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1 Introduction

Parameter instability is widely recognized as a crucial issue in forecasting (Stock and Watson,

1996; Rossi, 2013; Giacomini and Rossi, 2009; Paye and Timmermann, 2006; Koop and Potter,

2004; Goyal and Welch, 2003; Clements and Hendry, 1998). The empirical evidence of parameter

instability is widespread in financial forecasting (Goyal and Welch, 2003), exchange rate prediction

(Schinasi and Swamy, 1989, and Wolff, 1987), and macroeconomic forecasting (Stock and Wat-

son, 1996, 2003, 2007), to name a few. To handle such instability, intead of using all available

observations, it is quite common to use only the most recent observations estimate the parameters

(the so-called “rolling estimation” method). Examples of rolling estimation include: in finance,

Goyal and Welch (2003) to evaluate the power of dividend ratios in predicting stock market returns

and the equity premium; in macroeconomics, Swanson (1998) to investigate the extent to which

fluctuations in the money stock predict fluctuations in real income; in exchange rate forecasting,

Molodtsova and Papell (2009) to investigate the predictability of models that incorporate Taylor

rule fundamentals for exchange rate.

In rolling out-of-sample forecasting, one produces a sequence of pseudo out-of-sample forecasts

using a fixed number of the most recent data at each point of time. One practical issue with rolling

out-of-sample forecasting is how many recent observations should be used in the estimation. The

number of the recent observations used in estimation is referred to as the window size. Convention-

ally, the window size is either arbitrarily determined by forecasters or based on past experience. For

instance, Molodtsova and Papell (2009) use a 10-year window of monthly data to predict exchange

rates; and Stock and Watson (2007) forecast inflation with a 10-year window of quarterly observa-

tions. However, we often find that the forecasting performance of the rolling scheme is sensitive to

the choice of the window size (see Inoue and Rossi, 2012).

While the problem of selecting the estimation window size is similar to the problem of bandwidth

selection in nonparametric estimation, methods to select the window size in rolling out-of-sample

forecasting have received little attention. Among recent papers focusing on how to determine

the optimal window size: Pesaran and Timmermann (2007) propose five methods to select the

window size when the forecasting model is subject to one or multiple discrete breaks; Pesaran, Pick

and Pranovich (2013) derive optimal weights under continuous and discrete breaks; and Giraitis,
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Kapetanios and Price (2013) develop a cross-validation-based method to select a tuning parameter

to downweight older data in the presence of structural change.

In this paper, we develop a new approach for selecting the size of the rolling estimation window

for forecasting in models with potential breaks. More specifically, parameters are specified as

smooth functions of time and the functional forms are unknown. This setting, in which structural

changes may occur in every point in time and are small, is consistent with empirical findings of small

instability in some forecasting areas, such as forecasting inflation (Stock and Watson, 1999). This

setup is also adopted in the nonparametric literature, for example, Robinson (1989), Cai (2007)

and Chen and Hong (2012).

Our approach has three advantages over existing methods. First, the error term and the regres-

sors can be weakly dependent, and the regressors can include both exogenous and lagged dependent

variables, while existing methods rely on more stringent assumptions. The five window selection

methods developed in Pesaran and Timmermann (2007) require serially uncorrelated errors and

strictly exogenous regressors. Pesaran, Pick and Pranovich’s (2013) approach needs independent

errors and exogenous regressors. Giraitis, Kapetanios and Price (2013) focus on models without

regressors. Thus, our approach can be used for a wider range of forecasting models than exist-

ing methods. Second, our approach allows multiple-step-ahead forecasting, while existing methods

only consider one-step-ahead. Third, we propose a feasible solution to approximate forecasters’

quadratic loss function, and we also prove the asymptotic validity of this feasible approximation.

Our new approach proposes to choose the optimal window size that minimizes the conditional

mean square forecast error (MSFE), which is commonly used as the forecasters’ loss function. Since

the conditional MSFE is infeasible, we construct an approximate conditional MSFE by replacing

the unknown parameters in the conditional MSFE with estimates from local linear regressions, and

then choose the window size that minimizes this approximate conditional MSFE. We show that

choosing the optimal window size based on our approximate criterion is asymptotically equivalent to

choosing the window size based on the infeasible one. Choosing the window size for the conditional

MSFE as opposed to the integrated MSFE and establishing its asymptotic justification under the

aforementioned general framework are our new contributions to the literature. Our Monte Carlo

simulations suggest that using the window size selected by our procedure can improve the forecasting

performance vis-à-vis an ad-hoc choice of the window size.
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Moreover, we empirically assess the practical value of our procedure in forecasting real output

growth and inflation. As shown in Stock and Watson (2003, 2007), the predictive ability of standard

forecasting models suffers from instability; that is, finding a predictor useful in one period does

not guarantee that it will predict well in later periods. In our empirical analysis, we examine

whether we can improve forecasts by using our proposed window selection procedure. Our results

suggest that asset prices, unemployment and monetary measures have useful predictive content for

forecasting output growth at short horizons. When forecasting inflation, measures of unemployment

are useful at long horizons, confirming the usefulness of the unemployment-based Phillips curve for

inflation forecasting in the presence of parameter instability. In general, the forecast improvements

generated by the optimal window size are more substantial when forecasting output growth than

inflation, since, as we show, parameters are more likely to vary in the former than in the latter.

When the optimal window sizes are used, the number of building permits has useful predictive

content for long-term output growth forecasts, and measures of unemployment are useful for infla-

tion forecasts. One possible economic interpretation is that building constructions typically take a

long time to complete, so investment in the construction sector has a long-term effect on output

growth. The unemployment-based Phillips curve is useful in predicting inflation, possibly because

the non-accelerating inflation rate of unemployment (NAIRU) is unstable and the optimal window

size captures time variation.

The rest of the paper is organized as follows. Section 2 presents a model, motivates our problem

and describes our proposed window selection procedure. Section 3 provides theoretical justifications

for our window selection procedure. Section 4 reports Monte Carlo simulation results. Section 5

applies our procedure to forecasting output growth and inflation in the United States, and Section

6 concludes. The appendix provides proofs of the theorems.

2 Motivation and Setup

Assume the data generating process (DGP) is:

yt+h = β′h,txt + ut+h, t = 1, 2, ..., T, (1)
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where xt = (xt1, xt2, . . . , xtp)
′ is a p×1 vector of stochastic regressors, βh,t = (βh,t,1, βh,t,2, ..., βh,t,p)

′

is a p × 1 vector of time-varying parameters; ut+h is an unobservable disturbance; h denotes the

forecast horizon, where 1 ≤ h <∞ and h ∈ Z+; and T denotes the full sample size. The regressor

vector xt may include exogenous explanatory variables and lagged values of the dependent variable.

Our interest is to predict yT+h using information available at time T .

As in Robinson (1989) and Cai (2007), the time variation in the parameters is represented by

a smooth function of the current period t. For each i, 1 ≤ i ≤ p, βh,t,i is defined as βh,t,i = βi
(
t
T

)
,

where the parametric form of βi(
t
T ) is unknown and its dependence on forecast horizon h is omitted

for notational simplicity. Thus equation (1) can be rewritten as:

yt+h = βh (t/T )′ xt + ut+h, (2)

where β( tT ) = (β1( tT ), β2( tT ), ..., βp(
t
T ))′ is a vector of unknown smooth functions of time t. This

framework avoids parametric restrictions on βt,i (·). Note that βt,i(·) is defined on an equally spaced

grid over (0, 1], which becomes finer as T →∞. According to Robinson (1989), this requirement is

important for deriving consistent nonparametric estimates, since the amount of local information

on which an estimator depends increases suitably as the sample size T increases. Although the

functional form of β(·) is unspecified, we require it is smooth enough.

The rolling OLS estimator is commonly used in forecasting because parameters are often found

to be time-varying. While the rolling OLS estimator may look like a parametric estimator, it is a

local constant estimator and thus it is a nonparametric estimator of βh(·) in equation (2), where

the estimation window size plays the role of the bandwidth. 1

We focus on how to determine the size of the estimation window for forecasting in the framework

described above. Our new approach chooses the optimal window size that minimizes the conditional

MSFE. The conditional MSFE is a commonly used measure of forecast accuracy. Both rolling

windows and MSFE are used in Bacchetta, van Wincoop and Beutler (2010), Carriero, Kapetanios

and Marcellino (2009), Chen, Rogoff and Rossi (2010), Cheung, Chin and Pascual (2005), Della

Corte, Sarno and Sestieri (2012), Faust, Rogers and Wright (2003), Meese and Rogoff (1983a,b),

1The rolling window estimator is a local constant estimator with the truncated kernel that assigns 0-1 to the
observations. While such weights may not be optimal, we focus on the rolling window estimator because it is widely
used in practice. We refer to Pesaran, Pick and Pranovich (2013) for the analysis of optimal weights.
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Molodtsova and Papell (2009, 2012), Pesaran and Timmermann (2007), and Welch and Goyal

(2007), to name a few. It should be noted that the conditional MSFE is not the only loss function

that yields the conditional mean as the optimal forecasts (Patton, 2015).

The population MSFE at the end of the sample is defined by

ET [(yT+h − βh(1)′xT )2], (3)

where ET (·) is the conditional expectation operator based on the information set at time T and

βh(1) = βh(T/T ) is the parameter value at time T . Because βh(·) is unknown, we replace (3) by

ET [(yT+h − β̂h,R(1)′xT )2], (4)

where β̂h,R(1) is the rolling OLS estimate of βh(1) based on the last R observations in the sample.

Hereafter, we simplify the notation by dropping the subscript h: β̂R(t/T ) ≡ β̂h,R(t/T ) and β(t/T ) ≡

βh(t/T ).

We choose the window size R to minimize (4). Since

ET [(yT+h − β̂R(1)′xT )2] = σ2
h + (β̂R(1)− β(1))′xTx

′
T (β̂R(1)− β(1)), (5)

where σ2
h is the variance of ut+h, minimizing (4) is equivalent to minimizing

(β̂R(1)− β(1))′xTx
′
T (β̂R(1)− β(1)). (6)

However, (6) is not feasible because it depends on the unknown parameter value βh(1). Replacing it

with a local linear estimate with initial window size R0, β̃(1), yields the following feasible criterion:

(β̂R(1)− β̃(1))′xTx
′
T (β̂R(1)− β̃(1)). (7)

Our proposal is to minimize (7) with respect to R to achieve (3).

Specifically, we implement our proposed window selection method in the Monte Carlo simulation

and empirical application in this paper as follows:
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Step 1: Test whether the parameters are constant using Bai and Perron’s (1998, Section 4.1) test.

Step 2: If we fail to reject the null hypothesis of constant parameters in Step 1, we set the optimal

window R to the full sample size. Otherwise, we set initial window size R0 to the one chosen

by Pesaran and Timmermann’s (2007) cross validation method with unknown break dates. We

then select the window R from a set (R, R̄) to minimize the approximate conditional MSFE,

(β̂R(1)− β̃(1))′xTx
′
T (β̂R(1)− β̃(1)).

3 Theory

3.1 Assumptions

First we define the notation. For a p× 1 random vector X ≡ (X1, . . . , Xp)
′, ‖X‖r denotes the Lr-

norm of X, i.e. ‖X‖r = (
∑p

i=1E(|Xi|r))1/r. For a k × 1 real vector x ≡ (x1, . . . , xk)
′, ‖x‖ denotes

the Euclidean norm of vector x, i.e. ‖x‖2 =
∑k

i=1 x
2
i . For any m × n matrix A ≡ (a1, a2, ..., an),

where aj is the j−th column of matrix A, and aj = (a1j , a2j , ..., amj)
′ for j = 1, 2, . . . , n, vec(A)

is an mn × 1 vector, i.e. vec(A) ≡ (a′1, a
′
2, ..., a

′
n)′. From this point on we write βh(·) as β(·) to

simplify the notation.

The assumptions imposed on the data generating process are as follows:

Assumption 1 {ut+h}Tt=1 is a sequence such that E(ut+h|Ωt) = 0, σ2
t = V ar(ut+h|Ωt) is well-

defined a.s., where Ωt = σ(x′t, x
′
t−1, . . . , yt, yt−1, . . .) is the information observed at time t, and all

eigenvalues of E(u2
t+hxtx

′
t) are finite and bounded away from zero uniformly in t.

Assumption 1 imposes that the forecast error is a martingale difference sequence when h = 1.

However, Assumption 1 rules out unit roots.

Assumption 2 Let {Zt} ≡ {(ut, x′t−h)′}, t = h + 1, . . . , T + h. For r > 2, the sequence {Zt} is

(i) L4r/(r−1)-NED of size −2, with positive constants dt = O(‖Zt − EZt‖4r/(r−1)), on a sequence

{Vt}∞−∞, where {Vt} is α-mixing of size −2r/(r−2); (ii) ‖vec(ZtZ ′t)‖r ≤M , for some constant M ,

0 < M <∞, uniformly in t.

While it is common to assume that data are α-mixing (Cai, 2007; Clark and McCracken, 2001;

and West, 1996), Assumption 2 allows the data to be near-epoch dependent (NED). The NED
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assumption is more general than the α-mixing assumption, allows for heterogeneity over time which

is necessary for our time-varying parameter framework, and overcomes several undesirable features

of the α-mixing assumption (Lu and Linton, 2007). Since we allow for parameter instability in

eq. (1), the mean of the dependent variable varies over time. Therefore we do not impose stationary

conditions on Zt, that may include lagged dependent variables; this differentiates our approach from

Cai (2007), who assumes Zt to be strictly stationary.

Assumption 2(ii) requires vec(ZtZ
′
t) to be Lr-bounded uniformly in t, so is its subcomponent

vec(xtx
′
t). As r > 2, this assumption also ensures the existence of the fourth and second moments

of Zt uniformly in t.

Assumption 3 All eigenvalues of E(xtx
′
t) are bounded away from zero uniformly in t, 1 ≤ t ≤ T ,

T ≥ 1.

Assumption 3 requires the matrix E(xtx
′
t) be positive definite and non-singular uniformly in t,

which is a necessary condition to nonparametrically estimate β(t/T ).

Assumption 4 (i) β(·) is twice continuously differentiable over the real line R; (ii) ‖β(i)( tT )‖ is

bounded uniformly in t, for i = 1, 2, where β(i)(·) denotes the i−th derivative of β(·).

Assumption 4 imposes a smoothness condition on β(·). This condition is necessary because

β
(1)
j (·) and β

(2)
j (·) appear in the Taylor expansion of βj(·) and the bias of the rolling OLS estimate

of βj(·). Assumption 4(ii) is used to derive the rate of the optimal window size. It is important to

note that we do not specify the parametric form of β(·).

Assumption 5 R0, R → ∞, R/R0 = o(1) and R2
0R/T = o(1) as T → ∞.

Here R denotes the number of the most recent observations used to predict yT+h, R0 is the

number of the most recent observations used to construct the local linear estimates, and T is the

total sample size. Assumption 5 requires that the window sizes R and R0 go to infinity as the

sample size T goes to infinity, but the divergent rates of R and R0 are slower than T .

Assumption 6 R belongs to a set ΘR ⊆ Z+ and ΘR ⊂
[
R, R̄

]
, where R and R̄ satisfy the con-

ditions imposed on R in Assumption 5. Also the cardinality of ΘR, denoted by #ΘR, satisfies

#ΘR = Rρ, for some ρ, 0 < ρ < 1.
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Assumption 6 implies that the number of elements in ΘR grows at the rate of T ρ for some

0 < ρ < 1. Thus the cardinality of the set ΘR is cT ρ, for some c > 0. This assumption is useful

to derive results uniform in R, as in Marron (1985), Marron and Härdle (1986) and Härdle and

Marron (1985).

3.2 Infeasible Conditional MSFE

We choose the most recent R observations to estimate the forecasting model, then use the estimated

coefficients to produce the forecast. The h-step ahead forecast ŷT+h ≡ β̂R(1)′xT is based on OLS

estimation using the most recent R observations:2

β̂R(1) ≡ β̂R
(
T

T

)
=

(
T−h∑

t=T−R+1

xtx
′
t

)−1( T−h∑
t=T−R+1

xtyt+h

)
. (8)

The accuracy of the forecast ŷT+h depends on the choice of R. Including too distant information

reduces the forecast variance but increases its bias; on the other hand, if R is too small, the forecast

variance increases although the bias decreases. So the optimal estimation window resolves the

trade-off between forecast variance and bias.

The optimal window size minimizes the conditional MSFE, E((yT+h− ŷT+h)2|ΩT ). Expanding

the conditional MSFE gives

E
(
(yT+h − ŷT+h)2

∣∣ΩT

)
= E

(
(β(1)′xT + uT+h − β̂R(1)′xT )2

∣∣ΩT

)
=E

(
u2
T+h|ΩT

)
− 2E

(
(β̂R(1)− β(1))′xTuT+h

∣∣ΩT

)
+ E

(
(β̂R(1)− β(1))′xTx

′
T (β̂R(1)− β(1))

∣∣ΩT

)
(9)

Because β̂R(1) and xT are deterministic given the information set ΩT , we have

E
(

(β̂R(1)− β(1))′xTuT+h

∣∣ΩT

)
= ((β̂R(1)− β(1))′xT )E

(
uT+h

∣∣ΩT

)
= 0,

where the last inequality is also implied by Assumption 1. Thus the second term is zero. Since the

first two terms in (9) are independent of R, minimizing the conditional MSFE with respect to R is

2The subscript R means that the estimate is computed using the most recent R data.
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equivalent to minimizing (β̂R(1)− β(1))′xTx
′
T (β̂R(1)− β(1)) with respect to R.

We derive the rate of the optimal window size in the following theorem:

Theorem 1 In addition to Assumption 1–6, assume that β′(·) is bounded away from zero uni-

formly. Then the optimal window size R that minimizes (β̂R(1) − β(1))′xTx
′
T (β̂R(1) − β(1)) is of

order T 2/3 in probability.

The proof of this theorem is in the appendix. Theorem 1 shows that, in the presence of smoothly

time-varying parameters, the optimal window, which minimizes the conditional MSFE, should equal

cT 2/3 with probability going to unity, for some constant c, 0 < c < ∞. However, this rate is not

useful in practice, because the constant c is still unknown to practitioners. If one attempts to search

all the possible values of R to minimize (β̂R(1)− β(1))′xTx
′
T (β̂R(1)− β(1)), he/she will soon find

it is still infeasible, because the true parameter β(1) is unknown.

3.3 Approximate MSFE using Local Linear Regressions

In this section, we replace the unknown β(1) in the infeasible criterion (β̂R(1)−β(1))′xTx
′
T (β̂R(1)−

β(1)) by a local linear regression estimate. The local linear regression method is considered to

be a superior method in theory and applications among non-parametric regressions, see Fan and

Gijbels (1996) and Cai (2007). One desirable feature of the local linear regression estimator is

that it has the same asymptotic behavior at interior points and boundaries, whereas the Nadaraya-

Watson estimator regression has a larger bias at boundaries. Also the bias of the Nadaraya-

Watson estimator at boundaries is larger than the bias of the local linear regression at boundaries.

Here β̂R(1) is actually a special Nadaraya-Watson estimate, which uses the uniform kernel and

is evaluated at the end of the sample. Using the fact that the bias of a local linear estimate is

smaller than the Nadaraya-Watson estimate at the end of the sample, the error introduced by the

approximation of local linear estimates is asymptotically negligible. The local linear regression

proceeds as follows.

Provided that the parameter function β(·) is twice continuously differentiable over the real line

in Assumption 4, for any t = 1, . . . , T , we can approximate β( tT ) by:

β

(
t

T

)
= β(1) + β(1)(1)

(
t− T
T

)
+
β(2) (c)

2!

(
t− T
T

)2

, (10)
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where c = λ t
T + (1− λ)TT , for λ ∈ (0, 1). β(i) (·) denotes the ith derivative of β(·). By substituting

eq. (10) into eq. (2), we obtain

yt+h =β (1)′ xt + β(1) (1)′ xt

(
t− T
T

)
+
β(2) (c)′

2
xt

(
t− T
T

)2

+ ut+h

=β (1)′ xt + β(1) (1)′ xt

(
t− T
T

)
+ εt+h, (11)

where εt+h is a composite error term of ut+h and the second order term in eq. (10).

Let β̃(1) and β̃(1)(1) be the estimates for β(1) and β(1)(1) in eq. (11); then the OLS estimator

is given by  β̃(1)

β̃(1)(1)

 =

 ∑
xtx
′
t

∑
xtx
′
t

(
t−T
T

)
∑
xtx
′
t

(
t−T
T

) ∑
xtx
′
t

(
t−T
T

)2

−1  ∑

xtyt+h∑
xtyt+h

(
t−T
T

)
 (12)

where the summation
∑

represents
∑T−h

t=T−R0+1. β̃(1) and β̃(1)(1) are estimated using the most

recent R0 data, where R0 = 2p, . . . T, is a given pilot window size for the local linear regression.

Next, replacing the unknown parameter β(1) with the local linear estimate β̃(1) leads to a

feasible window selection criterion: the optimal window size R̂ satisfies

R̂ = arg min
R∈ΘR

(β̂R(1)− β̃(1))′xTx
′
T (β̂R(1)− β̃(1)) (13)

where β̃(1) is computed using R0 observations and the estimate β̂R̂(1) denotes that it is estimated

using R̂ observations. Here R0 is treated as a given value. Theorem 2 shows that this approximate

MSFE rule is asymptotically optimal relative to the infeasible conditional MSFE. In other words,

the error introduced by replacing β(1) with β̃(1) is asymptotically negligible.

Theorem 2 Under Assumptions 1–6, choosing R to minimize (β̂R(1)− β̃(1))′xTx
′
T (β̂R(1)− β̃(1))

is asymptotically optimal in the sense that

(β̂R̂(1)− β̃(1))′xTx
′
T (β̂R̂(1)− β̃(1))

infR∈ΘR(β̂R(1)− β(1))′xTx′T (β̂R(1)− β(1))

p→ 1, (14)

where R̂ = arg minR∈ΘR(β̂R(1)− β̃(1))′xTx
′
T (β̂R(1)− β̃(1)) and β̃(1) is the estimates from the local

linear regression in eq. (12) using the R0 most recent observations.
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Theorem 2 provides a formal justification for using the approximate rule in eq. (13) as a proxy

for the infeasible MSFE. The asymptotic optimality suggests that R̂ chosen from the approximate

rule can yield the same forecasts as the true optimal window size chosen by the infeasible MSFE

with probability approaching one. The proof is shown in the appendix. The core of the proof is

to show that the left-hand side of eq. (14) converges to one in probability uniformly in R ∈ ΘR.

Conditioning on R0 with different orders of magnitude, the asymptotic optimality holds uniformly

for R over its corresponding range. The growing cardinality of ΘR given by Assumption 6 plays

an important role in the proof. Similar techniques are used in Marron (1985), Marron and Härdle

(1986) and Härdle and Marron (1985).

4 Monte Carlo Experiments

We now turn to a Monte Carlo analysis of the performance of the window selection procedure

described above. The purpose of this section is to replicate existing methods for selecting estimation

window size (Pesaran and Timmermann, 2007; Cai, 2007; Anatolyev and Kitov, 2007; Pesaran, Pick

and Pranovich, 2013), and compare their performance with our window selection procedure based

on the approximate MSFE.

4.1 DGPs

The DGPs are based on:

yt+1

xt+1

 =

βt
0

+

at bt

0 0.9


yt
xt

+

uy,t+1

ux,t+1

 , (15)

where the error terms satisfy

 uy,t+1

ux,t+1

 iid∼ N


 0

0

 ,
 σ2 0

0 1


 (16)

Detailed setups for these two types of DGPs are listed in Tables 1. DGPs 1 to 7 are based on

univariate version with at = bt = 0 for all t, while DGPs 8 to 20 are based on the bivariate VAR(1)

model used in Pesaran and Timmermann (2007).
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Table (1) includes the following functional forms for the parameters: (1) constant parameters;

(2) parameters with one-time break; (3) smooth time-varying parameters; and (4) Nyblom’s (1989)

random walk parameter model. First, constant parameters are used in DGPs 1 and 8. Second,

DGPs from 2 to 4 and 9 to 16 consider parameters with a one-time break: the break date is 0.25T

for DGPs 2, 9 and 13, 0.5T for DGPs 3, 10 and 14, 0.75T for DGP 4, 11 and 15, 0.95T for DGPs

12 and 16, respectively. Third, DGPs 5 and 6 and DGPs from 17 to 20 use smoothly time-varying

parameters: in DGPs 5, 17 and 18, parameters are linear functions of t; in DGPs 6, 19 and 20,

parameter functions are quadratic in t. Fourth, Nyblom’s (1989) random walk parameter is used

in DGPs 7, 21 and 22.

In DGPs 2, 3 and 4, the variance of the error term is chosen by equalizing the variance of

{βt} and the variance of {ut+1} for each break date to ensure that the signal to noise ratio is the

same across these DGPs. In DGP 7, the variance of the error term of the random coefficient βt

is controlled so that the variance of the random coefficients equals the variance of the error term

of the model. In DGPs 7, 21 and 22, the variances of the error term in the random coefficients

are assumed to be relatively small (T/2) so that the parameters change smoothly. The standard

deviation of the error term in the process of the random coefficient at is set at a small value, 0.1/
√
T .

The purpose of this setting is to prevent at from exceeding unity, in which case the process yt would

explode and become unstable. Simulations with at greater than one are are discarded.

4.2 Window Selection Methods

Tables 2–5 report results using the following window selection methods: (i) the five methods used

in Pesaran and Timmermann (2007, “PT” thereafter); (ii) the weighted least squares method of

Anatolyev and Kitov (2007) labeled “WLS”; (iii) Cai’s (2007) AIC bandwidth selection rule (“Cai1”

and “Cai2”); (iv) Pesaran, Pick and Pranovich’s (2013, equation 48 on page 144, labeled “PPP”)

robust optimal weighting method; (v) our proposed method based on the approximate MSFE; and

(vi) our proposed method based on the infeasible MSFE.

More in detail, we include the following methods used in PT: (1) the post-break method (labeled

“Postbk” the tables); (2) cross validation (“CV”); (3) weighted average of forecasts (“WA”); (4)

pooled forecast combination (“Pooled”); and (5) the trade-off method (“Troff”). These methods

are designed to select the rolling window size when parameters are subject to discrete breaks. The
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results with estimated break dates are reported under the label “Estimated break date (T̂1)”.3 In

addition to considering two cases in which the break date is either known or estimated, we implement

cross validation, weighted average of forecasts and pooled forecast combination imposing parameter

constancy. The results without estimating a break date are reported under the label “Unknown

break date”.

Second, Cai’s (2007) method is implemented for local constant regression estimators with the

uniform kernel (“Cai1”) and the Epanechnikov kernel (“Cai2”) and for local linear regression es-

timators with the uniform kernel (“LL1”) and the Epanechnikov kernel (“LL2”). The bandwidth,

τ , is chosen to minimize

AIC(τ) = log(σ̂2) + 2(nτ + 1)/(n− nτ − 2), (17)

where n is the sample size, σ̂2 = (1/n)
∑n

t=1(yt − ŷt)
2 and nτ is the trace of the matrix Hτ .

Here Hτ satisfies Ŷ = HτY , where Y = (y1, · · · , yn)′. The product of the sample size n

and the bandwidth τ , nτ , equals our window size R, and thus R is selected from the set,

{0.1T, 0.125T, 0.150T, ..., 0.675T, 0.7T}, to minimize the AIC criterion (17). Note that Cai’s band-

width selection method is not designed to produce the best forecasts at time T because the AIC

criterion in eq. (17) is based on the sum of the squared residuals from time 1 through time T .

Third, the window selection method developed in this paper is implemented as follows:

Step (1): Test whether the parameters are constant using Bai and Perron’s (1998, Section 4.1)

test. Critical values are set at the 5% significance level. The trimming range for the possible break

dates is [0.15T, 0.85T ]. We will perform robustness checks with respect to the significance level and

trimming ranges.

Step (2): If we fail to reject the null hypothesis of constant parameters in Step (1), we set the optimal

window R to the full sample size. Otherwise, we set R0 to the one chosen by PT’s CV with unknown

break dates, R = max(1.5T 2/3, 20), R̄ = min(4T 2/3, T − h) (“OptR1”) R̄ = min(5T 2/3, T − h)

(“OptR2”) and R̄ = min(6T 2/3, T − h) (“OptR3”). We then select the window R from (R, R̄) to

minimize the approximate conditional MSFE (β̂R(1)− β̃(1))′xTx
′
T (β̂R(1)− β̃(1)).

3We have also implemented these methods imposing the true break date in DGPs 2–4 and 9–16. Because the
results are qualitatively similar to those with estimated break dates and because, in practice, imposing the true break
date is infeasible, we report only the results with estimated break dates to save space. The results with the true
break dates imposed are available upon request from the authors.
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Fourth, the infeasible window selection criterion (β̂R(1) − β(1))′xTx
′
T (β̂R(1) − β(1)) is also

considered (labeled “True”). Here R is chosen in the range [0.1T, 0.9T ]. This infeasible version,

which uses the true value of β(1) instead of the estimated value β̃(1), should always perform better

than our approximate MSFE criterion.

4.3 Simulation Results

We evaluate the performance of the out-of-sample prediction of yT+h over 5,000 Monte Carlo

simulations for T = 100, 200 and h = 1, 2. Tables 2–5 report the ratios of the RMSFEs (square

root MSFEs) produced by the optimal window size relative to the RMSFEs produced in the full

sample: √√√√∑5,000
m=1 (y

(m)
T+1 − ŷ

(m)
T+1)2∑5,000

m=1 (y
(m)
T+1 − ỹ

(m)
T+1)2

, (18)

where ŷ
(m)
T+1 is the forecast computed using the optimal window size obtained using the window

selection methods for the m−th replication and ỹ
(m)
T+1 is the forecast computed using the full sample

for the m−th replication. The benchmark forecast, based on the full sample, should perform the

best for models with constant parameters. If the relative RMSFE given in equation (18) is less

than one, the forecast estimated using the window size chosen by the window selection methods

performs better than the benchmark forecast. We highlight in bold the smallest number (before

rounding off to three decimal digits) excluding the infeasible MSFE criterion (labeled “True”).

We summarize the results as follows:

1. The infeasible MSFE criterion almost always produces the smallest relative RMSFEs in all

DGPs.4 While our MSFE criterion is designed for smoothly time-varying parameters, it also works

very well for discrete breaks and random-walk parameters.

2. When the parameters are constant (DGPs 1 and 8), most of the relative RMSFEs are close to

one. This is because the bias of the estimates is zero when parameters are constant, thus using

the full sample size yields the smallest variance of the estimates, which also minimizes the MSFE.

However, the relative RMSFEs of the approximate MSFE criterion are not necessarily the smallest

because we falsely reject the null hypothesis of parameter constancy 5% of the times, in which case

4There are three exceptions in which the local linear estimator outperforms the local constant estimator based on
the infeasible MSFE criterion. The latter is designed to produce optimal forecasts based on local constant estimators
and is not guaranteed to yield better forecasts than local linear estimators.
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we do not use the full sample size.

3. While our method is not designed to handle discrete time breaks, its performance tends to be

close to, if not better than, that of the best performing existing methods even when there is a

one-time break (DGPs 2, 3, 4, 9–16). Our method tends to work well even when the break is near

the end of the sample (DGPs 12 and 16).

4. When the parameters are smoothly time-varying (DGPs 5, 6 and 17–20), the proposed ap-

proximate MSFE criteria (OptR1, OptR2 and OptE3) perform very well. The approximate MSFE

criteria do not perform as well as the infeasible MSFE criterion (“True”) because replacing β(1)

with the local linear estimates β̃(1) introduces additional noise into the MSFE criterion. The

improvements over the existing methods tend to be greater for larger sample sizes.

5. When the parameter follows a random walk process (DGPs 7, 21 and 22), the proposed approx-

imate MSFE criterion tends to perform well. Even when the random coefficient does not evolve

as smoothly as in DGPs 5 and 6, the approximate MSFE criterion still works provided that the

variance of the error in the random coefficient function is small.

6. When h = 1, the local linear estimator based on Cai’s (2007) method works well overall. While it

can outperform our proposed method, the performance of the local linear estimator is quite sensitive

to the DGP and forecast horizons. For example, the local linear estimator tends to perform poorly

when h = 2. Overall, the rolling OLS estimator based on our method tends to perform similarly

or better than the local linear estimators. The equal or better performance of the local constant

estimators suggests that the choice of the window size plays a more important role than the choice

of the order of polynomials in out-of-sample forecasting performance.

7. Pesaran et al’s (2013) method performs well in the case of one regressor (DGPs 1 to 7).5

Regarding this and the other methods proposed in the literature, overall our method performs well

relative to them, and often improves upon them.

To summarize, when the underlying models have smooth time-varying parameters, the improve-

ment in forecasting obtained by choosing the window size by the approximate MSFE criterion is

remarkable. Even when the parameters are not smoothly time-varying, the performance of the

5We only report results for PPP for the univariate model case (DGPs 1 to 7), which is the case for which Pesaran
et al. (2013) derive their formula. Results for DGPs 8-22 are available upon request. Also, we implement PPP only
for h = 1, to satisfy their assumptions.
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proposed approximate MSFE criterion is competitive relative to existing methods.

The above results for our method are based on a 5% significance level and trimming rate of

0.15 when implementing Bai and Perron’s (1998) test. In Tables 6–9, we report results at the 10%

significance level and trimming rate equal to 0.05. The tables show that our results are not very

sensitive to these choices.

5 Empirical Analysis

This section examines the practical value of the approximate conditional MSFE criterion developed

in Section 2 in forecasting output growth and inflation – see Stock and Watson (1999, 2003, 2007).

The latter find strong evidence of instability in predictive relations, which means that finding a

predictor useful in one period does not guarantee that it will predict well in later periods.6 The

main results reported in Stock and Watson (1999, 2003, 2007) are based on recursive out-of-sample

forecasting, which uses all the data available up to the time the forecast is made, although they

also experiment with rolling out-of-sample forecasting using a fixed window size. The purpose of

this section is to check whether we can improve forecasts of output growth and inflation using the

window size chosen by our new approach.

5.1 Data

We use quarterly data to forecast output growth and inflation in the United States. Quarterly values

of monthly series are computed by averaging monthly values over the three months in the quarter.

We use the growth rate of real GDP to measure output growth and the GDP deflator to measure

inflation. The series of exogenous predictors, described in Table 10, are publicly available from the

Federal Reserve Economic Data of the St. Louis Fed. Most of these predictors appear in Stock

and Watson (2003, 2007). The exogenous predictors mainly consist of asset prices, measures of

real economic activity, price indices and monetary measures. We interpret asset prices as including

interest rates, the interest rate spread and the value of financial assets such as the S&P 500 stock

index.

6For instance, they find that forecasts of output growth based on the term spread, (that is, the long-term govern-
ment bond rate minus the federal funds rate), improve upon a simple AR model from 1971 through 1984, but are
worse than the AR forecasts for the post 1984 period.
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Table 10 lists the data transformation we used in the regressions as well as the mnemonics for

the predictors. The full sample starts in 1960:Q1 and ends in 2014:Q3; however, for series with

starting date later than 1960:Q1, we use the series from their starting dates through 2014:Q3 as

the full sample. The out-of-sample forecast period is 1984:Q1-2014:Q3.

5.2 Forecasting Models

The h-step ahead linear forecasting model for output growth is:

yht+h = µt + αt(L)xt + βt(L)yt + ut+h, (19)

where the dependent variable is yht+h = (400/h) ln(Qt+h/Qt), xt denotes the exogenous predictor,

yt = 400 ln(Qt/Qt−1), and Qt denotes quarterly real GDP in levels.

The h-step ahead linear forecasting model for inflation is:

πht+h − πt = µt + αt(L)xt + βt(L)∆πt + ut+h, (20)

where πt = 400 ln(Pt/Pt−1), ∆πt = πt−πt−1, πht+h = h−1
∑h

i=1 πt+i, Pt is the quarterly GDP defla-

tor in levels, and xt is the exogenous predictor. Furthermore, αt(L)xt denotes the lag polynomial,

αt(L)xt = α1txt + α2txt−1 + . . . + αqtxt−q+1, where q is the number of lags. We refer to xt as

a lagged value because it is lagged relative to the dependent variable to be forecast. The same

definition applies to βt(L)yt and βt(L)∆πt.

5.3 Empirical Results

The results of forecasting one-step-ahead output growth and inflation are summarized in Tables

11–14. The first panel in these tables, labeled “Univariate Models”, considers two type of models:

autoregressive (AR) models and autoregressive distributed lag (ADL) models, eqs. (19) and (20),

respectively. In the AR model, only a constant and lagged values of the variable to be forecast

appear as regressors. In the ADL model, regressors include an intercept term, the exogenous vari-

able xt and the lagged dependent variable (yt for forecasting output growth or ∆πt for forecasting

inflation). We use ADL models to evaluate the predictive ability of the exogenous predictor in
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the presence of the lagged dependent variables because, when the series to be forecasted is serially

correlated, its own past values may themselves be useful predictors.

In Tables 11 and 12, the numbers in column labeled “Fixed” are the RMSFE based on the

fixed window of 40 observations, the same window size used by Stock and Watson (2003). In the

other columns, the first number is the ratio of the RMSFE based on the window size chosen by our

method over the RMSFE based on the fixed window size, and the second number is the p-value of

the Diebold-Mariano test against the model based on the fixed window size. If the number in the

first row is less than one, it means that the optimal window size improves the forecast performance

relative to the fixed window size. In Tables 13 and 14, the numbers in the rows labeled “Fixed” are

the RMSFE based on the fixed window size and those in the rows labeled “OptR1” are the ratio

of the RMSFE based on the window selected by our proposed method (OptR1) over the RMSFE

based on the fixed window size.

We choose the lag length either via AIC, BIC or a fixed lag choice (equal to one). The maximum

number of lags in the AIC/BIC selection is 2. The AIC/BIC is computed based on the most recent

40 observations. We present the results for the ADL model with BIC lags in Tables 11 and 12, in

the panel labeled “ADL(BIC) Models”.7

Table 11 shows that forecasts of output growth based on the optimal window size often perform

better than those based on the fixed window size, for both AR and ADL models. The improvement

ranges from 1.3 to 7.7 percent. Table 13 shows that the forecasting improvements based on the

optimal window size appear at all horizons.

In ADL models, output growth forecasts obtained by using the federal funds rate, the term

spread and the S&P500 as predictors improve when using the optimal window size procedure. These

financial variables are useful in predicting output growth in part because they reveal expectations

about the future state of the economy. Stock and Watson (2003) found that the term spread is useful

for forecasting output growth, and suspected parameter instabilities in the predictive relations. Our

results support this conclusion, as our optimal window size procedure allows the model to select

the best amount of past information to forecast at each point in time, and adapting it as time goes

by.

7The results for the ADL models based on AIC and the fixed lag are qualitatively similar to those based on BIC
in Tables 11 and 12 and thus are omitted to save space. They are available upon request from the authors.
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When forecasting output growth with measures of real economic activity, the optimal window

size seems to improve forecasts for most models and forecast horizons. Improvements appear in

forecasts with real disposable personal income (“rdpi”) and industrial production (“ip”), among

other series. In addition, the optimal window size can improve forecasts based on unemployment

measures and price indices, such as PPI, and monetary measures, such as M2.

When forecasting inflation, Table 12 shows that the optimal window sizes hardly beat the fixed

window size, especially at shorter forecast horizons. For forecasting models based on measures of

economic activities, such as employment, Table 14 shows that long-term inflation forecasts perform

better when the optimal window size is used. The empirical evidence on the usefulness of the

optimal window size is mixed for inflation forecasts based on monetary measures.

The scatter plots of p-values of the QLR test for parameter constancy (Andrews, 1993) in

Figures 1–4 shed light on the difference in the performance of the optimal window size relative to

that of the fixed window size. Figures 1 to 4 plot the p-values of the QLR tests (x-axis) recursively

implemented at each point in time vis-à-vis the differences in the squared forecast errors at that

time; each panel in the figure corresponds to a model, indicated in the title. Figures 1 and 3 show

results for forecasting output growth, while Figures 2 and 4 show results for forecasting inflation.

The figures suggest that the parameters are unstable in output growth forecast models while they

are stable in inflation forecasts. Because our nonparametric approach is both more appropriate and

more advantageous when parameters are time-varying, the lack of time-varying parameters may

explain why the optimal window size does not perform better than the fixed window size at shorter

forecast horizons.

Finally, Tables 15 and 16 report the forecasting performance during the great recession

(2007:Q4–2009:Q2). Our method does not perform as well during the latter period. To shed

light on the issue, we plot the squared forecast errors in Figures 5 and 6 for a representative predic-

tor. The figures show that there is an outlier which may explain the difference in the performance:

while our method is designed to handle smoothly time-varying parameters, it is not designed to

handle outliers.
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6 Concluding Remarks

We propose a new approach to select the size of the rolling estimation window allowing for smoothly

time-varying parameters. Our optimal window size minimizes the conditional MSFEs. Because the

true parameter value is unknown, we propose an approximate conditional MSFE criterion in which

the unknown value is replaced by a local linear regression estimate. We show that minimizing the

approximate conditional MSFE is asymptotically equivalent to minimizing the infeasible conditional

MSFE.

Monte Carlo simulations show that using the window size chosen by our approximate condi-

tional MSFE criterion improves the forecasting performance relative to using the full sample when

the underlying model is generated by smoothly time-varying as well as random walk parameters.

For processes generated by parameters with discrete breaks, the performance of the approximate

conditional MSFE criterion is comparable to that of existing window selection methods designed

for discrete breaks.

The empirical analysis shows that our new window selection method can improve forecasts

of output growth and inflation. In particular, asset prices, housing starts, building permits and

monetary measures have useful predictive content for forecasting output growth at short horizons.

In general, the improvement at short forecast horizons is more significant for forecasting output

growth than inflation, since parameters are more likely to vary in the former than in the latter.

Some caveats are as follows. First, the new window selection method chooses a uniform window

size for all the time-varying parameters. When parameters have different patterns of time variation,

one window size may not be optimal for all the parameters. Thus, for models with many predictors,

the performance of the window selection method would deteriorate. Second, in practice, it is hard

for forecasters to know whether the underlying model is subject to discrete breaks or smooth time

variation. A careful forecaster should first compare the window selection methods for discrete

breaks and the approximate conditional MSFE criterion developed in this paper, and then choose

the best window size using the approach developed in this paper.

We focus on the rolling window OLS estimator and the MSFE because they are most commonly

used in macroeconomic forecasting. Since our expansions are specific to the choice of models and

loss functions, one has to take a stand on the loss function and we chose the MSFE. However one
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could derive results for asymmetric loss functions, such as those considered in Laurent, Rombouts

and Violante (2012), and other estimators, such as local linear estimators. We leave these extensions

for future research.
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A Appendix: Detailed Proofs

A.1 Notations

For a p × 1 random vector X ≡ (X1, . . . , Xp)
′, ‖X‖r denotes the Lr-norm of X, i.e. ‖X‖r =

(
∑p

i=1E(|Xi|r))1/r. For a k × 1 real vector x ≡ (x1, . . . , xk)
′, ‖x‖ denotes the Euclidean norm of

vector x, i.e. ‖x‖2 =
∑k

i=1 x
2
i and |x| is the max norm of vector x, i.e. |x| = maxi |xi|. For any m×n

matrix A ≡ (a1, a2, ..., an), where aj is the jth column of matrix A, and aj = (a1j , a2j , ..., amj)
′ for

j = 1, 2, . . . , n, vec(A) is an mn × 1 vector, i.e. vec(A) ≡ (a′1, a
′
2, ..., a

′
n)′. Let |A| = maxi,j |aij |

where i = 1, 2, . . . ,m and j = 1, 2, . . . , n. For the jth column of matrix A, aj , j = 1, 2, . . . , n, let

|aj | = maxi |aij |. If {xn}∞n=1 is any real sequence, {an}∞n=1 is a sequence of positive real numbers,

then xn � an denotes xn = o(an), and say that xn is of smaller order of magnitude than an.

Conversely xn � an denotes an = o(xn). The notation xn ' an indicates that there exist N > 0

and finite constants A > 0 and B > A, such that infn>N (xn/an) > A and supn>N (xn/an) 6 B.

This says that {xn} and {an} ultimately grow at the same rate. Throughout the proofs, let C

denote a generic constant that is positive and finite, i.e., 0 < C <∞.

A.2 Lemmas

We use the following lemmas in the proof of the theorems.

Lemma 1 β̂R(1)− β(1) ' 1/
√
R+R/T in probability.

Lemma 2 Define the infeasible and approximate loss functions by L(R) ≡ (β̂R(1) −

β(1))′xTx
′
T (β̂R(1) − β(1)) and A(R) ≡ (β̂R(1) − β̃(1))′xTx

′
T (β̂R(1) − β̃(1)), respectively, where

β̂R(1) is the estimate of β(1) based on the most recent R observations and β̃(1) is the local linear

estimate of β(1) based on the most R0 observations. Then supR∈ΘR |L(R)−A(R)| /L(R)
p→ 0.

Lemma 3 For k = 0, 1, 2, 3, ‖R−k−1
∑T−h

t=T−R+1 vec(E(xtx
′
t)(T − t)k/T k)‖ = C/T k for some C.

Lemma 4 For k = 0, 1, 2 or 3, let Ut ≡ xtut+h and SU ≡
∑T−h

t=T−R+1 Ut (t− T )k /T k. Then,

(a) V ar(SU ) ' R2k+1/T 2k.

(b) R−1SU ' (R(2k−1)/2/T k) in probability.
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Lemma 5 For k = 0, 1, 2 or 3, let vt ≡ xtx
′
t − E(xtx

′
t) and Ct ≡ vec(vt). Define SC ≡∑T−h

t=T−R+1Ct (t− T )k /T k. Then,

(a) ‖vec(V ar(SC))‖ = O(R2k+1/T 2k).

(b) ‖R−1SC‖ = Op(R
k− 1

2 /T k).

Lemma 6 Let BR ≡
(

1
R

∑T−h
t=T−R+1 xtx

′
t

)−1
, B∗R ≡

(
1
R

∑T−h
t=T−R+1E(xtx

′
t)
)−1

. Then

(a) for a constant δ, 0 < δ < 1/2, supR∈ΘR(R
1
2
−δ) ‖vec(BR)− vec(B∗R)‖ = Op(1).

(b) ‖vec(BR −B∗R)‖ = Op(1/
√
R).

Lemma 7 R−2
∑T−h

t=T−R+1 ‖E(xtx
′
t)
(
β( tT )− β(TT )

)
‖ = C/T for some C.

Lemma 8 Let Gt ≡ (xtx
′
t−E(xtx

′
t))(β( tT )− β(TT )), where xt is a p× 1 random vector and β(·) is

p× 1 and satisfies Assumption 4. Let SG ≡
∑T−h

t=T−R+1Gt. Then,

(a) ‖vec(V ar(SG))‖ = O(R3/T 2).

(b) ‖R−1SG‖ = Op(
√
R/T ).

(c) For some constant δ, 0 < δ < 1/2, supR∈ΘR
T

R
1
2+δ

∥∥R−1SG
∥∥ = Op(1).

Lemma 9 supR∈ΘR min(R
1
2
−δ, T/R)(β̂R(1)− β(1))′xT = Op(1).

Lemma 10 supR∈ΘR ‖R
−1
∑T−h

t=T−R+1 vec(E(xtx
′
t))‖ = O(1).

Lemma 11 supR∈ΘR ‖R
− 1

2
−δ∑T−h

t=T−R+1 xtut+h‖ = Op(1), where 0 < δ < 1/2.

Lemma 12 supR∈ΘR ‖TR
−2
∑T−h

t=T−R+1E(xtx
′
t)
(
β( tT )− β(TT )

)
‖ = O(1).

Lemma 13 Let β̃(1) and β̃(1)(1) be local linear estimates defined in eq. (12). β̃(1) and β̃(1)(1) are

estimated using the most recent R0 observations, then β̃(1)− β(1) = Op(1/
√
R0) +Op(R

2
0/T

2) and

β̃(1)(1)− β(1)(1) = Op(T/R
3/2
0 ) +Op(R0/T ).

Lemma 14

min(R
1
2
−δ, TR)

min(R
1
2
0 ,

T 2

R2
0
)

= o(1), (21)

where 0 < δ < 1
2 .
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Lemma 15 Suppose {Ut}Tt=1 is a zero-mean stochastic process, where Ut is p× 1. If some r > 2,

{Ut} satisfies: (i) {Ut} is an Lr/(r−1)-NED process of size −2 on {Vt} with constants {dt}, where

{Vt} is α-mixing of size −2r/(r−2) and {dt}+∞−∞ is a sequence of positive constants; (ii) {Ut} is Lr-

bounded uniformly in t, i.e. supt ‖Ut‖r < C for some C. Then {Ut,F t
−∞} is an Lr/(r−1)-mixingale

of size −2 with constants ct = O(max{‖Ut‖r , dt}).

Lemma 16 Define Bk =
∑R

j=h j
k/Rk+1 for k > −1, where 0 < h < ∞, R ≥ h, h ∈ Z+ and

R ∈ Z+. Then as R→∞, Bk ' C for some C.

Lemma 17 For k > −1,
∑T−h−1

t=T−R+1

∑T−h−t
m=1 m−2(t−T )k(t+m−T )k/T 2k = O(R2k+1/T 2k), where

0 < h <∞, R ≥ h, h ∈ Z+ and R ∈ Z+.

Lemma 18 For k > −1,
∑T−h

t=T−R+2

∑t−(T−R+1)
m=1 m−2(t− T )k(t−m− T )k/T 2k = O(R2k+1/T 2k),

where 0 < h <∞, R ≥ h, h ∈ Z+ and R ∈ Z+.

Lemma 19 Given square matrices A and B, where A and A+B are invertible. Then (A+B)−1 =

A−1 − (I +A−1B)−1A−1BA−1.

A.3 Proofs of Theorems

Proof of Theorem 1. It follows from Lemma 1 that

(β̂R(1)− β(1))′xTx
′
T (β̂R(1)− β(1)) ' (1/

√
R+R/T )2 ' 1/R+R2/T 2 (22)

Differentiating 1/R+R2/T 2 with respect to R and set it to zero, the optimal window size is at the

rate of T 2/3 in probability. Since the second order derivative of 1/R + R2/T 2 is always positive,

the optimal window size minimizes the objective function.

Proof of Theorem 2. Let a(R) ≡ β̂R(1)− β(1) and b ≡ β̃(1)− β(1) where β̂R(1) and β̃(1) are

the local constant and linear estimates of β(1) based on the last R and R0 observations, respec-

tively. Then we can write the infeasible and approximate loss functions as L(R) = a(R)′xTx
′
Ta(R)

and A(R) = (a(R) − b)′xTx′T (a(R) − b). We choose the optimal window size R̂ to minimize the

approximate loss function A(R), i.e. R̂ = arg minR∈ΘR [A(R)]. Let R̂′ denote the window size which

minimizes the infeasible loss function L(R), i.e. R̂′ = arg minR∈ΘR [L(R)].
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By expanding A(R̂), eq. (14) can be written as

A(R̂)

infR∈ΘR L(R)
=

L(R̂)

infR∈ΘR L(R)
− 2

a(R̂)′xTx
′
T b

infR∈ΘR L(R)
+

b′xTx
′
T b

infR∈ΘR L(R)
= I1 − 2I2 + I3p

We show that I1
p→ 1, I2

p→ 0 and I3
p→ 0. Since L(R) > 0 for any R, we get

sup
R,R′∈ΘR

∣∣∣∣L(R)− L(R′)− (A(R)−A(R′))

L(R) + L(R′)

∣∣∣∣ ≤ sup
R∈ΘR

∣∣∣∣L(R)−A(R)

L(R)

∣∣∣∣+ sup
R′∈ΘR

∣∣∣∣L(R′)−A(R′)

L(R′)

∣∣∣∣ .
It follows from Lemma 2 that

sup
R,R′∈ΘR

∣∣∣∣L(R)− L(R′)− (A(R)−A(R′))

L(R) + L(R′)

∣∣∣∣ p→ 0. (23)

Then, for any ε > 0, there is

P

[
L(R̂)− L(R̂′)− (A(R̂)−A(R̂′))

L(R̂) + L(R̂′)
≤ ε

]
→ 1.

This implies that (1 − ε)L(R̂) − (1 + ε)L(R̂′) ≤ A(R̂) − A(R̂′) ≤ 0, with probability approaching

one, which results in 1 ≤ L(R̂)/L(R̂′) ≤ (1 + ε)(1 − ε) with probability approaching one. Thus

I1
p→ 1. The results, I2

p→ 0 and I3
p→ 0, follow from the proofs of Appendix A.4 and Appendix A.4.

Combining these results completes the proof.

A.4 Proofs of Lemmas

Proof of Lemma 1. Expanding β̂R(1)− β(1) pointwise for each R ∈ [R, R̄], we have

β̂R(1)− β(1) =

(
1

R

T−h∑
t=T−R+1

xtx
′
t

)−1(
1

R

T−h∑
t=T−R+1

xtut+h

)

+

(
1

R

T−h∑
t=T−R+1

xtx
′
t

)−1(
1

R

T−h∑
t=T−R+1

xtx
′
t(β(

t

T
)− β(

T

T
))

)
= E1 + E2.

Let BR ≡
(

1
R

∑T−h
t=T−R+1 xtx

′
t

)−1
, HR ≡ 1

R

∑T−h
t=T−R+1 xtut+h, QR ≡ 1

R

∑T−h
t=T−R+1 xtx

′
t(β( tT ) −

β(TT )), B∗R ≡
(

1
R

∑T−h
t=T−R+1E(xtx

′
t)
)−1

and Q∗R ≡
1
R

∑T−h
t=T−R+1E(xtx

′
t)(β( tT ) − β(TT )). Then
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β̂R(1)− β(1) can be abbreviated as

β̂R(1)− β(1) = BRHR +BRQR = E1 + E2 (24)

First, we check the rate of the first term E1. Write E1 as E1 = B∗RHR + (BR − B∗R)HR. By

Lemma 3, we have ‖vec(B∗R)‖ ' C for some C. By Lemma 4, we know HR ' R−1/2. Thus

B∗RHR ' R−1/2. By Lemma 5 and Lemma 6(b), we know that ‖BR − B∗R‖ = Op(R
−1/2). Then

E1 ' R−1/2 +Op(R
−1) ' R−1/2.

Next we need to find the rate of the second term E2. The rate of E2 follows from

E2 =BRQR = B∗RQ
∗
R +B∗R(QR −Q∗R) + (BR −B∗R)Q∗R + (BR −B∗R)(QR −Q∗R)

'cR/T +Op(
√
R/T ) +Op(1/

√
R)cR/T +Op(1/

√
R)Op(

√
R/T ) ' R/T,

for some C, because by Lemma 7 ‖Q∗R‖ ' R/T and by Lemma 8(b) QR − Q∗R = Op(
√
R/T ).

Combining the rate of E1 and E2 yields β̂R(1)− β(1) ' 1/
√
R+R/T in probability.

Proof of Lemma 2. The distance A(R) can be decomposed as

A(R) =(a(R)− b)′xTx′T (a(R)− b)

=a(R)′xTx
′
Ta(R)− 2a(R)′xTx

′
T b+ b′xTx

′
T b

=L(R)− 2a(R)′xTx
′
T b+ b′xTx

′
T b,

so it is equivalent to show that

sup
R∈ΘR

∣∣∣∣−2a(R)′xTx
′
T b+ b′xTx

′
T b

L(R)

∣∣∣∣ p→ 0. (25)

By the triangular inequality, we have

sup
R∈ΘR

∣∣∣∣−2a(R)′xTx
′
T b+ b′xTx

′
T b

L(R)

∣∣∣∣ ≤ sup
R∈ΘR

∣∣∣∣−2a(R)′xTx
′
T b

L(R)

∣∣∣∣+ sup
R∈ΘR

∣∣∣∣b′xTx′T bL(R)

∣∣∣∣ . (26)

Because supR∈ΘR(min(R
1
2
−δ, T/R)a(R)′xT ) = Op(1) and min(R

1
2
0 , T

2/R2
0)b′xT = Op(1) by
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Lemma 9 and Lemma 13, we have

sup
R

∣∣∣∣ a(R)′xTx
′
T b

a(R)′xTx′Ta(R)

∣∣∣∣ = sup
R

∣∣∣∣∣∣∣
min(R

1
2
−δ, TR)

min(R
1
2
0 ,

T 2

R2
0
)

min(R
1
2
−δ, TR)a(R)′xT min(R

1
2
0 ,

T 2

R2
0
)b′xT

min(R
1
2
−δ, TR)a(R)′xT (R

1
2
−δ, TR)a(R)′xT

∣∣∣∣∣∣∣
= Op

sup
R

min(R
1
2
−δ, TR)

min(R
1
2
0 ,

T 2

R2
0
)

 = op(1), (27)

and

sup
R

∣∣∣∣ b′xTx
′
T b

a(R)′xTx′Ta(R)

∣∣∣∣ = sup
R

∣∣∣∣∣∣∣
min(R

1
2
−δ, TR)

min(R
1
2
0 ,

T 2

R2
0
)


2

min(R
1
2
0 ,

T 2

R2
0
)b′xT min(R

1
2
0 ,

T 2

R2
0
)b′xT

min(R
1
2
−δ, TR)a(R)′xT min(R

1
2
−δ, TR)a(R)′xT

∣∣∣∣∣∣∣
= Op

sup
R

min(R
1
2
−δ, TR)

min(R
1
2
0 ,

T 2

R2
0
)


2 = op(1), (28)

where the last equalities in (27) and (28) follow from Lemma 14. Equations (26), (27) and (28)

completes the proof of eq. (25).

Proof of Lemma 3. ‖R−k−1
∑T−h

t=T−R+1 vec(E(xtx
′
t)(T − t)k/T k)‖ is bounded as

∥∥∥∥∥inf
t

(
vec(E(xtx

′
t))
) 1

Rk+1

T−h∑
t=T−R+1

(
T − t
T

)k∥∥∥∥∥ ≤
∥∥∥∥∥ 1

Rk+1

T−h∑
t=T−R+1

vec(E(xtx
′
t))

(
T − t
T

)k∥∥∥∥∥
≤

∥∥∥∥∥sup
t

(
vec(E(xtx

′
t))
) 1

Rk+1

T−h∑
t=T−R+1

(
T − t
T

)k∥∥∥∥∥ (29)

It follows from Lemma 16 that

1

Rk+1

T−h∑
t=T−R+1

(
T − t
T

)k
=

1

Rk+1

R−1∑
j=h

jk

T k
' 1

Rk+1

R∑
j=h

jk

T k
' C

T k
(30)

for some C. Then eq. (29) becomes

∥∥∥inf
t

(
vec(E(xtx

′
t))
)∥∥∥ C

T k
≤

∥∥∥∥∥ 1

Rk+1

T−h∑
t=T−R+1

vec(E(xtx
′
t))

(
T − t
T

)k∥∥∥∥∥ ≤
∥∥∥∥sup

t

(
vec(E(xtx

′
t))
)∥∥∥∥ C

T k
.

It follows from Assumptions 2(ii) and 3 that 1/C < ‖vec(E(xtx
′
t))‖ < C uniformly in t for some
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C. Thus ∥∥∥∥∥ 1

Rk+1

T−h∑
t=T−R+1

vec(E(xtx
′
t))

(
T − t
T

)k∥∥∥∥∥ =
C

T k
,

for some C.

Proof of Lemma 4. (a) The long-run variance of SU is given by

vec(V ar(SU )) =
T−h∑

t=T−R+1

[
vec(E(UtU

′
t))

(
t− T
T

)2k
]

+

T−h∑
t=T−R+2

t−(T−R+1)∑
m=1

[
vec

(
E(UtU

′
t−m)

)( t− T
T

)k ( t−m− T
T

)k]

+

T−h−1∑
t=T−R+1

T−h−t∑
m=1

[
vec

(
E(UtU

′
t+m)

)( t− T
T

)k ( t+m− T
T

)k]

= A1 +A2 +A3.

First we show the rate of A1. A1 is bounded as

inf
t

(
vec(E(UtU

′
t))
) T−h∑
t=T−R+1

(
t− T
T

)2k

≤ A1 ≤ sup
t

(
vec(E(UtU

′
t))
) T−h∑
t=T−R+1

(
t− T
T

)2k

. (31)

Since it follows from Lemma 16 that

T−h∑
t=T−R+1

(
t− T
T

)2k

=
R−1∑
j=h

j2k

T 2k
'

R∑
j=h

j2k

T 2k
' R2k+1

T 2k
, (32)

eq. (31) becomes

inf
t

(
vec(E(UtU

′
t))
) CR2k+1

T 2k
≤ A1 ≤ sup

t

(
vec(E(UtU

′
t))
) CR2k+1

T 2k
.

It follows from Assumption 1 that ‖vec(E(UtU
′
t))‖ ≡ ‖vec(E(σ2

t xtx
′
t))‖ ' ‖vec(E(xtx

′
t))‖. Since

1/C < ‖vec(E(xtx
′
t))‖ < C uniformly in t for some C by Assumptions 2(ii) and 3, A1 ' R2k+1/T 2k.
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Next we find the rate of A2. Let Ui,t denote the ith element of Ut. Thus we have

A2 '
T−h∑

t=T−R+2

t−(T−R+1)∑
m=1

[∥∥vec (E(UtU
′
t−m)

)∥∥( t− T
T

)k ( t−m− T
T

)k]

=

T−h∑
t=T−R+2

t−(T−R+1)∑
m=1


 p∑
i=1

p∑
j=1

(E(Ui,tUj,t−m))2

1/2(
t− T
T

)k ( t−m− T
T

)k .
To show the rate of E(Ui,tUj,t−m), we need to show all the conditions in Lemma 15 hold. First Ut is

zero mean by Assumption 1. Next, the condition (i) in Lemma 15 holds because by Assumption 2(i),

Theorem 17.9 in Davidson (1994, p.268), and the Lyapunov inequality (see 9.23 in Davidson, 1994,

p.139), which ensures that Assumption 2(i) implies Ut ≡ xtut+h is L2r/(r−1)-NED of size −2 on

{Vt}, where {Vt} is α-mixing of size −2r/(r− 2). Also by the Lyapunov inequality, L2r/(r−1)-NED

of size −2 implies Lr/(r−1)-NED of size −2 when r > 2. The condition (ii) of Lemma 15 directly

is implied by Assumption 2(ii). Then applying Lemma 15, we know {Ut} is Lr/(r−1)-mixingale of

size −2. Thus, for each i, j = 1, 2, . . . , p,

|E(Ui,tUj,t−m)| ≤ ‖Ui,t‖ 1
r−1
‖Et−m(Uj,t−m)‖ r

r−1

= O(ζm) = O(m−2). (33)

Since p is finite, we have

A2 = O

 T−h∑
t=T−R+2

t−(T−R+1)∑
m=1

[
1

m2

(
t− T
T

)k ( t−m− T
T

)k] = O

(
R2k+1

T 2k

)
, (34)

where the last equality is derived by Lemma 18.

Finally we need to find the rate of A3. Following similar arguments used to prove eq. (34), we

can show that

A3 = O

(
R2k+1

T 2k

)
.

Combining the results for A1, A2 and A3, we have vec(V ar(SU )) ' R2k+1/T 2k.

(b) The proof for the rate of R−1SU follows from the CLT for NED processes, so we need to
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show that the conditions of Theorem 24.6 and Corollary 24.7 in Davidson (1994, p. 386) hold.

Define U∗t ≡ (V ar(SU ))1/2Ut (t− T )k /T k and S∗U ≡
∑T−h

t=T−R+1 U
∗
t . Denote s ≡ T − t, where

T − R + 1 ≤ t ≤ T − h, so s satisfies h ≤ s ≤ R − 1. Let {ZRs, s = h, . . . , R − 1, R ≥ h + 1} be a

triangular stochastic array, such that ZRs ≡ U∗T−s, then

ZRs ≡ (V ar(SU ))1/2xT−suT−s+h
sk

T k
' sk

Rk+ 1
2

xT−suT−s+h,

where the last expression follows from part (a). Let SR ≡
∑R−1

s=h ZRs. Notice that SR ≡ S∗U .

First, we note that the condition (a) of Theorem 24.6 in Davidson (1994, p. 386) holds because

E(U∗t ) = 0 and E(S∗US
∗
U
′) = Ip implies that E(ZRs) = 0 and E(SRS

′
R) = Ip. We next show that the

condition (b) of Theorem 24.6 in Davidson (1994, p.386) and the condition (d’) of Corollary 24.7

in Davidson (1994, p. 387) hold. Suppose a positive constant array {cRs} satisfies cRs = R−1/2,

then it follows from Assumption 2(ii) we have

sup
R,s
‖ZRs/cRs‖r ' sup

R,s

∥∥∥∥∥ sk

Rk+ 1
2 cRs

xT−suT−s+h

∥∥∥∥∥
r

≤ sup
R,s

sk

Rk+ 1
2 cRs

· sup
s
‖xT−suT−s+h‖r <∞.

Hence, condition (b) of Theorem 24.6 in Davidson (1994, p. 386) is satisfied. Define MR ≡

maxh≤s≤R−1{cRs}. Condition (d’) of Corollary 24.7 in Davidson (1994, p. 387) holds because

MR = R−1/2 and supRRM
2
R = 1 < ∞. We now show that condition (c’) of Corollary 24.7 in

Davidson (1994, p. 387) holds. We know from part (a) that Ut is L2r/(r−1)-NED of size −2 on {Vt},

which is α-mixing of size −2r/(r−2). When r > 2, we have 2 < 2r/(r−1) < 4, thus L2r/(r−1)-NED

of size −2 implies L2-NED of size −1. We also know that α-mixing of size −2r/(r − 2) implies

α-mixing of size −r/(r − 2). Hence condition (c’) of Corollary 24.7 in Davidson (1994, p.387) is

satisfied. Thus we can conclude that SR = S∗U
d→ N(0, Ip) and SU ' Rk+1/2/T k in probability.

Then R−1SU ' (R(2k−1)/2/T k) in probability.

Proof of Lemma 5. (a) Note that vt is p × p and SC is p2 × 1. For i = 1, 2, . . . , p and

j = 1, 2, . . . , p, let vij,t denote the ith row and jth column element of vt. For l = 1, 2, . . . , p2, let Cl,t

denote the lth element of Ct and let SCl denote the lth element of SC . Since {Ct} is zero-mean,
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the long-run variance of SC is given by

‖vec(V ar(SC))‖ = ‖vec(E(SCS
′
C))‖ ≤

T−h∑
t=T−R+1

[
‖vec(E(CtC

′
t))‖

(
t− T
T

)2k
]

+
T−h∑

t=T−R+2

t−(T−R+1)∑
m=1

[
‖vec

(
E(CtC

′
t−m)

)
‖
(
t− T
T

)k ( t−m− T
T

)k]

+
T−h−1∑

t=T−R+1

T−h−t∑
m=1

[
‖vec

(
E(CtC

′
t+m)

)
‖
(
t− T
T

)k ( t+m− T
T

)k]
= D1 +D2 +D3

First, we show the rate of D1. It follows from the Hölder inequality and Assumption 2(ii) that

D1 =

T−h∑
t=T−R+1


 p2∑
i=1

p2∑
j=1

(E(Ci,tCj,t))
2

1/2(
t− T
T

)2k

 ≤ T−h∑
t=T−R+1

[
p2C

(
t− T
T

)2k
]
. (35)

It follows from Lemma 16, eq. (32) and the finiteness of p that D1 = O(R2k+1/T 2k).

Next we check the rate of D2. Expanding D2 gives

D2 =
T−h∑

t=T−R+2

t−(T−R+1)∑
m=1


 p2∑
i=1

p2∑
j=1

(E(Ci,tCj,t−m))2

1/2(
t− T
T

)k ( t−m− T
T

)k .
Following the proof for the rate of A2 in Lemma 4(a) and applying Lemma 15, we know {Ct} is

Lr/(r−1)-mixingale of size −2. Thus, for each i, j = 1, 2, . . . , p2

|E(Ci,tCj,t−m)| ≤ ‖Ci,t‖ 1
r−1
‖Et−m(Cj,t−m)‖ r

r−1

= O(ζm) = O(m−2). (36)

Then we have

D2 = O

 T−h∑
t=T−R+2

t−(T−R+1)∑
m=1

[
1

m2

(
t− T
T

)k ( t−m− T
T

)k] = O

(
R2k+1

T 2k

)
,

where the last equality is derived by Lemma 18.

Finally the rate of D3 can be obtained by using the similar arguments for D2: D3 = O
(
R2k+1

T 2k

)
.

Combining the results for D1, D2 and D3, we have ‖vec(V ar(SC))‖ = O(R2k+1/T 2k).
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(b) By Chebyshev’s inequality for vectors, we have that, for any real number ε > 0

P

[∥∥∥∥ T k

Rk−
1
2

1

R
SC

∥∥∥∥ > ε

]
≤
‖vec(V ar( Tk

Rk−
1
2

1
RSC))‖

ε2
=

T 2k

R2k+1 ‖vec(V ar(SC))‖
ε2

= O(1),

where the last equality follows from the result in part (a). Therefore ‖R−1SC‖ = Op(R
k− 1

2 /T k).

Proof of Lemma 6. (a). First we note that there is a continuously differentiable function

f(·) such that f(vec(B−1
R )) − f(vec(B∗R

−1)) = vec(BR) − vec(B∗R). Then there exists an open

neighborhood N(vec(B∗R
−1)) of vec(B∗R

−1) such that supv∈N(vec(B∗R
−1)) |fν(ν)| < d, where d is a

constant, 0 < d < ∞, and fν(ν) ≡ ∂f(ν)/∂ν. Next by taking the first order Taylor expansion of

f(·) around vec(B∗R
−1), we get

sup
R∈ΘR

(R
1
2
−δ) ‖vec(BR)− vec(B∗R)‖ = sup

R∈ΘR

(R
1
2
−δ)
∥∥∥fν(ν̃)(vec(B−1

R )− vec(B∗R
−1))

∥∥∥
≤

(
sup
R∈ΘR

|fν(ν̃)|

)(
sup
R∈ΘR

(R
1
2
−δ)
∥∥∥vec(B−1

R )− vec(B∗R
−1)
∥∥∥) (37)

where ν̃ satisfies that ‖ν̃ − vec(B∗R
−1)‖ ≤ ‖vec(B−1

R ) − vec(B∗R
−1)‖. Then it is sufficient to show

that supR∈ΘR |fν(ν̃)| = Op(1) and supR∈ΘR(R
1
2
−δ)‖vec(B−1

R )− vec(B∗R
−1)‖ = Op(1).

First we need to show that supR∈ΘR |fν(ν̃)| = Op(1). Following the notation in Lemma 5 and

the result of Lemma 5(a), we have ‖vec(V ar(SC))‖ = O(R2k+1/T 2k). So when k = 0,

‖vec(V ar(SC))‖ ≡

∥∥∥∥∥vec
(
V ar

(
T−h∑

t=T−R+1

vec(xtx
′
t − E(xtx

′
t))

))∥∥∥∥∥ = O(R).

Let B ≡ vec(B−1
R )−vec(B∗R

−1), then we can write
∑T−h

t=T−R+1 vec(xtx
′
t−E(xtx

′
t)) ≡ RB. Therefore,

‖vec(V ar(B))‖ = O(R−1). Then for any ε > 0,

P

(
sup
R∈ΘR

∥∥∥R 1
2
−δB

∥∥∥ > ε

)
≤ #ΘR · sup

R∈ΘR

P
(∥∥∥R 1

2
−δB

∥∥∥ > ε
)

≤#ΘR · sup
R∈ΘR

‖vec(V ar(R
1
2
−δB))‖

ε2
≤ #ΘR · sup

R∈ΘR

C

R2δε2
= O(1),

for some C. Hence, vec(B−1
R )

p→ vec(B∗R
−1) uniformly in R. Then for any ε > 0, there exists

sufficiently large R such that P (ν̃ ∈ N(vec(B∗R
−1))) > 1− ε. This implies that for sufficiently large
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R, |fν(ν̃)| ≤ supν∈N(vec[B−1
R ]) |fν(ν)| < C uniformly in R with probability greater than 1 − ε, for

some C. Thus supR∈ΘR |fν(ν̃)| = Op(1).

Following the proof above, we have just shown that

sup
R∈ΘR

‖R
1
2
−δB‖ ≡ sup

R∈ΘR

(R
1
2
−δ)‖vec(B−1

R )− vec(B∗R
−1)‖ = Op(1).

The product of the rate of supR∈ΘR |fν(ν̃)| and supR∈ΘR(R
1
2
−δ)‖vec(B−1

R )− vec(B∗R
−1)‖ gives the

result .

(b) As shown in eq. (37),

‖vec(BR)− vec(B∗R)‖ =
∥∥∥fν(ν̃)(vec(B−1

R )− vec(B∗R
−1))

∥∥∥
≤ |fν(ν̃)| ·

∥∥∥∥∥vec
(

1

R

T−h∑
t=T−R+1

(xtx
′
t − E(xtx

′
t))

)∥∥∥∥∥ = Op(1/
√
R),

where the last equality follows from Lemma 5 and the proof in (a).

Proof of Lemma 7. Applying the Taylor expansion to β( tT ) around T
T yields

∥∥∥∥∥ 1

R2

T−h∑
t=T−R+1

[
E(xtx

′
t)

(
β(
t

T
)− β(

T

T
)

)]∥∥∥∥∥ =

∥∥∥∥∥ 1

R2

T−h∑
t=T−R+1

[
E(xtx

′
t)β

(1)(c)

(
t− T
T

)]∥∥∥∥∥ (38)

where c = λ t
T + (1− λ)TT , for some λ ∈ (0, 1). Then eq. (38) is bounded as

∥∥∥∥∥inf
t

[E(xtx
′
t)β

(1)(c)] · 1

R2

T−h∑
t=T−R+1

(
t− T
T

)

∥∥∥∥∥ ≤ eq. (38) ≤

∥∥∥∥∥sup
t

[E(xtx
′
t)β

(1)(c)] · 1

R2

T−h∑
t=T−R+1

(
t− T
T

)

∥∥∥∥∥ (39)

Based on Lemma 16, we derive

1

R2

T−h∑
t=T−R+1

t− T
T

= − 1

R2

R−1∑
j=h

j

T
' 1

R2

R∑
j=h

j

T
=
C

T
,

for some C. Then eq. (39) becomes

∥∥∥inf
t

[E(xtx
′
t)β

(1)(c)] · c1

T

∥∥∥ ≤ eq. (38) ≤
∥∥∥∥sup

t
[E(xtx

′
t)β

(1)(c)] · c1

T

∥∥∥∥
From Assumption 2 and Assumption 4, we know that ‖E(xtx

′
t)β

(1)(c)‖ ≤ C uniformly in t.
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Based on Assumption 3 and Assumption 4, we also know that ‖E(xtx
′
t)β

(1)(c)‖ > 0 uniformly in

t. Thus eq. (38)= C/T for some C.

Proof of Lemma 8. (a) Denote vt ≡ xtx
′
t − E(xtx

′
t), which is p × p. For i = 1, 2, . . . , p and

j = 1, 2, . . . , p, vij,t denotes the ith row and jth column element of vt. Note that {Gt} is zero-mean.

Then applying the triangle inequality gives

‖vec(V ar(SG))‖ =

∥∥∥∥∥∥vec
E

( T−h∑
t=T−R+1

Gt

)(
T−h∑

t=T−R+1

Gt

)′∥∥∥∥∥∥
≤

T−h∑
t=T−R+1

∥∥vec(E(GtG
′
t))
∥∥+

T−h∑
t=T−R+2

t−(T−R+1)∑
m=1

∥∥vec(E(GtG
′
t−m))

∥∥
+

T−h−1∑
t=T−R+1

T−h−t∑
m=1

∥∥vec(E(GtG
′
t+m))

∥∥ = J1 + J2 + J3

First we show the rate of J1. Expanding ‖vec(E(GtG
′
t))‖ gives

∥∥vec(E(GtG
′
t))
∥∥ =

∥∥∥∥vec(E [vt(β(
t

T
)− β(

T

T
))(β(

t

T
)− β(

T

T
))′v′t

])∥∥∥∥
=


p∑
i=1

p∑
l=1

E
 p∑

j=1

vij,t(βj(
t

T
)− βj(

T

T
))

( p∑
k=1

vlk,t(βk(
t

T
)− βk(

T

T
))

)2
1/2

It follows from Assumption 4 that there exists some C, such that
∣∣βj( tT )− βj(TT )

∣∣ ≤ ∣∣ t−TT ∣∣C for

each j. Then

∥∥vec(E(GtG
′
t))
∥∥ ≤


p∑
i=1

p∑
l=1

E
 p∑

j=1

|vij,t|
∣∣∣∣ t− TT

∣∣∣∣C
( p∑

k=1

|vlk,t|
∣∣∣∣ t− TT

∣∣∣∣C
)2

1/2

=

(
t− T
T

)2

C2 ·


p∑
i=1

p∑
l=1

E
 p∑

j=1

|vij,t|

( p∑
k=1

|vlk,t|

)2
1/2

=

(
t− T
T

)2

C2 ·


p∑
i=1

p∑
l=1

 p∑
j=1

p∑
k=1

E(|vij,tvlk,t|)

2
1/2

(40)

By the Cauchy-Schwartz inequality, we know that

E(|vij,tvlk,t|) ≤ ‖vij,t‖2‖vlk,t‖2.
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Because {vij,t} is Lr-bounded uniformly in t for some r > 2 by Assumption 2(ii), ‖vij,t‖2 is finite

for each i = 1, 2, . . . , p and j = 1, 2, . . . , p. Thus since p is finite, we have


p∑
i=1

p∑
l=1

 p∑
j=1

p∑
k=1

E(|vij,tvlk,t|)

2
1/2

≤


p∑
i=1

p∑
l=1

 p∑
j=1

p∑
k=1

‖vij,t‖2‖vlk,t‖2

2
1/2

= O(1).

Then it follows from eq. (40) that

J1 =
T−h∑

t=T−R+1

∥∥vec(E(GtG
′
t))
∥∥ ≤ T−h∑

t=T−R+1

(
t− T
T

)2

M2 ·O(1) = O(R3/T 2).

The last equality follows from Lemma 16 and eq. (32). Hence, the rate of J1 is O(R3/T 2).

Next we need to show the rate of J2. Again expanding ‖vec(E(GtG
′
t−m))‖ gives

‖vec(E(GtG
′
t−m))‖ =

∥∥∥∥vec(E [vt(β(
t

T
)− β(

T

T
))(β(

t−m
T

)− β(
T

T
))′v′t−m

])∥∥∥∥
=


p∑
i=1

p∑
l=1

E
 p∑

j=1

vij,t(βj(
t

T
)− βj(

T

T
))

( p∑
k=1

vlk,t−m(βk(
t−m
T

)− βk(
T

T
))

)2
1/2

By the Lipschitz condition implied by Assumption 4, there exists some C such that for each

j = 1, 2, . . . , p,
∣∣βj( tT )− βj(TT )

∣∣ ≤ ∣∣ t−TT ∣∣C and
∣∣βj( t−mT )− βj(TT )

∣∣ ≤ ∣∣ t−m−TT

∣∣C. Then we have

E

 p∑
j=1

vij,t(βj(
t

T
)− βj(

T

T
))

( p∑
k=1

vlk,t−m(βk(
t−m
T

)− βk(
T

T
))

)
≤

p∑
j=1

p∑
k=1

|Evij,tvlk,t−m|
∣∣∣∣(βj( tT )− βj(

T

T
)

)(
βk(

t−m
T

)− βk(
T

T
)

)∣∣∣∣
≤

p∑
j=1

p∑
k=1

|Evij,tvlk,t−m|C2

∣∣∣∣ t− TT
∣∣∣∣ ∣∣∣∣ t−m− TT

∣∣∣∣ . (41)

From Assumption 2, Theorem 17.9 in Davidson (1994, p.268) and the Lyapunov inequality (see

9.23 in Davidson (1994, p. 139)), we know that {vec(vt)} is L2r/(r−1)-NED of size −2 on {Vt},

where {Vt} is α-mixing of size −2r/(r − 2). So by the Lyapunov inequality, L2r/(r−1)-NED of size

−2 implies Lr/(r−1)-NED of size −2 when r > 2. Hence, {vec(vt)} is an Lr/(r−1)-NED process

of size −2 on {Vt}. Also as stated in the proof of Lemma 4, it follows from Assumption 2 that
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{vij,t} is Lr-bounded uniformly in t for r > 2. So applying Lemma 15, we have {vec(vt)} is an

Lr/(r−1)-mixingale of size −2. Combining with Theorem 17.5(i), Theorem 17.7(i) and equation

(17.26) in Davidson (1994, p.267), there exists a sequence of non-negative constants {ζm}, where

ζm = O(m−2), such that

|Evij,tvlk,t−m| ≤ ‖vij,t‖ 1
r−1
‖vlk,t−m‖ r

r−1
= O(ζm) = O(m−2). (42)

If follows from eq. (41) that

‖vec(E(GtG
′
t−m))‖ ≤M2

∣∣∣∣ t− TT
∣∣∣∣ ∣∣∣∣ t−m− TT

∣∣∣∣


p∑
i=1

p∑
l=1

 p∑
j=1

p∑
k=1

|Evij,tvlk,t−m|

2
1/2

≤M2

∣∣∣∣ t− TT
∣∣∣∣ ∣∣∣∣ t−m− TT

∣∣∣∣


p∑
i=1

p∑
l=1

 p∑
j=1

p∑
k=1

‖vij,t‖r‖vlk,t−m‖rζm

2
1/2

=O

(∣∣∣∣ t− TT
∣∣∣∣ ∣∣∣∣ t−m− TT

∣∣∣∣ 1

m2

)

where the last equality holds because p and M are both finite, 0 < p <∞, and 0 < M <∞. Then

the rate of J2 is given by

J2 =

T−h∑
t=T−R+2

t−(T−R+1)∑
m=1

∥∥vec(E(GtG
′
t−m))

∥∥ = O

 T−h∑
t=T−R+2

t−(T−R+1)∑
m=1

∣∣∣∣ t− TT
∣∣∣∣ ∣∣∣∣ t−m− TT

∣∣∣∣ 1

m2


Using Lemma 18, we know J2 = O(R3/T 2).

Finally, taking similar steps to find the rate of J2 with Lemma 18 replaced by Lemma 17,

it can be shown that J3 = O(R3/T 2). By combining the results for J1, J2 and J3, the rate of

‖vec(V ar(SG))‖ is O(R3/T 2).

(b) By Chebyshev’s inequality for vectors, we have for any real number ε > 0

P

[∥∥∥∥ T

R3/2
SG

∥∥∥∥ > ε

]
≤
‖vec(V ar( T

R3/2SG))‖
ε2

=
T 2

R3 ‖vec(V ar(SG))‖
ε2

= O(1),

where the last equality follows from the result in part (a). Therefore R−1SG = Op(
√
R/T ).

(c) By Boole’s inequality (Chung, 1974, p.20) and Chebyshev’s inequality, it follows that for any
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ε > 0,

P

(
sup
R∈ΘR

∥∥∥∥ T

R
1
2

+δ

(
1

R
SG

)∥∥∥∥ > ε

)
≤
∑
R∈ΘR

P

(∥∥∥∥ T

R
1
2

+δ

(
1

R
SG

)∥∥∥∥ > ε

)

≤#ΘR · sup
R∈ΘR

P

(∥∥∥∥ T

R
1
2

+δ

(
1

R
SG

)∥∥∥∥ > ε

)
≤ #ΘR · sup

R∈ΘR

‖vec(V ar( T

R
1
2+δ

(
1
RSG

)
))‖

ε2

≤#ΘR · sup
R∈ΘR

T 2

R3+2δ · ‖vec(V ar(SG))‖
ε2

#ΘR · sup
R∈ΘR

C

R2δε2
,

for some C. The last inequality follows from part (a). Hence

P

(
sup
R∈ΘR

∥∥∥∥ T

R
1
2

+δ

(
1

R
SG

)∥∥∥∥ > ε

)
≤ #ΘR ·

c

R2δε2
= O(1)

Therefore supR∈ΘR
T

R
1
2+δ

∥∥ 1
RSG

∥∥ = Op(1), for some δ, 0 < δ < 1/2. The proof is complete.

Proof of Lemma 9. Following the notation in Lemma 1 and the decomposition in eq. (24), we

need to further show the rate of E1 and E2 uniformly in R, R ∈ ΘR. Hereafter denote supR∈ΘR by

supR for simplicity. First we show the uniform rate of the first term E1. Expanding E1 gives

sup
R
‖R

1
2
−δE1‖ = sup

R
‖R

1
2
−δBRHR‖ = sup

R
‖R

1
2
−δ(B∗RHR + (BR −B∗R)HR)‖

≤
(

sup
R
‖vec(B∗R)‖

)(
sup
R

(R
1
2
−δ‖HR‖)

)
+

(
sup
R
‖vec(BR)− vec(B∗R)‖

)(
sup
R

(R
1
2
−δ)‖HR‖

)
(43)

It follows from Assumption 3 that supR ‖vec(B∗R)‖ = O(1). Lemma 11 implies that

supR(R
1
2
−δ‖HR‖) = Op(1). From Lemma 6(a), we know supR∈ΘR(R

1
2
−δ) ‖vec(BR)− vec(B∗R)‖ =

Op(1). Then the rate of eq. (43) is given by

sup
R
‖R

1
2
−δE1‖ ≤ O(1)Op(1) + sup

R
(R−

1
2

+δ)Op(1)Op(1) = Op(1).

Therefore the uniform rate of E1 is given by supR ‖R
1
2
−δE1‖ = Op(1). Next we need to find the
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uniform rate of the second term E2. Expanding E2 gives

sup
R

∥∥∥∥TRE2

∥∥∥∥ = sup
R

∥∥∥∥TRBRQR
∥∥∥∥

= sup
R

T

R
‖B∗RQ∗R +B∗R(QR −Q∗R) + (BR −B∗R)Q∗R + (BR −B∗R)(QR −Q∗R)‖

≤
(

sup
R
‖vec(B∗R)‖

)(
sup
R
‖T
R
Q∗R‖

)
+

(
sup
R
‖vec(B∗R)‖

)(
sup
R
‖T
R

(QR −Q∗R)‖
)

+

(
sup
R
‖vec(BR)− vec(B∗R)‖

)(
sup
R
‖T
R
Q∗R‖

)
+

(
sup
R
‖vec(BR)− vec(B∗R)‖

)(
sup
R
‖T
R

(QR −Q∗R)‖
)

(44)

Again it follows from Assumption 3 that supR ‖vec(B∗R)‖ = O(1). From Lemma 12, we know

that supR ‖TRQ
∗
R‖ = O(1). Lemma 8(c) implies that for some constant δ, 0 < δ < 1/2,

supR∈ΘR
T

R
1
2+δ
‖QR−Q∗R‖ = Op(1). Again from Lemma 6(a), we know supR∈ΘR(R

1
2
−δ)‖vec(BR)−

vec(B∗R)‖ = Op(1). Thus the rate of eq. (44) is given by

sup
R

∥∥∥∥TRE2

∥∥∥∥ ≤ O(1)O(1) +O(1) sup
R

(R−
1
2

+δ)Op(1)

+ sup
R

(R−
1
2

+δ)Op(1)O(1) + sup
R

(R−
1
2

+δ)Op(1) sup
R

(R−
1
2

+δ)Op(1) = O(1).

Combining the uniform rates of E1 and E2 and Equation (24) yields supR min(R
1
2
−δ, T/R)‖β̂R(1)−

β(1)‖ = Op(1). Then using the Cauchy-Schwarz inequality, we get

sup
R∈ΘR

min(R
1
2
−δ, T/R)(β̂R(1)− β(1))′xT ≤ sup

R∈ΘR

min(R
1
2
−δ, T/R)‖β̂R(1)− β(1)‖‖xT ‖ = Op(1).

Proof of Lemma 10. Assumption 2(ii) implies that ‖vec(E(xtx
′
t))‖ is bounded uniformly in t,

thus ‖R−1
∑T−h

t=T−R+1 vec(E(xtx
′
t))‖ is O(1) uniformly for all R.

Proof of Lemma 11. Following the notation in Lemma 4, we have
∑T−h

t=T−R+1 xtut+h ≡ SU , when

the parameter k in Lemma 4 is set to zero. Then Lemma 4(a) implies that ‖vec(V ar(SU ))‖ ' R.
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By Boole’s inequality and Chebyshev’s inequality, for any ε > 0,

P

(
sup
R∈ΘR

∥∥∥∥ 1

R
1
2

+δ
SU

∥∥∥∥ > ε

)
≤
∑
R∈ΘR

P

(∥∥∥∥ 1

R
1
2

+δ
SU

∥∥∥∥ > ε

)
≤ #ΘR · sup

R∈ΘR

P

(∥∥∥∥ 1

R
1
2

+δ
SU

∥∥∥∥ > ε

)

≤#ΘR · sup
R∈ΘR

‖vec(V ar( 1

R
1
2+δ

SU ))‖

ε2
' #ΘR · sup

R∈ΘR

C

R2δε2
,

for some C. Hence

P

(
sup
R∈ΘR

∥∥∥∥ 1

R
1
2

+δ
SU

∥∥∥∥ > ε

)
≤ #ΘR ·

c

R2δε2
= O(1).

Therefore supR∈ΘR ‖R
− 1

2
−δ∑T−h

t=T−R+1 xtut+h‖ = Op(1), where 0 < δ < 1/2.

Proof of Lemma 12. By the Cauchy-Schwarz inequality, we have

sup
R∈ΘR

∥∥∥∥∥ TR2

T−h∑
t=T−R+1

E(xtx
′
t)

(
β(

t

T
)− β(

T

T
)

)∥∥∥∥∥ ≤ sup
R∈ΘR

(
T

R2

T−h∑
t=T−R+1

‖vec(E(xtx
′
t))‖‖β(

t

T
)− β(

T

T
)‖

)
.

Assumption 2(ii) implies that ‖vec(E(xtx
′
t))‖ is bounded uniformly in t. Next Assumption 4(i)

implies that ‖β( tT )− β(TT )‖ ≤ C
(
T−t
T

)
for some C. Then it follows that

sup
R∈ΘR

(
T

R2

T−h∑
t=T−R+1

‖vec(E(xtx
′
t))‖‖β(

t

T
)− β(

T

T
)‖

)
≤ sup

R∈ΘR

(
CT

R2

T−h∑
t=T−R+1

(
T − t
T

))
= O(1),

for some C, where the last equality follows from eq. (30) and Lemma 16.

Proof of Lemma 13. Define matrix SR0(1) and vector TR0(1) as

 β̃(1)

β̃(1)(1)

 =

 1
R0

∑
xsx
′
s

1
R0

∑
xsx
′
s

(
s−T
T

)
1
R0

∑
xsx
′
s

(
s−T
T

)
1
R0

∑
xsx
′
s

(
s−T
T

)2

−1  1

R0

∑
xsys+h

1
R0

∑
xsys+h

(
s−T
T

)


≡ [SR0(1)]−1 TR0(1) (45)

where the summation
∑

represents
∑T−h

s=T−R0+1. R0 is the window size used for the local linear

regression. Note that both SR0(1) and TR0(1) depend on R0.

Applying Taylor’s theorem to β( sT ) yields

β
( s
T

)
= β (1) + β(1) (1)

(
s− T
T

)
+
β(2) (c)

2!

(
s− T
T

)2

(46)
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where c = λ sT + (1− λ)TT , for λ ∈ (0, 1). By substituting eq. (46) into ys+h, we can write

ys+h =x′sβ
( s
T

)
+ us+h = x′sβ (1) + x′s

(
s− T
T

)
β(1) (1) + x′s

(
s− T
T

)2 β(2) (c)

2!
+ us+h.

Then TR0(1) can be expanded as follows:

TR0(1) =

 1
R0

∑
xsys+h

1
R0

∑
xsys+h

(
s−T
T

)
 =

 1
R0

∑
xsx
′
s

1
R0

∑
xsx
′
s

(
s−T
T

)
1
R0

∑
xsx
′
s

(
s−T
T

)
1
R0

∑
xsx
′
s

(
s−T
T

)2


︸ ︷︷ ︸
=SR0

(1)

 β (1)

β(1) (1)



+

 1
R0

∑
xsx
′
s

(
s−T
T

)2
1
R0

∑
xsx
′
s

(
s−T
T

)3
 β(2) (c)

2!
+

 1
R0

∑
xsus+h

1
R0

∑
xs
(
s−T
T

)
us+h

 . (47)

By substitiuting eq. (47) into eq. (45), we obtain

 β̃(1)− β (1)

β̃(1)(1)− β(1) (1)

 = [SR0(1)]−1

 1
R0

∑
xsx
′
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(
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2!
+ [SR0(1)]−1

 1
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∑
xsus+h

1
R0

∑
xs
(
s−T
T

)
us+h


(48)

SR0(1) can be expanded as follows:

SR0(1) =

 1
R0

∑
xsx
′
s

1
R0

∑
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′
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s−T
T

)
1
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∑
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′
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(
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)
1
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∑
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′
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(
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=

 1
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∑
E (xsx

′
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1
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∑
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∑
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′
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T

)
1
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∑
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′
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(
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T
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+

 1
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′
s − E (xsx

′
s))

1
R0

∑
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′
s − E (xsx

′
s))
(
s−T
T

)
1
R0

∑
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′
s − E (xsx

′
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(
s−T
T

)
1
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∑
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′
s − E (xsx

′
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(
s−T
T

)2


=K1 +K2
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It follows from Assumption 3, Lemma 3 and Lemma 5 that

K1 =

 O (1) O
(
R0
T

)
O
(
R0
T

)
O
(
R2

0
T 2

)
 , K2 =

Op
(

1√
R0

)
Op

(√
R0
T

)
Op

(√
R0
T

)
Op

(
R

3/2
0
T 2

)
 .

Therefore, the rate of SR0(1) is determinted by K1. By using the inverse of partitioned matrices in

Abadir and Magnus (2005, p106) and Lemma 19, we obtain

[SR0(1)]−1 =

 O (1) O
(
T
R0

)
O
(
T
R0

)
O
(
T 2

R2
0

)


Then the rate of eq. (48) is

 β̃(1)− β (1)

β̃(1)(1)− β(1) (1)

 = [SR0(1)]−1

 1
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∑
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′
s)
(
s−T
T

)2
1
R0

∑
E (xsx

′
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(
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 β(2) (c)

2!
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∑
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′
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(
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T
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1
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∑
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(
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 β(2) (c)
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+ [SR0(1)]−1

 1
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∑
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1
R0

∑
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(
s−T
T

)
us+h

 = L1 + L2 + L3

It follows from Lemma 3, Assumption 4(ii), Lemma 5 and Lemma 4 that

L1 =

O (R2
0

T 2

)
O
(
R0

T

)
 , L2 =

Op

(
R

3/2
0

T 2

)
Op

(√
R0

T

)
 , L3 =

Op

(
1√
R0

)
Op

(
T

R
3/2
0

)
 .

Therefore we obtain the convergence rates of β̃(1) and β̃(1)(1) as

 β̃(1)− β (1)

β̃(1)(1)− β(1) (1)

 =

Op
(
R2

0
T 2

)
+Op

(
1√
R0

)
Op
(
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)
+Op

(
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3/2
0

)
 .

42



Proof of Lemma 14. If R
1/2
0 ≤ T 2/R2

0,

min(R
1
2
−δ, T/R)

min(R
1
2
0 , T

2/R2
0)

=
min(R

1
2
−δ, T/R)

R
1
2
0

≤ R
1
2
−δ

R
1
2
0

= o(1), (49)

where the inequality follows because min(A,B) ≤ A and the last equality follows since R0 >> R

by Assumption 5 and 0 < δ < 1/2. If R
1/2
0 ≥ T 2/R2

0,

min(R
1
2
−δ, T/R)

min(R
1
2
0 , T

2/R2
0)

=
min(R

1
2
−δ, T/R)

T 2/R2
0

≤ T/R

T 2/R2
0

= o(1) (50)

where the last equality follows because R2
0R/T = o(1) in Assumption 5.

Proof of Lemma 15. Given that {Ut} is an Lr/(r−1)-NED process of size −2 on {Vt} with

constants {dt}, where {Vt} is α-mixing of size −2r/(r − 2), then it follows from Theorem 17.5 in

Davidson (1994, p.264) that {Ut,F t
−∞} is an Lr/(r−1) mixingale of size −min{2, (2r/(r − 2))((r −

1)/r − 1/r)} = −2 with constants ct = O(max{‖Ut‖r , dt}).

Proof of Lemma 16. Using Theorem 2.27 in Davidson (1994, p.32), we know that
∑R

j=1 j
k '

Rk+1 when k > −1. Then Bk '
∑R

j=1 j
k/Rk+1 '

∑R
j=h j

k/Rk+1 ' C, for some C, 0 < c <∞.

Proof of Lemma 17. Notice that

T−h−1∑
t=T−R+1

T−h−t∑
m=1

[
1

m2

(
t− T
T

)k ( t+m− T
T

)k]
≤
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t=T−R+1
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m=1

[
1
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(
T − t
T

)2k
]

=
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t=T−R+1

(
T − t
T

)2k

+
T−h−2∑

t=T−R+1

T−h−t∑
m=2

[
1

m2

(
T − t
T

)2k
]

= H1 +H2.

H1 ' R2k+1/T 2k by eq. (32). H2 follows

H2 ≤
T−h−2∑

t=T−R+1

[(
T − t
T

)2k T−h−t∑
m=2

∫ m

m−1

1

x2
dx

]
=

T−h−2∑
t=T−R+1

[(
T − t
T

)2k ∫ T−h−t

1

1

x2
dx

]

=
T−h−2∑

t=T−R+1

[(
T − t
T

)2k (
1− 1

T − h− t

)]
≤

T−h−2∑
t=T−R+1

(
T − t
T

)2k

= O

(
R2k+1

T 2k

)
. (51)

The first inequality in eq. (51) holds because for m = 2, 3, ..., R, R ∈ Z+, we always have

1

m2
≤ 1

m(m− 1)
=

∫ m

m−1

1

x2
dx (52)
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Combining the rates of H1 and H2 gives the result.

Proof of Lemma 18. The expression is bounded by:

∣∣∣∣∣∣
T−h∑

t=T−R+2

t−(T−R+1)∑
m=1

[
1

m2

(
t− T
T

)k ( t−m− T
T

)k]∣∣∣∣∣∣ ≤
T−h∑

t=T−R+2

t−(T−R+1)∑
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1
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(
T − t
T

)k (R
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)k T−h∑
t=T−R+2
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T − t
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+
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R

T

)k T−h∑
t=T−R+2

(T − t
T

)k t−(T−R+1)∑
m=2

1

m2

 = I1 + I2.

First, we want to show that I1 ' R2k+1/T 2k. According to Lemma 16, we have

T−h∑
t=T−R+2

(
T − t
T

)k
=

R−2∑
j=h

jk

T k
'

R∑
j=h

jk

T k
' Rk+1

T k
. (53)

Hence it follows that I1 = CR2k+1/T 2k for some C.

Next, we want to show the rate of I2. It follows from eq. (52) that

t−(T−R+1)∑
m=2

1

m2
≤

t−(T−R+1)∑
m=2

∫ m

m−1

1

x2
dx =

∫ t−(T−R+1)

1

1

x2
dx = 1− 1

t− (T −R+ 1)
. (54)

Then the rate of I2 is given by

I2 ≤
(
R

T

)k T−h∑
t=T−R+2

[(
T − t
T

)k (
1− 1

t− (T −R+ 1)

)]
≤
(
R

T

)k T−h∑
t=T−R+2

(
T − t
T

)k
.

By using arguments similar to those used in eq. (53), I2 ' R2k+1/T 2k, we obtain∑T−h
t=T−R+2

∑t−(T−R+1)
m=1 m−2(t− T )k(t−m− T )k/T 2k = O(R2k+1/T 2k).

Proof of Lemma 19. Suppose that (A+B)−1 = A−1 +X. Then

(A−1 +X)(A+B) =I

X(A+B) =−A−1B

X =−A−1B(A+B)−1 = −A−1B(A−1 +X) = −(I +A−1B)−1A−1BA−1

Hence (A+B)−1 = A−1 − (I +A−1B)−1A−1BA−1.
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Table 1: Description of DGPs

[
yt+1

xt+1

]
=

[
βt
0

]
+

[
at bt
0 0.9

] [
yt
xt

]
+

[
uy,t+1

ux,t+1

]
,

where

[
uy,t+1

ux,t+1

]
∼ N

([
0
0

]
,

[
σ2 0
0 1

])
.

DGP βt σ2 at bt Comments

1 0 1 0 0 Constant parameter
2 I(t ≥ 0.25T + 1) 3

16
0 0 Break at date 0.25T

3 I(t ≥ 0.5T + 1) 1
4

0 0 Break at date 0.5T
4 I(t ≥ 0.75T + 1) 3

16
0 0 Break at date 0.75T

5 t/T 1
12

0 0 Linearly time-varying parameter
6 (t/T )2 9

100
0 0 Quadratically time-varying parameter

7 βt = βt−1 +
√

2
T
εt 1 0 0

εt ∼ N(0, 1), β0 = 0 βt follows a random walk

8 0 1 0.9 1 Constant parameters
9 0 1 0.9 − 0.4I(t ≥ 0.25T + 1) 1 Break in at at date 0.25T
10 0 1 0.9 − 0.4I(t ≥ 0.5T + 1) 1 Break in at at date 0.5T
11 0 1 0.9 − 0.4I(t ≥ 0.75T + 1) 1 Break in at at date 0.75T
12 0 1 0.9 − 0.4I(t ≥ 0.95T + 1) 1 Break in at at date 0.95T
13 0 1 0.9 1 + I(t ≥ 0.25T + 1) Break in bt at date 0.25T
14 0 1 0.9 1 + I(t ≥ 0.5T + 1) Break in bt at date 0.5T
15 0 1 0.9 1 + I(t ≥ 0.75T + 1) Break in bt at date 0.75T
16 0 1 0.9 1 + I(t ≥ 0.95T + 1) Break in bt at date 0.95T
17 0 1 0.9 − 0.4(t/T ) 1 Linearly time-varying at
18 0 1 0.9 1 + (t/T ) Linearly time-varying bt
19 0 1 0.9 − 0.4(t/T )2 1 Quardratically time-varying at
20 0 1 0.9 1 + (t/T )2 Quardratically time-varying bt
21 0 1 at = at−1 + 0.1√

T
εt 1 at follows a random walk

εt ∼ N(0, 1), a0 = 0.9
22 0 1 0.9 bt = bt−1 + 1√

T
εt bt follows a random walk

εt ∼ N(0, 1), b0 = 1
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Table 2: Root MSFE (T=100, h=1)

Estimated break date (T̂1) Unknown break date Cai’s methods New methods
DGP Postbk CV WA Pooled Troff WLS CV WA Pooled Cai1 Cai2 LL1 LL2 LQ1 LQ2 PPP OptR1 OptR2 OptR3 True

1 1.003 1.001 1.000 1.000 1.003 1.003 1.007 1.002 1.004 1.011 1.006 1.066 1.050 1.131 1.124 1.005 1.002 1.002 1.002 1.000
2 0.874 0.880 0.916 0.911 0.874 0.874 0.883 0.881 0.878 0.904 0.901 1.010 0.999 1.240 1.215 0.879 0.879 0.879 0.879 0.867
3 0.718 0.722 0.859 0.831 0.718 0.718 0.723 0.823 0.755 0.740 0.737 0.819 0.806 1.002 0.965 0.749 0.722 0.722 0.722 0.711
4 0.515 0.625 0.875 0.799 0.515 0.514 0.625 0.875 0.727 0.526 0.527 0.587 0.583 0.719 0.702 0.692 0.596 0.596 0.596 0.505
5 0.663 0.655 0.8500 0.822 0.663 0.655 0.599 0.813 0.698 0.706 0.740 0.543 0.535 0.576 0.572 0.671 0.588 0.588 0.588 0.522
6 0.603 0.621 0.860 0.818 0.603 0.592 0.602 0.850 0.719 0.598 0.667 0.458 0.450 0.500 0.484 0.681 0.586 0.586 0.586 0.447
7 0.878 0.883 0.948 0.933 0.878 0.877 0.873 0.938 0.894 0.858 0.867 0.897 0.884 1.027 1.003 0.879 0.881 0.881 0.881 0.816
8 1.007 1.003 1.001 1.001 1.007 1.419 1.018 1.011 1.019 1.030 1.022 1.213 1.191 1.619 1.496 1.008 1.008 1.008 0.999
9 0.806 0.797 0.939 0.925 0.808 1.236 0.804 0.831 0.806 0.844 0.825 1.168 1.079 3.396 2.6687 0.821 0.822 0.822 0.772
10 0.715 0.697 0.925 0.904 0.722 1.087 0.701 0.872 0.763 0.753 0.750 1.087 0.975 3.114 2.123 0.723 0.723 0.723 0.668
11 0.708 0.909 0.950 0.912 0.747 1.060 0.909 0.949 0.839 0.790 0.827 0.990 0.921 5.342 2.602 0.832 0.831 0.831 0.614
12 1.059 0.946 0.964 0.936 1.029 1.411 0.937 0.957 0.903 1.064 1.015 1.777 1.591 5.114 3.536 0.917 0.917 0.917 0.639
13 0.881 0.885 0.938 0.928 0.883 1.636 0.893 0.892 0.891 0.938 0.914 1.294 1.155 2.884 2.015 0.917 0.919 0.919 0.857
14 0.731 0.734 0.889 0.860 0.741 1.246 0.738 0.849 0.773 0.803 0.792 1.112 0.998 2.653 2.344 0.758 0.760 0.760 0.696
15 0.650 0.785 0.894 0.831 0.673 1.040 0.784 0.894 0.772 0.752 0.791 0.919 0.848 2.842 1.541 0.716 0.716 0.716 0.584
16 0.890 0.903 0.945 0.907 0.892 1.240 0.887 0.932 0.851 0.895 0.911 0.898 0.873 1.409 1.815 0.845 0.845 0.845 0.577
17 0.849 0.848 0.927 0.916 0.851 1.242 0.830 0.892 0.845 0.874 0.887 0.882 0.860 1.102 1.027 0.824 0.825 0.825 0.768
18 0.847 0.846 0.914 0.901 0.848 1.301 0.830 0.884 0.839 0.872 0.882 0.896 0.868 1.135 1.047 0.825 0.826 0.826 0.761
19 0.798 0.809 0.921 0.902 0.801 1.177 0.792 0.901 0.822 0.855 0.885 0.790 0.786 1.003 0.920 0.763 0.764 0.764 0.676
20 0.776 0.789 0.900 0.874 0.781 1.195 0.775 0.881 0.802 0.851 0.870 0.787 0.757 1.129 0.920 0.756 0.756 0.756 0.663
21 1.039 1.030 0.999 1.000 1.000 4.594 1.030 0.999 1.005 1.312 1.126 1.034 1.475 1.945 1.261 1.038 1.038 1.038 0.790
22 0.823 0.835 0.928 0.902 0.828 1.245 0.826 0.912 0.839 0.865 0.873 1.085 0.993 3.086 1.652 0.822 0.823 0.823 0.709

Notes: Postbk: Pesaran and Timmermann’s (2007) post-break method; CV: PT’s cross validation; WA: PT’s weighted average of forecasts; Pooled: PT’s pooled
forecast combination; Troff: PT’s trade-off method; WLS: Anatolyev and Kitov’s (2007); Cai1: Cai’s (2007) AIC and the rolling OLS estimator; Cai2: Cai’s (2007)
AIC and local constant regressins on the Epanechnikov kernel; LL1: Cai’s (2007) AIC and local linear regressions with the uniform kernel; LL2: Cai’s (2007) AIC
and local linear regressions with the Epanechnikov kernel; LQ1: Cai’s (2007) AIC and local quadratic regressions with the uniform kernel; LQ2: Cai’s (2007) AIC
and local quadratic regressions with the Epanechnikov kernel; PPP: Pesaran, Pick and Pranovich’s (2013) robust optimal weights (eq. 48 in their paper) that
integrate the break date over the entire sample; OptR1: R0=CV(unknown break date), R = max(1.5T 2/3, 20), R = min(4T 2/3, T −h); OptR2: R0=CV(unknown
break date), R = max(1.5T 2/3, 20), R = min(5T 2/3, T − h); OptR3: R0=CV(unknown break date), R = max(1.5T 2/3, 20), R = min(6T 2/3, T − h); True: the

infeasible MSFE criterion. The estimated break date T̂1 is obtained using Bai and Perron (1998) with [0.15T, 0.85T ] trimming range for possible break dates at
the 5% significance level.
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Table 3: Root MSFE (T=200, h=1)

Estimated break date (T̂1) Unknown break date Cai’s methods New method
DGP Postbk CV WA Pooled Troff WLS CV WA Pooled Cai1 Cai2 LL1 LL2 LQ1 LQ2 PPP OptR1 OptR2 OptR3 True

1 1.001 1.000 1.000 1.000 1.001 1.001 1.003 1.001 1.001 1.006 1.004 1.032 1.024 1.070 1.066 1.002 1.000 1.000 1.000 1.000
2 0.866 0.869 0.914 0.908 0.866 0.866 0.871 0.875 0.870 0.880 0.880 0.944 0.943 1.058 1.060 0.870 0.870 0.870 0.870 0.864
3 0.709 0.711 0.857 0.830 0.709 0.709 0.711 0.819 0.749 0.719 0.718 0.768 0.767 0.858 0.854 0.741 0.711 0.711 0.711 0.706
4 0.504 0.611 0.872 0.798 0.504 0.504 0.611 0.872 0.723 0.508 0.509 0.546 0.545 0.608 0.612 0.687 0.508 0.508 0.508 0.500
5 0.658 0.653 0.847 0.821 0.658 0.654 0.590 0.810 0.694 0.694 0.731 0.518 0.514 0.537 0.535 0.665 0.553 0.553 0.553 0.511
6 0.597 0.614 0.857 0.817 0.597 0.592 0.595 0.848 0.716 0.524 0.587 0.434 0.430 0.461 0.452 0.675 0.529 0.529 0.529 0.436
7 0.862 0.874 0.946 0.930 0.862 0.861 0.868 0.938 0.893 0.836 0.839 0.853 0.853 0.926 0.924 0.878 0.859 0.859 0.859 0.805
8 1.005 1.008 1.000 1.000 1.004 1.418 1.005 1.001 1.005 1.009 1.006 1.082 1.067 1.188 1.162 1.003 1.003 1.003 1.000
9 0.750 0.744 0.924 0.905 0.751 1.140 0.748 0.791 0.755 0.780 0.772 0.965 0.921 1.420 1.314 0.754 0.755 0.755 0.738
10 0.670 0.663 0.914 0.891 0.672 1.006 0.664 0.859 0.736 0.693 0.690 0.847 0.813 1.274 1.168 0.677 0.678 0.678 0.654
11 0.625 0.833 0.936 0.893 0.635 0.938 0.833 0.936 0.814 0.646 0.677 0.769 0.750 1.145 1.046 0.685 0.685 0.685 0.595
12 0.904 0.924 0.966 0.944 0.895 1.284 0.918 0.962 0.920 0.925 0.931 0.932 0.928 1.359 1.335 0.882 0.882 0.882 0.685
13 0.858 0.861 0.922 0.912 0.858 1.407 0.863 0.872 0.864 0.905 0.895 1.119 1.055 1.582 1.427 0.874 0.875 0.876 0.851
14 0.685 0.688 0.868 0.835 0.689 1.065 0.689 0.827 0.736 0.723 0.715 0.910 0.867 1.311 1.187 0.704 0.706 0.706 0.676
15 0.567 0.707 0.891 0.821 0.576 0.879 0.707 0.891 0.753 0.597 0.619 0.718 0.690 1.052 0.930 0.592 0.594 0.594 0.545
16 0.814 0.891 0.948 0.907 0.817 1.153 0.882 0.942 0.868 0.829 0.849 0.726 0.729 0.828 0.807 0.819 0.818 0.818 0.575
17 0.813 0.810 0.913 0.902 0.816 1.181 0.775 0.871 0.812 0.838 0.854 0.782 0.769 0.855 0.839 0.763 0.764 0.764 0.734
18 0.781 0.782 0.894 0.879 0.783 1.159 0.762 0.865 0.803 0.835 0.852 0.757 0.748 0.831 0.815 0.741 0.742 0.743 0.705
19 0.769 0.768 0.911 0.893 0.773 1.122 0.739 0.890 0.802 0.801 0.837 0.704 0.690 0.787 0.752 0.700 0.700 0.700 0.654
20 0.706 0.723 0.885 0.855 0.708 1.056 0.712 0.873 0.778 0.801 0.835 0.655 0.643 0.730 0.705 0.664 0.664 0.664 0.605
21 1.240 1.020 1.006 1.030 1.000 1.097 1.020 1.006 1.043 1.004 1.006 1.540 1.547 1.689 1.586 1.052 1.052 1.052 0.998
22 0.829 0.841 0.934 0.909 0.834 1.217 0.830 0.920 0.848 0.817 0.822 0.934 0.909 1.293 1.195 0.815 0.814 0.814 0.707

Notes: See the notes to Table 2.
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Table 4: Root MSFE (T=100, h=2)

Estimated break date (T̂1) Unknown break date Cai’s methods New methods
DGP Postbk CV WA Pooled Troff WLS CV WA Pooled Cai1 Cai2 LL1 LL2 LQ1 LQ2 OptR1 OptR2 OptR3 True

8 1.118 1.024 1.007 1.008 1.097 1.048 1.031 1.017 1.031 1.441 1.478 3.244 3.365 9.637 10.161 1.077 1.077 1.077 0.978
9 0.791 0.793 0.924 0.908 0.796 0.868 0.798 0.809 0.795 0.975 0.961 2.304 2.164 10.152 8.590 0.818 0.820 0.820 0.751
10 0.659 0.652 0.903 0.873 0.674 0.721 0.655 0.837 0.720 0.817 0.808 2.007 1.888 10.133 9.164 0.681 0.682 0.682 0.607
11 0.643 0.866 0.927 0.884 0.695 0.683 0.865 0.925 0.796 0.721 0.718 1.794 1.808 8.358 8.344 0.778 0.777 0.777 0.528
12 1.229 0.970 0.976 0.961 1.090 1.094 0.968 0.971 0.947 1.507 1.501 3.375 3.505 6.837 6.774 0.971 0.971 0.971 0.634
13 0.935 0.929 0.949 0.944 0.935 1.084 0.938 0.931 0.940 1.354 1.342 3.366 3.381 8.167 8.950 0.975 0.977 0.977 0.888
14 0.816 0.818 0.903 0.888 0.835 0.908 0.822 0.878 0.847 1.157 1.153 2.875 2.908 7.110 7.512 0.861 0.864 0.864 0.758
15 0.789 0.892 0.918 0.878 0.828 0.834 0.891 0.918 0.846 1.001 0.997 2.494 2.521 6.682 6.721 0.823 0.824 0.824 0.669
16 1.063 0.959 0.951 0.918 1.040 0.978 0.957 0.948 0.888 1.264 1.266 2.571 2.629 7.128 7.396 0.912 0.912 0.912 0.677
17 0.822 0.825 0.920 0.909 0.832 0.859 0.804 0.865 0.818 0.910 0.908 1.950 1.993 7.921 7.585 0.794 0.796 0.796 0.710
18 0.945 0.915 0.930 0.924 0.945 0.966 0.910 0.919 0.904 1.197 1.201 2.863 2.962 6.517 7.470 0.907 0.909 0.909 0.814
19 0.767 0.775 0.910 0.892 0.780 0.807 0.749 0.873 0.786 0.812 0.821 1.731 1.757 7.336 7.099 0.716 0.717 0.717 0.604
20 0.888 0.872 0.918 0.901 0.898 0.909 0.868 0.909 0.868 1.082 1.089 2.549 2.654 5.917 6.596 0.849 0.850 0.850 0.739
21 1.113 0.991 1.024 1.029 1.000 3.426 0.991 1.024 1.045 1.117 1.148 1.184 0.911 7.240 8.066 1.033 1.033 1.033 0.975
22 0.883 0.873 0.934 0.913 0.885 0.915 0.861 0.917 0.865 1.078 1.094 2.437 2.482 6.962 7.412 0.873 0.874 0.874 0.702

Notes: See the notes to Table 2.

Table 5: Root MSFE (T=200, h=2)

Estimated break date (T̂1) Unknown break date Cai’s methods New methods
DGP Postbk CV WA Pooled Troff WLS CV WA Pooled Cai1 Cai2 LL1 LL2 LQ1 LQ2 OptR1 OptR2 OptR3 True

8 1.051 1.009 1.002 1.003 1.043 1.031 1.013 1.005 1.012 1.187 1.217 1.854 2.017 3.252 3.614 1.028 1.028 1.028 0.991
9 0.757 0.753 0.918 0.900 0.760 0.803 0.759 0.791 0.764 0.848 0.851 1.295 1.314 2.595 2.638 0.764 0.768 0.769 0.737
10 0.639 0.633 0.894 0.865 0.644 0.669 0.637 0.836 0.710 0.711 0.715 1.106 1.135 2.216 2.296 0.656 0.657 0.657 0.617
11 0.568 0.788 0.913 0.862 0.588 0.594 0.788 0.913 0.776 0.609 0.612 0.945 0.980 1.937 2.037 0.634 0.635 0.635 0.528
12 0.922 0.946 0.974 0.958 0.921 0.920 0.931 0.964 0.924 0.967 0.967 1.203 1.236 2.326 2.451 0.896 0.896 0.896 0.651
13 0.914 0.918 0.947 0.943 0.917 1.003 0.923 0.922 0.923 1.096 1.105 1.812 1.897 3.329 3.615 0.941 0.942 0.943 0.900
14 0.785 0.788 0.896 0.880 0.796 0.843 0.789 0.866 0.823 0.930 0.939 1.543 1.611 2.898 3.092 0.813 0.817 0.818 0.765
15 0.694 0.798 0.912 0.862 0.719 0.740 0.798 0.912 0.818 0.781 0.792 1.302 1.351 2.418 2.567 0.718 0.719 0.720 0.650
16 0.941 0.943 0.963 0.934 0.937 0.919 0.933 0.956 0.900 0.919 0.923 1.185 1.235 2.032 2.175 0.882 0.882 0.882 0.682
17 0.804 0.801 0.915 0.904 0.809 0.823 0.763 0.859 0.799 0.809 0.817 1.057 1.153 1.952 2.210 0.750 0.752 0.752 0.707
18 0.862 0.861 0.918 0.908 0.868 0.890 0.854 0.905 0.872 0.941 0.957 1.463 1.594 2.555 2.883 0.841 0.842 0.843 0.795
19 0.750 0.749 0.906 0.888 0.759 0.765 0.709 0.873 0.775 0.714 0.715 0.956 1.014 1.819 2.010 0.666 0.666 0.666 0.605
20 0.799 0.813 0.909 0.886 0.813 0.832 0.808 0.901 0.842 0.847 0.853 1.289 1.395 2.254 2.527 0.774 0.776 0.777 0.713
21 1.019 1.036 1.018 1.028 1.000 5.852 1.036 1.018 1.027 1.048 1.048 0.836 0.836 2.776 3.031 1.038 1.038 1.038 0.984
22 0.837 0.852 0.934 0.911 0.846 0.864 0.843 0.921 0.857 0.862 0.873 1.356 1.417 2.471 2.582 0.832 0.834 0.834 0.699

Notes: See the notes to Table 2.
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Table 6: Root MSFE (T=100, h=1): break tests with different trimming range and significance
level

α = 0.05, trim = 0.05 α = 0.1, trim = 0.15
DGP OptR1 OptR2 OptR3 True OptR1 OptR2 OptR3 True

1 1.0013 1.0013 1.0013 0.9999 1.0028 1.0028 1.0028 0.9997
2 0.8790 0.8790 0.8790 0.8671 0.8790 0.8790 0.8790 0.8671
3 0.7218 0.7218 0.7218 0.7105 0.7218 0.7218 0.7218 0.7105
4 0.5959 0.5959 0.5959 0.5047 0.5959 0.5959 0.5959 0.5047
5 0.5879 0.5879 0.5879 0.5223 0.5879 0.5879 0.5879 0.5223
6 0.5855 0.5855 0.5855 0.4470 0.5855 0.5855 0.5855 0.4470
7 0.8816 0.8816 0.8816 0.8175 0.8795 0.8795 0.8795 0.8103
8 1.0075 1.0075 1.0075 0.9993 1.0127 1.0127 1.0127 0.9983
9 0.8208 0.8222 0.8222 0.7724 0.8204 0.8218 0.8218 0.7722
10 0.7228 0.7232 0.7232 0.6679 0.7228 0.7232 0.7232 0.6679
11 0.8322 0.8311 0.8311 0.6139 0.8319 0.8308 0.8308 0.6127
12 0.9170 0.9167 0.9167 0.6394 0.9170 0.9167 0.9167 0.6394
13 0.9170 0.9183 0.9183 0.8571 0.9177 0.9191 0.9191 0.8570
14 0.7581 0.7595 0.7595 0.6963 0.7581 0.7595 0.7595 0.6963
15 0.7161 0.7160 0.7160 0.5848 0.7155 0.7153 0.7153 0.5825
16 0.8448 0.8446 0.8446 0.5774 0.8448 0.8446 0.8446 0.5774
17 0.8260 0.8264 0.8264 0.7701 0.8225 0.8230 0.8230 0.7633
18 0.8265 0.8274 0.8274 0.7644 0.8184 0.8192 0.8192 0.7525
19 0.7640 0.7643 0.7643 0.6787 0.7611 0.7613 0.7613 0.6724
20 0.7582 0.7588 0.7588 0.6667 0.7516 0.7523 0.7523 0.6559
21 1.0376 1.0375 1.0375 0.7881 1.0376 1.0375 1.0375 0.7881
22 0.8224 0.8228 0.8228 0.7108 0.8213 0.8217 0.8217 0.7015

Notes: α is the significance level and trim is the trimming rate for Bai and Perron’s
(1998) test. When trim = 0.15, for example, [0.15T, 0.85T ] is used. See also the
notes to Table 2.

Table 7: Root MSFE (T=200, h=1): break tests with different trimming range and significance
level

α = 0.05, trim = 0.05 α = 0.1, trim = 0.15
DGP OptR1 OptR2 OptR3 True OptR1 OptR2 OptR3 True

1 1.0004 1.0004 1.0004 0.9999 1.0017 1.0017 1.0017 0.9999
2 0.8696 0.8698 0.8698 0.8641 0.8696 0.8698 0.8698 0.8641
3 0.7108 0.7108 0.7108 0.7055 0.7108 0.7108 0.7108 0.7055
4 0.5079 0.5079 0.5079 0.4995 0.5079 0.5079 0.5079 0.4995
5 0.5533 0.5533 0.5533 0.5113 0.5533 0.5533 0.5533 0.5113
6 0.5291 0.5291 0.5291 0.4362 0.5291 0.5291 0.5291 0.4362
7 0.8591 0.8591 0.8591 0.8033 0.8586 0.8586 0.8586 0.8020
8 1.0028 1.0028 1.0028 1.0002 1.0046 1.0047 1.0047 0.9990
9 0.7535 0.7547 0.7554 0.7376 0.7535 0.7547 0.7554 0.7376
10 0.6771 0.6778 0.6781 0.6538 0.6771 0.6778 0.6781 0.6538
11 0.6849 0.6848 0.6847 0.5952 0.6849 0.6848 0.6847 0.5952
12 0.8818 0.8818 0.8818 0.6851 0.8818 0.8818 0.8818 0.6851
13 0.8740 0.8754 0.8759 0.8513 0.8740 0.8754 0.8759 0.8513
14 0.7039 0.7057 0.7063 0.6764 0.7039 0.7057 0.7063 0.6764
15 0.5924 0.5936 0.5939 0.5453 0.5924 0.5936 0.5939 0.5453
16 0.8185 0.8181 0.8180 0.5751 0.8185 0.8181 0.8180 0.5751
17 0.7633 0.7640 0.7643 0.7361 0.7632 0.7639 0.7642 0.7359
18 0.7414 0.7422 0.7429 0.7049 0.7414 0.7422 0.7429 0.7050
19 0.6998 0.7002 0.7004 0.6541 0.6998 0.7002 0.7004 0.6541
20 0.6635 0.6642 0.6643 0.6053 0.6636 0.6642 0.6643 0.6053
21 1.0530 1.0530 1.0530 0.9975 1.0530 1.0530 1.0530 0.9975
22 0.8139 0.8130 0.8131 0.7051 0.8142 0.8133 0.8134 0.7032

Notes: α is the significance level and trim is the trimming rate for Bai and Perron’s
(1998) test. When trim = 0.15, for example, [0.15T, 0.85T ] is used. See also the
notes to Table 2.
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Table 8: Root MSFE (T=100, h=2): break tests with different trimming range and significance
level

α = 0.05, trim = 0.05 α = 0.1, trim = 0.15
DGP OptR1 OptR2 OptR3 True OptR1 OptR2 OptR3 True

8 1.0846 1.0846 1.0846 0.9748 1.0814 1.0815 1.0815 0.9783
9 0.8179 0.8204 0.8204 0.7517 0.8178 0.8203 0.8203 0.7514
10 0.6809 0.6824 0.6824 0.6070 0.6809 0.6824 0.6824 0.6070
11 0.7776 0.7768 0.7768 0.5281 0.7776 0.7768 0.7768 0.5281
12 0.9707 0.9707 0.9707 0.6341 0.9707 0.9707 0.9707 0.6341
13 0.9753 0.9772 0.9772 0.8874 0.9753 0.9772 0.9772 0.8875
14 0.8605 0.8640 0.8640 0.7584 0.8605 0.8640 0.8640 0.7584
15 0.8225 0.8229 0.8229 0.6655 0.8224 0.8229 0.8229 0.6672
16 0.9117 0.9116 0.9116 0.6766 0.9117 0.9116 0.9116 0.6766
17 0.7940 0.7957 0.7957 0.7096 0.7941 0.7959 0.7959 0.7099
18 0.9065 0.9087 0.9087 0.8126 0.9064 0.9086 0.9086 0.8131
19 0.7159 0.7167 0.7167 0.6039 0.7159 0.7168 0.7168 0.6040
20 0.8479 0.8492 0.8492 0.7370 0.8484 0.8496 0.8496 0.7383
21 1.0326 1.0329 1.0329 0.9746 1.0326 1.0329 1.0329 0.9746
22 0.8715 0.8728 0.8728 0.6985 0.8725 0.8738 0.8738 0.7012

Notes: α is the significance level and trim is the trimming rate for Bai and Perron’s
(1998) test. When trim = 0.15, for example, [0.15T, 0.85T ] is used. See also the
notes to Table 2.

Table 9: Root MSFE (T=200, h=2): break tests with different trimming range and significance
level

α = 0.05, trim = 0.05 α = 0.1, trim = 0.15
DGP OptR1 OptR2 OptR3 True OptR1 OptR2 OptR3 True

8 1.0391 1.0391 1.0389 0.9877 1.0312 1.0312 1.0310 0.9906
9 0.7643 0.7679 0.7687 0.7372 0.7643 0.7679 0.7687 0.7372
10 0.6556 0.6566 0.6568 0.6171 0.6556 0.6566 0.6568 0.6171
11 0.6342 0.6346 0.6346 0.5277 0.6342 0.6346 0.6346 0.5277
12 0.8962 0.8962 0.8962 0.6505 0.8962 0.8962 0.8962 0.6505
13 0.9410 0.9423 0.9433 0.8998 0.9410 0.9423 0.9433 0.8998
14 0.8133 0.8165 0.8176 0.7649 0.8133 0.8165 0.8176 0.7649
15 0.7174 0.7187 0.7194 0.6497 0.7174 0.7187 0.7194 0.6499
16 0.8822 0.8816 0.8815 0.6823 0.8822 0.8816 0.8815 0.6823
17 0.7499 0.7518 0.7524 0.7067 0.7499 0.7518 0.7524 0.7067
18 0.8404 0.8418 0.8424 0.7950 0.8404 0.8418 0.8425 0.7950
19 0.6655 0.6662 0.6663 0.6054 0.6655 0.6662 0.6663 0.6054
20 0.7742 0.7757 0.7764 0.7128 0.7742 0.7757 0.7764 0.7128
21 1.0381 1.0381 1.0381 0.9836 1.0381 1.0381 1.0381 0.9836
22 0.8319 0.8332 0.8333 0.6941 0.8322 0.8335 0.8336 0.6967

Notes: α is the significance level and trim is the trimming rate for Bai and Perron’s
(1998) test. When trim = 0.15, for example, [0.15T, 0.85T ] is used. See also the
notes to Table 2.
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Table 10: Data Description

Mnemonics Description Transformation Other Information: Seasonal Adjustment, Frequency, Units,

Source

Asset Prices

fedfunds Effective Federal Funds Rate level NSA, M, Percent, FRED

tb3ms 3-Month Treasury Bill: Secondary Market Rate level NSA, M, Percent, FRED

t10yr 10-Year Treasury Constant Maturity Rate level NSA, Q, Percent, FRED

termspread Term Spread: t10yr−fedfunds level

sp500 S&P 500 Stock Price Index ∆ ln NSA, M, Index, Yahoo

rfedfunds Real Federal Funds Rate: fedfunds−CPI inflation rate level

rtb3ms Real 3-month Treasury Bill: tb3ms−CPI inflation rate level

rt10yr Real 10-Year Treasury Constant Maturity Rate:

t10yr−CPI inflation rate

level

rsp500 Real Stock Price Index: sp500×100/CPI ∆ ln

Real Economic Activity

rgdp Real Gross Domestic Product ∆ ln SAAR, Q, Billions of Chained 2009 Dollars, FRED

rdpi Real disposable personal income: Per capita ∆ ln SAAR, Q, Chained 2009 Dollars, FRED

rgpdi Real Gross Private Domestic Investment ∆ ln SAAR, Q, Billions of Chained 2009 Dollars, FRED

ip Industrial Production Index ∆ ln SA, Q, Index 2007=100, FRED

emp Civilian Employment-Population Ratio ∆ ln SA, Q, Percent, FRED

unemp Civilian Unemployment Rate ∆ SA, Q, Percent, FRED

unempwomen Unemployment Level - Women ∆ SA, M, Percent, FRED

houst Housing Starts: Total: New Privately Owned Housing

Units Started

∆ ln SAAR, Q, Thousands of Units, FRED

buildpermits New Private Housing Units Authorized by Building

Permits

∆ ln SAAR, M, Thousands of Units, FRED

Commodity Prices and Price Indices

gdpdef Gross Domestic Product: Implicit Price Deflator ∆ ln SA, Q, 2009=100, FRED

Continued on the next page
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ID Description Transformation Other Information: Seasonal Adjustment, Frequency, Units,

Source

cpi Consumer Price Index for All Urban Consumers: All

Items

∆ ln SA, Q, Index 1982-84=100, FRED

cpiappsl Consumer Price Index for All Urban Consumers: Ap-

parel

∆ ln SA, Q, Index 1982-84=100, FRED

cpiengsl Consumer Price Index for All Urban Consumers: En-

ergy

∆ ln SA, M, Index 1982-84=100, FRED

ppi Producer Price Index: All Commodities ∆ ln NSA, Q, Index 1982=100, FRED

Monetary Measure

m0 St. Louis Adjusted Reserves ∆ ln SA, M, Billions of Dollars, FRED

m1 M1 Money Stock ∆ ln SA, Q, Billions of Dollars, FRED

m2 M2 Money Stock ∆ ln SA, M, Billions of Dollars, FRED

rm0 Real M0: M0×100/CPI ∆ ln

rm1 Real M1: M1×100/CPI ∆ ln

rm2 Real M2: M2×100/CPI ∆ ln

Notes: The following abbreviations appear in the table: SA: seasonally adjusted; NSA: not seasonally adjusted; SAAR: seasonally

adjusted at an annual rate; Q: quarterly; M: monthly. Let St denote the original series and Xt denote the series used in regressions.

The transformations are: (1) level: Xt = St; (2) ∆ ln: Xt = lnSt − lnSt−1; (3)∆: Xt = St − St−1. Series that are not seasonally

adjusted are transformed into seasonally adjusted series by the X-11-ARIMA method for estimation (SAS PROC X11).
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Table 11: Pseudo Rolling Out-of-Sample Forecasts of the Real GDP Growth Rate: yt+1 = µt +
αt(L)xt + βt(L)yt + ut+1.

1984:Q1-2014:Q3
Fixed Cai1 Cai2 CV LL1 LL2 AveW PPP OptR1 OptR2 OptR3

Univariate Models: yt+1 = µt + βt(L)yt + ut+1

AR(1) 0.582 0.964 0.970 0.989 1.031 0.995 0.970 0.984 0.950 0.950 0.949
– 0.014 0.036 0.201 0.834 0.397 0.012 0.347 0.001 0.001 0.001

AR(AIC) 0.593 0.969 0.958 0.978 1.011 1.010 0.960 0.965 0.960 0.960 0.959
– 0.131 0.069 0.109 0.662 0.674 0.024 0.188 0.000 0.000 0.000

AR(BIC) 0.604 0.989 0.970 0.999 0.980 1.013 0.976 0.976 0.974 0.973 0.973
– 0.324 0.110 0.481 0.274 0.733 0.113 0.255 0.016 0.016 0.015

ADL(BIC) Models: yt+1 = µt + αt(L)xt + βt(L)yt + ut+1

fedfunds 0.639 1.009 0.977 0.923 1.026 1.062 0.945 0.939 0.974 0.973 0.973
– 0.636 0.182 0.001 0.675 0.911 0.005 0.028 0.031 0.029 0.029

tb3ms 0.636 0.977 0.958 0.926 1.061 1.107 0.949 0.951 0.983 0.982 0.982
– 0.153 0.041 0.002 0.812 0.962 0.007 0.065 0.129 0.122 0.122

t10yr 0.604 0.985 0.964 0.968 1.083 1.114 0.969 0.983 0.987 0.986 0.986
– 0.281 0.084 0.115 0.931 0.992 0.065 0.309 0.194 0.182 0.182

termspread 0.621 1.016 0.982 0.955 1.001 1.011 0.990 0.972 0.967 0.967 0.967
– 0.734 0.223 0.029 0.508 0.710 0.302 0.208 0.002 0.002 0.002

sp500 0.602 0.994 0.983 0.983 0.998 0.995 0.987 0.980 0.977 0.977 0.975
– 0.344 0.136 0.323 0.475 0.394 0.206 0.319 0.060 0.061 0.042

rfedfunds 0.639 1.009 0.977 0.924 1.026 1.062 0.945 0.939 0.974 0.973 0.973
– 0.636 0.181 0.002 0.677 0.913 0.005 0.028 0.031 0.028 0.028

rtb3ms 0.636 0.978 0.958 0.926 1.061 1.107 0.949 0.951 0.983 0.982 0.982
– 0.164 0.041 0.002 0.813 0.963 0.007 0.066 0.127 0.120 0.120

rt10yr 0.604 0.985 0.964 0.968 1.083 1.112 0.969 0.983 0.986 0.986 0.985
– 0.283 0.086 0.115 0.930 0.992 0.066 0.311 0.189 0.177 0.174

rsp500 0.613 0.992 0.983 0.976 0.999 1.009 0.990 0.969 0.981 0.982 0.981
– 0.273 0.133 0.238 0.485 0.689 0.258 0.222 0.092 0.097 0.090

rdpi 0.635 0.980 0.960 0.926 0.999 1.018 0.973 0.929 0.981 0.981 0.980
– 0.181 0.041 0.040 0.487 0.784 0.080 0.055 0.054 0.057 0.053

rgpdi 0.601 0.980 0.979 0.989 0.977 1.017 0.985 0.982 0.978 0.977 0.977
– 0.202 0.229 0.335 0.252 0.793 0.253 0.298 0.031 0.031 0.029

ip 0.581 0.984 0.967 1.008 1.030 1.011 0.973 1.015 0.958 0.958 0.957
– 0.257 0.118 0.583 0.754 0.765 0.123 0.632 0.004 0.003 0.003

emp 0.615 0.975 0.967 0.966 0.976 1.011 0.970 0.936 0.973 0.975 0.974
– 0.146 0.090 0.119 0.269 0.652 0.064 0.029 0.020 0.028 0.026

unemp 0.616 0.994 0.975 0.951 1.040 1.073 0.980 0.930 0.976 0.975 0.974
– 0.338 0.068 0.027 0.740 0.902 0.126 0.035 0.031 0.028 0.026

unempwomen 0.592 0.964 0.943 1.006 1.053 1.010 0.960 0.977 0.968 0.967 0.967
– 0.073 0.012 0.573 0.835 0.733 0.048 0.291 0.005 0.005 0.004

houst 0.611 0.987 0.986 1.001 1.000 1.030 0.985 0.973 0.987 0.986 0.985
– 0.229 0.228 0.514 0.502 0.773 0.201 0.293 0.155 0.142 0.123

buildpermits 0.604 0.997 0.988 0.959 0.983 1.024 0.993 0.954 1.003 1.004 1.003
– 0.440 0.257 0.213 0.299 0.831 0.354 0.110 0.599 0.604 0.584

gdpdef 0.610 0.988 0.970 0.955 1.032 1.028 0.978 0.977 0.980 0.980 0.980
– 0.326 0.142 0.049 0.770 0.892 0.170 0.263 0.037 0.043 0.043

cpi 0.610 1.014 0.992 0.969 1.081 1.055 0.995 0.988 1.000 1.000 1.000
– 0.688 0.387 0.157 0.959 0.965 0.418 0.378 0.507 0.502 0.502

cpiappsl 0.644 0.975 0.936 0.935 1.048 1.056 0.943 0.939 0.961 0.960 0.960
– 0.098 0.008 0.026 0.773 0.899 0.034 0.091 0.008 0.008 0.008

cpiengsl 0.642 0.952 0.941 0.911 0.941 0.958 0.914 0.912 0.924 0.924 0.923
– 0.188 0.138 0.063 0.117 0.172 0.060 0.095 0.050 0.048 0.047

ppi 0.607 0.985 0.966 1.029 0.980 1.010 0.973 0.971 0.971 0.971 0.970
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Table 11 – Continued from previous page

1984:Q1-2014:Q3
Fixed Cai1 Cai2 CV LL1 LL2 AveW PPP OptR1 OptR2 OptR3

– 0.266 0.081 0.772 0.279 0.688 0.083 0.209 0.010 0.010 0.009

m0 1.430 0.855 0.807 0.424 1.277 1.355 0.855 0.408 1.035 1.035 1.036
– 0.172 0.111 0.079 0.748 0.835 0.105 0.075 0.852 0.853 0.856

m1 0.678 0.986 0.974 0.954 0.963 1.010 0.958 0.906 0.970 0.952 0.952
– 0.269 0.116 0.018 0.160 0.613 0.014 0.012 0.042 0.025 0.024

m2 0.619 1.004 0.988 0.977 0.979 1.011 0.971 0.965 0.968 0.968 0.968
– 0.592 0.245 0.167 0.262 0.709 0.095 0.178 0.006 0.006 0.005

rm0 1.315 0.956 0.939 0.465 1.263 1.204 0.919 0.440 1.034 1.034 1.061
– 0.093 0.277 0.100 0.846 0.727 0.171 0.092 0.864 0.866 0.859

rm1 0.668 1.020 1.009 0.985 1.046 1.020 0.992 0.922 0.964 0.964 0.963
– 0.790 0.619 0.268 0.719 0.693 0.334 0.027 0.001 0.001 0.001

rm2 0.645 0.975 0.957 0.924 1.007 0.997 0.984 0.934 0.959 0.959 0.959
– 0.181 0.058 0.049 0.551 0.462 0.189 0.050 0.059 0.057 0.057

Notes: Fixed: fixed window size with R = 40; Cai1: Cai’s (2007) method based on the uniform ker-
nel; Cai2: Cai’s (2007) method based on the Epanechnikov kernel; CV: Pesaran and Timmermann’s
(2007) cross validation method with unknown break; LL1: local linear regression using window of Cai1;
LL2: local linear regression using window of Cai2; AveW: Pesaran and Pick’s (2011) AveW method
with wmin = 0.2 and m = 10; PPP: Pesaran, Pick and Pranovich’s (2013) robust optimal weights in
equation (48) that integrate the break date over the entire sample. OptR1: R0=CV with unknown
break date, R = max(1.5T 2/3, 20) and R = min(4T 2/3, T − h); OptR2: R0=CV with unknown break
date, R = max(1.5T 2/3, 20) and R = min(5T 2/3, T − h); OptR3: R0=CV with unknown break date;
R = max(1.5T 2/3, 20) and R = min(6T 2/3, T −h). In column “Fixed”, the numbers are RMSFEs. In the
other columns, the first number is the RMSFE ratio relative to the RMSFE based on the fixed window
size, and the second number is the p-value of the DM test against the model based on the fixed window
size.

Table 12: Pseudo Rolling Out-of-Sample Forecasts of Inflation: πt+1−πt = µt+αt(L)xt+βt(L)∆πt+
ut+1

1984:Q1-2014:Q3
Fixed Cai1 Cai2 CV LL1 LL2 AveW PPP OptR1 OptR2 OptR3

Univariate Models: πt+1 − πt = µt + βt(L)∆πt + ut+1

AR(1) 0.778 0.972 0.982 1.007 1.047 1.020 0.984 1.132 0.989 0.989 0.989
– 0.065 0.179 0.748 1.000 0.919 0.151 0.961 0.324 0.324 0.324

AR(AIC) 0.792 0.964 0.968 0.994 1.036 1.025 0.974 1.120 1.004 1.003 1.003
– 0.023 0.053 0.285 0.991 0.943 0.040 0.956 0.602 0.592 0.590

AR(BIC) 0.819 0.964 0.967 1.002 1.040 1.028 0.975 1.083 0.990 0.990 0.990
– 0.035 0.061 0.561 0.999 0.981 0.051 0.905 0.329 0.328 0.327

ADL(BIC) Models: πht+h − πt = µt + αt(L)xt + βt(L)∆πt + ut+h
fedfunds 0.820 0.959 0.962 0.997 1.050 1.050 0.971 1.080 1.008 1.009 1.008

– 0.022 0.039 0.393 0.999 0.999 0.033 0.894 0.779 0.805 0.797

tb3ms 0.822 0.956 0.959 0.996 1.043 1.043 0.969 1.077 1.005 1.006 1.005
– 0.015 0.028 0.344 0.999 0.999 0.021 0.888 0.686 0.714 0.703

t10yr 0.819 0.961 0.964 0.988 1.034 1.034 0.971 1.079 1.010 1.011 1.011
– 0.029 0.047 0.142 0.997 0.997 0.033 0.888 0.871 0.884 0.879

termspread 0.821 0.962 0.965 1.000 1.040 1.040 0.973 1.080 1.000 1.001 1.001
– 0.027 0.048 0.512 0.999 0.999 0.041 0.898 0.511 0.550 0.536

sp500 0.813 0.963 0.966 1.003 1.042 1.042 0.976 1.101 1.003 1.004 1.003
– 0.055 0.082 0.585 1.000 1.000 0.102 0.943 0.602 0.635 0.620

rfedfunds 0.820 0.959 0.962 0.997 1.050 1.050 0.971 1.080 1.008 1.009 1.008
– 0.022 0.039 0.393 0.999 0.999 0.033 0.894 0.780 0.806 0.797
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Table 12 – Continued from previous page

1984:Q1-2014:Q3
Fixed Cai1 Cai2 CV LL1 LL2 AveW PPP OptR1 OptR2 OptR3

rtb3ms 0.819 0.959 0.962 0.996 1.044 1.044 0.971 1.080 1.006 1.007 1.007
– 0.020 0.037 0.370 0.999 0.999 0.029 0.894 0.733 0.758 0.749

rt10yr 0.819 0.961 0.964 0.988 1.034 1.034 0.971 1.079 1.012 1.013 1.012
– 0.029 0.048 0.143 0.997 0.997 0.033 0.888 0.897 0.908 0.904

rsp500 0.803 0.970 0.974 1.005 1.042 1.042 0.984 1.105 1.007 1.007 1.007
– 0.103 0.143 0.609 0.999 0.999 0.219 0.945 0.705 0.715 0.706

rdpi 0.830 0.959 0.963 0.992 1.037 1.037 0.968 1.083 0.998 0.999 0.999
– 0.019 0.038 0.251 0.998 0.998 0.026 0.887 0.439 0.480 0.465

rgpdi 0.822 0.958 0.960 0.995 1.043 1.043 0.967 1.088 1.001 1.002 1.001
– 0.017 0.030 0.325 1.000 1.000 0.018 0.914 0.531 0.568 0.534

ip 0.798 0.977 0.980 1.004 1.036 1.036 0.977 1.123 1.013 1.013 1.012
– 0.177 0.227 0.584 0.994 0.994 0.113 0.958 0.867 0.871 0.862

emp 0.815 0.961 0.962 0.989 1.046 1.046 0.959 1.146 0.999 1.000 1.000
– 0.094 0.108 0.233 0.999 0.999 0.023 0.960 0.480 0.516 0.500

unemp 0.795 0.968 0.971 0.996 1.044 1.044 0.967 1.155 1.007 1.009 1.009
– 0.098 0.158 0.401 0.995 0.995 0.046 0.980 0.737 0.775 0.764

unempwomen 0.821 0.954 0.956 0.995 1.035 1.035 0.958 1.117 0.994 0.996 0.995
– 0.022 0.035 0.340 0.996 0.996 0.010 0.952 0.279 0.341 0.326

houst 0.853 0.933 0.927 0.973 1.025 1.025 0.941 1.062 0.993 0.993 0.993
– 0.020 0.015 0.081 0.936 0.936 0.014 0.836 0.249 0.245 0.247

buildpermits 0.832 0.950 0.953 0.985 1.037 1.037 0.961 1.072 1.000 1.000 1.000
– 0.021 0.020 0.160 0.998 0.998 0.021 0.870 0.494 0.493 0.494

cpi 0.873 0.923 0.923 0.947 1.023 1.023 0.932 1.023 0.989 0.990 0.990
– 0.128 0.129 0.144 0.977 0.977 0.113 0.617 0.280 0.304 0.298

cpiappsl 0.821 0.976 0.980 1.006 1.047 1.047 0.981 1.085 1.010 1.010 1.010
– 0.128 0.182 0.697 0.999 0.999 0.116 0.912 0.825 0.834 0.827

cpiengsl 0.889 0.955 0.951 0.968 1.083 1.083 0.939 1.011 0.996 0.997 0.997
– 0.024 0.025 0.081 0.955 0.955 0.005 0.553 0.406 0.430 0.421

ppi 0.819 0.964 0.967 1.002 1.040 1.040 0.975 1.083 1.003 1.004 1.004
– 0.035 0.061 0.561 0.999 0.999 0.051 0.905 0.638 0.674 0.661

m0 0.819 0.964 0.967 1.002 1.040 1.040 0.975 1.083 1.003 1.004 1.004
– 0.035 0.061 0.561 0.999 0.999 0.051 0.905 0.638 0.674 0.661

m1 0.819 0.964 0.967 1.002 1.040 1.040 0.975 1.083 1.003 1.004 1.004
– 0.035 0.061 0.561 0.999 0.999 0.051 0.905 0.638 0.674 0.661

m2 0.775 0.999 1.001 1.030 1.052 1.052 1.000 1.171 1.019 1.019 1.019
– 0.492 0.512 0.934 0.998 0.998 0.496 0.984 0.846 0.852 0.847

rm0 0.819 0.964 0.967 1.002 1.040 1.040 0.975 1.083 1.003 1.004 1.004
– 0.035 0.061 0.561 0.999 0.999 0.051 0.905 0.638 0.674 0.661

rm1 0.819 0.964 0.967 1.002 1.040 1.040 0.975 1.083 1.003 1.004 1.004
– 0.035 0.061 0.561 0.999 0.999 0.051 0.905 0.638 0.674 0.661

rm2 0.814 0.966 0.971 1.005 1.042 1.042 0.977 1.109 1.005 1.006 1.005
– 0.044 0.087 0.663 0.999 0.999 0.068 0.944 0.683 0.716 0.703

rgdp 0.819 0.962 0.967 1.005 1.051 1.051 0.971 1.092 0.992 0.991 0.991
– 0.033 0.070 0.666 1.000 1.000 0.046 0.915 0.246 0.233 0.231

Notes: See the notes to Table 11.
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Table 13: Pseudo Rolling Out-of-Sample Forecasts of the Real GDP Growth Rate: yht+h = µt +
αt(L)xt + βt(L)yt + ut+h.

1984:Q1-2014:Q3
h=2 h=4 h=8 h=12

Univariate Models: yht+h = µt + βt(L)yt + ut+h
AR(1) Fixed 0.472 0.414 0.367 0.350

OptR1 0.957 0.971 0.952 0.932

AR(AIC) Fixed 0.495 0.419 0.377 0.352
OptR1 0.963 0.975 0.951 0.947

AR(BIC) Fixed 0.497 0.441 0.378 0.352
OptR1 0.963 0.968 0.955 0.947

ADL(BIC) Models: yht+h = µt + αt(L)xt + βt(L)yt + ut+h
fedfunds Fixed 0.518 0.454 0.414 0.372

OptR1 0.990 1.000 0.939 0.935

tb3ms Fixed 0.521 0.457 0.414 0.373
OptR1 0.991 1.008 0.940 0.927

t10yr Fixed 0.535 0.475 0.409 0.375
OptR1 0.981 0.994 0.951 0.905

termspread Fixed 0.511 0.476 0.417 0.364
OptR1 0.970 0.965 0.970 0.959

sp500 Fixed 0.517 0.446 0.382 0.354
OptR1 0.974 0.977 0.944 0.945

rfedfunds Fixed 0.518 0.459 0.414 0.372
OptR1 0.990 0.995 0.940 0.935

rtb3ms Fixed 0.521 0.457 0.414 0.373
OptR1 0.990 1.007 0.941 0.928

rt10yr Fixed 0.535 0.475 0.409 0.375
OptR1 0.981 0.993 0.951 0.908

rsp500 Fixed 0.502 0.458 0.379 0.352
OptR1 0.972 0.998 0.953 0.951

rdpi Fixed 0.498 0.441 0.382 0.352
OptR1 0.961 0.973 0.949 0.947

rgpdi Fixed 0.518 0.452 0.379 0.352
OptR1 0.961 0.973 0.954 0.948

ip Fixed 0.503 0.432 0.356 0.345
OptR1 0.959 0.963 0.963 0.949

emp Fixed 0.505 0.452 0.379 0.354
OptR1 0.954 0.964 0.952 0.948

unemp Fixed 0.495 0.451 0.379 0.354
OptR1 0.967 0.963 0.953 0.949

unempwomen Fixed 0.498 0.440 0.379 0.354
OptR1 0.960 0.975 0.953 0.948

houst Fixed 0.502 0.453 0.411 0.354
OptR1 0.968 0.958 0.923 0.948

buildpermits Fixed 0.495 0.452 0.421 0.356
OptR1 0.965 0.961 0.908 0.944

gdpdef Fixed 0.515 0.512 0.445 0.415
OptR1 1.015 0.996 0.946 0.920

cpi Fixed 0.522 0.511 0.424 0.416
OptR1 1.020 1.029 1.001 0.962

cpiengsl Fixed 0.520 0.461 0.381 0.353
OptR1 0.937 0.936 0.950 0.945

ppi Fixed 0.546 0.504 0.407 0.402
OptR1 0.951 0.968 0.987 0.957

m0 Fixed 0.539 0.480 0.400 0.369
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Table 13 – Continued from previous page

1984:Q1-2014:Q3
h=2 h=4 h=8 h=12

OptR1 0.983 0.951 1.013 0.962

m1 Fixed 0.572 0.448 0.449 0.417
OptR1 0.929 0.976 0.931 0.898

m2 Fixed 0.529 0.466 0.422 0.386
OptR1 0.964 0.968 0.974 0.983

rm0 Fixed 0.545 0.511 0.423 0.374
OptR1 0.987 0.940 0.963 0.945

rm1 Fixed 0.583 0.488 0.480 0.401
OptR1 0.929 0.947 0.936 0.906

rm2 Fixed 0.520 0.476 0.404 0.358
OptR1 0.968 0.982 0.952 0.963

cpiappsl Fixed 0.535 0.462 0.420 0.402
OptR1 0.983 0.978 0.964 0.940

Notes: For each model, the first row labeled with “fixed” reports the
RMSFE if the fixed rolling window of size 40 is used; the second row
labeled with “optR1” reports the ratio of the RMSFE when using the
optimal window size over the RMSFE when using the fixed window size.
See also the notes to Table 11.

Table 14: Pseudo Rolling Out-of-Sample Forecasts of Inflation: πht+h−πt = µt+αt(L)xt+βt(L)∆πt+
ut+h

1984:Q1-2014:Q3
h=2 h=4 h=8 h=12

Univariate Models: πht+h − πt = µt + βt(L)∆πt + ut+h
AR(1) Fixed 0.688 0.688 0.826 0.955

OptR1 1.019 1.030 1.055 1.053

AR(AIC) Fixed 0.685 0.691 0.830 0.974
OptR1 1.031 1.017 1.058 1.047

AR(BIC) Fixed 0.704 0.707 0.843 0.966
OptR1 1.018 1.015 1.042 1.056

ADL(BIC) Models: πht+h − πt = µt + αt(L)xt + βt(L)∆πt + ut+h
fedfunds FixedR 0.717 0.752 0.994 1.179

OptR1 1.018 1.015 1.048 1.067

tb3ms FixedR 0.711 0.757 0.994 1.169
OptR1 1.029 1.021 1.021 1.004

t10yr FixedR 0.703 0.734 1.004 1.286
OptR1 1.038 1.036 1.040 1.035

termspread FixedR 0.714 0.729 0.893 1.063
OptR1 1.013 1.015 0.992 0.997

sp500 FixedR 0.687 0.694 0.842 0.966
OptR1 1.020 1.024 1.042 1.056

rfedfunds FixedR 0.717 0.752 0.995 1.180
OptR1 1.018 1.014 1.047 1.066

rtb3ms FixedR 0.711 0.757 0.994 1.170
OptR1 1.029 1.021 1.019 1.002

rt10yr FixedR 0.703 0.735 1.004 1.280
OptR1 1.039 1.034 1.038 1.040
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1984:Q1-2014:Q3
h=2 h=4 h=8 h=12

rsp500 FixedR 0.684 0.689 0.842 0.966
OptR1 1.023 1.026 1.042 1.056

rdpi FixedR 0.706 0.720 0.923 1.055
OptR1 1.015 1.029 1.010 1.002

rgpdi FixedR 0.710 0.723 0.885 1.056
OptR1 1.011 1.008 1.006 0.987

ip FixedR 0.663 0.683 0.886 1.015
OptR1 1.033 1.028 1.024 0.993

emp FixedR 0.693 0.776 0.883 0.998
OptR1 0.997 0.992 0.954 0.912

unemp FixedR 0.656 0.732 0.900 1.065
OptR1 1.022 1.013 0.976 0.950

unempwomen FixedR 0.698 0.749 0.902 1.023
OptR1 1.040 0.972 0.961 0.994

houst FixedR 0.689 0.691 0.857 0.977
OptR1 1.011 1.026 1.041 1.041

buildpermits FixedR 0.711 0.690 0.858 0.962
OptR1 1.013 1.028 1.037 1.038

cpi FixedR 0.733 0.776 0.912 1.186
OptR1 0.989 1.000 1.008 0.975

cpiengsl FixedR 0.725 0.704 0.847 0.970
OptR1 1.007 1.017 1.043 1.080

ppi FixedR 0.704 0.742 0.854 1.112
OptR1 1.019 0.995 1.043 1.046

m0 FixedR 0.713 0.718 0.921 1.090
OptR1 1.014 1.012 1.026 1.041

m1 FixedR 0.722 0.705 0.883 1.095
OptR1 1.004 1.013 1.034 1.017

m2 FixedR 0.656 0.693 0.842 0.961
OptR1 1.019 1.018 1.034 1.031

rm0 FixedR 0.713 0.716 0.939 1.252
OptR1 1.015 1.014 1.044 1.079

rm1 FixedR 0.709 0.707 0.917 1.199
OptR1 1.006 1.024 1.020 0.995

rm2 FixedR 0.693 0.714 0.851 1.001
OptR1 1.018 1.005 1.039 0.986

cpiappsl FixedR 0.716 0.753 0.973 1.107
OptR1 1.014 1.000 1.026 0.923

rgdp FixedR 0.673 0.695 0.926 1.022
OptR1 1.024 1.029 1.033 0.998

Notes: See the notes to Table 13.

Table 15: The Great Recession: Pseudo Rolling Out-of-Sample Forecasts of the Real GDP Growth
Rate: yht+h = µt + αt(L)xt + βt(L)yt + ut+h.

2007:Q4-2009:Q2
Fixed Cai1 Cai2 CV LL1 LL2 AveW PPP OptR1 OptR2 OptR3

Univariate Models: yht+h = µt + βt(L)yt + ut+h
AR(1) 1.234 1.006 0.982 0.997 0.948 0.997 0.998 1.126 0.944 0.944 0.944

– 0.619 0.177 0.368 0.286 0.483 0.452 0.956 0.078 0.078 0.078
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Table 15 – Continued from previous page

2007:Q4-2009:Q2
Fixed Cai1 Cai2 CV LL1 LL2 AveW PPP OptR1 OptR2 OptR3

AR(AIC) 1.272 0.996 0.981 0.953 1.011 0.997 0.961 1.049 0.982 0.983 0.983
– 0.434 0.419 0.149 0.601 0.485 0.270 0.683 0.016 0.022 0.022

AR(BIC) 1.370 1.026 1.005 0.999 0.934 0.984 1.001 1.065 1.019 1.019 1.019
– 0.874 0.524 0.492 0.205 0.414 0.504 0.801 0.812 0.812 0.812

ADL(BIC) Models: yht+h = µt + αt(L)xt + βt(L)yt + ut+h
fedfunds 1.370 1.003 0.991 0.918 0.941 1.020 1.001 1.065 1.021 1.021 1.021

– 0.514 0.454 0.078 0.264 0.637 0.505 0.801 0.841 0.841 0.841

tb3ms 1.370 1.003 0.991 0.918 0.941 1.020 1.001 1.065 1.021 1.021 1.021
– 0.514 0.454 0.078 0.264 0.637 0.505 0.801 0.841 0.841 0.841

t10yr 1.370 1.003 0.991 0.918 0.941 1.020 1.001 1.065 1.021 1.021 1.021
– 0.514 0.454 0.078 0.264 0.637 0.505 0.801 0.841 0.841 0.841

termspread 1.370 1.003 0.991 0.918 0.941 1.020 1.001 1.065 1.021 1.021 1.021
– 0.514 0.454 0.078 0.264 0.637 0.505 0.801 0.841 0.841 0.841

sp500 1.328 1.047 1.028 0.961 0.926 0.969 1.049 1.099 1.053 1.053 1.049
– 0.986 0.980 0.253 0.218 0.059 0.980 0.906 0.962 0.962 0.965

rfedfunds 1.370 1.003 0.991 0.918 0.941 1.020 1.001 1.065 1.021 1.021 1.021
– 0.514 0.454 0.078 0.264 0.637 0.505 0.801 0.841 0.841 0.841

rtb3ms 1.370 1.003 0.991 0.918 0.941 1.020 1.001 1.065 1.021 1.021 1.021
– 0.514 0.454 0.078 0.264 0.637 0.505 0.801 0.841 0.841 0.841

rt10yr 1.370 1.003 0.991 0.918 0.941 1.020 1.001 1.065 1.021 1.021 1.021
– 0.514 0.454 0.078 0.264 0.637 0.505 0.801 0.841 0.841 0.841

rsp500 1.340 1.046 1.026 0.947 0.892 0.971 1.048 1.076 1.046 1.046 1.046
– 0.984 0.972 0.099 0.087 0.071 0.982 0.876 0.949 0.949 0.949

rdpi 1.529 0.988 0.983 0.823 0.927 0.997 1.005 0.892 1.033 1.033 1.033
– 0.416 0.381 0.044 0.204 0.480 0.539 0.155 0.968 0.968 0.968

rgpdi 1.395 0.975 1.015 0.951 0.924 1.024 1.021 1.062 1.021 1.021 1.021
– 0.358 0.569 0.218 0.214 0.677 0.628 0.800 0.857 0.857 0.857

ip 1.227 0.972 0.962 1.051 0.945 0.981 0.966 1.097 0.973 0.973 0.973
– 0.370 0.349 0.666 0.033 0.267 0.347 0.797 0.169 0.169 0.169

emp 1.436 0.974 0.983 0.878 0.898 0.984 0.996 0.996 1.016 1.016 1.016
– 0.342 0.398 0.017 0.163 0.416 0.469 0.465 0.770 0.770 0.770

unemp 1.393 1.036 1.020 0.928 1.075 1.138 1.013 0.996 1.013 1.013 1.013
– 0.960 0.772 0.084 0.638 0.770 0.612 0.472 0.678 0.678 0.678

unempwomen 1.301 0.944 0.921 0.967 1.161 0.997 0.951 1.080 0.997 0.997 0.997
– 0.233 0.135 0.352 0.829 0.425 0.258 0.840 0.456 0.456 0.456

houst 1.171 1.019 1.030 1.045 0.926 1.108 1.038 1.182 1.035 1.035 1.032
– 0.952 0.988 0.757 0.166 0.797 0.853 0.986 0.837 0.837 0.816

buildpermits 1.306 1.036 1.017 0.919 0.877 1.002 1.051 1.020 1.048 1.050 1.050
– 0.950 0.829 0.316 0.051 0.525 0.976 0.608 0.976 0.981 0.981

gdpdef 1.370 1.003 0.991 0.918 0.941 1.020 1.001 1.065 1.021 1.021 1.021
– 0.514 0.454 0.078 0.264 0.637 0.505 0.801 0.841 0.841 0.841

cpi 1.370 1.003 0.991 0.885 0.941 1.020 1.001 1.065 1.021 1.021 1.021
– 0.514 0.454 0.061 0.264 0.637 0.505 0.801 0.841 0.841 0.841

cpiengsl 1.386 0.988 0.980 0.906 0.970 1.021 0.992 1.051 1.012 1.012 1.012
– 0.439 0.391 0.052 0.370 0.651 0.445 0.740 0.686 0.684 0.684

ppi 1.370 1.003 0.991 1.052 0.941 1.020 1.001 1.065 1.021 1.021 1.021
– 0.514 0.454 0.670 0.264 0.637 0.505 0.801 0.841 0.841 0.841

m0 5.524 0.838 0.784 0.209 1.314 1.405 0.840 0.222 1.054 1.054 1.055
– 0.187 0.118 0.063 0.736 0.833 0.113 0.063 0.933 0.936 0.938

m1 1.370 1.003 0.991 0.919 0.941 1.020 1.001 1.065 1.021 1.021 1.021
– 0.514 0.454 0.074 0.264 0.637 0.505 0.801 0.841 0.841 0.841

m2 1.384 1.048 1.034 0.914 0.918 1.022 0.985 1.045 1.007 1.007 1.007
– 0.907 0.823 0.091 0.144 0.647 0.418 0.692 0.610 0.610 0.610

rm0 4.976 0.958 0.938 0.234 1.314 1.248 0.912 0.245 1.053 1.053 1.085
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Table 15 – Continued from previous page

2007:Q4-2009:Q2
Fixed Cai1 Cai2 CV LL1 LL2 AveW PPP OptR1 OptR2 OptR3

– 0.146 0.319 0.091 0.847 0.722 0.205 0.090 0.942 0.944 0.906

rm1 1.370 1.003 0.991 0.914 0.941 1.020 1.001 1.065 1.021 1.021 1.021
– 0.514 0.454 0.130 0.264 0.637 0.505 0.801 0.841 0.841 0.841

rm2 1.571 0.928 0.920 0.810 0.936 0.959 1.001 0.915 0.948 0.948 0.948
– 0.158 0.121 0.069 0.200 0.314 0.507 0.181 0.250 0.250 0.250

cpiappsl 1.474 0.979 0.942 0.854 1.102 1.092 0.944 0.982 0.974 0.974 0.974
– 0.319 0.212 0.058 0.698 0.751 0.287 0.433 0.287 0.287 0.287

Notes: See the notes to Table 11.

Table 16: The Great Recession: Pseudo Rolling Out-of-Sample Forecasts of Inflation: πt+1− πt =
µt + αt(L)xt + βt(L)∆πt + ut+1

2007:Q4-2009:Q2
Fixed Cai1 Cai2 CV LL1 LL2 AveW PPP OptR1 OptR2 OptR3

Univariate Models: πt+1 − πt = µt + βt(L)∆πt + ut+1

AR(1) 0.981 0.988 0.991 0.989 0.989 0.992 0.998 1.426 1.024 1.024 1.024
– 0.294 0.391 0.280 0.280 0.105 0.467 0.963 0.687 0.687 0.687

AR(AIC) 1.135 0.923 0.925 0.977 1.019 1.018 0.961 1.236 1.009 1.008 1.008
– 0.117 0.137 0.120 0.725 0.754 0.143 0.997 0.695 0.682 0.680

AR(BIC) 1.128 0.928 0.931 0.973 1.020 1.018 0.966 1.244 0.997 0.996 0.996
– 0.133 0.154 0.101 0.740 0.759 0.163 0.998 0.458 0.445 0.443

ADL(BIC) Models: πt+1 − πt = µt + αt(L)xt + βt(L)∆πt + ut+1

fedfunds 1.128 0.928 0.931 0.973 1.020 1.020 0.966 1.244 1.007 1.006 1.006
– 0.133 0.154 0.101 0.740 0.740 0.163 0.998 0.626 0.612 0.610

tb3ms 1.128 0.928 0.931 0.973 1.020 1.020 0.966 1.244 1.007 1.006 1.006
– 0.133 0.154 0.101 0.740 0.740 0.163 0.998 0.626 0.612 0.610

t10yr 1.128 0.928 0.931 0.973 1.020 1.020 0.966 1.244 1.007 1.006 1.006
– 0.133 0.154 0.101 0.740 0.740 0.163 0.998 0.626 0.612 0.610

termspread 1.128 0.928 0.931 0.973 1.020 1.020 0.966 1.244 1.007 1.006 1.006
– 0.133 0.154 0.101 0.740 0.740 0.163 0.998 0.626 0.612 0.610

sp500 1.167 0.898 0.901 0.944 1.012 1.012 0.936 1.235 0.989 0.988 0.988
– 0.059 0.072 0.046 0.654 0.654 0.067 0.998 0.344 0.331 0.330

rfedfunds 1.128 0.928 0.931 0.973 1.020 1.020 0.966 1.244 1.007 1.006 1.006
– 0.133 0.154 0.101 0.740 0.740 0.163 0.998 0.626 0.612 0.610

rtb3ms 1.128 0.928 0.931 0.973 1.020 1.020 0.966 1.244 1.007 1.006 1.006
– 0.133 0.154 0.101 0.740 0.740 0.163 0.998 0.626 0.612 0.610

rt10yr 1.128 0.928 0.931 0.973 1.020 1.020 0.966 1.244 1.007 1.006 1.006
– 0.133 0.154 0.101 0.740 0.740 0.163 0.998 0.626 0.612 0.610

rsp500 1.034 0.966 0.974 0.942 1.016 1.016 1.020 1.317 1.046 1.045 1.045
– 0.266 0.326 0.115 0.668 0.668 0.598 1.000 0.748 0.743 0.742

rdpi 1.060 0.937 0.946 0.925 1.018 1.018 0.982 1.438 1.012 1.011 1.010
– 0.117 0.167 0.096 0.759 0.759 0.239 0.999 0.674 0.662 0.660

rgpdi 1.128 0.928 0.931 0.973 1.020 1.020 0.966 1.244 1.007 1.006 1.006
– 0.133 0.154 0.101 0.740 0.740 0.163 0.998 0.626 0.612 0.610

ip 0.868 1.111 1.122 1.036 1.020 1.020 1.058 1.647 1.065 1.058 1.057
– 0.765 0.789 0.644 0.724 0.724 0.789 0.999 0.761 0.758 0.752

emp 0.718 1.267 1.267 1.079 0.955 0.955 1.106 1.996 1.075 1.076 1.076
– 0.829 0.829 0.750 0.264 0.264 0.749 0.996 0.858 0.860 0.860

unemp 0.811 1.037 1.123 1.005 1.023 1.023 1.015 1.776 1.073 1.075 1.075
– 0.569 0.697 0.529 0.595 0.595 0.556 0.998 0.828 0.835 0.835
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Table 16 – Continued from previous page

2007:Q4-2009:Q2
Fixed Cai1 Cai2 CV LL1 LL2 AveW PPP OptR1 OptR2 OptR3

unempwomen 0.928 1.053 1.054 1.007 0.975 0.975 1.023 1.576 1.019 1.023 1.023
– 0.740 0.742 0.545 0.261 0.261 0.714 0.996 0.731 0.765 0.765

houst 1.145 0.914 0.917 0.961 1.021 1.021 0.953 1.242 1.002 1.001 1.001
– 0.086 0.104 0.041 0.756 0.756 0.088 0.998 0.543 0.528 0.526

buildpermits 1.055 0.945 0.954 0.950 1.006 1.006 0.974 1.306 0.998 0.997 0.997
– 0.244 0.284 0.266 0.548 0.548 0.387 0.986 0.485 0.477 0.477

cpi 1.735 0.612 0.617 0.738 1.031 1.031 0.698 0.803 0.937 0.937 0.937
– 0.127 0.129 0.135 0.954 0.954 0.133 0.271 0.152 0.152 0.152

cpiengsl 1.128 0.928 0.931 0.973 1.020 1.020 0.966 1.244 1.007 1.006 1.006
– 0.133 0.154 0.101 0.740 0.740 0.163 0.998 0.626 0.612 0.610

ppi 1.128 0.928 0.931 0.973 1.020 1.020 0.966 1.244 1.007 1.006 1.006
– 0.133 0.154 0.101 0.740 0.740 0.163 0.998 0.626 0.612 0.610

m0 1.128 0.928 0.931 0.973 1.020 1.020 0.966 1.244 1.007 1.006 1.006
– 0.133 0.154 0.101 0.740 0.740 0.163 0.998 0.626 0.612 0.610

m1 1.128 0.928 0.931 0.973 1.020 1.020 0.966 1.244 1.007 1.006 1.006
– 0.133 0.154 0.101 0.740 0.740 0.163 0.998 0.626 0.612 0.610

m2 0.973 1.034 1.045 1.018 1.129 1.129 1.067 1.434 1.121 1.120 1.120
– 0.695 0.723 0.609 0.843 0.843 0.766 0.988 0.806 0.804 0.803

rm0 1.128 0.928 0.931 0.973 1.020 1.020 0.966 1.244 1.007 1.006 1.006
– 0.133 0.154 0.101 0.740 0.740 0.163 0.998 0.626 0.612 0.610

rm1 1.128 0.928 0.931 0.973 1.020 1.020 0.966 1.244 1.007 1.006 1.006
– 0.133 0.154 0.101 0.740 0.740 0.163 0.998 0.626 0.612 0.610

rm2 1.128 0.928 0.931 0.973 1.020 1.020 0.966 1.244 1.007 1.006 1.006
– 0.133 0.154 0.101 0.740 0.740 0.163 0.998 0.626 0.612 0.610

cpiappsl 1.128 0.928 0.931 0.973 1.020 1.020 0.966 1.244 1.007 1.006 1.006
– 0.133 0.154 0.101 0.740 0.740 0.163 0.998 0.626 0.612 0.610

rgdp 0.937 0.996 1.039 1.042 1.100 1.100 1.001 1.487 0.963 0.959 0.957
– 0.489 0.602 0.725 0.919 0.919 0.505 0.986 0.268 0.247 0.238

Notes: See the notes to Table 11.
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Figure 1: The QLR test for GDP forecasting AR

Notes: The x-axis reports the p-value of the QLR test for parameter constancy; the y-axis reports the
squared forecast error of the optimal window size minus that based on the fixed window of size 40 for each
time period between 1984:Q1 and 2014:Q3.

Figure 2: QLR test for inflation forecasting AR

Notes: The x-axis reports the p-value of the QLR test for parameter constancy; the y-axis reports the
squared forecast error of the optimal window size minus that based on the fixed window of size 40 for each
time period between 1984:Q1 and 2014:Q3.
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Figure 3: QLR test for GDP forecasting ADL(BIC)

Notes: The x-axis reports the p-value of the QLR test for parameter constancy; the y-axis reports the
squared forecast error of the optimal window size minus that based on the fixed window of size 40 for each
time period between 1984:Q1 and 2014:Q3.

67



Figure 4: QLR test for inflation forecasting ADL(BIC)

Notes: The x-axis reports the p-value of the QLR test for parameter constancy; the y-axis reports the
squared forecast error of the optimal window size minus that based on the fixed window of size 40 for each
time period between 1984:Q1 and 2014:Q3.
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Figure 5: Real GDP forecasting with Fed Funds rate

Notes: The y-axis reports the squared forecast error (SFE) of the optimal window size minus that based on
the fixed window of size 40.
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Figure 6: Inflation forecasting with Fed Funds rate

Notes: The y-axis reports the squared forecast error (SFE) of the optimal window size minus that based on
the fixed window of size 40.
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