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Most available results on optimal decisions under partial information are derived under 

“separation”. But this principle does not always hold. We derive a non-standard first or- 

der condition of optimality from first principles when signal extraction and optimal pol- 

icy must be jointly determined. This allows us to solve a model of optimal fiscal policy 

where separation does not apply. Tax smoothing prevails in normal times, but taxes re- 

spond strongly in recessions. This non-linearity arises because signal extraction interacts 

differently with optimal policy depending on the value of the observed signals. Existing 

results based on the “separation principle” follow as special cases. 
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1. Introduction 

Inferring the underlying state of the economy is a key practical difficulty in setting macroeconomic policy, as exemplified 

by this quote. 

“In the policy world, there is a very strong notion that if we only knew the state of the economy today, it would be a

simple matter to decide what the policy should be. The notion is that we do not know the state of the system today,
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and it is all very uncertain and very hazy whether the economy is improving or getting worse or what is happening.

Because of that, the notion goes, we are not sure what the policy setting should be today. [... ] In the research world,

it is just the opposite. The typical presumption is that one knows the state of the system at a point in time. There is

nothing hazy or difficult about inferring the state of the system in most models.” (James Bullard, interview on Review 

of Economic Dynamics , November 2013) 

This difficulty arises because the observed signals about the state of the economy are, in general, endogenous to policy 

decisions and depend on multiple shocks hitting the economy. In this paper, we address this issue and solve for optimal

policy taking into account the uncertainty (“haziness”) about the underlying state, accounting for the endogeneity of the 

available information. 

To illustrate a practical case of endogenous signals in optimal policy, consider the fiscal policy response at the beginning 

of the financial crisis. In 20 08–20 09, policy-makers observed a large fall in output and employment, but it was unclear

whether the recession was due to a shock to productivity, to a demand shock or some combination of both. Nonetheless,

policy-makers had to react to the recession implicitly making a guess about the nature of the shock. In that instance, the

G20 opted for “stimulus packages”, implicitly saying that they believed the recession to be mainly due to a temporary 

demand shock. Ex-post, we know that this expansionary policy generated large deficits, leading later to significant fiscal 

adjustments in some countries. The level of aggregate output observed during this period was, obviously, endogenous to 

the policy decision that was taken. Automatic stabilizers, e.g., income taxes and unemployment benefits, are other leading 

examples of policies that respond to aggregate endogenous information such as output, while simultaneously influencing the 

level of output. This paper addresses the question of how to design such instruments optimally under Partial Information 

(PI). 

Generically, we consider a setup where the government observes a signal s (say, output). The signal is determined in 

equilibrium by a policy variable τ (say, taxes) and a vector of fundamental unobserved shocks A (say, demand and supply 

shocks). The government chooses τ as a function of its information s, thus it sets τ = R (s ) for a certain policy function

R . A key difficulty is that the optimal choice for R depends on the density of A conditional on s, denoted f A | s (the signal

extraction, or filtering, problem) while at the same time the density f A | s depends on the policy function R . Therefore, the

filtering and optimal choice problem have to be determined simultaneously. 

To our knowledge, all existing results in the literature on optimal policy with PI introduce timing assumptions and a 

structure of the economy guaranteeing that separation holds, that is, f A | s at the optimum can be found independently from 

R . 1 While this literature has lead to many interesting applications, the assumptions needed for separation typically are not 

satisfied in modern dynamic models. The absence of general results limits the application of PI in today’s literature on policy

analysis. 

In this paper, we consider the general non-linear case without separation (General Signal Extraction), and address the 

problem from first principles. We use a calculus-of-variation approach to characterize the optimal policy. Specifically, we 

consider the effects of deviations from the optimal policy on signals and welfare, and impose that the optimal deviation 

has to be no deviation, for any observed signal. This method gives a general optimality condition, which is non-standard, 

as it does not set the average derivative of the objective function to zero. Instead, the derivative at each realization is

weighted by an endogenous kernel that accounts for the effect of policy choices on signals. We then provide an easily

applicable algorithm that solves this non-linear optimality condition, jointly delivering the optimal policy and the optimal 

filter at each value of the observed signal. We also show how previous results in the literature arise as special cases of our

approach. 

We apply this method in a model of optimal fiscal policy and show that lack of separation leads to important non-

linearities in optimal policy, especially when a deep recession is possible, and the economy is close to the top of the Laf-

fer curve. Our leading example is a two-period version of the standard fiscal policy model of Lucas and Stokey (1983) .

We introduce two shocks A (to demand and supply). To make the issue of hidden information relevant we assume in-

complete markets as in Aiyagari et al. (2002) . We solve for optimal Ramsey taxation τ under the assumption that the

government does not observe the realizations of the shocks, but only an endogenous signal, such as output or hours 

worked, s . 

We argue that PI has important consequences for the design of optimal policy and for our understanding of real-world 

policy decisions. In particular, optimal taxes can be fairly unresponsive to signals in normal times, thus providing a novel 

rationale for tax smoothing, but highly responsive to signals when the government fears that the worst realizations of the 

shocks may have materialized. This non-linearity arises because the signal extraction problem interacts in a different way 

with optimal policy depending on the range of observed signals. In particular, we find that this non-linearity is stronger 

when government spending is high and the economy is close to the top of the Laffer curve (or government debt is high),

as was arguably the case in some European economies in the Great Recession. 2 Several European governments made large 
1 Svensson and Woodford (2004) consider a case where separation fails but they can show that a “certainty equivalence” result holds. This allows them 

to solve the signal extraction and optimal choice problems sequentially. See Section 2 for more details on this literature. Section 6 derives the result of 

Svensson and Woodford (2004) from our general optimality condition for the special case of a linear model. 
2 Other sources of non-linearities, such as the zero lower bound in monetary models, are likely to induce similar results in future applications of our 

method. 
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fiscal adjustments a few years after the start of the downturn. This delay lead to a large debt accumulation which eventually

amplified the fiscal adjustments needed. Our model provides a framework where this delay in increasing taxes could be a 

feature of optimal decision making. 

To highlight our contribution relative to the literature based on separation, we compare our results to a model with 

exogenous signals, and show that non-linearities are negligible in that case. We then show that General Signal Extraction 

is present in most dynamic models under rational expectations. To this aim, we present several versions of our model 

to demonstrate how separation fails generically. In our main example, we model the private sector as a representative 

private agent with Full Information (FI) about the shocks. Separation fails because the income tax rate τ is determined 

simultaneously with the signal s, which is the level of hours worked. We then show that separation fails generically in

models with heterogeneous agents who have less information than the government and under no simultaneity. 

In our second example, we consider heterogeneous agents facing idiosyncratic shocks. Different from our main example, 

private agents have “less” information than the government. Nonetheless, we show how to cast this model into our general 

framework. In our third example, taxes are predetermined, and labor supply involves a dynamic choice because of learning 

by doing. Despite the lack of simultaneity between policy actions and signals, we obtain similar results. 

Finally, we build an infinite-horizon model with non-contingent debt. The short-run response of taxes to underlying 

shocks in most periods is low relative to the case of Full Information. Taxes do not adjust immediately when a negative

shock to the tax base. Hence, the high-frequency response of taxes to shocks features tax smoothing. However, a delayed 

response to shocks may lead to accumulation of large debt over time, eventually leading to larger fiscal adjustments. There- 

fore, policy implications are different from the case of market completeness and FI ( Lucas and Stokey, 1983 ), since perfect

tax smoothing is not possible, and from the case of market incompleteness and FI ( Aiyagari et al., 2002 ), where the delayed

response would never occur. 

We emphasize that the technique that we develop can be applied to many interesting open questions in several fields 

beyond macroeconomics. For example, the unobserved shocks A may represent the planner (or a player)’s ignorance about 

the structure of the economy. Our results would also apply to cases where the government has incomplete information 

about agents’ types or about agents’ expectations. 

The remainder of the paper is organized as follows. We discuss the related literature is discussed in Section 2 .

Section 3 contains the main theoretical contribution. Section 4 introduces our two-period model of optimal fiscal policy. 

In Section 5 we apply our theoretical results to the fiscal policy problem. Section 6 shows how to derive previous results

as special cases and considers our fiscal policy model with exogenous signals. Section 7 presents the model with hetero-

geneous agents. Section introduces a model with predetermined taxes and dynamic labor choice. Section 9 presents the 

infinite-horizon model with non-contingent debt. Section 10 concludes. 

2. Related literature 

PI and signal extraction were often present in the early papers on dynamic models with Rational Expectations. Signal 

extraction with an exogenous signal is well understood; it goes as far back as Muth (1960) . Typically, it just requires a

routine application of the Kalman filter. Because the signal extraction problem is solved independently of policy choices, it 

is said that a “separation principle” between signal extraction and optimization applies. 

A large literature considers competitive agents who use prices or other aggregate endogenous variables as signals of 

unknown information, as early as in the seminal paper by Lucas (1972) , or in Townsend (1983) , which analyzes beliefs about

other agents’ information. For more recent applications, see, for instance, Nimark (2008a) , who studies firm pricing decision 

with imperfect information, or Angeletos and Pavan (2009) , Angeletos et al. (2015) , and Melosi (2017) , who focus on the

role of macroeconomic policy. In this literature, the choices of competitive agents do not interact with price determination 

(in the agents’ mind), therefore the filtering problem can be solved using standard techniques. 

Few papers have studied optimal policy when signals are endogenous. Pearlman (1992) and Svensson and Woodford 

(2003) consider linear Gaussian models where the policy-maker and the private sector have the same information set. In 

other words, information is partial but symmetric. In this case, they show that the “separation principle” continues to hold. 3 

Closest to our work is Svensson and Woodford (2004) , who consider optimal policy in a non-microfounded linear Rational

Expectations model, where the government’s information set is a subset of the private sector’s information set. They show 

that, even though the “separation principle” fails because of asymmetric information, there is a suitable modification of the 

standard Kalman filter that works in the case of linearity and additively separable shocks. Moreover, optimal policy under 

discretion has the “certainty equivalence” property: under PI the government applies the FI policy to its best estimate of the 

state. 4 

Our contribution is to consider a fully microfounded optimal policy model and to provide a solution to the General Signal

Extraction and optimization problem, when the distribution of the signal depends on government policy (or, more generally, 
3 Baxter et al. (2007) and Baxter et al. (2011) derive an “endogenous Kalman filter” for these cases, which is equivalent to the solution of a standard 

Kalman filter of a parallel problem where all the states and signals are fully exogenous. 
4 Aoki (2003) applies these results to optimal monetary policy with noisy indicators on output and inflation. Nimark (2008b) applies them to a problem 

of monetary policy where the central bank uses data from the yield curve knowing that the chosen policy affects the very same data. Relatedly, Morris 

and Shin (2018) analyze the optimal weight on an endogenous signal in a linear policy rule. 
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on the actions of a Stackelberg leader). In the general case, separation does not apply and the strict linearity requirements of

Svensson and Woodford (2004) do not hold. We show cases where a linear approximation can be misleading. 5 We provide

an example that appears to be amenable to linearisation but, as we show, the correct solution is highly non-linear in nature.

Similar to Amador and Weill (2010) , in our main example we assume that all shocks are “fundamental”, i.e., they affect

preferences or technology. We also show how previous results based on some shocks being “noise”, or measurement error, 

arise as special cases. 

The effect of policy choices on information extraction is also considered in models of learning about unobserved vari- 

ables or parameters (armed-bandit problems), such as Prescott (1972) and Kiefer and Nyarko (1989) . For some applica- 

tions to dynamic macro policy see Wieland (20 0 0a) , Wieland (20 0 0b) and Ellison and Valla (20 01) . Van Nieuwerburgh

and Veldkamp (2006) use a similar learning framework with non-linearities to explain business-cycle asymmetries. 6 These 

papers avoid the issue of General Signal Extraction by making special assumptions. For instance, signals are predeter- 

mined with respect to policy, independent of future policies, because of the absence of endogenous state variables. We 

argue that in most modern dynamic economic models the issue of General Signal Extraction that we consider would arise 

generically. 7 

Another related strand of literature is that on robust control. Hansen and Sargent (2012) study Ramsey-optimal policy 

with ambiguity aversion and find that this leads to violations of “certainty equivalence” even in linear-quadratic setups. In 

their setup, the optimal solution is found by, first, solving for the optimal policy for each possible value of the state, then

the policy is chosen assuming the worst possible state. Therefore, the issue of General Signal Extraction is avoided. Adam

(2004) shows that the min-max criterion arises from a sequence of planners that have expected utility and are increasingly

risk-averse. Our setup is available for any level of risk aversion. 8 

3. Optimal control with general signal extraction 

In this section we present the problem of “Optimal Control under General Signal Extraction (GSE)” and derive optimality 

conditions that can be readily used to find a solution. 

Consider a setup where the government observes a signal s . The signal is determined in equilibrium by a policy variable

τ and a vector of fundamental unobserved shocks A . The government chooses τ as a function of its information s, thus it

sets τ = R (s ) for a certain policy function R . A key difficulty is that the optimal choice for R depends on the density of A

conditional on s, denoted f A | s (the signal extraction, or filtering, problem), while at the same time the density f A | s depends

on the policy function R . Therefore, the filtering and optimal choice problem have to be determined simultaneously. We call

this Optimal Control under General Signal Extraction (GSE). Most papers in the literature consider setups where the filtering 

and optimal choice problem are “separated”, but as we show with several applications in later sections (see, in particular, 

Section and Appendix C.4), separation only holds for very special cases. 

3.1. Optimization under GSE 

Consider a planner/government who chooses a policy variable τ ∈ T ⊂ R, conditional on observing an endogenous signal 

s ∈ S ⊂ R, where T and S denote the set of possible policy actions and signals. 9 The planner’s objective is to maximize

E [ W ( τ, s, A ) ] for a given payoff function W : T × S × � → R and random variables A ∈ � ⊂ R k with a given distribution F A . 
10 

The policy variable τ maps into endogenous signals through the following equation 

s = h (τ, A ) a.s. in F A (1) 

for a known function h : T × � → S . The government has to choose τ given an observation on s, without observing the

value of A. The government knows the fundamentals W, h, F A , T , S and equation (1) . 

Optimal behavior under uncertainty implies that the government chooses a policy contingent on the observed variable s . 

Therefore, the government’s problem is to set policy actions according to a policy function R : S → T 

τ = R ( s ) (2) 
5 Optimal non-linear policies have been found in the literature but for totally different reasons. Swanson (2006) obtains a non-linear policy when he 

relaxes the assumption of normality in the linear model with separable shocks. He considers a model where the “separation principle” applies. The non- 

linearity results entirely from Bayesian updating on the a priori non-Gaussian shocks. 
6 For an application to monopoly behavior see Mirman et al. (1993) . 
7 In Appendix C.4 we provide a modification of our model in Section 4 that restores the simplifications in this literature and that may help clarify this 

issue. 
8 The literature on optimal contracts under private information and incentive compatibility constraints (or the “New Dynamic Public Finance” as in 

Kocherlakota (2010) is perhaps less related to our work. This literature studies setups where private information is revealed in equilibrium. As we show in 

Section 3.4 , endogenous filtering is not an issue when private information is revealed. On the other hand, this literature assumes that the policy function 

R depends on individual choices and, thus, agents act strategically. We leave an application of our results to this interesting case for future work. 
9 Focusing on the univariate case simplifies the analysis, we leave the multivariate case for future work. 

10 F A represents the governments’ perception about A, it may differ from the true distribution of A . 
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to maximize its objective, in other words the government solves the following problem of Optimal Control under GSE 

max 
{ R : S→T } 

E [ W ( τ, s, A ) ] (3) 

s.t. (1), (2). 

where it is understood that τ, s in the objective function are evaluated at the values that solve (1) for each A and the chosen

R . 

The optimality conditions for this problem turn out to be non-standard. To see why this happens, rewrite the objective 

function as follows ∫ 
E [ W ( τ, s, A ) | s ] f s (s ) ds. (4) 

where f s is the density of s. Applying a “standard recipe” to derive first order conditions in stochastic discrete time models

we would find the following condition: 11 

E [ W τ + W s h τ | s ] = 0 for all s. (5) 

Notice that W τ + W s h τ = 0 is the FI optimality condition for a Stackelberg leader problem that chooses τ taking into account

the follower’s action s satisfies (1) for a known A . According to the recipe, equation (5) averages this first order condition

over values of A that are consistent with the observed s . 

When f s is exogenous to the policy choice this formula is correct. However, in the general case f s = 

∫ 
� f s | A f A dA is en-

dogenous to R , (5) ignores this dependence and, therefore, it does not hold in the optimal solution. Somehow the fact that

f s depends on R should play a role when taking derivatives of (4) . Economically, the problem is that the policy choice influ-

ences the values of the signal that actually materialize and the optimal policy choice should take this into account. In other

words, in general, the optimization and filtering problems cannot be separated. 

3.2. Assumptions, conditions on R and outcomes S( R + αδ, A ) . 

We now state some assumptions on the fundamentals. 

Assumption 1. W (·, A ) is continuous, h ( ·, A ) differentiable for all A ∈ �. 

Assumption 2. The sets T , S are bounded closed intervals, T = [ τ , τ ] , S = [ s , s ] , and � is compact. 

We will use the following notation. Let S(R , A ) be the set of observable values of s induced by the shock A and a policy

R . Formally, for a given A and R , letting H be given by 

H(s, A ;R ) ≡ s − h (R (s ) , A ) , (6) 

elements s ∈ S(R , A ) satisfy H(s, A ;R ) = 0 . We refer to S(R , A ) sometimes as “the outcome”, as it gives the realisations of

the signal for a given policy function R , sometimes we refer to S(R , A ) as “the equilibrium” as the h function is often

derived from equilibrium conditions. 

The policy variables that are realized for each R and A are then given by T (R , A ) = R ( S (R , A ) ) . Notice the distinction

between the objects S, T and R : the latter is a function of a real variable s while S and T are functionals mapping R and

the realizations of the shocks into S, T . 
In several proofs we consider variations of the solution R 

∗ + αδ according to a function δ : S → R . To guarantee that the

outcomes of a given variation S(R 

∗ + αδ, A ) are well behaved for small α we need the following requirements on h : 

Assumption 3. W is differentiable everywhere with respect to (τ, s ) , with bounded partial derivatives | W τ | , | W s | < Q . Also,

h τ is Lipschitz continuous:

∣∣∣ h τ (s,A ) −h τ (s ′ ,A ) 
s −s ′ 

∣∣∣ ≤ Q 

L uniformly on S × � for some constant Q 

L < ∞ . 12 

Obviously this implies | h τ | < Q for some constant Q < ∞ . 

The first order condition (9) allows for a non-differentiable optimal solution R 

∗. Indeed, we will see that non-

differentiable R 

∗ arises in our computations. To guarantee that the objective function is well defined for variations R 

∗ + αδ,
we need that non-differentiabilities of R 

∗ occur with probability zero. We make the following assumption for this purpose. 

Assumption 4. Given any pair ( s, τ ) ∈ S × T , the set of realizations { A : s = h (τ, A ) } has pr obability zer o. 

This is easy to ensure if at least one element in the vector of shocks A has a continuous density. We impose two Condi-

tions on R ensuring that the outcomes S(R + αδ, A ) are well defined. 13 
11 More precisely, we take the “standard recipe” to be: i) find the derivative of the objective function (or Lagrangean) with respect to a choice variable 

under certainty, ii) take the expectation of this derivative conditional on the information available at the time the variable is chosen and, iii) set this 

conditional expectation to zero. 
12 Obviously Lipschitz continuity of h τ is guaranteed if h ττ exists everywhere and is uniformly bounded. 
13 Perhaps one can prove that Conditions 1 and 2 hold at the optimum under Assumptions 1–4 or further assumptions. We leave this for future research. 
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Denote the support of possible outcomes for a certain policy function R as 

S R 

= { s ∈ S : s = h ( R ( s ) , A ) for some A ∈ �} = 

⋃ 

A ∈ �
S (R , A ) 

Condition 1. R is absolutely continuous in S R 

. Also, where R 

′ exists 
∣∣R 

′ (s ) 
∣∣ < K 

L for some uniform constant K 

L < ∞ . 

One could equivalently state that R is a Lipschitz function with a Lipschitz constant K 

L . Condition 1 will be naturally

satisfied at the optimum in most models. 

We wish to ignore issues of multiplicity of equilibria in this paper, so we consider a planner constrained to choosing

policies for which S (R , A ) is a singleton. This could be justified by appealing to a principle that “good policy” avoids multiple

equilibria, or to the principle that a good research strategy starts with the simpler case. 14 For this reason we now state a

condition that is nearly equivalent to imposing uniqueness of outcomes. 

Condition 2. There is an ε > 0 such that, for each s ∈ S R 

where R 

′ exists then 

h τ (R (s ) , A ) R 

′ 
(s ) ≤ 1 − ε (7) 

at all A such that s ∈ S (R , A ) , ε uniform over s, A. 

This Condition guarantees that H = 0 has a well-conditioned solution, ensuring uniqueness in the following Lemma. Con- 

dition 2 is also used in the optimality condition in Proposition 2 and existence result in Proposition 5 . Conditions 1,2 can

be easily checked at a computed solution, as we show in Appendix A.6. 

The following lemma ensures uniquess and existence of solutions, thus guaranteeing that the objective function in (3) is 

well defined at the considered policies. 

Lemma 1. Assume Assumptions 1,2,4 and consider an R that satisfies Conditions 1–2. Then S(R , A ) is a singleton almost surely.

Assume in addition Assumption 3 holds and the outcomes of R are interior, that is S R 

⊂ int(S) and R (S R 

) ⊂ int(T ) . Fix a

variation δ : S → R uniformly bounded, differentiable everywhere with a uniformly bounded derivative. Then the set of outcomes 

S(R + αδ, A ) is a singleton for all α ∈ R small enough a.s. Furthermore S(R + αδ, A ) → S(R , A ) a.s. α → 0 

The “a.s.” statement is over the distribution of A. 15 Lemma 1 is proved in detail in Appendix A.1. 16 We now provide a

sketch of the proof. 

Proof of Lemma 1 . 

Denote the set of realizations that give rise to non-differentiable outcomes as 

�ND 
R 

= { A ∈ � : R non-differentiable at some s ∈ S ( R , A ) } . 
Assumption 4 guarantees that P rob(�ND 

R 

) = 0 . 

Consider an absolutely continuous function g : X → X for a compact set X . Two properties of such functions are well

known: i) g has at least one fixed point (Brouwer’s fixed point theorem), ii) If in addition g ′ (x f ) < 1 at all fixed points

x f = g(x f ) then x f is unique. 17 

Fix A / ∈ �ND 
R 

and δ. Consider α small. Clearly S (R + αδ, A ) is equal to the set of fixed points of the map g(. ) ≡ h ((R +
αδ)(·) , A ) . Interiority and Condition 1 guarantee that h ((R + αδ)(·) , A ) maps S into itself, therefore S (R + αδ, A ) is non-

empty due to property i) . Condition 2 and property ii) guarantee that S (R , A ) is unique. The uniform bounds on h τ , δ and

δ′ and Lipschitz continuity of h τ guarantee that there is an ε > 0 such that dh ((R + αδ)(s ) ,A ) 
ds 

is close to dh (R (S (R ,A ) ) ,A ) 
ds 

for all 

s ∈ (S (R , A ) − ε, S (R , A ) + ε) and α small enough. 

A bounded δ implies that for small α all fixed points of h ((R + αδ)(·) , A ) (that is, all elements in S (R + αδ, A )) are in

the interval (S (R , A ) − ε, S (R , A ) + ε) . Therefore, Condition 2 and the way ε is chosen implies that dh ((R + αδ)(s ) ,A ) 
ds 

< 1 at all

s ∈ S (R + αδ, A ) . Property ii) then implies that S (R + αδ, A ) is a singleton and it converges to S (R , A ) as α → 0 . �

3.3. General formulation 

Let F be the value of the objective function for a given R , that is 18 

F ( R ) ≡ E [ W ( T ( R , A ) , S ( R , A ) , A ) ] . 
14 Multiplicity of equilibria could be dealt with at the cost of having to introduce selection criteria or randomization in the model, we leave this for future 

research. 
15 Notice that even though the calculus of variations often uses indicator functions δ, these are ruled out in the Lemma by the differentiability requirement 

on δ. In fact the result in this Lemma would break down with indicator functions because outcomes could fail to exist, that is S(R + αδ, A ) could be empty 

with positive probability for any α, continuity of δ ensures that S(R + αδ, A ) is non-empty. This is why in our proofs and even when we check second 

order conditions in practice, we always work with continuous δ’s. 
16 Although perhaps only a curiosity, we point out that the uniform bound in Condition 2 is stronger than needed for this Lemma, as it also holds if 

h τ (R (s ) , A ) R 

′ 
(s ) < 1 for all s ∈ S R . The stronger Condition 2 is needed in later results only. 

17 Property ii) is easy to see with a simple graph. It has been encountered in economics, for example in the old literature on deterministic growth with 

increasing returns to scale where the law of motion of capital g typically has three steady states, an unstable one with g ′ > 1 and two stable ones with 

g ′ < 1 , the lower of which is a poverty trap. A detailed proof of ii) is available upon request. 
18 Notice that F maps the space of functions into the real line R . 
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We can now re-state the Optimal Control with GSE problem as 

max 
{ R : S→T } 

F(R ) (8) 

s.t. R ∈ E 
where E is a pre-specified set of admissible policy functions. Restriction (1) is left implicit but guaranteed to hold in this

formulation, as it is embedded in the definition of S ( R , A ) . 

The expectation defining F integrates over A. The set E is meant to be a large set that includes most policy functions so

that the optimum is interior, also it should be such that a solution to the optimization problem exists. E has to be restricted

so that S ( R , A ) is a singleton a.s. for all R ∈ E , guaranteeing that the expectation that defines F(R ) is well defined. Typically

E will exclude policy functions with large derivatives at some points. We discuss later in more detail the choice for E . 

We denote the solution to Problem (8) by R 

∗. 

3.4. Apparent partial information: Revelation and invertibility 

In some cases the government can still implement the FI policy even if it does not observe all the shocks. This occurs

whenever the government can learn the true state of the economy A from observing the signal s . In other words, whenever

the government can invert the observed s, τ to find out the realised A. 

To formally define Invertibility, let (τ F I , s F I ) : � → T × S be the FI solution, namely the solution that arises if the gov-

ernment observes A, thus the government chooses s F I (A ) , τ F I (A ) to maximize F s.t. (1) . Let S ∗,F I be the support of s F I . 

Definition 1. Invertibility holds if for any signal that occurs in equilibrium s ∈ S ∗,F I there exists a unique A ∈ � such that

s = s F I (A ) = h (τ F I (A ) , A ) . 

Invertibility will often occur when the dimension of s is the same as the dimension of A. In this case, knowledge of s

and of the policy function reveals A . Even if A is high-dimensional, Invertibility holds generically if � is a finite set, as only

by coincidence would the same equilibrium point (τ F I , s F I ) occur for two different realizations of A . Obviously Invertibility

is synonimous with the existence of the inverse function 

(
s F I 

)−1 
: S ∗,F I → �. 

Proposition 1. Under Invertibility the solution to Optimal Control with GSE is given by R 

∗(s ) ≡ τ F I ( 
(
s F I 

)−1 
(s )) for all s ∈ S ∗,F I . 

In other words, under Invertibility the solution of the PI problem coincides with the solution under FI. This follows from

the fact that the partial information (PI) case has the additional constrain (1) relative to the FI problem, therefore the value

in the PI case is less than or equal to the FI case, since the value of the FI case is achievable for R 

∗ as in Proposition 1, this

must be the solution for the PI case. 

A large part of the literature on partially observed shocks has considered this case. Also all the papers assuming reve-

lation in incentive problems or those justifying the FI assumption by appealing to the fact that signals can be backed out

from prices. 19 

3.5. First order conditions under GSE 

The case of interest in this paper arises when knowledge of (τ, s ) is not sufficient to back out the actual realizations

of the shocks from (1) , so that Invertibility as in the previous subsection does not obtain. In general, Invertibility fails

generically if A has dimension higher than 1, at least one element of A has a continuous distribution and the other elements

of A are non-degenerate. Technically, Assumption 4 ensures that Invertibility does not hold. 20 

We can now state our main result, namely a first order optimality condition under GSE. Let W 

∗
τ , W 

∗
s , h 

∗
τ denote W τ , W s , h τ

evaluated at the optimal solution s = S( R 

∗, A ) and τ = R 

∗(S( R 

∗, A )) . 

Proposition 2. Assume Assumptions 1–4. Assume that a solution to (8) exists denoted R 

∗. Assume, R 

∗ satisfies Conditions 1–2, 

the interiority conditions stated in Lemma 1 and R 

∗ ∈ int( E ) . Then R 

∗ satisfies the following necessary first order condition 

E 

(
W 

∗
τ + W 

∗
s h 

∗
τ

1 − h 

∗
τR 

∗′ 

∣∣∣∣S( R 

∗, A ) 

)
= 0 a.s. in A. (9) 

Given fundamentals W, h, F A , the interiority requirement on equilibrium (τ, s ) can often be satisfied by enlarging the sets

T , S. 21 Interiority of R 

∗ is likely to hold for E that impose minimal restrictions on the set of admissible functions. 

The proof of Proposition 2 uses variations, as in the literature on calculus of variations. Notice, however, that our ap-

proach is not a special case of results in that literature: unlike in the standard case, the choice of R involves choosing
19 Invertibility also holds in the supply function model of Klemperer and Meyer (1989), where uncertainty is one-dimensional. Invertibility is not the only 

case in which the “standard recipe” works and (5) gives the correct solution. We will come back to this in Section 6 where we derive these as special cases 

of our general solution in Proposition 2 . 
20 Even in the case that A is one-dimensional, Invertibility is violated if s FI ( ·) is non-monotonic. We leave an exploration of this case for future work. 
21 See Appendix A.1 
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measurability conditions relating the observable signal and the underlying variables of integration. We refer the interested 

reader to Appendix A.7, where we explain this difference in more detail. 

In Section 6 we explain how previous results in the literature on optimal policy under PI can be derived as special cases

of Proposition 2 . We show why in those cases the “standard recipe” works and equation (5) gives the correct solution. 

We state a short version of the proof in the text, for a detailed proof see Appendix A.2. 

Proof of Proposition 2 . 

Fix a deviation δ satisfying the boundedness conditions. Consider the problem 

max 
α∈ R 

F(R 

∗ + αδ) (10) 

maximizing over small deviations α of the optimal reaction function in the direction determined by δ. Lemma 1 guarantees 

that the solution S(R 

∗+ αδ, A ) is unique so that F(R 

∗ + αδ) is well defined for small α. 

Given the interiority assumption R 

∗ + αδ ∈ E, hence the solution of (10) is attained at α = 0 and by the maximum

principle 

dF( R 

∗ + αδ) 

dα

∣∣∣∣
α=0 

= 0 . (11) 

The appendix shows existence of this and all the derivatives that we use in this proof. 

We use the following notation: for each function G = W, W τ , W s , δ, R 

∗, δ′ , R 

∗′ , h τ , S we denote G 

δ as the function mapping

arguments (α, A ) into the value of the corresponding G function evaluated at S ( R 

∗ + αδ, A ) and/or T ( R 

∗ + αδ, A ) , namely 

G 

δ(α, A ) ≡ G (T ( R 

∗ + αδ, A ) , S ( R 

∗ + αδ, A ) , A ) . 

For example, we have W 

δ (α, A ) ≡ W (T ( R 

∗ + αδ, A ) , S ( R 

∗ + αδ, A ) , A ) and so on. 

Fix A / ∈ �ND 
R 

∗ (this set has been defined in the proof of Lemma 1 ). Carefully differentiating W 

δ we have 

dW 

δ(α, A ) 

dα
= 

[
W 

δ
τ (α, A )(R 

∗′ δ(α, A ) + αδ′ δ(α, A )) (12) 

+ W 

δ
s (α, A ) 

]
S δ′ (α, A ) + W 

δ
τ (α, A ) δδ(α, A ) . 

Given R 

∗, δ, A consider now 

s = h ((R 

∗+ αδ) (s ) , A ) (13) 

as an equation in (s, α) . The implicit solution for s is precisely S δ (α, A ) . The implicit function theorem implies 

S δ′ (α, A ) = 

h 

δ
τ (α, A ) δδ(α, A ) 

1 − h 

δ
τ (α, A ) 

[
R 

∗′ δ(α, A ) + αδ′ (S δ(α, A )) 
] . (14) 

Evaluating (12) and (14) at α = 0 and rearranging gives 

dW 

δ(0 , A ) 

dα
= 

W 

∗
τ + W 

∗
s h 

∗
τ

1 − h 

∗
τR 

∗′ δ(S(R 

∗, ·)) for all A / ∈ �ND 
R 

∗ . (15) 

Using P rob(�ND 
R 

) = 0 and exchanging the order of the derivative and integral signs in the definition of F (the appendix

shows that this is a valid step) we have ∫ 
�

W 

∗
τ + W 

∗
s h 

∗
τ

1 − h 

∗
τR 

∗′ δ(S(R 

∗, ·)) dF A = 0 . (16) 

Since this equation holds for any bounded δ with a bounded derivative it also holds for any bounded measurable δ. 
Therefore, the general definition of conditional expectation implies (9) . �

As we anticipated the first order condition (9) does not coincide with the “standard recipe” FOC (5) . The new term
1 

1 −h ∗τR 

∗′ acts as a kernel, or measure change relative to the standard case under separation. The reason this term appears is

the following: under FI the optimality FOC involves W 

∗
s h 

∗
τ (see our discussion around (5) ) because h ∗τ is the marginal change

in the signal due to a marginal change in the policy variable τ . However, as shown in the proof, the marginal change in the

signal under PI when the policy variable changes (in the direction of the variation δ) is 

S δ′ (0 , A ) = 

h 

∗
τ δ

1 − h 

∗
τR 

∗′ (17) 

hence this is what should multiply W 

∗
s in (15) and eventually gives rise to (9) . 

At this point, Fig. 1 may provide useful intuition. The illustration is based on our main fiscal policy example, which

we introduce in Section 4 , with two shocks A ≡ (γ , θ ) , these are not observed by the government, it only observes the

aggregate signal s ≡ l. Given a choice for R , upon observing a certain value of the signal s ≡ l , the planner cannot be sure

if it was determined by a realization of shocks (γ1 , θ1 ) or a realization (γ2 , θ2 ) , as illustrated by the intersection of a policy

R with two possible reaction functions h −1 (·, A ) . The issue of General Signal Extraction is to realize that the choice of R
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Fig. 1. Optimal policy R and deviation. The figure refers to the example of Section to illustrate the effect of a deviation R + αδ on the signal, that is the 

intersection with two possible reaction functions h associated with different realisations of the shocks θ and γ . The signal is on the x-axis, and the policy 

on the y-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

influences the likelihood of observing s = l . Small changes in the choice of R impact on s differently for each realization. In

particular, consider a small deviation R + αδ, when δ is the indicator function of an interval around s . 22 The figure illustrates

how the impact of this deviation on the signal will be different if realization (γ1 , θ1 ) or (γ2 , θ2 ) actually materialize (even

though these two realizations give rise to the same outcome for R ) . The difference in the outcome s for each realization is

proportional to the term 

1 
1 −h τR 

′ that appears in (9) . Notice that if R and h −1 (·, A ) are nearly parallel then 1 − h τR 

′ is close

to zero and the kernel is large. Hence, the kernel gives more weight in the FOC to realizations such that a small change in

the policy has large effects on equilibrium s . 

3.5.1. A convenient optimality condition 

Condition (9) is useful for comparability with the standard FOC and to point out the role of the kernel 1 
1 −h τ R ∗′ . However,

it suggests that computing the solution involves solving a differential equation, since the derivative of the policy function 

R 

∗′ is involved in (9) . In that case numerical solutions should ensure that both R 

∗ and R 

∗′ are well approximated. As it

turns out, we can simplify things by deriving an optimality condition in which R 

∗′ is not present. This happens because R 

∗′ 
is also present in the density f A | s which defines the integral in (9) and the derivative cancels out. A sufficient condition to

derive this result is the following assumption. In the following we denote a random variable with an upper case, say X, its

density f X , and we use lower case, say x, for possible values of X . 

For a partition of the vector A = (A 1 , A 2 ) , denote the support of A 2 conditional on observing s, τ as 

	2 ( s, τ ) = { a 2 : s = h (τ, a 1 , a 2 ) for some (a 1 , a 2 ) ∈ �} . 
Assumption 5. The vector A can be partitioned as A = (A 1 , A 2 ) for a 1 ∈ R such that, i) the conditional density f A 1 | A 2 exists

with probability one on A, ii) for any (s, τ, a 2 ) ∈ S × T ×	2 ( s, τ ) there is a unique a 1 such that s = h (τ, a 1 , a 2 ) , iii) the

partial derivative h A 1 exists everywhere in T × � and it is bounded away from zero. 

Part i) strengthens Assumption 4. Part ii) means that one can recover A 1 from knowledge of the other variables, i.e. there

is a well defined function A 1 = A 

∗(s, A 2 ) satisfying s = h (R 

∗( s ) , A 

∗(s, a 2 ) , a 2 ) for all (s, a 2 ) ∈ S R 

∗×	2 ( s ) that occur in the

optimal policy. Equivalently, we could define A 

∗(s, a 2 ) as the inverse function of S(R 

∗, ·, a 2 ) . 
Proposition 3. In addition to the assumptions and conditions needed for Proposition 2 , assume Assumption 5. Then, R 

∗ satisfies

the following necessary optimality condition ∫ 
	2 (s, R 

∗(s )) 

W 

∗
τ + W 

∗
s h 

∗
τ∣∣h 

∗
A 1 

∣∣ f A 1 | A 2 (A 

∗(s, a 2 ) , a 2 ) dF A 2 (a 2 ) = 0 for almost all A (18) 

and for all s where the marginal density of S(R 

∗, A ) is positive. 
22 This Figure uses an indicator function δ for illustrative purposes and because it is often used in the calculus of variations. However, as pointed out 

after Lemma 1, in our proofs we require continuous δ’s. 
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The proof is in Appendix A.3. 

As promised, this optimality condition does not involve R 

∗′ . In Section 3.7 we discuss how to set up an algorithm that

uses this optimality condition. In addition to simplifying computations this proposition honors the title of the paper, as the 

proof involves computing the filter f A | s explicitly, highlighting that in general this filter depends on the optimal policy R 

∗

and its derivative R 

∗′ . 

3.6. Second order conditions and existence 

We now state two more results: a second order condition that can be useful in practice when two solutions to (18) are

found, and an existence result ensuring that the optimality conditions are meaningful. Proofs are in Appendix A.4 and A.5. 

Second Order Optimality Condition 

Proposition 2 was obtained using ∂ F(R 

∗+ αδ) 
∂α

∣∣∣
α=0 

= 0 . Similarly, the second order condition 

∂ 2 F(R 

∗+ αδ) 

∂α2 

∣∣∣
α=0 

≤ 0 has to 

hold for any δ. For simplicity the proposition is stated for the case where W does not depend on τ . 

Assumption 6. W is twice differentiable everywhere with respect to s, h is twice differentiable everywhere with respect to 

τ and the second derivatives | W ss | , | h ττ | < Q uniformly on S × T × � for a constant Q < ∞ . 

Condition 3. R 

∗ is twice differentiable almost everywhere with respect to s, with 

∣∣R 

′′ ∣∣ < Q uniformly on S R 

. 

Proposition 4. In addition to the assumptions and conditions on R needed for Proposition 2 , assume Assumption 6 and

Condition 3 . Then, for all continuously twice differentiable deviations δ : S → R, R 

∗ satisfies the following necessary second order

condition 

E 

[ 
W 

∗
ss 

(
S δ′ (0 , A ) 

)2 + W 

∗
s S 

δ′′ (0 , A ) 
] 

≤ 0 (19) 

where S δ′ (0 , A ) is given by equation (17) and 

S δ′′ (0 , A ) = 

δ′∗h 

∗
τ S δ′ + ( δ∗) 2 h 

∗
ττ + δ∗h 

∗
ττR 

∗′ S δ′ − δ′∗( h 

∗
τ ) 

2 R 

∗′ S δ′ + δ∗δ′∗( h 

∗
τ ) 

2 + δ∗( h 

∗
τ ) 

2 R 

∗′′ S δ′ 

( 1 − h 

∗
τR 

∗′ ) 2 
(20) 

Existence 

To guarantee existence of a maximum we can restrict the set of functions E to a large compact set so that it includes

global maxima in most models. The following condition strenghthens Conditions 1–2 so as to guarantee compactness. 

Condition 4. Same as Condition 2 but (7) holds at all s such that | s − h (R (s ) , A ) | ≤ δ for some constant δ > 0 for some 

A / ∈ �ND 
R 

. 

Proposition 5. Define E as the set of all functions R satisfying Conditions 1 and 4 for some K 

L , ε , δ > 0 . Let Assumptions 1,2,4

hold. Then E is compact and there exists a solution R 

∗ attaining the maximum of problem (3) .”

Choosing a large K 

L and small ε , δ should include the global optimum in int( E ) for most models. 

3.7. Putting everything together 

The above results give a clear path to find solutions to (3) : i) Find a solution to R 

∗ for all (or a fine grid of) s using 

Algorithm 1. Discretize the set of possible values for s, i.e., S R 

∗ . Finding the bounds of this set is easy, given a solution to

the FI problem, as we explain in our application in Section 5 . For each possible value of s ∈ S R 

∗ and a candidate τ = R 

∗(s ) ,

evaluate each function in the integrand of (18) at (τ, s, A 

∗(s, a 2 ) , a 2 ) . Find the integral on the left side of (18) by integrating

a 2 over all possible values in 	2 (s, τ ) given the candidate τ. This set can be found by checking whether the implied a 1 =
A 

∗(s, a 2 ) is within the support of A 1 . This maps each possible τ into a value for the integral on the left side of (18) . The

optimal choice R 

∗(s ) is found by solving a non-linear equation that maps a candidate τ into an integral as close as possible

to zero. 

ii) if a unique solution is found check that Conditions 1–2 and interiority conditions are satisfied. 

If we find several solutions in i) then proceed to: ii’) check if some solutions can be ruled out with the second order

condition. 

If still several solutions survive proceed to: ii”) evaluate the objective function E(W ) at each candidate solution and pick

the R with the highest value . 23 
23 In purity one should still check that the objective function can not be improved by using some R for which the Lipschitz bounds of Conditions 1–2 

and interiority conditions are binding. This would require either to apply Kuhn&Tucker conditions or to prove that the optimal R can not violate these 

bounds. We leave this for another paper. 

63 



E. Hauk, A. Lanteri and A. Marcet Journal of Monetary Economics 118 (2021) 54–86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. A simple model of optimal fiscal policy 

We now present a simple model of optimal fiscal policy with two shocks, to supply and demand respectively. We believe

that this model and its extensions in Sections 5 , and 9 represent an interesting laboratory for our theory and may be useful

to gain intuition on the role of endogenous signals for optimal policy. However, we stress that our results developed in

Section 3 in a more general setup could be applied in many fields, also outside of macro. 

Specifically, our main example is a two-period version of the Lucas and Stokey (1983) model of optimal dynamic taxa-

tion under uncertainty. We introduce incomplete markets to be consistent with the presence of Partial Information about 

the state. For simplicity, we assume that there is a representative agent, and that signals and policy are determined simul-

taneously. We relax these assumptions in Sections 7 and respectively. 

4.1. Preferences and technology 

The economy lasts two periods t = 1 , 2 . A government needs to finance an exogenous and constant stream of expenditure

g 1 = g 2 = g, where subscripts indicate time periods. The government levies distortionary income taxes ( τ1 , τ2 ) and issues 

bonds b g in the first period that promise a repayment in second-period consumption units with certainty. 

The economy is populated by a continuum of agents. Each agent i ∈ [0 , 1] has an expected utility function 

E 
[
U 

(
c i 1 , l 

i 
1 , c 

i 
2 , l 

i 
2 ;γ

)]
(21) 

with U 

(
c i 

1 
, l i 

1 
, c i 

2 
, l i 

2 
;γ

)
= γ u 

(
c i 

1 

)
− v 

(
l i 
1 

)
+ β

[
u 
(
c i 

2 

)
− v 

(
l i 
2 

)]
, where c i t and l i t for t = 1 , 2 are consumption and hours worked

respectively, and u ′ > 0 , u ′′ < 0 , v ′ > 0 , v ′′ > 0 . 

We refer to γ , a random variable with distribution F γ , as a “demand shock”. When γ is high, agents like first pe-

riod consumption relatively more than other goods. Hence, a high value of γ makes them willing to work more in their

intratemporal labor-consumption decision and also makes them more impatient in their intertemporal allocation of con- 

sumption. Given that agents are identical, in the remainder we drop the subscripts i for notational convenience, whenever 

this does not lead to confusion. 24 

The production function in each period is linear in labor. Output is given by 

y t = θt l t (22) 

for t = 1 , 2 . The random variable θ1 = θ is a “productivity shock” with distribution F θ . γ and θ are assumed to be indepen-

dent. As far as θ2 is concerned, we assume that both agents and government know with certainty that θ2 = Eθ, that is, the

second period productivity is a known constant, equal to the mean of the first period shock. 

To summarize, the state of the economy is fully described by a realization of the random variables A ≡ (γ , θ ) . These

variables are observed at the beginning of period t = 1 by consumers and firms, but not by the government. The distribu-

tions F γ and F θ represent the government’s perceived distribution of the exogenous shocks, which may or may not be equal

to the true distribution of these variables. Thus this formulation encompasses the case of “true” uncertainty as well as the 

government’s ignorance about the structure of the economy. 

Agents have Rational Expectations: denoting by � the space of possible values of A, we assume that agents know that 

fiscal policy is given by a triplet of functions ( τ1 , τ2 , b 
g ) : � → R 3 and these are actually the equilibrium values of taxes and

government bonds for each A . 

Consumers’ choices and prices are contingent on the state A, which agents observe in period t = 1 . Agents choose

( c 1 , c 2 , l 1 , l 2 , b) : � → R 5 knowing the fiscal policy and the bond price function q : � → R. The solution of the agents’ prob-

lem in this setup coincides with the non-stochastic model where A is known. Uncertainty will only play a role in the

government’s problem, to be specified later. 

Firms also observe θ at t = 1 . Profit maximization implies that agents receive a wage equal to θt , observed by agents, so

that the period budget constraints of the representative agent are 

c 1 + qb = θ l 1 (1 − τ1 ) (23) 

c 2 = θ2 l 2 (1 − τ2 ) + b (24) 

where q is the price of the government bond b. The above budget constraints have to hold for all realizations of A . 

The government’s budget constraints are analogous, they restrict the choice of the policy ( τ1 , τ2 , b 
g ) . 

4.2. Competitive equilibrium 

We now provide a definition of competitive equilibrium that is standard in the literature and common to both the Full

Information (FI) and the Partial Information (PI) equilibria that we are going to analyze. 
24 In Section 7 , we generalize this framework to include heterogeneous agents facing idiosyncratic shocks. 
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Definition 2. A competitive equilibrium is a fiscal policy ( τ1 , τ2 , b 
g ) , price q and allocations ( c 1 , c 2 , l 1 , l 2 , b) such that when

agents take ( τ1 , τ2 , q ) as given the allocations maximize the agents’ utility (21) subject to (23) and (24) . In addition, bonds

and goods markets clear, so that ̃  b g = b and 

c t + g = θt l t for t = 1 , 2 . (25) 

This definition insures that wages are set in equilibrium and that the budget constraint of the government holds in all

periods due to Walras’ law. 

Utility maximization implies for all A 

v ′ ( l 1 ) 
u 

′ ( c 1 ) 
= θγ (1 − τ1 ) (26) 

v ′ ( l 2 ) 
u 

′ ( c 2 ) 
= θ2 (1 − τ2 ) (27) 

q = β
u 

′ ( c 2 ) 
γ u 

′ ( c 1 ) 
(28) 

As anticipated, the demand shock enters the first period labor supply decision described by equation (26) as well as the

bond pricing equation (28) . A competitive equilibrium is fully characterized by equations (23) to (28) . 

4.3. Ramsey equilibrium 

To describe government behavior, we now provide a definition of Ramsey equilibrium. As is standard, we assume the 

government has full commitment, perfect knowledge about how taxes map into allocations for a given value of the under- 

lying shocks A, and that it chooses the policy that maximizes household welfare. 

We first give the standard definition when both government and consumers observe the realization of A . 25 

Definition 3. A Full Information (FI-) Ramsey equilibrium is a fiscal policy ( τ1 , τ2 , b 
g ) that achieves the highest utility

(21) when allocations are determined in a competitive equilibrium. 

To study optimal taxes under PI, we assume that taxes in the first period have to be set before the shock A is known but

after observing a signal s that potentially depends on aggregate outcomes observed in period 1, s = G (c 1 , l 1 , q, A ) for a given

G . In our leading example, we assume s = l 1 = 

∫ 
l i 
1 
di. Since in the present example agents are identical, aggregate and indi-

vidual choices coincide in equilibrium, but it is important for the interpretation of equilibrium that the signal only depends 

on aggregate outcomes, as this justifies the assumption that agents take the policy action τ as given. Section 7 shows an

example in which the distinction between aggregate and individual variables is clearer. 

Definition 4. In a Partial Information (PI-) Ramsey equilibrium , conditional on observing a signal s, the government 

chooses the policy that achieves maximum utility, subject to the constraint 

τ1 = R (s ) for all A ∈ � (29) 

for some measurable function R : R → R and allocations are determined in competitive equilibrium. 

We are interested in the case when (29) prevents the PI-Ramsey equilibrium from achieving the FI outcome. Therefore 

we introduce two shocks and one signal so that invertibility does not hold. 

Note that the definition of competitive equilibrium implies that consumers’ know the map τ1 : � → R. Hence, in a PI-

Ramsey equilibrium, agents’ perception of how policy is set is consistent with equation (29) . An interpretation is that the

government announces its policy R , agents understand this policy and the associated mapping from A to s. Another equiva-

lent interpretation is that agents simply are endowed with knowledge of τ1 (·) . Even if agents know that (29) holds, they can

not exploit this knowledge in their optimization problem as we consider atomistic agents that cannot affect the aggregate 

signal and, hence, the tax rate. 26 In this model, as is standard in Ramsey equilibria, the tax level τ and the equilibrium

allocations (and therefore s ) are determined simultaneously as a consequence of the government’s choice for R . 27 

FI- Ramsey equilibria 

Using the so-called “primal approach” and standard arguments it is easy to show that an allocation is a competitive 

equilibrium if and only if, in addition to the resource constraints (25) , the following implementability condition holds 

γ u 

′ ( c 1 ) c 1 − v ′ ( l 1 ) l 1 + β
[
u 

′ ( c 2 ) c 2 − v ′ ( l 2 ) l 2 
]

= 0 . (30) 
25 These definitions take for granted that we only consider tax policies for which a competitive equilibrium exists and is unique. 
26 This differs from the setup in the New Dynamic Public Finance, where consumers optimize given a policy function R that is a function of individual 

choices, i.e., using our notation, the government chooses an optimal individual tax τit = R (l it ) . Therefore in that literature agents internalize the effect of 

their actions on taxes. 
27 We consider the case of predetermined taxes in Section 
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The standard approach to find Ramsey policy under FI is to maximize (21) subject to (30) and the resource constraints. We

now deviate slightly from this traditional approach so that the PI problem can be understood as an additional restriction of

the FI problem. For this purpose we do not “substitute out” τ1 , instead we keep this tax as an explicit choice variable and

using (25) for t = 1 to substitute out consumption in (26) , we add the constraint 

v ′ ( l 1 ) 
u 

′ ( θ l 1 − g ) 
= θγ (1 − τ1 ) , (31) 

Letting h be the function that maps τ1 , θ, γ into the value for l 1 that solves this equation, we can rewrite the above equi-

librium condition as 

l = h (τ, A ) (32) 

where we have suppressed the time subscript from first period labor and tax rate. This shows how the allocation for labor

reacts to a tax choice. 

The resource constraints (25) and (30) give three equations defining a map from each possible value of l = l 1 into corre-

sponding equilibrium (c 1 , c 2 , l 2 ) . Plugging this map into the utility function (21) , welfare for each A can then be written as

W (l; A ) ≡ U(c 1 , l, c 2 , l 2 ;γ ) (33) 

solely as a function of l = l 1 , embedding in W the equilibrium conditions mentioned above. The FI Ramsey Equilibrium

reduces to solving 

max 
(τ,l):�→ R 2 

E[ W (l; A )] (34) 

s.t. (32) (35) 

Clearly, this problem is equivalent to maximizing (21) subject to (30) , given A . 28 

PI- Ramsey equilibria 

We focus on the case when the signal is just aggregate labor so s = l 1 = l. The only difference under PI is that the

additional constraint (29) appears, that τ1 = τ determines l 1 = l in equilibrium through (32) and that the choice is over the

policy R . 

Hence a PI-Ramsey equilibrium (given a signal l) solves 

max 
R : R → R 

E[ W (l; A )] (36) 

s.t. (32) 

τ = R ( l ) 

Notice that, mathematically, the only difference with the FI-problem is the presence of the last constraint. 

This gives rise to a non-standard maximization problem under GSE, where the filtering problem f A | l has to be solved

jointly with the optimal choice for the policy function R . 

4.4. The economic consequences of PI for taxation policy 

Before presenting our numerical solution, it is worthwhile discussing the economic issues raised by PI in this model. As 

is well known, the optimal FI policy implies tax smoothing over time, as the government spreads the distortions equally 

in the two periods. In the case of CRRA preferences u ( c ) = 

c 1+ αc 

1+ αc 
, v ( l ) = B l 

1+ αl 

1+ αl 
for αc ≤ 0 , αl , B > 0 , tax smoothing will be

perfect and Ramsey policy under FI involves setting a tax rate τ = τ1 = τ2 constant in time, the level of taxes satisfies the

intertemporal budget constraint 

τθ l 1 − g + β
u 

′ (c 2 ) 

γ u 

′ (c 1 ) 
( τθ2 l 2 − g ) = 0 . (37) 

It is clear from (37) that the government needs to know the realization of both productivity and demand shocks in order

to implement this policy under FI. In particular, the realization of θ = θ1 is a crucial piece of information, as it determines

the revenue that a given tax rate, together with an observed level of hours worked, is going to raise. The demand shock γ
also matters as it affects both the objective function and the interest rate that the government will have to pay on its debt.

Furthermore, both shocks clearly contribute to the determination of an allocation (c 1 , c 2 , l 1 , l 2 ) . 

Under PI, the government can only condition its policy on l, without knowing what combination of the shocks gives 

rise to a given observation. Thus, under PI the choice of constant taxes (optimal under FI) is not feasible. The government

has to fix τ1 while it is still uncertain about the revenue that this tax rate will generate and it will enter period 2 with an

uncertain amount of debt. Once θ and γ are known, government deficit (or surplus) will materialize, and the government 
28 As explained in the theoretical section l should be constrained to belong to the set of feasible signals. 
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Fig. 2. Hours and taxes with Full Information. Left panels: top, hours under FI as a function of the productivity shock; bottom, tax rate under FI as a 

function of the productivity shock. Right panels: top, hours under FI as a function of the demand shock; bottom, tax rate under FI as a function of the 

demand shock. 

 

 

 

 

 

 

 

 

 

will have to set τ2 so as to balance the budget in the second period. Hence, in the eyes of the government, τ2 is unavoidably

a random variable at the time of choosing τ1 . 

Arguably, uncertain tax revenue is a crucial feature of actual fiscal policy decisions, and tax rates are decided based 

on information from equilibrium outcomes that are observed frequently. In this sense, one can interpret this model as a 

simple model of optimal automatic stabilizers, as these are fiscal instruments that are designed to respond to endogenous 

outcomes, such as income or unemployment, independently of the source of fluctuations in these variables. 

5. Solution of fiscal policy model with GSE 

We now apply our theoretical results to solve for optimal policy under PI in the model of Section 4 . 29 

5.1. Low government spending and optimal tax smoothing 

We parametrize the economy as follows. We assume u (c) = log (c) and v (l ) = 

B 
2 l 

2 . We set β = 0 . 96 . B and the mean of

θ are set to normalize average output to 1 and average hours to a third. We let θ be uniformly distributed on a support

[ θmin , θmax ] and γ uniformly distributed on [ γmin , γmax ] . Government expenditure is constant and equal to 25% of average 

output. The mean of γ is 1. The supports of both shocks imply a range of ±10% from the mean. 

We first present the FI solution in order to illustrate the optimal response of taxes and allocations to the two different

shocks we consider. In Figure 2 we show how hours and taxes move with the two different shocks under FI. On the left

side of the figure, we keep γ constant and equal to its mean and we show that both hours and taxes are decreasing in

the productivity shock. On the right side, we keep θ constant and equal to its mean and show that labor is increasing in

γ , while taxes are decreasing. This shows that ideally, if the government sees an increase in l, it would want to react in

opposite directions depending on the source of the shock: a tax increase, if driven by low θ, or a tax cut if driven by high

γ . However, under PI this is not feasible because θ and γ are not observed. 

We now discuss the problem of optimal policy with PI. Notice that the equilibrium condition (26) becomes 

Bl 1 c 1 = γ θ(1 − τ1 ) . (38) 

After substituting out consumption using the resource constraint, we obtain that labor supply is the positive root of a 

quadratic equation, so that the reaction function (32) specializes to 

l = h (τ, θ, γ ) = 

Bgθ−1 + 

√ 

(Bg) 2 θ−2 + 4 Bγ (1 − τ ) 
. (39) 
2 B 

29 Consistent with the presentation of the model in Section, we focus on productivity and demand shocks that hit the economy only in the first period 

and assume that the signal is the level of hours worked. In Appendix C, we also consider permanent shocks to productivity (Appendix C.1) and the case in 

which the signal is output (Appendix C.2). 
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Fig. 3. Optimal policy with low g. Optimal tax rate as function of hours under PI. Thick red line: R 

∗; yellow region: set of FI pairs (l, τ ) for all possible 

realizations of (θ, γ ) ; thin black line: linear policy connecting the two full revelation points. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

This equation gives the signal observed by the government, namely the level of hours worked, as a function of the tax

rate and the two unobserved shocks. While it is clear that hours are unambiguously increasing in the demand shock γ , it is

important to note that the productivity shock θ has two opposing effects on l: the substitution effect between leisure and 

consumption and the wealth effect, that acts in the opposite direction. 

By setting the tax rate, the government affects the informativeness of the signal. Notice that the government can actually 

achieve full revelation of the value of productivity θ, by setting a tax rate of 100%. This would reveal θ = 

g 
l 
, but imply zero

consumption. Hence, this choice would clearly by suboptimal. This illustrates that the government faces a trade-off between 

learning about the state of the economy and choosing a suitable policy under uncertainty. 

To the extent that θ is the most important shock affecting tax smoothing, we could expect that extracting a better signal

about θ is valuable to the government. Combining this with the discussion in the previous paragraph suggests that higher 

taxes in the first period are valuable because they narrow the range of possible θ ’s. 

Furthermore, the extent to which hours are an informative signal about productivity depends importantly on the level 

of government spending, through its effect on the marginal utility from consumption. If g = 0 , then substitution and wealth

effect exactly offset each other and hours are independent of θ . In the presence of positive government spending, the wealth

effect dominates the substitution effect and hence high realizations of θ will lead to low labor, ceteris paribus. The higher 

g, the higher the marginal utility of consumption, the stronger the wealth effect on labor supply, and the more informative

hours become about productivity. 30 

The partial derivatives h τ and h θ that we need to derive to solve the optimality condition (18) are easily obtained ana-

lytically in this example. In particular, 

h τ (τ, θ, γ ) = 

−1 √ 

(Bg) 2 ( θγ ) 
−2 + γ −1 4 B (1 − τ ) 

. (40) 

It is clear that both the productivity shock and the demand shock affect this slope, therefore the kernel in the optimality

condition (18) is not a constant. Hence, we proceed to find a R 

∗ that satisfies (18) using Algorithm 1 described above. We

provide the detailed steps of our solution method for the simple model in Appendix B.1. 

Fig. 3 illustrates the optimal policy for this case, plotting the tax rate against observed labor. The red line is R 

∗, while

the yellow region is the set of all equilibrium pairs (l F I , τ F I ) that could have been realized under FI. 

Let l = L (R 

∗, θ, γ ) be the signal as a function of government policy and shocks under PI. The boundaries of the feasible

set for l are easy to find ex-ante by exploiting the fact that the extreme values for the signal l coincide with the FI allocation,

which we denote by L F I (θ, γ ) . As l is increasing in γ and decreasing in θ, letting l min and l max be the extreme values of l
30 In order to illustrate the non-linear effect of government spending g on the signal extraction, we discuss both a case with low g (in this subsection) 

and a case with high g (in Section 5.2 ). 
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Fig. 4. Hours and taxes with Partial Information and Full Information. Left panels: top, hours as a function of the productivity shock (solid red line for 

PI, blue dashed-dotted line for FI); bottom, tax rate as a function of the productivity shock. Right panels: top, hours as a function of the demand shock; 

bottom, tax rate as a function of the demand shock. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in the PI solution, we have 

l min = L (R 

∗; θmax , γmin ) = L F I (θmax , γmin ) ; l max = L (R 

∗; θmin , γmax ) = L F I (θmin , γmax ) 

and the PI solution is in the interval [ l min , l max ] . 

The intuition for Fig. 3 is as follows. For these extremes values of the signal, there is full revelation, but anywhere

between these two extremes the government has to choose a policy without knowing the values of γ , θ that give rise to

equilibrium taxes or labor. It can be seen that the optimal policy calls for a tax rate in between the minimum and the

maximum FI policies for each observation. 

At low realizations of hours, the government learns that productivity must be high, so the tax rate can be rather low. The

lowest labor realization l min coincides with the FI equilibrium for (θmax , γmin ) . Then, taxes start to increase with l: higher

l’s signal lower expected productivity and hence revenue, as the set of admissible θ ’s is gradually including lower and 

lower realizations. This goes on up to a point where the set of admissible θ ’s conditional on l is the whole set [ θmin , θmax ] .

From that point on, the tax rate changes slope and becomes decreasing with respect to l. This is because now, with any

θ being possible, increasing l signals an increasing expected revenue, hence allowing lower tax rates on average, up to the 

point where the highest θ ’s start being ruled out, at which point the policy becomes increasing again as the government

understands that θ is low, up to the full revelation point l max = L F I (θmin , γmax ) . 

To gain further understanding on the implications of PI for the properties of the model, we plot again hours and taxes

as functions of each shock individually in Fig. 4 . In all four panels, we reproduce the FI outcomes shown in Fig. 2 (blue

dashed-dotted lines). The red lines represent the PI outcomes. For instance, in the left panels we keep γ equal to its mean

and we plot hours and taxes as functions of θ . Interestingly, it can be seen that hours become more volatile in response

to productivity shocks under PI, while taxes become smoother and change the sign of their response to θ . This is because

under this parametrization the government learns little about the realizations of θ and hence optimally chooses to cut taxes 

as hours increase. 31 

On the right-hand side, we plot again hours and taxes as functions on γ , keeping θ equal to the mean. For interme-

diate values of γ , the government is relatively confident about the realization of the demand shock, hence the policies 

under FI and PI are very close. However, for extreme realizations, the government is uncertain about which shock is driving

hours, hence it cuts taxes for very low γ ’s and increases taxes for very high γ ’s, believing that changes in productivity are

responsible for the observed behavior of hours. 

We also plot the locus of admissible realizations of shocks conditional on observing an average level of hours, l = 0 . 33 ,

in Fig. 5 . This shows that policy influences the probability of observing a certain outcome, hence optimal policy and filtering

problem need to be solved jointly. The wealth effect of productivity makes this locus an increasing function in the (θ, γ )
31 We will see in Section 5.2 that this property of the solution will change with higher government expenditure. 
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Fig. 5. Set of admissible shocks consistent with observing l = 0 . 33 . Set of combinations of (θ, γ ) that have positive density in equilibrium, conditional on 

a particular realization of the signal, namely l = 0 . 33 . Solid red line for PI, blue dashed-dotted line for FI. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Equilibrium CDF of tax rates. Cumulative Distribution Function of τ1 under PI (solid red line) and FI (blue dashed-dotted line). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

space. As hours are increasing in γ and decreasing in θ, a given level of hours could be due to combinations of high

demand and high productivity, or low demand and low productivity. It should be noted that the locus of shocks realizations

conditional on l is endogenous to policy. Importantly, τ affects the slope of this locus, implying that the government can 

choose to some extent on what shocks the signal extraction will be more precise. To see this, observe that a horizontal locus

would imply revelation of the value of γ , while a vertical locus would imply revelation of the value of θ . 

Optimal policy with PI calls for a substantial smoothing of taxes across states. We illustrate this result in Fig. 6 , where the

equilibrium cumulative distribution function of tax rates under PI is contrasted with the one obtained under FI. This result 

is rather intuitive and it carries a general lesson for optimal fiscal policy decisions under uncertainty: when the government 
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is not sure about what type of disturbance is hitting the economy, it seems sensible to choose a policy that is not too

aggressive in any direction and just aims at roughly keeping the budget under control on average. 

In our model, this smoothing of taxes across states will imply a larger variance of tax rates in the second period with

respect to the FI policy. In the second period, all the uncertainty is resolved and the tax rate will take whatever value

is needed to balance the budget constraint. This is of course taken into account at the time of choosing a policy under

uncertainty, so that we could say that optimal policy is prudent while the source of the observed aggregate variables is not

known and then responsive after uncertainty has been resolved. 

This result is related to the question on whether taxes should be smooth across states or over time, depending on the

completeness or incompleteness of financial markets. With complete markets and FI, tax smoothing happens across states 

( Lucas and Stokey, 1983 ). When markets are incomplete, the FI government substitutes tax smoothing across states with tax

smoothing over time ( Aiyagari et al., 2002 ). In our model, with incomplete markets and PI, we find that taxes are smoother

across states than over time. This suggests that tax smoothing across states may not necessarily be an indication of market 

completeness and full insurance on the part of the government, but simply a sign of incomplete information about the state

of the economy. 

Because of this property, our model can rationalize the slow reaction of some governments to big shocks like the Great

Recession. The Spanish example in the latest recession is a case in point. In 2008, it was far from clear how persistent the

downturn would be and also whether is was demand-driven or productivity-driven and the government did not adjust its 

fiscal stance quickly, only to make large adjustments in the subsequent years. We will discuss this effect further in Section 9 .

5.2. Close to the top of the Laffer curve 

We now consider the case where government expenditure is very high, equal to 60% of average output in both periods. 32 

We will see that this leads to a very non-linear optimal policy and to an exception to tax-smoothing across states. This

example is of interest for several reasons. From an economic point of view, Partial Information is of higher importance here:

since the government needs to balance the budget in the second period it is now concerned about the possibility of a very

low level of productivity θ , as in this case tax revenue is low in the first period and a large amount of debt will need to be

issued. A high debt, combined with high future expenditure, may call for very high taxes in the future, it could even mean

getting the economy closer to the top of the Laffer curve, where taxation is most distortionary. 

This example will also be of interest because the PI solution has some very different f eatures from the FI outcome. By

increasing marginal utility from consumption, high government spending makes the wealth effect of a productivity shock 

larger, with the consequence that hours worked become a stronger signal about θ . The government will optimally exploit 

this in the signal extraction. 

Fig. 7 shows optimal policy for this case (red line), again contrasted with the set of possible tax-labor outcomes under FI

(yellow region). The figure shows that the optimal solution is highly non-linear. The derivative R 

∗′ is positive and relatively

high in a middle range of levels of l, but both to the left and to the right of this middle range R 

∗ it is much flatter.

Notice that this is the opposite of what happens with a low level of g in Section 5.1. When government expenditure is

sufficiently low, the government is very uncertain about the true realization of θ . Hence higher labor does not allow a more

precise signal extraction about productivity. On the other hand, when g is sufficiently high, there is an intermediate region 

of observables where the government becomes confident about low realizations of θ . In Appendix B.2 we prove this result 

by illustrating how g affects the slope of the loci of realizations of the shocks through its impact on the wealth effect. 

Figs. 8 and 9 show how optimal policy under GSE narrows down the possible values of shocks that are compatible with

a given signal. To illustrate how the PI policy involves a relatively precise signal extraction on θ with high government 

expenditure, compare the sets of possible realizations of θ conditional on hours (on the x-axis) under FI in Fig. 8 and under

PI in Fig. 9 . Consider Fig. 8 first. It can be seen that under FI any realization of θ is consistent with a large set of intermediate

realizations of l, but each of these θ ’s would call for a different tax rate. However, under PI, there can only be one tax rate

for each observed l and the government uses this policy to extract information on θ . 

To see this, consider now Fig. 9 . The minimum value of l is only consistent with the highest possible θ (and lowest

possible γ ) because the wealth effect dominates. Under PI, increasing l from this point, the government becomes uncertain 

and lower realizations of productivity become consistent with the observations. At first, uncertainty is rising with l, but in 

the intermediate region of l’s the government becomes more and more confident about low realizations of productivity. This 

leads to the sharp increase in the tax rate, which in turn gives rise to feedback effect on the set of possible θ ’s: high taxes

discourage work effort, so higher labor now is an even stronger signal of low θ (high marginal utility from consumption). 

In this way an optimal policy and a conditional distribution of shocks consistent with it confirm each other in equilibrium. 

Consistently with this analysis of the signal extraction, we also plot hours and taxes as functions of each shock individu-

ally, and we contrast the PI outcomes with the FI solution in Fig. 10 . On the left-hand side we consider productivity shocks

only. As illustrated above, in the intermediate region of l’s the government has a precise signal about θ, hence PI and FI

policies and allocations are very close to each other. However for extreme realizations of θ the government is fooled about 

the source of the fluctuations and does hardly respond to productivity. On the right-hand side we consider only demand 
32 All other assumptions on preferences and shocks are the same as in Fig. 7 . 
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Fig. 7. Optimal policy with high g. Optimal tax rate as function of hours under PI. Thick red line: R 

∗; yellow region: set of FI pairs (l, τ ) for all possible 

realizations of (θ, γ ) ; thin black line: linear policy connecting the two full revelation points. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 8. Set of admissible θ ’s with FI. The blue region indicates, for each possible value of l, the corresponding set of realizations of θ with positive density 

in equilibrium under FI. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

shocks. It can be seen that the PI government has very imprecise information about γ . Hence it responds to these shocks

with the opposite slope with respect to the FI government. 

The case of high government expenditure shows that optimal policy with PI can be very non-linear in order to avoid the

worst outcomes, e.g. in the model hitting the top of the Laffer curve or, in the real world, a debt crisis. As shown in the

previous Proposition 2 , when expenditure is low and there are no concerns related to the government budget constraint, 

policy has to be smooth, but when there are contingencies that are particularly dangerous, then optimal policy calls for being

reactive to observables in order to prevent those cases to materialize. This is exemplified by the optimality of increasing 

taxes steeply in the first period (in the intermediate range of signals l) to avoid having to distort the economy too heavily in

the second period if realized productivity turns out to be low (and hence the fiscal deficit turns out to be high). This lesson
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Fig. 9. Set of admissible θ ’s with PI. The blue region indicates, for each possible value of l, the corresponding set of realizations of θ with positive density 

in equilibrium under PI. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Hours and taxes with PI and FI: high g. Left panels: top, hours as a function of the productivity shock (solid red line for PI, blue dashed-dotted line 

for FI); bottom, tax rate as a function of the productivity shock. Right panels: top, hours as a function of the demand shock; bottom, tax rate as a function 

of the demand shock. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

seems relevant for the understanding of the fiscal policy reaction to the financial crisis in 2008 and afterward, especially 

in countries like Spain and Italy, that arguably where in danger of getting close to the top of the Laffer curve, as testified

by the fact that significant increases in taxes after 2009 did not raise the amount of revenue as much as it was desired by

these governments. 
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6. Relation to previous results on optimal policy with PI 

We now show how previous results in the literature on optimal policy under PI can be derived as special cases of our

results. We then use our model of fiscal policy as a laboratory to illustrate the differences between these approaches and

our results. 

6.1. Existing results as special cases 

We begin this analysis by formulating the following Corollary to Proposition 2 in the general formulation of Section 3 . 

Corollary 1. Assume for some s ∈ S R 

∗ one of the following Cases holds 

1. (Invertibility) there is a unique A ∈ � such that S( R 

∗, A ) = s . 

2. (exogenous signals) the signal s is independent of τ, s = h (A ) , hence h τ = 0 . 

3. (linearity of h ) h τ is constant for all A ∈ � such that S( R 

∗, A ) = s . 

Then the general FOC (9) reduces to the FOC (5) at this s . 

The proof is trivial: in all cases the term 

1 
1 −h ∗τR 

∗′ cancels out because it is known given s so that this term can be pulled

outside of the conditional expectation in (9) . We now discuss how each case has been used in the literature and how it

arises using variations of our example of Section. 

Case 1 is related to the case discussed in Section 3.4 . It generalizes that section as invertibility here can hold only for a

subset of S R 

∗ . Existing results on optimal policy with FI apply directly to this case. 

In Case 2, signals are exogenous. There is indeed PI, but the optimal policy can be found under separation. Some refer-

ences for this case are in the first two paragraphs of the literature review ( Section 2 ). For a concrete example, modify our

fiscal policy example of Section so the signal is given by s = θ + ψ, where ψ is noise (measurement error) and the state is

A = (θ, γ , ψ) . The associated first order condition (9) would simplify to equation 

E [ W l | s ] = 0 (41) 

as there would be no kernel related to the endogeneity of the distribution of the signal. Therefore, in this case there is

separation: one can compute f A | s without knowledge of the optimal solution (for example, using the Kalman filter). This 

density is then applied to find the optimal solution with (41) . In this case, the government would have to choose τ also

under PI without knowing the revenue generated by this tax, so that perfect tax smoothing is not possible, but the signal

extraction problem is exogenous to the optimal solution. 

We discussed in Section 2 how the literature on learning and experimentation (or armed-bandit problems) could abstract 

from issues of GSE because it considered models where Case 2 can be applied. This is because this literature assumes a

sequential structure between signals and actions, implying that signals are predetermined with respect to policy, and can 

thus be treated as exogenous in the optimization. We illustrate this in the context of our model of fiscal policy in Appendix

C.4. However, in models with state-variables and signals generated by forward-looking behaviour, Case 2 is violated and our 

general result applies. We show in Section a modification of our main example that illustrates this point. 

Case 3 highlights that for the kernel to be relevant, h τ has to assume different values for different possible realizations

of the shocks, conditional on the signal. It applies if h is linear in τ as in Svensson and Woodford (2004) . Since this paper

is the closest to ours, we now derive their results as a special case of the FOC (9) in the Corollary below. 

First of all, it is helpful to distinguish two different roles played by the function h in our setup. First, h maps the shocks

into a part of the allocation that enters the objective function W (in our fiscal policy example, hours). Second, it is what

the PI literature (e.g., Svensson and Woodford, 2004 ) refers to as the “measurement equation”, mapping the shocks (and the

policy) into an observed signal. 

Corollary 2. If W is a quadratic function of τ and s and h is linear in τ, then optimal policy has the “certainty equivalence”

property, that is, optimal policy under PI calls for applying the FI policy function to the conditional expectation of the shocks,

satisfying (5) . 

Here, a linear h means that h τ does not depend on A . Let A = (1 , θ, γ ) and for simplicity of notation, consider the case

where the objective function depends only on the policy τ and an endogenous signal s, and it involves only quadratic terms

(i.e., the linear terms are zero): 

W (τ, s ) = −ω τ

2 

τ 2 − ω s s 
2 

2 

(42) 

and the reaction function is 

s = h + h τ τ + h θ θ + h γ γ (43) 

where the ω’s are positive coefficients and the h ’s are constants. 

The FOC under PI (9) becomes 

E 
[
ω τ τ + ω s h τ

(
h + h τ τ + h θ θ + h γ γ

)| s ] = 0 (44) 
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which can be rewritten as 

τ = F E [ A | s ] (45) 

for a vector of coefficients F ≡
(
− ω s h τ h 

ω τ + ω s h 2 τ
, − ω s h τ h θ

ω τ + ω s h 2 τ
, − ω s h τ h γ

ω τ + ω s h 2 τ

)
. It is easy to check that the FI solution satisfies τ = F A .

Comparing this FI solution with (45) shows that there is “certainty equivalence”, that is, the government forms the best 

estimate of the state and behaves as if this estimate was certainty, or FI. Therefore, (5) holds. 

However, as noted by Svensson and Woodford (2004) , the “separation principle” does not hold. To see this, notice for 

example that E [ θ | s ] satisfies 

E [ θ | s ] = E 
[
θ | h + h τ F E [ A | s ] + h θ θ + h γ γ = s 

]
(46) 

so that the density of f θ | s depends on the optimal choice determined by F . 

6.2. Exogenous signals in the fiscal policy model 

In Section 5 , we have considered optimal policy in the presence of an endogenous signal, and compared the equilibrium

outcomes with the Full Information benchmark. To disentangle the role of endogeneity of information with respect to policy 

in our model from the more standard effects of incompleteness of information, we now consider a case in which information

is incomplete, but exogenous (Case 2 of Corollary 1 ). 

Specifically, we assume that the government receives an exogenous signal about the fundamental shocks, but this signal 

is contaminated by noise, or measurement error, thus leading to uncertainty about the true realization of the fundamen- 

tal shocks. We denote the fundamental shocks A 

f ≡ (θ, γ ) , and assume they are uniformly distributed as in our baseline

example. We assume measurement error ε is also uniformly distributed, with range 
[
−ω i 

2 , 
ω i 
2 

]
, where i = 1 , 2 denotes the el-

ements of ε, and ω i is an inverse measure of precision of the signal. Thus, overall, the vector of unobservables is A = (A 

f , ε) .

The government receives a signal s = A 

f + ε. This implies a uniform posterior distribution for A 

f 
i 

in the range[ 
max 

{ 

A 

f 
i, min 

, s i − ω i 
2 

} 

, min 

{ 

A 

f 
i, max 

, s i + 

ω i 
2 

} ] 
Clearly, the FI benchmark is nested as a the special case with ω i = 0 for i = 1 , 2 .

The government chooses its policy optimally subject to the measurability restriction τ = R (s ) . Denoting by ˆ f (A 

f , s ) the

posterior density of A 

f , we can apply Corollary 1 and express the first order condition with respect to the tax rate in the

first period as Eq. 5 , where the expectation is taken using the posterior ˆ f (A 

f , s ) . Relative to our general first order condition,

there are two main differences. First, the kernel 1 
1 −h τR 

′ drops out of the equation. Second, the posterior distribution used to 

integrate the marginal effects of taxes on welfare is exogenous. 

To illustrate our results, we focus on the case in which measurement error applies only θ, and we use the same parame-

terization of the model as in Section 5.2 , with g = 0 . 6 . 33 In Fig. 11 , we plot the optimal tax rate as a function of the posterior

mean of θ, and we compare the outcome with two levels of informativeness of the signal ( ω = 0 . 3 and ω = 0 . 6 ), as well as

in the Full Information case (dashed line). 34 We choose these two values for ω because when ω = 0 . 6 , intermediate values

of the signal are almost entirely uninformative, as the posterior dispersion of θ approximately equals the prior dispersion. 

Full Information coincides with a perfectly informative signal ( ω = 0 ) and, thus, ω = 0 . 3 represents an intermediate case

between these two extremes. 

First, we notice that despite significant uncertainty about the true realization of θ, the government chooses a similar pol- 

icy to the one that would be optimal if the signal was infinitely precise. To understand this result, notice that if the objective

function was quadratic and the constraints were linear (as in Svensson and Woodford (2004) , these two policies would ex-

actly coincide, because of the certainty-equivalence property that is often used in the literature. Our utility function is log 

in consumption, thus violating certainty equivalence. However, the Full Information policy remains a good approximation to 

the optimal policy with measurement error. 

With incomplete information, the government optimally chooses a slightly higher tax under Partial Information, and 

more so when the signal is less informative, to partially insure the low-productivity realizations that would lead to high 

deficit and high distortions in the second period. For this reason, the distance between the two lines is larger, in the central

part of the figure, where the posterior range of θ with positive density is wider. In contrast, extreme signals are more

precise because they allow the government to rule out many realizations in the range [ θmin , θmax ] . Overall, we find that the

optimal policy is approximately linear and the deviations from Full Information are quantitatively small. In Fig. 12 , we also

display the counterpart of Fig. 5 for this version of the model, i.e., the set of admissible realizations of shocks conditional

on a signal. In this case, this set is a straight line, and, importantly, exogenous with respect to policy. 

From this analysis, we derive two conclusions. First, the sharp non-linearity in our general framework (see Fig. 7 ) arises

because of endogeneity of signals, and not because of large non-linearities in the model environment. The fact that the 

signal is endogenous implies that, in different points in the state space, the government learns more or less about one or

the other shock. On the contrary, how much is learned with exogenous signal is, clearly, exogenous. If the measurement 
33 We obtain similar results when we consider measurement error about γ
34 As explained above, with our assumptions on the information structure, the posterior coincides with the signal in the intermediate region of the figure. 
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Fig. 11. Optimal policy with exogenous information. The figure illustrates the optimal tax rate with exogenous incomplete information (solid line for 

ω = 0 . 3 and dashed-dotted line for ω = 0 . 6 ) and with Full Information (dashed line). The posterior mean of θ is on the x-axis, and the policy on the 

y-axis. 

Fig. 12. Set of admissible shocks conditional on s = Eθ . The figure illustrates the set of admissible realizations of θ (x-axis) and measurement error ε

(y-axis) conditional on a signal equal to the prior mean of θ . The red line refers to the case of measurement error with ω = 0 . 3 , the blue circle denotes the 

corresponding point under Full Information. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

 

error has constant variance, its informativeness does not change with government actions or different realizations of the 

fundamental shocks. 

Second, our choice to use the Full Information policy as benchmark to compare the outcomes in our application is robust,

in the sense that it also approximates well the equilibrium outcomes in the presence of exogenous incomplete information. 

Furthermore, signal extraction does not change with the level of g. Therefore, models with exogenous signals ignore 

a number of issues related to the interaction between signal extraction and economic variables. These issues are instead 

highlighted under GSE. 
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Fig. 13. Linear approximation, low g. Optimal tax rate as a function of the signal l, with g = 0 . 25 . Red line: R 

∗, blue dashed-dotted line: “certainty 

equivalent” linear approximation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 14. Linear approximation, high g. Optimal tax rate as a function of the signal l, with g = 0 . 6 . Red line: R 

∗, blue dashed-dotted line: “certainty equiva- 

lent” linear approximation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

6.3. Linear-quadratic approximation in the fiscal policy model 

We also solve for optimal policy in a linear-quadratic approximation (Case 3 of Corollary 1 ) of the fiscal policy model of

Section 4 , assuming the distribution of the shocks is a truncated normal. When we compare the solution to our fully non-

linear results, we find that the approximation is accurate for intermediate realizations of the shocks, but inaccurate for large 

realizations of the shocks, as illustrated in Figs. 13 and 14 for the case of low and high government spending respectively.

Details of this analysis are in Appendix C.5. 
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7. Heterogeneous households: Idiosyncratic shocks and aggregate signal 

In our main example, households have better information than the government about the economy, in particular, they 

know the wage θ and the aggregate labor supply parameter γ , but the government does not. This ranking of information

may seem undesirable, as governments arguably have better and more up to date information than individuals about wages 

and other macroeconomic variables. Accordingly, the literature often considers situations where heterogeneous agents have 

“dispersed information” about economic variables ( Angeletos and Pavan, 2009 ), or where policy reveals superior information 

on the part of the government ( Melosi, 2017 ). 

This feature of our main example is for simplicity. Generically, in a heterogeneous agent setup individuals may have 

“less” information than government about aggregate variables and yet the government needs to solve a problem of GSE. 

More precisely, consider an economy with a continuum of individual agents indexed by i ∈ [ 0 , 1 ] . Their decisions depend

on some underlying shocks x i . Assume the government knows the distribution x i ∼ �x (·, A ) , but it ignores the exact value

of some parameters A . 35 The value of A is policy-relevant as it potentially determines aggregate outcomes and welfare. If

the government observes an endogenous signal s which provides valuable information about A, then optimal policy must 

be determined under GSE by forming the filter f A | s , but since this information is beyond the reach of individuals they have

“less” information about A and aggregate variables. 

To be more precise, we now introduce idiosyncratic uncertainty in our main example and we show that the policy prob-

lem is a special case of our framework for optimal control with GSE for some specific h and W functions. This heterogeneous-

agents setup clarifies that (i) our assumptions on the (asymmetric) information sets of government and private agents are 

natural in the context of a model of optimal macro policy in competitive equilibrium, and (ii) in models with heterogeneous

agents and dispersed information, our GSE analysis is necessary to solve for the optimal policy. 

Households indexed i ∈ [ 0 , 1 ] are now heterogeneous with utility function 

U i ≡ u (c i 1 ) + 

1 

γi 

v (l i 1 ) + β[ u (c i 2 ) + v (l i 2 ) ] (47) 

where γi is an idiosyncratic preference shock. 36 Agent i ’s productivity is given by θi . Household i observes γi , θi as well as

prices and taxes. 

As in the main example, there is no uncertainty at date t = 2 ; households and the government can trade a riskless

bond at price q ; θi is the wage for household i in period 1; the (homogeneous) level of productivity is normalized to

one in the second period; the government raises proportional income taxes at rates τ1 and τ2 . The government observes 

aggregate hours, i.e. the endogenous signal is s = E i ( l i 1 ) , where the expectation operator E i integrates over realizations of

the idiosyncratic shocks. The resource constraints of the economy and budget constraint of the government are 

E i c i 1 + g = E i θi l i 1 (48) 

E i c i 2 + g = E i l i 2 (49) 

τ1 E i θi l i 1 + qτ2 E i l i 2 = g(1 + q ) (50) 

The shocks ( γi , θi ) have a distribution �γ ,θ (·, A ) , . The government does not observe the means A ≡ (μγ , μθ ) , but it has a

prior distribution F A about these means and knows everything else about the distribution �γ ,θ (·, A ) , . 

The government maximizes expected Benthamite utility, therefore its objective is to maximize E A ( E i ( U i ) ) . 

Now we show that this is a special case of Optimal control under GSE as described in Section 3 . Optimality conditions

analogous to (26), (27) and (28) for the heterogeneous-agent case and the individual budget constraint give four equations 

to determine individual equilibrium allocations ( l i 1 , c i 1 , l i 2 , c i 2 ) = G (τ1 , τ2 , q ; θi , γi ) , where G is the same across all agents. It

is clear that each of the aggregate variables E i ( ·) that appear in (4 8) - (4 9) - (50) is a function of (τ1 , τ2 , q ; A ) . To see this, note

for example that aggregate consumption in t = 1 is given by 

E i ( c i 1 ) = 

∫ 
G c 1 (τ1 , τ2 , q, ·) d�γ ,θ (·; A ) 

where G c 1 denotes the corresponding coordinate of G. 

Therefore, given any feasible combination (τ1 ; A ) , any pair of equations in (4 8) - (4 9) - (50) can be used to solve for the

corresponding equilibrium ( τ2 , q ) = F(τ1 ;μθ , μγ ) (the remaining third equation among (4 8) - (4 9) - (50) is satisfied due to

Walras’ law). 

Thus, the reaction function h is given by 

E i ( l i 1 ) = s = h (τ1 ; A ) ≡
∫ 

G l 1 (τ1 , F(τ1 ; A ) , ·) d�γ ,θ (·; A ) (51) 
35 A necessary condition for the government to be unaware of the exact value of A is that the government does not observe { x i } i ∈ [ 0 , 1 ] . 
36 We now assume the preference shock hits the labor disutility term instead of the consumption term to abstract from heterogeneity in intertemporal 

marginal rates of substitution, thereby simplifying the derivations. 
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and the welfare function W is given by 

W (τ1 ; A ) = 

∫ 
w (τ1 , F(τ1 ; A ) , ·) d�γ ,θ (·, A ) (52) 

for utility function w (·) = u (G c 1 (·)) + 

1 
γi 

v (G l 1 
(·)) + β[ u (G c 2 (·)) + v (G l 2 

(·)) ]. 
Hence, the model in this section is a special case of Optimal Policy under GSE for the above W, h : The government needs

to use observed aggregate labor to update its information about the unknown means A = (μθ , μγ ) , taking into account the

endogeneity of labor with respect to taxes. 

To derive explicit expressions for functions h, W, we now specialize the example to the linear-quadratic case when 

u (c) = c and v (l) = 

Bl 2 

2 and assume that �γ ,θ is log-normal with (known) variances σ 2 
γ , σ 2 

θ
and γi , θi independent. Using

(26), (27) and (28) we see that the reaction function is given by 

s = B 

−1 (1 − τ1 ) E i θi γi = B 

−1 (1 − τ1 ) e 
μθ + μγ + σθ + σγ

2 = h (τ1 , A ) (53) 

To find W, we express the government objective E i ( U i ) as a function of policy, signal, and aggregate shocks. By combining

the aggregate resource constraint and the reaction function, and using log-normality of the idiosyncratic shocks, we get 

aggregate utility from consumption and disutility from labor at t = 1 as follows 

E i c i 1 = B 

−1 (1 − τ1 )E i θ
2 
i γi − g = se μθ + 3 2 σ

2 
θ − g (54) 

−B 

2 

E i 

l 2 
i 1 

γi 

= − (1 − τ1 ) 
2 

2 B 

E i θ
2 
i γi = − (1 − τ1 ) s 

2 

e μθ + 3 2 σ
2 
θ (55) 

while for t = 2 we have 

E i c i 2 = B 

−1 (1 − τ2 ) − g (56) 

−B 

2 

E i l 
2 
i 2 = − (1 − τ2 ) 

2 

2 B 

Furthermore, combining (50) with the household optimality conditions and the definition of the signal we have 

τ1 se μθ + 3 2 σ
2 
θ + βB 

−1 τ2 (1 − τ2 ) = g(1 + β) (57) 

Equation (57) is a quadratic equation in τ2 and can thus be solved to express τ2 as a function of (s, τ1 , A ) . 37 

An explicit formula for W (τ1 , s ; A ) ≡ E i 

[ 
c i 1 − B 

2 γi 
l 2 
i 1 

+ β
(
c i 2 − B 

2 l 
2 
i 2 

)] 
can be found plugging in (54), (55), (56) for τ2 that

solves (57) . 

Notice that in this example the objective function depends on the policy instrument τ also beyond its effect on the 

signal. This justifies our choice to derive our key Propositions for a general formulation in which both policy and signal

enter the objective function independently. 

8. Dynamic labor decision and predetermined taxes 

We now describe a version of the model with a dynamic labor supply choice and a different timing assumption for taxes

and show that our results are robust to this modification and do not depend on taxes and signals happening simultaneously.

In this model, the policy instrument is predetermined, as a future tax rate is decided conditional on a currently realized

signal (hours). 38 Because of learning-by-doing, the labor supply decision is dynamic and the signal function h is implicitly 

defined by an Euler equation for labor supply. 39 Agents have Rational Expectations and choose current hours depending, 

among other things, on taxes paid next period, making the signal endogenous to future policy. This shows that (i) the

general issue of endogeneity of signals to policy does not depend on simultaneity of policy and signals and (ii) our results

can be easily applied to models where the signal is determined by a dynamic equation, as opposed to an intratemporal

condition as in the previous section. 

8.1. Preferences and technology 

The economy lasts for three periods t = 1 , 2 , 3 . The representative agent’s utility is 

E 

3 ∑ 

t=1 

βt−1 [ γt u (c t ) − v (l t ) ] (58) 
37 The fact that there are two solutions only reflects a standard Laffer curve effect, therefore we pick the τ2 that delivers the highest aggregate welfare 

(typically it will be the lower τ2 ) . 
38 Clymo and Lanteri (2020) study optimal fiscal policy under FI with this timing assumption on policy decisions. 
39 Stantcheva (2015) studies optimal taxation with truthful revelation in a similar model with learning-by-doing and private information about produc- 

tivity. 
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with γ1 = γ , a random variable with distribution F γ (demand shock), while γ2 = γ3 = 1 . 

The resource constraints in the three periods are 

c t + g = θt χ(l t−1 ) l t (59) 

for t = 1 , 2 , 3 , given l 0 , with θ1 = θ, a random variable with distribution F θ (productivity shock). Instead, θ2 = θ3 = θ̄ , a

known number. χ is a “learning-by-doing” function that maps work experience in period t into productivity in period t + 1 , 

with χ(l) > 0 , χ ′ > 0 , χ ′′ < 0 . 

The household’s budget constraints are 

c t + q t b t = θt χ(l t−1 ) l t (1 − τt ) + b t−1 (60) 

for t = 1 , 2 , 3 , starting from zero initial debt b 0 and with b 3 = 0 . We assume that learning-by-doing is fully internalized by

individual agents. This makes the labor choice truly “dynamic”, which is what we need for future taxes to affect current

behavior. 

8.2. Government 

The government finances expenditure g using income taxes and debt. The government’s budget constraints are 

τt θt χ(l t−1 ) l t + q t b t = g + b t−1 (61) 

for t = 1 , 2 , 3 , with b 3 = 0 . 

Taxes are announced one period in advance. Hence, the tax rate τ1 is a given of the problem and cannot be modified by

the government. This captures the idea that a new government inherits the current fiscal policy stance from its predecessor. 

The tax rate τ2 is announced by the government at t = 1 , conditional on the realization of l 1 , and τ3 is announced at t = 2

(and will take the value that balances the government budget at t = 3 ). 

8.3. Competitive equilibrium and signal determination 

The household’s first order conditions with respect to l 1 and c 1 can be combined to give the intertemporal optimality

condition that defines the “reaction function” h . 

v ′ (l 1 ) − γ u 

′ (c 1 ) θχ(l 0 )(1 − τ1 ) − βu 

′ (c 2 ) ̄θ l 2 (1 − τ2 ) χ
′ (l 1 ) = 0 . (62)

The last term of this expression is the key new element, and represents the discounted marginal benefit of experience 

through its future productivity effect, net of future taxes. Hours not only depend on current taxes through the standard 

substitution effect, but also on future taxes, because they affect the returns from learning-by-doing. The implicit function h 

maps the expected policy τ2 into the signal l 1 , for a given realization of the shocks and associated future level of hours l 2 . 

The other optimality conditions, as well as a brief discussion of the FI-Ramsey problem, are in Appendix C.3. 

8.4. Optimal policy 

We assume u (c) = log (c) and v (l) = B l 
η

η . In the numerical example below, we set η = 1 and set the value of B such

that average hours equal 1/3. The learning-by-doing function is given by χ(l) = Cl ψ and we set C = (1 / 3) −ψ , ψ = 0 . 1 and

l 0 = 1 / 3 . Assumptions on the distributions of the shocks are as in the previous sections. 

The government chooses a function R such that τ2 = R (l 1 ) in order to maximize (58) subject to competitive equilibrium

conditions. In order to apply the optimality condition derived in Proposition 3, two steps are required. 

First, we need to compute the marginal effect of hours in the first period on hours in the second and third periods; this

is done by using total differentiation of the first order conditions with respect to l 1 , l 2 and l 3 . Second, we need to compute

the derivatives of the reaction function with respect to future taxes ( h τ2 
) and with respect to the demand shock ( h γ ); to do

this, we totally differentiate the system of FOCs with respect to l 1 , l 2 , l 3 , τ2 and γ1 and solve the obtained system for the

derivatives of interest. This new additional step is required because the signal is determined through a dynamic condition 

that involves l 2 , differently from the baseline model without learning-by-doing. 

We compare the solution with low government spending ( g = 0 . 25 ) to the solution with high government spending

( g = 0 . 60 ). These two cases are illustrated in Figs. 15 and 16 respectively. As can be seen in the two figures, the results are

qualitatively similar to those arising in the two-period model with simultaneity. In particular, both the presence of non- 

linearities and the different slope of R in the central region of the signal are evident in Figs. 15 and 16 , where we plot the

optimal tax function R (red line) as well as the set of Full Information couples (l 1 , τ2 ) (yellow region). 

The results of this model show that for the endogeneity of signals to arise, it is not necessary that signals and policy

apply in the same period. As agents are forward-looking, their actions respond to future taxes, leading to GSE issues in a

dynamic context. 
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Fig. 15. Optimal policy in the 3-period model with low g. Optimal tax rate τ2 as function of hours l 1 under PI, with g = 0 . 25 . Red line: R 

∗; yellow region: 

set of FI pairs (l 1 , τ2 ) for all possible realizations of (θ, γ ) . (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 16. Optimal policy in the 3-period model with high g. Optimal tax rate τ2 as function of hours l 1 under PI, with g = 0 . 6 . Red line: R 

∗; yellow region: 

set of FI pairs (l 1 , τ2 ) for all possible realizations of (θ, γ ) . (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

 

9. An infinite-horizon model with debt 

In this section, we present an infinite-horizon version of the optimal fiscal policy model we have considered. We show 

that the key intuitions developed in the two-period model are still present and lead to interesting dynamics. In particu- 

lar, optimal policy is more responsive to signals when the government is close to a debt limit. Moreover, the government

sometimes reacts slowly to recessions and, as a consequence, needs to raise taxes by more and for a long time. 
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Our objective is to formulate the simplest infinite horizon model of fiscal policy where endogenous signals play a role. In

order to avoid difficulties related to time inconsistency, we assume linear utility from consumption. 40 Moreover, we assume 

that shocks are i.i.d. over time, as this reduces the number of state variables and allows us to abstract from issues of optimal

experimentation. 41 

9.1. Environment and full information 

Preferences of the representative agent are given by: 

E 0 

∞ ∑ 

t=0 

βt [ γt c t − v (l t ) ] (63) 

where γt is a demand shock, i.i.d. over time. 

The period t budget constraint of the representative agent is 

c t + q t b t = θt l t (1 − τt ) + b t−1 (64) 

where θt is an i.i.d. productivity shock. Note that the government can only issue real riskless bonds b t . 

The standard first order conditions for utility maximization are 

v ′ (l t ) 

γt 
= θt (1 − τt ) (65) 

and 

q t = β
γ̄

γt 
. (66) 

where γ̄ is the unconditional expectation of the demand shock γ . 

The Ramsey government finances a constant stream of expenditure g t = g ∀ t and chooses taxes and non-contingent one- 

period debt in order to maximize utility of the agent subject to the above competitive equilibrium conditions as well as

the resource constraint c t + g = θt l t . Under FI, the government can choose a sequence of taxes conditional on a sequence of

shocks A 

t = (A t , A t−1 , . . . , A 0 ) , where A t = (θt , γt ) . 

The period- t implementability constraint is 

b t−1 = c t − v ′ (l t ) 

γt 
l t + β

γ̄

γt 
b t . (67) 

We introduce an upper bound on debt, b max . We assume that whenever debt goes above this threshold, the government

pays a quadratic utility cost β χ
2 (b t − b max ) 2 and we will set the parameter χ to be a large number in order to mimic a

model with an occasionally binding borrowing constraint while still retaining differentiability of the problem. 

The first order conditions for Ramsey allocations with respect to hours and debt are: 

γt θt − v ′ (l t ) + λt θt − λt 

γt 

[
v ′ (l t ) + v ′′ (l t ) l t 

]
= 0 (68) 

and 

λt 
γ̄

γt 
= E t λt+1 + χ(b t − b max ) I [ b max , ∞ ) (b t ) . (69) 

where λt is the Lagrange multiplier of constraint (64) and we denote by I [ b max , ∞ ) (b) the indicator function for the event

b > b max . 

Thanks to the assumption of linear utility from consumption, the Ramsey policy is time-consistent and allocations satisfy 

a Bellman equation that defines a value function V F I (b t−1 , A t ) . Thus, optimal taxes are given by a time-invariant policy

function τt = R 

F I (b t−1 , A t ) 

9.2. Partial information 

At the beginning of each period t, the government observes the realization of the exogenous shocks of last period A t−1 ,

the value of its outstanding debt b t−1 and the realization of current labor l t . Based on this information, but before knowing

the value of A t , it sets the tax rate τt . Formally, the choice of taxes at time t is contingent on - i.e. a function of - (A 

t−1 , l t ) .
40 Our model under FI is a small variation of Example 2 of Aiyagari et al. (2002) , with linear utility from consumption and standard convex disutility 

from labor effort. As is well known, in the case of non-linear utility, the current bond price depends on future taxes, hence the optimal policy under 

full commitment would be time inconsistent, leading to some complications in the solution of optimal policy. Under FI, this issue was first addressed in 

Aiyagari et al. (2002) . 
41 These issues are analyzed in the armed-bandit literature that we discussed in Section 2 . For example Wieland (20 0 0a) , Wieland (20 0 0b) , Kiefer and 

Nyarko (1989) , Ellison and Valla (2001) . 

82 



E. Hauk, A. Lanteri and A. Marcet Journal of Monetary Economics 118 (2021) 54–86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that because of the i.i.d. assumption on the shocks A t , information about outstanding debt summarizes all the 

information about past realizations that is relevant in terms of the objective function and the constraints of the Ramsey 

problem. As a consequence, debt is a sufficient state variable in addition to the current observed signal l t . Hence the optimal

policy has a recursive structure and taxes are given by a policy function τt = R (b t−1 , l t ) . 

Define V as the value of utility (63) at the optimal choice for given initial debt, before seeing the realization of l 0 . By

a standard argument, the choice from period 1 onwards is feasible from period 0 onwards given the same level of debt.

Therefore V satisfies the following Bellman equation 

V (b) = max 
R : � 2 →� + 

E[ γ (θ l − g) − v (l) + βV (b ′ ) − β
χ

2 

(b ′ − b max ) 2 I [ b max , ∞ ] (b ′ )] (70)

where b ′ = 

(b+ g−θ l+ v ′ (l) l 
γ ) γ

βγ̄
, l = h (R (b, l) , θ, γ ) and h (τ, θ, γ ) is the level of hours that satisfies (65) . 

The only difference with respect to the reaction function in the two-period model is that now the government should 

recognize that debt affects labor indirectly through the tax rate. 

With linear utility from consumption, the reaction function is given by 

l = v ′−1 ( θγ (1 − τ ) ) , (71) 

hence the locus of shocks realization conditional on l is increasing, that is, a certain level of hours can be generated by

combinations of high productivity and low demand or vice versa. High θ and low γ is good news for the government 

for two reasons: revenue is high and the interest rate is low. On the other hand, low θ and high γ put pressure on the

government budget constraint both by inducing low revenue and a high interest rate on the newly issued debt. 

At this point it may be worth discussing how shocks and PI influence the optimal choice of taxes. Under incomplete

markets, a sequence of adverse shocks (low θ ) will lead to an increase in debt. This will be more so under PI than under

FI, because under PI the government only learns that a low tax revenue materialized with a delay. The reason why b is an

argument in R is that, in the presence of incomplete markets, debt grows after a few bad shocks, more so than under FI,

therefore the government will have to increase the level of taxes for a given l t to avoid debt from becoming unsustainable. 

Note that in (70) we have substituted future debt using the budget constraint (67) . It is important to highlight a key

difference with respect to the FI problem: while in that case a choice of τt implied a choice of b t , now, b t is a random

variable even for a given choice of τt . In other words, just like in the two-period model, the government is uncertain about

how much debt will need to be issued and in particular must take into account that bad realizations of productivity may

lead to a debt level above b max , if taxes are not sufficiently high. 

To solve the model, we exploit its recursive structure, by solving for the PI first order condition at each point on a grid

for debt and iterating on the value function of the problem. To see how this works, consider the objective function defined

by the right-hand side of (70) . For a given guess for the value function, this is just a function of observed labor to which

we can apply Proposition 3 and obtain the general first order condition with PI. 42 

This first order condition involves the derivative V ′ (b) . In standard dynamic programming it is well known that an enve-

lope condition applies that allows the simplification of the derivative of the value function. In Appendix D we show that an

analogous envelope condition holds under our PI model so that 

V 

′ (b) = E 

[
γ

γ̄
V 

′ (b ′ ) 
]

− χ
γ

γ̄
(b ′ − b max ) I [ b max , ∞ ) (b ′ ) . (72) 

Hence by solving the first order condition using (72) and iterating on the Bellman equation (70) , we can approximate the

optimal policy. In the next subsection, we show some numerical results. While the model is not meant to be a quantitative

model of fiscal policy, it is helpful to illustrate the key properties of optimal policy with endogenous signals in a dynamic

model with debt. 

9.3. Numerical results: Non-linearities and delayed adjustments 

In order to parametrize the economy, we assume quadratic disutility from labor, and the other parameters are as in 

the two-period model. The shocks are uniformly distributed on a support of ± 5 % from their means, implying a standard

deviation of 2.89 % . The debt limit is set at 20 % of average output. 

We now illustrate two interesting properties of optimal policy in this model. First, the response of taxes to endogenous 

signals is quite non-linear and it depends on the level of debt. When debt is low, optimal policy calls for smooth taxes

regardless of the realization of labor. When debt is close to the limit, taxes become highly responsive to the signal, in

particular in the central region of the signal, where there is higher uncertainty on the state of the economy. Fig. 17 illustrates

this property by plotting taxes against labor, as given by the function R 

∗(b, ·) evaluated at different values of debt. 43 It can

be seen that for lower levels of debt (namely for b = 0 and b = 0 . 1 ), taxes are relatively flat with respect to the signal.
42 The FOC is explicitly shown in Appendix D. 
43 Notice that taxes are in general decreasing in labor, different from our two-period model, because, with linear-quadratic utility, hours are increasing in 

θ, since the only effect of this shock is the substitution effect. 
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Fig. 17. Tax policy for different levels of debt. Optimal tax rate as a function of the signal l, for different values of outstanding debt b. Red solid line: 

b = 0 . 18 ; black dashed-dotted line: b = 0 . 10 ; blue dashed line: b = 0 . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 18. Impulse response function: θ shock. Impulse response function to a negative 1% productivity shock. Top left panel: productivity shock; top right 

panel: demand shock; bottom left panel: hours; bottom right panel: tax rate. Solid red line: PI; blue dashed-dotted line: FI. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

 
However, close to the debt limit ( b= 0.18), they become highly responsive, and with a higher slope in the middle region of

realizations of hours. 

Second, optimal policy with PI can rationalize delayed fiscal adjustments following negative productivity shocks. While 

optimal policy with FI can respond contemporaneously to such shocks, under PI the government can only respond with a 
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lag, after observing a higher than expected level of debt, leading to a delayed, persistent tax adjustment. This feature of the

model is illustrated in the Impulse Response Function in Fig. 18 . 44 

We initialize both the FI and the PI economy at a level of debt equal to.12. When the productivity shock hits, the FI

government is successful at making a tax correction to keep the economy sufficiently far from the borrowing constraint. On 

the other hand, the initial tax increase under PI is small, and the PI government imposes a fiscal adjustment only with a

delay, after it learns that debt had increased. As a consequence of this delay, the postponed tax hike needs to be larger.

Notice that because of market incompleteness, both the tax change under FI and PI are highly persistent, even though the

shock is transitory as the government smooths taxes over time ( Aiyagari et al., 2002 ). 

10. Conclusion 

Optimal policy with Partial Information is usually derived under a separation result, implying that the signal extraction 

problem can be solved ahead of optimization. However, separation fails to hold generically and this limits the scope of 

policy analysis with Partial Information. 

We derive a method to solve models of optimal policy with Partial Information generically. In our setup, there is no

separation between the optimization and signal extraction problem, as the optimal decision influences the distribution of 

the shocks conditional on the observed endogenous signal. Therefore, the signal extraction and optimization problem are 

solved consistently and simultaneously. 

The method works in general and we show an easily applicable numerical algorithm to find a solution. We also show

that Partial Information on endogenous variables matters as some revealing non-linearities appear in very simple models 

and the signal extraction problem is endogenous to economic variables. The non-linearities are due to the fact that in 

different regions of the observed signal the information revealed about the underlying state changes in a non-linear fashion. 

Optimal fiscal policy under General Signal Extraction calls for smooth tax rates across states when the government budget 

is under control, and for regions of large response to aggregate data when the economy is close to the top of the Laffer curve

or to a borrowing limit. Uncertainty about the state of the economy helps to understand the slow reaction of some European

governments to the Great Recession, followed by sharp fiscal adjustments and prolonged downturns: as the signal worsens 

and debt increases, the government becomes more certain about lower productivity. The tax choice can be highly non-linear 

as a function of the signal even in setups that are essentially linear. 

Our methodology allows to study the effects of Partial Information about the state of the economy in models that feature

important non-linearities. While we have illustrated the technique in a simple model of optimal fiscal policy, the method- 

ology can be easily extended to address many other questions in optimal policy, such as models with heterogeneity and 

unobserved idiosyncratic shocks and models with unobserved belief fluctuations. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.jmoneco.2021.01. 

002 . 
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