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Abstract

We study the joint determination of product quality and complexity in a rational
setting. We introduce a novel notion of complexity, which affects how difficult it is for
an agent to acquire information about product quality. In our model, an agent can accept
or reject a product proposed by a designer, who can affect the quality and the complexity
of the product. Examples include banks that design financial products that they offer
to retail investors, or policymakers who propose policies for approval by voters. We find
that complexity is not necessarily a feature of low quality products. While an increase in
alignment between the agent and the designer leads to more complex but better quality
products, higher product demand or lower competition among designers leads to more
complex and lower quality products. Our findings produce novel empirical implications
on the relationship between quality and complexity, which we relate to evidence within
the context of financial products and regulatory policies.
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1 Introduction

Rapidly increasing complexity has concerned policymakers and financial market participants

alike. Complex financial products and regulations have been documented to contain jargon-

rich descriptions, complicated explanations (Célérier and Vallée, 2017; Ghent, Torous, and

Valkanov, 2019) or vague provisions (McMillan, 2014; Davis, 2017).1 Products or policies with

these features are difficult to understand and evaluate, leading to the concern that complexity

may foster the production and proliferation of lower quality policies and products.

Central to the above concern is understanding how changes in complexity relate to changes

in the quality of policies/products. A well-established literature has focused on the purposeful

obfuscation of bad product attributes by firms that are faced with unsophisticated consumers

(see Spiegler (2016) for a survey). In this view, unsophistication is essential, as otherwise con-

sumers would eventually stop demanding products whose attributes they do not understand

well (Milgrom, 1981). The recently documented proliferation of complex products and poli-

cies nonetheless begs the question of whether other factors beyond unsophistication may be at

work, and if so, of whether complexity necessarily brings about low-quality policies/products.

The goal of this paper is to shed light on these issues.

We develop a novel notion of complexity to study the joint determination of quality and

complexity in a rational setting. Our starting point is that agents often receive proposals of

uncertain quality which they have to evaluate before deciding whether to accept. In many

situations, such proposals must contain all the information pertaining to them that is needed to

make a proper evaluation. Agents have to process this information to make their acceptance

decision. Some examples include financial products proposed to retail investors, or policy

reforms proposed to voters. Proposal designers, in turn, not only affect the quality of their

proposal, but they can also influence how difficult it is for agents to process information

by complexifying or simplifying their proposal. For example, a financial product can be

complexified by adding unnecessary contingencies and complicated jargon, while a policy

reform can be complexified by not putting effort to be concise and clear about its applicability.

Motivated by this, we model complexity as a product feature that influences the agent’s ability

to learn about its quality. There are two distinguishing features of our approach: first, an

agent can only acquire imperfect information about product quality; and second, the designer

can influence, but not fully control, the agent’s information acquisition process. These features

will matter both conceptually and in terms of applied implications.

1E.g., an average sentence in the Basel Committee for Banking Supervision texts consists of 25.7 words,
with the second sentence of the very first document spanning over 72 words. This is significantly longer than
the average 21 words in a sentence of the British National Corpus, a collection of texts in modern British
English. This analysis was done by the Swiss newspaper Neue Zürcher Zeitung (Kolly and Müller, 2017).

1



Our framework rationalizes the proliferation of complex products and policies by uncovering

novel drivers of complexity. First, we break the link between bad product attributes and

complexity. We show that when the information that an agent acquires is imperfect, the

designer of a good product may choose to complexify it in order to reduce the agent’s reliance

on noisy information. Alternatively, the designer of a bad product may choose to simplify it

in order to gamble on the noise of the acquired information. Second, we show that complexity

can result from high product demand by agents, low competition among designers, or high

alignment (e.g., little conflicts of interest) between the agent and the designer. Such a rise in

complexity, however, is only accompanied by worsening quality when driven by high demand

or low competition. These results lead to new testable implications on the relationship between

quality and complexity, which we relate to empirical findings.

We consider a setting where an agent (e.g., investor, median-voter) demands a product that

is supplied by a designer. First, the designer takes private actions to affect the product’s

quality and complexity, and then proposes the product to the agent. Next, the agent acquires

information about the product’s quality and decides whether to accept the product or take

her outside option. Whereas a product’s quality (good or bad) determines the direct payoff to

the agent, a product’s complexity affects the precision of the information about the product’s

quality that the agent acquires. While the objective of the designer is to get the agent to

accept his product, the agent only wants to accept a good product. For example, a bank

wants to convince a retail investor to accept a savings account, or a policymaker wants to

get voter support for his policy proposal. To make the problem interesting, we suppose that

the designer is misaligned with the agent, as he receives a higher payoff from having a bad

product accepted. Such misalignment aims to capture conflicts of interest stemming from

good products being more costly to produce, career concerns, or ideological preferences.

The designer in our setting takes actions to separately affect the product’s quality and

complexity. For example, while the quality of a financial product can be interpreted as the

net present value (NPV) that it generates to an investor, its complexity refers to features

such as the number of contingencies which deliver that NPV or whether payments are linked

to indices that an investor is unlikely to be familiar with. Similarly, while the quality of a

policy can be interpreted as its effectiveness in addressing a particular inefficiency, the policy’s

complexity refers to its length, clarity, and use of complicated or vague terminology.2 By

studying both notions separately, we gain a better understanding of the incentives to produce

good/bad quality versus complex/simple products.

In practice, an agent’s ability to learn about a product depends on the product’s inherent

2This strategic decision of policymakers is discussed in the literature on strategic ambiguity or noise by
politicians (Alesina and Cukierman, 1990; Aragones and Postlewaite, 2002; Espinosa and Ray, 2018).
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complexity (e.g., a zero-coupon bond versus an asset-backed security, a flat rate tax ver-

sus tiered taxation with activity-specific exemptions), on her own ability to process relevant

information (e.g., her opportunity cost of time, education), and on the actions towards simpli-

fication or complexification taken by the designer described above. For instance, even though

a policymaker may take actions to simplify a proposed regulation, it may be hard for the me-

dian voter to learn about it if it addresses a topic that she finds complicated. We capture this

by supposing that the precision of the information that the agent acquires depends on both

the designer’s choice to complexify or simplify the product and on some component outside of

the designer’s control. Importantly, we suppose that it is impossible for the agent to acquire

perfect information about the product’s quality.3

A surprising result, at first, is that the designer of a good product may find it optimal

to complexify it, or that the designer of a bad product may find it optimal to simplify it.

Intuitively, when the agent would accept the product in the absence of new information –e.g.,

when her prior belief about quality being good or her demand for the product are sufficiently

high,– the designer has an incentive to complexify the product to discourage the agent to rely

on noisy information. For example, a good policymaker who has enough support to pass a

tax reform may not want to incur the risk of having the median voter reading a proposal that

she could misinterpret. Analogously, when the agent would reject the product in the absence

of new information, the designer has an incentive to simplify the product to encourage the

agent to rely on noisy information. For example, a bad policy maker with no support for tax

reform can only obtain such support if the median-voter engages in reading and misinterprets

a proposal.

When choosing his product quality, the designer anticipates the resulting probability with

which his product will be accepted by the agent. He then faces a trade-off between producing

a good product, which has a higher probability of acceptance, and producing a bad product,

which has a higher payoff conditional on acceptance. We show that, when the agent’s prior

belief about the product’s quality is sufficiently low, the designer obtains a higher payoff from

producing good products. Conversely, when the agent’s prior belief is sufficiently high, the

designer prefers to produce bad products. But, of course, the agent’s prior belief must be

consistent with the equilibrium supply of good versus bad products. Indeed, we show that

there is a unique equilibrium with positive trade, and in it the designer produces good products

with interior probability.

We next explore how the equilibrium quality-complexity relationship changes with various

3As we show in Section 2.1, when product simplification ensures that the agent can acquire perfect infor-
mation about product quality, then there is a unique equilibrium where only good products are designed, and
they are simplified and accepted with probability one.
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features of the economic environment. First, we consider the effect of a decrease in the agent’s

relative outside option, which can be interpreted as an increase in the agent’s demand for

the product. We find that this leads to lower product quality and higher product complexity.

Intuitively, as the agent’s relative outside option falls, she is more likely to disregard informa-

tion and have a looser acceptance strategy. This in turn encourages the designer to produce

worse quality, more complex products. Second, we consider a reduction in the conflict of

interest between the designer and the agent. We find that this leads to both higher product

quality and higher product complexity. Intuitively, higher alignment between the designer

and the agent increases the agent’s trust in the designer since product quality does indeed

increase, which loosens the agent’s acceptance strategy. This in turn encourages the designer

to produce more complex products. We show therefore that the relationship between quality

and complexity depends crucially on the underlying drivers of heterogeneity.

In practice, not all designers may be misaligned with the agent. To address this, we extend

our analysis by supposing that the agent may meet either an aligned or a misaligned designer.

Surprisingly, the introduction of aligned designers only affects equilibrium outcomes when

the probability of meeting one is sufficiently high, in which case both product quality and

complexity increase. This is consistent with our previous finding on the effect of a reduction

in conflicts of interest. Initially, as aligned designers enter, misaligned designers respond by

producing bad products with higher probability, keeping average quality and complexity of

products unchanged — until the misaligned designers produce only bad products.

Finally, we extend the analysis to study the effect of competition among designers. We

consider a sequential search setting where, if the agent rejects a given product, she meets an-

other designer with some probability, capturing the presence of search frictions. We show that

as search frictions decrease, which we interpret as competition among designers intensifying,

product quality increases and complexity decreases. This result is in contrast to the literature

on obfuscation or price complexity, which typically finds that competition leads to more obfus-

cation.4 In that literature, by obfuscating, firms reduce the consumer’s ability to uncover the

attributes of competing products by effectively increasing the consumer’s search costs. Ob-

fuscation in those settings counterbalances higher competition: the consumer searches fewer

products, competition effectively declines, benefiting firm profits. Instead, in our model, the

designer uses complexification to influence the information that an agent extracts about his

own product. As agents are rational, more intense competition incentivizes each designer to

4See, for instance, Spiegler (2006); Ellison and Ellison (2009); Carlin (2009); Ellison and Wolitzky (2012);
Petrikaitė (2018). Some papers in this literature also highlight that obfuscation gives rise to price dispersion,
which in turn allows firms to price-discriminate among different consumer types (e.g., fast versus slow searchers,
sophisticated versus unsophisticated agents), a force that may be present even in the absence of competition
(Salop, 1977) but that is absent in our setting.
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supply products that are better for the agent: those that are good and simple.

We relate our model’s implications to two leading applied settings in which rising com-

plexity has been at the forefront of policy debates: financial products and regulatory policy.

For financial products, our model suggests that the proliferation of worse and more complex

structured products documented by Célérier and Vallée (2017) could have been an optimal

response of product designers to an increasing demand for relatively safe financial assets com-

bined with an increasing trust in financial advisors. Within the context of regulation, our

model’s predictions provide an additional channel for the evidence presented by Gratton et al.

(2021) on the worsening quality and increasing complexity of laws proposed by Italian politi-

cians in periods of low bureaucratic effectiveness, i.e., low outside options for policymakers,

or equivalently, costly status quo.

Our findings complement the growing literature that examines the incentives of firms to

shroud certain product attributes from agents (Gabaix and Laibson, 2006; Auster and Pavoni,

2018) or to increase the opacity of their products in order to draw unsophisticated investors

into the market (Pagano and Volpin, 2012). In contrast to our setting, a crucial ingredient

of these models is that there is a fraction of unsophisticated agents who make no inferences

from the fact that they do not observe a certain product attribute. Complexity then allows

sellers to extract rents from unsophisticated agents.

Our model relates to the literature on strategic information transmission in games (Mil-

grom, 1981; Grossman, 1981; Crawford and Sobel, 1982; Kartik, 2009) and the recent papers

on the value of ignorance or opacity in incentive provision schemes (Brocas and Carrillo,

2007; Boleslavsky and Cotton, 2015; Ederer, Holden, and Meyer, 2018). Our contribution to

this literature is the joint determination of product quality and complexity, which leads to

previously unexamined feedback effects: the designer’s complexification strategy affects the

quality of products produced in equilibrium, which in turn influences the designer’s incentives

to complexify in the first place. Moreover, as in Dewatripont and Tirole (2005), information

transmission in our model is imperfect: the designer tries to influence the information received

by the agent, but he cannot control it fully, as the agent’s ability to process information de-

pends also on external factors.

Our approach is influenced by the literature on costly information processing or rational

inattention (Sims, 2003; Aragones, Gilboa, Postlewaite, and Schmeidler, 2005; Wiederholt,

2010), since our framework can be interpreted as one in which by complexifying the designer

makes it more costly for the agent to extract information (see Appendix B), as in Perez-Richet

and Prady (2011). Through this lens, our model also relates to Roesler and Szentes (2017), who

study buyer-optimal learning, but where the seller cannot affect the buyers’ learning process,

and to Oehmke and Zawadowski (2019), who study sellers’ incentives to complexify, but where
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complex products give more value to buyers. Our approach, however, adds the aforementioned

feedback effects generated by the joint determination of quality and complexity.

That more information may not always be desired has been pointed out in an early work by

Hirshleifer (1978) and more recently by Dang, Gorton, and Holmström (2012) in the context

of financial markets. This idea is also at the core of the literature on Bayesian persuasion

(Rayo and Segal, 2010; Kamenica and Gentzkow, 2011) and information design more broadly

(Bergemann and Pesendorfer, 2007; Bergemann and Morris, 2016; Taneva, 2019). The reason

is that, from an ex-ante perspective (i.e. when types/states are not yet known), there may

be benefits from committing to transmit imperfect information (e.g., through the design of

noisy information structures or of assets that deter information acquisition) to allow worse

types/states to be pooled with good ones. This is in contrast to our setting, where the decision

to complexify is undertaken ex-post, when the designer knows his product quality. The gains

from complexification in our setting are conceptually different, as “cross-subsidization” is not a

driver of our results. In our model, the good (bad) product designer may complexify (simplify)

in order to reduce (increase) the agent’s reliance on information that is noisy.5

Finally, our paper relates to the literature in industrial organization that studies pricing

and marketing strategies jointly (Saak, 2006; Anand and Shachar, 2009; Bar-Isaac, Caruana,

and Cuñat, 2010). In this literature, informative marketing strategies affect the dispersion of

consumers’ valuations and thus, in the language of Johnson and Myatt (2006), rotate a firm’s

demand curve, which may increase profits when choosing the appropriate pricing strategy. In

contrast, in our setting, the product designer faces one agent and he knows her valuation of

the product. As the agent acquires imperfect information, however, the designer is exposed

to risk, which is key for our results.6 Furthermore, to the best of our knowledge, our findings

on the relation between quality and complexity are new to this literature.

The rest of the paper is organized as follows. In Section 2, we setup our baseline model.

In Sections 3 and 4, we present our main results and discuss them within the context of

applications. We conclude in Section 5. All proofs are relegated to the Appendix.

2 The Model

We consider the following interaction between a consumer and a product designer. The

consumer needs a product, which only the designer can produce. The designer privately takes

5Furthermore, our results do not arise if the designer can choose to transmit perfect information to the
consumer, as is typically allowed for in information-design/Bayesian-persuasion settings (see Proposition 1).

6In a setting where firms can choose advertising content, Mayzlin and Shin (2011) show that high-quality
firms may choose to advertize with uninformative signals in order to induce consumers to engage in costly
search to uncover (even) better information about product quality, a mechanism that is distinct from ours.
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two actions {y, κ}, where y ∈ {Good,Bad} affects the product’s quality and κ ∈ {κ, κ̄}
affects the product’s complexity. The designer then proposes the product to the consumer,

who acquires information about the product’s quality and decides whether to accept it (a = 1)

or take an outside option (a = 0).

A Product’s Quality. A product’s quality, y, determines the agents’ payoffs. The payoff to the

consumer from accepting a product with quality y (which we refer to as a y-product) is w(y),

and her outside option if no product is accepted is w0. The designer receives payoff v(y) from

having a y-product accepted, and zero otherwise. We make the following assumptions:

Assumption 1 The payoffs satisfy the following properties:

1. w(G) > w0 > w(B), w0 ≥ 0.

2. v(B) > v(G) > 0.

The first assumption states that the consumer wants to accept a G-product but reject a

B-product, making information about product quality relevant for the consumer’s acceptance

decision. The second assumption states that the designer prefers to have a B-product ac-

cepted, misaligning the designer’s objective with that of the consumer.7 Since in practice

not all designers may be misaligned with the consumer, we extend our analysis and introduce

aligned designers in Section 4.3. As we show in Appendix B.3, for some applications our

payoff structure can be rationalized by introducing prices and costs of production, whereby

G-products are costlier to produce.

A Product’s Complexity. A product’s complexity, which we denote by χ ∈ [0, 1
2
], determines

the noise of the information acquired by the consumer about the product’s quality. We

suppose that it depends on two components, χ = χ(η, κ). The first component, denoted

by η ∈ R, captures the product’s natural (or inherent) level of complexity to the consumer,

which is random and has an associated cdf H. The second component is the designer’s action,

κ ∈ {κ, κ̄}. The consumer observes χ, i.e., she understands how complex the product is, but

she does not observe η or κ, i.e., she does not know whether this is due to the designer’s

action.8 Let F (·|κ) denote the cdf of χ conditional on κ, which is induced by the distribution

7In the financial products industry, misalignment may arise due to financial advisors receiving higher
fees for selling products that are not necessarily the best fit for their clients (i.e., fixed versus adjustable-rate
mortgages). In the policy sphere, misalignment of policymakers vis-à-vis the public may arise due to ideological
differences, lobbying, or career concerns.

8The imperfect link between the action κ and the product’s complexity χ allows us to obtain a unique
equilibrium, which facilitates rich comparative statics, by ruling out equilibrium multiplicity arising from
the freedom in specifying off-equilibrium beliefs (see Matthews and Mirman (1983) for a related modeling
approach). Furthermore, it has the natural interpretation that there are features of the environment unknown
to the consumer (e.g. a product’s natural complexity) or the designer (e.g., the consumer’s opportunity cost
of time), that affect the consumer’s ability to acquire information.
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D chooses
product quality,
y ∈ {G,B},

and complexification,
κ ∈ {κ, κ̄}

C acquires
signal,

S ∈ {g, b},
with precision
χ = χ(η, κ)

C gets w(y)
D gets v(y)

C gets w0

D gets 0

acce
pts

rejects

Figure 1: Timeline. D denotes the designer, whereas C denotes the consumer.

H. We assume that it has an associated pdf f(·|κ) which has full support and satisfies MLRP:

that is, f(χ|κ̄)
f(χ|κ)

is increasing in χ. Thus, we say that the designer complexifies the product when

he increases the product’s expected complexity, i.e., when he chooses κ = κ̄. Otherwise, we

say that the designer simplifies the product.

The consumer’s information acquisition technology is as follows. After the designer proposes

product (y, κ), the consumer observes the complexity of the product, χ, and acquires a signal

S ∈ {g, b} about the product’s quality with noise equal to χ, where:9

χ ≡ P(S = b|y = G) = P(S = g|y = B) ∈
[
0,

1

2

]
. (1)

The timeline of the game is summarized in Figure 1. We next describe the problem of the

consumer and of the designer.

The Consumer’s Problem. After observing complexity χ and signal realization s, the consumer

forms a posterior belief µ (s, χ) ≡ P(y = G|s, χ) and makes an optimal acceptance decision:

W (s, χ) ≡ max
a∈{0,1}

a [µ (s, χ)w(G) + (1− µ (s, χ))w(B)] + (1− a)w0. (2)

We denote the consumer’s strategy by {a(s, χ)}s,χ.10

The Designer’s Problem. The designer’s expected payoff is given by:

V (y, κ) ≡ P (a = 1|y, κ) · v(y) (3)

where P (a = 1|y, κ) denotes the probability that product {y, κ} is accepted by the consumer.

The designer chooses y ∈ {G,B} and κ ∈ {κ, κ̄} to maximize (3). We denote the designer’s

9In Appendices B.1 and B.2, we show that our setting can be interpreted as one in which the consumer
acquires costly information about the product’s quality and where the cost of increasing her signal precision
increases with the product’s complexity, χ.

10As it will become clear soon, focusing on pure strategies for the consumer is without loss of generality.
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strategy by {m,σG, σB}, where m = P(y = G) is the probability that the designer chooses a

G-product and σy = P(κ = κ̄|y) is the probability that he chooses to complexify a y-product.

Equilibrium Concept. We use Perfect Bayesian Equilibrium (PBE) as our equilibrium concept.

This has the following implications. First, given her belief, the consumer’s strategy must

maximize her expected payoff (Consumer Optimality). Second, the designer’s strategy must

maximize his expected payoff, given the consumer’s strategy (Designer Optimality). Finally,

the consumer’s belief must be consistent with the designer’s strategy and updated using Bayes’

rule when possible (Belief Consistency).

2.1 Benchmark with Perfect Information

Before we proceed to equilibrium analysis, it is useful to establish a benchmark against which

our results can be compared. To highlight the role of imperfect information, we consider

a benchmark where by simplifying the product the designer can ensure that the consumer

receives a perfectly informative signal. The following proposition states that in this scenario

there are no incentives to complexify products.

Proposition 1 Suppose that the consumer acquires a perfectly informative signal if and only

if the designer chooses κ = κ. Then, in equilibrium, only the G-product is produced, it is

always simplified and accepted with probability one.

Intuitively, the designer of a G-product does not want to expose himself to the noise of

imperfect information; thus, he chooses to simplify his product by choosing κ, which implies

acceptance with probability 1. As a result, the designer of a B-product cannot exploit the

noise of imperfect information to get his product accepted, since the consumer rationally

infers that the designer has chosen a B-product if she observes a noisy signal. Therefore, in

equilibrium, only G-products are produced, they are simplified and accepted with probability

one.

It follows that our results will be driven by the fact that the designer cannot ensure that

the consumer acquires perfect information, i.e., the consumer’s information set is imperfect.

3 Equilibrium

In this section, we characterize the equilibria of our game. First, we consider the consumer’s

optimal strategy, given her belief about the product proposed by the designer (Section 3.1).

Second, we analyze the designer’s strategy: his optimal choice of complexification (Section

9



3.2) and of quality (Section 3.3), given the consumer’s acceptance strategy. Finally, we impose

belief consistency to obtain the model’s equilibria (Section 3.4).

It is immediate that there is always a trivial equilibrium with zero trade in which (i) the

consumer correctly believes that the designer has chosen a B-product, and rejects it with

probability one; and (ii) the designer indeed chooses a B-product with probability one as he

is indifferent to producing G- versus B-products (both yield a zero expected payoff). In what

follows, we focus on the more interesting equilibria with positive trade, where the designer

chooses a G-product with positive probability.

3.1 The Consumer’s Strategy

From inspection of the consumer’s problem in (2), it is immediate that she follows a threshold

strategy: the consumer accepts the product, a(s, χ) = 1, if and only if her posterior belief

about the product begin of good quality is sufficiently high,

µ(s, χ) ≥ w0 − w(B)

w(G)− w(B)
≡ ω, (4)

where ω captures the relative value of the consumer’s outside option.11

To understand the consumer’s optimal acceptance strategy, we need to analyze the deter-

minants of her posterior belief. Let µ ≡ P(y = G) denote the consumer’s prior belief, which

must be positive as we are looking at equilibria with positive trade.12 After the designer

proposes his product, the consumer observes the product complexity χ. Since complexity is

informative about the designer’s action κ, it may contain information about quality y. The

consumer’s interim belief upon observing χ is:

µ (χ) =
µ

µ+ (1− µ) ` (χ)
, (5)

where `(χ) ≡ P(χ|y=B)
P(χ|y=G)

. Note that, in equilibrium, the likelihood ratio `(χ) will depend on the

designer’s complexification strategy {σy} and the primitive likelihood ratio f(χ|κ̄)
f(χ|κ)

. Given the

interim belief in (5), the consumer observes signal s with noise χ and forms posterior belief:

µ (s, χ) =
P (S = s|y = G) · µ (χ)

P (S = s|y = G) · µ (χ) + P (S = s|y = B) · (1− µ (χ))
. (6)

11If the consumer is indifferent, we assume without loss of generality that she accepts the product. Since
such an indifference will arise with probability zero, what happens in that event is inconsequential.

12We will slightly abuse notation by referring to µ as a prior belief, µ(χ) as an interim belief following
observation of χ, and µ(s, χ) as a posterior belief following observation of both χ and s.
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(a) Optimistic Consumer: µ( 1
2 ) ≥ ω. (b) Pessimistic Consumer: µ( 1

2 ) < ω.

Figure 2: Illustrates the behavior of posterior belief µ(s, χ) as it depends on the signal, s, and complexity, χ.

The consumer’s acceptance strategy is contingent on the acquired information whenever she

accepts the product after observing a good signal g, but rejects it after observing a bad signal

b. For this to be an optimal acceptance strategy, the signal has to be informative enough so

that:

µ (b, χ) < ω ≤ µ (g, χ) . (7)

Otherwise, if the acquired information is not sufficiently precise, the consumer chooses to

disregard her information. In this case, she either always accepts the product (if µ (s, χ) ≥ ω

∀s), or always rejects it (if µ (s, χ) < ω ∀s). To ensure that, for each s, the posterior µ (s, χ)

is monotonic in χ (see Lemma A.1), we impose the following regularity condition:

Condition 3.1 f(χ|κ)
f(χ|κ̄)

· χ
1−χ is monotonic in χ.

Given a prior belief µ ∈ (0, 1), the posterior beliefs satisfy µ(g, 0) = 1, µ(b, 0) = 0, and

µ(g, 1
2
) = µ(b, 1

2
) = µ(1

2
) ∈ (0, 1). That is, the signal perfectly reveals quality when complexity

is zero, χ = 0, and it is uninformative when complexity is maximal, χ = 1
2
. As χ increases

from 0 to 1
2
, MLRP guarantees that the posterior is monotonic when the designer’s equilibrium

strategy satisfies σG = σB, whereas MLRP combined with Condition 3.1 guarantees that this

is also the case when σG 6= σB. Intuitively, Condition 3.1 ensures that the information content

of the signal, s, is greater than the information content of the complexity, χ. These features of

the posterior beliefs are depicted in Figure 2, where note that the consumer optimally chooses

to disregard (or, equivalently, not acquire) information about sufficiently complex products.

The following definition will be useful in characterizing the consumer’s optimal strategy.
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Definition 1 We say that the consumer is optimistic if her interim belief satisfies µ
(

1
2

)
≥ ω,

whereas we say that she is pessimistic if µ
(

1
2

)
< ω.

The consumer is optimistic when, upon receiving an uninformative signal, she chooses to

accept the product. This will happen if her interim belief after observing a product with

the highest possible complexity (i.e., χ = 1
2
) is higher than her relative outside option. This

case is depicted in Figure 2(a), where the consumer only rejects the product after observing a

sufficiently informative negative signal, i.e., µ(s, χ) < ω iff s = b and χ ≤ χ̄. As illustrated in

Figure 2(a), χ̄ is the noise level at which µ(b, χ̄) = ω. In contrast, the consumer is pessimistic

when, upon receiving an uninformative signal, she chooses to reject the product. This will

happen if her interim belief after observing a product with the highest possible complexity

(i.e., χ = 1
2
) is lower than her relative outside option. This case is depicted in Figure 2(b),

where the consumer only accepts the product after observing a sufficiently informative positive

signal, i.e., µ(s, χ) ≥ ω iff s = g and χ ≤ χ̄. As illustrated in Figure 2(b), χ̄ is the noise level

at which µ(g, χ̄) = ω. We formalize this discussion in the following lemma.

Lemma 1 When the consumer is optimistic, her acceptance strategy satisfies:

a(s, χ) =

I{s=g} if χ ≤ χ̄

1 if χ > χ̄
, (8)

where µ(b, χ̄) = ω and I{s=g} is the indicator equal to one when the signal is good. When the

consumer is pessimistic, her acceptance strategy satisfies:

a(s, χ) =

I{s=g} if χ ≤ χ̄

0 if χ > χ̄
, (9)

where µ(g, χ̄) = ω.13

Therefore, an optimistic consumer will accept products that are sufficiently complex (χ >

χ̄), whereas a pessimistic consumer will reject such products. This will be essential for under-

standing the designer’s incentives to complexify or simplify his product.

Finally, note that both the threshold level of complexity χ̄ and whether the consumer

is optimistic or pessimistic are endogenous to equilibrium, since the prior belief µ and the

likelihood ratio `(χ), which determine the consumer’s beliefs µ(χ) and µ(s, χ), will need to be

consistent with the equilibrium strategy of the designer and Bayes’ rule.

13When µ = 1 or µ = 0, we set without loss of generality χ̄ = 0. As we will see, however, in any positive
trade equilibrium µ ∈ (0, 1).
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3.2 The Designer’s Complexification Strategy

Given the consumer’s acceptance strategy described in the previous section, we next consider

the designer’s choice of κ for a y-product. From the designer’s objective in (3), it follows that

a designer who chooses a y-product also (weakly) prefers to simplify, κ, whenever

P(a = 1|y, κ) ≥ P(a = 1|y, κ̄). (10)

Otherwise, the designer prefers to complexify, κ̄. From Lemma 1, we can compute the prob-

ability of acceptance of a y-product conditional on the product’s complexity χ.

When the consumer is optimistic,

P(a = 1|G,χ) =

1− χ if χ < χ̄

1 if χ ≥ χ̄
and P(a = 1|B,χ) =

χ if χ < χ̄

1 if χ ≥ χ̄
. (11)

Instead, when the consumer is pessimistic,

P(a = 1|G,χ) =

1− χ if χ ≤ χ̄

0 if χ > χ̄
and P(a = 1|B,χ) =

χ if χ ≤ χ̄

0 if χ > χ̄
. (12)

Hence, a designer who proposes a (y, κ) product to the consumer expects it to be accepted

with probability:

P (a = 1|y, κ) =

∫ 1
2

0

P (a = 1|y, χ) · f (χ|κ) dχ. (13)

The following proposition characterizes the optimal complexification strategy of a designer

who has produced a y-product.

Proposition 2 Let χ̂ ∈ (0, 1
2
) denote the unique solution to

∫ χ̂
0
χ·f(χ|κ)dχ =

∫ χ̂
0
χ·f(χ|κ̄)dχ.

Then, when the consumer is optimistic,

σB = 1 and σG


= 1 if χ̄ < χ̂

∈ [0, 1] if χ̄ = χ̂

= 0 if χ̄ > χ̂

, (14)
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(a) Optimistic Consumer: µ( 1
2 ) ≥ ω. (b) Pessimistic Consumer: µ( 1

2 ) < ω.

Figure 3: Illustrates the probability of acceptance of a y-product as a function of complexity χ. Panel (a)
shows the case of an optimistic consumer. Panel (b) shows the case of a pessimistic consumer.

whereas, when the consumer is pessimistic,

σB


= 0 if χ̄ < χ̂

∈ [0, 1] if χ̄ = χ̂

= 1 if χ̄ > χ̂

and σG = 0. (15)

This result says that when the consumer is optimistic, the designer has a tendency to com-

plexify his product; conversely, when the consumer is pessimistic, the designer has a tendency

to simplify it. The intuition for this result can be obtained from Figure 3, which illustrates the

acceptance probability, P(a = 1|y, χ), as it depends on the product’s quality, y, and complex-

ity, χ. An optimistic consumer disregards information and accepts with probability one when

a product is sufficiently complex. Thus, even the producer of a G-product may benefit from

complexifying if the consumer is sufficiently optimistic, i.e., χ̄ is sufficiently low (see Figure

3(a)). Conversely, a pessimistic consumer disregards information and rejects with probability

one when a product is sufficiently complex. Thus, even the producer of a B-product may

benefit from simplifying if the consumer is sufficiently pessimistic, i.e., χ̄ is sufficiently low

(see Figure 3(b)).

Our analysis thus highlights the central trade-off faced by the designer when choosing

whether to complexify his product. The designer trades off the benefit of relying on the

consumer’s prior belief about the product’s quality against the benefit of making the consumer

acquire and react to information. While the latter is higher for the designer of a good product,
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the former does not depend on the product quality chosen by the designer. For example, when

the consumer’s prior is sufficiently high (so that the consumer is optimistic and χ̄ < χ̂), all

products are complexified to reduce the consumer’s reliance on information that is imperfect.

Conversely, when the consumer’s prior is sufficiently low (so that the consumer is pessimistic

and χ̄ < χ̂), all products are simplified to increase the consumer’s reliance on information

that is imperfect. Finally, for intermediate beliefs, the designer of a good product wants

the consumer to rely on information (and therefore simplifies), whereas the designer of a

bad product wants the consumer to ignore information and rely on her prior (and therefore

complexifies).

3.3 The Designer’s Quality Strategy

When choosing the product’s quality, the designer faces a trade-off between increasing the

product’s acceptance probability (by choosing y = G) or increasing his payoff conditional on

acceptance (by choosing y = B). Given the consumer’s acceptance strategy, the net expected

payoff to the designer from choosing the G-product over the B-product is:

γ ≡ max
κ

P(a = 1|G, κ) · v(G)−max
κ

P(a = 1|B, κ) · v(B). (16)

The first term is the expected payoff from choosing the G-product given the corresponding

optimal choice of κ, as characterized in Proposition 2. The second term is the expected payoff

from choosing the B-product given the corresponding optimal choice of κ. The probabilities in

each scenario are computed as in (13). Note that these probabilities, and as a result the payoff

γ, depend on the consumer’s belief µ and the likelihood ratio `(·), as the latter determine χ̄.

The next result then follows immediately.

Proposition 3 Given the consumer’s acceptance strategy, the designer chooses the G-product

with probability:

m


= 1 if γ > 0

∈ [0, 1] if γ = 0

= 0 if γ < 0

, (17)

where γ is given by (16).

3.4 Characterization of Equilibria

In Section 3.1, we characterized the consumer’s strategy given her belief. In Sections 3.2

and 3.3, we characterized the designer’s quality and complexification strategy given the con-
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sumer’s acceptance strategy. To characterize the equilibria of our model, we now require that

the consumer’s belief be consistent with the designer’s strategy and Bayes’ rule. We find it

instructive to proceed in two steps.

Equilibrium Complexity. In the first step, we take the consumer’s prior belief µ as given and

find the designer’s equilibrium complexification strategy {σy} by requiring that the consumer’s

interim belief, µ(χ), be consistent with it and Bayes’ rule.

Proposition 4 Suppose that in equilibrium the consumer’s prior belief is µ ∈ (0, 1), then

there exist thresholds 0 < µ1 < µ2 < µ3 < µ4 < 1 such that:

1. If µ ∈ (0, µ1], all products are simplified, σG = σB = 0.

2. If µ ∈ (µ1, µ2], G-products are simplified, σG = 0, whereas B-products are complexified

with probability

σB =

(
f(χ̂|κ̄)

f(χ̂|κ)
− 1

)−1(
1− χ̂
χ̂

µ

1− µ
1− ω
ω
− 1

)
.

3. If µ ∈ (µ2, µ3], G-products are simplified, σG = 0, whereas B-products are complexified,

σB = 1.

4. If µ ∈ (µ3, µ4), G-products are complexified with probability

σG ∈
{

0, 1−
(

1− f(χ̂|κ)

f(χ̂|κ̄)

)−1(
1− 1− χ̂

χ̂

1− µ
µ

ω

1− ω

)
, 1

}
,

whereas B-products are complexified, σB = 1.

5. If µ ∈ [µ4, 1), all products are complexified, σG = σB = 1.

This result is illustrated in Figure 4. As we can see, all products will be complexified

(simplified) when the consumer’s prior belief is sufficiently high (low), and G-products will be

simpler than B-products for intermediate values of µ. In what follows, we provide an intuition

for this result by sketching the proof of the proposition.

First, let us ask whether an equilibrium in which all products are simplified, i.e., σG =

σB = 0, exists. By Proposition 2, this can only happen if the consumer is pessimistic, i.e.,

µ(1
2
) = µ < ω.14 In this case, G-products are always simplified, whereas B-products are

14Note that, when all products are simplified (or all products are complexified), the consumer does not
make inferences upon observation of complexity and, thus, µ(χ) = µ ∀χ.
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Figure 4: Illustrates how the complexification strategy of the designer who chooses a y-product varies with
the consumer’s belief µ.

simplified only if χ̄ ≤ χ̂. Since the threshold χ̄ is given by µ(g, χ̄) = ω (see Lemma 1) and

µ(g, ·) is decreasing, we have that χ̄ ≤ χ̂ if and only if µ(g, χ̂) ≤ ω, which is equivalent to:

µ ≤
ω · χ̂

1−χ̂

ω · χ̂
1−χ̂ + 1− ω

≡ µ1. (18)

Since χ̂ ∈ (0, 1
2
), also µ1 < ω. Thus, an equilibrium in which all products are simplified exists

if µ ∈ (0, µ1]; that is, if the consumer is ‘sufficiently pessimistic’ about the product’s quality.

Second, let us ask whether an equilibrium in which all products are complexified, i.e.,

σG = σB = 1, exists. By Proposition 2, this can only happen if the consumer is optimistic,

i.e., µ(1
2
) = µ ≥ ω. In this case, B-products are always complexified, whereas G-products are

complexified only if χ̄ ≤ χ̂. Since now the threshold χ̄ is given by µ(b, χ̄) = ω (see Lemma 1)

and µ(b, ·) is increasing, we have that χ̄ ≤ χ̂ if and only if µ(b, χ̂) ≥ ω, which is equivalent to:

µ ≥
ω · 1−χ̂

χ̂

ω · 1−χ̂
χ̂

+ 1− ω
≡ µ3. (19)

Since χ̂ ∈ (0, 1
2
), also µ3 > ω. Thus, an equilibrium in which all products are complexified

exists if µ ∈ [µ3, 1); that is, if the consumer is ‘sufficiently optimistic’ about the product’s

quality.

Third, let us ask whether an equilibrium in which G-products are simplified and B-products

are complexified, i.e., σG = 0 and σB = 1, exists. Note that, in this case, the consumer makes

an inference about the product’s quality upon observing complexity, χ, since more complex
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products are more likely to be B-products. By Proposition 2, there are two cases to consider,

depending on whether the consumer is optimistic or pessimistic. If the consumer is pessimistic,

i.e., µ
(

1
2

)
< ω, then G-products are always simplified whereas B-products are complexified

only if χ̄ ≥ χ̂. Both conditions hold if and only if:

µ2 ≡
ω · `(χ̂) · χ̂

1−χ̂

ω · `(χ̂) · χ̂
1−χ̂ + 1− ω

≤ µ ≤ ω · `
(

1
2

)
ω · `

(
1
2

)
+ 1− ω , (20)

where `(·) = f(·|κ̄)
f(·|κ)

. Instead, if the consumer is optimistic, i.e., µ
(

1
2

)
≥ ω, then B-products are

always complexified whereas G-products are simplified only if χ̄ ≥ χ̂. Both conditions hold if

and only if:

ω · `
(

1
2

)
ω · `

(
1
2

)
+ 1− ω < µ ≤

ω · `(χ̂) · 1−χ̂
χ̂

ω · `(χ̂) · 1−χ̂
χ̂

+ 1− ω
≡ µ4. (21)

Thus, an equilibrium in which G-products are simplified and B-products are complexified

exists provided that µ ∈ [µ2, µ4]; that is, the consumer is neither too optimistic nor too

pessimistic about the product’s quality.

Lastly, because the designer’s incentive to complexify is always greater for B- than for

G-products, there cannot be an equilibrium in which G-products are complexified and B-

products are simplified (see Proposition 2). Moreover, note that the ranking of the belief

thresholds follows by inspection of (18)-(21), since χ̂ ∈ (0, 1
2
) and MLRP implies that f(χ̂|κ̄)

f(χ̂|κ)
>

1. Such ranking implies that for µ ∈ (µ1, µ2) there cannot exist equilibria that involve either

pooling or separation on κ, whereas for µ ∈ (µ3, µ4) both pooling and separation on κ is

possible. In these regions, we can construct equilibria that involve mixing on κ, as illustrated

in Figure 4. For a detailed construction of these equilibria, see the proof of Proposition 4.

We have thus characterized the designer’s equilibrium complexification strategy, {σy}µ, that

is consistent with a given prior belief µ, where it is now convenient to make the dependence

of the strategy on µ explicit.

Equilibrium Quality. In the second step, we pin down the equilibrium prior belief, which

we will denote by µ∗. That is, we need to show that the complexification strategies and

designer payoffs implied by µ∗ are consistent with the designer producing G-products with

probability m = µ∗. To this end, we use equation (16) to compute the designer’s net payoff

γ(µ, {σy}µ) from producing G- versus B-products, as a function of the prior belief, µ, and the

corresponding complexification strategy, {σy}µ, from Proposition 4.

The following result establishes existence and uniqueness of the positive trade equilibrium.

Proposition 5 There is generically a unique equilibrium with positive trade, and in it m =
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Figure 5: Illustrates how the designer’s net payoff from choosing the G-product varies with the consumer’s
belief µ.

µ∗ = ψ ∈ (0, 1), where ψ and {σy}ψ are solutions to:

γ(ψ, {σy}ψ) = 0. (22)

First, it is easy to rule out an equilibrium with µ∗ = 1, since in that case the consumer

would accept the product with probability one, making it optimal for the designer to only

produce a B-product, contradicting belief consistency. As discussed before, an equilibrium

with µ∗ = 0 always exists, but in it products are rejected with probability one, and thus there

is no trade. Therefore, in any equilibrium with positive trade, it must be that µ∗ ∈ (0, 1).

Such an equilibrium exists if there is belief, ψ, and corresponding complexification strategy

{σy}ψ, that make the designer indifferent between producing G- versus B-products.

Figure 5 illustrates the generic behavior of the designer’s net payoff from producingG- versus

B-products, as it depends on µ. First, it is positive for µ small and becomes negative for µ

large. Intuitively, when µ is small, the consumer is pessimistic and, thus, accepts products

with low probability. The designer then expects a higher payoff from producing a G-product,

given its higher probability of acceptance. Second, as µ increases, the difference between

the probabilities of acceptance for G- versus B-products increases to further favor producing

the G-product, since the consumer becomes more likely to rely on information. Third, as

µ increases further, the consumer becomes sufficiently optimistic, which reduces her reliance

on information, and the gap between the probabilities of acceptance of the two products as a
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result begins to shrink. Finally, as µ becomes sufficiently large, the probabilities of acceptance

become large enough so that the designer obtains a higher expected payoff from B-products.

See proof of Proposition 5 for formal details. Using continuity arguments, we can then show

that an intersection ψ exists, and that it can generically lie in anywhere outside of the interval

(µ1, µ2), where the designer’s payoff is independent of µ.

We have thus provided a full characterization of the equilibrium of our signaling game.

We note that uniqueness of equilibrium is obtained due to two distinguishing features of our

model. First, the designer can influence but not fully control the product complexity for the

consumer, which ensures that multiplicity due to the freedom of specifying off-equilibrium

beliefs does not arise in our setting. This formulation is not only analytically convenient,

but it is also reasonable within our applications where a number of factors can determine

the consumer’s ability to process information about a product. Second, the endogeneity of

product quality rules out multiplicity arising from several complexification strategies being

consistent with a given prior belief (as stated in Proposition 4 for µ ∈ (µ3, µ4)). In particular,

there is generically a single value of ψ and a single complexification strategy, {σy}ψ such that

both the designer’s strategy is optimal and the consumer’s belief is consistent.

Next, we exploit the uniqueness of our equilibrium to obtain sharp comparative statics and

to discuss how our results lead to applied implications for the relationship between product

quality and complexity.

4 The Quality-Complexity Relationship

Our model generates sharp predictions about the relationship between quality and complexity

of products, and how this relationship varies with features of the environment. We now explore

these predictions through comparative statics and several model extensions. In doing so, we

say that a product’s expected quality increases when the probability that a product has good

quality, µ = P(y = G), increases; and that a product’s expected complexity increases when

the probability that a product is complexified, P(κ = κ̄) = µσG + (1− µ)σB, increases.

4.1 Relative Outside Option

We begin by considering the effect of a decrease in ω, which reflects an increase in the relative

payoff of the product to the consumer. Such an increase could result from an increase in the

consumer’s direct payoff from the product, i.e., w(G) or w(B), which we interpret as higher

product demand, or a fall in the consumer’s outside option, w0.
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Figure 6: Illustrates how expected product quality and complexity vary with the consumer’s relative outside
option, ω.

Proposition 6 As ω decreases, µ decreases, while σG and σB do not change. Thus, expected

quality of products falls while the expected complexity of products rises as the consumer’s

relative outside option falls.

Figure 6 illustrates the effect of a change in ω on expected product quality and complexity.15

Intuitively, as the consumer’s relative outside option falls, she is more likely to accept the

product as her acceptance decision becomes less strict. This makes the B-product more likely

to be accepted, increasing the designer’s incentives to produce a B-product, lowering expected

quality. Interestingly, the designer’s equilibrium complexification strategy is independent of

ω, as all of the adjustment happens through changes in average quality, leaving the consumer’s

acceptance strategy unchanged. Finally, as complexification is always weakly higher for a B-

than a G-product, a decrease in expected quality results in an increase in expected complexity.

4.2 Conflicts of Interest

We next analyze the effect of an increase in the designer’s alignment with the consumer given

by an increase in the designer’s payoff from producing a G-product, v(G).16

Proposition 7 As v(G) increases, σG and σB weakly increase, while µ can be non-monotonic

but it goes to 1 as v(G) goes to v(B). Thus, expected quality and expected complexity of products

rise when the designer becomes sufficiently aligned with the consumer.

15Throughout this section, unless stated otherwise, the figures are produced under the following
parametrization: χ ∼ Truncated Normal(µκ, σ, 0, 0.5) with means µκ = 0.2, µκ̄ = 0.3 and standard devi-
ation σ = 0.2 on interval [0, 0.5], ω = 0.5, v(G) = 0.3 and v(B) = 1.

16Note that the effect of an increase in v(G) is the same as the effect of a decrease in v(B).
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(a) Conflicts of Interest (b) Aligned Designers

Figure 7: illustrates how expected product quality and complexity vary with the consumer-designer alignment.
Panel (a) shows the comparative statics on the designer’s payoff from producing a G-product, v(G). Panel (b)
shows the comparative statics on the probability of finding an aligned designer, q.

Figure 7(a) illustrates the effect of a change in the designer’s alignment with the consumer

on expected product quality and complexity. Intuitively, an increase in v(G) increases the

net payoff to the designer from producing a G-product. Therefore, unsurprisingly, expected

product quality increases. Since in equilibrium the consumer’s prior belief µ must increase as

well, she becomes less selective in accepting products, which increases the designer’s incentive

to complexify.

More precisely, an increase in v(G) generates an upward shift of the correspondence γ,

depicted in Figure 5, while leaving the thresholds µ1 − µ4 unchanged. Generically, this leads

to an increase in ψ, and thus to an improvement in overall product quality. There are,

however, two values of v(G) at which ψ jumps, generating the two kinks in Figure 7(a). First,

as v(G) increases, ψ gradually approaches µ1 and then jumps up to µ2: the reason is that the

equilibrium switches from pooling at simplification to separation (i.e., σG = 0 and σB = 1),

generating a discontinuous change in the consumer’s interim belief as she begins inferring

product quality from observed complexity, which incentivizes the supply of good products.

Second, as v(G) increases further, µ gradually approaches µ4 and then jumps down to µ3:

the reason is that the equilibrium switches from separation to pooling at complexification,

generating a discontinuous change in the consumer’s interim belief as she stops inferring

product quality from observed complexity, which incentivizes the supply of bad products. As

we show next, this result is consistent with other mechanisms that reduce the misalignment

between the designer and the consumer.
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4.3 Aligned Designers

We next study the implications of introducing a designer whose payoffs are aligned with the

consumer’s. We suppose that with probability q ∈ [0, 1] the consumer encounters an aligned

designer, who obtains a higher payoff from having a G-product being accepted, v̄(G) > v̄(B) >

0. With probability 1 − q, however, the consumer meets the misaligned designer as in the

baseline model. Finally, whether the designer is aligned or misaligned is not observable to the

consumer. Our baseline model corresponds to the case of q = 0.

An aligned designer takes private actions {y, κ} to maximize his expected payoff, P(a =

1|y, κ) · v̄(y). As both his probability of acceptance and payoff conditional on acceptance are

higher for a G-product, the aligned designer always produces a G-product. Moreover, the

complexification strategy for the G-product is given by Proposition 2. Thus, even an aligned

designer chooses to complexify his G-product when the consumer is sufficiently optimistic.

The presence of an aligned designer only affects the equilibrium analyzed in Section 3

through the belief that a G-product is offered, which is now given by µ = q + (1− q) ·m. As

before, m is the probability with which the misaligned designer produces a G-product. The

following proposition characterizes the main effects of introducing an aligned designer.

Proposition 8 As q increases, µ, σG and σB weakly increase. Thus, expected quality and

expected complexity of products rise as the fraction of aligned designers rises.

When the probability of meeting an aligned designer is sufficiently small (q < ψ), there

is no effect on equilibrium outcomes, as the presence of an aligned designer is fully offset

by an increase in the misaligned designer’s incentives to produce a B-product. As a result,

expected product quality and complexity are as in the baseline model, with µ = ψ. When

q is sufficiently large, however, the misaligned designer only produces a B-product, m = 0,

and further increases in q lead to higher product quality and, thus, to more complexification

(see Proposition 4). These effects are depicted in Figure 7(b). The upward jump in expected

complexity illustrated in the figure arises due to an equilibrium switch from separation to

pooling at complexification.17

4.4 Sequential Search and Competition

Finally, we study the effects of competition among designers. In particular, we suppose that if

the consumer rejects a product, she searches for a new designer whom she finds with probability

17Since for q > ψ the expected quality is effectively exogenous, there may be multiple equilibria whenever
q ∈ (µ3, µ4), due to multiple complexification strategies being consistent with belief µ = q (see Proposition
4). Figure 7(b) is produced for the equilibrium where σG = 0 in this region, so that the increase in expected
complexity occurs at q = µ4 rather than sooner.
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β ∈ (0, 1). The new designer proposes a product to the consumer, and the game repeats until

the consumer accepts an offered product. In this setting, higher β corresponds to lower search

frictions and, hence, more intense competition among designers.

In a stationary equilibrium, in which U denotes the consumer’s equilibrium value, we have:

U = E
[

max
a∈{0,1}

{a · [µ(s, χ) · w(G) + (1− µ(s, χ)) · w(B)] + (1− a) · βU}
]
. (23)

Note that for w0 = βU , the equilibrium is fully characterized in Section 3.4. Thus, the main

difference with our baseline model is that the consumer’s outside option is now endogenous.

Further, we assume that w(B) < 0 (but maintain that w(G) > 0), which ensures that the

consumer prefers to search rather than accept a bad product; this rules out an uninteresting

equilibrium where B-products are produced and accepted with probability one.18

Proposition 9 An equilibrium exists, and in it βU ∈ (0, w(G)). Furthermore, βU is increas-

ing in β. Thus, expected quality rises while expected complexity falls as competition among

designers intensifies.

As βU is the consumer’s outside option in our search setting, comparative statics with

respect to β are as those with respect to the relative outside option, ω, in Proposition 6.

We find that competition has the desirable effect of increasing incentives to design products

that the consumer wants: those that are good and simple. This prediction is in contrast to

the literature on obfuscation and price complexity (Spiegler, 2006; Ellison and Ellison, 2009;

Carlin, 2009; Ellison and Wolitzky, 2012), which finds that higher competition leads to more

obfuscation, as obfuscation effectively increases the producer’s market power by making it

harder for the consumer to observe the attributes of competing products, e.g., by effectively

increasing search costs. The consumer searches fewer products, competition effectively de-

clines, which benefits firm profits. This channel is not present in our setting. Instead, here,

complexification influences the information the consumer extracts about the product. More

intense competition effectively increases the consumer’s outside option. This, in turn, incen-

tivizes the designer to offer products that are more likely to be accepted by the consumer:

those that are good and simple.19

18Note that, in such an equilibrium, the consumer’s outside option would be w0 = βU = βw(B) < w(B).
19A related result, though in a Bayesian persuasion setting, is found in Au and Kawai (2020), who study

competition in Bayesian persuasion where senders disclose information about their respective qualities. They
find that competition (i.e., a higher number of senders) induces each sender to disclose information more
aggressively.
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4.5 Empirical implications

In this section, we summarize the main empirical implications, and discuss them within the

context of our two leading applications.

Remark 1 The model generates the following testable implications:

1. As product demand by the consumer increases, products become more complex and of

worse quality (Proposition 6).

2. As the consumer-designer alignment increases, products become more complex and of

better quality (Propositions 7 and 8.)

3. As competition among the designers increases, products become less complex and of better

quality (Proposition 9).

We now discuss these predictions within the context of our two leading applications: financial

products and regulatory design.

Financial Products. We interpret the product designer as a financial advisor, and the consumer

as a retail investor. Financial advisors design or select financial products to offer to investors,

such as investment funds, credit cards, and securitized products. Investors then decide whether

they are willing to accept the offer or not. Within this context, our model suggests that

financial products are more likely to be complex and of low quality when demand for these

products is high. This suggests that the proliferation of low quality and complex structured

financial products documented by Jaffee et al. (2009) and Célérier and Vallée (2017) could

have been driven by an increase in the demand for such products.20

Our model also highlights the importance of financial advisors’ compensation structures or

career concerns, as they determine the level of alignment between financial advisors and retail

investors. In particular, our model suggests that when the trust in financial advisors is high

due to perceived alignment, we should observe more complex products being offered. This is

consistent with the observation that the proliferation of complex products in recent decades

has been accompanied by a period of increased trust in financial advisors, which may have

culminated with the financial crisis. Even though in this scenario, and unlike in our model,

the perceived alignment may have been unjustified, and accompanied by the proliferation of

20It is by now conventional wisdom that the last two decades have witnessed an unprecedented increase
in the demand for stores of value produced by the US, due to the so-called “global savings glut” (Bernanke,
2005). Structured financial products were perceived as a class of safer assets that could satisfy this demand.
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bad quality products.21

Recent empirical work has examined the effects of policies aimed at reducing conflicts of

interest between financial advisors and clients. Bhattacharya, Illanes, and Padi (2019) exploit

state-level variation in fiduciary duty laws in the United States and find that brocker-dealers

bound by fiduciary duty propose higher quality products. Our model provides an additional

prediction, so far untested: although such policies can be effective in improving product

quality, they may have the side effect of increasing product complexity. This insight is relevant

given current debates to expand fiduciary duty in the financial advice industry.22

Regulatory Policies. In the regulatory sphere, we interpret the designer as a policymaker, and

the consumer as the median voter that has to accept a policy proposal. Within this context,

we interpret a “good” (“bad”) policy proposal as one that is ideologically aligned (misaligned)

with the median voter’s preferences, and q as the fraction of policymakers who are aligned with

the median voter (as in Section 4.3). Finally, a lower median voter outside option corresponds

to a costlier status-quo, or equivalently, to a greater urgency to pass a policy.

In a study of Italian legislative proposals, Gratton et al. (2021) show that worse quality

and more complex legislation is proposed by politicians when the bureaucracy is less effective

and the expected duration of the legislative sessions is shorter. The authors argue that these

conditions reduce the voters’ ability to gather information on the competence of politicians.

This in turn incentivizes bad politicians to pool with good politicians in producing legislation,

which results in many low quality legislative proposals. Our model suggests an additional

channel for these outcomes. Bureaucratic ineffectiveness and short legislative sessions could

map to a costly status-quo and urgency to pass policies, given substantial pressure for reforms

in a short time interval. The results of Proposition 6 suggest that laws passed under such

time pressure would indeed be more complex and of lower quality.

In the legislative context, alignment between voters and policymakers is an important fac-

tor, and it is likely to arise due to similar ideological or political preferences. Such alignment

between policymakers and the median voter is reflected in public opinion data, which provides

politicians with real time information about voters’ support. Thus, our results suggest that

policymakers who face high public opinion are more likely to propose policies that are complex

21For example, in 2011, the Federal Housing Finance Agency filed lawsuits against some
of the largest US financial institutions, involving allegations of securities law violations and
fraud in the packaging and sale of mortage-backed-securities. For a detailed description, see
https://www.fhfa.gov/SupervisionRegulation/LegalDocuments/Pages/Litigation.aspx.

22For instance, the Securities and Exchange Commission (SEC) has proposed to forbid the use of the term
“financial advisor” for those managing brokerage accounts (particularly retirement funds) unless the broker has
formally accepted a fiduciary duty to act in the investor’s best interest. See “Fiduciary Rule” Poised for Second
Life Under Trump Administration, article by Dave Michaels on the Wall Street Journal, January 10th, 2018:
https://www.wsj.com/articles/fiduciary-rule-poised-for-second-life-under-trump-administration-1515580200.
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but aligned with the median voter’s preferences, and vice-versa. Indeed, legal scholars have

argued that in policy domains where public opinion is low (e.g., financial services or phar-

maceuticals), policy proposals from the US Congress tend to be simpler, leaving it to federal

agencies to draft additional rules (Stiglitz, 2017). Our results provide a theoretical basis for

further exploring this empirical observation.

5 Concluding Remarks

In this paper, we explore the incentives of product designers to produce complex products,

and the resulting implications for overall product quality. Our novel framework examines the

joint determination of a product’s quality and its complexity in a setting with only rational

agents. We view our approach and our results as complementary to those studied by the

literature on obfuscation and shrouded attributes.

We find that product complexity is not necessarily a feature of low quality products. In

particular, complexification or simplification may be used strategically by designers of both

high and low quality products. Exploring the model’s implications, we highlight the impor-

tance of understanding the underlying drivers of product heterogeneity for deriving empirical

predictions regarding the relationship between product quality and complexity.

We focus our model’s implications on two domains in which increasing complexity has re-

ceived close scrutiny: financial products and regulatory policies. We provide a new rationale

for the observed proliferation of complex financial products and regulatory policies. In the

context of the financial products’ industry, we argue that high demand for safe assets may

have been an important driver of the increasing complexity and worsening quality of struc-

tured products. In the context of regulatory design, we argue that increased complexity and

worsening quality of regulatory proposals may be driven by high urgency of passing regulatory

reform or high cost of inaction (of maintaining the status quo).

Finally, our model contributes to the policy debate on whether policymakers should be

concerned by rising complexity and whether they should act towards reducing it. If the

policymakers’ worries are about the effect of complexity on the quality of products offered to

consumers, then our results help isolate which features of the environment should be monitored

for signs that rising complexity will lead to lower quality.
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A Proofs for Sections 2-4

Lemma A.1 Suppose that Condition 3.1 holds. Then, in equilibrium, (i) the posterior belief
µ(g, χ) is increasing in χ, (ii) the posterior belief µ(b, χ) is increasing in χ, and (iii) the
threshold χ̄ defined in Definition 1 is unique.

Proof. From (6), the posterior belief µ(b, χ) is increasing in χ if and only if the likelihood

ratio σGf(χ|κ̄)+(1−σG)f(χ|κ)
σBf(χ|κ̄)+(1−σB)f(χ|κ)

· χ
1−χ is increasing in χ. But the latter follows from MLRP and

Condition 3.1. Analogously, the posterior belief µ(g, χ) is decreasing in χ if and only if

the likelihood ratio σBf(χ|κ̄)+(1−σB)f(χ|κ)
σGf(χ|κ̄)+(1−σG)f(χ|κ)

· χ
1−χ is increasing in χ. But the latter also follows

from MLRP and Condition 3.1. Finally, the uniqueness of the threshold χ̄ follows from the
monotonicity of the posteriors combined with the facts that µ(g, 0) = 1, µ(b, 0) = 0, and
µ(g, 1

2
) = µ(b, 1

2
) = µ(1

2
) ∈ (0, 1).

We will use the result in Lemma A.1 in the proofs that follow.

Proof of Proposition 1. Observe that in any equilibrium a G-product must be accepted
with probability 1, since the G-product designer can always choose κ and effectively reveal
the product’s quality to the consumer, and the consumer would accept it since w(G) > w0.

Next, let κy denote the complexification choice of the y-product designer, and suppose for
contradiction that in equilibrium the designer of a G-product chooses κG = κ̄ with positive
probability. Since the product has to be accepted with probability 1, it must be that the
consumer accepts it independently of her signal. But then, the designer of a B-product
can also set κB = κ̄ and get his product accepted with probability one. If in equilibrium,
however, both G- and B-products were accepted with probability 1, then the designer would
only produce a B-product, since he gets a higher payoff with that product, v(B) > v(G).
But then, the consumer would reject all products with probability one since w0 > w(B), a
contradiction.

Therefore, in any equilibrium, the designer of a G-product must choose κG = κ and perfectly
reveal his product quality to the consumer. Hence, there does not exist an equilibrium in which
the designer produces a B-product with positive probability, since then the consumer would
find this out and would reject such a product with probability one.

Proof of Lemma 1. See text.

Proof of Proposition 2. We begin by studying the designer’s optimal choice of κ in the
case when the consumer is optimistic (see Definition 1).

Case 1 (consumer is optimistic). In this case, the designer’s product is accepted with proba-
bility 1 when complexity is high enough, χ ≥ χ̄. So, his optimal choice of κ solves:

max
κ∈{κ,κ̄}

∫ χ̄

0

P(S = g|y) · f(χ|κ)dχ+

∫ 1/2

χ̄

f(χ|κ)dχ. (24)

Thus, it is optimal for the designer of B-product to choose κ̄ if∫ χ̄

0

χ · f(χ|κ̄)dχ+

∫ 1/2

χ̄

f(χ|κ̄)dχ ≥
∫ χ̄

0

χ · f(χ|κ)dχ+

∫ 1/2

χ̄

f(χ|κ)dχ, (25)
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and it is uniquely optimal if the inequality is strict. This is equivalent to:∫ χ̄

0

(1− χ) · (f(χ|κ)− f(χ|κ̄))dχ ≥ 0. (26)

But, note that we have:∫ χ̄

0

(1− χ) · (f(χ|κ)− f(χ|κ̄))dχ > (1− χ̄)(F (χ̄|κ)− F (χ̄|κ̄)) > 0 (27)

for χ̄ > 0, as will be the case in any equilibrium. Thus, condition (25) is satisfied with strict
inequality, and it is uniquely optimal for the designer of the B-product to choose κ̄.

On the other hand, it is optimal for the designer of G-product to choose κ̄ if∫ χ̄

0

(1− χ) · f(χ|κ̄)dχ+

∫ 1/2

χ̄

f(χ|κ̄)dχ ≥
∫ χ̄

0

(1− χ) · f(χ|κ)dχ+

∫ 1/2

χ̄

f(χ|κ)dχ, (28)

and it is uniquely optimal if the inequality is strict. This is equivalent to:∫ χ̄

0

χ · (f(χ|κ)− f(χ|κ̄))dχ ≥ 0. (29)

Condition (28) is satisfied if χ̄ ≤ χ̂, and holds with strict inequality if χ̄ < χ̂. Thus, if χ̄ < χ̂,
it is uniquely optimal for the designer of G-product to choose κ̄. Otherwise, if χ̄ = χ̂, the
designer is indifferent to the choice of κ, and if χ̄ > χ̂, it is uniquely optimal to choose κ.

Next, we study the designer’s choice of κ in the case when the consumer is pessimistic.
Case 2 (consumer is pessimistic). In this case, the designer’s product is rejected if complexity
is too high, χ > χ̄. So, his optimal choice of κ solves:

max
κ∈{κ,κ̄}

∫ χ̄

0

P (S = g|y) · f(χ|κ)dχ. (30)

Thus, it is optimal for the designer of B-product to choose κ if∫ χ̄

0

χ · f(χ|κ̄)dχ ≤
∫ χ̄

0

χ · f(χ|κ)dχ, (31)

and it is uniquely optimal if the inequality is strict. This is equivalent to:∫ χ̄

0

χ · (f(χ|κ)− f(χ|κ̄))dχ ≥ 0. (32)

Condition (31) is satisfied if χ̄ ≤ χ̂, and holds with strict inequality if χ̄ < χ̂. Thus, if χ̄ < χ̂,
it is uniquely optimal for the designer of B-product to choose κ. Otherwise, if χ̄ = χ̂, the
designer is indifferent to the choice of κ, and if χ̄ > χ̂, it is uniquely optimal to choose κ̄.
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On the other hand, it is optimal for the designer of the G-product to choose κ if∫ χ̄

0

(1− χ) · f(χ|κ̄)dχ ≤
∫ χ̄

0

(1− χ) · f(χ|κ)dχ, (33)

and it is uniquely optimal if the inequality is strict. This is equivalent to:∫ χ̄

0

(1− χ) · (f(χ|κ)− f(χ|κ̄))dχ ≥ 0. (34)

Re-writing the above condition, we have∫ χ̄

0

(f(χ|κ)− f(χ|κ̄))dχ >

∫ χ̄

0

χ · (f(χ|κ)− f(χ|κ̄))dχ, (35)

which immediately implies that condition (33) is satisfied for all χ̄ > 0, as will be the case in
any equilibrium, and it is uniquely optimal for the designer of the G-product to choose κ.

Proof of Proposition 3. The proof is straightforward.

Proof of Proposition 4. Suppose that, in equilibrium, the consumer’s belief that the
designer has produced a G-product is µ ∈ (0, 1).

Pooling on κ. Consider first the candidate equilibrium in which σB = σG = 0. By Proposition
2, this requires that µ ≤ ω and χ̄ ≤ χ̂. On equilibrium path, the consumer does not update
upon observing χ and, thus, threshold χ̄ is given by µ(g, χ̄) = ω, which is equivalent to:

χ̄ =
(1− ω) · µ

(1− ω) · µ+ ω · (1− µ)
. (36)

This is an equilibrium if and only if χ̄ ≤ χ̂, which is equivalent to:

µ ≤
ω · χ̂

1−χ̂

ω · χ̂
1−χ̂ + 1− ω

≡ µ1. (37)

Consider next the candidate equilibrium in which σB = σG = 1. By Proposition 2, this
requires that µ ≥ ω and χ̄ ≤ χ̂. On equilibrium path, the consumer does not update upon
observing χ and, thus, threshold χ̄ is given by µ(b, χ̄) = ω, which is equivalent to:

χ̄ =
ω · (1− µ)

(1− ω) · µ+ ω · (1− µ)
. (38)

This is an equilibrium if and only if χ̄ ≤ χ̂, which is equivalent to:

µ ≥
ω · 1−χ̂

χ̂

ω · 1−χ̂
χ̂

+ 1− ω
≡ µ3. (39)

Therefore, σB = σG = 0 is an equilibrium if and only if µ ∈ (0, µ1], whereas σB = σG = 1 is
an equilibrium if and only if µ ∈ [µ3, 1).
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Separation on κ. Consider the candidate equilibrium in which σB = 1 and σG = 0. There are
two cases to consider, depending on whether the consumer is optimistic or pessimistic.

First, suppose that

µ

(
g,

1

2

)
= µ

(
b,

1

2

)
=

µ

µ+ (1− µ) · `
(

1
2

) ≤ ω, (40)

where `(·) = f(·|κ̄)
f(·|κ)

. Then, the consumer is pessimistic (see Definition 1). On equilibrium path,
the consumer updates upon observing χ, and thus threshold χ̄ is given by

µ (g, χ̄) =
µ

µ+ (1− µ) · `(χ̄) · χ̄
1−χ̄

= ω. (41)

This is an equilibrium if and only if χ̄ ≥ χ̂, i.e.

µ2 ≡
ω · `(χ̂) · χ̂

1−χ̂

ω · `(χ̂) · χ̂
1−χ̂ + 1− ω

≤ µ ≤ ω · `
(

1
2

)
ω · `

(
1
2

)
+ 1− ω ≡ µ̃. (42)

Second, suppose that

µ

(
g,

1

2

)
= µ

(
b,

1

2

)
=

µ

µ+ (1− µ) · `
(

1
2

) > ω, (43)

Then, the consumer is optimistic. The threshold χ̄ is now given by

µ(b, χ̄) =
µ

µ+ (1− µ) · `(χ̄) · 1−χ̄
χ̄

= ω. (44)

This is an equilibrium if and only if χ̄ ≥ χ̂, i.e.

µ̃ =
ω · `

(
1
2

)
ω · `

(
1
2

)
+ 1− ω < µ ≤

ω · `(χ̂) · 1−χ̂
χ̂

ω · `(χ̂) · 1−χ̂
χ̂

+ 1− ω
≡ µ4. (45)

Therefore, σB = 0 and σG = 1 is an equilibrium if and only if µ ∈ [µ2, µ4].

Semi-separation on κ. Consider the candidate equilibrium, in which σB ∈ (0, 1). By Propo-
sition 2, such an equilibrium requires that the consumer be pessimistic and so σG = 0. On
equilibrium path, there is updating from observing χ, and threshold χ̄ must equal χ̂ so that
the designer of B-product is indifferent to the choice of κ (Proposition 2) and is willing to
mix:

µ (g, χ̂) =
µ

µ+ (1− µ) · (σB · `(χ̂) + 1− σB) · χ̂
1−χ̂

= ω, (46)

which in turn implies that:

σB =

1−χ̂
χ̂
· µ

1−µ · 1−ω
ω
− 1

f(χ̂|κ̄)
f(χ̂|κ)

− 1
. (47)
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Since the posterior belief µ (g, χ̂) is continuous and decreasing in σB (MLRP implies that
`(χ̂) > 1), this equilibrium exists if and only if:

µ(g, χ̂)|σB=1 < ω < µ(g, χ̂)|σB=0, (48)

which is equivalent to:

µ1 =
ω · χ̂

1−χ̂

ω · χ̂
1−χ̂ + 1− ω

< µ <
ω · `(χ̂) · χ̂

1−χ̂

ω · `(χ̂) · χ̂
1−χ̂ + 1− ω

= µ2. (49)

Therefore, σG = 0 and σB ∈ (0, 1) is an equilibrium if and only if µ ∈ (µ1, µ2).

Consider the candidate equilibrium in which σG ∈ (0, 1). By Proposition 2, such an equilib-
rium requires that the consumer be optimistic and so σB = 1. On equilibrium path, there is
updating from observing χ, and threshold χ̄ must equal χ̂ so that the designer of G-product
is indifferent to the choice of κ and is willing to mix:

µ (b, χ̂) =
µ

µ+ (1− µ) · 1−χ̂
χ̂
· 1
σG+(1−σG)·`(χ̂)−1

= ω. (50)

which in turn implies that

σG = 1−
1− 1−χ̂

χ̂
· 1−µ

µ
· ω

1−ω

1− f(χ̂|κ)
f(χ̂|κ̄)

. (51)

Since the posterior belief µ (b, χ̂) is continuous and increasing in σG, this equilibrium exists if
and only if:

µ(b, χ̂)|σG=0 < ω < µ(b, χ̂)|σG=1, (52)

which is equivalent to:

µ3 =
ω · 1−χ̂

χ̂

ω · 1−χ̂
χ̂

+ 1− ω
< µ <

ω · `(χ̂) · 1−χ̂
χ̂

ω · `(χ̂) · 1−χ̂
χ̂

+ 1− ω
= µ4. (53)

Therefore, σG ∈ (0, 1) and σB = 1 is an equilibrium if and only if µ ∈ (µ3, µ4).

We have thus characterized all the possible equilibrium {σy}, as a function of belief µ:

1. If µ ∈ (0, µ1], then σG = σB = 0.

2. If µ ∈ (µ1, µ2), then σG = 0 and σB =
1−χ̂
χ̂
· µ
1−µ ·

1−ω
ω
−1

f(χ̂|κ̄)
f(χ̂|κ)

−1
.

3. If µ ∈ [µ2, µ3], then σG = 0 and σB = 1.

4. If µ ∈ (µ3, µ4), then σG ∈
{

0, 1− 1− 1−χ̂
χ̂
· 1−µ
µ
· ω
1−ω

1− f(χ̂|κ)
f(χ̂|κ̄)

, 1

}
and σB = 1.

5. If µ ∈ [µ4, 1], then σG = σB = 1.
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This establishes the stated result.

Proof of Proposition 5. The designer’s net expected payoff from choosing a G-product
relative to a B-product is defined in (16). Define the correspondence Γ : [0, 1] → 2R, where
Γ(µ) is the set of designer net payoffs γ(µ) implied by all the possible {σy}, given in Proposition
4, which are consistent with the consumer’s prior belief µ, where we now make explicit the
dependence of the net payoff on the consumer’s belief µ.

First, note that 0 ∈ Γ(0), and that Γ(0) is a singleton, since the product is rejected with
probability one when the consumer’s belief is µ = 0. Second, consider µ ∈ (0, 1]. Note that
Γ(µ) is a singleton for µ 6∈ (µ3, µ4), since {σy} corresponding to such µ are unique. On the
other hand, Γ(µ) consists of three elements if µ ∈ (µ3, µ4), since then either (i) σG = 0 and
σB = 1, (ii) σG ∈ (0, 1) and σB = 1, or (iii) σG = 1 and σB = 1. We consider each case next.

Case µ ∈ (0, µ1]. By Proposition 4, equilibrium must have σG = σB = 0, and it must be that
the consumer is pessimistic, since µ1 < µ̃. Furthermore, Γ(µ) is a singleton with:

γ (µ) = v(G) ·
∫ χ̄(µ)

0

(1− χ) f (χ|κ) dχ− v(B) ·
∫ χ̄(µ)

0

χf (χ|κ) dχ, (54)

since the product is rejected whenever χ > χ̄(µ). Therefore:

γ′ (µ) = [v(G)− (v(G) + v(B)) · χ̄(µ)] · f (χ|κ) · dχ̄(µ)

dµ
. (55)

where χ̄(µ) is given by (36) and, thus, satisfies dχ̄(µ)
dµ

> 0, χ̄ (0) = 0, and χ̄(µ1) = χ̂. As a

result, for µ sufficiently small, γ′(µ) > 0 and γ(µ) > 0. Next, consider the value µv such that:

χ̄(µv) =
v(G)

v(G) + v(B)
=⇒ µv ≡

v(G) · ω
v(G) · ω + v(B) · (1− ω)

. (56)

If µv > µ1, then γ′ (µ) > 0 ∀µ ∈ (0, µ1). Otherwise, γ′ (µ) > 0 for µ ∈ (0, µv) and γ′ (µ) < 0
for µ ∈ (µv, µ1).

Case µ ∈ (µ1, µ2]. Equilibrium must have σG = 0 and σB ∈ (0, 1), and it must be that the
consumer is pessimistic, since µ2 < µ̃. In this case, χ̄(µ) = χ̂ and Γ(µ) is singleton with:

γ (µ) = v(G) ·
∫ χ̂

0

(1− χ) f (χ|κ) dχ− v(B) ·
∫ χ̂

0

χf (χ|κ) dχ, (57)

since the product is rejected whenever χ > χ̄(µ) = χ̂. It therefore follows that γ(µ) is constant
on interval (µ1, µ2) and equal to γ(µ1).

Case µ ∈ (µ2, µ3]. Equilibrium must have σG = 0 and σB = 1. The consumer is pessimistic if
µ < µ̃, and she is optimistic otherwise. Here, again Γ(µ) is a singleton.

Suppose that µ < µ̃. Then, the consumer is still pessimistic, and we have:

γ (µ) = v(G) ·
∫ χ̄(µ)

0

(1− χ) f (χ|κ) dχ− v(B) ·
∫ χ̄(µ)

0

χf (χ|κ̄) dχ, (58)
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since the product is rejected whenever χ > χ̄(µ). Therefore:

γ′ (µ) = [v(G) · (1− χ̄(µ)) · f (χ̄(µ)|κ)− v(B) · χ̄(µ) · f (χ̄(µ)|κ̄)] · dχ̄
dµ
. (59)

where χ̄(µ) is now given by (41). Since χ̄(µ2) = χ̂, γ(µ) is continuous at µ2. Furthermore,
γ′ (µ) ≥ 0 iff

χ̄(µ) ≤ v(G)

v(G) + v(B) · ` (χ̄(µ))
⇐⇒ (1− µ) · ω

µ · (1− ω)
≥ v(B)

v(G)
⇐⇒ µ ≤ µv, (60)

with strict inequalities iff µ < µv. And, since (1−µ)·ω
µ·(1−ω)

≥ v(B)
v(G)

is decreasing in µ and equal to

`(1
2
) < 1 when µ = µ̃, it follows that µv < µ̃ and thus γ′ (µ̃) < 0.

Suppose that µ > µ̃. Now, the consumer is optimistic and χ̄(µ) ≥ χ̂ is given by (44), with
dχ̄(µ)
dµ

< 0. Therefore, we have:

γ (µ) = v(G) ·
[∫ χ̄(µ)

0

(1− χ) f (χ|κ) dχ+ 1− F (χ̄|κ)

]
− v(B) ·

[∫ χ̄(µ)

0

χf (χ|κ̄) dχ+ 1− F (χ̄|κ̄)

]
,

(61)

since the product is now accepted whenever χ > χ̄(µ). Thus:

γ′ (µ) = [v(B) · (1− χ̄(µ)) · f (χ̄(µ)|κ̄)− v(G) · χ̄(µ) · f (χ̄(µ)|κ)] · dχ̄
dµ

< 0, (62)

where the inequality follows from the observation that `(χ̄(µ)) ≥ `(χ̂) > 1. Recall that µ̃ is
the threshold between the region where the consumer is pessimistic and the region where she
is optimistic. Since χ̄ (µ̃) = 1

2
and thus F (χ̄|κ) = 1 for κ ∈ {κ, κ̄}, it is easy to check that

γ(µ) is continuous at µ̃.

Case µ ∈ [µ4, 1]. Equilibrium must have σG = σB = 1, and it must be that the consumer
is optimistic, since µ4 > µ̃. Here, again Γ(µ) is a singleton. Moreover, χ̄(µ) given by (38),
dχ̄(µ)
dµ

< 0, and:

γ (µ) = v(G)·
[∫ χ̄(µ)

0

(1− χ) f (χ|κ̄) dχ+ 1− F (χ̄|κ̄)

]
−v(B)·

[∫ χ̄(µ)

0

χf (χ|κ̄) dχ+ 1− F (χ̄|κ̄)

]
,

(63)
since the product is accepted whenever χ > χ̄(µ). It follows that γ(µ) is decreasing in µ since:

γ′ (µ) = [v(B) · (1− χ̄)− v(G) · χ̄] · f (χ|κ̄) · dχ̄
dµ

< 0. (64)

Finally, note that γ(1) = v(G)− v(B) < 0.

Case µ ∈ (µ3, µ4). By Proposition 4, equilibrium must have either: (i) σG = 0 and σB = 1;
(ii) σG ∈ (0, 1) and σB = 1; and (iii) σG = σB = 1; and it must be that the consumer is
optimistic, since µ3 > µ̃. Thus, Γ(µ) consists of three elements, and we let γj(µ) ∈ Γ(µ) for
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j ∈ {1, 2, 3} denote the net expected payoff to the L-type of choosing G-product, when the
equilibrium {σy} is in region (i), (ii), and (iii) respectively.

We have already shown that the functions γ1(µ) and γ3(µ) are decreasing in µ (see Case
µ ∈ [µ2, µ3) when µ > µ̃, and Case µ ∈ [µ4, 1]). Let us consider γ2(µ), which is given by:

γ2 (µ) = v(G)− v(G) ·
∫ χ̂

0

χf (χ|κ̄) dχ− v(B) ·
∫ χ̂

0

χf (χ|κ̄) dχ− v(B) · (1− F (χ̂|κ̄)) , (65)

and is thus constant on the interval (µ3, µ4). Furthermore, it is easy to check that limµ↓µ3 γ
1(µ) =

γ(µ3) where γ(µ3) is defined in Case µ ∈ (µ2, µ3], limµ↑µ4 γ
1(µ) = limµ↑µ4 γ

2(µ) = limµ↓µ3 γ
2(µ) =

limµ↓µ3 γ
3(µ), and limµ↑µ4 γ

3(µ) = γ(µ4) where γ(µ4) is defined in Case µ ∈ [µ4, 1].

Therefore, we have shown that (i) Γ(µ) is a singleton for µ ∈ [0, µ3], with limµ→0 γ(µ) =
γ(0) = 0 where γ(µ) is continuous, and increasing on [0, µv], but decreasing on [µv, µ3]; (ii)
Γ(µ) is a singleton, where γ(µ) continuous and decreasing on [µ4, 1], with γ(1) < 1; (iii) fi-
nally, Γ(µ) has three elements on (µ3, µ4), where {γj(µ)} are continuous and (weakly) decreas-
ing, with limµ↓µ3 γ

1(µ) = γ(µ3), limµ↑µ4 γ
1(µ) = limµ↑µ4 γ

2(µ), limµ↓µ3 γ
2(µ) = limµ↓µ3 γ

3(µ),
limµ↑µ4 γ

3(µ) = γ(µ4), and where γ2(µ) is constant (see Figure 5 for illustration). Hence, it
must be that (generically) there is a unique µ on (0, 1), denoted by ψ, such that 0 ∈ Γ(ψ).
We conclude that there is (generically) a unique positive trade equilibrium. In it, the designer
produces the G-product with probability ψ ∈ (0, 1) and his complexification strategy {σy} is
given by Proposition 4, where the consumer’s prior belief is µ = ψ.

Proof of Proposition 6. By inspection of the designer’s net payoff γ from producing a
G-product relative to a B-product, we see that µ and ω only affect it through their effect on
threshold complexity χ̄ (see proof of Proposition 5), which determines whether the consumer’s
acceptance decision is contingent on the signal or not (see Lemma 1). As a result, any change
in ω must be fully offset by a corresponding change in µ = ψ so as to keep the designer
indifferent between producing a G- vs. a B-product. It is easy to check that an increase in ω
increases the thresholds µ1 − µ4. Therefore, in equilibrium, it must be that ψ increases in ω,
but the designer’s complexification strategy {σy} does not change. As a result, an increase in
ω increases expected quality, and it decreases expected complexity since σG ≤ σB.

Proof of Proposition 7. An increase in v(G) affects the equilibrium complexification
strategy {σy} only to the extent that it affects the consumer’s equilibrium belief µ (see proof
of Proposition 4 and note that the thresholds µ1−µ4 are independent of v(G)). Now, consider
the designer’s net payoff γ from producing a G-product relative to producing a B-product, as
given by:

γ = max
κ

P(a = 1|G, κ; {σy}, µ) · v(G)−max
κ

P(a = 1|B, κ; {σy}, µ) · v(B), (66)

where we now make explicit that the equilibrium probability of acceptance of a y-product,
P(a = 1|y, κ; {σy}, µ), will depend on the equilibrium belief µ and complexification strategy
{σy}. By our previous argument, for a given belief µ, maxκ P(a = 1|y, κ; {σy}, µ) is inde-
pendent of v(G) and therefore γ must be increasing in v(G). Thus, if equilibrium features
µ = ψ 6∈ [µ3, µ4], it must be that ψ increases with v(G) (see proof of Proposition 5 and Figure
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5). The same holds if ψ ∈ [µ3, µ4] and the change in v(G) is large enough so that the new
equilibrium ψ is greater than µ4. In particular, it is easy to check that µ = ψ goes to 1 as
v(G) goes to v(B). However, when ψ ∈ (µ3, µ4), it is possible that an increase in v(G) implies
that ψ falls as the equilibrium jumps from separation on κ to pooling at κ = κ̄ (see Figure
7). From Proposition 4, since the thresholds µ1− µ4 are unchanged, as µ = ψ increases, {σy}
increase. As a result, a large enough change in v(G) increases both expected quality and
expected complexity, though locally the effect may be non-monotonic.

Proof of Proposition 8. Note that the aligned designer’s net benefit from choosing the
G-product is

γ = max
κ

P(a = 1|G, κ) · v̄(G)−max
κ

P(a = 1|B, κ) · v̄(B). (67)

Since the probability of acceptance is always higher for a G-product, i.e. P(a = 1|G, κ) ≥
P(a = 1|B, κ) > 0 for all κ and v̄(G) > v̄(B), the aligned designer produces a G-product with
probability one. In turn, this designer’s complexification strategy is given by σG, as charac-
terized in Proposition 2. Thus, the presence of an aligned designer will affect the equilibrium
outcomes only by affecting the probability of a G-product being produced, captured by the
fact that belief consistency now requires that µ = q + (1− q) ·m.

Consider the case of q > ψ. First, note that in equilibrium µ ≥ q, since m ≥ 0. Second,
note that it must be that m = 0, since the misaligned designer’s net payoff from producing
a G-product relative to a B-product is always negative for µ > ψ (see proof of Proposition
5). Thus, we have that in equilibrium µ = q ≥ ψ and, thus, expected quality is higher in the
presence of an aligned designer. It follows from Proposition 4 that {σy} are higher as well,
since the presence of an aligned designer simply increases µ.

Next, consider the case of q ≤ ψ. We now show that the equilibrium µ and {σy} need not
change in the presence of an aligned designer; their presence is simply offset by the misaligned
designer producing a G-product with smaller probability. If q < µ3, then the misaligned
designer’s payoff from producing a G-product is strictly positive if equilibrium had µ = q (see
proof of Proposition 5 and Figure 5), which is inconsistent with an equilibrium; thus, it must
be that the misaligned designer produces a G-product with positive probability m = ψ−q

1−q so
that the equilibrium belief is µ = ψ and he is indifferent to producing a G- vs. B-product.
Now, suppose that q ∈ [µ3, ψ]. If min{γ : γ ∈ Γ(µ3)} > 0, then the equilibrium is as the one
described above since the misaligned designer’s net payoff from producing a G-product is still
strictly positive if equilibrium had µ = q, which cannot be consistent with equilibrium. If,
instead, min{γ : γ ∈ Γ(µ3)} ≤ 0, then multiple equilibria exist. In particular, the equilibrium
where the misaligned designer produces a G-product with probability m = ψ−q

1−q (so that µ = ψ)

still exists, since 0 ∈ Γ(ψ). However, there is also an equilibrium where µ = q ∈ [µ3, ψ], since
there exists a γ < 0 such that γ ∈ Γ(q).

Proof of Proposition 9. For each U ∈ [0, w (G)], consider map Tβ : U 7→ R defined by:

Tβ (U) = E
{

max
a∈{0,1}

{a · (µ (s, χ) · w (G) + (1− µ (s, χ)) · w (B)) + (1− a) · βU}
}
, (68)

where recall µ(s, χ) is the consumer’s equilibrium belief that the proposed product has quality
G, given signal s and complexity χ. For an exogenously given value of U , which pins down the
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consumer’s outside option w0 = βU , this map gives us the consumer’s ex-ante value Tβ(U).
An equilibrium is a fixed point of this map, and we denote it by U∗. Clearly, w(B) < Tβ(U) ≤
w(G), which implies that in equilibrium w0 = βU∗ ∈ (w(B), w(G)), satisfying Assumption 1.
As in our baseline model, we focus on positive trade equilibria, in which good products are
produced with positive probability. And, for the same reason as in the baseline model, bad
products must be produced with positive probability. Therefore, to show that an equilibrium
exists, it suffices to show that Tβ (·) is increasing. But note that an increase in the outside
option increases the consumer’s ex-ante welfare directly and indirectly through its effects on
equilibrium µ and {σy}. The latter follows from Proposition 6, where we have shown that
µ = ψ increases in the outside option, whereas {σy} are independent of it.

For comparative statics, note that, for a given U , an increase from β to some β′ is equivalent
to an increase in the consumer’s outside option. Thus, it must be that Tβ (U) < Tβ′ (U). The
fixed point must therefore be higher at β′ than at β, since Tβ(·) is increasing. If there are
multiple fixed points, then the statement holds locally and for the maximal one.
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B Robustness of modeling approach

In our baseline model, we assumed that complexity directly determined the information pre-
cision of the consumer and we also took the payoffs to the agents as given in order to isolate
the key mechanisms driving our results. In this Appendix, we show that our results remain
robust to alternative information acquisition technologies, such costly information acquisition
and rational inattention, and to endogenizing the agents’ payoffs by introducing prices and
production costs. We relegate detailed derivations to Appendix B.4.

B.1 Costly Information Acquisition

Our setting can be interpreted as one in which the consumer actively chooses how much
information to acquire, and where the cost of information acquisition is increasing in the
product’s complexity, χ, determined as in our baseline model. Formally, we now suppose
that after the designer proposes product (y, κ), the consumer observes the complexity of the
product, χ, and acquires a signal S ∈ {b, g} about the product’s quality with noise z, where:

z ≡ P(S = b|y = G) = P(S = g|y = B) ∈
[
0,

1

2

]
. (69)

The consumer can reduce the noise of the signal by exerting effort with associated cost C(z, χ),
which is weakly decreasing in noise, z, with the properties that C(1

2
, ·) = 0 and C(z, ·)−C(z′, ·)

is increasing for all z < z′. As a result, it is more costly for the consumer to acquire information
about products that are either naturally more complex (high η) or that have been purposefully
complexified by the designer (κ = κ̄). Finally, we assume that acquiring a perfectly informative
signal is prohibitively costly for the consumer: C(0, χ(η, κ)) > max{w(G) − w0, w0 − w(B)}
with probability one for κ ∈ {κ, κ̄}.

The consumer’s problem must now adjusted to incorporate the decision of how much infor-
mation to acquire. It can now be expressed in two steps, backwards. As in the baseline model,
given her information set, as summarized by the posterior belief µ (s, z, χ) ≡ P(y = G|s, z, χ),
the consumer makes an optimal acceptance decision:

W (s, z, χ) ≡ max
a∈{0,1}

a [µ (s, z, χ)w(G) + (1− µ (s, z, χ))w(B)] + (1− a)w0. (70)

Next, in anticipation of her optimal acceptance decision and given her interim belief µ (χ) ≡
P(y = G|χ), which incorporates the potential information contained in the product’s com-
plexity, χ, the consumer makes an optimal information acquisition decision:

max
z∈[0, 12 ]

∑
s∈{b,g}

P(S = s|z, χ)W (s, z, χ)− C (z, χ) , (71)

where P(S = s|z, χ) = P(S = s|y = G)µ(χ)+P(S = s|y = B) (1− µ(χ)) and where P(S = s|y)
is given by (1). We now denote the consumer’s strategy by {z(χ), a(s, χ)}s,χ.
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B.1.1 The Baseline Setup

Our baseline specification is obtained with the following information acquisition technology:

C (z, χ) =

{
0 if z ≥ χ

C̄ if z < χ
(72)

where C̄ > max{w(G)−w0, w0−w(B)}. The reason is that such an information cost implies
that it is free for the consumer to reduce the noise of the signal down to χ, but it becomes
prohibitively costly to reduce it any further. As we have shown in our main analysis, this
formulation is very convenient for obtaining sharp analytical results.

B.1.2 Convex Costs

Next, suppose that the consumer’s cost of information acquisition is:

C (z, χ) = χ · h
(

1

2
− z
)
, (73)

where χ = χ (η, κ) ∈ (0,∞) and h (·) is continuously differentiable, increasing and convex,
with h′ (0) = 0 and limx→ 1

2
h′ (x) = ∞. These properties imply that the consumer’s choice

of information acquisition, z(χ), will be positive (i.e., information is always imperfect) and
increasing in complexity, χ.

If the consumer chooses to acquire information, i.e., z(χ) < 1
2
, it is because she will make

her acceptance decision contingent on the received information: she will accept the product
after observing signal g and reject it after observing signal b. Given this, the payoff from
acquiring information is:

W I(χ, z) ≡ max
z∈[0, 1

2
]
w0 +µ (χ) ·(1− z) ·(w(G)−w0)+(1− µ (χ)) ·z ·(w(B)−w0)−C(z, χ). (74)

We can already see the main difference between this and our baseline model: the mapping
between a product’s complexity and the noise of the acquired information given by the solution
to (74), z(χ), now also depends on the consumer’s prior belief, µ. To highlight the main
mechanisms of our paper, in the baseline model we chose a formulation for the cost function
that eliminated this dependence. As we show next, although this dependence introduces
complications, it does not change our main qualitative results.

If the consumer chooses not to acquire information, z(χ) = 1
2
, her payoff is:

WU (χ) ≡ max {µ (χ) · w(G) + (1− µ (χ)) · w(B), w0} . (75)

It follows that the consumer acquires information and makes her decision contingent on the
received information whenever W I (χ, z(χ)) > WU (χ). After some algebra, it follows that

43



the consumer makes her decision conditional on information when:

z(χ) <


(1−µ(χ))·ω

(1−µ(χ))·ω+µ(χ)·(1−ω)
− h( 1

2
−z(χ))

h′( 1
2
−z(χ))

if µ(χ) ≥ ω

µ(χ)·(1−ω)
(1−µ(χ))·ω+µ(χ)·(1−ω)

− h( 1
2
−z(χ))

h′( 1
2
−z(χ))

if µ(χ) < ω
(76)

In contrast to our baseline model, the consumer now takes into account the cost of infor-
mation acquisition when deciding whether to make her decision contingent on information.

This is captured by the new term
h( 1

2
−z(χ))

h′( 1
2
−z(χ))

on the right hand side of (76). As in our baseline

analysis, we impose a regularity condition on the likelihood ratio f(·|κ̄)
f(·|κ)

to ensure that there is
a unique threshold χ̄ such that the consumer makes her decision contingent on information if
and only if χ < χ̄. With this, we are able to prove the analogue of Lemma 1.

Given the consumer’s optimal strategy, we proceed to the designer’s problem. For this, we
first compute the probability of having a product with attributes (y, κ) accepted, which is the
same as in the baseline model, given by (11)-(13), except that now the noise of the signal is
given by z(χ) rather than χ. We can then study the designer’s complexification strategy. To
do this, it is straightforward to prove Proposition 2, where χ̂ is now defined by:∫ χ̂

0

z (χ) · (f (χ|κ)− f (χ|κ̄)) · dχ = 0. (77)

Finally, it is also clear that the designer’s optimal quality strategy continues to be charac-
terized by Proposition 3. We have thus shown that the optimal strategies of the consumer
and of the designer qualitatively coincide with those in the baseline model. As a final step,
we show that an equilibrium with positive trade exists, and that it shares the same broad fea-
tures as our baseline equilibrium. To do so, we impose a condition on the cost of information
acquisition, which we explain below.

Recall that now the consumer’s choice of information acquisition, z(χ), varies with prior
belief µ. This adds an additional consideration that was absent in our baseline model; namely,
that now not only the consumer’s threshold, χ̄, but also the designer’s threshold, χ̂, given by
(77), change with µ. Recall from the discussion following Proposition 4 that understanding
how the ranking between χ̄ and χ̂ depends on the prior belief µ is essential for characterizing
the designer’s complexification strategy that is consistent with an equilibrium belief µ. In the
baseline model, monotonicity of χ̄− χ̂ was ensured because χ̄ was monotonic in µ and χ̂ was
independent of it. This monotonicity property does not come for free in the current setting,
but we recover it by imposing a regularity condition on the cost function so that χ̄ is more
sensitive to changes in µ than χ̂. With this, we establish the following result.

Proposition 10 An equilibrium with positive trade exists. In it, the designer produces a G-
product with probability µ∗ ∈ (0, 1) and there exist thresholds 0 < µ̃1 < µ̃2 < µ̃3 < µ̃4 < 1 such
that:

1. If µ∗ ∈ (0, µ̃1], all products are simplified, σG = σB = 0.

2. If µ∗ ∈ (µ̃1, µ̃2], G-products are simplified, σG = 0, and B-products complexified with
probability σB ∈ (0, 1).
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(a) Optimistic Consumer (b) Pessimistic Consumer

Figure 8: Illustrates the probability of acceptance of a y-product as a function of the product’s complexity, χ.

3. If µ∗ ∈ (µ̃2, µ̃3], G-products are simplified, σG = 0, and B-products complexified, σB = 1.

4. If µ∗ ∈ (µ̃3, µ̃4), G-products are complexified with probability σG ∈ {0, σ̃, 1} for some
σ̃ ∈ (0, 1), and B-products complexified, σB = 1.

5. If µ∗ ∈ [µ̃4, 1), all products are complexified, σG = σB = 1.

This result states that the structure of the equilibrium of the model with convex costs of
information is effectively the same as that in our baseline model, as summarized by Proposi-
tions 4 and 5. The main difference is that we can no longer ensure uniqueness of equilibrium,
which was useful for obtaining sharp comparative statics results (Section 4).

B.2 Rational Inattention

We next consider an even more general information acquisition problem, by supposing that the
consumer can choose how much uncertainty about the product quality to reduce, subject to
an entropy-reduction cost, where entropy measures the consumer’s uncertainty (Sims, 2003).
Thus, a product is more complex if it has a higher entropy-reduction cost. Although this
approach allows for a more flexible information acquisition technology, it has the drawback
that we can no longer obtain as sharp of an equilibrium characterization as in our baseline
specification or as in the previous section. Nevertheless, we argue next that the model’s main
mechanisms remain robust to this alternative specification.

Since the consumer’s action is binary, i.e., accept or reject, it is without loss of generality to
focus on binary signals S ∈ {b, g} (Woodford, 2009; Yang, 2015), where the consumer accepts
the product if and only if she receives a g signal. Thus, the main difference from the analysis
in Appendix B.1 is that now the consumer’s signal need not be symmetric, as the consumer
may allocate “precision” optimally between the g and the b signals, trading off the costs of
rejecting a G-product (type I error) with the costs of accepting a B-product (type II error).
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(a) Equilibrium complexification (b) Equilibrium quality determination

Figure 9: The left panel illustrates how the complexification strategy of the designer who produces a y-
product varies with equilibrium belief µ. The right panel illustrates the designer’s net payoff from choosing
the G-product, given belief µ. Note that equilibrium quality ψ is set so that the net payoff is equal to zero.

Equipped with the optimal information structure, we compute the probability of acceptance
of a y-product, as it depends on the product’s complexity, χ. These probabilities are depicted
in Figure 8, which we can see closely resemble those in our baseline model (see Figure 3). When
the product’s complexity is low, the consumer extracts an informative signal and makes her
decision contingent on its realization. Otherwise, the consumer accepts the product with
probability one if she is optimistic, and she rejects it with probability one if she is pessimistic.

Although a full analytical characterization of the equilibrium set is difficult to obtain, we
check (numerically) that it resembles closely that of our baseline model. Figure 9(a) depicts
the complexification strategy {σy} of the designer that is consistent with an equilibrium prior
belief µ. And, Figure 9(b) depicts the designer’s net payoff from producing a G- versus a B-
product as it depends on µ.23 Thus, and in line with the results in Proposition 10, the right
panel determines the expected product quality, µ = ψ, whereas the left panel determines the
equilibrium complexification of a y-product, given that the consumer’s prior belief is µ = ψ.

B.3 Prices and Production Costs

For some applications, it is natural to assume that a designer not only proposes a product to
the consumer but that he also sets a price that is observable to the consumer. To analyze the
role of such transfers in our environment, we modify the agents’ payoff as follows. If a product
is accepted, the designer’s payoff is given by the price he charges the consumer minus the cost
of production, p− c(y).24 In turn, the consumer’s payoff from accepting a y-product is given

23As in Figure 5, the kinks in Figure 9(b) arise due to a switch from separation on κ (i.e., σG = 0 and
σB = 1) to pooling on κ (i.e., σG = σB = 1).

24We assume that the cost of production is incurred upon product acceptance in order to stay close to the
payoff structure of our baseline model.
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by her valuation minus the price she pays, w̃(y)− p. As before, the consumer’s outside option
is given by w0. The following assumption replaces Assumption 1.

Assumption 2 The payoffs satisfy the following properties:

1. w̃(G)− c(G) > w0 > w̃(B)− c(B), with w0 ≥ 0.

2. c(G) > c(B) ≥ 0.

The first assumption states that G-products are efficient to produce, whereas B-products are
not. The second assumption states that G-products are costlier to produce than B-products.

As prices are set by the designer, the consumer makes inferences not only from the product’s
complexity, χ, but also from its price, p; so the consumer’s posterior belief is now denoted
by µ(s, χ, p). It is easy to see that the consumer will accept the product if and only if her
posterior belief is greater than a price-adjusted relative outside option:

µ(s, χ, p) ≥ w̃0 − w̃(B) + p

w̃(G)− w̃(B)
. (78)

Given the consumer’s acceptance strategy, the designer chooses {y, κ, p} to maximize his
expected payoff:

P(a = 1|y, κ, p) · (p− c(y)). (79)

For simplicity, we focus on equilibria in which the designer has a pure strategy over the price.
The following proposition summarizes the main results of this section.

Proposition 11 In any positive trade equilibrium, the price set by the designer is indepen-
dent of the product’s quality. Moreover, any price p∗ ∈ (c(G), w̃(G) − w0) is consistent with
equilibrium. The expected product quality and complexity are determined as in the baseline
model with payoffs given by w(y) ≡ w̃(y)− p∗ and v(y) ≡ p∗ − c(y).

The result that separation through prices is not possible is intuitive. As a B-product is
cheaper to produce, the designer of such a product is willing to set any price the G-product
designer is willing to set. As a result, the B-product designer always mimics the pricing
strategy of a G-product designer in order to avoid being identified. Due to the freedom in
specifying off equilibrium beliefs, multiple prices can be supported as an equilibrium. The
bounds on possible prices are due to the fact that in any positive trade equilibrium a G-
product designer will not post a price below his cost of production, or a price high enough for
the product to be rejected with probability one.

B.4 Derivations and Proofs

B.4.1 Convex Costs

In this Appendix, we provide derivations for Appendix B.1. Let us begin with the consumer’s
optimal strategy. Recall that upon observing χ, and updating her belief to µ (χ), the con-
sumer decides whether to acquire information or not. Given the cost that the consumer must
pay whenever information is acquired, it follows immediately that the consumer will acquire
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information only if her acceptance decision is made contingent on this information. If the
consumer were to acquire information, the optimal noise would be:

z (χ) = arg max
z∈[0, 12 ]

(1− z)·µ (χ)·(w(G)− w0)+z·(1− µ (χ))·(w(B)− w0)+w0−χ·h
(

1

2
− z
)
,

(80)
or equivalently:

z (χ) =
1

2
− h′−1

(
µ (χ) · (w(G)− w0)− (1− µ (χ)) · (w(B)− w0)

χ

)
, (81)

where h′−1 (x) is increasing in x. Thus, in that case, the consumer accepts a Good product
with probability 1− z (χ) and a Bad product with probability z (χ). This implies a payoff:

W I (χ) = w0+(1− z (χ))·µ (χ)·(w(G)− w0)+z (χ)·(1− µ (χ))·(w(B)− w0)−χ·h
(

1

2
− z (χ)

)
.

(82)
Instead, if the consumer does not acquire information, she makes her optimal acceptance

decision based on her interim belief alone, implying a payoff:

WU (χ) = max {µ (χ) · w(G) + (1− µ (χ)) · w(B), w0} . (83)

Thus, the consumer acquires information if W I (χ) > WU (χ). And, there are two cases to
consider. First, if µ (χ) > ω, the condition for acquiring information reduces to:

z (χ) +
χ · h

(
1
2
− z (χ)

)
(1− µ (χ)) · ω + µ (χ) · (1− ω)

<
(1− µ (χ)) · ω

(1− µ (χ)) · ω + µ (χ) · (1− ω)
. (84)

It is straightforward to show that if the likelihood ratio f(·|κ̄)
f(·|κ)

is not too steep, then (i) z(χ)

defined by (81) is monotonically increasing in χ, i.e., the consumer’s information gets noisier
as the product gets more complex, and (ii) there is a unique threshold value for complexity,
denoted by χ̄o, such that inequality (84) holds if and only if χ < χ̄o. We assume this is the
case from now on, which is similar to assuming Condition 3.1 holds in our baseline model.

Second, consider the case where µ (χ) < ω. Then, the condition for acquiring information
reduces to:

z (χ) +
χ · h

(
1
2
− z (χ)

)
[(1− µ (χ)) · ω + µ (χ) · (1− ω)]

<
µ (χ) · (1− ω)

[(1− µ (χ)) · ω + µ (χ) · (1− ω)]
. (85)

Here, again we can show that there is a unique threshold level of complexity, denoted by χ̄p,
such that inequality (85) holds if and only if χ < χ̄p.25 Given the above observations, the
following lemma then follows immediately.

25Since in equilibrium µ(χ) is weakly decreasing in χ, we do not need to impose additional conditions on

the likelihood ratio f(·|κ̄)
f(·|κ) to obtain this result.
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Lemma B.1 When the consumer is optimistic, i.e., limχ→∞ µ (χ) ≥ ω, her acceptance strat-
egy is:

a(s, χ) =

{
I{S=g} if χ ≤ χ̄

1 if χ > χ̄
; (86)

instead, when the consumer is pessimistic, i.e., limχ→∞ µ (χ) < ω, her acceptance strategy is:

a(s, χ) =

{
I{S=g} if χ ≤ χ̄

0 if χ > χ̄
; (87)

where χ̄ =


χ̄o if limχ→∞ µ (χ) > ω

∞ if limχ→∞ µ (χ) = ω

χ̄p if limχ→∞ µ (χ) < ω

.26

Note that Lemma B.1 is the counterpart of Lemma 1 in our baseline model. It shows that
the consumer’s optimal acceptance decision depends crucially on whether she is optimistic
or pessimistic, i.e., what she does when the signal that she would receive, conditional on
acquiring information, becomes uninformative, which occurs as χ→∞.

Using Lemma B.1, we can compute the probability that a product (y, κ) proposed by the
designer is accepted by the consumer:

P (a = 1|G, κ) =

∫ χ̄

0

(1− z (χ)) · f (χ|κ) dχ+ I{limχ→∞ µ(χ)≥ω} · (1− F (χ̄|κ̄)) , (88)

and

P (a = 1|B, κ) =

∫ χ̄

0

z (χ) · f (χ|κ) dχ+ I{limχ→∞ µ(χ)≥ω} · (1− F (χ̄|κ̄)) . (89)

Since z(χ) is increasing in χ, by the same reasoning as in the proof of Proposition 2,
we obtain that the crucial determinant of the designer’s optimal choice of κ is whether the
consumer is optimistic or pessimistic, and the threshold χ̄.

Lemma B.2 Fix µ ∈ (0, 1), and let χ̂ denote the unique solution to
∫ χ̂

0
z (χ) · f (χ|κ) dχ =∫ χ̂

0
z (χ) · f (χ|κ̄) dχ. When the consumer is optimistic,

σB = 1, and σG =


0 χ̄ > χ̂

[0, 1] χ̄ = χ̂

1 χ̄ < χ̂

, (90)

whereas when the consumer is pessimistic,

σB =


0 χ̄ > χ̂

[0, 1] χ̄ = χ̂

1 χ̄ < χ̂

, and σG = 0. (91)

26When limχ→∞ µ (χ) = ω, the consumer acquires information for any χ ∈ (0,∞), so we set χ̄ =∞.
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This result is essentially the same as Proposition 2, except that note that now the threshold
χ̂, which controls the designer’s preference between complexification and simplification, also
depends on the prior belief µ, as the latter affects the optimal information choice z(χ); we
will come back to this dependence shortly. Finally, it should be clear the designer’s optimal
quality choice is as before given by Proposition 3.

We have thus shown that both the consumer’s and the designer’s optimal strategies remain
qualitatively unchanged from our baseline model; we are therefore left to solve for the equi-
librium. We again proceed in two steps. We first take the consumer’s prior belief µ as given
and find the designer’s equilibrium complexification strategy by requiring that the consumer’s
interim belief, µ(χ) be consistent with the designer’s strategy and Bayes’ rule.

Lemma B.3 Suppose that in equilibrium the consumer’s prior belief is µ ∈ (0, 1), then there
exist thresholds 0 < µ̃1 < µ̃2 < µ̃3 < µ̃4 < 1 such that:

1. If µ ∈ (0, µ̃1], all products are simplified, σG = σB = 0.

2. If µ ∈ (µ̃1, µ̃2], G-products are simplified, σG = 0, and B-products complexified with
probability σB ∈ (0, 1).

3. If µ ∈ (µ̃2, µ̃3], G-products are simplified, σG = 0, and B-products complexified, σB = 1.

4. If µ ∈ (µ̃3, µ̃4), G-products are complexified with probability σG ∈ {0, σ̃, 1} for some
σ̃ ∈ (0, 1), and B-products complexified, σB = 1.

5. If µ ∈ [µ̃4, 1), all products are complexified, σG = σB = 1.

Proof. Consider first the candidate equilibrium with σG = σB = 0. In this case, the consumer
does not update upon observing complexity χ, i.e., µ (χ) = µ for all χ. For this to be an
equilibrium, it must be that χ̄p (µ) ≤ χ̂ (µ), where χ̄p (µ) is given by the solution to:

z (χ̄p) =
µ · (1− ω)− χ̄p · h

(
1
2
− z (χ̄p)

)
(1− µ) · ω + µ · (1− ω)

, (92)

and where z (·) is given by (81). Thus, this equilibrium exists if and only if µ belongs to
the set MP,κ ≡ {µ ∈ (0, 1) : χ̄p (µ) ≤ χ̂ (µ)}, which is non-empty since χ̄p (µ) ↓ 0 as µ ↓ 0,
whereas χ̂(µ) is bounded away from zero.

Next, consider the candidate equilibrium with σG = σB = 1. In this case, also, the consumer
does not update upon observing complexity χ, i.e., µ (χ) = µ for all χ. For this to be an
equilibrium, it must be that χ̄o (µ) ≥ χ̂ (µ), where χ̄o (µ) is given by the solution to:

z (χ̄o) =
(1− µ) · ω − χ̄o · h

(
1
2
− z (χ̄o)

)
(1− µ) · ω + µ · (1− ω)

, (93)

and where z (·) is given by (81). Thus, this equilibrium exists if and only if µ belongs to the
set MP,κ̄ ≡ {µ ∈ (0, 1) : χ̄o (µ) ≥ χ̂ (µ)}, which is non-empty since χ̄o (µ) ↑ ∞ as µ ↑ 1,
whereas χ̂(µ) is bounded above.
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Next, consider the candidate equilibrium with σG = 0 and σB = 1. In this case, the
consumer does update upon observing complexity χ, i.e., µ (χ) = µ

µ+(1−µ)
f(χ|κ̄)
f(χ|κ)

for all χ. There

are two possibilities here, depending on whether limχ→∞ µ(χ) is greater or smaller than ω,
which is equivalent to asking whether µ is greater than or smaller than µ̃ ≡ ω

ω+(1−µ) limχ→∞
f(χ|κ)

f(χ|κ̄)

.

If µ < µ̃, then for this to be an equilibrium, it must be that χ̄p (µ) ≤ χ̂ (µ), where χ̄p (µ) is
given by the solution to:

z (χ̄p) =
µ(χ̄p) · (1− ω)− χ̄p · h

(
1
2
− z (χ̄p)

)
(1− µ(χ̄p)) · ω + µ(χ̄p) · (1− ω)

, (94)

and where z (·) is given by (81). Here, such an equilibrium exists if and only if µ belong to
the set MS,a ≡ {µ ∈ (0, µ̃) : χ̄p (µ) ≤ χ̂ (µ)}, which is non-empty since χ̄p (µ) ↓ 0 as µ ↓ 0,
whereas χ̂(µ) is bounded away from zero. Instead, if µ ≥ µ̃, then for this to be an equilibrium,
it must be that χ̄o (µ) ≥ χ̂ (µ), where χ̄o (µ) is given by the solution to:

z (χ̄o) =
(1− µ(χ̄o)) · ω − χ̄o · h

(
1
2
− z (χ̄o)

)
(1− µ(χ̄o)) · ω + µ(χ̄o) · (1− ω)

, (95)

and where z (·) is given by (81). Here, such an equilibrium exists if and only if µ belongs to
the set MS,b ≡ {µ ∈ (µ̃, 1) : χ̄o (µ) ≥ χ̂ (µ)}, which is non-empty since χ̄o (µ) ↑ ∞ as µ ↑ 1,
whereas χ̂(µ) is bounded above. We therefore conclude that an equilibrium with σG = 0 and
σB = 1 exists if and only if µ ∈MS ≡MS,a ∪MS,b.

Next, suppose that (i) χ̄p(µ)− χ̂(µ) is increasing in µ in an equilibrium with σG = σB = 0,
or with σG = 0, σB = 1 when µ < µ̃; and (ii) χ̄o(µ)− χ̂(µ) is decreasing in µ in an equilibrium
with σG = σB = 1, or with σG = 0, σB = 1 when µ ≥ µ̃. These two conditions will
hold, for example, if the function h(·) is convex enough so that z(·) is not too sensitive
to changes in µ. We will assume this in what follows, in which case the three equilibrium
regions can be represented as: MP,κ = (0, µ̃1), MP,κ = (µ̃2, µ̃4), and MP,κ̄ = (µ̃3, 1) for
some 0 < µ̃1 < µ̃2 < µ̃3 < µ̃4 < 1; moreover, following similar arguments as in the proof of
Proposition 4, we can construct the mixed strategy equilibria for µ in the intervals (µ̃1, µ̃2)
and (µ̃3, µ̃4).

Finally, we are left to pin down the equilibrium prior belief µ∗. As before, in any positive
trade equilibrium, the designer must be indifferent between producing either of the two prod-
ucts. With the results from Lemma B.2 it easy to show that the correspondence Γ(µ) (defined
just as in proof of Proposition 5), which consists of the designer’s net payoffs γ from producing
G- vs. B-products, is well defined and both upper and lower hemicontinuous. But then, it is
straightforward to use continuity arguments and find a µ∗ ∈ (0, 1) at which the designer’s net
payoff from producing G- vs. B-product is equal to zero (i.e., γ(µ∗, {σy}µ∗) = 0).

B.4.2 Rational Inattention

In this Appendix, we provide derivations for Appendix B.2. We adjust our baseline setting to
allow the consumer to optimally reduce her uncertainty about the product’s quality, subject to
an entropy-reduction cost, as in the literature on rational inattention (Sims, 2003). Within this
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framework, a more complex product is one that is associated with a high entropy-reduction
cost for the consumer.

The uncertainty faced by the consumer with belief µ̃ = P (y = G) is measured by the
entropy function:

H (µ̃) = − (µ̃ · log (µ̃) + (1− µ̃) · log (1− µ̃)) , (96)

which reaches a minimum of zero at µ̃ ∈ {0, 1} and a maximum of −log
(

1
2

)
at µ̃ = 1

2
. As

before, we let S denote the signal observed by the consumer and s denote its realization. The
signal has a distribution conditional on the product’s quality, π (s|y) ≡ P (S = s|y), which
determines the consumer’s posterior belief:

µ̃ (s) ≡ P (y = G|s) =
π (s|G) · µ̃

π (s|G) · µ̃+ π (s|B) · (1− µ̃)
. (97)

The entropy associated with the posterior belief is H(µ̃ (s)).
We measure the amount of information that the consumer obtains from a particular infor-

mation structure π as the expected reduction in entropy:

I (π) = H (µ̃)−
∫
s

H (µ̃ (s)) · π (s) · ds, (98)

and we assume that the consumer faces a cost χ · I(π) of entropy-reduction, where χ ∈ (0,∞)
depends on the two components η and κ, with a conditional pdf f(χ|κ) that has full support
and satisfies MLRP. Thus, when complexity is minimal, χ → 0, it is essentially costless for
the consumer to find out the product’s quality; instead, when complexity is maximal, χ→∞,
extracting any information about the product’s quality becomes prohibitively costly.

Since the consumer’s action is binary, i.e., she chooses to accept or reject the product, it is
without loss of generality to restrict attention to information structures that consist of binary
signals S ∈ {b, g} such that the consumer accepts the product if and only if S = g (Woodford,
2009; Yang, 2015). Let πy denote the probability that the consumer accepts the product,
conditional on the designer producing a y-product. Let µ(χ) be the consumer’s interim belief
after observing the product’s complexity χ. For a given χ, the consumer’s problem is then
reduced to choosing πG and πB in order to maximize her expected payoff:

µ(χ) · πG · (w (G)− w0) + (1− µ(χ)) · πB · (w (B)− w0)− χ · I (π) (99)

where

I (π) = H (µ(χ) · πG + (1− µ(χ)) · πB)− µ(χ) ·H (πG)− (1− µ(χ)) ·H (πB) . (100)

Figure 8 illustrates the solution to this problem for a given prior belief µ ∈ (0, 1), for
the case where the consumer’s interim belief satisfies µ(χ) = µ, i.e., when the equilibrium
features pooling on complexification. Under a regularity condition on the likelihood ratio
f(·|κ̄)/f(·|κ) (akin to Condition 3.1), there is a unique threshold value of complexity, χ̄, such
that the consumer extracts an informative signal and makes her decision contingent on its
realization if and only if χ < χ̄. Otherwise, when complexity is high, the consumer makes
her decision solely based on her interim belief. Finally, observe that when complexity is high

52



enough, then the consumer either accepts the product with probability one or she rejects it
with probability one. As in our baseline model, which of the two scenarios arises depends on
whether the consumer is optimistic or pessimistic; that is, what she would do in the absence
of an informative signal.27

Naturally, an equilibrium requires that the consumer’s prior belief µ and her interim belief
µ(χ) be consistent with the designer’s strategy {m,σG, σB} and Bayes’ rule. Although a full
analytical characterization of the equilibrium set is now difficult to obtain, we are able to
check numerically that the equilibrium set of the model with optimal information extraction
resembles closely that of our baseline model. As we discussed in the text, Figure 9 is the
analogue of the Figures 4 and 5. And, an equilibrium is found by requiring that the belief
µ equals ψ, so that the designer is indifferent to producing a G- or a B-product, and then
reading off the equilibrium complexification strategy of the designer from the left panel, given
that the consumer’s prior belief is µ = ψ.

B.4.3 Prices and Production Costs

Proof of Proposition 11. Consider an equilibrium in which the y-product has price py,
with pG 6= pB. A the designer of a bad product would only trade at price pB ≥ c(B), but
then w̃(B) − pB < 0 and the consumer would reject all products with price pB. Since also
pG ≥ c(G) > c(B), in any positive trade equilibrium, the B-product designer would expect to
make profits by deviating to price pG. Thus, in equilibrium, different quality products cannot
be offered at different prices. Consider a candidate equilibrium in which p∗ is the price set by
the designer, which can be supported for example by an off-equilibrium belief that the designer
has produced a B-product if he sets any other price. For any price p∗ ∈ (c(G), w̃(G) − w0),
define payoffs w(y) ≡ w̃(y)− p∗ and v(y) ≡ p∗ − c(y), and note that they satisfy Assumption
1. That such an equilibrium exists follows by Proposition 5, and its characterization is the
same as that of our baseline model.

We also note that p∗ ≤ c(G) cannot be part of a positive trade equilibrium, since then
only B-products would be produced (if any) and rejected with probability one. Similarly,
p∗ > w̃(G) − w0 would induce a rejection with probability one by the consumer, as the
product would generate losses to the consumer. An equilibrium with p∗ = w̃(G) − w0 may
exist, but it would require that the (indifferent) consumer accepts the product randomly, and
in a manner that is correlated with the signal she acquires; moreover, such an equilibrium
would unravel if we were to introduce an arbitrarily small cost of information acquisition in
the region where information is costless in our baseline model.

27As with convex costs of information acquisition in Appendix B.1, the consumer is optimistic if
limχ→∞ µ(χ) ≥ ω, and she is pessimistic otherwise.
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