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Abstract

In this paper we propose methods to construct confidence intervals for the bias of the two-stage

least squares estimator, and the size distortion of the associated Wald test in instrumental

variables models with heteroskedasticity and serial correlation. Importantly our framework

covers the local projections – instrumental variable model as well. Unlike tests for weak

instruments, whose distributions are non-standard and depend on nuisance parameters that

cannot be consistently estimated, the confidence intervals for the strength of identification are

straightforward and computationally easy to calculate, as they are obtained from inverting

a chi-squared distribution. Furthermore, they provide more information to researchers on

instrument strength than the binary decision offered by tests. Monte Carlo simulations show

that the confidence intervals have good, albeit conservative, in some cases, small sample

coverage. We illustrate the usefulness of the proposed methods in two empirical situations:

the estimation of the intertemporal elasticity of substitution in a linearized Euler equation, and

government spending multipliers.
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1 INTRODUCTION

In this paper, we propose a novel methodology to construct confidence intervals
for the strength of identification, and in particular the bias and size distortion in
linear instrumental variables (IV) models, allowing for heteroskedasticity and serial
correlation when the model contains one endogenous regressor. Measuring the
strength of identification is an extremely important issue in practice. It is well-
known that the presence of weak instruments invalidates standard inference (Stock,
Wright and Yogo, 2002), leading to inconsistent point estimates, incorrectly sized
tests and invalid confidence intervals. A conventional and widely-used approach
to detect weak instruments in practice is using the first-stage F-statistic, which is
the F-statistic on the strength of the instrument identification. The statistic was
proposed by Staiger and Stock (1997), Stock, Wright and Yogo (2002), Stock and Yogo
(2005) and Montiel Olea and Pflueger (2013) as an approach to evaluate the severity
of the weak instrument problem in specific empirical applications. A sufficiently
large F-statistic increases researchers’ confidence that the instruments are strong and,
thus, that standard inference on the structural parameters of interest is valid. Our
complementary approach is instead based on constructing a confidence interval for
the strength of identification in terms of quantities of primary interest: bias and
size distortion in the homoskedastic IV model, and bias and size distortion in the
heteroskedastic/autocorrelated IV model with one endogenous variable as well as in
the local projections–IV (LP–IV) framework.

From a practical point of view, as Stock, Wright and Yogo (2002, p. 518) point
out, “Finding exogenous instruments is hard work, and the features that make an
instrument plausibly exogenous, such as occurring sufficiently far in the past to
satisfy a first-order condition or the as-if random coincidence that lies behind a quasi-
experiment, can also work to make the instrument weak.” Once a researcher has
gone through the tedious job of finding exogenous instruments, he or she can rely on
our method to quantify potential issues caused by the specific instruments’ strength,
without having to discard the instruments altogether.

From a methodological perspective, confidence intervals and other statistics re-
flecting sampling uncertainty provide additional information relative to p-values,
as recently urged by the American Statistical Association (Wasserstein and Lazar,
2016) and also demanded by the economics community (e.g. the American Economic
Review’s Submission Guidelines state: “(. . . ) report standard errors in parentheses
but do not use ∗s to report significance levels.”)

In our framework, the strength of identification as well as the bias of the two-
stage least squares (TSLS) estimator and the size distortion of the associated Wald
test depend on two types of parameters: coefficients which cannot be consistently
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estimated and covariances which are consistently estimable. Our proposed procedure
works as follows. In the first step, we construct asymptotically valid (1− α) level
confidence sets for the former set of parameters. The second step depends on the
model. In the homoskedastic IV model, we form the confidence intervals for the
parameter summarizing the strength of identification by using the aforementioned
confidence sets and plugging the consistent covariance estimates into the appropriate
expression for the strength of identification. To construct confidence intervals for the
bias and the size distortion, we exploit the mapping from the parameter summarizing
the strength of identification to bias or size distortion via the projection method
— see e.g. Dufour (1997) for an early application of the projection method with
weak instruments. In particular, in the case of one endogenous regressor in the
homoskedastic IV model, we can construct our confidence intervals for the strength
of identification based on the non-central chi-squared distribution, resulting in tight
confidence intervals whose coverage rates are very close to their nominal level. In the
heteroskedastic/autocorrelated IV model, we utilize the confidence sets and consistent
estimates from the first step to obtain confidence intervals for the Nagar (1959) bias
and the Wald test’s size distortion directly through the projection method. We note
that in general, the projection method leads to conservative confidence intervals,
thus we recommend the non-central χ2 method over the projection method in the
homoskedastic case with one endogenous regressor.

The methodology that we propose has several attractive properties. First, it pro-
vides guidance to applied researchers on quantifying the strength of instruments as
well as bias and size distortion in their empirical analyses, and thus protects against
weak instruments. A second advantage is that the confidence intervals for the strength
of identification are straightforward and computationally easy to calculate, as they
are obtained from inverting asymptotic chi-squared distributions. The simplicity
of our confidence intervals distinguishes our methodology from weak instrument
tests, whose distributions are typically asymptotically non-pivotal and depend on
nuisance parameters that cannot be estimated consistently. A third advantage of our
methodology is that it can be applied in the presence of heteroskedasticity and serial
correlation when there is one endogenous regressor. Our framework is also general
enough to be applied to LP–IV models (Jordà, 2005). Since the construction of confi-
dence intervals for the strength of identification is based on inverting an asymptotic
chi-squared distribution, the methodology can be easily applied even if the distur-
bances are heteroskedastic and/or serially correlated, using a Heteroskedasticity and
Autocorrelation Consistent (HAC) estimator. Monte Carlo simulations demonstrate
that our methods have good, albeit conservative, in some cases, coverage.

We illustrate the usefulness of our methodology in two empirical applications. In
the first one, we the estimate the intertemporal elasticity of substitution in linearized
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Euler equations in a heteroskedastic/autocorrelated IV model, following Yogo (2004)
and Montiel Olea and Pflueger (2013). Our confidence intervals confirm that weak
identification is indeed a serious problem, preventing reliable estimation of the in-
tertemporal elasticity of substitution. In the second empirical application, we analyze
the identification of a local projections–IV model to estimate government spending
multipliers, following Ramey and Zubairy (2018).

Our paper is related to the literature on testing the strength of instruments in linear
IV models, in particular Staiger and Stock (1997), Stock, Wright and Yogo (2002), and
Stock and Yogo (2005), who discuss the use of a first-stage F-statistic to test whether
instruments are weak, and Montiel Olea and Pflueger (2013), who provide the limiting
distribution of an appropriate first-stage F-statistic under heteroskedasticity and serial
correlation when there is only one included endogenous variable. Andrews, Stock
and Sun (in press) provide an excellent survey of the recent literature. We also make a
methodological contribution by constructing confidence intervals for the bias of the
local projections–IV estimator proposed by Jordà (2005).

An alternative approach would be to construct confidence intervals robust to weak
identification for the structural parameters, a solution that becomes computationally
infeasible in large dimensional settings (the computational problems increase when
the number of endogenous variables increases) and is only available in special cases.
We note that the Anderson-Rubin statistic has a straightforward implementation in
just-identified models with one endogenous regressor (in both homoskedastic and
heteroskedastic/autocorrelated cases), and even in set-ups where the parameters of
interest are nonlinear as in the weak structural vector autoregressive – IV (SVAR-IV)
model of Montiel Olea, Stock, Watson (2018). Tests for weak instruments can be
computationally less challenging and are widely used in practice for their simplicity.
Thus, the confidence intervals for the bias and size distortion that we propose are a
practically convenient complementary approach to robust inference methodologies.

The paper is organized as follows. Section 2 provides the intuition behind our
method. Section 3 describes our proposed confidence intervals. Section 4 provides
Monte Carlo simulation results. Section 5 presents empirical results, and Section 6
concludes. Throughout the paper, T denotes the sample size, →

p
and →

d
stand for

convergence in probability and in distribution, respectively.

2 AN ILLUSTRATIVE EXAMPLE

This section illustrates the intuition behind our results in the context of a simple
example. Consider the following baseline IV model:
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y = Yβ + u , (1)

Y = ZΠ + V , (2)

where y is a (T × 1) vector, Y and Z are (T × 1) vectors of the endogenous regressor
and instrument; u and V are (T × 1) vectors of independent, mean-zero disturbances,
the latter with variance σVV . For simplicity, σVV and E(Z2

t ) are known. The structural
equation is eq. (1), with the structural coefficient of interest β. Information on the
strength of the instrument is carried by the parameter Π in eq. (2).

2.1 Confidence Intervals for the Strength of Identification

In the case of one endogenous variable, standard tests for the strength of instruments
rely on Stock and Yogo (2005) and Stock, Wright and Yogo (2002), who recommend
using a first-stage F-statistic. This statistic is formally constructed as a test of the
null hypothesis that the instrument is not correlated with the endogenous variable
(Π = 0) against the alternative that Π 6= 0. The aforementioned papers derive the
distribution of the first-stage F-statistic under the assumption that instruments are
weak, that is Π = C/

√
T, where C is a constant, for testing the null hypothesis that

the instrument strength is less than or equal to a threshold against the alternative
that it exceeds the threshold. In this approach, the asymptotic distribution of the
test statistic is asymptotically non-pivotal, as it depends on a nuisance parameter
(C) that cannot be consistently estimated, and this parameter plays a central role in
determining the bias of the TSLS estimator and the size distortion of its associated
Wald test. Therefore, the test statistic’s critical values are different from standard
values based on the chi-squared distribution, thus making inference difficult.

Let Π̂T = (Z′Z)−1 (Z′Y) denote the OLS estimator of Π in eq. (2). The reason
why the first-stage F-statistic, F0, is asymptotically non-pivotal is because, under the
assumptions in Stock and Yogo (2005) and Staiger and Stock (1997):

F0 ≡

(
Π̂T − 0

)2

σVV (Z′Z)−1 =

[√
T
(

Π̂T − 0
)]2

σVV

(
Z′Z

T

)−1 = Y′Z
(
Z′Z

)−1 Z′Y
1

σVV
, (3)

√
T
(

Π̂T − 0
)
=
√

T
(
Z′Z

)−1 (Z′Y) = (Z′Z
T

)−1(Z′Z
T

C
)
+

(
Z′Z

T

)−1 (Z′V√
T

)
→
d

C + ν ,

(4)

where ν = E
(
Z2

t
)−1 ΨZV , ΨZV is a random variable whose distribution isN

(
0, E

(
Z2

t
)

σVV
)
.

Thus, since the limiting distribution in eq. (4) depends on C, the distribution of the
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first-stage F-statistic in eq. (3) depends on C. This argument can be extended to the
case of multiple endogenous regressors and instruments.

In our case, we focus on constructing a confidence interval for C. Note that the
dependence of the limiting distribution on C disappears when considering:

√
T
(

Π̂T −Π
)
=
√

T
((

Z′Z
)−1 (Z′Y)−Π

)
(5)

=

(
Z′Z

T

)−1 (Z′Z
T

C
)
+

(
Z′Z

T

)−1(Z′V√
T

)
− C →

d
ν . (6)

This result implies that

FΠ ≡

(
Π̂T −Π

)2

σVV (Z′Z)−1 →d
χ2

1 , (7)

where χ2
1 denotes a chi-squared distribution with one degree of freedom. Thus, one

conveniently obtains a confidence interval for C by inverting a standard χ2
1 distribution.

It might be surprising that the confidence intervals that we propose can be obtained
by inverting limiting standard chi-squared distributions while the usual test statistic
F0 cannot be used for this purpose. The intuition is that the first-stage F-statistic is
based on the difference between the estimate of the strength of identification and zero
(the value that corresponds to no identification); hence, the difference between the two
contains information on the true strength of identification and how close to zero that
is, which cannot be consistently estimated. Thus, deriving the limiting distribution of
the first-stage F-statistic in the weak instrument case results in a limiting distribution
that is non-pivotal and depends on a parameter that cannot be estimated consistently.
Confidence intervals, instead, are based on the difference between the estimate and
the true strength of identification, rather than its value under the null hypothesis,
and the limiting distribution of such difference does not depend on how close to
zero the strength of identification is. Interestingly, this rather peculiar feature of the
weak instrument problem cannot be applied to other non-standard situations where
the parameter is local to the null hypothesis, such as confidence intervals for highly
persistent (local-to-unity) autoregressive processes.

2.2 Confidence Intervals for Bias and Size Distortion

In this paper, we show how to construct confidence intervals for functions of C which
measure the strength of the instrument, such as the concentration parameter, bias and
size distortion. In this subsection, we focus on the size distortion (similar results apply
for the bias when it exists, i.e. in overidentified models). It is well-known (e.g. Stock
and Yogo, 2005) that, in the example considered in this section, the size distortion of a
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Wald test on the TSLS estimator of β is a function of the concentration parameter:

µ2
1 = C2 E(Z2

t )/σVV , (8)

where the subscript “1” refers to the number of instruments. Let us define s
(
µ2

1
)

to be
the size distortion. Figure 1 shows the size distortion as a function of µ2

1 (the nominal
level of the Wald test is 5%).

Note that once one has a confidence interval for C, CIC, one directly obtains a
confidence interval for µ2

1, CIµ2
1
, as follows:

CIµ2
1
=
{

µ̃2
1 = C̃2 E(Z2

t )/σVV such that C̃ ∈ CIC

}
. (9)

One can then construct a confidence interval for s
(
µ2

1
)

by a non-central χ2 method
or the projection method. In the latter case, suppose CIC =

[
C, C

]
is the confi-

dence interval for C obtained by inverting the χ2
1 distribution, where C > 0. Then

CIµ2
1
=
[
µ2

1
= C2 E(Z2

t )/σVV , µ2
1 = C2

E(Z2
t )/σVV

]
. Suppose that CIµ2

1
= [1, 4] is

the confidence interval for µ2
1. Then the confidence interval for the size distortion,[

s
(

µ2
1

)
, s
(
µ2

1
)]

, obtains as sketched in Figure 1, and equals [0.06, 0.14].

Figure 1: Construction of confidence interval for size distortion
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3 ECONOMETRIC FRAMEWORKS

In this section, we describe the econometric frameworks we consider, and the con-
fidence intervals that we propose. The Euclidean norm of a vector a is denoted by
‖a‖, tr (·) is the trace operator, vec (·) is the vectorization operator, and ⊗ is the
Kronecker product. The abbreviation iid stands for independent and identically dis-
tributed, N (ψ, Ξ) denotes the normal distribution with mean vector ψ and covariance
matrix Ξ, and χ2

k denotes the chi-squared distribution with k degrees of freedom.
For any (T × K) matrix A, PA ≡ A (A′A)−1 A′, and MA = IT − PA, where IT is the
(T× T) identity matrix. For a symmetric positive definite matrix B, B = B1/2B1/2 and
B−1 = B−1/2B−1/2, where B1/2 and B−1/2 are the unique principal square roots.

3.1 The General Linear IV Model

Consider the model of Staiger and Stock (1997) and Stock and Yogo (2005) (henceforth
SSY), whose notation we follow:

y = Yβ + Xγ + u, (10)

Y = ZΠ + XΦ + V, (11)

where y is a (T × 1) vector and Y is a (T × n) matrix of included endogenous regres-
sors. X is a (T × K1) matrix of included exogenous variables (including a column of
ones if there is a constant in eq. (10)) and Z is a (T × K2) matrix of excluded exogenous
variables (instruments). β is an (n× 1), while γ is a (K1 × 1) vector of coefficients.
Π is a matrix of coefficients of dimension (K2 × n), and Φ is a (K1 × n) matrix of
coefficients. Furthermore, u is a (T × 1) vector of errors, and V is a (T × n) matrix
of errors. Equation (10) is the structural equation of interest to the researcher and
eq. (11) is the first stage equation relating the matrix of endogenous regressor(s) Y to
the matrix of instrument(s) Z. The precise assumptions are stated later.

We define Xt = (X1t, . . . , XK1t)
′
, Zt = (Z1t, . . . , ZK2t)

′
, Vt = (V1t, . . . , Vnt)

′
, Zt =

(X′t, Z′t)
′ as the vectors of the t-th observations of the respective variables, t = 1, . . . , T,

and Z = [X Z]. In order to develop our asymptotic theory, it is convenient to project
out the exogenous regressors, X. That is, let Y⊥ ≡ MXY, Z⊥ ≡ MXZ, V⊥ ≡ MXV,
and u⊥ ≡ MXu. Moreover, let V⊥t be the transpose of the t-th row of V⊥, and similarly
for Z⊥t and u⊥t . Using this notation, we can rewrite eqs. (10) and (11) as:

y⊥ = Y⊥β + u⊥ , (12)

Y⊥ = Z⊥Π + V⊥ . (13)
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3.2 The Linear IV Model With n = 1 Endogenous Regressor

In empirical applications, the linear IV model with n = 1 endogenous regressor is of
particular interest. This subsection first introduces our proposed confidence intervals
in the homoskedastic setting, and then the heteroskedastic/autocorrelated set-up.

3.2.1 Homoskedastic IV model

Our confidence set provides guidance to researchers on the appropriateness of the
instruments they choose for their analysis by constructing a confidence set for the
instrument strength, either in terms of bias or size distortion. It delivers confidence
intervals which are reasonably short and very close to their nominal coverage levels,
as we will demonstrate later in the Monte Carlo simulations of Section 4.

In this section, we keep the generality of the matrix notation when possible, to
avoid having re-introducing it for the general case of n ≥ 1 endogenous variables later.

Let us define the population second moment matrices Σ and Q are as follows:

Σ = E

[(
ut

Vt

)(
ut V′t

)]
=

[
σuu ΣuV

ΣVu ΣVV

]
, (14)

Q = E
(
ZtZ

′
t
)
=

[
QXX QXZ

QZX QZZ

]
. (15)

In this section we make the same assumptions as SSY.
Assumption LΠ: Π = ΠT = C/

√
T where C is a fixed K2 × n matrix.

Assumption M: The following limits hold jointly for fixed K2 as T → ∞:
(a) (T−1u′u, T−1V′u, T−1V′V)→

p
(σuu , ΣVu, ΣVV);

(b) T−1 Z′Z →
p

Q, where Q is positive definite;

(c) (T−1/2X′u, T−1/2Z′u, T−1/2X′V, T−1/2Z′V) →
d

(ΨXu, ΨZu, ΨXV , ΨZV), where Ψ ≡
[Ψ′Xu, Ψ′Zu, vec(ΨXV)

′, vec(ΨZV)
′]′ ∼ N (0, Σ⊗Q) , where Σ is positive definite.

Assumption LΠ models Π as local to zero, formalizing the weak instrument case,
while Assumption M ensures that the appropriately scaled moments of the errors
and the variables obey a Weak Law of Large Numbers and a Central Limit Theorem.
Part (c) of Assumption M corresponds most naturally to serially uncorrelated and
conditionally homoskedastic errors, which may be restrictive in certain empirical
applications. This assumption will be substantially relaxed in Section 3.2.2.

Furthermore, let us define Ω ≡ QZZ − QZXQ−1
XXQXZ = QZ⊥Z⊥ , where QZ⊥Z⊥ ≡

E(Z⊥t Z⊥′t ), and Ω̂ ≡ Z⊥′Z⊥/T. Moreover, let Π̂T ≡ (Z⊥′Z⊥)−1Z⊥′Y⊥ denote the
OLS estimator of Π in eq. (13). Note that, by the exogeneity of X, E (XtV′t ) = 0, thus
ΣV⊥V⊥ ≡ E

(
V⊥t V⊥′t

)
= ΣVV , where ΣVV ≡ E(VtV′t ). Additionally, Assumption M
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implies Ω̂→
p

Ω, and that Σ̂VV ≡ Y⊥′MZ⊥Y⊥/ (T − K1 − K2)→p ΣVV .

The concentration parameter plays an important role in the construction of the
confidence intervals for the strength of identification. In the case of n = 1 endogenous
regressor, ΣVV is a scalar σVV (whose consistent estimator is the same, σ̂VV = Σ̂VV),
and the scalar concentration parameter is given by:

µ2
K2
≡ 1

K2
C′ΩC/σVV . (16)

As Stock and Yogo (2005) demonstrated, the (i) worst-case asymptotic bias relative
to the OLS estimator or (ii) worst-case asymptotic size distortion of the Wald test on β –
where the worst-case corresponds to the maximum of these quantities over all possible
degrees of simultaneity between the error terms in eqs. (10) and (11) – of several
k-class instrumental variables estimators, including the TSLS estimator, are functions
(given n and K2), of the concentration parameter. In this subsection, we refer to (i)
and (ii) as bias and size distortion, respectively. Furthermore, due to the popularity
of the TSLS estimator, we will focus on it. Finally, we note that the concentration
parameter’s multivariate generalization (in the case of n ≥ 1 endogenous regressors)
is the concentration matrix, as explained later.

Let b(µ2
K2

; n, K2) and s(µ2
K2

; n, K2) denote the bias and the size distortion of the
TSLS estimator, respectively, as the function of µ2

K2
when the number of endogenous

regressors and instruments are n and K2, respectively, which we assume to be fixed.
For general n, no closed-form expression is known for the functions b and s, although
their values can be simulated following the algorithm given by Stock and Yogo
(2005), suggesting they are continuous and decreasing. However, recently Skeels
and Windmeijer (2016) obtained an expression for the bias function b for the case
of n = 1 endogenous variable. Figure 2 shows the simulated functions b and s for
n = 1 endogenous regressor and various numbers of instruments K2. Section D of the
Online Appendix provides analogous results for n = {1, 2, 3} endogenous variables
and K2 = n + 1, . . . , 30 (bias) and K2 = n, . . . , 30 (size distortion), corresponding to a
fine grid of bias and size distortion. Following Stock and Yogo (2005), we calculate
the size distortion assuming the Wald test on β has a nominal level of 5%. Using
the MATLAB code that we provide, the simulations can be performed at a variety of
nominal levels.

The starting point of our proposed confidence interval is the asymptotic distribution
of the OLS estimator of Π in eq. (13). Under Assumptions LΠ and M, the asymptotic
distribution of Π̂T is given by

√
TΠ̂T →

d
N (C, σVVΩ−1) , (17)
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Figure 2: Bias and size distortion of TSLS estimator as a function of µ2
K2
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Note: The figures display the bias of the TSLS estimator (left panel) and the size distortion of the
corresponding Wald test at the 5% nominal level (right panel) for n = 1 endogenous regressor, and K2
instruments. The bias values for K2 = 2 were calculated using the method by Skeels and Windmeijer
(2016), while in the remaining cases we followed the simulation appoach of Stock and Yogo (2005).

which by Slutsky’s theorem implies that

mT ≡ Ω̂1/2σ̂−1/2
VV

√
TΠ̂T →

d
N (Ω1/2Cσ−1/2

VV , IK2) , (18)

fT ≡ m′TmT →
d

χ2
K2

(
K2µ2

K2

)
; (19)

that is, fT asymptotically follows the non-central chi-squared distribution with K2

degrees of freedom and non-centrality parameter K2µ2
K2

. By obtaining a confidence
set for µ2

K2
and using a projection argument, we can construct an asymptotically valid

confidence interval for the bias and the size distortion, as they depend only on µ2
K2

,
through b(µ2

K2
; n, K2) and s(µ2

K2
; n, K2), respectively.

Kent and Hainsworth (1995) suggested several confidence intervals for the non-
centrality parameter of a chi-squared distribution. Based on their recommendation, we
used their proposed “symmetric range” confidence interval. Let FK2(x, K2µ2

K2
) denote

the cumulative distribution function (CDF) of the non-central chi-squared distribution
with K2 degrees of freedom and non-centrality parameter K2µ2

K2
evaluated at x, and

let F−1
K2

(q, K2µ2
K2
) denote the corresponding quantile function evaluated at q. Then the

following algorithm leads to (1− α) level asymptotic confidence intervals for µ2
K2

.

1. Lower bound: If
√

fT ≤
√

F−1
K2

(1− α, 0), then set l
µ2

K2
1−α = 0. Else, solve the equa-

tion FK2( fT, (
√

fT − b)2)− FK2((max
{√

fT − 2b, 0
}
)2, (

√
fT − b)2) = (1− α) for

b, where 0 < b <
√

fT, call the solution b∗, and set l
µ2

K2
1−α = (

√
fT − b∗)2/K2.

2. Upper bound: Solve the equation FK2((
√

fT + 2b)2, (
√

fT + b)2)− FK2( fT, (
√

fT +
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b)2) = (1− α) for b, where b > 0, call the solution b∗∗. Then set u
µ2

K2
1−α =

(
√

fT + b∗∗)2/K2.

Then the interval given by CI
µ2

K2
1−α ≡ [l

µ2
K2

1−α, u
µ2

K2
1−α] is a (1 − α) level asymptotic

confidence interval for µ2
K2

. Let us define

lb
1−α ≡ b(u

µ2
K2

1−α; n, K2) ub
1−α ≡ b(l

µ2
K2

1−α; n, K2) , (20)

ls
1−α ≡ s(u

µ2
K2

1−α; n, K2) us
1−α ≡ s(l

µ2
K2

1−α; n, K2) , (21)

which constitute the endpoints of the (1− α) level asymptotic confidence intervals for
bias (eq. (20)) and size distortion (eq. (21)), as summarized in Proposition 1.

Proposition 1 (Confidence interval based on the non-central χ2 distribution): Under

Assumptions LΠ and M, CI
µ2

K2
1−α is an asymptotically valid (1− α) level confidence

interval for µ2
K2

, that is,

lim
T→∞

P
(

µ2
K2
∈ CI

µ2
K2

1−α

)
= 1− α . (22)

Furthermore, [lb
1−α, ub

1−α] and [ls
1−α, us

1−α] are (1 − α) level asymptotic confidence
intervals for the bias and size distortion, respectively, formally:

lim
T→∞

P
(

b
(

µ2
K2

; n, K2

)
∈ [lb

1−α, ub
1−α]

)
= 1− α , (23)

lim
T→∞

P
(

s
(

µ2
K2

; n, K2

)
∈ [ls

1−α, us
1−α]

)
≥ 1− α . (24)

Proof. See Section A of the Online Appendix.

Remark 1. Skeels and Windmeijer (2016) show that, in the case of n = 1 endogenous
regressor, the bias b

(
µ2

K2
; n, K2

)
is a strictly decreasing continuous function of µ2

K2
(see

their Theorem B.2). If s
(

µ2
K2

; n, K2

)
is strictly decreasing as well (as Stock and Yogo’s

(2005) simulations strongly suggest), then the corresponding asymptotic confidence
interval will not be conservative (the weak inequality in eq. (24) will become an
equality).

Our proposed procedure is an alternative to that of Stock and Yogo (2005). That
procedure tests whether the instruments are strong enough either in terms of not
leading to an estimator of β more biased than a pre-specified tolerance, or controlling
that the Wald test on β does not display higher size distortion than a threshold.
Their theory builds on the asymptotic distribution of the first-stage F-statistic (or
its multivariate generalization when n ≥ 1). However, their method cannot provide
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a confidence set for the bias of the TSLS estimator or the size distortion of the
corresponding Wald test: that is, researchers do not know how weak or strong their
instruments are. Our proposed method is specifically designed to provide researchers
with such a confidence interval, using a confidence interval of µ2

K2
, and its relationship

with the bias and size distortion of IV estimators.
Alternatively, a uniformly valid confidence interval can be obtained using Hansen’s

(1999) grid bootstrap. Note that, however, Hansen’s (1999) bootstrap is computationally
intensive and difficult to implement in multivariate cases. In the following example,
we show that, for the case of weak instruments, our procedure (based on asymptotic
normality) and Hansen’s (1999) deliver the same confidence interval for the strength
of identification; our approach, however, is computationally much less intensive.

Example 1. To illustrate the relationship between our asymptotic normal approximation
and Hansen’s (1999) grid bootstrap, consider a Monte Carlo simulation study. Let us specify
Y = ZΠ+ XΦ+V, where Y, Z, X, V are (T × 1) vectors such that (Zt, Vt)′ ∼ iid N (0, I2),
Π = ΠT = C/

√
T, C = 0.5, T = 100, Xt = 1 and Φ = 1. Hansen’s (1999) grid bootstrap

is uniformly asymptotically valid in the presence of a weak instrument. If our asymptotic
normal approximation is a good approximation of the grid bootstrap quantiles, the 5th and
95th percentiles of the t-statistic obtained using Hansen’s (1999) grid bootstrap are straight
lines (i.e. independent of Π) and equal to ±1.64. Using the grid bootstrap, we can simulate
the distribution of the usual t-statistic testing the null hypothesis of Π = Π0 at each point Π0

on a fine grid AG, which we specify as ranging from −0.1 to 0.1, with increments of 0.01. At
each point on AG, we simulate the distribution of the t-statistic using B = 999 replications
and resampling the estimated residuals with replacement; then we estimate the 5th and 95th
percentiles (qL and qU) of the simulated distribution. The results confirm that the simulated
quantiles of the t-statistic are virtually indistinguishable from their asymptotic counterparts
(±1.64) and constant over Π (see Section G of the Online Appendix).

Example 2. To illustrate our methodology in an empirical setting, consider Angrist
and Krueger’s (1991) problem of estimating the returns to education on wages, resolving
the endogeneity problem using the quarter-of-birth interacted with the year-of-birth as IVs.
As Bound et al. (1995) noted, the instruments are only weakly correlated with educational
attainment, causing a potential weak instrument problem. Table 1 reports the confidence
intervals for bias and size distortion. The first column reports results for the specification in
Table V, column 8 in Angrist and Krueger (1991). The TSLS estimate equals 0.060 (with a
standard error of 0.029), and the Stock and Yogo (2005) F-statistic implies that the instruments
are weak in terms of bias and size distortion as well. That is, at the 5% significance level one
cannot reject that asymptotically the bias of the TSLS estimator is at most 5% (or even 10 %)
of the bias of the OLS estimator in the worst case (the worst case corresponds to the biggest
relative bias over all possible degrees of simultaneity between the structural and the first-stage
errors). Similarly, a researcher cannot reject that when performing a Wald test on β at the
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5% nominal level, asymptotically in the worst case (interpreted as before) he or she would be
performing a test which in fact has 5% or 10% larger size than advertised. Our 95% confidence
intervals agree with this, no matter whether they are calculated with the projection method
or the non-central χ2 approximation. The second column reports results for the specification
considered by Bound et al. (1995, Table 1, column 2), which includes a smaller number of
instruments (only quarter-of-birth). The TSLS estimate is 0.142 (with a standard error of
0.033). The F-statistic is just below the 5% critical value for bias, and well below the critical
value for 5% size distortion. While the Stock and Yogo (2005) test implies weak instruments,
a researcher might have ambiguous thoughts about classifying these instruments as weak, as
for example the critical value corresponding to 10% bias is 9.08. Indeed, our non-central χ2 –
based confidence intervals suggest a bias between 1.4% and 5.4%, and size distortion between
3.0% and 9.7%, which an applied researcher might be comfortable with.

Table 1: Estimating the returns to education: confidence intervals

Angrist and Krueger (1991) Bound et al. (1995)
(K2 = 28) (K2 = 3)

TSLS estimate (standard error) 0.060 (0.029) 0.142 (0.033)
95% Confidence intervals for bias

Projection method [0.132, 0.997] [0.012, 0.087]
Non-central χ2 [0.223, 0.914] [0.014, 0.054]

95% Confidence intervals for size distortion
Projection method [0.532, 0.950] [0.024, 0.140]
Non-central χ2 [0.777, 0.950] [0.030, 0.097]

F-statistic 1.61 13.49
Critical value (5% bias) 21.42 13.91
Critical value (10% bias) 11.34 9.08
Critical value (5% size distortion) 81.40 22.30
Critical value (10% size distortion) 42.37 12.83

Note: The upper panel reports confidence intervals for bias and size distortion in the Angrist and Krueger
(1991) and the Bound et al. (1995) returns to education regressions. The lower panel shows the F-statistics
and the corresponding critical values (at the 5% significance level) for bias and size distortion (nominal
level of Wald test is 5%) following Stock and Yogo (2005). Critical values in bold correspond to strong
instruments according to the specific threshold.

3.2.2 The Heteroskedastic/Autocorrelated Linear IV Model

The assumption of homoskedastic errors used in the previous section may be restric-
tive in a number of applications. In those cases, applying either the Stock and Yogo
(2005) test or our proposed confidence interval could lead to incorrect inference on
the instrument strength. As a solution to this problem, Montiel Olea and Pflueger
(2013) propose a measure of the strength of instruments which applies to general (het-
eroskedastic, autocorrelated or clustered) errors, albeit the theory has been developed
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for the case of n = 1 endogenous regressor.
Following Montiel Olea and Pflueger (2013), consider the linear IV model:

y⊥ = Z⊥Πβ + v1 , (25)

Y⊥ = Z⊥Π + v2 , (26)

where eq. (25) is the structural equation of interest in reduced form, while eq. (26) is
the first stage equation linking the endogenous regressor Y⊥ with the instruments
Z⊥ (both projected on the exogenous variables). Both y⊥ and Y⊥ are (T× 1) vectors,
Z⊥ is a (T × K2) matrix of instruments, β is a scalar coefficient, Π is a (K2 × 1) vector
of coefficients, while v1 ≡ V⊥β + u⊥ and v2 ≡ V⊥ are (T × 1) vectors of errors.
Furthermore, in this section, Z⊥ is orthogonalized such that Z⊥′Z⊥/T = IK2 .

Montiel Olea and Pflueger (2013) adopt Assumption LΠ of SSY to model weak
instruments, but considerably weaken their moment assumptions as follows:
Assumption HL: The following limits hold as T → ∞:

(a)

(
T−1/2Z⊥′v1

T−1/2Z⊥′v2

)
→
d

(
K
J

)
∼ N (0, W) for some positive definite W =

(
W1 W12

W ′12 W2

)
,

where the sub-matrices of W are all (K2 × K2) square matrices;

(b) [v1 v2]
′[v1 v2]/T →

p
κ for some positive definite κ;

(c) There exists a sequence of positive definite estimates Ŵ, measurable with respect to
{y⊥t , Y⊥t , Z⊥t }T

t=1, such that Ŵ →
p

W.

Unlike Assumption M of SSY, these high level assumptions do not restrict W to take
the form of κ⊗ IK2 , and therefore they can encompass a wide range of error structures,
including heteroskedastic, autocorrelated or clustered (in panel data) error terms.

Montiel Olea and Pflueger (2013) focus on the Nagar (1959) bias, defined as

NTSLS(β, C, W) ≡ µ−2 tr(ω12)

tr(ω2)

[
1− 2

C′0ω12C0

tr(ω12)

]
, (27)

where C = ‖C‖C0, µ2 ≡ ‖C‖2/ tr(W2), ω1 ≡ W1 − 2βW12 + β2W2, ω12 ≡ W12 − βW2,
and ω2 ≡ W2. Note that µ2 can be thought of as the analog of the concentration
parameter µ2

K2
defined in Section 3.1. The Nagar bias is the expected value of the

first three terms in the Taylor expansion of the asymptotic distribution of the TSLS
estimator under weak instrument asymptotics (in the case of irrelevant instruments,
corresponding to C = 0, we define the Nagar bias as either +∞ or −∞). Further-
more, they define the benchmark “worst-case” bias as BM(β, W) ≡

√
tr(ω1)/ tr(ω2),

which is intuitively related to the approximate bias of the TSLS estimator when the
instruments are uninformative and the first-stage and second-stage errors are perfectly
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correlated (see Remark 4 on p. 362 in Montiel Olea and Pflueger, 2013). Then, for a
given threshold τ ∈ [0, 1] (specified by the researcher) they define the weak instrument
set as

µ2 ∈ R+ : sup
β∈R,C0∈SK2−1

|NTSLS(β, µ
√

tr(W2)C0, W)|
BM(β, W)

> τ , (28)

where SK2−1 is the K2− 1 dimensional unit sphere. That is, the instruments are weak if
the Nagar bias exceeds a fraction τ of the benchmark bias BM(β, W) for at least some
value of the structural parameter β and some direction of the first-stage coefficients
C0. Montiel Olea and Pflueger (2013) propose the so-called effective first-stage F-statistic
to test the null hypothesis of weak instruments:

F̂eff ≡
Y⊥′(Z⊥Z⊥′/T)Y⊥

tr(Ŵ2)
. (29)

However, their procedure cannot guide researchers on how weak or strong their
instruments are. On the other hand, our proposed methodology allows researchers to
go beyond hypothesis testing by providing an asymptotic confidence interval for the
Nagar bias defined in eq. (27). Therefore our procedure has the additional advantage
of providing information on the bias of the TSLS estimator directly, without the need to
relate it to the worst-case benchmark bias BM(β, W). However, a further complication
arises due to the fact that the Nagar bias depends on the structural parameter β, which
is not consistently estimable under weak instrument asymptotics.

In what follows, we explain how we can still provide a confidence interval for the
Nagar bias by combining two ideas: the method of obtaining a joint confidence set
for C and β, and using a consistent estimate of W. Consider a compact expression of
eqs. (25) and (26) (e.g., Andrews, Moreira and Stock (2006)):

Ỹ = Z⊥Πa′ + ṽ , (30)

where Ỹ ≡
[
y⊥, Y⊥

]
, a ≡ (β, 1)′ and ṽ ≡ [v1, v2]. Note that the coefficient matrix Πa′

has an interesting structure: its first column is Πβ, while its second column is Π. Let
us define its vectorized version as Γ ≡ [Π′β, Π′]′, then vectorize eq. (30):

vec
(

Ỹ
)
= (I2 ⊗ Z⊥)Γ + vec(ṽ) . (31)

Consider the asymptotic distribution of the OLS estimator of Γ in eq. (31):

√
T
(

Γ̂− Γ
)
=

[
T−1/2Z⊥′v1

T−1/2Z⊥′v2

]
=

[
ψ̂− Cβ

Ĉ− C

]
→
d
N (0, W) , (32)
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where ψ̂ is
√

T times the OLS estimator of ΠTβ in the structural equation, Ĉ =

Π̂T
√

T, and we used the normalization Z⊥′Z⊥/T = IK2 and Assumptions HL and
LΠ. Furthermore, by Slutsky’s theorem and part (c) of Assumption HL, the Wald
statistic asymptotically follows a chi-squared distribution with 2K2 degrees of freedom,
formally

W(C, β) ≡
[

ψ̂− Cβ

Ĉ− C

]′
Ŵ−1

[
ψ̂− Cβ

Ĉ− C

]
→
d

χ2
2K2

. (33)

By taking the (1− α) quantile of the χ2
2K2

distribution (denoted by χ2
2K2,1−α), the Wald

statisticW(C, β) can be inverted to obtain an asymptotically valid (1− α) level joint
confidence set for C and β, formally:

CIC,β
1−α ≡

{
∀ (C̃, β̃) ∈ RK2+1 :W(C̃, β̃) ≤ χ2

2K2,1−α

}
. (34)

Note that if C̃ = 0 is in the confidence set CIC,β
1−α, then the confidence set for β is

unbounded, which is in line with the findings of Dufour (1997). If this is the case, then
the instruments are very weak indeed, and β might not be identified. Therefore when
C̃ = 0 ∈ CIC,β

1−α, we take [−∞,+∞] as our confidence set for the Nagar bias. Another
peculiar case is when the confidence set CIC,β

1−α is empty, which can happen when a
confidence set is based on the inversion principle. This situation indicates that the
data reject the model, pointing to the violation of the exclusion restriction. In this case,
we take the empty set (denoted by ∅) as the confidence set for the Nagar bias.

To construct a confidence interval for the Nagar bias, let us define the Nagar bias
as a function of the parameters

(
C̃, β̃

)
and the consistent estimate Ŵ:

ÑTSLS(β̃, C̃, Ŵ) ≡ µ̃−2 tr(ω̃12)

tr(ω̃2)

[
1− 2

C̃′0ω̃12C̃0

tr(ω̃12)

]
, (35)

where C̃ = ‖C̃‖C̃0, µ̃2 ≡ ‖C̃‖2/ tr(Ŵ2), ω̃1 ≡ Ŵ1 − 2β̃Ŵ12 + β̃2Ŵ2, ω̃12 ≡ Ŵ12 − β̃Ŵ2,
and ω̃2 ≡ Ŵ2.

Let us define LN
1−α ≡ min

(C̃,β̃)∈CIC,β
1−α

ÑTSLS(β̃, C̃, Ŵ) and UN
1−α ≡ max

(C̃,β̃)∈CIC,β
1−α

ÑTSLS(β̃, C̃, Ŵ).

Our proposed (1− α) level asymptotic confidence interval for NTSLS(β, C, W) is

CINTSLS
1−α =


[
LN

1−α , UN
1−α

]
if CIC,β

1−α 6= ∅ and C̃ = 0 /∈ CIC,β
1−α ,

[−∞,+∞] if C̃ = 0 ∈ CIC,β
1−α ,

∅ if CIC,β
1−α = ∅ .

(36)

We summarize our results in the following proposition.

Proposition 2 (Confidence interval for the Nagar bias): Under Assumptions LΠ and
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HL, CINTSLS
1−α in eq. (36) is an asymptotically valid confidence interval for the Nagar bias

NTSLS(β, C, W), that is

lim
T→∞

P
(

NTSLS(β, C, W) ∈ CINTSLS
1−α

)
≥ 1− α . (37)

Proof. See Section A of the Online Appendix.

Note that, as ÑTSLS(β̃, C̃, Ŵ) is not a one-to-one function of
(

C̃, β̃
)

in general, our
proposed confidence interval may be conservative.

In addition to learning about the bias of the TSLS estimator in the (potentially)
heteroskedastic/autocorrelated IV model, researchers might want to perform a test
on the structural parameter β. In what follows, we provide a confidence interval for
the size distortion of the Wald test on β. Compared to the worst-case size distortion
investigated by Stock and Yogo (2005), we provide a confidence intervals for the
actual asymptotic size distortion of the Wald test, and allow for heteroskedasticity and
autocorrelation, although we consider the case of n = 1 endogenous regressor only.

Consider the TSLS estimator of β, given by

β̂ =
(

Y⊥′Z⊥Z⊥′Y⊥
)−1 (

Y⊥′Z⊥Z⊥′y⊥′
)

, (38)

from which it follows that

√
T
(

β̂− β
)
=

(
Y⊥′Z⊥

T
Z⊥′Y⊥

T

)−1(
Y⊥′Z⊥

T
Z⊥′u⊥√

T

)
. (39)

Let S denote the long-run variance of Z⊥t u⊥t , that is S ≡ limT→∞ Var
(
T−1/2Z⊥′u⊥

)
,

and Ŝ an estimator of S (to be specified later).
The Wald statistic testing a null hypothesis on β is

WT ≡
T
(

β̂− β
)2

(
Y⊥′Z⊥

T
Z⊥′Y⊥

T

)−1 Y⊥′Z⊥
T Ŝ Z⊥′Y⊥

T

(
Y⊥′Z⊥

T
Z⊥′Y⊥

T

)−1 =

(
Y⊥′Z⊥√

T
Z⊥′u⊥√

T

)2

Y⊥′Z⊥√
T

Ŝ Z⊥′Y⊥√
T

. (40)

Then, from Assumptions LΠ and HL it follows that

Y⊥′Z⊥√
T

=
Π′Z⊥′Z⊥√

T
+

v′2Z⊥√
T

= C′
Z⊥′Z⊥

T
+

v′2Z⊥√
T
→
d
(C + J)′ , (41)

Z⊥′u⊥√
T

=
Z⊥′v1√

T
− β

Z⊥′v2√
T
→
d

K− βJ . (42)

If β was consistently estimable, then an appropriate HAC estimator (see e.g. An-
drews, 1991) could consistently estimate S. However, this is not the case under
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weak instrument asymptotics. Let us adopt a general HAC estimator with ker-
nel k

(
j

b(T)

)
, where b(T) denotes the data-dependent bandwidth parameter. Then

Ŝ = ∑T−1
j=−T+1 k

(
j

b(T)

)
Γ̂j, where Γ̂j ≡ T−1 ∑T

t=j+1 ĝt ĝ′t−j and ĝt ≡ Z⊥t ût = Z⊥t u⊥t −(
β̂− β

)
Z⊥t Y⊥t . Let

Ξj ≡ E

[(
Z⊥t v1,t

Z⊥t v2,t

)(
Z⊥′t−jv1,t−j Z⊥′t−jv2,t−j

)]
=

[
Ξ11

j Ξ12
j

Ξ21
j Ξ22

j

]
, (43)

where the sub-matrices of Ξj are all (K2 × K2) square matrices. Furthermore,

B̃T,j = T−1 ∑ Z⊥t u⊥t Z⊥′t−ju
⊥
t−j →p Ξ11

j − βΞ12
j − βΞ21

j + β2Ξ22
j , (44)

F̃T,j = T−1 ∑ Z⊥t u⊥t Z⊥′t−jY
⊥
t−j + T−1 ∑ Z⊥t Y⊥t Z⊥′t−ju

⊥
t−j →p Ξ12

j − 2βΞ22
j + Ξ21

j , (45)

D̃T,j = T−1 ∑ Z⊥t Y⊥t Z⊥′t−jY
⊥
t−j →p Ξ22

j , (46)

β̂− β =

(
Y⊥′Z⊥√

T
Z⊥′Y⊥√

T

)−1(
Y⊥′Z⊥√

T
Z⊥′u⊥√

T

)
→
d

(C + J)′ (K− βJ)
(C + J)′ (C + J)

, (47)

where the summations go from t = j + 1 to T. Hence we can write Γ̂j = B̃T,j −(
β̂− β

)
F̃T,j +

(
β̂− β

)2
D̃T,j. From these, the asymptotic distribution of the Wald

statistic follows, denoted by W∞
(

β, C,
{

Ξj
})

, where the notation highlights the de-
pendence on the arguments: the consistently estimable entries of Ξj, and C and β.
Importantly, W∞ (·) will not depend on the particular kernel function k(·) provided
that standard regularity conditions (see e.g. Andrews, 1991) are satisfied.

The asymptotic size distortion of the Wald test with nominal size ν is defined as

sW∞,ν
(

β, C,
{

Ξj
})
≡ P

(
W∞

(
β, C,

{
Ξj
})

> χ2
1,1−ν

)
− ν . (48)

For β and C, we can construct a (1− α) level joint confidence interval using eq. (34).
While we are not aware of a simple expression for the distribution of W∞, eq. (48) can
be easily simulated for any (C̃, β̃) ∈ CIC,β

1−α and using the point estimates of the Ξjs,
denoted by Ξ̂j.

Define Ls
1−α ≡ min

(C̃,β̃)∈CIC,β
1−α

sW∞,ν(β̃, C̃,
{

Ξ̂j

}
) and Us

1−α ≡ max
(C̃,β̃)∈CIC,β

1−α

sW∞,ν(β̃, C̃,
{

Ξ̂j

}
).

Our proposed (1− α) level asymptotic confidence interval for sW∞,ν
(

β, C,
{

Ξj
})

is

CIsW∞ ,ν
1−α =


[
Ls

1−α , Us
1−α

]
if CIC,β

1−α 6= ∅ ,

∅ if CIC,β
1−α = ∅ .

(49)

Proposition 3 (Confidence interval for the Wald size distortion): Under Assumptions
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LΠ and HL, CIsW∞ ,ν
1−α in eq. (49) is an asymptotically valid confidence interval for the

Wald size distortion sW∞,ν
(

β, C,
{

Ξj
})

, that is

lim
T→∞

P
(

sW∞,ν
(

β, C,
{

Ξj
})
∈ CIsW∞ ,ν

1−α

)
≥ 1− α . (50)

Proof. See Section A of the Online Appendix.

3.3 The Local Projections–IV Method

Since Jordà (2005), the local projections method has become popular to estimate
impulse response functions, due to its simplicity (both in terms of estimation and infer-
ence) and robustness to model misspecification. Its IV variant called local projections–
IV (LP–IV) is used in several studies, e.g. Jordà et al. (2015) and Ramey and Zubairy
(2018). Stock and Watson (2018) provides an overview of the LP–IV econometric
framework, which we adopt.

Consider the (k× 1) vector of covariance stationary macroeconomic variables Yt,
and its structural vector moving average representation Yt = Θ(L)εt , where L is the
lag operator, Θ(L) = Θ0 +Θ1L+Θ2L2 + . . . , and Θh is a (k×m) matrix of coefficients.
Furthermore, εt is an (m× 1) vector of mutually uncorrelated structural shocks and
measurement errors with a positive definite covariance matrix. The coefficients of
Θ(L) are the structural impulse response functions. Suppose that the researcher is
interested in the response of the i-th endogenous variable at horizon h, Yi,t+h, to
a unitary increase in ε1,t, and let the (i, 1) element of Θh be denoted by Θh,i1. A
convenient normalization is Θ0,11 = 1, that is a unit increase in ε1,t leads to a unit
increase in Y1,t. It follows that we can write Y1,t = ε1,t + {ε2:m,t, εt−1, εt−2, . . . }, where
ε2:m,t ≡ (ε2,t, ε3,t, . . . εm,t)′, and the shorthand {·} denotes the linear combination of the
variables inside the braces. The h-period-ahead impulse response of the i-th variable
Yi,t+h to a structural shock ε1,t is given by Θh,i1 in the regression:

Yi,t+h = Θh,i1Y1,t + uh
i,t+h , (51)

where uh
i,t+h = {εt+h, . . . , εt+1, ε2:m,t, εt−1, εt−2, . . . }. Given the endogeneity of Y1,t, OLS

is inconsistent, but TSLS is consistent if an appropriate set of instrumental variables Zt

is available. Note that in general, uh
i,t+h is serially correlated for h > 1 by construction.

As common in the empirical literature, a vector of control variables Xt can be
added to eq. (51), resulting in Yi,t+h = Θh,i1Y1,t + γ′hXt + uh

i,t+h . After projecting on the
control variables, the regression of interest becomes

Y⊥i,t+h = Θh,i1Y⊥1,t + uh⊥
i,t+h . (52)
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As Stock and Watson (2018) note, the control variables can serve two purposes: first,
the exogeneity conditions E(ε2:m,tZ′t) = 0, and E(εt+jZ′t) = 0 for all j 6= 0 might only
be satisfied after controlling for Xt. Second, they can reduce the variance of the IV
estimator through reducing the variance of the error term. The exogeneity conditions
in the presence of control variables are E(ε⊥2:m,tZ

⊥′
t ) = 0, and E(ε⊥t+jZ

⊥′
t ) = 0 for all

j 6= 0. Instrument relevance is given by E(ε⊥1,tZ
⊥
t ) = Π. Note that under instrument

exogeneity, the instrument relevance condition is equivalent to E(Y⊥1,tZ
⊥
t ) = Π, which

suggests the familiar first stage equation (using the same normalization Z⊥′Z⊥/T =

IK2 as before, and Y⊥1,t acting as the endogenous regressor Y⊥t ):

Y⊥1,t = Z⊥′t Π + v2,t , (53)

where E(v2,tZ⊥t ) = 0. The reduced-form structural equation is:

Y⊥i,t+h = Z⊥′t ΠΘh,i1 + Θh,i1v2,t + uh⊥
i,t+h = Z⊥′t ΠΘh,i1 + v1,t , (54)

where Y⊥i,t+h corresponds to yt, Θh,i1 plays the role of β, and Θh,i1v2,t + uh⊥
i,t+h is equiv-

alent to v1,t in the heteroskedastic/autocorrelated IV model. As Stock and Watson
(2018) note, apart from special cases, by construction Z⊥′t v1,t and Z⊥′t v2,t feature con-
ditional heteroskedasticity and autocorrelation, hence our confidence interval in the
previous subsections apply directly to the LP–IV framework under Assumptions LΠ,
HL, instrument exogeneity, and the validity of the structural vector moving average
representation described at the beginning of this subsection.

3.4 The General Case of Multiple Endogenous Regressors (n ≥ 1)

The concentration matrix is the generalization of the concentration parameter µ2
K2

in
Section 3.2.1, and plays an analogous role in determining the strength of identification
in terms of maximal bias and size distortion in the homoskedastic IV model.

Define λ ≡ Ω1/2CΣ−1/2
VV . Then the concentration matrix Λ is given by

Λ ≡ 1
K2

Σ−1/2′
VV C′ΩCΣ−1/2

VV =
1

K2
λ
′
λ . (55)

In the general case of n ≥ 1 endogenous regressors, the worst-case bias and
size distortion are functions of the minimum eigenvalue of the concentration matrix,
denoted by mineval (Λ), as shown by Stock and Yogo (2005).

Similarly to the previously discussed case of n = 1, our proposed confidence
interval builds on the asymptotic distribution of the OLS estimator of Π in eq. (13):

√
T
(

Π̂T −Π
)
=
(

T−1Z⊥′Z⊥
)−1

T−1/2Z
⊥′

V⊥ , (56)
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√
T vec

(
Π̂T −Π

)
→
d
N
(

0, ΣVV ⊗Ω−1
)

, (57)

vec
(

Ĉ− C
)
→
d
N
(

0, ΣVV ⊗Ω−1
)

, (58)

where eq. (57) follows directly from eq. (56) and Assumption M, and in eq. (58) we
used Π = ΠT = C/

√
T and Ĉ ≡ Π̂T

√
T. While Ĉ is an inconsistent estimator of C,

for our purposes the asymptotic normality result of eq. (58) is sufficient. Note that[
vec

(
Ĉ− C

)]′ [
ΣVV ⊗Ω−1]−1

[
vec

(
Ĉ− C

)]
→
d

χ2
nK2

. By using Σ̂VV →p ΣVV and

Ω̂ ≡ Z⊥′Z⊥/T →
p

Ω, we obtain the distribution of the Wald statistic,W(C):

W(C) ≡
[
vec

(
Ĉ− C

)]′ [
Σ̂VV ⊗ Ω̂−1

]−1 [
vec

(
Ĉ− C

)]
→
d

χ2
nK2

. (59)

By taking the (1− α) quantile of the χ2
nK2

distribution (denoted by χ2
nK2,1−α), W(C)

can be inverted to obtain an asymptotically valid (1− α) level confidence set for C:

CIC
1−α ≡

{
∀ C̃ ∈ RK2×n :W

(
C̃
)
≤ χ2

nK2,1−α

}
. (60)

Note that CIC
1−α is compact and non-empty. Using the definition of Λ (eq. (55)), define

Λ̃(C̃) ≡ 1
K2

Σ̂−1/2′
VV C̃′Ω̂C̃Σ̂−1/2

VV , (61)

which is a continuous function of C̃ and of the consistent estimates of ΣVV and Ω. Let

LΛ
1−α ≡ min

C̃∈CIC
1−α

mineval(Λ̃(C̃)) UΛ
1−α ≡ max

C̃∈CIC
1−α

mineval(Λ̃(C̃)) . (62)

Then, following a projection argument (see e.g. Dufour (1997)), a (1− α) level asymp-
totic confidence interval for mineval(Λ) is given by

CIΛ
1−α ≡

[
LΛ

1−α, UΛ
1−α

]
. (63)

Furthermore, let us define

Lb
1−α ≡ b(UΛ

1−α; n, K2) Ub
1−α ≡ b(LΛ

1−α; n, K2) , (64)

Ls
1−α ≡ s(UΛ

1−α; n, K2) Us
1−α ≡ s(LΛ

1−α; n, K2) , (65)

which constitute the endpoints of the (1− α) level asymptotic confidence intervals for
bias (eq. (64)) and size distortion (eq. (65)), as summarized in Proposition 4.

Proposition 4 (Confidence interval based on the projection method): Under Assump-
tions LΠ and M, CIΛ

1−α is an asymptotically valid (1− α) level confidence interval for
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mineval (Λ), that is,

lim
T→∞

P
(

mineval (Λ) ∈ CIΛ
1−α

)
≥ 1− α . (66)

Furthermore, [Lb
1−α, Ub

1−α] and [Ls
1−α, Us

1−α] are (1− α) level asymptotic confidence
intervals for the bias and size distortion, respectively, formally:

lim
T→∞

P
(

b (mineval (Λ) ; n, K2) ∈ [Lb
1−α, Ub

1−α]
)
≥ 1− α , (67)

lim
T→∞

P
(

s (mineval (Λ) ; n, K2) ∈ [Ls
1−α, Us

1−α]
)
≥ 1− α . (68)

Proof. See Section A of the Online Appendix.

Remark 2. Note that, as Λ̃
(

C̃
)

is not a one-to-one function of C̃ in general, our
proposed confidence interval is conservative. Hence, in the case of n = 1 endogenous
variable, we recommend using the confidence interval introduced in section 3.2.1,
based on the non-central χ2 distribution.

Remark 3. When there is only one endogenous regressor (n = 1), then the Karush–
Kuhn–Tucker conditions provide an analytical solution to eq. (62), and hence to eqs. (64)
and (65) (we thank an anonymous referee for pointing this out). Define dT ≡ σ̂−1

VVĈ′Ω̂Ĉ.

The upper bound is given by UΛ
1−α = K−1

2

(√
χ2

K2,1−α +
√

dT

)2
. If dT ≥ χ2

K2,1−α, then

LΛ
1−α = K−1

2

(√
dT −

√
χ2

K2,1−α

)2
, while if dT < χ2

K2,1−α, then LΛ
1−α = 0 (see Section A

of the Online Appendix). However, for a general n > 1, the lower and upper bounds of
the proposed confidence interval must be calculated numerically: we use MATLAB’s
fmincon function to calculate the bounds of the confidence intervals, because the
objective function and the constraint are both smooth functions.

4 MONTE CARLO ANALYSIS

In this section, we investigate the performance of the confidence intervals that we
proposed in both the homoskedastic, and the heteroskedastic and serially correlated
IV model. Throughout, we focus on the empirical coverage rates of our proposed
confidence intervals; in the homoskedastic IV model with n = 1 we provide median
lengths as well, to compare the projection method to the non-central chi-squared
approach. The Online Appendix provides further results, including the median
lengths of the confidence intervals. Without loss of generality, in this section we do
not include exogenous regressors (thus, Y = Y⊥, Z = Z⊥ and V = V⊥). The number
of Monte Carlo replications is 2000 and the nominal level of the confidence intervals’
coverage is (1− α) = 0.90 in all designs.
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4.1 The Homoskedastic IV Model

Let the first stage equation be Y = ZΠ+V, where Y is the T× n matrix of endogenous
variables, Z is the T× K2 matrix of instruments, and V is the T× n matrix of errors. In
the homoskedastic DGP (Data Generating Process) we specify Vt ∼ iid N (0, In) and
Zt ∼ iid N (0, IK2), and consider n = 1, with K2 = {n + 1, . . . , n + 4} when focusing
on bias, and K2 = {n, . . . , n + 3} when analyzing size distortion. For each pair (n, K2),
we consider three values of bias and size distortion: 5%, 10% and 30% (Section C of
the Online Appendix contains the values of C used in the simulations). We consider
sample sizes of T = {100, 250, 500, 1000}. We constructed the confidence intervals
based on both the non-central chi-squared approach of Proposition 1 and the projection
method of Proposition 4. Doing so allows us to evaluate the conservativeness of the
projection method. Recall that in the homoskedastic model, bias and size distortion
do not depend on structural equation parameters, only on the smallest eigenvalue of
the concentration matrix, mineval(Λ), K2, and n. In the interest of space, we relegated
the Monte Carlo results for n = 2 to Section C of the Online Appendix.

As Panels A of Tables 2 and 3 show, the confidence intervals based on the non-
central chi-squared approximation display coverage rates very close to the nominal
90% level for a variety of sample sizes and bias/size distortion values. The coverage
rates of the confidence intervals based on the projection method are shown in Panels
B of Tables 2 and 3, calculated using exactly the same simulated data. As we can see,
these confidence intervals exhibit over-coverage (as anticipated), which increases in
the number of instruments K2, and for a given K2 it is smaller for smaller values of
bias/size distortion (modulo Monte Carlo error). The intuition behind the former is
that the larger the dimension of the vector C, the “less” one-to-one Λ̃(C̃) becomes. The
latter effect is due to the fact that smaller values of bias/size distortion correspond to
larger values of C, which are further away from the origin, thereby further away from
a part of the parameter space where Λ̃(C̃) is particularly non-invertible.

Panels C and D of Tables 2 and 3 illustrate that the median lengths of confidence
intervals are slightly larger with the projection method than with the non-central
chi-squared approximation.

Overall, our methods perform well across different specifications, even for relatively
small samples.

4.2 The Heteroskedastic/Autocorrelated IV Model

We consider two DGPs, labeled as DGP 1N and DGP 2N, to construct confidence
intervals for the Nagar bias defined in eq. (27), and DGP 1S and DGP 2S to construct
confidence intervals for the size distortion of the Wald test at the ν = 5% nominal
level. DGPs 1N and 2N are inspired by Montiel Olea and Pflueger (2013, p. 361), and
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Table 2: Homoskedastic IV model, n = 1 endogenous variable, confidence intervals
for TSLS bias b

Panel A. Coverage rates (non-central χ2)
K2 = 2 K2 = 3 K2 = 4 K2 = 5

T\b 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 0.89 0.88 0.89 0.90 0.87 0.86 0.89 0.86 0.83 0.87 0.83 0.79
250 0.90 0.90 0.90 0.88 0.88 0.88 0.90 0.89 0.87 0.89 0.87 0.85
500 0.90 0.90 0.89 0.91 0.91 0.90 0.90 0.89 0.89 0.91 0.90 0.90
1000 0.90 0.89 0.89 0.90 0.90 0.89 0.90 0.90 0.90 0.91 0.90 0.89

Panel B. Coverage rates (projection method)
K2 = 2 K2 = 3 K2 = 4 K2 = 5

T\b 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 0.96 0.96 0.96 0.97 0.97 0.97 0.99 0.99 0.98 0.99 0.99 0.98
250 0.97 0.97 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99
500 0.97 0.97 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00
1000 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Panel C. Median lengths of confidence intervals (non-central χ2)
K2 = 2 K2 = 3 K2 = 4 K2 = 5

T\b 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 0.49 0.49 0.47 0.84 0.28 0.09 0.73 0.16 0.05 0.57 0.12 0.04
250 0.49 0.49 0.48 0.83 0.27 0.09 0.72 0.16 0.05 0.56 0.11 0.04
500 0.49 0.49 0.47 0.84 0.29 0.09 0.72 0.16 0.05 0.59 0.12 0.04
1000 0.49 0.49 0.48 0.83 0.28 0.09 0.73 0.16 0.05 0.60 0.12 0.04

Panel D. Median lengths of confidence intervals (projection method)
K2 = 2 K2 = 3 K2 = 4 K2 = 5

T\b 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 0.50 0.50 0.50 0.93 0.63 0.22 0.90 0.40 0.12 0.87 0.30 0.09
250 0.50 0.50 0.50 0.93 0.60 0.21 0.90 0.40 0.12 0.87 0.28 0.09
500 0.50 0.50 0.50 0.93 0.64 0.23 0.90 0.39 0.12 0.88 0.30 0.09
1000 0.50 0.50 0.50 0.93 0.62 0.22 0.90 0.40 0.12 0.87 0.30 0.09

Note: Panel A shows the empirical coverage rates of the proposed confidence interval for the TSLS
bias b based on the non-central χ2 approximation for different sample sizes T, values of b, and
numbers of instruments K2 in the homoskedastic DGP. Panel B displays analogous results, based
on the projection method. Panels C and D report median lengths of the confidence intervals. The
number of Monte Carlo simulations is 2000. The nominal coverage level is (1− α) = 0.90.

feature conditional heteroskedasticity but no autocorrelation, while DGPs 2N and 2S
have both. First we describe DGPs 2N and 2S, and then discuss the restriction under
which we obtain DGPs 1N and 1S.

Let Z̃t =
(

Z̃1,t, . . . , Z̃K2,t

)′
, εt ∼ iid N (0, (1− ρ2)IK2) and Z̃t = ρZ̃t−1 + εt, where

ρ controls the persistence of the independent autoregressive processes. The (T × K2)

matrix Z̃ collects the vectors Z̃t. Let Zt be the standardized Z̃t in-sample, such that
Z′Z/T = IK2 . That is, let Zstd be the (column-by-column) demeaned Z̃ divided
by its standard deviation (column-by-column), and Qstd

Z = (Zstd′Zstd/T)−1/2. Then
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Table 3: Homoskedastic IV model, n = 1 endogenous variable, confidence intervals
for size distortion s

Panel A. Coverage rates (non-central χ2)
K2 = 1 K2 = 2 K2 = 3 K2 = 4

T\s 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 0.91 0.90 0.89 0.89 0.88 0.86 0.89 0.86 0.82 0.89 0.85 0.80
250 0.89 0.89 0.89 0.90 0.89 0.88 0.89 0.88 0.87 0.90 0.88 0.86
500 0.91 0.91 0.90 0.90 0.89 0.89 0.91 0.90 0.89 0.89 0.89 0.88
1000 0.90 0.89 0.90 0.90 0.89 0.89 0.90 0.90 0.89 0.90 0.90 0.89

Panel B. Coverage rates (projection method)
K2 = 1 K2 = 2 K2 = 3 K2 = 4

T\s 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 0.95 0.96 0.89 0.96 0.95 0.94 0.97 0.97 0.96 0.99 0.98 0.96
250 0.94 0.94 0.89 0.97 0.96 0.96 0.98 0.98 0.97 0.99 0.99 0.98
500 0.94 0.95 0.90 0.97 0.97 0.96 0.98 0.99 0.98 0.99 0.99 0.99
1000 0.94 0.94 0.90 0.98 0.97 0.97 0.98 0.99 0.99 0.99 0.99 0.99

Panel C. Median lengths of confidence intervals (non-central χ2)
K2 = 1 K2 = 2 K2 = 3 K2 = 4

T\s 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 0.89 0.89 0.09 0.81 0.21 0.07 0.68 0.14 0.05 0.56 0.11 0.04
250 0.89 0.88 0.09 0.81 0.22 0.07 0.66 0.14 0.05 0.56 0.11 0.04
500 0.89 0.88 0.09 0.81 0.20 0.07 0.70 0.15 0.05 0.56 0.11 0.04
1000 0.89 0.88 0.09 0.82 0.22 0.07 0.68 0.14 0.05 0.57 0.11 0.04

Panel D. Median lengths of confidence intervals (projection method)
K2 = 1 K2 = 2 K2 = 3 K2 = 4

T\s 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 0.89 0.89 0.14 0.86 0.38 0.11 0.83 0.30 0.09 0.81 0.25 0.08
250 0.89 0.89 0.15 0.86 0.41 0.11 0.83 0.29 0.09 0.80 0.25 0.08
500 0.89 0.89 0.15 0.86 0.38 0.11 0.83 0.30 0.09 0.81 0.24 0.08
1000 0.89 0.89 0.14 0.86 0.41 0.11 0.83 0.30 0.09 0.81 0.25 0.08

Note: Panel A shows the empirical coverage rates of the proposed confidence interval for size
distortion s (nominal level of Wald test is 5%) based on the non-central χ2 approximation for different
sample sizes T, values of s, and numbers of instruments K2 in the homoskedastic DGP. Panel B
displays analogous results, based on the projection method. Panels C and D report median lengths of
the confidence intervals. The number of Monte Carlo simulations is 2000. The nominal coverage level
is (1− α) = 0.90.

Z = ZstdQstd
Z . We specify a moving average process u2t = qt + θ1qt−1, where qt ∼

iid N (0, σ2
q ), and it is independent of Z̃t (and Zt) both contemporaneously and at all

leads and lags. Furthermore, let bt ∼ iid N (0, σ2
b ) (independent of all the previous

random variables both contemporaneously and at all leads and lags), and u1t =

θ2u2t + bt, where θ2 = α̃/(1 + θ2
1). Define the (K2 × 1) coefficient vectors γ̃1 as γ̃1 =

(γ1, 0, . . . , 0)′ and γ̃2 = (γ2, 0, . . . , 0)′. Conditional heteroskedasticity is introduced by
letting v1t = Z′tγ̃1u1t and v2t = Z′tγ̃2u2t be the t-th element of v1 and v2, respectively.
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In DGPs 1N and 1S, we set θ1 = 0 to make (Z′tv1t, Z′tv2t)
′ serially uncorrelated,

while preserving conditional heteroskedasticity. Section C of the Online Appendix
presents the details of the simulation design.

For the Nagar bias, we performed Monte Carlo simulations for sample sizes
T = {100, 250, 500, 1000}, with K2 = {1, 2, 3, 4} instruments, and for various strengths
of identification, NTSLS(β, C, W) = {0.05, 0.10, 0.3} (in the case of K2 = 4 instruments,
we specified NTSLS(β, C, W) = {−0.05,−0.10,−0.3}, as the Nagar bias is non-positive
in this case). For the Wald size distortion, we performed the simulations for the just-
identified case. We set β = 1 in all cases. Furthermore, we specified C =

(
c2
∗, c∗, . . . , c∗

)
,

and using Matlab’s fzero or fsolve solver we determined the value of c∗ such that
(given the rest of the parameters) it implies the desired amount of Nagar bias or size
distortion. The specific C vectors, along with the derivation of the covariance matrix
W and details of the numerical optimization can be found in Section C of the Online
Appendix. In the cases of DGPs 1N and 1S, we used the White (1980) covariance
estimator, while for DGPs 2N and 2S, we used a rectangular kernel with one lag (in
the rare cases when it delivered non-positive definite estimates, we replaced them by
the Newey and West (1987) estimates).

Results for the Nagar bias are reported in Table 4, showing that our proposed
confidence interval delivers valid (although conservative) coverage rates in both DGPs
across different values of Nagar bias NTSLS(β, C, W), sample sizes T, and numbers of
instruments K2 .

Table 4: Coverage rates for the Nagar bias

Panel A. Heteroskedastic IV model
K2 = 1 K2 = 2 K2 = 3 K2 = 4

T\NTSLS 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 -0.3 -0.1 -0.05

100 0.94 0.90 0.86 0.92 0.90 0.89 0.94 0.95 0.96 0.93 0.90 0.80
250 0.96 0.94 0.93 0.96 0.95 0.95 0.96 0.96 0.97 0.97 0.97 0.95
500 0.96 0.96 0.95 0.96 0.96 0.96 0.97 0.98 0.98 0.98 0.98 0.97
1000 0.96 0.96 0.96 0.98 0.98 0.97 0.98 0.99 0.99 0.98 0.98 0.98

Panel B. Heteroskedastic and autocorrelated IV model
K2 = 1 K2 = 2 K2 = 3 K2 = 4

T\NTSLS 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 -0.3 -0.1 -0.05

100 0.89 0.83 0.76 0.88 0.86 0.84 0.86 0.89 0.89 0.84 0.75 0.87
250 0.94 0.92 0.89 0.93 0.93 0.92 0.94 0.95 0.95 0.93 0.91 0.95
500 0.96 0.95 0.93 0.96 0.95 0.94 0.96 0.97 0.97 0.97 0.97 0.97
1000 0.97 0.96 0.96 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.98 0.98

Note: The upper panel shows the empirical coverage rates of the proposed confidence interval for
the Nagar bias NTSLS(β, C, W) for different sample sizes T, values of the Nagar bias, and numbers of
instruments K2 in DGP 1N in Section 4.2. The lower panel displays analogous results, based on DGP 2N.
The number of Monte Carlo simulations is 2000. The nominal coverage level is (1− α) = 0.90.

27



Table 5: Coverage rates for the Wald size distortion

Heteroskedastic IV model
Heteroskedastic and

autocorrelated IV model
T\sW∞,ν 0.3 0.1 0.05 0.3 0.1 0.05

100 0.96 0.96 0.94 0.95 0.91 0.85
250 0.97 0.98 0.96 0.96 0.95 0.92
500 0.96 0.98 0.96 0.97 0.96 0.94
1000 0.97 0.98 0.97 0.97 0.96 0.95

Note: The table shows the empirical coverage rates of the proposed confidence interval
for the Wald size distortion sW∞ ,ν

(
β, C,

{
Ξj
})

for different sample sizes T and values of
the size distortion (at the ν = 5% nominal level). DGP 1S is heteroskedastic, while DGP
2S features both heteroskedasticity and autocorrelation. The number of Monte Carlo
simulations is 2000. The nominal coverage level is (1− α) = 0.90.

5 EMPIRICAL ANALYSIS

5.1 Estimating the Intertemporal Elasticity of Substitution

The intertemporal elasticity of substitution (IES) is often estimated using a linearized
consumption Euler equation, as in Yogo (2004) and Montiel Olea and Pflueger (2013).
The model is a linear IV model; we consider both homoskedastic, and heteroskedas-
tic/serially correlated cases.

In particular, the structural equation is either of the following:

∆ct+1 = ν + ψrt+1 + ut+1 , (69)

rt+1 = ξ + ψ−1∆ct+1 + ηt+1 , (70)

where ∆ denotes the first difference operator, ct is the logarithm of the level of
consumption, ∆ct+1 is consumption growth, and rt+1 is a real asset return, ψ is the
IES parameter, ν and ξ are constants, while ut+1 and ηt+1 are stochastic disturbances,
which can be conditionally heteroskedastic or autocorrelated. Note that eq. (70)
expresses the same relationship between consumption growth and returns as eq. (69),
but often the estimates of ψ are vastly different between these two specifications. Yogo
(2004) argued that weak identification can explain these contradicting results.

To facilitate the comparison between their results and ours, we borrow the quarterly
data set used by Yogo (2004) and Montiel Olea and Pflueger (2013) focusing on the US
between 1947:Q3 and 1998:Q4. In eqs. (69) and (70), we use real per capita consumption
growth for ∆ct+1, and the real return on the short-term interest rate for rt+1. As Yogo
(2004) notes, by using instruments dated t − 1, ψ or its reciprocal ψ−1 can be still
identified even if asset returns or consumption are conditionally heteroskedastic. We
use the same instruments as Montiel Olea and Pflueger (2013), notably consumption
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growth, nominal interest rate, inflation rate, and the logarithm of the dividend–price
ratio. Section B of the Online Appendix contains a detailed description of the data.

The estimation results are summarized in Table 6. Panel A reports results for the
heteroskedastic and serially correlated linear IV model, while Panel B focuses on the
homoskedastic IV model. Note that, by comparing the results in the left and right
panels, the point estimates suggest contradicting values for ψ, an empirical result also
emphasized by Yogo (2004) and Montiel Olea and Pflueger (2013).

Furthermore, for the specification in eq. (70) both the Montiel Olea and Pflueger
(2013) and the Stock and Yogo (2005) methods signal weak instruments, and our
confidence interval for the Nagar bias agrees with them. However, the results are
different when considering the specification in eq. (69): according to the Stock and
Yogo (2005) test, the instruments are strong if one is willing to tolerate 10% bias or
size distortion, while they are weak when applying the Montiel Olea and Pflueger
(2013) test with τ = 10% maximum relative bias. Our results confirm the latter
authors’ finding, that the test developed for the homoskedastic case can be misleading
in the presence of heteroskedasticity or autocorrelation. Our confidence intervals
for the Wald size distortion CIsW∞ ,ν

0.95 signal strong identification in eq. (69) but weak
identification in eq. (70). Surprisingly, our analysis reveals that the confidence interval
for the Nagar bias is [−0.00, 0.02], signaling almost no bias. What could explain these
seemingly conflicting results? Recall that the Montiel Olea and Pflueger (2013) method
tests the Nagar bias of the TSLS estimator relative to a benchmark, while our confidence
interval is directly applicable without the need to specify a reference bias. Hence, if
the benchmark bias (which is not consistently estimable) itself is small, then this could
resolve the seemingly different results. The low IES estimate and the corresponding
negligible Nagar bias are in line with the meta analysis of Havránek (2015), who finds
that, after correcting for publication bias, IES estimates based on macroeconomic data
are centered around zero.

5.2 Estimating Fiscal Multipliers by Local Projections–IV

As the second empirical example, we provide confidence intervals for the Nagar
bias in a local projections–IV model. In their recent study, Ramey and Zubairy
(2018) estimated both state-dependent and state-independent government spending
multipliers for the US, using quarterly data in a sample period spanning 1889 – 2015.
In this paper, we build on their analysis and estimate cumulative fiscal multipliers
when the state of the economy corresponds to zero lower bound (ZLB) or non-ZLB
(“normal”) periods, in addition to state-independent (“linear”) multipliers.
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Table 6: Intertemporal elasticity of substitution

Panel A. Heteroskedastic/serially correlated IV model IES ψ IES ψ−1

TSLS estimate (standard error) 0.06 (0.098) 0.68 (0.813)
CINTSLS

0.95 [−0.00, 0.02] [20.28, 12716.19]
CIsW∞ ,ν

0.95 [−0.01, 0.01] [0.10, 0.95]
F̂eff 8.14 2.65
Critical value (τ = 0.1) 15.49 13.99
Critical value (τ = 0.3) 7.75 7.04

Panel B. Homoskedastic IV model IES ψ IES ψ−1

TSLS estimate (standard error) 0.06 (0.086) 0.68 (0.474)
95% Confidence interval for bias [0.021, 0.058] [0.069, 0.786]
95% Confidence interval for size distortion [0.033, 0.089] [0.105, 0.822]
F-statistic 15.53 2.93
Critical value (5% bias) 16.85 16.85
Critical value (10% bias) 10.27 10.27
Critical value (5% size distortion) 24.58 24.58
Critical value (10% size distortion) 13.96 13.96

Note: The table displays the estimation results of the consumption Euler equations with ∆ct+1 regressed on
rt+1 (specification IES ψ in eq. (69)), and rt+1 regressed on ∆ct+1 (specification IES ψ−1 in eq. (70)). Panel A
shows results based on the heteroskedastic and autocorrelated IV model: TSLS point estimates and HAC
standard errors (Newey and West’s (1987) HAC estimator with 6 lags, as in Montiel Olea and Pflueger (2013)),
the 95% level confidence intervals for the Nagar bias and the Wald size distortion (nominal level: 5%, number
of simulations: 10,000), along with the effective F-statistics F̂eff and the corresponding 5% critical values,
allowing for τ relative bias. The asymptotic covariance matrix W was estimated by the Newey and West
(1987) HAC estimator, with 6 lags, as in Montiel Olea and Pflueger (2013). Panel B displays results based
on the homoskedastic IV model: the 95% level confidence interval (based on the non-central χ2 method)
for the relative bias and size distortion (assuming a nominal 5% level Wald test), the Stock and Yogo (2005)
F-statistics and the corresponding critical values (at the 5% significance level). In both panels, critical values
in bold correspond to strong instruments according to the specific threshold.

The structural equations for the ZLB, normal and linear specifications are:

h

∑
j=0

yt+j = cZLB
h + γZLB

h It−1 + It−1φZLB
h (L)zt−1 + (1− It−1) ξZLB

h (L)zt−1

+ mZLB
h

h

∑
j=0

gt+j It−1 + ωZLB
t+h ,

(71)

h

∑
j=0

yt+j = cnormal
h + γnormal

h It−1 + It−1φnormal
h (L)zt−1 + (1− It−1) ξnormal

h (L)zt−1

+ mnormal
h

h

∑
j=0

gt+j (1− It−1) + ωnormal
t+h ,

(72)

h

∑
j=0

yt+j = clinear
h + φlinear

h (L)zt−1 + mlinear
h

h

∑
j=0

gt+j + ωlinear
t+h , (73)

where ∑h
j=0 yt+j is the sum of real GDP divided by potential GDP over periods t to
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t + h; It−1 is a dummy variable indicating the state of the economy when the shock
hits (It−1 = 1 in the ZLB period and It−1 = 0 in the normal period); ∑h

j=0 gt+j is the
sum of real government spending divided by potential GDP between t and t + h; zt−1

is the same vector of control variables as used by the original authors containing: real
GDP over its potential level, real government spending over potential real GDP, and
the defense news shock variable (introduced later) when it is used as an instrument.
For s = {ZLB, normal, linear}, cs

h, γs
h are scalar coefficients; φs

h(L) and ξs
h(L) are

polynomials in the lag operator L (L = 0, 1, 2, 3); ms
h are the government spending

multipliers, which are the structural parameters of interest. The error terms ωs
t+h are

potentially serially correlated and heteroskedastic. For a detailed description of the
data, we refer to Section B of the Online Appendix.

Ramey and Zubairy (2018) estimate the government spending multipliers at the 2
and 4 year horizons (corresponding to h = 7 and h = 15, denoted by 2Y and 4Y) by
LP–IV, instrumenting the cumulative government spending variable. As instruments,
they use either the Blanchard and Perotti (2002) shock (current normalized government
spending, denoted by "BP"), or Ramey’s (2011) defense news shock series (rescaled by
lagged GDP deflator times trend GDP, denoted by “News”), or both. In the ZLB and
normal specifications, the instruments are multiplied by the appropriate indicator.

Table 7: Government spending multipliers

IV(s) Horizon Estimates CIs for bias and size distortion F̂eff and c.v. (τ = 0.1)
Linear ZLB Normal Linear ZLB Normal Linear ZLB Normal

News 2Y 0.66
(0.07)

0.77
(0.11)

0.63
(0.15)

N:
S:

[0.00, 0.13]
[−0.01, 0.06]

[0.00, 0.12]
[−0.02, 0.04]

[0.00, 0.04]
[−0.02,−0.00] 19.95

[23.11]
22.61
[23.11]

43.68
[23.11]

4Y 0.71
(0.04)

0.77
(0.06)

0.77
(0.38)

N:
S:

[0.00, 0.22]
[−0.05, 0.09]

[0.00, 0.54]
[−0.05, 0.13]

[−0.04, 0.20]
[−0.04, 0.01] 11.55

[23.11]
10.21
[23.11]

24.06
[23.11]

BP 2Y 0.38
(0.11)

0.64
(0.03)

0.10
(0.11)

N:
S:

[−0.07,−0.01]
[−0.00, 0.02]

[−0.00, 0.00]
[−0.02,−0.00]

[−0.01, 0.00]
[−0.01,−0.00] 36.72

[23.11]
53.98
[23.11]

70.60
[23.11]

4Y 0.47
(0.11)

0.71
(0.03)

0.12
(0.12)

N:
S:

[−0.21,−0.00]
[−0.01, 0.05]

[−0.00, 0.02]
[−0.04, 0.01]

[−0.02, 0.01]
[−0.03,−0.00] 20.11

[23.11]
21.03
[23.11]

36.44
[23.11]

News & BP 2Y 0.42
(0.10)

0.67
(0.03)

0.26
(0.10)

N:
S:

∅
∅

[−0.00, 0.00]
[−0.01, 0.00]

[−0.00,−0.00]
[−0.01,−0.01] 37.85

[13.19]
37.20
[13.56]

37.99
[13.06]

4Y 0.56
(0.08)

0.76
(0.04)

0.21
(0.14)

N:
S:

∅
∅

[−0.01, 0.00]
[−0.03, 0.03]

[−0.07, 0.00]
[−0.02, 0.03] 14.90

[15.46]
12.11
[15.89]

19.43
[18.20]

Note: The columns labeled "Estimates" report TSLS point estimates of fiscal multipliers, and Newey–West (1987)
standard errors in parentheses, with Newey and West’s (1994) automatic bandwidth selection. The columns labeled
"CIs for bias and size distortion" report the 95% confidence intervals for the Nagar bias (“N:”) and the Wald size
distortion (“S:”, nominal level: 5%, number of simulations: 10,000). The last three columns report the effective
F-statistics, and the 5% critical values in brackets corresponding to a maximum relative bias of τ = 0.1. Significant
effective F-statistics indicating strong instruments are in bold. Blocks labeled “News” (“BP”) refer to using Ramey’s
(Blanchard and Perotti’s) shock as instrument, while News & BP means using both instruments at the same time. 2Y
and 4Y correspond to the 2-year-horizon and 4-year-horizon, respectively. The symbol ∅ means an empty confidence
interval for the Nagar bias.

Table 7 reports the empirical results. The columns labeled "Estimates" are the same
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as in Ramey and Zubairy (2018) and display the TSLS estimates, together with their
HAC standard errors in parentheses. We show estimates for both the state-dependent
multipliers (the specifications labeled “ZLB” and “Normal”, referring to the ZLB
and non-ZLB periods, respectively) and the state-independent (labeled as “Linear”)
specifications. The columns labeled “CIs for bias and size distortion” report the
confidence intervals for the Nagar bias of the TSLS estimator (rows labeled “N:”)
and the corresponding Wald test’s size distortion (rows labeled “S:”). The last three
columns contain of the Montiel Olea and Pflueger (2013) test statistics (cases of strong
instruments in bold), along with the 5% level critical values corresponding to τ = 0.1
maximum relative bias in brackets.

Researchers might want to be informed of the true instrument strength in addition
to the testing procedure when using the news shocks in the linear and ZLB specifica-
tions at the 2-year-horizon, or the Blanchard–Perotti shock in the same specifications
at the 4-year-horizon. Given that in these cases the effective F-statistics are slightly
below their critical values, the instruments are potentially weak, leading to biased
point estimates.

Overall, we find negligible biases and size distortions when estimating the state-
dependent model, either using the BP or both the BP and the news shocks as instru-
ments, while we find some positive bias and non-negligible size distortion when using
only the news shock instrument. After correcting the TSLS point estimate by the confi-
dence interval for the Nagar bias, the estimates in the zero lower bound period based
on using only the news shock instrument are very similar to those obtained using
the other instruments: they range between 0.65 and 0.77 for the two-year multiplier,
and between 0.23 and 0.77 for the four-year one. In general, the confidence intervals
for size distortion lead to similar conclusions. These results demonstrate that our
proposed confidence can indeed provide additional and useful information.

Turning to the linear, state-independent specification of the model in eq. (73),
labeled “Linear” in the table, when using one instrument at a time, our confidence
intervals imply some positive bias, especially at the 4-year-horizon when using the
news shock instrument, and negative bias when using the BP instrument. However,
when using both the BP and the news shock series at the same time, our results point
in the direction of the invalidity of the instruments, as the confidence set CIC,β

1−α is
empty, meaning there is no (C̃, β̃) ∈ R3 which would be consistent with the model.
This was also mentioned by Ramey and Zubairy (2018), who note in their Footnote 36
that the overidentifying restrictions are rejected.
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6 CONCLUSION

In this paper we propose confidence intervals for the strength of identification, and in
particular, bias and size distortion in the homoskedastic IV model, and Nagar bias
in the heteroskedastic/autocorrelated linear IV model as well as local projections–
IV models. Our proposed methodologies allow researchers working with either
microeconomic or macroeconomic data to determine how strong their instruments are
and how big their size distortion and bias can be. The practical implementation of our
proposed methodologies has the benefit of being easy and computationally simple.
Monte Carlo simulations show that the proposed confidence intervals have correct
coverage even for moderate sample sizes.

The application of our new methodology uncovers a series of interesting empirical
facts. In particular, our analysis of the consumption Euler equation confirms that weak
identification poses a serious challenge to estimating the intertemporal elasticity of
substitution parameter. However, in one model specification, our results suggest that
the bias of the point estimate might be minor, and the available testing procedure
only implies weak instruments due to its formulation in terms of a benchmark bias.
In contrast, our method is applicable without reference to such a benchmark bias.
Furthermore, our local projections–IV analysis shows that the presence of biases can
help reconcile the differences in the fiscal policy multipliers across different sets of
instruments in the zero lower bound period.

SUPPLEMENTARY MATERIALS

The Online Appendix contains the proofs, further theoretical and Monte Carlo results,
and the description of the data sets used in the present paper. Replication code is
available on the journal’s website.
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