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1 Introduction
Technological innovation was a major driver of changes in the labor market at the national level

in the twentieth century. At the local level, for the majority of the twentieth century, poorer US

cities had grown faster and were catching up with richer cities by consistently shifting technology

from the rich to the poor. However, in the 1980s, simultaneously with the technological innovation

shock that favored highly skilled workers, cities with higher share of such workers like Boston,

San Francisco, and New York began to pull away from their poorer counterparts. The clustering of

highly skilled workers amplified the geographic differences. This growing gap, in turn, gave them

less incentive to move away from such cities which reduced the overall mobility rate. Despite

an extensive literature has analyzed the impact of technological innovation at the national level,

curiously, little has studied its impact at the regional level and how this force, operating through

cities, has sequentially affected aggregate macroeconomic patterns of growth and inequality.

Against this background, two main questions arise. What is the role of technology evolution

in explaining regional convergence and its end? And what is the impact of a skill-biased technical

change shock on aggregate inequality and economic growth? The main contributions of this paper

are to show that technology rationalizes salient changes in the regional data of the last 70 years as

well as that it establishes a trade-off between aggregate growth and inequality. The main empirical

finding that motivates the rest of the work is that regional convergence only stopped for highly

skilled workers but continued for less skilled ones. On the quantitative side, the main findings are

that: (i) at the regional level, a national skill-biased technological change (SBTC) interacting with

local agglomeration forces explains approximately 50% of the overall decline in convergence; (ii)

at the aggregate level, SBTC simultaneously contributes to increasing economic inequality but also

growth because of the increase in sorting across space.1 According to the model, technology dif-

fusion leads to wage convergence across cities. At the same time, a national SBTC shock together

with stronger agglomeration economies for the skilled act as a force of divergence. As SBTC un-

folds over time, the divergence force starts dominating the convergence force, rationalizing the key

fact documented in the data. The model also delivers that the decline in convergence is associated

with increasing inequality and higher aggregate growth.

SBTC is the term commonly used in the literature to identify technological innovation that

1Other related findings suggest that technology rationalizes both the “Great Convergence” and “Great Divergence”
of skills before and after 1980 and the secular decline in geographic mobility. Following the definition of “Great
Divergence” coined by Moretti (2012), I define “Great Convergence” of skills, the period between 1940 and 1980,
where the relationship between initial college ratio and college ratio growth was negative.
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increased the relative demand for highly skilled workers after 1980 (Katz and Murphy 1992). In

turn, SBTC has led to a growth in earnings inequality (e.g., Card and DiNardo 2002, Levy and

Murnane 1992, Bound and Johnson 1992). National skill premia show similarly timed patterns

as regional convergence. In fact, at the regional level, between 1940 and 1980, wages grew 1.4%

faster per year faster in poorer US cities rather than in richer cities.2 This wage convergence ended

in 1980, and from then to 2010 wages grew at similar rates in cities with different income levels.

Figure 1 plots the annual demeaned average wage growth against its initial demeaned wage level

in logs. The β-convergence rate, given by the slope of the trend line, is 0.014 between 1940 and

1980 but goes to zero and is not statistically significant between 1980 and 2010.3

Figure 1: Wage Convergence across Cities before and after 1980
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Note: This figure plots each city’s (demeaned) annual average wage growth against its (demeaned) ini-
tial wage level. The left side depicts 1940-1980; the right side depicts 1980-2010. The red line depicts a
weighted least square bi-variate regression. Data come from the decennial US Census and the 2010 Ameri-
can Community Survey.

The paper consists of three main parts. In the first part, I identify a key fact regarding regional

2Throughout the paper, I use “cities” to refer to “Metropolitan Statistical Areas”, the geographical unit used in this
paper. A formal definition is provided in section 2.

3Berry and Glaeser (2005) are the first to point to this decline in convergence across cities after 1980. Ganong and
Shoag (2017) show a similar decline in convergence for income per capita across US states after 1980.

2



convergence followed by two facts about the evolution of skill premium and migration patterns

across U.S. cities during the last 70 years. The key empirical contribution of this paper is to show

that the end of wage convergence occurred only for highly skilled workers. As shown in figure

2, prior to 1980, the wage convergence rate is the same for both highly and less skilled (less-

than college-educated) workers. Since 1980, the wages of less skilled workers have continued

to converge at 1.4% annually, while the wage convergence rate for highly skilled workers has

been close to 0%. Thus, any account of the end of convergence must distinguish between skill

groups. The second fact is that after 1980, the correlation between the college ratio and the skill

premium is positive across cities.4 In other words, the relative price of skills has become positively

correlated with its relative quantities across cities. Specifically, the third fact is that since 1980,

migration destinations of highly skilled workers have shifted towards already skill-concentrated

cities, opposite to what previously observed. These facts indicate that performance differences

between highly skilled and less skilled workers played a crucial role in the cessation of the regional

wage convergence. Due to differences in their initial skill composition, cities might have been more

impacted by the national SBTC. These facts are also consistent with the idea that demand grew

relatively more than supply in cities with bigger initial concentration of highly skilled workers,

benefiting of higher wage growth.

Motivated by this evidence, in the second part of the paper, I develop a theoretical framework

that rationalizes both regional convergence and its end for the highly skilled workers. The model

features as main ingredients spatial technology diffusion, national skill-biased technical change,

local agglomeration spillovers and costly migration. To get quantitatively closer to the data and

compare with other stories, multi-industries and housing are included as well. Cities differ along

local amenities and an initial component of productivity. Specifically, labor productivity varies

across these local labor markets and it is determined by the endogenous agglomeration effects that

depend on city-level population and skill concentration, a national skill-biased technical change

component and the city-specific technology diffusion process. The model combines two streams

in the literature. First, I follow the literature pioneered by Desmet and Rossi-Hansberg (2014)

and Desmet et al. (2018) and I introduce spatial technology diffusion. Second, in the spirit of

Rosen (1979), Roback (1982), and Diamond (2016), I endogenize household location choice across

heterogeneous cities.

4I define the college ratio (or skill ratio) as the share of college-educated workers to less-than college-educated
workers. The skill premium is defined as the difference between the wage of the college-educated workers and the
wages of the less-than college-educated workers.

3



Accounting for the regional trends and shifts in wages, employment and migration patterns

for each skill group requires a combination of the two groups of models above. As I show in

Appendix E, spatial equilibrium models with no spatial knowledge diffusion produce divergence

rates across US cities but not the convergence rates in wages and skills. They also produce a

secular increase in migration rates. Simultaneously, adding skill heteroneity in a growth model

such as Desmet and Rossi-Hansberg (2014) allows to explain the differential sorting patterns and

the shift we observe in the 1980s. Overall, allowing for heterogeneity in skills and spatial diffusion

of productivity over time produces a suitable framework to analyze the core question of this paper;

that is, to explain the sharp regional changes that occurred in the long-run and how they mapped

to aggregate patterns in growth and inequality. Convergence forces enter through the technology

diffusion process as in Desmet and Rossi-Hansberg (2014) while the key divergence forces are

SBTC and local agglomeration.5

The mechanism works as follows. Spatial technology diffusion pushes for convergence equal-

izing the wages across cities. Instead, national technological innovation that interacting with local

agglomeration forces counterbalances the convergence that existed before 1980. If technology was

not skill-biased, the convergence forces would favor the poorer cities by pushing them toward the

productivity frontier. The interaction between national SBTC and local agglomeration economies

leads to a larger skill premium in more educated locations. Highly and less skilled workers have

some degree of complementarity, thus, agglomeration effects raise the wages of all workers, al-

though at different speed. This differential increase in the wages of highly skilled workers changes

the relative migration returns for these two groups. Therefore, highly skilled workers migrate to

highly skilled cities more than less skilled workers do. Migration has a twofold effect. On the

one hand, as more workers migrate to a location, the marginal productivity of each type decreases

which decreases the incentive to migrate. On the other hand, when more highly skilled workers

move to a location, productivity goes up because of the agglomeration effects, which raises the

wages of all the workers, especially those that are highly skilled.

In the third part of the paper, I apply the model to the data. The main goal is to estimate the pa-

rameters that govern the productivity process. A key element of the process is a national measure

of SBTC. To do so, I average out, at national level, the local exposure to routinization built by Au-

5To match the data and to account for other potential factors, I also introduce other divergence forces such as costly
migration and housing. Ganong and Shoag (2017) propose a mechanism based on housing regulations to explain the
decline in wage convergence. I also compute how much convergence there would exist in the model if I did not account
for housing.
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tor and Dorn (2013).6 To estimate the key parameters of the model, especially the remaining ones

in the productivity process, I use a GMM procedure. I use equilibrium conditions as moment con-

ditions. To identify such parameters I use as instruments the local exposure to routinization as in

Autor and Dorn (2013) as well housing restrictions.7 Building on existing models that use a related

estimation strategy, I extend the estimation strategy to take into account the growth component of

the model and the spatial technology diffusion. The identifying assumption is that these proxies for

SBTC shocks interact with land unavailability and housing regulations are orthogonal to changes

in local productivity. I then calibrate the model using estimated parameters, supplemented with

others borrowed from the literature, and solve it numerically.

I validate the model by comparing the patterns of nominal and real wage convergence in the

last 70 years in the data and the model itself when considering a national measure of skill-biased

technical change. The model matches very closely the patterns of wage convergence and its end

for highly skilled workers after 1980 and the continuation for less skilled workers. Next, I con-

struct counterfactual exercises by “turning off”, step-wise, the divergence forces in the model. The

results show that approximately 50% of the observed decline in wage convergence among highly

skilled workers is due to technology becoming more skill-biased. Further, the decomposition of

this exercise for highly skilled and less skilled workers indicates that if no shock had occurred,

convergence would have been, on average, higher for highly skilled workers than for less skilled

workers. I continue validating the model by checking other moments of the data. At the local level,

besides matching the features of wages, the model matches the “Great Convergence” and “Great

Divergence” in the skill ratio as well as the trends in the secular decline in migration rates. On a

related note, the model also matches the increase in wage dispersion across cities, as documented

by Hsieh and Moretti (2015), and shows that SBTC explains the biggest share of the increase in

spatial wage dispersion.

Finally, at the national level, the model suggests that if a national SBTC shock had not operated

through this sorting channel, real wage growth and skill premium would have been smaller than

6Autor and Dorn (2013) study the effect of routinization on the polarization of employment and wages. They also
argue that their shock fits the overall increase in the skill premium.

7I exploit the differential exposure of cities to computerization as in Autor and Dorn (2013). They, in fact, analyze
the effect of computer innovation on the output differences across regional labor markets. The national arrival of
computers mostly affects occupations that are very routinized because machines can replace those workers. Therefore,
the effect of computers is heterogeneous across locations depending on the share of highly and less skilled workers
holding very routinized occupations. To capture the exogenous component in the productivity changes of the workers
that does not depend on contemporaneous occupational structure, I use 10-year lagged city’s composition of routine
intensive occupations by industry.
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they are. This is an important result that might have normative implications since it assesses how

space impacts a trade-off between inequality and growth.

This paper speaks to three strands of the literature. The most related works are recent stud-

ies that use dynamic quantitative spatial equilibrium models such as Desmet and Rossi-Hansberg

(2014), Nagy (2016), Desmet et al. (2018), Caliendo et al. (2019) and Lyon and Waugh (2019). My

paper contributes to this literature by adding both divergence and convergence forces in a unified

framework with rich features such as heterogeneous skills, industries, housing, and rich agglomer-

ation forces. Thus, it provides a benchmark to perform regional and aggregate long-run growth and

inequality analysis within and across countries. This framework can be used to address questions

on the local and aggregate impact of sorting across locations within and across countries. At the

same time, it is tractable enough to be estimated.

Furthermore, this paper is related to research that studies the increase in the US spatial dis-

persion and the “Great Divergence” of skills, such as Berry and Glaeser (2005), Moretti (2012),

Hsieh et al. (2013), Eeckhout et al. (2014), Hsieh and Moretti (2015), Diamond (2016), Ganong

and Shoag (2017), Baum-Snow et al. (Forthcoming), Fajgelbaum and Gaubert (2018) and Eck-

ert et al. (2020). This paper complements this literature in several ways. Empirically, by finding

that regional convergence only stopped for highly skilled workers. Quantitatively, by estimating

the importance of a national skill-biased technology shock interacted with local agglomeration in

reducing regional convergence, in explaining the “Great Divergence” of skills and other secular

changes. Moreover, in a unified framework this paper rationalizes not just the divergence process

but also the convergence we used to observe. Finally, this paper contributes to the literature above

highlighting the aggregate implications of spatial sorting on the co-movement between growth and

inequality through geography.

Additionally, this paper complements the literature on regional convergence across countries

and states inspired by the seminal works of Baumol (1986), Barro and Sala-i Martin (1992), and

Barro and Sala-i Martin (1997); and continued by Bernard and Jones (1996), Caselli and Coleman

(2001), Gennaioli et al. (2014) and Comin and Ferrer (Forthcoming). My paper complements this

literature in several dimensions. First, by providing a quantitative model with realistic geography,

that can be mapped 1-to-1 to the data. Second, I propose a framework that has both convergence

and divergence built-in that can match the data both on prices and quantities and connects the

long-standing convergence literature to the one about cities.

The remainder of the paper is organized as follows. Section 2 describes the data and the em-
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pirical analysis. Section 3 proposes a theoretical framework. In Section 4, I estimate the core

parameters and calibrate the model. In Section 5, I solve the model, show how it maps to the

data and conduct a counterfactual analysis. Section 6 concludes with a brief summary and future

directions.

2 Data and Empirical Regularities
The main new empirical finding of this paper is that regional convergence stopped only for highly

skilled workers but did not for less skilled workers. This fact motivates the exploration of the

skill premium and migration patterns for the last 70 years. The facts jointly point to the direction

that supply forces (such as marginal return to labor) have been over time dominated by demand

forces (such as skill-biased agglomeration and technological change) pushing the skill premium

to go up more in already skill abundant cities and more skill migrants to keep joining those same

cities. This rationalizes the overall decline in wage convergence. To the best of my knowledge,

facts in sections 2.2, 2.3 and 2.4 are new to the literature while fact 2.5 reproduces the previously

documented “Great Divergence” and introduces the “Great Convergence”.

2.1 Data
My analysis draws on the Census Integrated Public Use Micro Samples (IPUMS) for the years

1940, 1950, 1960, 1970, 1980, 1990, and 2000; and the American Community Survey (ACS)

for 2010 (Ruggles et al. (2015)).8 In order to construct measures of migration, I use the March

Current Population Survey (CPS) data that is a monthly US household survey conducted jointly

with the US Census Bureau and the Bureau of Labor Statistics. The focus is on household and

demographic questions. I use measures of geographic constraints and land use regulations from

Saiz (2010). More details about the data and the definitions of the variables are in the appendix.

2.2 The End of Wage Convergence for Highly Skilled Workers
The main empirical fact of this paper shows that regional wage convergence stopped only for highly

skilled workers. Figure 2 shows that the cross-MSA wage convergence rates between 1940 and

1980 were the same for highly skilled and less skilled workers. But, they differ strongly after 1980.

Between 1980 and 2010, the wage convergence rate occurred only among less skilled workers but

not for highly skilled workers.

8The Census samples for 1980, 1990, and 2000 include 5% of the US population; 1970 Census and ACS sample
includes 1% of the population; and 1950 Census sample includes approximately 0.2% of the population.
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To illustrate these patterns, I run the same “convergence” regression as in Baumol (1986):

wkjt − wkjτ
(t− τ)

= α + βkwkjτ + ε (1)

where k is the skill group, highly skilled H or less skilled L; j is the MSA; and t is the final year

of the analysis and τ is the initial year. wkjτ is the log hourly wage by skill group k in MSA j at

time τ . The dependent variable is the annual average wage growth of log hourly wages between

τ and t. All the regressions are weighted by the initial population size. If the estimates of βk are

negative and statistically significant, then there is wage convergence and the convergence rate is

exactly βk. If they are positive and statistically significant, then there is wage divergence. In Figure

2, I plot the observations at the MSA level by skill group k and then the line fit, where βH and

βL-convergence rates are the slopes of the lines. The blue dashed line is the β-convergence for L,

and the red solid line is the β-convergence for H . Each circle is an observation by MSA and skill

group. I label the 10 biggest US MSAs in red for the observation of the less skilled and in blue for

highly skilled workers, respectively.

Between 1940 and 1980, there was no difference between cross-MSAs wage convergence rates,

βH and βL. Between 1980 and 2010, the convergence rate βL was still negative and statistically

significant, but βH was not. This difference means that the end of convergence was driven only

by the wages of highly skilled workers, because the wages of less skilled workers still converged

across MSAs. In Panel B of Table 1, I report the estimates of βL and βH in the two different pe-

riods both for population-weighted and non-population-weighted regressions. For the population-

weighted regression, βL and βH are, respectively, -0.0123 and -0.0143 between 1940 and 1980.

Both estimates are statistically significant. However, the estimates of βL and βH between 1980

and 2010 are respectively, -0.0169 and 0.000636. The estimate of βL is statistically significant but

the estimate of βH is not statistically different from zero. In the appendix, I run several robustness

tests for this fact. First, I estimate the rolling convergence for the highly skilled and less skilled

workers separately for 10- and 20-year windows. Second, I run the same regression as above for

compositionally adjusted wages.9

9The results are very robust to different specifications.
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Figure 2: Wage Convergence across MSAs before and after 1980 by Skill Group
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Note: This figure plots each MSA’s annual average wage growth (demeaned) against its (demeaned) initial
wage level by skill type (highly skilled and less skilled workers). The left depicts 1940-1980; the right
depicts 1980-2010. Each MSA’s circle size is proportionate to its initial population size by skill group.
The red solid and the blue dashed line in each graph depict a weighted least square bi-variate regression,
respectively, for less and highly skilled workers.

2.3 Skill Premium By Skill Ratio Over Time
The second empirical fact shows that while skill premium used to be lower in skill abundant places,

in recent years it has become higher in skill abundant places. In figure 3 I define skill premium as

the difference between the wages of the workers that are highly skilled and the workers that are

less skilled. I run the following regression:

ln

(
ŵHjt
ŵLjt

)
=

2010∑
t=1940

βt

(
Hjt

Ljt

)
+ φj + φt + εjt (2)

where ŵHjt and ŵLjt are the compositionally adjusted wages for MSA j at time t respectively

for highly skilled and less skilled workers. φj is the MSA fixed effect, and φt is the time fixed effect.
Hjt
Ljt

is the ratio of the total number of workers that are highly skilled to that of less skilled workers

in MSA j at time t. I run the regression for t = {1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010}.
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Once I run the regression for each year of the Census, I plot the estimate for the coefficient βt for

each year. This coefficient can be interpreted as an increase of one standard deviation in Hjt
Ljt

that

is going to affect the skill premium by βt standard deviations. In figure 3, there is a clear pattern

for the growth of the skill premium by MSA education. In Table 2, I report the estimates of βt that

control for population. Baum-Snow and Pavan (2013) find that at least 23% of the overall increase

in the variance of log hourly wages in the US from 1979 to 2007 is explained by the more rapid

growth in the variance of log wages in larger locations relative to smaller locations after controlling

for the skill composition of the workforce across MSAs of different sizes. This evidence reinforces

the presence of growing agglomeration economies and motivates the decision to introduce them in

the theoretical framework, both for population and for skill-ratio.

Figure 3: Skill Premium by MSA Education Levels

−
2

−
1

0
1

2

1940 1960 1980 2000 2020
census year

95% CI β

Note: This figure plots the estimate of the coefficient β for the regression 2. On the horizontal axis, I have the decades
from 1940 to 2010. While, on the vertical axis, I have estimates of coefficient β for each decade from 1940 to 2010.
Moreover, there is a line starting at zero on the vertical axis.

2.4 The Concentration of Highly Skilled Migrants
The third fact suggests that a higher share of highly skilled workers is moving more and more to

highly skilled places. The research on migration has proven that educated workers migrate more
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than less-educated workers. But where are they actually migrating to? Are they migrating to less

educated places to take advantage of the scarcity of a highly skilled labor force? In order to assess

which type of workers migrate more to highly educated MSAs, I run a difference-in-difference

analysis as in equation (3).

1

(
Migrantijt

)
= α+β1 (Hijt)+γ

Hjt

Ljt
+

2013∑
t=1963

δt1 (Hijt)∗

(
Hjt

Ljt

)
+ΓXijt+φj +φt+µijt (3)

The dependent variable in this equation is whether worker i in MSA j at time t is a migrant or not.

The variable equals one if the worker is a migrant. On the right-hand side, there is an indicator

variableHijt that equals one if the worker is highly skilled and zero otherwise. The second variable

is the skill ratio H
L

in each MSA at each time. Third, there is the interaction between the first two

variables. Regression 3 also includes MSA and time fixed effects. I use the estimated coefficient

δt to compute the marginal effect of being a highly skilled worker and being in a more skilled

MSA on the probability of being a migrant. The Xijt represents the economic demographics of the

workers such as age, gender, race, and nationality.10

I run regression 3 both as a linear and a logit model. I focus on the marginal effect of δt to find

the impact of the probability of worker i in MSA j at time t of being a migrant or not given MSA j’s

skill ratio that is interacted with the worker being highly skilled. I run the same regression with the

CPS where the information about the migration status of the worker is available for the years from

1962-2010 except for 1972-1975 and 1976-1979. In the appendix, I run the same exercise using

Census data extracted from the IPUMS. Each observation in figure 4 corresponds to the coefficient

δt in regression (3). I use this as a robustness check. Then, to make evaluations consistent with the

Census data and to rule out potential biases because of the cycles, I take the average of the estimate

for each decade for the available data. For instance, for the 1960s, I take the average of the data

available up to 1965. For the 1970s, I take the average of the estimates from 1966 to 1975 and so

on.

Figure 4 shows that the marginal propensity to migrate conditional on being a highly skilled

worker and moving to a highly skilled MSA increases over time. Thus, in relative terms highly

skilled workers concentrate more and more over time in the more educated MSAs. This finding

goes well in accordance with the hypothesis that highly skilled workers concentrate more and more

10The more detailed description is the same as the one I did for the compositionally adjusted wages.
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in educated MSAs. Table 3 shows the evolution over time of the marginal effect of being highly

skilled and being in a highly educated MSA on being a migrant.

Figure 4: Migration Rate by Destination Education Level
0

.1
.2

.3
 

1960 1970 1980 1990 2000 2010
Survey year

δt 95% con. interval

Note: This figure plots the estimate of the coefficient δ for the regression 3. On the horizontal axis, I have the years
from 1962 to 2010. While, on the vertical axis, I have estimates of coefficient δ for each year from 1962 to 2010.
Moreover, there is a line starting at zero on the vertical axis.

2.5 Skill Ratio: The Convergence and “The Great Divergence” after 1980
The last fact of this paper shows that before 1980 there was convergence in skill ratio and it

replicates the “Great Divergence” of skills after 1980. Moretti (2004), Berry and Glaeser (2005),

Moretti (2012) and Diamond (2016) show that the skill ratio of workers between 1980 and 2010

was diverging across MSAs. Moretti (2012) coins the term “The Great Divergence” to stress how

the skills diverge over space. But what happened to the skill ratio before 1980? Was the skill distri-

bution converging across MSAs when wages were converging? To answer this question, I analyze

the convergence rates of the skill ratio over the last 70 years. I estimate the following specification:

ln

[
Hjt

Ljt
− Hjτ

Ljτ

]
1

(t− τ)
= α + βskillln

Hjτ

Ljτ
+ ε (4)

12



where Hjt and Ljt are, respectively, the number of highly and less skilled workers living in

MSA j at time t and the initial period τ . The dependent variable is the average annual growth of

the skill ratio between τ and t. With this regression, I can assess the extent to which growth in the

skill ratio is related to the initial skill ratio. This regression is analogous to the regressions run in

Figures 1 and 2 but for quantities rather than for wages. I run this regression over different periods

using the Census and ACS data. In Figure 5, I plot the observations at the MSA level and then

the line fit, where βskill-convergence rates are the slope of the lines. Each circle is an observation

by MSA. I label the 10 biggest US MSAs. Between 1940 and 1980, the βskill-convergence rate

was negative and statistically significant, therefore, the term “Great Convergence”. However, as

observed in Moretti (2004), between 1980 and 2010, the βskill-convergence rate was positive and

statistically significant that indicates divergence. Table 4 has the results from decomposing the

years in shorter periods. The results show that the distribution of highly skilled and less skilled

workers across MSAs was converging between 1940 and 1980 and then started to diverge between

1980 and 2010. Panel A shows the results when the difference between t and τ is 10 years. While

in Panel B, the same difference is set at 20 years. Panel A shows that the estimated coefficients

are negative and statistically significant until 1970, then they become not significant for 1970-1980

and 1980-1990. Further, between 1990-2000 and 2000-2010 they become positive and statistically

significant. A 1% increase in the college share ratio increases the change in the college share

by 0.07% and 0.04%, respectively, between 1990-2000 and 2000-2010. In Panel B, the results

are quite similar, but in column (1) the coefficient is positive and statistically significant. That

coefficient is actually calculated for 1940 to 1970 since data for 1960 is not available. Therefore,

in a 30-year time span, the results should have reversed for other reasons. But, the coefficient

between 1950 and 1980 is negative and statistically significant as expected. Specifically, a 1%

increase in the college ratio in 1950 decreases the change in the college ratio between 1980 and

2010 by 0.32%.
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Figure 5: Skill Convergence across MSAs before and after 1980
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Note: This figure plots each MSA’s annual average skill growth (demeaned) against its (demeaned) initial
skill level. The left depicts 1940-1980; the right depicts 1980-2010. Each MSA’s circle size is proportionate
to its initial population size. The red line depicts a weighted least square bi-variate regression. The line in
each graph represents a weighted regression line from the bi-variate regression.
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3 A Spatial Equilibrium Model with Heterogeneous Skills and

Technology Diffusion
The empirical analysis indicates that long-run changes pushing the concentration of skills and their

returns in already highly skilled locations occurred. Specifically, these changes affected patterns

of regional convergence, skill premium, and cross-MSA migration. These observations together

and the time in which such changes occurred point to the direction that a national skill-biased

technology interacting with local agglomeration might rationalize the afore-mentioned long-term

changes. But how can these effects be disentangled? How important is each of these mechanisms?

How do they affect the aggregate patterns of growth and inequality? To answer these questions, I

develop a dynamic model of cities based both on the current spatial equilibrium literature nesting

it with spatial economic growth.

I start with a simple two period and two city setup of geography and skills to highlight the mecha-

nism through which a national skill-biased technological change shock interacting with agglomera-

tion pushes divergence over convergence forces. Then, I present a quantitative, general equilibrium

model with the objective to rationalize the empirical facts, quantify the role of the main mecha-

nisms, compare with others and, finally, explore the aggregate trade-off between inequality and

growth.

3.1 A Simple Two Period Model of Cities and Skills
There are two types k of households, highly skilled H and less skilled L. In each time period t,

where t = {1, 2} they decide how much to consume and which location j to pick for living. There

is a set of J = {SF, D} locations where SF stands for San Francisco and D stands for Detroit.

Workers can move between these two locations. The labor of H and L are the only two factors of

production. Each worker provides, inelastically, one unit of labor in the location where she lives

for which she is compensated with a wage. Workers each periods decide where to live and what to

consume. The wage for the H type is derived from the following expression:

wHj =

(
Hj

Lj

)γH

MRLHjSHξj wLj =

(
Hj

Lj

)γL

MRLHjSLξj

where

(
Hj
Lj

)γH

are agglomeration forces that depend on the ratio of high-to-low skilled in location

j; SH and SL are exogenous national-level skill-biased productivities; MRL is the marginal return
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to labor in the location j, and ξj is a productivity that depends from the previous period following

a spatial diffusion process such that

ξjt = ξγ
2

jt−1

∑
m6=j

ωξ1−γ2
mt−1 (5)

where ω is the distance between the two locations.

Proposition 1 A spatial diffusion process as described in 5 pushes for regional convergence.

Suppose that initial productivity at time 0 is higher in San Francisco than Detroit such that ξSF0 >

ξD0. Because of the spatial diffusion process in 5, then, ∆ξSF−D1 < ∆ξSF−D0. Therefore,

∆wSF−D1 < ∆wSF−D0, where w = wH ∗ H + wL ∗ L. Therefore, the spatial diffusion pro-

cess will push for convergence between San Francisco and Detroit.

Now, suppose that there is a national skill-biased technical change shock that increases SH .

The effect on local wage of both San Francisco and Detroit high-skilled workers will be positive

since it increases productivities.11 On top of that, as shown in proposition 2, the same shock might

have a larger effect in San Francisco if H is higher there.

Proposition 2 A national SBTC shock (or a national increase in SH) will increase regional

divergence if agglomeration forces are stronger than convergence forces such asMRL and spatial

diffusion.

But it might differ among locations depending on the share of high-skilled workers. Specifi-

cally,

∂2wHj
∂SH∂Hj

> 0 if γH

(
Hj

Lj

)−1

> − 1

MRLHj

∂MRLHj
∂H

The expression above is key to understand the forces in the model. If agglomeration forces

dominate decreasing MRL, then, ∂2wHj
∂SH∂Hj

will be positive. Therefore, more high-skill labor H is

present in a region, then, a national skill-biased technical shock might increase the wages of high-

skilled more in places where they are more concentrated (San Francisco) than where they are less

11 ∂wHj

∂SH
=

(
Hj

Lj

)γH

MRLHjexp(ξj). Since all the elements are positive, then, a national skill-biased technical

change shock will increase the wage of the high-skills differently in all locations.
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concentrated (Detroit). Comparing San Francisco to Detroit where

(
HSF
LSF

)
>

(
HD
LD

)
, then, if

(
HSF

LSF

)γH

MRLHSF exp(ξSF ) >

(
HD

LD

)γH

MRLHDexp(ξD)

which depends on the agglomeration forces versus the MRL and ξ, then, H types will be more

likely to move to San Francisco than to Detroit exacerbating the differences with Detroit and push-

ing for divergence. This is the key mechanism that drives regional divergence in the model and for

aggregate increase in inequality.

Proposition 3 A national SBTC shock (or a national increase in SH) will increase the national

skill premium (or income inequality) but will also increase economic growth.

Proposition 3 highlights the role of agglomeration on the aggregate economy. Since agglom-

eration forces become larger and larger over time as a result of the interaction with SBTC and

sorting, then, economic growth at national level might increase in the long-run.

3.2 Quantitative Model
To quantify the effect of SBTC and local agglomerations and to compare it with other forces, I

embed the mechanism above described in a quantitative model of cities over time. This model

departs from the one above by adding multiple locations, migration costs, a housing sector, local

amenities and industries. This features make the model more quantitative realistic and allow to take

into account other potential stories such as housing or sectoral differences. Each location produces

a tradable good T , a set of non-tradable intermediates, d ∈ D, and housing O. The production of

tradable T employs both highly and less skilled labor. The productivity terms are different for the

two sectors’ production functions. The endogenous component is a function of the ratio of highly

skilled workers to less skilled workers, and population. Moreover, worker productivity is different

across locations. The housing supply is a function of the local rents.

3.3 Preferences and agents’ choices
In each period, agents derive utility from consuming a tradable good T and housing O according

to Stone-Geary preferences with a subsistence level housing Ō.12 Agents also derive utility from

12The preferences present a degree of non-homotheticity similar to Ganong and Shoag (2017). This will allow to
make a fair quantitative comparison with the housing mechanism. The main qualitative predictions of the model would
not change if there was not non-homotheticity.
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exogenous amenities Akjt and from living in more highly skilled cities with higher (Hjt/Ljt) to

some exponent γp. The period utility of an agent i of type k ∈ {H,L} who resides in location j at

time t and lives in a series of locations j̄ = (j0, ..., jt−1) in all previous periods is given by

uikjtj̄ = uikjt

t∏
s=1

mk(js−1, js)
−1

where uikjt is the utility which depends only on the current location j of the agents; andmk(jt−1, jt)

is the migration cost of type k from moving from location jt−1 to location jt, which is also a

permanent utility loss for moving from js−1 in s− 1 to js in s. The utility uikjt is given by

uikjt = θln(Tkjt) + (1− θ)ln(Okjt − Ō) + Akjt + γpln(Hjt/Ljt) + ζ ijt

where ζ is a taste shock distributed according to a Gumbel (or Type I Extreme Value) distribution.

Thus,

Pr[ζijt] = e−e
(−ζijt)

I assume that ζijt is i.i.d. across locations, individuals, and time. Agents discount the future

at rate β and so the welfare of an individual i in the first period is given by
∑

t β
tuitjj̄ where jit

denotes the location at time t, j̄ denotes the history of previous locations, and ji0 is given. Agents

earn a wage Wkjt from their work. Every period, after observing their idiosyncratic taste shock,

agents decide where to live that is subject to mobility costs mk. These costs are paid in terms

of a permanent percentage decline in utility. I use the same assumption about the separability of

moving costs as in Desmet et al. (2018) such that mk(s, j) = mk1(s)mk2(j) with mk(j, j) = 1 for

all j ∈ S. This assumption turns out to be extremely useful for the feasibility of the model because

it means that agents’ choice of location depends only on current variables and not their location

history.13 Therefore, I rewrite the agents’ problem in a recursive formulation. The value function

for an agent living in location j after observing a distribution of the taste shock in all locations is

13Caliendo et al. (2019) solve the migration problem dynamically by keeping track of the distribution of workers
across locations by using a “hat algebra” method. One extension of the current model would be to incorporate that
decision on top of the current features. However, in order to use their method, I would need to measure the migration
flows across cities in 1940. Unfortunately, these data are not currently available to the best of my knowledge.
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given by

Vkt(j, ζ
′
i) =maxj′

[
Vikj′t

mk(j, j′)
+ βE

(
Vkt+1(j′, ζ ′′i )

mk(j, j′)

)]

=
1

mk1(j)
maxj′

[
Vikj′t
mk2(j′)

+ βE

(
Vkt+1(j′, ζ ′′i )

mk2(j′)

)]

=
1

mk1(j)
maxj′

[
Vikj′t
mk2(j′)

+ βE

(
maxj′′

[
Vikj′′t+2

mk2(j′′)
+ βE

(
Vkt+2(j′′, ζ ′′i )

mk2(j′′)

)])]
(6)

From the last line of equation 6, it follows that the choice of current location is independent of

past and future locations. This independence means that the value function can be rewritten, which

isolates the current component as a static problem.14 Thus,

maxj′

[
Vikj′t
mk2(j′)

]

After deciding location j′, the agent solves the following static consumption problem:

Vikj′t = maxTkj′t,Okj′t [θln(Tkj′t) + (1− θ)(ln(Okj′t − Ōkj′t) + Aj′t + γpln(Hj′t/Lj′t) + ζ ij′t]

s.t. Tkj′t +Okj′tRj′t = Wkj′t

The indirect utility of agent i of type k at time t living in MSA j can be written as

Vikjt =

[
θln(θWkjt −RjtŌ) + (1− θ)ln

(
(1− θ)Wkjt

Rjt

+ Ō

)
+ Akjt + γpln (Hjt/Ljt) + ζ ijt

]

where k is the skill group of the individual, which can be “highly skilled” Hjt or “less skilled”

Ljt. wkjt is the log of the wages for each skill type k in location j at time t.

Using the properties of the Gumbel distribution and following McFadden (1973), I derive the

number of workers of types H and L living in each location j at time t.

Hjt =
exp(δHjt/m2H(j))∑S
s exp(δHst/m2H(s))

(7)

14The derivation above follows from Desmet et al. (2018).
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Ljt =
exp(δLjt/m2L(j))∑S
s exp(δLst/m2L(s))

(8)

where

δkjt = θln(Wkjt −RjtŌ) + (1− θ)[ln(1− θ)Wkjt

Rjt

+ Ō] + Akjt + γpln (Hjt/Ljt) (9)

3.4 Technology
In the next subsection, I describe the production technology of the final tradable sector, T ; the

non-tradable intermediates, d ∈ D; and the housing sector, O. The final good is produced using all

the intermediates jointly in a CES fashion. The local market produces intermediates and housing.

The intermediates are produced using a CES with highly skilled and less skilled labor. The housing

sector is produced depending on the price of the housing sector as in Ganong and Shoag (2017).

Because the tradable good T is freely tradable across locations, the price of T , PTjt = pTjt, ∀j,
that means it is the same across locations and is assumed to be a numéraire.

3.5 Final Good Production
The final good is produced combining all the intermediate d jointly in a CES fashion where the

elasticity is given by α, and the share used in the production function is µd. Specifically,

Tjt =
(∑

d

µdY
α
djt

)1/α

3.5.1 Intermediates Sector

The production function in equation 10 is a CES that uses two types of labor Hdjt and Ldjt as

imperfect substitute inputs.15

Ydjt = [ηLdjtL
ρ
djt + ηHdjtH

ρ
djt]

1
ρ , ∀ j = {1, ..., N} (10)

ηHdjt and ηLdjt denote the productivity of H and L, respectively, in sector d at location j for

15I do not include physical capital in this model since my focus is on the composition of the labor force and
human capital. However, the consequences of including capital might differ depending on whether capital is mobile
or immobile.
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time t. Productivity is divided into an exogenous and an endogenous component.16 Departing from

the standard formulation of a CES as in Katz and Murphy (1992), I follow the recent literature

on agglomeration in order to make productivity dependent on both endogenous and exogenous

components. Endogenous differences in productivity depend on the industry mix in the location.

As Diamond (2016) argues, the literature on social returns to education has shown that areas with

a higher concentration of college graduates are more productive due to knowledge spillover.17

Adding knowledge spillover through endogenous productivity that derives from the skill ratio is

supported also by my empirical findings, as in section 2. These two facts suggest that 1) the higher

the skill ratio, the higher the wage premium in the location and 2) highly skilled workers migrate

to cities with a higher skill ratio more frequently than do less educated workers. These two facts

embrace the hypothesis that knowledge spillover can be higher in cities with a higher concentration

of highly skilled workers. Simultaneously, following Davis and Dingel (2014) and Baum-Snow

et al. (Forthcoming), the spillover effects also appear with respect to population, not just the skill

ratio.18 To allow for both effects, I write the expressions ηHdjt and ηLdjt as follows:

ηHdjt =

(
Hjt

Ljt

)γH

(Ljt+Hjt)
φHSλ

H

Ht exp(ξHdjt) ηLdjt =

(
Hjt

Ljt

)γL

(Ljt+Hjt)
φLSλ

L

Lt exp(ξLdjt)

where Skt is the exogenous skill-biased technology component for k ∈ {H,L}.19 The exoge-

nous productivity component is ξkdjt. ξkdjt at time 0 is given and then evolves according to:

ξkdjt = ξγ
2

kdjt−1

[ ∫
s

ω(j, s)ξkdst−1ds

]1−γ2

(11)

where ω(j, s) is a symmetric measure of distance between location j and location s and γ2 ∈
[0, 1].20 If γ2 < 1, then the productivity in location j is dependent on the productivity of the other

16Applying a change in variable as in Diamond (2016), Ydjt can be rewritten as a function of data
(wLjt, wHjt, Hdjt, Ldjt, Hjt, Ljt) and parameters (ρ, γL, γH , φL, φH). More details are given in the appendix
in section D.3.

17In the current version of Diamond (2016), spillovers are not modeled with parametric formulation but more
importance is given to utility spillovers. My paper, however, benefits by modeling productivity spillovers with specific
functional forms, especially for the counterfactual analysis.

18To guarantee the existence of a steady state, I will need to derive sufficient conditions to be imposed on the
agglomeration effect.

19In the Appendix, I present a version of the model with endogenous SBTC modeled as technology adoption in line
with Beaudry et al. (2010). However, this version does not reproduce features that I see in the data, such as correlation
between the skill premium and local supply of skilled labor.

20As a robustness test, I numerically test this productivity process, holding ω constant such that
∫
S
ωds = 1. The
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locations. This dependence will introduce convergence into the model through spatial knowledge

diffusion.

The profits π of the firm come from the following maximization problem:

πdjt = maxl, hpdjt[ηLdjtlρ + ηHdjth
ρ]

1
ρ −WHjth−WLjtl

where l and h are, respectively, the amount of less and highly skilled labor used by one firm

that produces the intermediate good d. pdjt is the price at which the intermediate d is sold. A free

entry condition drives profits to zero since the firms keep entering until the profits are equal to zero.

Therefore, a firm choosing its production in period t knows that its current and future profits are

going to equal zero. This result is extremely useful in solving the model. It means that the dynamic

component of the model is equivalent to a repeated static model, which facilitates the numerical

solution.

Since the labor markets are perfectly competitive, the wage in each location is equal to the

marginal product of labor as shown in equations 12 and 13, which derive the first-order condition

of the firms.

WHjt = pdjtηHdjt[ηLdjtL
ρ
djt + ηHdjtH

ρ
djt]

1
ρ
−1Hρ−1

djt (12)

WLjt = pdjtηLdjt[ηLdjtL
ρ
djt + ηHdjtH

ρ
djt]

1
ρ
−1Lρ−1

djt (13)

3.5.2 Housing Market

The supply of housing is a convex function of its price. The higher the price of housing, the higher

the supply.21

Ojt = Rµ
jt (14)

where the exponent µ represents the elasticity of housing and R is the rental rate of houses in

location j at time t. This equation mimics the housing sector following Ganong and Shoag (2017).

The idea behind this expression is that regulations affect the elasticity of supply as a direct cost

results are qualitatively unchanged.
21To create a fully dynamic housing model with investment decisions along the lines of Glaeser and Gyourko

(2006) is a possible extension of the paper. However, to avoid moving the focus of the paper away from skill-biased
technology and agglomeration, I keep the housing market as simple as possible. This simplification also enhances
comparability to Ganong and Shoag (2017). I run some simulations fluctuating the value of the parameter µ to very
large levels and to small levels to check how the housing would respond.
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shock. Local housing demand follows from the household problem and is given by:

Hjt

[
Ō + (1− θ)WHjt

Rjt

]
+ Ljt

[
Ō + (1− θ)WLjt

Rjt

]
(15)

The equilibrium is defined in appendix section A.4. I also treat existence and uniqueness

properties of the model. Finally, I also report a discussion about some assumptions of the model

such as the spatial technology diffusion, SBTC and parameter choice.

4 Estimation and Calibration of the Model
The numerical computation of the equilibrium of the model involves recruiting values for all pa-

rameters used in the equations above in addition to the values for initial productivity levels, ξkj0.

After obtaining these parameters, I compute the dynamic equilibrium by iterating a system of equa-

tions. In order to calibrate the model, I estimate the 10 parameters {θ, γp, γL, γH , ρ, φH , φL, λH , λL, γ2}
internally within the framework. There are two main reasons why I choose estimation over external

calibration for the core parameters. First, using parameters from the literature that studies other

periods produces inaccuracies. Second, in order to conduct a quantitative rather than a qualita-

tive analysis, I need to disentangle the quantitative importance of each of the model’s parameters.

Specifically, I need to distinguish the effect of agglomeration forces from the effects produced by

SBTC. Therefore, an identification procedure is necessary to clarify the individual importance of

each parameter. I calibrate the residuals parameters {m2H ,m2L, µ, Ō, α, µd,∀d} with data from

the literature.

4.1 Estimation of the Model
To estimate the set above of 10 parameters and initial ξH0 and ξL0, I exploit local exposure to SBTC.

It is very important to notice that all the fit of the model with the data and the counterfactuals

are conducted with a national change in SBTC, not local. This aligns with the main point of

the paper that is to study how the interaction between a national change in technology and local

agglomeration had local implications.
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4.1.1 Skill-Biased Technical Change

Autor and Dorn (2013) rank commuting zones by the intensity of the routine occupations.22 The

authors build an index of routinization in which they categorize all occupations by their intensity

of routinization. Each occupation υ is defined as routinized if the RTI (or routine task intensity) is

higher than the 66th percentile. If an occupation is defined as routinized, the arrival of computers

will have a large effect on it because routine occupations and computers are substitutes. For in-

stance, the car industry in Detroit was very affected by skill-biased technology (or routinization, in

specific) because the share of laborers working in routine-intensive occupations was very high for

both highly and less skilled workers. Using the same approach, I construct the RTI for both highly

and less skilled workers in each occupation, as shown in equations 16 and 17.

∆SLjt =
Υ∑
υ=1

(
Ljυt
Ljt
− Ljυt−10

Ljt−10

)
1 (RTIυ > RTIP66) (16)

∆SHjt =
Υ∑
υ=1

(
Hjυt

Hjt

− Hjυt−10

Hjt−10

)
1 (RTIυ > RTIP66) (17)

Autor and Dorn (2013) find that when the price of computers starts falling, workers in rou-

tinized occupations, who are substitutable by computers, see their wages erode. Therefore, MSAs

that specialized in routine occupations, both for highly and less skilled workers, experience relative

wage declines. ∆Skjt capture this idea well through the measure of routinization. Using this same

approach, I build the RTI in each occupation both for the highly skilled and less skilled workers

as in equations 16 and 17. ∆SHjt and ∆SLjt are two good proxies for how SBTC affects cities

in different ways depending on their composition.23 Figure 6 shows the evolution over time of the

aggregate measures. However, this is not a good measure of a productivity shock because it cor-

relates with contemporaneous and local changes that could affect wages. Following the approach

of Autor and Dorn (2013), I use national employment changes both for the highly skilled and less

skilled workers that are interacted with the share of RTI for the local industry 10 years ago as

22For a full definition of commuting zones, refer to the following link from the United States Department of Agri-
culture: http://www.ers.usda.gov/data-products/commuting-zones-and-labor-market-areas/

23While this approach provides a good proxy for the local impact of SBTC, it might not be the only one. Computer
prices might represent the arrival of computers and demonstrate how different cities are affected differently by com-
puter adoption. Beaudry et al. (2010) uses this approach. However, the available data stops in 2000. This shortfall
prevents me from recreating the full analysis through 2010 and is insufficient to estimate my model. For this reason, I
use Autor and Dorn (2013) approach, which is very flexible with data and allows me to build an index for all years in
the analysis.
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Figure 6: ∆SHjt and ∆SLjt aggregate over time
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instruments for ∆SLjt and ∆SHjt. These instruments can be described as:

∆S̃Hjt−10 =
∑
d

(Hd−jt −Hd−jt−10) (Rdjt−10) and ∆S̃Ljt−10 =
∑
d

(Ld−jt − Ld−jt−10) (Rdjt−10)

where −j is all cities in the sample other than MSA j, d is industries in the economy, and t is

time. Hd−jt and Ld−jt are, respectively, the number of highly skilled and less skilled workers in

each industry d at the national level at time t that excludes MSA j to avoid mechanical correlations.

Hd−jt−10 and Ld−jt−10 are the same lagged 10 years. Rdjt−10 is the share of routine occupations

among workers in each industry in a specific MSA j. Unlike Autor and Dorn (2013), I create both

the index and the instrument for highly skilled H and less skilled L. In this way, I produce extra

variation in the data and use the differential impact of technological shocks on the two categories

of workers. Differently from Autor and Dorn (2013) that aims at capturing the polarization, here

I also want to capture the skill differences. These instrumental variables, ∆ŜLjt−10 and ∆ŜLjt−10,

are useful in the estimation of the parameters of the model and in the construction of the moment

condition.

Table 5 presents the first-stage estimates for these instrumental variables. The predictive rela-

tionship between ∆SH and ∆ŜH is sizable and highly significant with F-statistics of 10 or above

in each decade as shown in Panel A. The predictive relationship between ∆S and ∆ŜL is sizable

and highly significant with F-statistics of 10 or above for the decades after 1980. However, the F-

statistics for the 1950s, 1970s, and 1980s are less than 10. Specifically, in the 1970s, the F-statistic
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is less than 7.24

4.1.2 Labor Demand

In order to estimate labor demand I use moment conditions that start from the labor demand curves

for highly and less skilled workers. The change in productivity levels that interact with changes in

demand shocks help to identify the core parameters. Using these conditions, I create moments in

order to estimate the set of parameters: {γH , γL, φH , φL, ρ, λH , λL γ2}. For this purpose, I start

by taking the logs and the first differences of equations 12, 13, which, respectively, give:

∆wLjt = (1− ρ)∆lnYdjt(ρ, γH, γL, φH, φL) + (ρ− 1)∆lnLdjt + γL∆ln
Hjt

Ljt
+

+φL∆ln (Hjt + Ljt) + λL∆SLjt + ∆ξLdjt

∆wHjt = (1− ρ)∆lnYdjt(ρ, γH γL, φH, φL) + (ρ− 1)∆lnHdjt + γH∆ln
Hjt

Ljt
+

+φH∆ln (Hjt + Ljt) + λH∆SHjt + ∆ξHdjt

Then, by using equation 11 and writing it in first differences, I can isolate ∆εkdjt, which is the

productivity component uncorrelated with technological diffusion:

∆ξHdjt = ξγ2Hdjt−1

(∫
s

ξHdst−1ds

)1−γ2
− ξγ2Hdjt−2

(∫
s

ξHdst−2ds

)1−γ2
+ ∆εHdjt (18)

∆ξLdjt = ξγ2Ldjt−1

(∫
s

ξLdst−1ds

)1−γ2
− ξγ2Ldjt−2

(∫
s

ξLdst−2ds

)1−γ2
+ ∆εLdjt (19)

Therefore, we can replace 18 and 19 respectively into 12 and 13 isolating ∆εHdjt and ∆εLdjt. In the

spirit of Diamond (2016) and Suárez Serrato and Zidar (2016), the identification strategy follows

from the changes in the labor supply that are uncorrelated with local productivity. Differently from

previous work, this estimation strategy takes into account the dynamic component of the model

and the fact that current local productivity is correlated with past productivity changes. Also, the

interaction of SBTC shocks with the cities’ housing supply elasticities leads to variation in the

labor supply that is uncorrelated with the unobserved changes in local productivity. The housing

supply affects the migration decisions in response to a labor demand shock. Differential housing

24As a robustness test, I estimate the model without the 1950s and the parameter estimates are unchanged.
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supply elasticities generate exogenous variation in the labor supply. I compare two cities, one has

a very elastic housing supply and the other has a very inelastic one, both experience an increase

in labor demand; and workers move to take advantage of these increases. But, once they move,

the MSA with more inelastic housing will have a higher increase in housing prices. Therefore, the

rent increase will prevent more in-migration in the MSA with higher housing prices for the same

level of labor demand shock that offsets the increase in wage through the labor-demand channel.

Specifically, the exclusion restrictions are:25

E(∆εHdjt∆Zjt) = 0 and E(∆εLdjt∆Zjt) = 0

Instruments : ∆Zjt =

 ∆ŜLjtx
reg
j ∆ŜHjtx

reg
j

∆ŜLjtx
unav
j ∆ŜHjtx

unav
j


The moment conditions are jointly combined with identifying cities’ supply curves and work-

ers’ labor supply to cities. Finally, they will be jointly estimated with a two-step GMM procedure.

4.1.3 Labor Supply

As specified above, the indirect utility for agent i of type k living in MSA j at time t can be written

as

Vikjt = δkjt + ζ ijt

where

δkjt =

[
θln(Wkjt −RjtŌ)+

+(1− θ)
[

ln(1− θ)Wkjt

Rjt

+ Ō)

]
+ (1− θ)

[
ln((1− θ)Wkjt −RjtŌ)

]
+

+γpln (Hjt/Ljt) + Akjt

]
The fact that the model does not rely on the agents’ history simplifies the estimation procedure

by causing it to resemble a static framework. The estimation of the labor supply follows from the

decision of the agents on where to live in each period. Because the utility component δkjt does

not depend on individual worker characteristics, the estimates for each type k is exactly equal to

25To improve the estimation, I supplement the routinization shock with a “classic” Bartik instrument. This instru-
ment increases the precision of the estimators.
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the ln population of each demographic group observed living in the MSA. Therefore, this is a

simplification with respect to Berry et al. (2004). I take the difference in mean utility δkjt over time

to get:

∆δkjt = θln
Wkjt −RjtŌ

(Wkjt−10 −Rjt−10Ō)
+

+(1− θ)
ln(1− θ)Wkjt

Rjt
+ Ō

ln(1− θ)Wkjt−10

Rjt−10
+ Ō

+ (1− θ) ln((1− θ)Wkjt −RjtŌ)

ln((1− θ)Wkjt−10 −Rjt−10Ō)
+

+γpln ∆(Hjt/Ljt) + ∆Akjt

Identifying workers’ preferences for wages, rent, non-traded local goods, housing, and amenities

requires variation in these MSA characteristics that is uncorrelated with local unobservable ameni-

ties ∆Akjt. This reasoning follows Diamond (2016). Specifically, I use SBTC shocks and their

interaction with the characteristics of the supply elasticity. For the exclusion restriction to be sat-

isfied, the set of instruments needs to be uncorrelated with unobserved exogenous changes in the

MSA’s local amenities. The key idea is that since SBTC shocks are driven by national changes in

industrial productivity, these shocks are unrelated to changes in local exogenous amenities. These

instruments can be supplemented with data to provide extra power in the identification process.

Specifically, I obtain the share of household expenditure on non-tradable goods, θ, from the litera-

ture. I also estimate the model without using the externally calibrated data by relying only on the

instruments for identification. Specifically, the moment restrictions are:

E(∆AHjt∆Zjt) = 0 and E(∆ALjt∆Zjt) = 0

Instruments: ∆Zjt =


∆ŜLjt ∆ŜHjt

∆ŜLjtx
reg
j ∆ŜHjtx

reg
j

∆ŜLjtx
unav
j ∆ŜHjtx

unav
j


All parameters are jointly estimated in a 2-stage GMM where standard errors are clustered at

the MSA level and there are decade fixed effects to account for national changes. Further, I test

whether the over-identification restrictions can be jointly satisfied.26

26To improve the precision of the estimates, I also add standard Bartik shocks in the instrumental set as in Diamond
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4.2 Migration Costs
By taking the differences in δkjt, migration costs mk2(j) are eliminated since they do not vary over

time. Therefore, another strategy is needed to calibrate the migration costs. To do so, I rely on

existing literature that has estimated migration costs using structural models. A famous work from

Kennan and Walker (2011) provides estimates of large moving costs from one state to the other

in the US but does not distinguish between high and less skilled workers. Notowidigdo (2011),

instead, provides separate migration costs for highly and less skilled workers, closely related to

what the migration costs in my settings look like. This makes his estimates applicable to my

setting. Specifically, Notowidigdo (2011) uses an exponential function to estimate migration costs.

The functional form he estimates is as follows:

mk2(j) =
σkexp(βkxj)− 1

βk

where xj relates to MSA characteristics such as population. This functional form is very

flexible since, despite having only two parameters, it has advantageous curvature features as No-

towidigdo (2011) discusses. Specifically, migration costs increase a lot when characteristics such

as population are low and increase rather than at higher levels of population. In order to check how

sensitive my model is to the estimates of the migration costs, I run some sensitivity analysis. The

results do change only mildly.

4.2.1 Estimation Results and Robustness

I use a GMM estimation procedure with data at the MSA level for 1940-2010 with data every 10

years and 14 industries. The results are reported in Table 6 where I run five model specifications

to test the sensitivity of the model. The main differences across the specifications are the endoge-

nous productivity spillover of size and skill ratio and the endogenous amenity supply. The first

specification only includes the endogenous spillover effect of skill. The second only include also

the spillover effects on population size. The third specification adds the endogenous amenities but

removes the spillover effects on population size. The fourth specification reports a “classic” model

with no production spillover, but only with endogenous amenities. The fifth and last specifica-

tion reports the full model that will be used for the rest of the analysis below. The results of the

estimates, overall, are thus in accordance with the literature.

(2016).
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Panel A reports the estimates for the labor supply parameters. Specifically, the share of ex-

penditure in housing, θ and the preferences for endogenous amenities γp. In column (1) and in

column (2), the estimates of θ is between 0.618 and 0.608. This indicates that about 60% of the

expenditures are on housing relative to the tradable good T. In column (3)-(5), when we include

the endogenous amenities, the estimates drop to a range between 0.421 and 0.446. This suggests

that the preference on housing shrinks when individuals assign a value to the local amenities. The

second parameter of interest of the labor supply side is γp estimated in specifications (3)-(5). In

the three specifications, the estimates are very similar. A 1% increase in the skill ratio increases the

local highly and less skilled working population by 0.927% in column (5). This value is lower than

that in Diamond (2016) and Albouy (2012). One explanation could be that my estimates relate to a

longer time period. Overall, these estimates show that workers, in general, prefer cities with higher

wages, lower rents, higher college share.

Panel B, instead, reports the parameters for the labor demand such as the inverse of the elasticity

of substitution ρ; the spillover effects of skill, γH and γL; the spillover effects of population size,

φH and φL; the scale effects on SBH and SBL. Additionally, it also reports the estimate on γ2,

the spatial technology diffusion parameter. In column (1), in the model with spillover effect of

skills, I estimate an elasticity of substitution of 2.5, which is the same as in Card (2009). This

elasticity jumps to 3.9 when I include also the spillover effects on size. In column (3), where I

remove the spillover effects on size but we do add the endogenous amenities, then, the estimate

is 2.1, closer to column (1). In the model with no spillover effects at all, the estimates drops

to 1.47. Finally, column (5), where I estimate the full model, the elasticity of substitution is 3.03.

Overall, the estimates seem to suggest that in a model with the spillover effects on production rather

than the ”classic” model, the elasticity of substitution between higher and less skilled workers

increases. The estimates of γH in all the specifications is positive and statistically significant. In

the specification of the model with no spillover effects of size (column (1) and column (3)), a 1%

increase in the share of highly skilled workers raises their wages by 0.72%. Instead, in column (2)

and (5), that include spillover effects of size, a 1% increase in the share of highly skilled workers

raises their wages by 0.545% and .528%, respectively. My estimates of γH are higher than the one

in Diamond (2016) and Moretti (2004) that find an estimate of 0.322 and 0.16, respectively. This

suggests that part of the positive effect of size is captured by skill composition. Overall, having a

higher share of highly skilled workers increases highly skilled workers’ wages by a non-negligible

amount. The same cannot be told about the wages of less skilled workers. In fact, the estimates of
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γL are between 0.056 and 0.118 but they are not statistically significant in any of the specifications.

The estimates of the spillover effects of size, φH for highly skilled workers are 0.271 and 0.253 in

column (2) and (5), respectively. This is equivalent to say that in the full model, a 1% increase in the

size of the city’s workforce raises the highly skilled wages by 0.253%. This effect is smaller than

the skill ratio effect but it is still non-negligible. For less skilled workers, the same doesn’t hold.

Baum-Snow and Pavan (2013) estimate that at least 23% of the overall increase in the variance

of log hourly wages in the US from 1979 to 2007 is explained by the more rapid growth in the

variance of log wages in larger locations relative to smaller locations. The estimates in column (2)

and (5) are around 0.210 and 0.211 but they are not statistically significant. Overall, the estimates

of the production spillover seem to suggest that being in a larger city and in a more skilled city

increases the wages of highly skilled workers but does not affect the wages of less skilled workers.

The estimates also suggest that the spillover on the skill ratio is quantitatively more important than

the size spillover. I also report the estimate for the coefficient for the SBTC measure. This estimate

serves as a scale of the effect for the rest of the analysis. λH , the estimate on the highly skilled are

slightly negative and close to 0. Instead, the estimates on λL are strictly negative and statistically

significant ranging between -.160 and -.998. This suggests that routinization had a negative impact

on the wages of the lower skilled workers but not on highly skilled workers.

Panel C reports the estimate of γ2 which is the most important parameter to regulate the degree

of spatial technology diffusion. With the except of specification (4) that does not have spillover

effects, the estimates are between 0.934 and 0.998. In the full model, we can interpret the result

as saying that technology diffuses at a rate of 4.9% every 10 years. If we compare this estimate

to Desmet et al. (2018), that use a value of 0.99 per year, then my estimates imply slightly lover

technology diffusion.

4.2.2 Other Calibrated Parameters

To complete the calibration of the model and compute its equilibrium, I borrow the other param-

eters from the literature. These values are reported in Table 7. To include housing in the model

with non-homothetic preferences, I also include a subsistence level of housing, Ō, from Ganong

and Shoag (2017), which is set to match the Engel curve for housing. To complete the housing

sector, I estimate a value for the elasticity of housing, µ. This elasticity is also borrowed from

Ganong and Shoag (2017). I chose this elasticity to generate a one-to-one relationship between

log prices and log per capita incomes in order to match the relationship from the data. The elas-
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ticity is equal to 0.4. This parameter decreases to 0.135 for the cities with higher regulations after

1980. The parameters of the migration cost function, which is exponential, are different for highly

skilled and less skilled workers. I borrow these estimates from Notowidigdo (2011), which uses an

identification strategy based on Bartik instruments. Given this functional form, it turns out that the

migration costs are about 1.16 that is higher for less skilled workers than for highly skilled workers

whose costs are equal to one. Another set of migration costs could have been estimated by using

the same approach as in Desmet et al. (2018). While Desmet et al. (2018) uses this procedure for

one type of workers, the analysis could be extended to two types of workers.27

5 Model Simulation and Counterfactuals
In this section, I first provide more details as to how I achieve the numerical computation of the

equilibrium. Second, I show how the model matches the non-targeted moments in the decline in β-

convergence. Specifically, the model fits well the decline in spatial convergence for highly skilled

workers. Third, I conduct a quantitative decomposition of each mechanism’s effect on the decline

in convergence. Fourth, I investigate whether the model matches other non-targeted moments such

as the “The Great Divergence” of skills, the secular decline in migration, and the increase in wage

dispersion among others. Fifth, I show how the increase in regional inequality fostered the trade-off

between aggregate inequality and growth.

The estimation procedure obtains the values for all 10 model parameters, the initial productivity

terms, and national measures of SBTC. Next, I compute the equilibrium of the model by solving a

system of equations for every period t that incorporates the productivity values from the previous

period.

The model can be reduced to 46 equations, as shown in the appendix. Given that the analy-

sis includes 240 cities, the iteration procedure contains 11,040 equations for each period t. The

equilibrium conditions correspond to equations 7, 8, 12 and 13. Because of the large number of

cities, the problem is highly dimensional. An extra complication to the model is the endogenous

agglomeration effects that could induce the system of equations to explode. However, the estimates

respect the restrictions imposed by the system and are stable. As a robustness test, I conduct a sen-

sitivity analysis and check whether the variation in the parameters changes the results substantially

and whether the system maintains wage convergence. More details about these conditions can be

27Extending the migration cost algorithm is not the primary focus of this paper and, therefore, it is left for future
work. The sensitivity analysis indicates that the migration costs do not change the non-targeted moments much.
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found in appendix’s section D.1.

5.1 Model vs. Data
In this section, I test how the model fits the data on regional convergence as shown in figure 1 and

2. Practically, I proceed in the following way:

1. I obtain the parameters estimates and ξH0 and ξL0 from the GMM estimation;

2. I initialize the model for 1940 using those values and a national average of SHt and SLt;

3. I solve the model for every period until 2010;

4. With the solved model, I run the same regression within my model as I did with the data in

section 2. Specifically, with model-generated measures of average wages, wages for highly

and less skilled workers since 1960, I estimate in the model the β, βk-convergence using the

specification 1 proposed in section 2, which follows from Baumol (1986).

In Figure 7, I plot the estimated β-convergence from the model and from the data to compare

them. The x-axis of figure 7 report the initial year of the convergence equation 1, therefore, the

analysis covers both the period since 1960 Overall, the match is satisfactory. The estimates from

the data and the model differ only by 0.005% points.

The left (right) plot in figure 8 compares the βH(βL)-convergence rates over time both in the

data and in the model. The estimates are very close over time. The model performs very satis-

factorily in fitting the wage convergence patterns in the non-targeted moment and the decline of

convergence for the higher (less)-skill group.

5.2 Quantitative Decomposition
After ensuring that the model fits the data, I calculate several counterfactual scenarios for the

β, βH , and βL convergence rates to assess the quantitative contributions of each of the model’s

mechanisms. Specifically, I proceed step-wise and sequentially “turn off” each component of the

model that contributes to the decline in wage convergence over time.

My counterfactual of interest is comparing estimates of β, βH and βL over time in the baseline

model with the estimates that I obtain once I “turn off” the mechanisms step-wise after 1980.

Figure 9 shows the 20-year window β convergence starting with 1979 as first year, When I set the

agglomeration forces, γH , γL, φH , φL, to 0 starting in year 1980, the change in β is quite dramatic
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Figure 7: Model Matching the Data on Wage Convergence
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Note: This figure shows a rolling estimate of the β-convergence with a rolling window of 20 years. The solid
line is the data for which we have observations every 10 years (that I smooth over time), while the dashed
line is the estimate of the β-convergence from the model for which we can compute a yearly estimate.

suggesting. Without agglomeration, convergence would have been much higher than it was in the

data until 1980-2000 time period. Then, it would have increased substantially initially but it would

have set around -0.5% in 1990-2010. When I additionally turn off also SBTC, setting λH and

λL to 0 the model predicts that overall β would have decreased less on impact than accounting

for agglomeration forces alone, but in 1990-2010, convergence would have been -1%, so much

higher than what is in the data. When I, respectively, set migration cost, mH2 and mL2, to 0 after

1980 and housing elasticity η to be the same as in the previous period, and Ō to 0. I find that

they move the convergence rate by only a few decimals in percentage points. Overall, the largest

decline is explained by the interaction between agglomeration and SBTC. In figure 10, I run the

same exercise as above, just isolating how βH changes over time in the different scenarios on the

left plot. The model with no agglomeration shows a similar pattern to the one of figure 9 with an

overall decrease in convergence ending at -0.75% in 2010. When turning off also SBTC forces,

the overall convergence rate would have declined to -0.78%. When switching off migration costs
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Figure 8: Model Matching the Data on High and Less Skilled Wage Convergence
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Note: This figure on the left (right) shows a rolling estimate of the βH (βL)-convergence with a rolling
window of 20 years. The solid line is the data for which I smooth the 20-year rolling estimate, while the
dashed line is the estimate of the β-convergence from the model for which I compute a yearly estimate.

and housing regulation changes, respectively, I find that they move the convergence rate by only a

few percentage points as for β. On the right plot of figure 10, I run the same exercise for βL. I find

that if agglomeration forces had been set to 0, then, overall, βL would have decreased to almost

-3.5% and finalized to -2.5% in 2010. However, when I also shut down also SBTC forces, the

exercise shows that convergence in the last 10-year window would have decreased more than in

the no agglomeration case than in the baseline, approximately to -1.7%, due to general equilibrium

forces. When turning off housing regulation changes and migration costs, respectively, I find that

they move the convergence rate by only few percentage points as for β and βH . The β-convergence

between 1980 and 2010 is estimated to be -1.5% a year. Overall, the main finding is that the bulk

of the decline in convergence after 1980 can be attributed to the interaction between SBTC and the

agglomeration forces.

The main takeaway of this counterfactual analysis is that the convergence rate with endogenous

productivity channels and SBTC are about 1.2% a year. But, if I shut down the productivity
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Figure 9: Quantitative Decomposition of Wage Convergence β
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Note: This figure shows the counterfactual exercises in which I turn off the agglomeration forces (dotted
blue), SBTC (small dotted black), migration cost (alternate dotted pink), and housing (large dotted red) one
after another.

channel, nominal wage convergence is about 1.1% a year. Table 9 reports the changes of the β,

βH and βL estimates with 30-years rolling windows between the 1960-1990 and 1980-2010 in

the full model and in the counterfactuals. Each column reports the estimates for a version of the

model. Panel A shuts down the element from the full model at the time. Instead, panel B removes

elements sequentially. A comparison between panel A and B tell us whether ordering matters.

Column (1) reports the estimated for the full model. It suggests that the β estimate change by

100% but most of the change is due to the change in βH and only mildly due to changes in βL.

Column (2) reports the estimates for the model without agglomeration forces. In this case the β

estimate would have dropped only by 17% mostly due to a drop in convergence in βH while βL

would have even increased. In column (3) without SBTC, the overall convergence would have

decreased by 34%, mostly due to a decrease in βH convergence. Finally, column (4) and (5),

respectively, show the results for the model without housing changes and for the model without

migration costs. In these two last cases the β estimates change only mildly, but quantitatively are

not very important. Column (1) and (2) in panel B are the same as in panel A. In column (3), the

change in β estimate would have been only 47% but it is mostly because there would have been a

decrease of 74% in βH . As in panel A, column (4) and (5) only count marginally.
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Figure 10: Quantitative Decomposition of Highly and Less Skilled Wage Convergence
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Note: This figure shows the counterfactual exercises in which I turn off the agglomeration forces (dotted
blue), SBTC (small dotted black), migration cost (alternate dotted pink), and housing (large dotted red) one
after another.

5.3 Decline in Gross Migration Flows over time
The decline in geographic migration, documented by Molloy et al. (2014), is another important

structural change that happened in the US in the last several years. In the early 1990s, about 3% of

Americans moved between states each year. But, today that rate has fallen by half. Gross flows of

people have declined by around 50% over the last 20 years. Schulhofer-Wohl and Kaplan (2017)

provide and test a theory of reduction in the geographic specificity of occupations coupled with

information technology and inexpensive travel. They find that these two mechanisms together

can explain at least half of the decline in gross migration since 1991. Can my framework help

to explain the decline in gross migration flow? Technological innovation increases the sorting

of skilled workers into skilled cities, and once workers are sorted, their incentive to move will

decrease over time since it will be harder to find a city with similar wages. If, moreover, the

technological shock persists over time, then this effect will become even stronger by decreasing

migration even further. For instance, suppose that a highly skilled worker lived in San Francisco in

the 1980s. When the technology shock arrives, the highly skilled worker would have less incentive

to move because San Francisco would have the highest wages for him or her. Another highly

skilled worker, who currently lives in Detroit, decides to move to San Francisco. Over time, the

incentive to migrate decreases because the workers will have a better match in their current MSA.
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This is supported by the evidence that the migration rate for skilled workers decreased more than

the migration rate for less skilled workers. Figure 13 shows that the model matches the data for

the trends in the migration rate over time. It shows that the rate of the decline is similar both for

the less skilled both in model and data.

5.4 Real Wage Convergence, Aggregate Prices, Inequality and Growth
With data on wages and local prices generated by the model, I calculate the real wages in each

city by dividing the nominal wage by the price index. In figure 15, I plot the evolution of the β

estimate for real wages. Unfortunately, while the availability of historical data on local prices is

very limited, this model allows to produce a time series of prices back to the 1940 by city. The

slope of the decline reproduced by the model is similar to the one in the data as the left plot shows.

The majority of the decline follows from the decline in the convergence of the highly skilled real

wages. The real wage convergence for less skilled workers is still around 2% a year. These findings

suggest that the decline in wage convergence did not solely happen for nominal wages but also for

real wages, which gives a better sense of the local purchasing power. It could have been the case

that prices had adjusted across space such that the differences had shrank, however, both data and

model suggest that it is not the case. Figure 14 shows the evolution of the variance of rents and

prices across cities. For both sets of prices, the variance was decreasing before 1980, but around

that time the trend reverted. So, despite the increase in price heterogeneity across cities, overall,

it is still the case that prices are following the trends in wages. Finally, using the estimates of

wages and prices at the local level, we can use the model to quantify the nationally aggregate real

wage growth predicted by the model. Then, we ask the question on how much the national real

wage growth would have been if the national SBTC shock had not happened and had not had an

effect through the mechanism presented in this paper. The left panel in figure 11 shows the time

evolution of skill premium. The model reproduces an increase in the national skill premium as we

see in the data with a jump around 1980. However, if agglomeration forces had not been there and

SBTC neither, then, we would have not observed an increase in the skill premium. The right panel

of figure 11, instead, shows the time evolution of the national real wages. The model suggests that

real wages growth would have been about .83% a year between 1960 and 2010, however, if SBTC

had not happened, aggregate growth would have been only .51% a year in the same time frame.

Therefore, if on the one hand, SBTC induced more inequality both at the national and regional

level, at the same time, it increased overall aggregate growth by the sorting mechanism of highly
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Figure 11: Time Evolution of Aggregate Skill Premium and Real Wages
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skilled workers to highly skilled cities.

6 Conclusions and Future Directions
In this paper, I show that the decline in wage convergence among MSAs that is observed after

1980 is largely due to the decline in wage convergence among highly skilled workers, whereas

the wage convergence among less skilled workers does not decline at all. Thus, any account of

convergence and its decline must distinguish between skill groups. Motivated by this observation, I

develop a quantitative spatial equilibrium model with technology diffusion to reconcile the patterns

of regional convergence and other salient moments’ changes in the regional data in the last 70

years; and determine the aggregate growth and inequality implications of those. To the best of my

knowledge, this paper is the first to point to the interaction of technology and space in the trade-off

between inequality and growth.

Understanding what stopped income convergence across the US regions and increased income

inequality for different levels of skills might have important policy implications especially for

the regions that are not able to grow like richer regions. Dealing with sustaining the growth in the

richest MSAs and arresting the decline in poorer MSAs is an important challenge for policymakers.

This paper plants the seeds for a broader research agenda. Specifically, how can we rationalize

the regional inequality patterns across countries? The framework of this paper is flexible enough

that it can be extended to perform several types of analysis, including a cross-within-country anal-

ysis. In recent work, we find that the speed of regional convergence has increased across countries

but it has decreased within country for a large sample of countries in the world. In a nutshell,
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although poorer countries keep growing at a faster rate than rich countries, their growth rates are

mainly driven by few regions, leaving others behind (Chatterjee and Giannone, 2021). This high-

lights the pressure to deepen our understanding of the changing patterns of regional convergence.

40



References
Acemoglu, Daron and David Autor, Skills, Tasks and Technologies: Implications for Employ-

ment and Earnings, Vol. 4 of Handbook of Labor Economics, Elsevier,

Albouy, David, “Are Big Cities Bad Places to Live? Estimating Quality of Life across Metropoli-
tan Areas,” Working Paper 14472, National Bureau of Economic Research November 2012.

Allen, Treb and Costas Arkolakis, “Trade and the Topography of the Spatial Economy,” The
Quarterly Journal of Economics, 2014, 129 (3), 1085–1140.

Autor, David and David Dorn, “The Growth of Low-Skill Service Jobs and the Polarization of
the U.S. Labor Market,” American Economic Review, 2013, (103(5), 1553–1597).

Autor, David H., David Dorn, and Gordon H. Hanson, “Untangling Trade and Technology:
Evidence from Local Labour Markets,” The Economic Journal, 2015, 125 (584), 621–646.

Bajona, Claustre and Timothy Kehoe, “Trade, Growth, and Convergence in a Dynamic
Heckscher-Ohlin Model,” Review of Economic Dynamics, July 2010, 13 (3), 487–513.

Barro, Robert J. and Xavier Sala i Martin, “Convergence,” Journal of Political Economy, 1992,
100 (2), 223–251.

and , “Technological Diffusion, Convergence, and Growth,” Journal of Economic Growth,
Mar 1997, 2 (1), 1–26.

Baum-Snow, Nathaniel and Ronni Pavan, “Inequality and City Size,” The Review of Economics
and Statistics, 2013, 95 (5), 1535–1548.

, Matthew Freedman, and Ronni Pavan, “Why Has Urban Inequality Increased?,” American
Economic Journal: Applied Economics, Forthcoming.

Baumol, William, “Productivity Growth, Convergence, and Welfare: What the Long-run Data
Show,” American Economic Review, 1986, 76 (5), 1072–85.

Beaudry, Paul, Mark Doms, and Ethan Lewis, “Should the Personal Computer Be Considered
a Technological Revolution? Evidence from U.S. Metropolitan Areas,” Journal of Political
Economy, 2010, 118 (5), 988 – 1036.

Bernard, Andrew B and Charles I Jones, “Productivity and Convergence across U.S. States and
Industries,” Empirical Economics, 1996, 21 (1), 113–35.

Berry, Christopher R. and Edward L. Glaeser, “The Divergence of Human Capital Levels
Across Cities,” September 2005, (11617).

Berry, Steven, James Levinsohn, and Ariel Pakes, “Differentiated Products Demand Systems
from a Combination of Micro and Macro Data: The New Car Market,” Journal of Political
Economy, February 2004, 112 (1), 68–105.

41



Bound, John and George Johnson, “Changes in the Structure of Wages in the 1980’s: An Eval-
uation of Alternative Explanations,” American Economic Review, June 1992, 82 (3), 371–92.

Burstein, Ariel, Gordon Hanson, Lin Tian, and Jonathan Vogel, “Tradability and the Labor-
Market Impact of Immigration: Theory and Evidence from the U.S.,” Working Paper 23330,
National Bureau of Economic Research April 2017.

Caliendo, Lorenzo, “On the Dynamics of the Heckscher-Ohlin Theory,” 2011.

, Maximiliano Dvorkin, and Fernando Parro, “Trade and labor market dynamics: General
equilibrium analysis of the china trade shock,” Econometrica, 2019, 87 (3), 741–835.

Card, David, “Immigration and inequality,” American Economic Review, 2009, 99 (2), 1–21.

and John E. DiNardo, “Skill-Biased Technological Change and Rising Wage Inequality: Some
Problems and Puzzles,” Journal of Labor Economics, October 2002, 20 (4), 733–783.

Caselli, Francesco and Wilbur John Coleman, “The U.S. Structural Transformation and Re-
gional Convergence: A Reinterpretation,” Journal of Political Economy, June 2001, 109 (3),
584–616.

Chatterjee, Shoumitro and Elisa Giannone, “Unequal Global Convergence,” 2021.

Comin, Diego A. and Martı́ Mestieri Ferrer, “If Technology Has Arrived Everywhere, Why has
Income Diverged?,” American Economic Journal: Macroeconomics, Forthcoming, (19010).

Davis, Donald R. and Jonathan I. Dingel, “The Comparative Advantage of Cities,” NBER Work-
ing Papers, October 2014.

Desmet, Klaus and Esteban Rossi-Hansberg, “Spatial Development,” American Economic Re-
view, April 2014, 104 (4), 1211–43.
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A Appendix

A.1 Definitions

MSA The unit of geography is the metropolitan statistical area (MSA) that is “a region con-

sisting of a large urban core together with surrounding communities that have a high degree of

economic and social integration with the urban core.” I rank the MSAs by share of highly skilled

workers over less skilled workers. I define “highly skilled” MSAs as those that have a concentra-

tion of highly skilled workers larger than the national average. The remainder are defined as “less

skilled” MSAs. I refer to MSAs as cities in the first part of the paper for a less technical discussion.

There are two main reasons why I pick MSAs over states or over counties. First, MSAs are the

smallest unit of analysis for which I can measure wages by skill group, number of highly and less

skilled, rent by skill group back to 1940. Second, MSAs are consistent with the mechanism I want

to explain in this paper. For instance, agglomeration happens in San Francisco, not in California.

The Census consistently includes 240 MSAs across all four decades from 1980 to 2010 but from

1940 to 1970. Following the definitions of metropolitan and micropolitan statistical areas, I try to

homogenize the definitions of MSAs over time. However, this is not possible for all cites.28

Highly and Less skilled Workers I follow the previous work such as Acemoglu and Autor

(2011) that use education as a proxy for skills. Then, I create two groups: “highly skilled” workers

are the ones who have at least a 4-year bachelor’s degree while “less skilled” workers are those

whose education is less than that.

Composition Adjusted Wages I compute hourly wages at the individual level as annual

wages divided by the number of hours worked in the last year. My estimation sample consists

of individuals between 21 and 55 years of age who were employed at least 40 weeks per year

and were not self-employed. However, for a robustness check, I relax the sample restrictions and,

qualitatively, the results are unchanged. To conduct my analysis, I do a compositional adjustment to

the wage measure reported in the Census data. This is possible thanks to the high dimensionality of

the available data. I adjust the wages for age, sex, nativity, and race. The changing composition of

workers could explain some of the variation in nominal wages across MSAs over time. To account
28Most of my analyzes are also run at the state level, which eliminates any concern of time comparability. The

results of the analysis that follow are very similar for states and MSAs. In future work, I plan to improve the time
homogenization and also compare my results with those conducted at the level of commuting zones (Refer to section
4.1.1 for a definition of commuting zones).
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for this, I run the following regression on the Census and ACS data to create a composition adjusted

wage measure (at least based on observables):

wijt = γt + ΓtXit + εijt

where wijt is the log of hourly wages of worker i living in MSA j at time t. The workers charac-

teristics are grouped in the variable that I call Xit. The Xit includes dummies for age (21-30,31-

40,41-50,51-55), one dummy for gender, a US-born dummy (whether the worker was US-born

or not), and a series of race dummies with being white the omitted group. In my controls I do

not include the education status of the worker since I am going to compute the skill premium for

college graduate versus less than college graduate workers.

Migration Rates I construct migration rates using data from March CPS. The reason why

I take this data is that they are better suited than the Census data for this task. Unfortunately,

information on migration is quite sparse in the Census. My estimation sample consists of all

individuals between 16 and 55 years of age for which I have observations for the years from 1962

to 2009 available in the March CPS, with the exclusion of 1972-1975 and 1977-1979. I compute

the migration rate in two ways. First, I use information collected in the CPS. I code someone

as migrant if they migrated from a different MSA within the last year. I count all the workers

that migrated by year, highly skilled (yes or no), and MSA weighted by their population shares

in the MSA. Then, I divide this number by the population in the MSA. This procedure gives me

the migration share for each MSA by education for each year in the sample available from CPS.

To make sure that my approach is robust to other ways of computing the migration shares, I also

calculate the number of workers living in a MSA minus the number of workers that were actually

born in that MSA. The population in the MSA then divides everything. The results that I will show

in the next section are robust to both approaches. In order to avoid potential biases because of

the change in composition of the labor force (besides education), I control for sex, age, race, and

citizenship when I run regression 3.
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A.2 Tables

Table 1: Wage Convergence Rates

Panel A: Convergence Rate
(1) (2) (3) (4) (5) (6)

1940-1980 1980-2010 1980-2010-IV 1940-1980 1980-2010 1980-2010-IV
Log hourly wage, 1940 -0.0127∗∗∗ -0.0159∗∗∗

(-12.44) (-20.54)
Log hourly wage, 1980 -0.00122 0.00333 -0.00891∗∗ -0.00164

(-0.25) (0.46) (-2.91) (-0.25)

Panel B: Convergence Rate by Skills
1940-1980 1980-2010

No College College No College College

Panel B.1
Log hourly wage, 1940 -0.0123∗∗∗ -0.0149∗∗∗

(-14.32) (-12.63)
Log hourly wage, 1980 -0.0169∗∗∗ 0.000638

(-9.70) (0.30)

Panel B.2

Log hourly wage, 1940 -0.0143∗∗∗ -0.0216∗∗∗

(-16.48) (-21.30)

Log hourly wage, 1980 -0.0200∗∗∗ -0.00785∗∗∗

(-12.31) (-3.87)

N 132 132 247 247

Note: This table reports the estimates of the β-convergence plotted in figures 1 and 2. In Panel A, I report the
estimate of the β coefficient for the whole sample underlying figure 1. In column (1), there are β estimates
for 1940-1980, and the observations are population-weighted. Column (2) has the same estimation but for
1980-2010. In columns (4) and (5), the estimations are not population-weighted. Column (3)-(6) have the
population-weighted(unweighted) estimates for the IV regression where wages in 1970 are the instrument.
In Panel B.1, I report the estimates of the β-convergence corresponding to figure 2. In column (1), I report
the estimate for less skilled workers for 1940 and 1980; in column (2), for college graduates in the same
time period. In columns (3) and (4), the estimates are once again for the two groups, but for the 1980-2010
period. In Panel B.2, I report the same estimates as in Panel B.1, but the observations are not population-
weighted. All the standard errors are robust. T-stats are in parenthesis. The ***, **, and * represent
statistical significance at the 0.001, 0.01, and 0.05 levels respectively. The dependent variable in each
regression is the annual average wage growth between the initial and final year reported at the top.
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Table 2: Skill Premium by College Ratio of Cities over Time

(1) (2)
Skill Premium Skill Premium

College Ratio in 1940 -0.0631 (-0.43) 0.0775 (1.29)
College Ratio in 1950 -0.0475 (-0.51) 0.0199 (0.30)
College Ratio in 1970 -0.0505 (-0.39) 0.0132 (0.10)
College Ratio in 1980 -0.0824 (-1.08) 0.0308 (0.39)
College Ratio in 1990 -0.267∗∗∗ (-3.85) -0.138 (-1.50)
College Ratio in 2000 0.0621 (0.85) 0.186 (1.93)
College Ratio in 2010 0.217∗∗ (2.99) 0.316∗∗∗ (3.45)
Population 0.100∗∗∗ (7.52)
Time fixed effects yes yes
N 1480 1480

Note: This table reports the coefficients for the OLS. The dependent variable is the skill premium measured
as the difference between the log wages of college graduates and less skilled workers. The only difference
between column (1) and column (2) is that I control for population in column (1). The t-statistics are
presented in parentheses. Observations are clustered at the state level. The ***, **, and * represent statistical
significance at the 0.001, 0.01, and 0.05 levels respectively.
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Table 3: Migration over Time by College Ratio of Cities by Year

(1) (2)
Migrant Migrant

Migrant
Coll. Ratio*High Skill in 1964 0.0275 (1.07) 0.0136 (0.51)
Coll. Ratio*High Skill in 1965 0.0744∗∗∗ (4.63) 0.0589∗∗∗ (3.54)
Coll. Ratio*High Skill in 1966 0.0590∗∗∗ (3.45) 0.0481∗∗ (3.02)
Coll. Ratio*High Skill in 1967 0.102∗∗∗ (5.35) 0.0926∗∗∗ (5.25)
Coll. Ratio*High Skill in 1968 0.0997∗∗∗ (5.41) 0.0920∗∗∗ (4.87)
Coll. Ratio*High Skill in 1969 0.0918∗∗∗ (3.32) 0.0799∗∗ (2.99)
Coll. Ratio*High Skill in 1970 0.0697∗∗∗ (5.61) 0.0630∗∗∗ (4.81)
Coll. Ratio*High Skill in 1971 0.0886∗∗∗ (5.53) 0.0770∗∗∗ (4.66)
Coll. Ratio*High Skill in 1976 0.0398 (1.38) 0.0238 (0.81)
Coll. Ratio*High Skill in 1980 0.221∗∗∗ (3.90) 0.212∗∗∗ (3.76)
Coll. Ratio*High Skill in 1981 0.0983∗∗∗ (3.54) 0.0882∗∗ (3.07)
Coll. Ratio*High Skill in 1982 0.134∗∗ (3.27) 0.125∗∗ (3.00)
Coll. Ratio*High Skill in 1983 0.0779∗∗∗ (5.35) 0.0728∗∗∗ (4.83)
Coll. Ratio*High Skill in 1984 0.0951∗∗∗ (6.03) 0.0898∗∗∗ (5.10)
Coll. Ratio*High Skill in 1985 0.193∗∗∗ (3.37) 0.193∗∗∗ (3.31)
Coll. Ratio*High Skill in 1986 0.0897∗∗∗ (6.06) 0.0854∗∗∗ (5.73)
Coll. Ratio*High Skill in 1987 0.0708∗∗ (2.85) 0.0719∗∗ (2.96)
Coll. Ratio*High Skill in 1988 0.0688∗∗∗ (3.52) 0.0693∗∗∗ (3.62)
Coll. Ratio*High Skill in 1989 0.0791∗∗∗ (4.23) 0.0798∗∗∗ (4.29)
Coll. Ratio*High Skill in 1990 0.0795∗∗∗ (4.94) 0.0813∗∗∗ (5.16)
Coll. Ratio*High Skill in 1991 0.0601∗∗ (2.70) 0.0644∗∗ (2.82)
Coll. Ratio*High Skill in 1992 0.118∗∗∗ (4.86) 0.105∗∗∗ (4.33)
Coll. Ratio*High Skill in 1993 0.107∗∗∗ (4.02) 0.0942∗∗∗ (3.53)
Coll. Ratio*High Skill in 1994 0.115∗∗∗ (5.29) 0.108∗∗∗ (4.89)
Coll. Ratio*High Skill in 1995 0.0136 (0.54) 0.00593 (0.23)
Coll. Ratio*High Skill in 1996 0.123∗∗∗ (6.07) 0.108∗∗∗ (5.22)
Coll. Ratio*High Skill in 1997 0.0971∗∗∗ (4.63) 0.0857∗∗∗ (4.02)
Coll. Ratio*High Skill in 1998 0.133∗∗∗ (6.66) 0.120∗∗∗ (5.77)
Coll. Ratio*High Skill in 1999 0.103∗∗∗ (4.69) 0.0939∗∗∗ (4.21)
Coll. Ratio*High Skill in 2000 0.122∗∗∗ (3.40) 0.112∗∗ (2.97)
Coll. Ratio*High Skill in 2001 0.0817∗∗ (2.87) 0.0757∗∗ (2.60)
Coll. Ratio*High Skill in 2002 0.124∗∗∗ (4.62) 0.116∗∗∗ (4.35)
Coll. Ratio*High Skill in 2003 0.0828∗∗ (2.62) 0.0771∗ (2.38)
Coll. Ratio*High Skill in 2004 0.0927∗∗∗ (3.39) 0.0863∗∗ (3.02)
Coll. Ratio*High Skill in 2005 0.0792∗∗ (3.22) 0.0714∗∗ (2.87)
Coll. Ratio*High Skill in 2006 0.0974∗∗∗ (3.98) 0.0915∗∗∗ (3.70)
Coll. Ratio*High Skill in 2007 0.0986∗∗∗ (4.23) 0.0928∗∗∗ (3.95)
Coll. Ratio*High Skill in 2008 0.115∗∗∗ (5.28) 0.108∗∗∗ (4.87)
Time fixed effects yes yes
Controls No yes
N 1411802 1411802

This table reports the marginal effects for every year for the probit regressions. The dependent variable
is the decision on whether to move or not. Standard errors are presented in parentheses and are clustered
at the state-level. The ***, **, and * represent statistical significance at the 0.001, 0.01, and 0.05 levels
respectively. Column (2) is identical to column (1) except that column (1) controls for population.
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Table 4: ∆H
L

vs. Initial H
L

in the Data

(1) (2) (3) (4) (5) (6)
1940-1950 1950-1970 1970-1980 1980-1990 1990-2000 2000-2010

Panel A
H
L

-0.218∗ -0.439∗∗∗ 0.0355 -0.00158 0.0708∗∗∗ 0.0401∗

(0.115) (0.0887) (0.0587) (0.0305) (0.0238) (0.0218)

1950-1970 1950-1980 1970-1990 1980-2000 1990-2010

Panel B
H
L

0.240∗∗ -0.320∗∗∗ 0.0970 0.0770∗∗ 0.0797∗∗

(0.117) (0.0963) (0.0808) (0.0390) (0.0386)

N 103 143 119 247 238

Note: Panel A shows the estimates of running the initial H
L on the growth over 10 years, ∆H

L . Panel B
replicates the same analysis as Panel A for the growth over 20 years, ∆H

L . Standard errors are in brackets.
The ***, **, and * represent statistical significance at the 0.001, 0.01, and 0.05 levels respectively.

Table 5: First-Stage Estimates of Models for Routine Occupation Share Measures

(1) (2) (3) (4) (5) (6)

Panel A: Dep. Variable SHjt

∆ŜHjt 3.046∗∗∗ 3.643∗∗∗ 2.852∗∗∗ 4.418∗∗∗ 3.062∗∗∗ 3.043∗∗∗

(0.620) (1.024) (0.632) (1.118) (0.719) (0.737)
F 24.12 12.65 20.34 15.63 18.14 17.06

Panel B: Dep. Variable SLjt
∆ŜLjt 1.021∗∗∗ 0.891∗∗ 0.850∗∗∗ 2.483∗∗∗ 2.535∗∗∗ 2.511∗∗∗

(0.341) (0.344) (0.285) (0.531) (0.527) (0.591)

F 8.975 6.709 8.891 21.86 23.15 18.06
N 144 119 270 249 283 283

Note: In this table I report the first-stage estimates between the instrumental variable and the measure of
skill bias. Standard errors are in brackets. In column (1), I run the regression for 1950 and in column (2)-(6)
for 1970-2010. The sample does not contain 1960. In panel A, I report the results for highly skilled workers
and in panel B for less skilled workers. The ***, **, and * represent statistical significance at the 0.001,
0.005, and 0.01 levels respectively.
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Table 6: Model Estimates for 1940-2010

(1) (2) (3) (4) (5)

A. Labor Supply
θ Share of Housing 0.618∗∗∗ 0.608∗∗∗ 0.431∗∗∗ 0.446∗∗∗ 0.421∗∗∗

(0.102) (0.100) (0.117) (0.112) (0.116)
γp Elast. w.r. t. to H

L
0.914∗∗∗ 0.940∗∗∗ 0.927∗∗∗

(0.119) (0.113) (0.122)

B. Labor Demand
ρ 1

1−ρ=elast. of substitution 0.603∗∗∗ 0.748∗∗∗ 0.526∗∗∗ 0.319∗ 0.670∗∗∗

(0.226) (0.183) (0.165) (0.166) (0.194)
γH Wage Elast. w.r.t. H

L
for H 0.722∗∗∗ 0.545∗ 0.723∗∗∗ 0.528∗∗

(0.280) (0.280) (0.252) (0.259)
γL Wage Elast. w.r.t. H

L
for L 0.073 0.056 0.118 0.113

(0.245) (0.262) (0.217) (0.223)
φH Wage Elast. w.r.t. (H + L) for H 0.271∗∗∗ 0.253∗∗∗

(0.080) (0.079)
φL Wage Elast. w.r.t. (H + L) for L 0.210 0.211

(0.133) (0.141)
λH Wage Elast. w.r.t SH for H -0.096 -0.048 -0.083 0.072 -0.067

(0.109) (0.128) (0.105) (0.123) (0.113)
λL Wage Elast. w.r.t SH for L -0.237∗∗ -0.160 -0.228∗ -0.998∗∗∗ -0.160

(0.116) (0.143) (0.128) (0.236) (0.150)

A. Diffusion
γ2 Tech. Diffusion 0.998∗∗∗ 0.934∗∗∗ 0.997∗∗∗ 1.190∗∗∗ 0.951∗∗∗

(0.051) (0.067) (0.051) (0.035) (0.064)
Observations 705 705 705 705 705

Note: In this table, I report the moments and the estimates of the model. The ***, **, and * represent
statistical significance at the 0.001, 0.005, and 0.01 levels respectively.

Table 7: Externally calibrated Parameters

Parameter Value Literature
Subsistence level of Housing: Ō 0.25 Ganong and Shoag (2017)
Elasticity of Supply Housing: µ 0.4 Ganong and Shoag (2017)
Migration costs: σL and βL -.065 and -.861 Notowidigdo (2011)
Migration costs: σH and βH -.066 and -1.044 Notowidigdo (2011)
Share of each Intermediate: α 0.51 Burstein et al. (2017)
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Table 8: ∆H
L

vs. Initial H
L

in the Model

(1) (2) (3) (4) (5) (6) (7)
1940-1950 1950-1960 1960-1970 1970-1980 1980-1990 1990-2000 2000-2010

H
L

-0.245∗∗∗ -0.244∗∗∗ -0.244∗∗∗ -0.212∗∗∗ 0.332∗∗∗ 0.170∗∗∗ 0.0826∗∗∗

(0.00248) (0.00259) (0.00271) (0.00861) (0.0289) (0.00983) (0.00493)

Note: Column (1) shows the estimates of running the initial HL in 1940 on the growth over the 30 years, ∆H
L

between 1940 and 1970. Columns from (2) to (7) show the estimates of running the initial HL on the growth
over 20 years for each period from 1960-1980 until 1990-2010.

Table 9: Change in β, βH and βL estimates in the Model over Time

Full No Agglom. No SBTC No Housing No Migr. Cost
Panel A: Singular Decomposition
∆β -100.37 -17.63 -34.28 -96.16 -97.50
∆βH -187.67 -76.63 -62.55 -183.03 -185.51
∆βL -23.52 35.55 -8.41 -20.30 -19.99
Panel B: Sequential Decomposition
∆β -100.37 -17.63 -47.13 -47.73 -46.35
∆βH -187.67 -76.63 -74.87 -76.68 -73.77
∆βL -23.52 35.55 -21.91 -21.64 -21.58

Note: Both in Panel A and B, the first row of the table shows the results for the change in β overall between
1980 and 2010 in the model. The second(third) row has the results for the increase in βH (βL) in the model.
In panel A, I remove one at the time the different channels from the model. In panel B, in each column I
vary from the full model to removing step-wise the elements of the model.
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A.3 Figures
Figure 12: Skill Premium by MSA Population Levels
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Note: This figure plots the estimate of the coefficient β for the regression 2. On the horizontal axis, I have
the decades from 1940 to 2010, while on the vertical axis, I have the estimate of coefficient β for each
decade from 1940 to 2010. Moreover, there is a line starting at zero on the vertical axis.
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Figure 13: Migration Rate Over Time

1960 1980 2000 2020
1.5

2

2.5

3

3.5

4

0

2

4

6

8

10

12

%MigrH-Data %MigrH-Model

1960 1980 2000 2020
1

1.5

2

2.5

3

0

1

2

3

4

5

%MigrL-Data %MigrL-Model

Note: This figure shows the evolution of the migration rate for highly skilled and less skilled workers over
time for both the model and the data. On the left, I plot the migration rates generated by the model with
a cross and those generated by the data with a circle. On the right plot, I plot the migration rates for less
skilled workers.
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Figure 14: Time Evolution of Rents and Prices Variance
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Figure 15: Model Matching Data on Real Wage Convergence
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Note: This figure on the left (center)(right) shows a rolling estimate of the β(βH )(βL)-convergence with a
rolling window of 20 years. The solid line is the data for which I smooth the 20-year rolling estimate, while
the dashed line is the estimate of the β-convergence from the model for which I compute a yearly estimate.
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Figure 16: Wage Convergence across MSAs before and after 1980 by Skill Group - Low housing
elasticity states
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Note: This figure shows two scatter plots of log wages by MSA in the initial year against the annual average
growth of wages in the final year by skill type (highly skilled and less skilled workers) in cities that are in
states with low housing elasticities. Specifically, on the left-hand side (right-hand side), I plot the demeaned
log wages in 1940 (1980) by MSA against the annual average growth of wages between 1940 (1980) and
1980 (2010) by skill type (highly skilled and less skilled workers). The line in each graph represents a
weighted regression line from the bi-variate regression.

A.4 Equilibrium and Discussion of the Assumptions
I define the dynamic competitive equilibrium of this model as follows:

Definition The equilibrium consists of a set of allocations {{Ldjt, Hdjt}Dd=1}Jj=1 and a set

of prices {{Pdjt}Dd=1, Rjt}Jj=1, wages {WHjt,WLjt}Jj=1, such that given {{ξLdj0, ξHdj0}Dd=1}Jj=1,

{{ALjt, AHjt}Tt=1}Jj=1, a set of parameters normalizing Pjt = Pt = 1 and
∑

j (Ljt +Hjt) = 1 in

each time period t:

1. Given migration costs and idiosyncratic preferences, workers choose their location and con-

sumption to maximize the utility satisfying equations 7, 8 and 9;

2. Firms maximize profits such that equations 12, 13 hold;

3. There is free entry for firms into the tradable sector such that π = 0;

4. Labor markets clear such that 7 and 8 hold;
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5. Housing markets clear such that the demand of equation 15 is equal to the supply in equation

14:

Rµ
jt = Hjt

[
Ō + (1− θ)WHjt

Rjt

]
+ Ljt

[
Ō + (1− θ)WLjt

Rjt

]
6. Total labor supplies are the sum of labor demanded in each intermediate such that

Ljt =
D∑
d=1

Ldjt and Hjt =
D∑
d=1

Hdjt

7. Technology evolves according to 11.

A.5 Existence and Uniqueness
Because of the endogenous productivity channels, this model might allow for multiple equilibria.

These equilibria might happen if the agglomeration forces are strong enough that the workers ag-

glomerate all together in the same locations. To avoid this problem, I must impose restrictions on

the parameters governing the production function such that the agglomeration forces are compen-

sated for by dispersion forces. Allen and Arkolakis (2014) prove the existence and uniqueness of

an equilibrium in a static model with agglomeration forces. Desmet et al. (2018) extend the proof

to a dynamic model with only one type of agent. Both studies find that the strength of agglom-

eration and dispersion externalities are crucial in guaranteeing the uniqueness and existence of a

spatial equilibrium. Unfortunately, the proofs of Allen and Arkolakis (2014) and Desmet et al.

(2018) do not apply and cannot be extended to a case with heterogeneous labor aggregated in a

CES fashion. Therefore, I proceed with solving the model for several sets of agglomeration pa-

rameters. These simulations show that the values of the agglomeration parameters for which the

model has multiple equilibria are definitely higher than the ones I estimate in section 4.1.

A.6 Discussion
Spatial Technology diffusion: Introducing this persistent productivity formulation with spatial dif-

fusion generates convergence directly in the model, as in Barro and Sala-i Martin (1997), Caselli

and Coleman (2001), and Desmet et al. (2018). Unlike a model that compares steady-states, con-

vergence generated with a diffusion mechanism is better suited to the explanation in Barro and

Sala-i Martin (1997) that argues that a neoclassical model with friction to capital mobility re-

produces the convergence rates across countries and within the US. Caselli and Coleman (2001),

instead, build a dynamic model in which total factor productivity (TFP) grows faster in agriculture,

there are declining costs of acquiring human capital, and farm goods are a necessary good. These
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two models introduce convergence through two different mechanisms. Also, Caliendo (2011) and

Bajona and Kehoe (2010) show that convergence can be proven in a dynamic Hecksher-Ohlin

model. The convergence produced by an idea-diffusion process is closer to a declining cost of

human capital or to physical capital mobility. As formerly mentioned and shown in appendix E,

the model without spatial technology diffusion is not able to replicate the main results.

SBTC: I do model SBTC as an exogenous shock to productivity that differs between the two

skill groups. Katz and Murphy (1992) in their seminal work think of skill-biased technical change

as a residual in productivity that changed over time. In this paper, I use the routinization measures,

similar to the ones developed in Autor and Dorn (2013) to distinguish technological innovation

from other residuals. Autor and Dorn (2013) use similar measures to capture polarization instead.

The literature on SBTC has used several approaches to model it. Krusell et al. (2000) and Beaudry

et al. (2010) model it as a capital-labor relationship. In Appendix D.2, I show that a model with

physical capital and decrease in the price of computers would not reproduce some features that are

present in the current setting and that are key in the data. On top of that, the current setting incor-

porates industrial composition while not accounting for physical capital. While physical capital

is important in the production of goods, it is not crucial for the purposes of this paper. But, how

would physical capital bias the results of this model? This answer depends on the mobility of cap-

ital and on the complementarity or substitutability of capital with highly skilled labor. If physical

capital is freely tradable such that rental rates are equalized across locations, then the model would

draw the same conclusions as it does without capital.

Parameters’ set: On the production side, the spillover’s parameters could be more parsimonious

and reduced to three rather than four. However, the current formulation allows to have a closer

connection to existing estimates and determine the elasticities for both groups of workers and both

for the skill ratio and the size effect. Qualitatively, no key moment would be affected. In the

housing market there are two parameters. These serve to match the Stone-Geary preferences as

in Ganong and Shoag (2017). Even in the absence of the housing mechanism, the model would

reproduce key moments of the data as shown later.

B Other Results of the Model

In this section, I report results comparing model and data on trends in wage dispersion and in the

“Great Divergence” of skills.
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Figure 17: Variance of High and Less Skill Model over Time
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B.1 Wage Dispersion Increase Over Time

Hsieh and Moretti (2015) show that wage dispersion across US cities increased substantially be-

tween 1964 and 2009. As in table 10, the model shows that wage dispersion in the US has increased

substantially over the last 30 years in accordance with the findings in Hsieh and Moretti (2015).

My model supplements this finding by predicting differences in wage dispersion between highly

skilled and less skilled workers. Figure 17 suggests that the variance in the highly skilled wages

was decreasing until 1980 when it started increasing. Instead, the variance of wages for the less

skilled group was constantly increasing over time. As shown in table 10, the variance between

1964 and 2009 increased by 213%. It only increased 5% for the highly skilled while it increased

by 222% for the less skilled. I run some counterfactual analysis by shutting down agglomeration

forces as in section 5.2 sequentially and I find that if the agglomeration economies had been set to

0, then, the increase in wage variance would have gone up only by 11.43% for the whole group,

but it would have decreased for highly skilled as shown in column (2) and mildly increased for

the low-skilled workers. In column (3), I also shut down the SBTC finding that variance would

have decreased both for the highly and for less skilled workers if sone of these forces had been in

place. Column (4) and (5), respectively, housing costs and migration, suggest that the contribution

to variance in wages is close to null, quantitatively.
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Table 10: Change in Variance of High and Less Skill Model over Time in the Model

Full No Agglom. No SBTC No Housing No Migr. Cost
∆V ar(W ) 213.21 11.43 -59.50 -59.41 -59.44
∆V ar(WH) 5.10 -63.41 -47.91 -47.29 -47.88
∆V ar(WL) 222.84 21.46 -61.21 -61.19 -61.16

Note: The first row of the table has the results for the increase in wage dispersion overall between 1964 and
2009 in the model. The second(third) row has the results for the increase in wage variance for highly and
lees skilled workers between 1964 and 2009 in the model. In each column I vary from the full model to
removing step-wise the elements of the model.

B.2 The “Great Convergence and the “Great Divergence” of Skills over
Time

Using model-generated data, I estimate specification 4 and compare the outcomes in the model

and in the data in figure 18. The model reproduces shows a βskill convergence rate going from

-2.5% in 1970 to -.5% in 2010. Overall, βskill declines much faster despite the last period, where it

coincides with the model. Overall, this finding suggest that the model is consistent with this other

non-targeted moment, which means that it reproduces not only features of the wage data, such as

the decline in cross-MSA wage convergence, but also features of employment data, such as the

divergence in the skill ratio. In table 8, when I compare the 10-year rolling window estimates over

time, the coefficients slowly moves from -.245 in 1940-1950 to 0.0826 in 2000-2010, switching

sign in 1980-1990.
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Figure 18: The “Great Divergence” in Skills: Data vs. Model

1940 1950 1960 1970 1980 1990 2000

year

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

skill  data skill  model

Note: This figure shows the evolution of the estimates of βskillt in equation 4 both in the data and in the
model.

C Other Potential Explanations

There are several potential explanations that are complementary to the SBTC and agglomeration

conjecture. In this section, I explore the changes in policy such as housing, unionization, Right

to Work Laws, and international trade together with the industry’s composition and the firms’

decisions on location.

C.1 Housing Regulation

Ganong and Shoag (2017) provide a explanation based on housing prices that suggests that the

US states where housing prices increased the most are also the ones where the migration declined.

Hence, because migration increases convergence, the decline in migration to this area, which is

also the richest, also decreased the income convergence rate. As suggested in their paper, the

housing prices and SBTC could be complementary. For this reason, in order to decide how to

disentangle them, I add a housing sector to the model to compare the housing effects with my key

mechanisms.

Additionally, I conduct an empirical test that shows that even in the areas where the housing

restrictions are high, there is a strong difference in the convergence rate of wages for the highly

skilled and the less skilled groups. I construct figure 2 for the MSAs that were in states where
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the housing prices went up dramatically because of housing regulations. Figure 16 shows that the

effect of regulations on the decline in income convergence looks quite similar to the one without

any restriction. Thus, I can conclude that there is room also for the SBTC in the group of states

where housing prices are high.

C.2 Innovation and Financial Sector

Another potential and complementary explanation is that technological innovation might have

caused a sectoral effect rather than a skill-biased effect. Such an effect would cause productivity

increases in highly innovative industries such as communication. Therefore, cities with a higher

concentration of innovative industries benefit more from the technological change. To control for

the importance of the IT sector, I estimate conditional convergence in wages between 1980 and

2010.29 The results reported in Table 11 show that unconditional wage convergence is not statis-

tically significant in column A. However, when I add a control for the IT sector in column B, the

coefficient for wages in 1980 becomes positive and statistically significant. In column C, I add

a control for highly skilled wages, and the coefficient on initial wages in 1980 increases in mag-

nitude. This evidence shows that adding sectoral differences in technological intensity have the

effect of amplifying the decline in spatial convergence. The framework developed above takes into

account these sectoral differences by including a highly skilled and less skilled sectors.

In addition to sectoral innovation shifts, changes in firms’ relocation decisions over time can

contribute to the decline in wage convergence. More skilled firms might begin to move to richer

places but then reverse their decision and move to poorer cities to take advantage of lower costs.

In order to investigate whether firms’ location decisions change over time requires firm-level data.

Faberman and Freedman (2016) use longitudinal establishment data for the US during the years

1992-1997. They do not find that spillover is important for firms’ decisions to locate in urban

areas rather than other areas. Unfortunately, the data on the firms’ locations back to 1940 are not

available. In this regard, I use publicly available data at the industry level to test whether more

skilled occupations have become increasingly concentrated in more skilled cities over time. If this

is the case, it might mean that in addition to the sorting of highly skilled workers into highly skilled

cities, there is also sorting of highly skilled firms into highly skilled cities. To test this hypothesis

29I define IT sector by looking at the codes of the IND1990 variable in the IPUMS data set and select industries that
are more technology-oriented.
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empirically, I run the following regression to obtain the marginal effects by decade

Skill concentrationkjt = α +
T∑

t=1950

βt

(
Hjt

Ljt

)
+ φt + φj + εkjt

where k is the industry, j is the MSA, and t is time. The φt are time fixed effects, and φj are

MSA fixed effects. I build the measure of “Skill concentration” by calculating the ratio between

the number of skilled workers over the number of total workers that are in industry k in location j

at time t. This hypothesis is confirmed in the data. In figure 19, I plot the coefficient βt over time.

The figure shows that a more skill-concentrated MSA becomes more strongly correlated with skill

concentration at the industry level. This concentration is evidence of sorting not just of workers

but also of industries and thus, firms.

C.3 Right to Work Laws and Unions

In Southern and Western US, 26 states have passed Right to Work Laws since 1940. These laws

permit workers to work without having to join a union. The Right to Work Laws might have a

spatial effect of increasing the wages of less skilled workers in the states where they were imple-

mented. In fact, Holmes (1998) shows that state policies play a role in the location of an industry.

However, only 26 states have adopted right to work laws and figure 20 shows that the majority

of the states passed these laws in the 1950s and 1960s, long before the secular decline in wage

convergence. Besides the Right to Work Laws, union membership has gone up substantially in the

US, and this growth might have directly affected the wage convergence rate. In order to account

for this growth, I use data on unions from CPS survey aggregated at state level starting in 1990.

Table 12 reports the estimates of wage convergence’s regression at the state level between 1990

and 2010. I find that controlling for the presence of unions does not increase the β estimates. If

anything, it actually decreases it.

C.4 International Trade

Besides SBTC, there is evidence that international trade has an effect on the increase in the skill

premium at national level (Feenstra and Hanson 1999). As a consequence, this trade might have

an effect on the slowdown in regional convergence as well. However, Feenstra and Hanson (1999)

find that there is no large effect of international trade, such as outsourcing, on the skill premium.

Instead, Autor et al. (2015) find that the increase in the import penetration from China affected
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employment rates in the commuting zones where the penetration from China was higher. However,

outsourcing had modest effects on the skill premium and imports from China. Therefore, while this

demand might also be relevant, the timeline and the magnitude of the effect does not explain the

strong slowdown in the regional convergence of wages. However, I do run the wage convergence’s

regression at the state level while controlling for the import penetration from China as in Autor et

al. (2015). The results show that controlling for the trade shock does not affect the speed at which

wages converge.

Figure 19: Industry Sorting over time
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Note: This figure plots the estimated effect of skill concentration at the MSA level and at the industry level.
The line is computed using the estimates of the skill ratio at the MSA level (β), using specification C.2.
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Figure 20: Right To Work Laws
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Note: This histogram plots the number of states that passed the “Right to Work Laws” by decade
starting with the 1940s.

Table 11: Convergence Rates by Skills and IT

(1) (2) (3)
A B C

Log hourly wages 1980 -0.0000389 0.00593∗∗ -0.0126∗∗∗

(-0.02) (2.95) (-10.58)
IT 0.00656∗∗∗ 0.00538∗∗∗

(13.49) (16.54)
col degree 0.0106∗∗∗

(19.85)
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: The dependent variable in this table is ∆wjt for location j at time t. The initial period is 1980 and the
final period is 2010. In column A, I run it against wages in the initial period 1980. In column B, I control
for the IT sector dummy. In column C, I control for the college degree.
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Table 12: Wage Convergence with Unions Controls

(1) (2) (3) (4)

Log hourly wage, 1980 -0.00840*** -0.00723** -0.00604** -0.00454
(-2.76) (-2.31) (-2.28) (-1.63)

Union -0.0413** -0.0427**
(-2.27) (-2.28)

Pop. Weight Yes Yes
Observation 147.00 147.00 147.00 147.00
R square 0.26 0.30 0.14 0.19

Note: This regression shows the coefficient for the decline in wage growth between 1990 and 2010 on the
initial wage in 1990, conditioning on the union presence by state. All the observations are clustered at the
state level.

Table 13: Wage Convergence with Import Penetration from China

(1) (2) (3) (4)
(1) (2) (3) (4)

Log hourly wage, 1980 -0.00840*** -0.00760** -0.00604** -0.00539**
(-2.74) (-2.58) (-2.26) (-2.12)

China Import Penetr. -0.000320 -0.000373
(-1.34) (-1.42)

Pop. Weight Yes Yes
Observation 49.00 48.00 49.00 48.00
R square 0.26 0.27 0.14 0.16

Note: This regression shows the coefficient for a regression of wage growth between 1990 and 2010 on the
initial wage in 1990, conditioning on the import penetration from China by state. All the observations are
clustered at the state level.

D Theory Appendix

This appendix supplements the theoretical framework presented in Section 3 in several respects.

In subsection D.1, I describe the algorithm for solving the system of equations and obtaining the
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solution to the model. Subsection D.2 presents a version of the model in which skill-biased tech-

nology, instead of being a local exogenous shock, is modeled as endogenous technology adoption.

And, subsection D.3 derives an alternative expression for YT .

D.1 Description of the Computational Algorithm

In order to recover the equilibrium quantities and prices for period t, it is necessary to solve the

full model numerically. I can reduce the equilibrium conditions by the following six, which are

reported again below for the sake of clarity:

WHjt = (ηHdjt)[ηLdjtL
ρ
djt + ηHdjtH

ρ
djt]

1
ρ
−1Hρ−1

djt (20)

WLjt = (ηLdjt)[ηLdjtL
ρ
djt + ηHdjtH

ρ
djt]

1
ρ
−1Lρ−1

djt (21)

Rµ
jt = Hjt

[
Ō + (1− θ)WHjt

Rjt

]
+ Ljt

[
Ō + (1− θ)WLjt

Rjt

]
(22)

All d ∈ D intermediate market sectors clear:

Pdjt
αPjt

= [ηLdjtL
ρ
djt + ηHdjtH

ρ
djt]

1
ρ

From the decision on the location of the labor market , labor market clearing becomes

Hjt =
exp(δHjt/m2H(j))∑S
s exp(δHst/m2H(s))

(23)

Ljt =
exp(δLjt/m2L(j))∑S
s exp(δLst/m2L(s))

(24)

where

δkjt =

[
θln(Wkjt −RjtH̄)+

(1− θ)[ln((1− θ)Wkjt

Rjt

+ Ō] + (1− θ)ln((1− θ)(Wkjt −RjtŌ)]+

+Akjt + γpln (Hjt/Ljt)

] (25)

and

Ljt =
D∑
d=1

Ldjt and Hjt =
D∑
d=1

Hdjt
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I end up with a system of 46 equations in 46 unknowns {WHjt, WLjt, Hdjt, Ldjt, Rjt Pdjt ∀j and ∀d}
for each MSA. Since the analysis includes 240 cities and 14 industries, I have a system of 46x240=11,040

equations. I solve this system using an iteration algorithm. The algorithm consists of the following

steps:

1. Given the set of parameters {γH , γL, φH , φL, ρ, γ2, λH , λL, θ, γp}, the sequences of SHt and

SLt and the sequences of AHjt and ALjt, the initial productivity ξLdj0 and ξHdj0 for all j cities

and for all industries d;

2. Start by guessing an allocation of {Hdj0, Ldj0}J,Dj=1,d=1;

3. For each location, compute an equilibrium allocation hj , output Ydj wages WHj and WLj

and Pdj;

4. Using the information on prices, compute {Hj,Lj}Jj=1}

5. Check whether the distance between the values of {Hj, Lj}Jj=1 and the guesses {Hj0, Lj0}Jj=1

are smaller than an exogenously given tolerance level equal to e−10.

6. If so, then stop. If not, consider {Hj, Lj}Jj=1 as the new guess and restart the loop. Continue

the procedure until the distance is smaller than the tolerance level e−10.

I solve the model for 70 periods where time t is a year. In the first 40 periods, SHt and SLt are

set to zero, then I set the value of SHt and SLt from the data (at national level) from S and λ from

the model estimation. Start looking for the equilibrium at time t = 0 and give a value for ξHj0 and

ξLj0 where ξHj0 > ξLj0 for all j generated by the estimation of the residuals of the wage equations in

year 1940.

Although the complex structure of the model does not allow me to derive conditions under

which the algorithm converges to an equilibrium distribution of population, simulation results

indicate that the algorithm displays good convergence properties unless either agglomeration or

dispersion forces are very strong. Specifically, the algorithm always converges to equilibrium in a

broad neighborhood around the parameter values chosen in the calibration.

D.2 Model with Endogenous Innovation Rate

The model specified above provides for a SBTC that is exogenous and differs for each location j.

However, I could allow SBTC to be modeled as “technological adoption” following Beaudry et al.
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(2010). When computers arrive, firms need to decide whether to adopt them (PC) or stick with

their current technology (K). This new technology is assumed to be skill-biased relative to the

old technology because for the same level of prices, the new technology uses skilled labor more

intensively. Specifically, where there is a higher concentration of highly skilled workers, there is

also a higher ratio of computers per worker.

The production function with the old technology K is equal to

Yd = K(1−α)[aHρ + (1− a)L1−ρ]
α
ρ (26)

Suppose that the production function of good Yd location j with the new technology PC is equal

to

Yd = PC(1−α)[bHρ + (1− b)L1−ρ]
α
ρ (27)

where a < b < 1, which are personal computers. The firms need to decide the optimal

amount of PC they want to pick. However, the decision of how much PC to choose increases

with H
L

. Before the availability of the PC technology, location j that had higher supply of skilled

labor also had relatively low wages (because of a congestion effect on skills). Therefore, the

return to skill increases most in locations that choose to adopt PC most intensively. However, the

relationship between skill supply and return to skill is weakly decreasing. After the arrival of the

PC technology, the relationship between the supply of skill and the return to skill is given by

ln
WH

WL

=



ln
[

aHρ−1

(1−a)Lρ−1

]
if H

L
≤ φL

ln
[
aφLρ−1

(1−a)

]
= ln

[
bφHρ−1

(1−b)

]
if φL < H

L
< φH

ln
[

bHρ−1

(1−b)Lρ−1

]
if H

L
≥ φH

(28)

where φH and φL are the critical values of the skill ratio such that if a location is characterized

by H
L
< φL, then it retains the old technology. If H

L
> φH , then the location switches to the

new technology. Equation 2 shows that when a firm keeps the old technology, the relationship

between the skill ratio and skill premium is negative, as if the firm had already switched to the new

technology. However, when the firm is in transition between the old and new technologies, this

relationship is equal to zero. This prediction of the model goes against fact 1 in figure 3. In fact,

in figure 3, the relationship between the supply of skills and the skill premium becomes positive
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in the decade after 2000 and, overall, there is a positive trend. Therefore, a model with exogenous

technological innovation seems better able to describe the data. It could also be the case that in

order to obtain a positive relationship, I need a model that combines technological adoption and

endogenous agglomeration forces.

D.3 Rewriting YT

In order to estimate the needed parameters, I compute the unobserved changes in cities’ productivi-

ties, given the parameters of labor demand {ρ, γH , γL, φH , φL} and the data {wHjt, wLjt, Ljt, Hjt, Ldjt, Hdjt}.
In order to make this transformation, I follow Diamond (2016) by taking the ratio of highly skilled

wages to less skilled wages in location j:

wHjt
wLjt

=
ξHdjtY

1−ρ
djt Hρ−1

djt

(
Hjt
Ljt

)γH
(Hjt + Ljt)

φH

ξLdjtY
1−ρ
djt Lρ−1

djt

(
Hjt
Ljt

)γL
(Hjt + Ljt)

φL
=⇒

I use a change in the variable where defining highly skilled and less skilled productivities as

ξHdjt = θ(1− λdjt)

ξLdjt = θ(λdjt)

This definition means that the skill premium can be written as:

wHjt
wLjt

=
θ

1
α (1− λdjt)Y 1−ρ

djt Hρ−1
jt

(
Hjt
Ljt

)γH
(Hjt + Ljt)

φH

θ
1
αλdjtY

1−ρ
djt Lρ−1

djt

(
Hjt
Ljt

)γL
(Hjt + Ljt)

φL

wHjt
wLjt

=
(Hjt + Ljt)

φH−φL HγH−γL
jt Hρ−1

djt L
−γH+γL

jt (1− λdjt)
λdjtL

ρ−1
djt

wHjtL
ρ−1
djt λdjt = (Hjt + Ljt)

φH−φL HγH−γL
jt Hρ−1

djt L
−γH+γL

jt (1− λdjt) =⇒
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=⇒ λdjt

[
wHjtL

ρ−1
djt + (Hjt + Ljt)

φH−φL HγH−γL
jt Hρ−1

djt L
−γH+γL

jt

]
=

(Hjt + Ljt)
φH−φL HγH−γL

jt Hρ−1
djt L

−γH+γL

jt wLjt =⇒

=⇒ Ydjt =

(
(Ljt+Hjt)

γpHwLjtH
γHL−γ

L
Hρ−1
djt L

ρ
djt+(Ljt+Hjt)

γpHwHjtH
ρ
djtH

γH

jt Lρ−1
djt L

−γL
jt

(Ljt+Hjt)γpH−γpLwLjtH
ρ−1
djt H

γH−γL
jt +Lγ

L−γH
jt +wHjtL

ρ−1
djt L

γL−γH
jt

) 1
ρ

This formulation of Ydjt is used in the estimation since it does not include the productivity

terms SH , SL, ξH and ξL.
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E Comparison with Spatial Equilibrium Models Without Tech-
nology Diffusion

One of the novelty of my model is the fact that, relative to the existing literature in spatial equi-

librium, is embedded with convergence and divergence forces. The purpose of this section is to

show how technological diffusion is key in introducing wage convergence into the model but also

in matching the trends in the “Great Divergence” and the secular migration decline. Precisely, in

this exercise, using the estimates generated in section 4.2.1, I simulate the model without the tech-

nological diffusion process. Table 14 shows how this version performs in terms of matching over

time: (i) regional convergence pre-1980 and its decline, solely for highly skilled; (ii) the “Great

Convergence” and the “Great Divergence” of skills and (iii) the decline in migration rates. Row

(1) and (2) report the results on the overall wage convergence in the model and in the data. This

model does not reproduce any convergence pre-1980 and the increase in divergence is very moder-

ate. Overall, spatial equilibrium model have forces that help the sorting, therefore, increasing the

divergence, but achieving convergence as we would see in the pre-1980 is quite hard. Therefore, in

such model, we cannot explain the sharp changes observed in the data. Row (3) and (4) report the

speed of the convergence rate for the highly skilled in the data and in the model, respectively. The

model suggests that even before 1980, there would have bee divergence for highly skilled wages

and this divergence would have increased over time. Similarly, row (5) and (6) suggest that data

and model do not match either for the speed of regional convergence of the less skilled wages. Both

groups look similar, despite the highly skilled wages show even more divergence coming from the

larger agglomeration forces than the less skilled wages. Row (7) and (8) compare data and model

prediction on the speed of convergence of the skill ratio, or the “Great Divergence”. The findings

suggest that this version of the model cannot account for the “Great Convergence” pre-1980 and

the decline of it is also very moderate as well. Finally, row (9)-(10) ((11)-(12)) compare the migra-

tion rates for highly (less) skilled. Interestingly, the findings suggest that migration across cities

would have increased over time rather than decreased as in the data. This is because the model

would produce extra sorting over time but there is no mechanism to slow down the incentive to

move.

Overall, these results suggest that static spatial equilibrium models alone that do not have a

growth component cannot match the sharp changes we have observed in the data in any of the

salient moments.
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Table 14: Model Fit with No Technological Diffusion

1960-1980 1970-1990 1980-2000 1990-2010
β Data -1.85 -1.50 -1.05 -0.11
β Model 0.04 0.05 0.06 0.06
βH Data -1.97 -1.35 -0.23 0.37
βH Model 0.06 0.08 0.10 0.11
βL Data -1.78 -1.43 -1.96 -1.82
βL Model 0.01 0.01 0.01 0.01
βHL Data -1.16 -0.14 -0.13 0.37
βHL Model -0.01 -0.02 -0.02 -0.03
% Migr. Rate H Data 4.44 3.62 3.33 2.17
% Migr. Rate H Model 23.51 33.44 37.16 45.35
% Migr. Rate L Data 2.23 2.05 2.26 1.19
% Migr. Rate L Model 22.62 30.41 32.49 36.30
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F Online Data Appendix

In this subsection, I first describe in detail the data sets I use for the analysis. Second, I run several

robustness checks for the decline in regional convergence.

F.0.1 Data Description

My two main data sets are the US Census data extracted from IPUMS. I use the 1% sample for

1940, 1% sample for 1950, metropolitan sample for 1970, 5% sample for 1980, 5% sample for

1990, and the 5% sample for 2000. Then, for 2010, I use information from the American Con-

sumption Survey (ACS) extracted from IPUMS. I use information on wages, education, age, race,

ethnicity, rents, birthplace, migration, population, industries, occupation, MSA, and state. All of

this information is also available in the ACS data for 2010. I collect the same information from

the CPS data set. The CPS is a monthly US household survey conducted jointly by the US Census

Bureau and the Bureau of Labor Statistics. I use the observation for the month of March. The

CPS data set is used mainly for the analysis of migration. My geographic unit of analysis is the

MSA. An MSA is a “region consisting of a large urban core together with surrounding communi-

ties that have a high degree of economic and social integration with the urban core.” I also use two

more data sets, one for the measure of Wharton land use regulation index (WLURI), aggregated by

Saiz (2010) at the MSA level, and the other for the measure of RTI developed by Autor and Dorn

(2013). The latter uses information on the task intensity of the occupation from the ”O*NET” data

set, which is available for download at http://online.onetcenter.org/.30.

F.0.2 Robustness Checks

Before turning to the robustness tests, I provide one more time the specification for the β-convergence

estimation that I use throughout the paper following the specification in 1. In most of the specifi-

cations, the observations are weighted by the initial size of the location j.

I run several robustness tests starting with the ones illustrated in figure 1 and in figure 2. I

change the unit of analysis from cities to counties in figure 21. In figure 21, I plot the estimated

convergence rates. In plot A, the estimate uses a 10-year rolling period, while plot B uses a 20-year

rolling period. The convergence rate is negative and statistically significant until 1987 in plot A,

while it is negative and statistically significant until 1997 in plot B. Both estimates show that the

30For a more detailed description of the RTI measure, please refer to Autor and Dorn (2013)
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first period in which convergence ceased to be significant is 1978. This fact aligns with the findings

of Higgins et al. (2006) who finds that there was convergence between 1970 and 1990. However,

departing from this prior work, I conduct an analysis in which the period is extended and find that

the convergence across counties follows the same patterns as the convergence across cities and

states.

As a second robustness check, I show that the rate of convergence stops being significant and

robust only if the initial year is after 1980. For this reason, I compute the rolling 20- and 30-year

wage convergence as shown in figure 22 from 1940 onward. Then, I decompose it by skill group.

Panels ((c))-((d)) and ((e))-((f)) of figure 22 show, respectively, results for the highly skilled and the

less skilled groups. The rolling convergence rate β is negative and statistically different from zero

until 1980, but then, it starts becoming positive but is still not significant. Finally, between 1990

and 2010, it becomes positive and statistically different from zero. But, when I decompose by skill

groups, highly skilled workers show the same patterns as the aggregate convergence rate. Instead,

the convergence rate for the less skilled group remains negative independently of the period. It

actually becomes even stronger over time.

As a third robustness check, I reproduce figures 1 and 2 with compositionally adjusted wages.

I control whether after using compositionally adjusted wages, the convergence rates change. As

shown in figure 24, the convergence rates do not change substantially after adjusting for skill

composition. Finally, another test is to see whether real wage convergence changes in the same

way as nominal wage convergence. The caveat in looking at real wage convergence is that the data

on local prices are very scarce, especially before 1980. For this reason, I use self-reported monthly

rental prices as a proxy for local prices. As you can see in figure 23, real wage convergence

decreases even more than nominal wage convergence after 1980. Specifically, decomposing by

skill groups, the convergence rate is approximately zero in the less skilled group but becomes

positive in the highly skilled group.

One reason why the convergence patterns might have changed could be because the definition

of cities available between 1980 and 2010 is not perfectly identical to the one between 1940 and

1980. To make sure that it is not these different samples driving the slowdown in convergence,

I estimate the unconditional cities’ wage convergence between 1980 and 2010 by using the 127

cities available in 1940-1980. Table 16 shows the convergence rate after 1940 for the reduced

sample. The results show that if I use only cities available before 1980, the convergence rate is

even lower. Second, I look at the decline in wage convergence after adjusting for the skill-biased
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technical change shock. I run the following regression:

∆wjt = βo + βwjt−τ + αH∆SHjt + αL∆SLjt (29)

where t is 2010 and tau is 30 years. After controlling for the technology shock, I get conditional

convergence = -1.1% a year. This rate indicates that without taking into account the mechanisms

of the model, SBTC affects the decline in wage convergence.

Figure 21: Convergence by county over time
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Note: Plot A shows the convergence rate at the county level for a 10-year rolling window that
starts in 1969. Plot B shows the convergence rate at the county level for a 20-year rolling window
that starts in 1969. Data for this analysis are from the Bureau of Economic Analysis Regional
Economics Accounts. In each estimate the cities are weighted by their population. On the y-axis
the coefficient is reported in percentage terms.
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Figure 22: Convergence Rate Over Time - Overall and by Groups
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Note: This figure shows the beta coefficient of the regression of the initial wage on the log wage changes
using a 20-year and a 30-year rolling window. In each estimate the cities are weighted by their population.
On the y-axis the coefficient is reported in percentage terms. Plots ((a)) and ((b)) are for the aggregate
estimate of β, Plots ((c))-((d)) and ((e))-((f)) are, respectively, for βH and βL.
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Table 15: Convergence Rates - Restricted Sample

(1) (2)
∆1940−1980 ∆ 80−08

Log(wage1940) -0.0109∗∗∗

(-10.53)
Log(wage1980) -0.00116

(-0.25)
Constant -0.0217∗∗∗ -0.0147∗∗∗

(-137.22) (-24.45)
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: I estimate the β convergence rate for the restricted sample with only 127 cities. In column (1), I
estimate it for the 1940-1980 time period and in column (2) for the 1980-2010 time period.
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Figure 23: Real Wage Convergence
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Note: This figure shows two scatter plots of the log wages by MSA in the initial year against the annual
average growth of the wages in the final year. The wages are divided by the rental prices in the MSA.
The rental price is taken from the self-reported Census data. Specifically, on the left-hand side (right-hand
side), I plot the demeaned log wages in 1940 (1980) by MSA against the annual average growth of wages
between 1940 (1980) and 1980 (2010). The line in each graph represents a weighted regression line from
the bi-variate regression.
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Figure 24: Compositionally Adjusted Wage Convergence
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Note: This figure shows two scatter plots of the log wages by MSA in the initial year against the annual
average growth of wages in the final year. Wages are adjusted by individual characteristics, sex, race, age,
marital status, before taking the MSA average. Specifically, on the left-hand side (right-hand side), I plot the
demeaned log wages in 1940 (1980) by MSA against the annual average growth of the wages between 1940
(1980) and 1980 (2010). The line in each graph represents a weighted regression line from the bi-variate
regression.
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Table 16: Convergence Rates - Robustness

Panel A

(1) (2) (3) (4)
1940-1980 1980-2010 1940-1980 1980-2010

Log hourly wage, 1940 -0.0185∗∗∗ -0.0189∗∗∗

(-13.21) (-12.99)
Log hourly wage, 1980 0.00374 -0.00423∗

(0.96) (-2.20)
Panel B

(1) (2) (3) (4)
∆w40−80 pw ∆w pw80−10 ∆w40−80 ∆w80−10

Log(wage1940) -0.0143∗∗∗ -0.0164∗∗∗

(-16.69) (-26.63)
Log(wage1980) -0.00333 -0.0101∗∗∗

(-0.72) (-3.76)

This table show the estimate of the β-convergence of the OLS. Columns (1) and (2) show the estimates,
respectively, for 1940-1980 and 1980-2010 by using population-weighted observations. Columns (3) and
(4) show the estimates, respectively, for 1940-1980 and 1980-2010 by using unweighted population obser-
vations. Panel A shows the estimates of the β-convergence for local wages adjusted by the rent in each
MSA. Panel B shows the estimate of the β-convergence for compositionally adjusted wages.
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Table 17: Convergence Rates by Skill- Robustness

(1) (2) (3) (4)
No,’40-’80 Yes,’40-’80 No,’80-’10 Yes,’80-’10

Panel A
Log wage ’40 -0.0127∗∗∗ -0.0181∗∗∗

(-7.01) (-11.12)
Log wage ’80 0.000369 0.00764∗∗∗

(0.36) (3.92)

(1) (2) (3) (4)
No,’40-’80 Yes,’40-’80 No,’80-’10 Yes,’80-’10

Panel B
Log wage ’40 -0.0203∗∗∗ -0.0232∗∗∗

(-13.82) (-19.35)
Log wage ’80 -0.00425∗∗ -0.00584∗

(-2.94) (-2.36)

(1) (2) (3) (4)
No,’40-’80 Yes,’40-’80 No,’80-’10 Yes,’80-’10

Panel C
Log wage ’40 -0.0152∗∗∗ -0.0133∗∗∗

(-21.13) (-11.78)
Log wage ’80 -0.0173∗∗∗ -0.000381

(-10.65) (-0.19)

(1) (2) (3) (4)
No,’40-’80 Yes,’40-’80 No,’80-’10 Yes,’80-’10

Panel D
Log wage ’40 -0.0163∗∗∗ -0.0202∗∗∗

(-25.22) (-19.86)
Log wage ’80 -0.0189∗∗∗ -0.0104∗∗∗

(-11.96) (-5.52)

Note: This table shows the estimate of the β-convergence of the OLS. Columns (1) and (2) show the esti-
mates, respectively, for “No” college degree and for “Yes” college degree workers for the years 1940-1980.
Columns (3) and (4) show the estimates, respectively, for “No” college degree and for “Yes” college degree
workers for the years 1980-2010. Panel A has the estimates of the β-convergence by skill for local wages
adjusted by the rent in each MSA. Panel B has the same estimates as in Panel A but the observations are not
weighted by local population. Panel C has the estimate of the β-convergence for compositionally adjusted
wages. Panel D has the same results but the observations are not weighted by MSA population.
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F.1 More Empirical Evidence on the workers’ skills, wages and migration
premium

Fact: Migration Premium negatively correlated with wages of local pre-1980, positively correla-

tion afterwards.

Migration Premium I define a new variable that I call the migration premium. In a nutshell,

the migration premium is the difference between the wages of the migrants and the wages of the

locals in a specific year and in a specific location. As above, I define migrants as all the workers

who moved within the last year and locals the ones who did not. For the worker to be a migrant, he

or she needs to have changed state in the last year. I compute the average of the compositionally

adjusted wages for the workers who changed their state. Then, I compute the average of the

compositionally adjusted wages for the workers that were already residing in that state before the

previous year.

In figure 25, I look at the migration premium over time across states. For each of the years in

the CPS sample, I run the following specification:

ln

(
ŵmigrantjt

ŵjt

)
= αt + βt ln(ŵjt) + εt

I run this specification for all the years of the sample in which the information on migration is

available on CPS. Each regression is weighted by state population. Notice that the same results

hold also for population.

In figure 25, the migration premium is defined as the difference between the wages of the

migrants and the wages of the locals. The migration premium reported in figure 25 is adjusted

for age, sex, race, nativity, and marital status. This figure shows that the migration premium is

negatively correlated with the wage level of the state while the relationship becomes positive in

1980. I interpret this empirical finding as showing that the advantage of migrating until 1970 was

higher in poorer statesmpirical contribution of this paper sh. While, later it became higher in the

richer states.
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Figure 25: Migration Premium by State over Time
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This figure reports the standardized coefficient β of the regression
 Migration Premium{t,i}=α+β(ln(wage))t,i+ε run for each MSA

Migration Premium over time

Note: This figure shows a scatter plot of the log of the wages in the state in the first period t against the
migration premium based on the measure of the difference between the wages of the migrants and the wages
of the locals for the same year. The size of the underlying state is represented by the size of the circle in the
figure. The line represents a weighted regression line from the bi-variate regression.
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