lags between poor and rich countries have converged, while

the intensity of use of adopted technologies of poor countries relative to rich countries has

diverged. The evolution of aggregate productivity implied by these trends in technology

diffusion resembles the actual evolution of the world income distribution in the last two

centuries. Cross-country differences in adoption lags account for a significant part of the

cross-country income divergence in the nineteenth century. The divergence in intensity of

use accounts for the divergence during the twentieth century.
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1 Introduction

Cross-country differences in productivity have increased dramatically over the last 200 years.

The ratio between the average (per capita) income in Maddion’s “Western countries” and

the average income among the non-Western countries was 1.9 in 1820. By 2000, the average

income ratio was 7.2.1

Observed differences in productivity growth can be driven by differences in the technology

used in production or by other non-technological factors. This paper studies the role played

by technology diffusion on the evolution of productivity growth over the last two centuries. In

particular, we study (i) how the technology diffusion processes have evolved over time in rich

and poor countries and (ii) how potential differences in the evolution of the diffusion process

may have contributed to the dynamics of productivity growth.

We study the evolution of technology diffusion by taking advantage of a property of diffu-

sion curves identified by Comin and Hobijn (2010). To illustrate it, consider Figure 1 which

represents the evolution of the log of the number of telephone lines over GDP in various

countries. These diffusion curves can be well approximated by a common curve plus country-

specific vertical and horizontal shifters. Comin and Hobijn (2010) use a model to relate the

horizontal shifters to the time it takes for the technology to arrive to each country (i.e. the

adoption lags). We extend the model in Comin and Hobijn (2010) by relating the vertical

shifters to country-technology specific factors such as sectoral distortions (e.g., Restuccia and

Rogerson, 2008) and barriers to adoption (e.g., Parente and Prescott, 1994) that impact the

intensity with which the technology is used. We denote the technology-country specific pa-

rameters that captures the vertical shifters in the diffusion curves the intensity of adoption

parameter.2

We estimate our model of diffusion using data for 25 major technologies invented over the

last 200 years for a sample of 139 countries. Our estimation strategy takes care of the effect of

income on the demand for technology,3 and of the effect on production costs of economy-wide

factors that have a symmetric effect across technologies.4 The average estimated adoption lag

is 42 years. The average intensity of adoption in Non-Western countries is half (47%) of the

level of Western countries. We document significant dispersion on both margins of adoption

1These differences in income growth can be attributed to differences in total factor productivity (TFP)
growth (Klenow and Rodŕıguez-Clare (1997) and Clark and Feenstra (2003)). Maddison (2004) classifies
as “Western countries” Austria, Belgium, Denmark, Finland, France, Germany, Italy, Netherlands, Norway,
Sweden, Switzerland, Untied Kingdom, Japan, Australia, New Zealand, Canada and the United States.

2See Clark (1987) for a detailed account of the importance of this margin in the case of spinning spindles,
which is one of the technologies in our data set.

3In the baseline calculations, the restriction that our model has a balanced growth path implies that the
income elasticity of technology demand is equal to one. In section 5.3, we show that our findings are robust to
allowing for non-homotheticities in the demand for technology.

4As discussed in section 3.1, we can do this by taking advantage of the three dimensional nature of our
data.
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Figure 1: Diffusion Curves of Telephone Lines

across countries and technologies. For example, comparing the 90th to the 10th percentiles

of our estimates, we find 10-fold differences in adoption lags and 8-fold differences in the

intensity of adoption.

To study how technology diffusion has evolved over the last two centuries, we take advan-

tage of the variation in invention dates across the technologies in our sample. We document

two new facts: (i) cross-country differences in adoption lags have narrowed over the last 200

years. That is, adoption lags have declined more over time in poor/slow adopter countries

than in rich/fast adopter countries, (ii) the intensity of use of technology has diverged. That

is, the gap in the use of individual technologies between rich and poor countries has widened

and it is larger for recent technologies than for those invented 200 years ago.

After documenting these cross-country trends in technology diffusion processes, we evalu-

ate their effect on the evolution of productivity growth across countries. We take advantage

of the fact that our model has a parsimonious aggregate representation. This allows us to

feed in the estimated trends in adoption and compute the implied evolution of productivity

growth.5

Cross-country differences in the diffusion margins in 1820 induce a world income distribu-

tion that is similar to the actual distribution. Our main result is that cross-country differences

in the evolution of technology diffusion imply an evolution of aggregate TFP that accounts

well for the evolution of the world income distribution over the last 200 years. For example,

we find that differences in the evolution of technology diffusion increase by a factor of 2.9 the

5By using a model to compute the effect of technology diffusion to productivity growth, we avoid the biases
from the endogeneity of technology adoption that would plague standard regression estimates.
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income gap between Western and non-Western countries during the period 1820-2000. This

represents 75% of the actual increase in the income gap, which grew by a factor of 3.9. More

generally, the aggregate representation implied by our country-technology estimates can re-

produce the evolution of the world income distribution when we look at different time periods,

or when we split the countries by income quintiles or continents.

This paper is related to the literature analyzing the channels driving the Great Divergence.

One strand of the literature has related the divergerce to the evolution of Solow residuals

which are taken as exogenous processes (Easterly and Levine, 2001, Clark and Feenstra, 2003,

Lucas (2000), and Gancia et al. (2013) ).6 Another strand of the literature uses aggregate

production functions with biased technical change to study whether the divergence is due

to efficiency differences or to appropriate technology considerations (Allen (2012) and Jerz-

manowski (2007)). Often theories that emphasize the importance of the direction of technical

change have been framed in the context of trade models (see, e.g., O’Rourke et al. (2012) ).7

Our focus differs from these studies in that we measure the relevant dimensions of technology

diffusion directly from diffusion curves and analyze the implications for productivity growth.

Unlike these studies we do not intend to explain why the use of technology diverged between

rich and poor countries.8

The rest of the paper is organized as follows. Section 2 develops the model of technol-

ogy diffusion and productivity growth. Section 3 presents the estimation strategy. Section

4 estimates the two margins of adoption and documents their cross-country evolution. Sec-

tion 5 quantifies the effect of the technology dynamics on the evolution of the world income

distribution. Section 6 concludes.

2 Model

We present a model of technology adoption and growth. The goals of the model are two.

First, to derive a functional form for the shape of diffusion curves for specific technologies.

Second, to provide an aggregate represnetation that allows us to explore how the adoption

margins affect productivity growth.

6Lucas (2000) studies the evolution of the world income distribution using a model that assumes a negative
relationship between the time a country takes off and the TFP growth it experiences during the transition.
He predicts either no growth or a strong convergence. Instead, our model has more nuanced predictions and
captures well the entire world income distribution.

7Galor and Mountford (2006) develop a model where trade affects asymmetrically fertility decisions in
developed and developing economies, due to different initial endowments of human capital, leading to different
evolutions of productivity growth.

8Trade-based theories of the Great Divergence, need to confront two facts. Prior to 1850, the technologies
brought by the Industrial Revolution were unskilled-biased rather than skilled-biased (Mokyr, 2002). Yet,
incomes diverged also during this period. Second, trade globalization ended abruptly in 1913. With WWI,
world trade dropped and did not reach the pre-1913 levels until the 1970s. In contrast, the Great Divergence
continued throughout the twentieth century.
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We follow different approaches to model the two adoption margins. For simplicity, we

assume an exogenous adoption lag for each technology-country pair. To model the intensity

of use, we introduce various frictions that differ in their scope (economy-wide vs. technology-

specific) and nature (taxes on labor income vs. intermediate goods prices). Once we derive

the expression for the diffusion of a specific technology, we define formally the intensity of use

parameter and study which of the factors introduced in the model affect it.

2.1 Preferences and endowments

There is a unit measure of identical households in the economy.9 Each household supplies

inelastically one unit of labor, for which they earn a wage wt at time t. Households can save

in domestic bonds which are in zero net supply. The utility of the representative household

is given by

U =

∫ ∞
t0

e−ρt ln(Ct)dt, (1)

where ρ denotes the discount rate and Ct, consumption at time t. The representative house-

hold maximizes its utility subject to the budget constraint (2) and a no-Ponzi condition (3)

Ḃt + Ct = wt + rtBt + Tt, (2)

lim
t→∞

Bte
∫ t
t0
−rsds ≥ 0, (3)

where Tt denotes government transfers to consumers, Bt denotes the bond holdings of the

representative consumer, Ḃt is the increase in bond holdings over an instant of time, and rt

the return on bonds.

2.2 Technology

At a given instant of time t, the world technology frontier is characterized by a set of tech-

nologies and a set of vintages specific to each technology. Each instant, a new technology τ

exogenously appears. We denote a technology by the time it was invented, τ . Therefore, the

range of invented technologies at time t is (−∞, t].
For each existing technology, a new, more productive, vintage appears in the world frontier

every instant. We denote vintages of technology τ generically by vτ . Vintages are indexed by

the time in which they appear. Thus, the set of existing vintages vτ of technology τ available

at time t (> τ) is [τ , t]. That is, vτ ∈ [τ , t], and vτ takes the value of the time period in which

vintage vτ appears in the technology frontier.

The productivity of a technology-vintage pair, Z(τ , vτ ), is common across countries and

9We identify an economy with a country in our empirical application. We refer interchangeably to economy
and country in what follows.
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is given by

Z(τ , vτ ) = e(σ+γ)τ+γ(vτ−τ)

= eστ+γvτ , (4)

where (σ + γ)τ is the productivity level associated with the first vintage of technology τ

and γ(vτ − τ) captures the productivity gains associated with the subsequent introduction of

new vintages vτ ≥ τ . By allowing subsequent vintages of the same technology to be more

productive, we want to capture the idea that productivity not only increases through the

introduction of new technologies, but also that technologies become more productive over

time (e.g., Aghion and Howitt, 1992, Klette and Kortum, 2004).

Economies are typically below the world technology frontier. Let Dτc denote the age of the

best vintage available of technology τ used in production in country c. Dτc reflects the time lag

between the best vintage in use and the world frontier for technology τ ; that is, the adoption

lag.10 For technology τ , the set of vintages available in economy c is vτc = [τ , t−Dτc].
11

2.3 Production

Now that we have defined the notion of technology, we can specify how technology is used

in production. To simplify notation, we try to eliminate country subindeces. Technologies

are embodied in intermediate goods. It takes one unit of aggregate output to produce one

unit of intermediate good. Associated with each intermediate good, there is a service, Yτ ,v,t,

that results from combining units of the vintage-specific intermediate good, Xτ ,v,t, with labor,

Lτ ,v,t.
12 The productivity in the production of these services depends on two variables: the

productivity of the technology-vintage, Z(τ , v), and the economy-wide exogenous TFP level,

eχt . Equation (5) formalizes the production function for vintage-level services,

Yτ ,v,t = eχtZ(τ , v)Xα
τ,v,tL

1−α
τ,v,t, (5)

with α ∈ (0, 1).

Vintage-level services are used to produce differentiated outputs associated with each

technology τ , indexed by i ∈ [0, Nτ ]. In particular, differentiated output i, denoted Y i
τ ,t, is

10Adoption lags may result from a cost of adopting the technology in the country that is decreasing in
the proportion of not-yet-adopted technologies as in Barro and Sala-i-Martin (1997), or in the gap between
aggregate productivity and the productivity of the technology, as in Comin and Hobijn (2010).

11Here, we are assuming that vintage adoption is sequential. Comin and Hobijn (2010) and Comin and
Mestieri (2010) provide micro-founded models in which this is an equilibrium result rather than an assumption.

12See Comin and Hobijn (2010) for a formulation where vintage-specific technologies are embodied in in-
vestment. The key difference between these two approaches is that, in ours, intermediate goods depreciate
instantaneously. This makes their demand a static problem. Otherwise, the two formulation are isomorphic.
We use below this similarity to calibrate α to match the capital share as it is usually done in endogenous
growth models with expanding varieties (e.g., Jones and Williams, 2000).
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produced combining vintage-level services according to

Y i
τ ,t =

(∫ t−Dτ

τ

(
Y i
τ ,v,t

) 1
µ dv

)µ
, with µ > 1, (6)

where Y i
τ ,v,t denotes the amount of vintage v services used by the ith differentiated output

producer associated with technology τ at time t. Note that, since we are assuming a con-

stant elasticity of substitution production function in (6), it is optimal for every producer of

differentiated output to use all available vintage-level services. There are Nτ differentiated

outputs associated with technology τ . Therefore, the total demand for services associated

with a vintage (v, τ) is equal to its supply:

Yτ ,v,t =

∫ Nτ

0
Y i
τ ,v,tdi. (7)

We can think of these as corresponding to the number of companies that use a given

technology to produce a good or a service. For simplicity, we take Nτ as a parameter and

allow it to vary across countries.13

The final output associated with technology τ , Yτ ,t, is produced by combining the available

differentiated outputs

Yτ ,t = N−(ψ′−ψ)
τ

(∫ Nτ

0

(
Y i
τ ,t

)1/ψ′
di

)ψ′
. (8)

Note that in this expression, there may be productivity gains from the number of differentiated

outputs, Nτ , as in Benassy (1996).

Aggregate output, Yt, results from aggregating the available technology-specific outputs,

Yτ ,t, as follows:

Yt =

(∫ τ̄

−∞
Y

1
θ
τ ,tdτ

)θ
, with θ > 1 (9)

where τ̄ is the last technology adopted in the country.

Taxes We introduce two frictions in the form of proportional taxes: one to labor, ζL,t, and

another to intermediate goods, ζτx. We assume that the labor tax ζL,t faced by producers is

the same across the economy (but may change over time). However, ζτx can be technology-

specific.14 This feature reflects interest groups capturing the political system to limit the use

13See the working paper version, Comin and Mestieri (2010) for a simple approach to make it endogenous.
14For simplicity, we assume ζτx to be constant across all vintages of technology τ . Simplicity also motivated

our choice of having only two taxes, one economy-wide and another sector-specific. The logic for sector-specific
and economy-wide taxes carries over to a tax on sectoral output or interchanging the role of economy-wide and
sector-specific taxes to the labor and intermediate tax.
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of a given technology15 as well as other technology-specific frictions that affect the intensity of

technology use.16 In this paper, we do not take a stand on the nature and relative importance

of these factors. The proceeds from taxes are returned to consumers through lump sum

transfers.

2.4 Equilibrium

The numeraire in the economy is aggregate output. To save on notation, we focus on the case

in which all goods and services are produced competitively.17

Given a sequence of adoption lags and number of differentiated outputs {Dτ , Nτ}∞τ=−∞, a

sequence of exogenous TFP {eχt}∞t=−∞, and tax rates
{
ζL,t
}∞
t=t0

, {ζτx}
∞
τ=−∞, a competitive

equilibrium in this economy is defined by consumption, output, and labor allocations paths

{Ct, Lτ ,v,t, Yτ ,v,t, Xτ ,v,t, Y
i
τ ,t, Y

i
τ ,v,t, Yτ ,t, Yt, Tt}∞t=t0 and prices {Pτ ,t, P iτ ,t, Pτ ,v,t, Wt, Rx,t, rt}∞t=t0 ,

such that

1. Households maximize utility by consuming according to the Euler equation

Ċt
Ct

= rt − ρ, (10)

satisfying the budget constraint (2) and (3).

2. Firms maximize profits taking prices as given. The resulting optimality conditions

yield the demand for labor and intermediate goods for each technology and vintage,

equations (B.1) and (B.2), for the output produced with a vintage (equation B.4), for

differentiated output (equation B.14) and for the output produced with a technology

(equation B.13). Furthermore the prices of technology-vintage output, differentiated

output and technology-levl output are respectively determined by equations (B.3), (B.6)

and (B.7).

3. Market clearing. Labor and intermediates market clearing conditions are

Lt =

∫ τ̄

−∞

∫ t−Dτ

τ
Lτ ,v,tdvτdτ = 1, (11)

Xt =

∫ τ̄

−∞

∫ t−Dτ

τ
Xτ ,v,tdvτdτ. (12)

15See Olson (1982), Parente and Prescott (1994), Acemoglu et al. (2004) and Rios-Rull and Krusell (1999)
for theoretical arguments and Comin and Hobijn (2009b) and Mokyr (2000) for a systematic empirical analysis.

16For example, variation in the abundance of some complementary factors (e.g., roads for cars or trucks), or
on the relevance of access to credit to finance the technologies (e.g., Comin and Nanda, 2014)

17Our results hold in the case of a monopolistic competitive environment, see Comin and Mestieri (2010).
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Additionally, total demand for services associated with a vintage (v, τ) is equal to its

supply, (7). The output associated with a technology Yτ ,t equals its demand from the

final good producer.

4. The resource constraint holds, Yt = Ct +Xt.

5. The government balances its budget constraint period-by-period by setting transfers Tt

as follows:

Tt =

∫ τ̄

−∞

ζτxPτ ,tYτ ,t
1 + ζτx

dτ +
ζL,t(1− α)Yt

1 + ζL,t
. (13)

We note that combining (11) and the labor demands from the producers of vintage-level

services assicated to all technologies, (B.2), it follows that the wage rate is given by

Wt =
(1− α)Yt

(1 + ζL,t)L
. (14)

Finally, in what follows, we omit time subscripts and make the time dependence of variables

implicit to ease notation (e.g., Yt becomes Y ) .

2.5 Aggregate representation

We show that there exists an aggregate production function representation for both final out-

put associated with a technology, Yτ , and aggregate output, Y . The aggregate representation

of final output associated with a technology, Yτ , provides the structural diffusion curve that

we use in the estimation of the adoption margins. The aggregate representation of aggregate

output, Y , provides the theoretical foundation for linking technology diffusion patterns to the

evolution of aggregate output. We use this result in our quantitative exercise in Section 5.

Proposition 1 (Technology-level representation): (i) The level of output associated

with technology τ , Yτ can be represented by the Cobb-Douglas function

Yτ = AτX
α
τ L

1−α
τ , (15)

where Lτ =
∫ t−Dτ
τ Lτ ,vdv, Xτ =

∫ t−Dτ
τ Xτ ,vdv, and technology level TFP is equal to

Aτ = eχtN (ψ−1)
τ

(∫ t−Dτ

τ
Z(τ , v)1/(µ−1)dv

)µ−1

(16)

=

(
µ− 1

γ

)µ−1

eχt︸︷︷︸
Exog. TFP

N (ψ−1)
τ︸ ︷︷ ︸

Variety of services

eστ+γ(t−Dτ)︸ ︷︷ ︸
Embodiment

(
1− e

−γ
µ−1

(t−Dτ−τ)
)µ−1

︸ ︷︷ ︸
Variety of vintages

.(17)
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(ii) The demand for output associated with technology τ is given by

Yτ = Y P−θ/(θ−1)
τ , (18)

where

Pτ =

(
(1+ζτx)

α

)α ( (1+ζL)W
1−α

)1−α

Aτ
. (19)

(iii) The demand for technology τ intermediate goods and labor used in the production of

technology τ services are respectively

Xτ =
αYτPτ

(1 + ζτx)
=
αY P

−1/(θ−1)
τ

(1 + ζτx)
, (20)

Lτ =
(1− α)YτPτ
(1 + ζL)W

=
(1− α)Y P

−1/(θ−1)
τ

(1 + ζL)W
. (21)

�

The first part of Proposition 1 defines technology-level TFP, Aτ . Aτ has four components.

The first is the standard economy-wide exogenous TFP level. The second captures the pro-

ductivity gains associated with how many producers are using technology τ to produce their

differentiated services. The third term captures the productivity embodied in the most ad-

vanced vintage adopted. The final term captures the productivity gains associated with the

range of vintages used in production. Because the range of vintages used diminishes with the

adoption lag, so does the variety effect. The first three terms are log-linear. The variety effect

generates the log-concavity of Aτ .

The second part of Proposition 1 provides an alternative way to characterize the output

associated with technology τ . Equation (18) implies that Yτ depends only on aggregate

output, Y and of the factors that affect the price of technology-level output, Pτ . These are

the technology-level TFP, Aτ , the economy-wide wage rate, W, and the taxes on intermediate

goods and labor, ζτx and ζL.

The third part of the proposition characterizes the factors used to produce services asso-

ciated with technology-τ . These predictions are relevant in the estimation because for some

technologies we have measures of diffusion that capture the units of output produced, while

for others we have information on the intermediate goods that embody it, which corresponds

to (20).

Diffusion curves and adoption margins Equations (18) and (20) characterize the evolu-

tion of output (or intermediate inputs) associated with a technology. These are the diffusion

measures that we observe in our data (e.g., electricity produced or number of spindles). Next,
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we show how the adoption margins affect the diffusion curves. For illustration purposes, we

focus on the case of output, Yτ .

Combining the demand for technology output, (18), with the definition of sectoral aggre-

gate productivity and equilibrium prices, (17) and (19), we obtain the following expression

for the output of technology τ , Y c
τ , scaled by total country income Y c

Y c
τ

Y c
=

ξceστ (1 + ζcτx)−αN c(ψ−1)

τ︸ ︷︷ ︸
Intensity Parameter Icτ

eγ(t−Dcτ )
(

1− e
−γ
µ−1

(t−Dcτ−τ)
)µ−1


θ
θ−1

, (22)

where the superscript c denotes country-specific variables and ξc represents country-wide

factors such as the labor tax or the exogenous TFP component.18

In addition to ξc and the technology-specific productivity term, eστ , technology-τ output

depends on the intensity of use parameter, Icτ ≡ (1 + ζcτx)−αN c(ψ−1)

τ , and the adoption lag,

Dc
τ . The intensity of use term Icτ in (22) captures the effect of technology-specific distortions

ζcτx and of the number of differentiated users of the technology, N c
τ , on the level of output

associated with a technology.19 The intensity of use parameter affects the level of technology-

level output. That is, it is a vertical shifter of the diffusion curve (22).20 The parameter Dc
τ

shifts the diffusion curve horizontally. If we increase Dc
τ by T years, it will take T additional

years to reach any given level of technology-τ output. Note also that Y c
τ inherits the non-

linearities of technology-τ productivity, Aτ , in Dc
τ that we have already discussed above.

After studying the implications of our model economy at the technology level, next we

characterize the level of aggregate output and productivity (we drop the superscript c in the

exposition of the result).

Proposition 2 (Aggregate representation): Suppose that ζτx ≡ ζx is the same across

technologies. Then, the economy has an aggregate representation where output is given by

Y = AXαL1−α =

(
α

1 + ζx

) 1
1−α

A
1

1−α (23)

with X =
∫
τ Xτdτ, L =

∫
τ Lτdτ, and

A =

(∫ t−Dτ

τ
A1/(θ−1)
τ dτ

)θ−1

. (24)

18In particular, ξc = eχ
c
tα−α

(
(1+ζcL)Wc

1−α

)−(1−α)
.

19Our model introduces two different mechanisms as sources of the intensity of use for two reasons. First, to
reflect the two most prominent strands in the literture: the barriers to adoption (Parente and Prescott, 1994)
and the sectoral distortions (Restuccia and Rogerson, 2008). Second, we want to stress that the intensity of
use may impact sectoral TFP as it is the case with the number of differentiated users of tecnology, Nτ.

20Increasing Iτ by one percent, increases Yτ by θ
θ−1

percent.
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Proposition 2 implies that the aggregate production function in our economy takes a stan-

dard Cobb-Douglas form, where X and L denote the aggregate number of intermediate goods

and labor, respectively, and A is the aggregate TFP. Moreover, we show that total output Y

is proportional to A
1

1−α . This implies that output dynamics are completely determined by

the dynamics of aggregate TFP, A.21 We use this property extensively to analyze the output

dynamics implied by our measures of technology diffusion in Section 5.22 A key difference of

our model from the traditional one-sector neoclassical models is that our model provides a

theory of aggregate TFP in the sense that aggregate TFP depends on technology-level TFPs,

Aτ according to (24). In turn, technology-level TFPs, Aτ , depend on the adoption lags, Dτ ,

the intensity of use of technologies, Icτ , and the economy-wide exogenous TFP level, χt. Thus

our theory relates measures of adoption at the technology level to aggregate TFP.

Finally, we note that to guarantee the existence of a balanced growth path, a sufficient

condition, which we take as a benchmark, is that both adoption margins are constant across

technologies, Dτ = D and Nτ = N .23 If we make the simplifying assumption that θ = µ,24

aggregate TFP can be computed in closed form,

A =

(
(θ − 1)2

(γ + σ)σ

)θ−1

eχtNψ−1 e(σ+γ)(t−D). (25)

Naturally, a higher intensity of adoption, N , a shorter adoption lag, D, and a higher exogenous

TFP component lead to higher aggregate TFP. Along this balanced growth path, productivity

grows at rate σ + γ, and output grows at rate (σ + γ)/(1− α).25

21The literature on growth and development accounting (e.g., Klenow and Rodŕıguez-Clare, 1997) has focused
on whether cross-country differences in productivity arise from differences in TFP or in capital per capita (or
their growth rates). In light of that literature, one might wonder whether cross-country differences in adoption
margins show up in aggregate TFP or in aggregate capital, here proxied by X. The answer to this question
depends on (i) whether technologies are embodied in capital or disembodied, and (ii) whether price deflators
adequately correct for the quality of capital which captures the type of capital good and the productivity
embodied in it. In our empirical analysis of the drivers of productivity growth we abstract from this question
by computing the model predictions for productivity growth (as opposed to TFP growth).

22We use as a benchmark for our calibration the case with constant taxes because, in this case, the growth
rate of the economy is solely pinned down by the evolution of sectoral TFPs, Aτ , through the aggregation
equation, (24). If, instead, we allowed for technology-specific taxes, there would be a direct effect of taxes
on aggregate output that is not related to technology. Proposition 1 in the online appendix presents the
aggregation results with technology-specific taxes.

23Comin and Mestieri (2010) show in their micro-founded model of adoption that this is a necessary and
sufficient condition for a balanced growth path.

24Our empirical analysis in Section 4 suggests that this is a reasonable approximation.
25For discounted utility to be bounded, it is required that (σ + γ)/(1 − α) < ρ.
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3 Estimation Strategy

In this section, we describe the estimation procedure used to measure the adoption margins for

each technology-country pair. Our estimation strategy relies on using the diffusion equations

derived in the theoretical section to identify the adoption margins for each country-technology

pairs. In a nutshell, we use the functional form of the diffusion curve derived in equation (22) to

estimate the diffusion of different technologies across countries allowing for several parameters

in the diffusion curve to be country-technology specific.

3.1 Estimating Equations

We derive our estimating equation from a log-linearized version of the diffusion curve (22)

derived in Section 2.5. Denoting by lowercase the logs of uppercase variables, combining

the demand for sector τ output (18), the sectoral price deflator (19), the expression for the

equilibrium wage rate (14), and the expression for sectoral TFP, Aτ , (17), we obtain the

demand equation

yτ = y +
θ

θ − 1
[aτ − (1− α) (y − l)− α ln ((1 + ζx)/α)] . (26)

The terms (1 − α)(y − l) and α ln ((1 + ζx)/α) correspond to the logarithm of the sectoral

price index Pτ . We then use the fact that γ takes small values to simplify the expression of

sectoral TFP aτ to its first order approximation in γ (see Appendix B for calculation details),

aτ ' χt + (ψ − 1)nτ + (σ + γ)τ + (µ− 1) ln (t− τ −Dτ ) +
γ

2
(t− τ −Dτ ) . (27)

Substituting (27) in (26) gives our main estimating equation. Explicitly indexing country-

specific variables with superscript c, technology-specific by τ , and denoting time dependence

by a subindex t, the estimating equation is

ycτt = βct0 + βcτ1 + yct + βτ2t+ βτ3 ((µ− 1) ln(t−Dc
τ − τ)− (1− α)(yct − lct )) + εcτt, (28)

where εcτt is a country c, technology τ and time t error term that we introduce to account

for potential discrepancies between our model and data.26 Equation (28) shows that we can

express the (log of) output produced with technology τ , ycτt, as the summation of a country

time-varying term, βct0, a country-technology specific constant, βcτ1, a log-linear term in time

with coefficient βτ2 = γ/2 that captures technology productivity growth, a log-linear term in

income yct with coefficient equal to one, and a non-linear function of the adoption lag with

26This error term could be rationalized in our theory as time-dependent shocks to the number of users or to
technology-specific taxes.
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coefficient βτ3 = θ
θ−1 .27

The country-technology intercept, βcτ1, is given by

βcτ1 = βτ3

(ψ − 1)ncτ − ln ((1 + ζcτx))︸ ︷︷ ︸
Log-Intensity Of Use, ln Icτ

+α lnα+
(
σ +

γ

2

)
τ − γ

2
Dc
τ

 . (29)

The first two terms of expression (29) capture variation in technology-τ output associated

with the number of producers use the technology to produce differentiated services and the

number of units of technology used per producer. These two components define the intensity

of use parameter, Iτ . The last two terms in (29) reflect the effect on the intercept of the initial

level of productivity embodied in the technology.

The term βct0 captures the variation in ycτt induced by country-wide factors such as exoge-

nous TFP. Specifically,

βct0 = βτ3(χct − (1− α) ln ((1 + ζcL)/(1− α))). (30)

Aggregate output, yct , enters in the estimation equation (28) because the level of aggregate

demand affects the demand for technology. The coefficient on aggregate output in the esti-

mating equation (28) is one (and it is not estimated). In Section 4.4 we relax this assumption

and estimate directly the Engel curve from the data to assess the robustness of our estimates

and findings.

Some of the variables in our data set measure the number of units of the input that embody

the technology (e.g. number of computers) rather than output. For this case, we derive an

estimating equation for input measures. We take the logarithm of technology-τ intermediate

goods, equation (20), and combine it with the sectoral price deflator (19), the equilibrium

wage rate (14) and the expression for sectoral TFP Aτ , (17). Approximating Aτ using (27),

we obtain the following expression, which inherits the properties from (28),28

xcτt = βct0 + βcτ1 + yct + βτ2t+ βτ3 ((µ− 1) ln(t−Dc
τ − τ)− (1− α)(yct − lct )) + εcτt. (31)

3.2 Identification

The goal of the estimation is to measure the adoption lags and the intensity of use parameters

for each technology-country pair, {Icτ , Dc
τ}c,τ , using the structural diffusion curves derived

27According to our theory, βτ3 should coincide across technologies. In the estimation, however, we let βτ3
vary across technologies to obtain a better fit of the diffusion curve (as in Comin and Hobijn, 2010). We
check ex-post that the estimates do not vary significantly across technologies and that our results are robust
to imposing a common βτ3.

28Note that there are two minor differences between (28) and (31). The first difference is that in the first
equation βτ3 is θ/ (θ − 1) , while in the second it is 1/(θ − 1). The second difference is that, in the second
equation, the intercept βcτ1 has an extra term equal to βτ3 lnα.
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from our theory, (28) and (31). To this end, we assume that the parameters that govern the

growth in the technology frontier (γ and σ), and the inverse of the elasticity of demand (θ)

are the same across countries, for any given technology. These restrictions imply that the

technology-specific coefficients of the time-trend, βτ2, and of the non-linear term, βτ3, in (28)

and (31) are common across countries. In addition, in our baseline estimation, we calibrate

α, µ, and the invention date, τ . We infer the elasticity of substitution across vintages of

the same technology µ = 1.3 by using the price markups from Basu and Fernald (1997) and

Norbin (1993),29 1 − α = .7 to match the labor share in the U.S.,30 and τ to the invention

date of each technology. Invention dates are detailed in Appendix A.

These parameter restrictions imply that, conditional on βτ3, the term βct0 has a symmetric

effect across all technologies in a country, as βct0 = βτ3· (χct − (1− α) ln ((1 + ζcL)/(1− α))) .

One implication of this observation is that the term βct0 can be absorbed by a full set of

country-specific time-dummies (interacted with βτ3) that are restricted to be the same across

technologies. That is, once we introduce these time-varying country dummies, the rest of

coefficients in (28) and (31) can be identified as deviations in technology-level diffusion from

the country-dummies.

The parameter restrictions also imply that cross-country variation in the curvature of (28)

and (31) is driven by variation in adoption lags after purging the effect of income and the

exogenous TFP process. Specifically, Dc
τ causes the slopes in ycτ and xcτ with respect to time

to monotonically decline in time since adoption. Consider two identical economies except for

their adoption of technology τ . If at a given moment in time, we observe that the slope of the

diffusion curve ycτ (or xcτ ) is diminishing faster over time in the first country than the second,

the concavity of the diffusion curve implies that this must be because the former country has

started adopting the technology more recently than the latter (i.e., it is in a more “concave”

region of the diffusion curve). This is the basis of our empirical identification strategy for

Dc
τ . Equivalently, a higher adoption lag Dc

τ shifts the diffusion curve (28) to the right. Thus,

countries that for the same income levels have their diffusion curves “shifted to the right”

have a longer adoption lag. This is illustrated by the horizontal shifts in the diffusion curves

in Figure 2.31

When the number of adopted vintages becomes sufficiently large (i.e., t � Dτ + τ),

the effect of Dc
τ in the diffusion curve vanishes because the gains from additional varieties

29Note that, as we have previously indicated, our model is perfectly competitive and abstracts from markups.
However, it is possible to rewrite our model using monopolistic competition, in which case there would exist
constant markups that would be solely a function of the elasticity of substitution. It is in this sense that we
can infer the elasticity of substitution from markups.

30Note that this implies that (1 − α) in the term (1 − α)(yct − lct ) of the estimating equations (28) and (31)
are calibrated rather than estimated.

31We can identify adoption lags even if we do not have data starting at the exact adoption date. However,
to separately identify the adoption lag from the log-linear trends, it is necessary that the data covers some of
the non-linear segment of the diffusion curve.
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Figure 2: Examples of diffusion curves

(a) Diffusion of Steam and Motor ships (b) Diffusion of PCs

become negligible. At this point, ycτ asymptotes to the common linear trend in time and

(log) income plus the country-specific intercept, βcτ1. Therefore, after filtering the country-

time varying effects, differences in aggregate demand, and technology-specific time trends,

asymptotic cross-country differences in technology are fully captured by the intercept, βcτ1.

These differences in βcτ1 are captured by vertical shifts in the diffusion curves, as illustrated

Figure 2.

In our model, βcτ1 reflects the intensity of use, Icτ , and differences in the average produc-

tivity of the technology due to differences in Dc
τ and the invention year. The latter effect can

be subtracted from βcτ1 using the estimated adoption lag Dc
τ in equation (29), to obtain an

expression for Icτ as

ln Icτ =
βcτ1

βτ3

+
γ

2
Dc
τ −

(
σ +

γ

2

)
τ . (32)

In order to difference out the technology-specific term
(
σ + γ

2

)
τ and make the estimates of the

intensity of use parameters comparable across technologies (which are measured in different

units), we define the intensity of use parameter of technology τ in country c, Îcτ , relative to

the average value of the intensity of use parameter in technology τ for the seventeen Western

countries defined in Maddison (2004),

ln Îcτ ≡ ln Icτ − ln IWestern
τ =

βcτ1 − βWestern
τ1

βτ3

+
γ

2
(Dc

τ −DWestern
τ ). (33)

Before turning to the implementation of the estimation, we discuss possible sources of

bias in the estimates of the adoption margins. As we have already discussed, we achieve

identification through the functional form of diffusion curves derived from our theory. One

important concern is whether this functional form provides a reasonably good description of
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diffusion curves for different technologies and countries. We show that our theory provides

a good fit of diffusion curves in Section 4.2. After partialling out technology time-trends

β2t and country-time fixed effects βct0 from the estimated diffusion curves (28) and (31), the

average detrended R2 is .65 (it would be significantly higher without detrending). We take

from this result that our framework can capture a very significant amount of the observed

variation in technology adoption. This result provides a basis to take our framework as a

reasonable approximation of the true diffusion processes, and, under the null that our model

is well-specified, then analyze how the different adoption margins contribute to the fit of the

diffusion curves.

Even under the assumption that our model provides a good representation of the diffusion

curves, there is still the concern of whether the estimates of adoption margins are well-

identified in our empirical exercise due to omitted variable bias. We start by noting that

the estimating equations, (28) and (31), control for confounding factors that are (i) country-

time specific through βct0 (e.g., residual TFP) and aggregate demand, and (ii) technology-

time specific through technology-specific time trends βτ2t. We obtain the intensity of use

parameter from the intercept βcτ1 in the estimation equation. The intensity of use parameter

captures, by definition, the average level of adoption at the country-technology level after

filtering out country-time dummies, aggregate demand effects, and time trends. Since it

is the collective projection of all country-technology specific factors affecting adoption and

we do not attempt to separate out the causal effect of different factors affecting it, there is

no concern of omitted variable bias other than model mis-specification. In Section 4.4 we

conduct a number of robustness checks on the model specification. For example, we allow a

more flexible (non-unitary) effect of aggregate income on the demand for technology and we

find similar estimates.

Our estimates of adoption lags Dc
τ come from the non-linear component of the estimating

equation, βτ3 ln(t −Dc
τ − τ). Thus, our estimated adoption lags may be biased if there is a

technology-country-time varying omitted variable that affects the use of a technology in a way

that is correlated with this non-linear term. This omitted variable would bias the estimates

of βτ3 and Dc
τ . We cannot rule out that this is occurring in our estimation. However, in the

robustness Section 4.4, we find that when we allow for a more flexible non-linear estimation

with country-specific curvature βcτ3, we cannot rule out the null that the diffusion curvature

βτ3 is common across countries for 94% of the country-technology pairs. Moreover, the

correlation between adoption lags in the two estimations is very high, .93. Thus, it does not

appear that allowing for additional flexibility in the curvature of this non-linear term changes

substantially our estimates, alleviating the concern of omitted variable bias.
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3.3 Implementation of estimation

Next, we discuss the baseline estimation procedure for the diffusion equations (28) and (31).32

We estimate (28) and (31) in two stages. For each technology, we first estimate the corre-

sponding diffusion equations jointly for the U.S., the U.K. and France, which are the countries

for which we have the longest time series and, arguably, the data with the least measurement

error.33 From this estimation, we obtain the technology-specific parameters β̂τ2 and β̂τ3.34

Then, in the second stage, we jointly estimate the system of equations (28) and (31) for all

technology-country pairs, fixing the values of of βτ2 and βτ3 to the estimated {β̂τ2, β̂τ3}τ
obtained in the first stage.35 We obtain estimates for {β̂ct0, β̂

c

τ1, D̂
c
τ}c,τ ,t in the second stage.

Both of these estimations are conducted using non-linear least squares.

Recall from equation (30) that βct0 = βτ3 · (χct − α ln ((1 + ζcτx)/α)) ≡ βτ3 · δct , where δct

denotes a country-time varying term. Thus, our theory implies that the term βct0 in each

technology diffusion equation can be decomposed between the technology specific term βτ3

and a country-time-varying parameter that is common across technologies. We estimate this

latter term δct in a flexible form using decade fixed effects.

In practice, to separately identify the country-time-varying parameter, δct , from country-

technology specific terms, βcτ1, requires a balanced panel of technologies for each country.

This is not the case for the vast majority of our countries.36 Thus, rather than estimating

country-specific aggregate time trends, we group countries by income groups, and estimate

aggregate time trends βc0t for each income group. This allows us to have long time series of

technology diffusion that span the entire period of interest for all technologies. In our baseline

estimation, we only use two country groupings, Western and non-Western. This boils down to

including two full sets of decade dummies, one for the Western countries and another for the

non-Western countries.37 Finally, we use the estimates for {β̂cτ1, β̂τ3, D̂c
τ}c,τ , in equation (33)

to obtain the estimate of the intensity of use parameter for each country-technology pair.38

Next, we discuss some of the features of the estimation procedure. The second stage

requires the joint estimation of all country-technology pairs because of the presence of the

aggregate time effect βct0, which is common to all technology diffusion curves for any given

country. Otherwise, if βct0 were absent in the estimating equation, we could obtain consistent

32In Section 4.4, we discuss alternative approaches, their rationale and the robustness of our baseline esti-
mates.

33In the case of railways, we substitute Germany for the U.K. because we lack the initial phase of diffusion
of railways for the UK. In the case of tractors, we also replace the U.S. with Germany for the same reason.

34Note that the coefficients βτ2 and βτ3 in (28) are functions of parameters that are common across countries
(θ and γ). Therefore their estimates should be independent of the sample used to estimate them.

35In Section 4.4 we study how sensitive our results are to assume that βτ3 is common across countries.
36We have data for all 25 technologies for 9 countries in our sample.
37We show in Section 4.4 that our results are robust to a finer division of income groups into quintiles.
38Consistent with our calibration below, we compute the intensity of use parameter using a value for γ in

(33) of 2/3 · 1%. In Section 4.4 we conduct robustness analysis of this parametrization.

17



estimates of all other parameters by estimating each country-technology pair separately.

The use of just two full sets of decade dummies (one for Western countries and another for

the rest) significantly simplifies the estimation and still allows us to control for the possibility

that exogenous TFP or other country-level characteristics have diverged in Western vs. non-

Western countries.39

Third, the use of decade-dummies instead of year dummies also simplifies the computa-

tional complexity of the estimation and, given that our interest lies in long-run phenomena,

this modification should be inconsequential for our findings.

Fourth, the joint estimation requires estimating non-linearly around 2500 parameters. We

have used a nonlinear commercial solver to estimate the nonlinear problem. As a robustness

check, we have used an iterative method that exploits the fact that all terms in the joint

estimation are log-linear except for the adoption lag. This method proceeded by estimating

first the linear part jointly for all country-technology pairs. Then, we used the fact that

conditional on the linear terms, the adoption lag can be estimated independently for each

country-technology pair. We iterated the estimation until the estimates converged. Both

methods yield very similar estimates. The codes and estimation results are available on the

authors’ websites.40

4 Estimation Results

4.1 Data Description

We implement our estimation procedure using data on the diffusion of technologies from

the CHAT data set (Comin and Hobijn, 2009a), and data on income and population from

Maddison (2010). The CHAT data set covers the diffusion of 104 technologies for 161 countries

over the last 200 years. Due to the unbalanced nature of the data set, we focus on a sub-

sample of major technologies that have a broad coverage over rich and poor countries and for

which the data captures the initial phases of diffusion. The twenty-five technologies that meet

these criteria cover a wide range of sectors in the economy (transportation, communication

and IT, industrial, agricultural and medical sectors) as well as 139 countries. They are listed

and briefly described in the online Appendix. The invention dates are spread quite evenly

throughout the two hundred year period being studied. Our analysis proceeds under the

assumption that these technologies are a representative sample of all technologies invented

39To study the evolution of adoption margins by continent or income quintiles, we include one full set of
decade dummies for each group of countries. Section 5.2 reports the implied and observed income growth
patterns for these alternative divisions of countries.

40For example, the correlation in estimated adoption lags and technology specific intercepts is over .99. To
compute the solution in the nonlinear joint estimation, we have used the Knitro nonlinear solver with the
AMPL optimization language. The alternative iterative method has the advantage that can be implemented
in more standard econometrics software, e.g., Stata.
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during this period. To the best of our knowledge, there is no more comprehensive data

available to conduct this analysis than our data.

Overall, we have time series of technology adoption for 1841 country-technology pairs. 57%

of these observations correspond to technologies invented prior to 1900. Country-technology

pairs corresponding to Western countries represent 22% of the sample, while 66% of the

country-technology pairs correspond to countries in the bottom third of the world income per

capita distribution in year 2000.41

The specific measures of technology diffusion in CHAT match the dependent variables in

specification (28) or (31). These measures capture either the amount of output produced with

the technology (e.g., tons of steel produced with electric arc furnaces) or the number of units

of capital that embody the technology (e.g., number of computers).

4.2 Estimates

Following Comin and Hobijn (2010), we only use the estimates of technology-country pairs

that satisfy plausibility and precision conditions. Estimated adoption lags are plausible when

they imply an adoption date after the invention year (allowing for some inference error).42

The majority of the implausible estimates correspond to technology-country pairs for which

we do not have data on the concave portion of the curve. With only the log-linear part of the

diffusion curve, it is impossible to infer adoption lags since the time trend suffices to fit the

diffusion curve. We define estimates as precise if the estimate of the adoption lag is significant

at a 5% level. The plausible and precise criteria are met for the majority of the technology

country-pairs (65%).

For the plausible and precise technology country-pairs, we find that our estimating equa-

tions provide a good fit with an average detrended R2 of 0.65 across countries and technologies

(in the online appendix, Table C.1 reports summary statistics by technology and Figure C.4

shows examples of fit for two technologies).43 The fit of the model indicates that the restric-

tion that adoption lags and the intensity of use parameter are constant for each technology-

country pair and that the curvature of diffusion is the same across countries are not a bad

approximation to the data.

Table 1 reports summary statistics of the estimates of the adoption lags for each technology

using the estimation procedure described in Section 3.3. The average adoption lag across all

technologies and countries is 42 years. We find significant variation in average adoption lags

41For technologies invented prior to 1900, 19% of the country-technology pairs belongs to Western countries
and 70% belongs to countries in the bottom third. These numbers for technologies invented post 1900 are 26%
and 60%, respectively.

42We parametrize the error margin such that it is 5 years for a technology invented in year 2000 and 20 years
for a technology invented in 1800 (and a linear interpolation for years in between). The results are robust to
other definitions, e.g., a flat ten-year window across all technologies.

43To compute the detrended R2, we partial out the linear trend component, γt, of the estimation equation
and the country group specific trend, βct0. We compute the R2 for the detrended data.
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Table 1: Estimates of Adoption Lags

Invention
Year Obs. Mean SD P10 P50 P90 IQR

Spindles 1779 23 130 49 58 167 171 96
Ships 1788 40 110 65 21 107 180 120
Railway Passengers 1825 36 73 35 26 78 120 47
Railway Freight 1825 43 69 38 12 79 114 56
Telegraph 1835 30 46 36 -1 45 91 56
Mail 1840 45 43 35 -5 45 86 54
Steel 1855 41 68 32 12 69 105 37
Telephone 1876 54 49 33 4 52 92 55
Electricity 1882 75 47 21 16 49 71 33
Cars 1885 61 36 24 6 33 65 30
Trucks 1885 52 37 22 10 31 62 32
Tractor 1892 87 57 17 24 65 69 17
Aviation Passengers 1903 40 26 18 2 24 52 19
Aviation Freight 1903 39 42 17 19 42 63 27
Electric Furnace 1907 46 48 18 25 54 65 33
Fertilizer 1910 92 43 13 29 47 51 9
Harvester 1912 70 36 14 14 39 48 15
Synthetic Fiber 1931 45 29 7 23 31 33 3
Oxygen Furnace 1950 36 13 8 5 13 24 10
Kidney Transplant 1954 24 14 6 6 14 24 5
Liver Transplant 1963 19 19 4 14 18 25 3
Heart Surgery 1968 16 13 3 9 13 19 4
Pcs 1973 62 14 2 11 14 17 2
Cellphones 1973 71 14 5 11 16 19 6
Internet 1983 42 6 3 3 7 9 3

All Technologies 1189 42 35 8 37 82 44

Note: SD denotes Standard Deviation. P10, P50 and P90 refer to the tenth percentile, the

median and the ninetieth percentile, respectively. IQR refers to the Interquartile Range, defined

as the difference between the third and first quartiles.

across technologies. The range of average adoption lags by technology goes from 6 years for

the internet to 130 years for spindles. There is also considerable cross-country variation in

adoption lags for any given technology. The range for the cross-country standard deviations

goes from 2 years for PCs to 65 years for steam and motor ships.

To compute the intensity of use parameter ln Îcτ (equation 33), we calibrate γ = (1−α)·1%,

with α = .3. We choose this calibration so that half of the 2% long run growth rate of Western

countries comes from productivity improvements within a technology (γ) and the other half

comes from new technologies being more productive (σ). Section 4.4 conducts the robustness
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Table 2: Estimates of the Log-Intensity of Use Parameter relative to Western Countries

Invention
Year Obs. Mean SD P10 P50 P90 IQR

Spindles 1779 23 -0.19 0.64 -1.24 -0.14 0.64 0.96
Ships 1788 40 -0.29 0.63 -1.24 -0.22 0.44 0.74
Railway Passengers 1825 36 -0.46 0.49 -1.05 -0.43 0.20 0.84
Railway Freight 1825 43 -0.33 0.49 -0.95 -0.33 0.32 0.65
Telegraph 1835 30 -0.34 0.64 -1.21 -0.23 0.32 0.79
Mail 1840 45 -0.31 0.35 -0.79 -0.30 0.15 0.54
Steel 1855 41 -0.37 0.46 -0.88 -0.31 0.19 0.66
Telephone 1876 54 -1.09 0.85 -2.15 -1.05 -0.10 1.17
Electricity 1882 75 -0.74 0.59 -1.49 -0.65 -0.04 0.90
Cars 1885 61 -1.31 1.23 -2.61 -1.20 0.01 1.84
Trucks 1885 52 -1.10 1.04 -2.20 -1.15 0.11 1.17
Tractor 1892 87 -1.20 0.89 -2.43 -1.19 -0.06 1.24
Aviation Passengers 1903 40 -0.49 0.73 -1.45 -0.34 0.26 0.95
Aviation Freight 1903 39 -0.50 0.64 -1.46 -0.36 0.25 0.99
Electric Furnace 1907 46 -0.33 0.51 -1.00 -0.18 0.25 0.70
Fertilizer 1910 92 -0.97 0.78 -1.93 -0.91 -0.03 1.20
Harvester 1912 70 -1.44 1.13 -3.17 -1.36 0.02 1.66
Synthetic Fiber 1931 45 -0.76 0.78 -1.93 -0.69 0.18 1.09
Oxygen Furnace 1950 36 -1.00 1.01 -2.43 -0.80 0.09 1.97
Kidney Transplant 1954 24 -0.25 0.42 -0.99 -0.06 0.11 0.56
Liver Transplant 1963 19 -0.46 0.80 -1.98 -0.09 0.15 0.95
Heart Surgery 1968 16 -0.48 0.88 -1.96 -0.10 0.21 0.67
Pcs 1973 62 -0.59 0.56 -1.42 -0.61 0.05 0.84
Cellphones 1973 71 -0.74 0.68 -1.82 -0.57 0.05 0.98
Internet 1983 42 -0.76 0.79 -1.79 -0.63 0.07 1.29

All Technologies 1189 -0.76 0.85 -1.94 -0.59 0.14 1.13

Note: SD denotes Standard Deviation. P10, P50 and P90 refer to the tenth percentile, the median

and the ninetieth percentile, respectively. IQR refers to the Interquartile Range, defined as the

difference between the third and first quartiles.

checks of this calibration. We use the value of βτ3 that results from setting the elasticity

across technologies, θ, to be the mean across our estimates, which is θ = 1.28.44

Table 2 reports the summary statistics for the estimates of the intensity of use parameters.

The average intensity of use parameter is -.76. This implies that the intensity of use in the

average country is 47% (i.e., exp(−.76)) of the Western countries. There is significant cross-

44This value is very similar to the estimates of demand elasticity found by Basu and Fernald (1997) and
Norbin (1993) despite using a different identification strategy.
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country variation in the intensity of use parameter. The technology average ranges from −.19

for spindles, which implies being 18% less productive relative to the benchmark, to −1.00 for

blast oxygen furnaces, which implies being 63% less productive than the average. The range

of the cross-country standard deviation goes from 0.35 for mail to 1.23 for cars. The average

10-90 percentile range in the (log) intensity of use parameter is 2.08. This gap implies output

differences along a balanced growth path of a factor of 11.4.45

4.3 Cross-country evolution of the diffusion process

To analyze the cross-country evolution of the adoption margins, we divide the countries in

our data set into two groups defined by Maddison (2004): Western countries, and the rest of

the world, labeled “Rest of the World” or, simply, non-Western.

Figure 3 plots, the median adoption lag for each technology among Western countries

and the rest of the world. This figure illustrates that adoption lags have declined over time,

and that cross-country differences in adoption lags have narrowed. Table 3 formalizes these

impressions by regressing (log) adoption lags on their year of invention (and a constant),

lnDc
τ = ρ+ ω · (Invention Yearτ − 1820) + εcτ , (34)

where εcτ denotes an error term. Column (1) reports this regression for the whole sample of

countries showing that adoption lags have declined with the invention date. Columns (2) and

(3) report the same regression separately for Western and non-Western countries, respectively.

We find that the rate of decline in adoption lags is almost 40% higher in non-Western than in

Western countries (-1.106% vs. -.76%). Hence, there has been convergence in the evolution

of adoption lags between Western and non-Western countries. The yearly convergence rate

between Western and non-Western countries we find is −.76− (−1.106) = .346%.

Do we observe a similar pattern for the intensity of use? Figure 3b plots, for each tech-

nology and country group the median intensity of use parameter. This figure shows that the

gap in the intensity of use parameter between Western countries and the rest of the world is

larger for newer than for older technologies. In other words, the gap in the intensity of use has

widened over time. Table 3 studies econometrically this question by regressing the intensity

of use parameter on the invention year and a constant,

ln Îcτ = ρ+ ω · (Invention Yearτ − 1820) + εcτ . (35)

Column (6) shows that, for non-Western countries, the intensity of use parameter has declined

at an annual rate of .50%.46 Since the intensity of use parameter is measured relative to the

45To see this, use equation (25) with our calibration (discussed below) of 1 − α = .7, to find exp(2.08)/.7 =
11.4.

46For Western countries, column (5) shows that there is no trend in the intensity of use parameter, as by
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Figure 3: Evolution of Adoption Margins

(a) Convergence of Adoption Lags
The gap between Western and non-Western countries decreases for newer technologies

(b) Divergence of the Intensity of Use
The gap between Western and non-Western countries increases for newer technologies

Note: Bars show median margins of adoption for Western vs. non-Western countries. Technologies: 1. Spindles,

2. Ships, 34. Railway Passengers and Freight, 5. Telegraph, 6. Mail, 7. Steel (Bessemer, Open Hearth), 8.

Telephone, 9. Electricity, 101. Cars and Trucks, 12. Tractors, 134. Aviation Passengers and Freight, 15.

Electric Arc Furnaces, 16. Fertilizer, 17. Harvester, 18. Synthetic Fiber, 19. Blast Oxygen Furnaces, 20.

Kidney Transplant, 21. Liver transplant, 22. Heart Surgery, 23. PCs, 24. Cellphones, 25. Internet.
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Table 3: Evolution of the Adoption Lag and Intensity of Use

Dep. Var.: Log(Lag) Log(Intensity)
World Western Rest World Western Rest

(1) (2) (3) (4) (5) (6)

Year −1820 -0.0106 -0.0076 -0.0106 -0.0018 0.0000 -0.0050
(0.0005) (0.0009) (0.0005) (0.0006) (0.0002) (0.0005)

Constant 4.23 3.60 4.37 -0.52 -0.00 -0.60
(0.07) (0.12) (0.07) (0.06) (0.04) (0.07)

Obs. 1151 288 863 1189 306 883
R2 0.40 0.27 0.41 0.02 0.00 0.11

Note: robust standard errors in parentheses. Each observation is re-weighted so that each technology
carries equal weight.

mean of Western countries, this estimate implies a divergence in the intensity of use of new

technologies between Western and non-Western countries over the last 200 years.47

Figure 2 is consistent with our findings on the evolution of technology diffusion. The

horizontal gap in diffusion between the rich and developed economies is much larger for ships

than for personal computers. This is consitent with the closing of the gap in adoption lags

between Western and non-Western countries. Conversely, the vertical gap in the diffusion

curves evaluated in the “long-run” is larger for personal computers than for ships. This

is consistent with the widening of the intensity of use between Western and non-Western

countries.

4.4 Robustness

In this section, we assess the robustness of our estimates and the two cross-country trends in

technology diffusion to alternative measurement and estimation approaches.

Curvature The main assumption used in the identification of the adoption margins is that

the curvature of the diffusion curve is the same across countries. In our model, this property

follows from the common elasticity of substitution between sectoral outputs across countries

(i.e., 1/(θ− 1)). To explore the empirical validity of this assumption, we re-estimate equation

construction the intensity of use parameter is defined relative to Western countries.
47One alternative interpretation of Figure 3b is that, rather than a continuous decline in the intensity of use

parameter in non-Western countries, there was a structural break around 1860. We find that the linear model
provides a better statistical fit as measured by the R2. In Section 5.3, we examine the implications for income
dynamics of modeling the divergence in the intensity of use parameter as a continuous or as a discrete process
and show that our results are robust to this modeling choice.
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(28) allowing βτ3 to differ across countries. Thus, we obtain an estimate β̂
c

τ3 for each country-

technology pair. Then, we test whether β̂
c

τ3 in each country is equal to the baseline estimate

β̂τ3. We find that in 94% of the cases, we cannot reject the null that the curvature is the same

as for the baseline countries at a 5 percent significance level.

Table 4 documents the robustness of our estimates to relaxing the restriction that βτ3

is the same across countries. The first row reports the correlation between the estimates of

the diffusion margins in the baseline and in the unrestricted estimations. The unconditional

correlation of adoption lags across all technologies is .931 (column 1). The median correlation

when we compute it technology by technology is is .78 (column 2). We also report the 25th

and 75th percentiles of the within technology correlation which are .68 and .86, respectively.

For the intensity of use, the unconditional correlation is .80 (column 3) and the median

correlation within technologies is .78 (column 4). Therefore, we conclude that the adoption

lags and intensity of use that arise under the unrestricted estimation are highly correlated

with the baseline estimates.

Table 5 studies the robustness of the patterns uncovered for the evolution of the adoption

margins. Columns (1) and (2) report the time-trend coefficient of the (log) adoption lag with

respect to the invention date for Western and non-Western countries. Column (3) reports

the time-trend coefficient for the intensity of use parameter in non-Western countries. For

comparison purposes, we report the baseline estimates in the first row of the table. The

new estimates confirm that both the convergence of adoption lags and the divergence in

the intensity of use parameter are robust to relaxing the restriction of a common curvature

across countries. If anything, the new estimates suggest stronger convergence and divergence

patterns than the ones reported in the baseline.

Division in Quintiles One possible concern is that, when computing the country-group

decade fixed effects, βct0, dividing the sample between West and Rest is too coarse. There may

be substantial heterogeneity in the aggregate country trends of non-Western countries that is

not well captured by the common trend for non-Western countries. To address this concern,

we group the non-Western countries into quartiles according to their income per capita in

year 2000 and allow for a specific country-group time trend in our estimation of the diffusion

curve. Thus, we estimate five different sets of decade dummies βct0s (one for Western and four

for non-Western), rather than just the two from the baseline estimation. We find that the

estimates we obtain for both adoption margins hardly change (See second row of Table 4.)

Furthermore, the resulting trends in the adoption margins by income group are very similar

to those uncovered in the baseline specification (See the third line in Table 5.)48

48We have also experimented with other robustness checks on how to specify βct0. For example, the results
are robust to eliminating the term βτ3 from the estimation such that the effect of the aggregate trends is
symmetric across technologies. The results are also robust to including an additional group for the East Asian
Tigers.
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Table 4: Correlation of Baseline Estimates with Alternative Specifications

Alternative Adoption Lags Intensity of Use
Specification Overall Within Tech. Overall Within Tech.

Unrestricted Curvature 0.91 0.78 0.80 0.78
[0.68, 0.86] [0.74, 0.91]

Quintiles 0.96 0.91 0.99 0.99
[0.85, 0.96] [0.99, 0.99]

No Country × Time FE 0.94 0.95 0.99 0.99
[0.90, 0.99] [0.99, 1.00]

Non-homotheticities 0.95 0.91 0.87 0.90
[0.83, 0.98] [0.86, 0.93]

Estimated µ 0.86 0.82 0.57 0.89
[0.67, 0.87] [0.82, 0.93]

Obsolescence 0.94 0.93 0.97 0.98
[0.65, 0.95] [0.95, 0.99]

No correction intensity - - 0.99 1.00
[0.99, 1.00]

Note: Overall refers to the correlation of all estimates in the baseline and in the alternative specifi-
cation. Within Tech. reports the median correlation of the estimates within technologies. The 25th
and 75th percentiles of the correlation within technologies are reported in brackets.

Eliminating Aggregate Country Trends across Technologies Our results are robust

to omitting the aggregate country trends across technologies, βct0 (See row 3 in Table 4 and

row 4 in Table 5). The fact that the adoption estimates hardly change when excluding βct0 in

the estimation implies that controlling for total income yct in the diffusion curve is sufficient

to partial out aggregate country-specific trends. That is, exogenous aggregate TFP plays a

minor role in the evolution of the two margins of adoption.

Non-homotheticities We investigate the robustness of our estimates and the dynamics of

adoption margins once we allow for non-homotheticities in the demand for technology. Non-

homotheticities alter our baseline estimating equation (28) by introducing an income elasticity

in the demand for technology, βτy, potentially different from one,

ycτt = βct0 + βcτ1 + βτyy
c
t + βτ2t+ βτ3 ((µ− 1) ln(t−Dc

τ − τ)− (1− α)(yct − lct ))) + εcτt. (36)

A practical difficulty in estimating (36) is the colinearity of the time-trend and log-income, yct .

To overcome this problem, we group technologies by their invention date in four groups and

estimate a common income elasticity for each group (indexed by T ).49 As in the baseline, we

49The four groups are pre-1850, 1850-1900, 1900-1950, and post-1950. We have implemented a similar
approach grouping the technologies according to the sector rather than the invention date, obtaining similar
results.
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Table 5: Time Trend Coefficient Across Alternative Specifications

Dependent Variable: Log(Lag) Log(Intensity)

Western Rest World Rest World
(1) (2) (3)

Baseline -0.0076 -0.0106 -0.0050
(0.0009) (0.0005) (0.0005)

Unrestricted Curvature -0.0059 -0.0101 -0.0065
(0.0006) (0.0005) (0.0007)

Quintiles -0.0084 -0.0109 -0.0054
(0.0008) (0.0004) (0.0005)

No Country × Time FE -0.0080 -0.0111 -0.0054
(0.0006) (0.0003) (0.0005)

Non-homotheticities -0.0069 -0.0104 -0.0044
(0.0009) (0.0006) (0.0005)

Estimated µ -0.0084 -0.0112 -0.0089
(0.0010) (0.0005) (0.0013)

Obsolescence -0.0069 -0.0111 -0.0041
(0.0009) (0.0005) (0.0005)

No correction intensity - - -0.0037
(0.0005)

Note: This table reports the coefficient ω on the time trend resulting from regressing the log
of adoption lag and the intensity of use parameter on ρ + ω(Invention Yearτ − 1820) + εcτ
for the different country groupings. Robust standard errors in parentheses. Each technology
observation is weighted so that each technology carries equal weight.

estimate equation (36) in two-steps. In the first step, we jointly estimate the income elasticity,

βTy, along with βτ2, and βτ3 from the diffusion curves of the U.S., UK, and France for each

of the four technology groupings. Effectively, this method identifies the income elasticity of

technology out of the time series variation in the baseline countries in income and technology.50

Given that the baseline countries have long time series that for many technologies cover much

of its development experience, we consider this to be a reasonable approach.

The estimates of the income elasticity for the technologies invented in the four periods,

βTy, range from 1.58 for T = (pre-1850), to 1.99 for T = (1850-1900).51 The estimates of the

slopes of the Engel curves do not vary much across technology groups and they do not have

a clear trend.

Once we have obtained the estimates for the income elasticity, we proceed as in the

baseline estimation, but instead of imposing an income elasticity of one as our theoretical

model suggests, we use the estimated income elasticity. Therefore, in the second step, we

50See Comin et al. (2015) for evidence on the similarity across countries in the slope of Engel curves and a
theory that would generate heterogeneous Engel curves analogous to the ones estimated here.

51Table C.2 in the Appendix reports the estimates.
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estimate βct0, βcτ1 and Dc
τ for each country-technology pair from the equation

ycτt = βct0 + βcτ1 + β̂Tyy
c
t + β̂τ2t+ β̂τ3 ((µ− 1) ln(t−Dc

τ − τ)− (1− α)(yct − lct ))) + εcτt, (37)

where β̂τ2, β̂τ3 and β̂Ty are the values of βτ2, βτ3 and βTy estimated for the U.S., U.K. and

France in the first step.

The estimates of the two margins that we obtain are highly correlated with our baseline

estimates (See row four in Table 4). Moreover, both the convergence of adoption lags and

the divergence of the intensity of use are statistically and economically robust to allowing for

non-homotheticities. (See row 5 in Table 5.)

Estimated µ In our baseline estimation, we calibrate the elasticity of substitution between

vintages, µ/(µ − 1), because it is difficult to separately identify βτ3 and µ in the baseline

diffusion equation (28). However, it is possible to identify them simultaneously in the exact

structural equation that results from substituting expression (17) for zτ in (18) rather than

its log-linear approximation.

In the fifth row of Table 4 we compare the adoption margins obtained using this alternative

approach with our baseline estimates. Both sets of estimates are similar. Furthermore, the

evolution of the adoption margins across countries quantitatively resembles very much that of

our baseline estimates. If anything, the divergence pattern in the intensity of use parameter

seems stronger. (See row 6 in Table 5.)

Obsolescence Some technologies eventually become dominated by others. This is for exam-

ple the case of the telegraph which was rendered obsolete by the telephone. The obsolescence

of technology may affect the shape of the diffusion curves (especially in the long run) and

therefore the estimates of our adoption margins. Since our theory just concerns the diffusion

process (and is silent about the phase out process) it does not provide any guide on how ob-

solescence impacts our technology measures. As a robustness check, we re-estimate equation

(28) over a time sample where obsolescence dynamics are unlikely to be relevant. For each

technology, we censor the sample at the point where the leading country starts to experience

a decline in the per capita adoption level.52 This affects the estimation period in six of the

twenty-five technologies in our sample. The estimates and evolution of both adoption margins

are robust to controlling for the potential obsolescence of technologies. (See row 5 of Table 4

and row 7 in Table 5.)

52More precisely, we censor all observations that are 90% below the peak level of technology usage for the
leading country (after the peak has been attained). This is to allow for some fluctuations in the level of
adoption.
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Measurement of the intensity of use parameter In our baseline estimation, we identify

the intensity of use parameter by removing from the intercept βτ1 the productivity gains

arising from the timing of adoption. This effect operates through the adoption lag, which we

subtract according to (33),

ln Îcτ =
βcτ1 − βWestern

τ1

βτ3

+
γ

2
(Dc

τ −DWestern
τ ). (33)

In our theory, correcting for differences in adoption lags in the intercept has a clear interpre-

tation. For the intensity of use parameters to be comparable across countries, they should

be computed as if adoption had started at the same time in all countries. This way, any

remaining vertical differences in the resulting corrected diffusion curves can be attributed to

differences in the intensity of use parameter of technology.

However, in the light of the convergence in adoption lags, one might worry that the

divergence in the intensity of use parameter that we find is a mechanical result inherited

from the trends in the estimated adoption lags. To address these concerns, we compute an

alternative measure of the intensity of use parameter under the extreme assumption that

the productivity growth of a technology is zero, γ = 0. Note that, in this case, there is no

correction in the intensity of use parameter arising from differences in the timing of adoption

in (33).

The last row in Table 4 shows the correlation between these estimates of the intensity of use

parameter and our baseline estimates. The overall correlation between these two estimates

is .99. The divergence in the intensity of use parameter is also robust to this alternative

computation. In particular, the time trend on the intensity of use parameter for non-Western

countries is −.37%, compared to −.50% in our baseline estimate. Thus, even in the extreme

case of no growth in productivity embodied in new technology vintages, we find significant

divergence in the intensity of use parameter, albeit somewhat smaller than in our baseline

estimates.

5 Income Dynamics

In this section, we evaluate quantitatively the implications of the cross-country patterns of

technology diffusion for the evolution of the world income distribution. We focus on two

questions: (i) the model’s ability to generate pre-industrial income differences, and (ii) the

model’s account of the Great Divergence.

To explore these questions, we feed the estimated adoption trends (equations 34 and 35)

into the aggregate representation of our model (equation 24). In particular, equation (24) in

Proposition 2 shows how aggregate TFP A depends on sectoral adoption patterns through

their effect on technology-level TFPs, Aτ . We then use the result in equation (23) that output
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is proportional to A1/(1−α) to compute the effect of TFP growth on output growth.53

It is important to note that the estimation of the adoption margins is based on micro-level

data on technology diffusion and that the estimation does not impose any constraint that

links these margins to aggregate productivity dynamics. Therefore, there is no a priori reason

to expect that the model’s world income distribution and its evolution resemble their data

counterparts.

5.1 Calibration

To simulate the evolution of productivity growth we need to calibrate four common parame-

ters. γ and σ define the evolution of the technology frontier; α, is the share of intermediate

goods, and θ determines the elasticity of substitution between sectors, 1/(θ − 1).

Prior to the Industrial Revolution, the technology frontier grew at (1− α) · 0.2%.54 This

is the growth rate of Western Europe from 1500 to 1800 according to Maddison (2004, 2010).

We model the Industrial Revolution as a one time increase in the growth rate of the frontier.55

We study the robustness to modelling the Industrial Revolution as more gradual changes in

the rate of arrival of new technologies in the robustness section 5.3. We set the date of

the Industrial Revolution to year T = 1765 (year in which James Watt developed his steam

engine). After 1765, the frontier growth rate, σ + γ, jumps to (1 − α) · 2% per year. This

ensures that Modern growth along the balanced growth path is 2%. As previously discussed,

we set 1 − α = .7. In our baseline simulation, we split evenly the sources of growth in the

frontier between γ and σ.56 Finally, we calibrate the elasticity of substitution in the final

good production function, 1/(θ−1), using the average estimates of βτ3, which implies a value

of θ = 1.28.

We assume that the adoption margins evolve continuously between 1765 and 1983 as de-

scribed by equations (34) and (35). To reiterate the discussion in Section 4.1, this assumption

implies that we treat the cross-country evolution of technology adoption margins we have

uncovered for our sample of technologies as representative of the universe of new technologies

invented over the last two centuries. We also note that all technologies enter symmetrically

into the production of the final good as specified in the theory section, equation (9). Prior to

1765 and after 1983, the adoption margins remain constant.57 Constant adoption margins at

53Thus, when simulating output growth, we are factoring in the general equilibrium effect that higher TFP
levels generate higher levels of intermediates. As such, our simulations on productivity growth should be
interpreted as labor productivity growth that is driven by technology adoption.

54Alternatively, we can set the beginning of the Industrial Revolution at 1779, year of invention of the first
technology in our sample (the mule spindle), without any significant change to our findings,.

55According to Mokyr (1990) and Crafts (1997), this captures well the Industrial Revolution.
56From our reading of the literature, it is unclear what fraction of frontier growth comes from increases in

productivity due to new technologies (σ) and new vintages (γ). In Section 4.4 we conducted robustness checks
on this division.

57We select 1983 as our end date because this is the last invention year in our data (the internet). For the
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the end and the beginning of the sample ensure that the economies transition between the two

balanced growth paths (described by equation 25). Note that this assumption imposes that all

economies should converge to the same long-run growth rates going forward.58 Thus, the only

difference across countries in our simulations from 1765 onward comes through differences in

the transition path between the pre-Modern and Modern balanced growth paths. Since all

technology parameters are the same across countries, these differences in the transition come

entirely from the differences in the estimated adoption margins that we feed into the model.

5.2 Cross-country evolution of income growth

Initial productivity differences We start by studying the model’s ability to account

for the initial differences in productivity between Western and non-Western countries. Our

estimates from Table 3 imply that the difference between the average adoption lag in the

sample of Western countries and the rest of the world is 42.5 years in 1820. The average gap

in the (log) intensity of use parameter is 0.6, which implies that technologies in non-Western

countries are 55% as productive as in Western countries. Using Maddison’s estimates of pre-

industrial growth in Western Europe (0.2%) to calibrate the pre-industrial growth rate of the

world technology frontier, equation (25) implies that Western countries had an income per

capita 2.5 higher than the rest of the world.59 This is roughly in line with the results from

Maddison (2004, 2010), who reports a two-fold income gap between the West and the rest.

Great Divergence Next we study the evolution of productivity growth for the 1765-2000

period (see Figure 4).60 Despite that the acceleration in the growth rate of the frontier starts in

1765, the growth rate of the Western countries remains at its pre-industrial level until around

1830 due to the long initial adoption lags. At this point, Western economies benefit from the

higher productivity embodied in industrial technologies and experience a gradual acceleration

in productivity growth. By 1900, Western economies have reached the steady state growth

rate of 2%.61 Growth in the non-Western economy does not take off until approximately 1870.

After that, it accelerates at a slower pace than the average Western economy. By year 2000,

adoption lag, and given that it tends towards zero at the end of the sample, similar results would emerge if
we allowed for a continuing trend. For the intensity of use parameter, and given our finding of divergence,
allowing for a continuing trend would exacerbate the differences between Western and non-Western countries.

58Our baseline simulations indicate that by year 2100 the growth rates would have approximately converged.
59That is, exp(.2% · 42.5 + .6/(1 − α)) = 2.5.
60In the working paper version (Comin and Mestieri, 2013), we characterize analytically the transition

after a permanent increase in the growth rate of the technology frontier and after changes in the adoption
margins. We show that the path of the growth rate during the transition is S-shaped. We also provide
approximate expressions for the half-life of the system during the transition. We show that the half-life depends
on both adoption margins, and that it is an order of magnitude larger than in conventional calibrations of the
neoclassical model.

61The transitional dynamics implied by the model are very protracted: the half-life of the growth rate is a
hundred years. This is an order of magnitude greater than the neoclassical growth model with a conventional
calibration, e.g., Barro and Sala-i-Martin (2003).
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Figure 4: World Income Dynamics, 1820-2000

(a) Output Growth: Western vs. non-Western (b) Difference in Growth Rates

Note: Growth rates of Western countries and the rest of the World obtained imputing the estimated evolution

of the adoption margins using the baseline calibration. Western countries are defined as in Maddison (2004,

2010).

it is still 1.5%. Figure 4a shows the gap in productivity growth between Western and non-

Western economies. The gap in growth rates between Western and non-Western economies is

considerable. The average annual growth rate is 0.6 percentage points lower in non-Western

countries over a period of 180 years. The gap peaks around 1913 at 1%. From then on, the

gap declines monotonically until reaching 0.6% by 2000.

Table 6 reports the average growth and growth gaps of our simulation and in the Maddison

(2010) data. The evolution of productivity growth in both country groups traces quite well

the data, though the model slightly underpredicts growth during the nineteenth century.

The sustained cross-country difference in growth rates generated by the model accumu-

late into a 2.95-fold income gap between the Western countries and the rest of the world

from 1820 to 2000. Maddison (2010) reports an actual income widening by a factor of 3.9.

Hence, differences in the technology adoption patterns account for 75.6% of the Great Income

Divergence between Western and non-Western countries over the last two centuries. When

compounding the increase in the gap with initial income differences in 1820, it follows that

differences in technology imply an income gap between Western and non-Western countries

of 7.38 (2.5 · 2.95) by 2000, which is of the same order as the the 7.2-fold gap reported by

Maddison (2004, 2010).62

Mechanisms at Work We next decompose the three mechanisms at work in our simu-

lation: the acceleration of the technological frontier and the evolution of the two adoption

62The simulation does also well in replicating the time series income evolution of each country group sep-
arately. For Western countries, Maddison (2010) reports a 18.5-fold increase in income per capita between
1820 and 2000. Approximately 19% of this increase occurred prior to 1913. In our simulation, we generate a
13.3-fold increase over the same period, and 16% of this increase is generated prior to 1913. For non-Western
countries, Maddison (2010) reports an almost 5-fold increase, with around 37% of the increase being generated
prior to 1913. Our simulation generates a 4.5-fold increase in the 1820-2000 period with 31% of this increase
occurring in pre-1913.
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Table 6: Growth rates of GDP per capita

Time Period

1820-2000 1820-1913 1913-2000

Simulation Western Countries 1.44% .80% 2.13%
Rest of the World .84% .37% 1.34%
Difference West-Rest .60% .43% .79%

Maddison Western Countries 1.61% 1.21% 1.95%
Rest of the World .86% .63% 1.02%
Difference West-Rest .75% .58% .93%

Notes: Simulation results and median growth rates from Maddison (2010). We use 1913 instead of 1900
to divide the sample because there are more country observations in Maddison (2010). The growth rates
reported from Maddison for the period 1820-1913 for non-Western countries are computed imputing the
median per capita income in 1820 for those countries with income data in 1913 but missing observations
in 1820. These represent 11 observations out of the total 50. We do the same imputation for computing
the growth rate for non-Western countries for 1820-2000. This represents 106 observations out of 145.
For the 1913-2000 growth rate of non-Western countries, we impute the median per capita income in 1913
to those countries with income per capita data in 2000 but missing observations in 1913. These represent
67 observations out of the total of 145.

margins. We start by simulating the dynamics of our model after a common acceleration of

the technology frontier for both countries, keeping constant the adoption margins at their

initial levels. Figure 6 shows that these initial conditions are an important source of cross-

country income divergence. Longer adoption lags in the non-Western country imply a delay of

around 80 years to start benefiting from the productivity gains of the Industrial Revolution.

As a result, the income gap increases by a factor of 2.1 by year 2000.

To assess the role of adoption lags in cross-country growth dynamics, we simulate the

evolution of our two economies, but keeping the intensity of use parameters at pre-industrial

levels (i.e., no divergence). Figure 7a presents the results from this simulation. It shows

that cross-country differences in adoption lags are an important driver of income divergence

during the nineteenth century. By 1900, the income gap between Western and non-Western

countries has grown by a 16%, as opposed to 32% in the full-blown simulation. Thus, the

initial differences and subsequent evolution in adoption lags accounts for half of the income gap

generated in the nineteenth century, while the other half is accounted by the intensity of use. In

the twentieth century, the faster reduction in adoption lags in non-Western countries produces

a higher growth rate in non-Western countries. In fact, had the intensity of use parameters

remained constant at the pre-industrial levels, the relative income between Western and non-

Western countries in 2000 would almost coincide with the relative levels in 1820.

To analyze the role of the intensity of use, we simulate the evolution of the two economies

as in our baseline model, but keeping the adoption lags constant at their pre-industrial levels.

Figure 7b presents the dynamics of income growth in each country. In this simulation, the
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growth acceleration in both Western and non-Western countries starts much later than in the

baseline (Figure 4). This is a consequence of omitting the productivity gains from a reduction

in adoption lags. As shown in the bottom panel of Figure 7b, the growth gap between the two

groups of countries is smaller than in the baseline during the nineteenth century but greater

during the twentieth century. As a result, the income gap between Western countries and the

rest of the world accumulated between 1820 and 2000 is 3.5.

To sum up, the main findings from our simulations are:

1. The model is capable of generating a Great Divergence. Income per capita of Western

countries relative to the rest of the world increases by a factor of 2.95 over the last 200

years. This represents 75% of the actual increase in the income gap observed in the

data.

2. Our model generates very protracted transitional dynamics. This is due both to the

effect of adoption lags and to the fact that it takes time for new technologies to become

a significant share of aggregate output. This latter effect is affected by the intensity of

use.

3. Large cross-country differences in adoption lags account for half of the income divergence

during the nineteenth century between Western countries and the rest of the world.

However, convergence in adoption lags by itself is a strong force towards convergence in

the twentieth century. Absent a divergence in the intensity of use parameter, Western

and non-Western income per capita would not have diverged in the last two-hundred

years.

4. The Great Divergence continued during the twentieth century because of the divergence

in intensity of use of technologies between Western countries and the rest of the world.

Implications for the World Income Distribution We now explore the dynamics of

productivity using a finer classification of countries by income quintiles (rather than classifying

countries in only two groups).63 Figure 5 presents the income distribution relative to the first

quintile generated by the model and the empirical distribution in the data for 1820, 1913 and

2000.

Figure 5a shows that for 1820 our simulation underpredicts the relative income at the

second, fourth and fifth quintiles relative to the first quintile. This deviation is largest for

63At each of these years, we classify countries by income quintiles. For each quintile and date, we estimate
the evolution of the adoption margins as in the baseline equations (34) and (35). We conduct the estimation
of the evolution using information over the whole sample. (The results reported are robust to restricting the
time period to prior to 1913 for the years 1820 and 1913). This gives a total of 15 evolutions for each of the
two adoption margins. For each year and income quintile, we feed the estimated technology dynamics and
simulate the income growth between 1765 and the year of consideration.
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Table 7: Annual Growth rates of GDP per capita by regions

Simulation Maddison

1820-1913 1913-2000 1820-1913 1913-2000

USA and Canada .73% 1.84% 1.63% 1.90%
Western Europe .64% 1.93% 1.29% 2.16%
Africa .33% 1.06% .36% .90%
Asia .36% 1.38% .49% 1.70%
Latin America .40% 1.28% .59% 1.50%

Note: Annual growth rates of GDP per capita by regions. Simulation results and growth rates from
Maddison (2010). For the missing income per capita values in 1820 and 1913, we impute the minimal
within group income reported in that year.

the second quintile, where our model generates a relative income of .9 compared to 1.3 in the

data. For the third quintile, we slightly overpredict the relative income, 1.7 compared to 1.5

in the data. For 1913, Figure 5b, the model is on mark for the relative income of the second

and fifth quintile. It somewhat overpredicts the relative income of the third (2.55 vs. 1.8) and

fourth (3.6 vs. 2.9) quintiles. For 2000, Figure 5c, the model is on mark for the second and

third quintiles, and slightly underpredicts the relative income for the fourth (8.6 vs. 9.9) and

overpredicts the fifth (30.7 vs. 27.5). We conclude from this exercise that the output growth

processes across the world income distribution that result from the quintile diffusion patterns

are remarkably similar to those observed over the last two centuries.

The Geography of Growth We further explore the implied growth paths by continent.

For each continent, we estimate the trends in the adoption lags and intensity of use parameters.

Then, we simulate the evolution of productivity growth since the industrial revolution. Table

7 shows that technology dynamics in each continent have induced income dynamics that

resemble those observed in the data. As in the baseline case, the model tends to slightly

underpredict the average growth rates during the nineteenth century. However, it is able

to capture very well the relative growth rates across regions in the world. The correlation

between the actual growth rates across continents between 1820 and 1913 and those predicted

by the model is 0.99. For the period 1913-2000, the correlation between actual and predicted

income growth is 0.93.

5.3 Robustness

We conduct four robustness checks to our analysis: (i) using the technology dynamics when

we allow for non-homotheticities in production, (ii) alternative calibrations of γ and σ, (iii)

interpreting the divergence of the intensity of use parameter as a structural break instead of
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Figure 5: Evolution of the World Income Distribution

(a) World Income Distribution in 1820 (b) World Income Distribution in 1913

(c) World Income Distribution in 2000

Note: Data refers to the world income distribution computed from Maddison (2010) for the corresponding

year. Simulation obtained feeding the diffusion pattern for adoption lags and the intensity of use parameter

of the corresponding quintile to the baseline calibration described in Section 5. Quintile groups are computed

for each of the three years separately.
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a smooth process and (iv) a slow acceleration of the technology frontier.

Non-homotheticities in production As shown in Section 4.4, the trends we have iden-

tified for the evolution of adoption are robust to the presence of non-homotheticities in the

demand for technology. When feeding in these alternative trends in adoption into our model

the productivity gap between Western and non-Western countries increases by a factor of

2.62 over the period 1820-2000, which represents 67% of the Great Divergence. Moreover,

the growth patterns are very similar to the baseline exercise (see Figure C.1 in the online

appendix).

Calibration of γ and σ Our baseline results assumed that the productivity growth after

the Industrial Revolution was equally shared between the productivity growth of new tech-

nologies (σ) and of new vintages (γ). We study the robustness of our findings to the relative

contributions of new technologies and new varieties to balanced growth. To this end, we redo

our baseline simulation under two polar assumptions. Figure C.2a in the online appendix

depicts the dynamics of productivity growth when balanced growth comes only from the

development of better vintages (i.e., σ = 0), while C.2b shows the polar case, in which all

productivity growth comes from the adoption of new technologies (i.e., γ = 0).

We draw two conclusions from this exercise. First, the main findings of the paper are

robust quantitatively and qualitatively to the source of long run growth. In particular, the

income gap between Western and non-Western increases by a similar magnitude as in the

benchmark (2.50 when growth comes from γ, 3.29 when it comes from σ, vs. 2.95 in the

benchmark). Second, the income gap between Western and non-Western countries is larger

when growth comes only from the adoption of new technologies. Intuitively, in this case, for

a given technology, all vintages have the same productivity. Hence, the marginal gains from

expanding the range of varieties for a given technology are decreasing over time. This implies

that the gains from convergence in adoption lags (i.e., vintages of new technologies being

adopted at the same rate between Western and non-Western countries) are less important in

this case.

Trend vs. structural break in the intensity of use In our estimation, we have assumed

that the evolution of the intensity of use parameter follows a linear trend. We analyze an

alternative specification in which the intensity of use parameter has a structural break, rather

than following a linear function.64 Figure C.3a in the online appendix shows that the key fea-

tures of the cross-country evolution of productivity growth are robust to this modeling choice.

The magnitude of the increase in the income gap between Western and non-Western countries

64The the linear model provides a better statistical fit as measured by the R2. The R2 is 0.11 in the baseline
exercise, and 0.02 with a structural break in 1913.
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is similar (2.63 vs. 2.95 in the benchmark), and the predicted timing of the divergence is very

similar to the baseline formulation.

Slow acceleration of the technology frontier In our baseline exercise, we character-

ize the transition to modern growth with a one-time acceleration of the technology frontier

in 1765. This stark assumption allows us to cleanly illustrate that protracted transitional

dynamics arise only from the dynamics of technology adoption. However, there is some con-

tention among historians about whether the industrial revolution induced a one time change

or a smoother transition in the growth rate of the world technology frontier (see e.g., Broad-

berry et al. (2015)). We investigate how sensitive our results are to the one-time acceleration

assumption. We re-do our baseline calibration assuming that the technology frontier slowly

accelerated from .2% to 2% over a hundred years. In particular, we assume a linear trend

in the growth rate starting in 1765. Figure C.3b in the online appendix shows the evolution

of income of Western vs. non-Western countries in this case. The bottom line is that the

transition looks similar to our baseline exercise. The slow transition of the frontier makes the

transition to modern growth slower for all countries, but specially for non-Western countries

because it takes them longer to adopt the newer, more productive technologies relative to the

baseline simulation. This exacerbates the accumulated income per capita differences over the

1820-2000 period which represent an increase in the income gap by a factor of 3.1 vs. 2.95 in

the baseline simulation.

6 Conclusions

What accounts for cross-country differences in income growth over the long term? Often

economists answer this question by attributing cross-country differences in income growth to

TFP growth. In this paper, we have developed a methodology that permits us to explore

further this fundamental question. A critical intermediate step in our approach is to analyze

what drives differences in the diffusion curves across countries and over time. In particular, we

have separately identified the role on diffusion of economy-wide factors such as TFP, and two

distinct margins of adoption that are specific to each technology and country: the adoption

lag and the intensity of use.

We have documented two distinct trends of these adoption margins over the last two cen-

turies using a panel that covers twenty-five technologies and 139 countries. Adoption lags

have converged across countries, while the intensity of use has diverged. We have evalu-

ated the importance of the cross-country evolution of technology diffusion for productivity

growth by feeding the estimated evolution of the technology adoption margins in the aggre-

gate representation of our model economy. Our simulations have shown that differences in

technology diffusion patterns account for a major part of the evolution of the world income

38



distribution over the last two centuries. In particular, differences in the evolution of adoption

margins in Western and non-Western countries account for around 75% of the income per

capita divergence observed between 1820 and 2000.

These findings have important implications for the study of the long-run drivers of income

differences and the Great Divergence in particular. First, our findings show that the majority

of the divergence in productivity can be accounted for by technology diffusion. Second, the

critical dimension of technology diffusion to understand the divergence in productivity is the

intensity of use of technology. Third, economy-wide factors such as exogenous TFP not only

played a minor role in explaining cross-country productivity dynamics. They also played a

minor role in explaining differences in the evolution of technology diffusion across countries.

Our findings prompt new questions that we plan to investigate in future work. Probably,

the most significant question is: what are the drivers of the cross-country divergence in the

intensity of use? We have divided our tentative answers in two classes of explanations. The

first class is based on intrinsic differences between the technologies invented early in our sample

and those invented later on. We have superficially explored the relevance of this explanation

for the technologies in our sample. We do not find much promise for the dimensions we have

considered. For example, the magnitude of capital required to adopt a technology appears to

be uncorrelated with the invention date.65 We reach similar conclusions when exploring the

correlation between the invention date and the tradability of the goods and services produced

with technologies, and whether the technology is a general-purpose technology.

The second class of explanations relates the evolution of the intensity of use with the

divergence of some relevant attribute across countries. The difficulty of building an argument

along these lines is that some of the obvious candidates are either stable over time (e.g., ge-

ography) or have converged over the last 200 years (e.g., the quality of institutions). Despite

the apparent difficulty of uncovering fundamental drivers of technology diffusion, we consider

that successful theories of current cross-country differences in productivity will have to prop-

erly account for the divergence in the intensity of use of technology. These explorations shall

complement our analysis towards a fuller understanding of cross-country income dynamics.

65In the first half of the nineteenth century we have technologies that require little capital (e.g., spindles,
and mail) and others that require significant capital deployment by adopters (e.g., railways, telegraph). The
split is also relatively even for technologies invented in the last fifty years in our sample. Cellphone services
and blast-oxygen furnaces are quite capital intensive, while transplants, PCs and internet are less capital
intensive. Conversely, among the technologies with the largest gap between Western and non-Western countries
in the intensity of use, there are both capital intensive (e.g., blast oxygen furnaces), and less capital intensive
technologies (e.g., liver and heart transplants).
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Appendix

A Additional Figures

Figure 6: Acceleration of the World Technology Frontier

Growth of Western and non-Western countries with only an acceleration of the technology

frontier. Both margins of adoption are held constant.

Figure 7: Role played by the different margins of adoption

(a) Dynamics Generated by Adoption Lags
(b) Dynamics Generated by the Intensity Of Use Pa-
rameter
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B Proof of Propositions

Proof of Proposition 1: The demands for labor and intermediate good at the vintage

level are given by:

α
Pτ ,vYτ ,v
Xτ ,v

= (1 + ζτx)Rx (B.1)

(1− α)
Pτ ,vYτ ,v
Lτ ,v

= (1 + ζL)W (B.2)

where Rx, and W are the prices of intermediate good and labor, and ζτx and ζL are the tax

rates on intermediate goods and labor. The price of vintage v output is

Pτ ,v =

(
(1+ζτx)Rx

α

)α ( (1+ζL)w
1−α

)1−α

eχtZ(τ , v)
. (B.3)

The demand for the producer of output associated with technology vintage τ , v is

Yτ ,v =

∫ Nτ

0
Y i
τ ,vdi = NτY

i
τ

(
P iτ/Pτ ,v

)−µ/(µ−1)
, (B.4)

where the second equality takes advantage of the symmetric demands across producers of

differentiated output producers.

The unit cost of a technology τ differentiated output, P iτ , is

P iτ =

(∫ t−Dτ

τ
P−1/(µ−1)
τ ,v dv

)−(µ−1)

(B.5)

=

(
(1+ζτx)Rx

α

)α ( (1+ζL)w
1−α

)1−α

eχt+(σ+γ)τ

(
µ− 1

γ

)−(µ−1)(
e
γ(t−Dτ−τ)

µ−1 − 1

)−(µ−1)

(B.6)

Where the second equality follows from substituting (B.3) and integrating.

Given the symmetry in the pricing of differentiated outputs, the unit price of technology

τ final output, Pτ , is

Pτ = P iτN
−(ψ−1)
τ (B.7)

Combining, equations (B.1) through (B.7), we can derive the following expressions for the

demands for labor and intermediate goods associated with the production of technology τ
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output

Lτ =

∫ t−Dτ

τ
Lτ ,vdv =

∫ t−Dτ

τ

(1− α)Pτ ,vYτ ,v
(1 + ζL)W

dv =
(1− α)PτYτ
(1 + ζL)W

, (B.8)

Xτ =

∫ t−Dτ

τ
Xτ ,vdv =

∫ t−Dτ

τ

αPτ ,vYτ ,v
(1 + ζτx)Rx

dv =
αPτYτ

(1 + ζτx)Rx
. (B.9)

Given these demands, sectoral output can be represented by

Yτ = AτX
α
τ L

1−α
τ (B.10)

where the sectoral TFP level is equal to

Aτ = eχtN (ψ−1)
τ

(∫ t−Dτ

τ
Z(τ , v)1/(µ−1)dv

)µ−1

(B.11)

=

(
µ− 1

γ

)µ−1
Exog. TFP︷︸︸︷
eχt

Intensity︷ ︸︸ ︷
N (ψ−1)
τ

Embodiment︷ ︸︸ ︷
eστ+γ(t−Dτ)

Variety︷ ︸︸ ︷(
1− e

−γ
µ−1

(t−Dτ−τ)
)µ−1

.(B.12)

This proofs claims (i) and (iii) in proposition 1. Claim (ii) follows from the demand for

technology τ output, Yτ . Cost minimization in the production of Y, implies that

Yτ = Y P−θ/(θ−1)
τ (B.13)

where we have imposed that the price of aggregate output is the numeraire. This proves claim

(ii). �

It follows from (B.13) and (8) that

Y i
τ = YτN

−ψ
τ (B.14)

Proof of Proposition 2: Aggregating across technologies, τ , we can define X and L as

follows

X =

∫ t−Dτ

−∞
Xτdτ =

∫ t−Dτ

−∞

αPτYτ
(1 + ζx)Rx

dτ

=
α

(1 + ζx)Rx

∫ t−Dτ

−∞
PτYτdτ =

αY

(1 + ζx)Rx
, (B.15)

L =

∫ t−Dτ

−∞
Lτdτ =

∫ t−Dτ

−∞

(1− α)PτYτ
(1 + ζL)W

dτ

=
(1− α)

(1 + ζL)W

∫ t−Dτ

−∞
PτYτdτ =

(1− α)Y

(1 + ζL)W
, (B.16)
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where the last equality follows from the demand (B.13), and the fact that the price of aggregate

output is the numeraire.

It follows from (B.15) and (B.16) that:

XαL1−α =
Y

c̄
(B.17)

where

c̄ ≡
(

(1 + ζL)W

1− α

)1−α((1 + ζx)Rx
α

)α
(B.18)

The price of aggregate output

P = 1 =

(∫ t−Dτ

−∞
P−1/(θ−1)
τ dτ

)−(θ−1)

= c̄

(∫ t−Dτ

−∞
A1/(θ−1)
τ dτ

)−(θ−1)

=
c̄

A
(B.19)

where

A =

(∫ t−Dτ

τ
A1/(θ−1)
τ dτ

)θ−1

(B.20)

Substituting (B.19) into (B.17) yields the expression for the aggregate production function

in the proposition:

Y = AXαL1−α (B.21)

�
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