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Abstract

This paper develops the Parameterized Expectations Approach (PEA) for
solving nonlinear dynamic stochastic models with rational expectations. The
method can be applied to a variety of models, including models with strong
nonlinearities, sub-optimal equilibria, and many continuous state variables. In
this approach, the conditional expectations in the equilibrium conditions are
approximated by flexible functional forms of finite elements. The approach
is highly efficient computationally because it incorporates endogenous over-
sampling and Monte-Carlo integration, and it does not impose a discrete grid
on the state variables or the stochastic shocks. We prove that PEA can ap-
proximate the correct solution with arbitrary accuracy on the ergodic set by
increasing the size of the Monte—Carlo simulations and the dimensionality of
the approximating family of functions.



1 Introduction

During the last decade, the use of dynamic stochastic models has extended
to all fields of economics. These models are difficult to analyze because they
typically have no analytic solution. However, recent increases in the power
of computer hardware now allow these models to be studied by numerical
simulation techniques. Simulations can be used to study the model from
both a theoretical and empirical perspective. Theoretically, one can see if
the model reproduces some stylized facts and how it responds to a change in
the environment or in policy. Empirically, one can perform calibration exer-
cises or do more formal testing using estimation by simulation or maximum
likelihood procedures.

The numerical algorithms most widely used for solving dynamic mod-
els with rational expectations in economics are value-function iteration and
linear-quadratic approximation. They are based on dynamic programming,
so they are not well-suited to models in which the equilibrium does not cor-
respond to the solution of a planner’s problem. Furthermore, value-function
iteration is affected by the ’'curse of dimensionality’, so is impractical for
models with several continuous endogenous state variables. Linear-quadratic
approximation can handle large models, but does not provide an arbitrarily
good approximation in nonlinear models; this is especially a problem, for
example, when the model has inequality constraints.

This paper introduces the parameterized expectations approach (PEA)
for calculating numerical solutions to stochastic nonlinear models with ratio-
nal expectations. In this approach, the equilibrium conditions of the model
are written as a system of stochastic difference equations, and the conditional
expectations in these equations are parameterized with flexible functional
forms of finite dimensions, such as polynomials or splines. Simulations are
then generated using these functions in place of the conditional expectations
in the equilibrium conditions. A PEA solution corresponds to a parameter-
ization of the conditional expectations that is consistent with the series it
generates.

In this paper, we formally characterize the PEA, and we derive a set
of conditions under which arbitrarily good accuracy can be obtained as the
solution is refined (for example, as the degree of the polynomial goes to
infinity); it contains some of our earlier work in Marcet [1988], Marshall

[1988] and Marcet and Marshall {1992].



The PEA algorithm has been successful in delivering solutions to a num-
ber of large and complicated models. Applications in the literature include
monetary asset pricing models, such as Marshall [1988, 1992}, and den Haan
[1990, 1991]; models of exchange rates, such as Bansal (1990}, Bansal, Gal-
lant, Hussey and Tauchen [1994] and McCurdy and Ricketts [1992}; asset
pricing models with heterogeneous agents, such as Marcet and Singleton
[1989], Ketterer and Marcet [1989], and den Haan [1993]; models of tax
policy, such as Rojas [1991], and Otker [1992]; and nonstandard stochastic
growth models, such as Marcet and Marimon’s [1992] model with participa-
tion constraints and Christiano and Fisher’s {1994] model with investment
constraints. A related method in which the laws of motion of endogenous
variables are parameterized has been used to solve asset-pricing models in
papers by Heaton [1993] and Bekaert [1993]. This non-exhaustive list of
PEA applications includes models with many continuous state variables,
multiple heterogeneous agents, strong non-linearities, inequality constraints,
incentive constraints, participation constraints, non-stationarities, discrete
choice spaces, and suboptimal equilibria. In short, the PEA has been road-
tested: its practical applicability to a wide range of economic models has
been demonstrated.? :

We show that the PEA delivers an arbitrarily close approximation to the
true equilibrium as the solution is refined. The set of assumptions we impose
is very general: essentially, our proof applies to most models with continu-
ous laws of motion (including non-differentiable cases). To our knowledge,
no such proof is yet available for other methods that compute approximate
equilibria by solving systems of Euler equations. Our solution procedure 1s
easily adapted to cases where one has to solve for the transition path to the
stationary distribution starting from an arbitrary initial condition, but in
the current paper we concentrate our discussion on solving for the stationary
and ergodic distribution. '

In section 2, we formally introduce the parameterized expectations ap-
proach and discuss how it can be applied to three well-known examples. In
section 3, we relate PEA to two strands of economic literature. We first dis-
cuss PEA’s relationship to models of least-squares learning; we then compare

1This is to be contrasted with proposals to use numerical methods taken from other sci-
ences, without demonstrating their applicability to the problems of concern to economists.
For example, Judd (1993) lists a number of numerical techniques used in engineering and
physics that have not been tried in full scale economic applications.



our method to other solution algorithms used in economic applications. In
section 4, we present the convergence result. Section 5 provides a brief dis-
cussion of certain practical considerations in applying the method. Section
6 contains some conclusions and suggestions for extensions.

2 The Parameterized Expectations Approach
(PEA)

2.1 A General Framework

We assume that the economy is described by a vector of variables z, € Z C
R™, and a vector of exogenously given shocks u, € U C R’. The equilibrium
process {z¢,u:} is known to satisfy a stochastic difference equation

9(Eed(2e41)), 20, 2e-1,w) = 0 (1)

for all t, where g : R x R* X R* x R* — R% and ¢ : R — R™. Once
the parameters of the model have been fixed, g and ¢ are functions known
to the economist. The vector z; includes all endogenous variables, as well as
those exogenous variables that appear inside the expectation. The process
u¢ 1s assumed to be Markov of order one. As usual, E, is the conditional
expectation given information up to period ¢.

The system (1) will typically include Euler equations, resource constraints,
laws of motion of exogenous processes, market clearing conditions, incentive
constraints, and so forth. Inequality constraints of the form

h(Ec[¢(Zc+1)], 2y, zt—lyut) >0

are incorporated into (1) by including equations

(R(Ed@(2e41)], 20, 201, u))” =0

as part of the system g, where (z)~ is the function ‘negative part of z’. These
inequality constraints may include Kuhn-Tucker conditions, second order op-
timality conditions, or participation constraints in incentive problems.
Often, the sufficient conditions for an equilibrium include, in addition to
equation (1), a set of transversality conditions. For most models, a process



{z:} that satisfies (1) also satisfies the transversality conditions if and only if
the process is stationary. Stationarity can be imposed as an additional side
condition of the model. -

We assume that the past information that is relevant for predicting ¢(2.41)
can be summarized in a finite-dimensional vector of state variables z, € X C
R! satisfying

Ty = f(zt-];ut)) (2)

where f is a known function.? This implies

E¢(ze41)] = E[8(2e41)2e)- (3)

Furthermore, we assume that the model is recursive, so that the conditional
expectation is given by a time-invariant function &£ such that

E(z:) = E¢(ze41)lze]- (4)
By definition, the function &£ satisfies

€= arg min  E| ¢(z41) — k(=) I* for all t, (5)

{r:Rt—~R™}

since the conditional expectation is the best predictor in the mean square
sense.

Throughout the paper we refer to a solution as a stochastic process {z;u:}
satisfying equation (1), (2), and (3), given the exogenous Markov process for
{u.} . Since we will are dealing with systems g that are invertible in their
second argument z;, finding a solution is equivalent to finding a function &
such that, if {2z, u.} satisfies

g(g(mt)xzt)zt—laut) = 07 (6)

‘then £ satisfies (4) for all ¢t. Alternatively, finding a solution is equivalent to
finding a law of motion H such that the z, generated by

ze = H(zeo1,ue) (7)

2We are assuming here that the researcher knows how to select a set of sufficient state
variables z;. Sometimes it is difficult to determine the sufficient state vector z, beforehand;
this is often the case, for example, in models with private information. In principle, it is
possible to apply PEA and find a sufficient set of state variables numerically; we would
then have to incorporate into the algorithm a search over functions of past variables that
summarize past information. We do not pursue this avenue any further in this paper.




satisfies (1), (2) and (3).

We now show how three well-known models fit into the above framework.
These examples are chosen for their simplicity; applications of PEA to more
complicated models can be found in the papers cited in the Introduction.

o Example 1.1 (Lucas [1978] asset pricing model)

A representative consumer chooses a stochastic consumption process
{c:} of a perishable good in order to maximize Eo Y2, &u(c,). The
single asset in the economy is traded in a competitive market at price p,,
and pays an exogenous dividend flow {d;}. The consumer also receives
exogenous labor income {w;} . The Euler equation for the maximization
problem of the consumer is

u'(c)pe = § B ¥(cer) (Pesr + dega)]. (8)

To map this model into the above framework we let 2, = (p;, ¢, d;), and
ug = (dy,we); the system of equations corresponding to (1) is given by
(8) and the market clearing condition ¢; = d; + w,. The function ¢(z)
is given by u'(c) (p + d). A time-invariant solution for the asset price
can be found for which z, = (d,, w;) is a sufficient set of state variables.

o Example 1.2 (Simple Stochastic Growth Model)

Consider the simple growth model where an agent maximizes Eq 352, 6u(c:)
subject to

C + it S k?_lgt
kt = kt-—l,u' + 7:: ) k—l given,

(9)

where ¢, denotes consumption, k; is the capital stock, 2, is investment,
and 6, is an exogenous stochastic productivity shock, Markov of order
one. The first order condition for optimality is

w'(c) = 8 By v (cip) (kf ' abess + )] (10)

To map this model into the above framework, set 2, = (¢, ke, ke-1,1¢, 8:),
ue = 8, and z, = (ki-1,0:). The function g is given by the resource con-
straints (9) and the Euler equation (10). The function ¢(z) is given by
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u'(c) (k*'ab + p). Standard results from dynamic programming guar-
antee that the solution is characterized by a time-invariant conditional
-.expectation function.

o Example 1.3 (Simple Growth Model with Lower Bounds on
Investment)

This example shows how inequality constraints can easily be handled
by PEA. Suppose we add a non-negativity constraint to the simple
growth model of example 1.2:

7 >0 (11)

With this restriction, the first order condition (10) is replaced by the
Kuhn-Tucker conditions

u'(ct) - Ag -6 Et[ 'LLI(CH.l) (k?_lagH.l + ,U') - ,UIAH.].] =0 (12)

e = 0 (13)
Ae > 0,7, >0, (14)

where A, denotes the Lagrange multiplier associated with constraint
(11). Mapping this model into framework (1) is accomplished by setting
ze = (cty ke, ko1, 2, Aty 0e), ue = 6. The system g is given by (9), the
Kuhn-Tucker conditions (12) and (13), and the negative parts of the
inequalities in (14). Note that, in this case, ¢(z) = u'(c) (k* 'ab +
£) — pA. Again, the model can be shown to be recursive with standard
dynamic programming techniques.?

2.2 Definition and Calculation of an Approximate PEA
Solution
System (1) and explicit formulas for g and ¢ are easy to find in many mod-

els. Unfortunately, finding the solution analytically in any generality is not
possible. The difficulty is that £ cannot be determined unless the process

3The application of PEA with inequality constraints was developed by Marcet and Sin-
gleton [1991]. For a more detailed discussion of how to impose the Kuhn-Tucker conditions
the reader is referred to that paper.



for z, is known, but that process can not be backed out from (6) unless the
conditional expectation £ is known. The PEA algorithm addresses this dif-
ficulty by replacing £ with an approximating function ¥ which is chosen to
resemblie £ in a manner to be made precise. i

Formally, let P denote a class of functions that is dense in {h R — R’"}.
It is assumed that each element of P is characterized by a parameter vector
with a finite number of nonzero elements. For example, P can be taken as the
set of polynomials, splines, neural networks or finite elements. Then, 8 would
be, respectively, the coefficients of the polynomial, the parameters charac-
terizing each partition for the spline, the elements of the neural net, or the
parameters characterizing the finite elements. The element of P characterized
by parameter vector 3 is denoted either by ¢(8, -) or by the simpler notation
Yg. The set of admissible parameters with at most v non-zero elements is
denoted D,. That is, D, C{ﬂ € R™ : 1** element of 8 is zero if 1 > V}.

In PEA, the function &£ is approximated by choosing an element of P
that satisfies a property close to (6) and (5). More precisely, for a given
positive integer v, 8 € D,, and {u:},,, define the process {z(08),u:};o, as
the solution for all ¢ of the system

9 (¥(B,2B)), (B, 2e-1(B),ue) = 0 (15)

ze(B) = f(2e-1(8), )
Now, let

G.(B)= argmin E| ¢(z011(8)) - ¥(¢, 2:(5)) I (16)

We wish to choose 8 € D, as close as possible to G,(8,), so the approximate
PEA solution is characterized by a fixed point, denoted 3,, as follows:

:Bu = G,,(,B,,) (17)

For the sake of simplicity we will assume in the remainder of this section that
G, is a well-defined mapping, and that a fixed point of G, exists; these issues
will be addressed formally in section 4. With the appropriate substitutions,
one can see that 1, plays the role of £ in (6), so our approximate solution
is the process {z(8.), ut}iog -



From this point on, we address the problem of approximating the solution
at the stationary and ergodic set. This is an interesting case, since station-
arity and ergodicity are the basis of time series econometrics or calibration
exercises. PEA has been applied to solutions outside of the stationary distri-
bution by replacing the long simulation in Step 2 below with many repeated
short-run simulations.* Therefore, the claim in Judd [1992] (page 447) that
PEA can not solve for equilibria outside the ergodic set and it can not be
used for policy comparisons is incorrect.

We now give an operational algorithm for computing the approximate
PEA solution for a fixed v:

o Step 1: Write the system g in (1) so that it is invertible with respect to
its second argument. Find a set of state variables z that satisfies (3). If
a unique solution exists, g and z should be selected so that (1) and (3)
are satisfied only by the unique solution. Replace the true conditional
expectation by the finitely-parameterized function ¥(8,-) for 8 € D,
to obtain (15).

o Step 2: Fix z. For a given 8 € D, and for T large enough, draw
a sample of size T of the exogenous stochastic shock and recursively
calculate{z,(8), w} ., using (15).

o Step 3: Find the sample version G, r of G,. More precisely, G, r is
defined by:

Gur(B)= agmin + TLoll $(za(B) - ¥(&2dB) IF (18)

This minimization is easy to perform by computing a non-linear least
squares regression with the sample {z,(ﬁ),u,};r:o, taking ¢ (z:41(8)) as
the dependent variable and (-, z:(8)) as the explanatory function.

o Step 4: Find the fixed point
,BU,T = GV,T(,Bu,T) (19)

We will discuss the numerical calculation of B, r in the section 5.

4See Marshall [1988] and [1993], Marcet and Marimon [1992], Rojas [1993] and Chris-
tiano and Fisher [1994] for applications. Also, see Marcet and Marshall {1992 for a proof
of convergence when short-run simulations are used.
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We end this subsection by discussing how this algorithm would be applied
to the three examples presented in section 2.1.

;‘Example 1.1 (Lucas [1978] asset pricing modeﬁ‘

The only non-trivial endogenous variable is the stock price p;. In this
and the remaining examples, ¢ takes only positive values, so it is ap-
propriate to choose P as a set of functions that can take only positive

values. Step 2 is easily accomplished by solving for the price in each
period from

ul(ct) pe(B)=6 ¢(ﬁ,dz,wt)

which is the (15) version of the Euler equation. The fixed point can be
found iteratively®. Notice that our choice of state variables guarantees
that we are approximating the unique stationary (non-bubble) solution.
Bubble solutions could be allowed by adding today’s price to the list
of state variables.

o Example 1.2 (Simple Stochastic Growth Model)

Steps 1 and 2 follow similar considerations to the previous example.
Since the solution is a time-invariant function of (k;—;, 8;) and it satisfies
the Euler equation, we can be certain that the solution approximates
the unique solution of the model. Notice that the (suboptimal and
meaningless) solutions to the Euler equation that violate the transver-
sality condition will never be approximated; in those solutions cg is
fixed, and k. is a time-invariant function of (k.-,6;) and c, so that
the transversality condition is imposed by our choice of state variables
and the fact that initial consumption is not fixed.

o Example 1.3 (Simple Growth Model with Lower Bounds on
Investment)

We show how to use the Kuhn-Tucker conditions to find {c.(8), 2(8), k(8)}
while imposing inequalities (14). Let us write the parameterized version

of (12) and (14):

ul{c(B)) — Ae(B) = 6 P(B; ke-1(B), 6:) (20)

$For this model, the mapping G, as well as the fixed point 8, can be found analytically.
See Marcet [1988]

11



3

3.1

M(B)>0 and 7(B)>0 (21)

" Notice that, for a fixed value of ¥(8; ke—1(B), 8:), the left side of (21) is

Increasing in ,(53).

We can then proceed as follows: for each ¢:

(a) compute (c¢(8),%(B)) from (20) under the conjecture that A(8) =
0. If the corresponding investment turns out to be negative, then

(b) set 2,(8) = 0, find c,(B) from the feasibility constraint, and then
compute A,(F) from (20).

It is clear that if step (a) delivers a negative investment, consumption
will be lower when we go to step (b), so u/(c:(3)) will be higher (relative
to (a)). This insures that (20) delivers a positive A, so (21) is satisfied.

This strategy requires that the Kuhn-Tucker condition be written in a
way that the function g is envertible. For example, the Kuhn-Tucker
condition could be expressed as,

'U.’(Cg)Ct - )\tct =6 Et [Ct u,(Cg+1) (k?-lagg+1 + /I) - [LCgAg+1] (22)

However, if steps (a) and (b) were applied to (22), there may be states
in which the function u'(c)c is decreasing in :. In that case, step (b)
would deliver a negative value for the multiplier A. Therefore, (22)
would be an inappropriate choice for g if PEA is used as a solution
algorithm. In terms of the step-by-step description of the algorithm,
(22) violates step 1, since it implies a representation for g that may not
be invertible with respect to its second element.

Relation of PEA to the Literature

Approximate PEA Solution and Least Squares
Learning

In section 4, below, we show that the PEA solution can approximate the
rational expectations equilibrium arbitrarily well by letting v and T go to

12



infinity. In this subsection we give an alternative interpretation to the PEA
solution for fixed v as the equilibrium of an economy with boundedly rational
agents.

Suppose it were infeasible for the agents to compute the true conditional
equilibrium function £. For example, agents may not know the correct func-
tional form for &£, or they may face computation constraints. Instead, agents
are constrained to use some function g to forecast of ¢(z¢+1). In principle,
they can choose any parameter 8§ € D,, but they are restricted to a fixed
degree v. The process {z,(8)} can be interpreted as the vector of endogenous
variables that would be generated by such an economy. If these agents were
to choose an arbitrary parameter vector § € D,, the economy would not be
in equilibrium: the best forecaster of ¢(z,4+,) within the set D, would in fact
be given by ¥(G.(8), z:(B)), rather than by ¥(8,z:(8)), the function used
by the agents ex ante. Presumably, agents would eventually recognize their
systematic errors and would update the parameters in their forecast function.
The equilibrium of this boundedly rational economy corresponds to 8,, the
fixed point of G, defined in equation (17): if the boundedly rational agents
use B, they will eventually realize that this is their best alternative, given
that they are restricted to staying in D,,.

For this model of boundedly rational agents to be meaningful economi-
cally, it should be locally stable: if agents start at t = 0 using some beliefs
Bo near the fixed point 3, and update 3 as new information received at each
period (so their best forecast at time ¢ is given by ¥(f, z.—1)), their forecast
coefficients should converge to 3,. One way to model how agents update their
forecasts is to assume a least squares learning model (LSL), in which S, is
generated by a non-linear least squares recursive algorithm (see Appendix 2).
Adapting some results in Ljung [1975], under certain regularity conditions,
it is possible to show the following results:

o For B € D,,if B # B,, Prob(B, — B) = 0. That is, LSL will almost
surely not converge to a parameter vector that is not a fixed point of

G,.

o Prob(8; — .) = 1 locally, if and only if the differential equation

B=G.(B) - B (23)

13



is locally stable at §,. That is, local stability of equation (23) is equiv-
alent to local stability of the equilibrium of boundedly rational agents
._under least squares learning.

The second result will be used in section 5.1 to suggest some algorithms for
computing the approximate solution.

To prove the convergence result in Proposition 1, we must impose suf-
ficient conditions to insure that if a law of motion H® is close to the true
solution H in (7), then {z;} (the process generated by H") is close to {z:}
(This property is implied by assumptions 4* and 4, in section 4.) Not surpris-
ingly, this property is one of the regularity conditions that must be imposed
for least squares learning to converge. Intuitively, if two H’s are close but
generate z’s very far apart, agents will be chasing a moving target; their
observations on z will not tell them how to update their forecast function. A
condition like this is likely to be needed for any learning scheme to converge,
as long as the learning scheme is only based on observations of the realized
process.

3.2 Relation to Other Algorithms.

PEA has developed from other solution approaches used previously in eco-
nomics. It is closely related to the backsolving procedure of Sims [1985],
Novales [1991] and Ingram [1990]. In this approach, conditional expectations
are fixed by assuming a process for {¢(z:4+1)}. The remaining variables, in-
cluding exogenous processes, are then solved from a system like (1) using
this assumption. Backsolving can be understood as PEA without Steps 3
and 4, with particular assumptions on the whole process for ¢(z:41). An-
other predecessor to PEA can be found in Townsend [1983] in a linear model
with private information; that paper uses v = 1 and replaces Steps 2 and 3
with an explicit calculation of G, based on spectral densities, in which the
linearity of the model is exploited. The idea of calculating the mapping G,
with long-run simulations was previously discussed in Marcet and Sargent
(1989).

Other authors have used approximations of Euler equations with flexible
functional forms more recently. Examples can be found in Coleman (1988),
Judd (1992), Baxter (1991) and McGratten (1993); some of these methods

are based on numerical methods used in other sciences such as engineering

14



or physics. We now relate these methods to PEA in terms of the framework
and the notation laid out in section 2. Define £(z;3) as the analogue to &
for the (8 process. More precisely,

E(z;8) = E[ $(2:+1(B))| ze(B) = = ], (24)

so, if F (- |u) denotes the distribution of u.; conditional on u, = u, (24)
implies
U

E(f(z,u);B)= @[H(H(z,u;8),v;B)] dF(u'lu).

Assuming that z = z, these solution procedures can be summarized as
follows:

o Choose a class of functions P and a degree of approximation v. Param-
eterize the law of motion by an element # € P; this is equivalent to
parameterizing expectations as

¥(B,2) = g7 (m(B, z,u), z,u) (25)

where g7 ' represents the inverse of g with respect to its first argument,
evaluated at g = 0.

o Fix a grid of p points (z!,z2%,...,z") in the state space R' and a set of
weights w!, w?, ..., w?.

o For a given B3, calculate £(z7; 8) numerically for each j. As we can see
from (24), this involves calculating p integrals over R® (recall that s is
the number of exogenous shocks in u,).

o Find B, that solves

B, = arg min  Th, w;| &% 8) — (B, %) |°. (26)

{BeD.}

The difference ||£(z%; 8) — (B8, z?)|| is often called the 'residual’ of the
Euler equation at grid-point j, and a generic name for these methods is
"Minimum Weighted Residuals’. The methods differ in the way the approxi-
mating class P, the grid-points, and the weights are chosen, how the system

15



g is written, the way iterations are performed to find the above minimum,
and in the method for computing the integrals involved in &(z; B).

It is clear that the steps involved in PEA are similar to the steps in MWR
methods. In particular, (26) is analogous to (18). There are, however, several
fundamental differences:

1. In MWR, the grid-points and weights are exogenous in the sense that
they are independent from the approximating parameter 8. Notice that,
in PEA, the sum in (18) is evaluated at the generated series, so that
{:z:t(ﬁ)}tT=1 plays the role of the grid, and the weights are given by the
empirical probability of each value of z in the simulated series; hence,
the grid and weights are chosen by the algorithm, as a function of .
This is known as endogenous oversampling.

2. The conditional expectation involved in & is never calculated explicitly
in PEA. Instead, the approximation in (18) tries to find v, close to
¢(ze41), so that the calculation of the residual (a fundamental step in
MWR methods), is entirely bypassed.

3. all integrals are calculated by Monte-Carlo instead of quadrature.

The endogenous oversampling feature implies that PEA only pays atten-
tion to those points that actually happen in the solution. This avoids the
problem that researchers face when they must choose grid-points without
knowing which points are likely in equilibrium. With endogenous oversam-
pling, only the economically relevant region of the state space is explored, so
no computer time is spent on states that never happen in equilibrium. Fur-
thermore, the resulting approximation fits more closely at those states that
happen more frequently. This is one reason why PEA has been successful in
models with a large number of state variables. On the other hands, methods
based on exogenous state-space grids are impractical for such models, since
the number of points in the grid increases exponentially with the number of
state variables.

In numerical analysis, the grid (z',z?,...,2zP) is sometimes adapted in
the course of the algorithm as a result of the iterations on 8. This is a
form of endogenous oversampling. Unfortunately, these procedures have not
yet been used by economists applying MWR. Indeed, some economists have

16



claimed that endogenous oversampling is a bad feature of an algorithm® . In
fact, endogenous oversampling is an important feature of many algorithms in
numerical analysis, and it is likely to be an essential element in any algorithm
for solving models with many state variables. -

By eliminating the integral computations involved in the calculation of the
residual, PEA further reduces computation time, since standard quadrature
integration is often very costly even in two-dimensional problems. (Notice
that, strictly speaking, this makes PEA a non-MWR method.) The use of
Monte-Carlo integration means that the integrals can be calculated even in
models with a large number of stochastic shocks.

PEA parameterizes the conditional expectations directly, while economists
using MWR often parameterize the laws of motion m. Formally, the two al-
ternatives are equivalent: we showed in section 2 how to find a law of motion
consistent with s; equation (25) shows how to find ¥ consistent with a
proposed law of motion 7. However, parameterizing conditional expectations
often has some practical advantages: i) sometimes we know that = contains
fewer variables than z, so that B contains fewer parameters; i) when the
degree of the polynomial is increased, one can see if some higher-order ele-
ments need to be introduced beforehand by testing the predictive power of
those elements”; 111) if the shocks have a continuous distribution, the condi-
tional expectation is obtained by integrating over H, so that £ is likely to
be smoother than H and easier to approximate with low degree polynomials;
i) inequality constraints are often easier to impose when the conditional
expectation function is parameterized®.

The method in Heaton {1993]° fits into the framework of Section 2 except
that the approximate solution satisfies

B(z2051(Bur)) = $(Burs 2Bz 6”“"%;'(5%7)) 0

Simple algebra shows that this is exactly equivalent to PEA with the pa-
rameterization (25) if the objective function defining G, in (9) is modified

[\/]sa

5See, for example, Judd [1992].
"See den Haan and Marcet (1994) for a full description of this idea.
8Christiano and Fisher (1994) make this point in their comparison of solution techniques

in a model close to our Example 1.3.
9Also used in Bekaert [1993].
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to B [$(ze1(8)) — $(6, 2(B))] h(z(B)) I, where & = |og7/ax] ™. 1n
other words, Heaton’s method is a special case of our algorithm where Step
3 is-modified to be a weighted non-linear least squares minimization, and
where h is used as a weighting function. Heaton’s method performs endoge-
nous oversampling, it uses Monte-Carlo integration, and it does not calculate
any residual. A small modification of our convergence proof accounts for this
case, but is not included in this paper.!®

4 Convergence to the Approximate Selution
as v — oo

Convergence will be proved in the strong sense that the approximate law
of motion Hpg,, defined in (28) below, converges uniformly to the true law
of motion H on the support of the stationary distribution. Proposition 1
establishes the convergence result when v and T are chosen sufficiently large.
Proposition 2 provides a partial converse to proposition 1.

A formal proof of convergence is essential for any proposed approximation
method. It is not sufficient to show that g can, in principle, approximate
any fixed function arbitrarily well. In PEA| the approximating function g
is required to approximate a conditional expectation function £(-; 8) which
itself depends on § through the simulated process {z:(8),z:(8)}. In other
words, &£(-; #) is a moving target.

Furthermore, one can easily construct examples of plausible approxima-
tion schemes which fail to converge to the function being approximated. For
example, Judd (1994) points to a standard non-convergence example where,
if a polynomial of degree v was fitted exactly at v equally-spaced grid-points,
the approximation becomes arbitrarily bad as v becomes larger. He suggests
that PEA may suffer from a similar problem of nonconvergence; Proposition
1 formally disposes of Judd’s criticism.!?

10Details on the algebra and the convergence proof for the weighted case are in Marcet
and Marshall [1992].

n any case, this example does not apply to PEA for two reasons: i)in the example, the
function is evaluated at v points, while PEA evaluates the function at T points, where T is
much larger than v; i) the v points in the example cited by Judd are chosen independently
of 3, while in PEA this task is endogenous. If anything, this non-convergence example may
be indicative of convergence problems for algorithms, including some suggested in Judd
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To demonstrate convergence of the approximate solution, several con-
ceptual issues must be addressed: 1) the class P has to be dense in the
appropriate space. i) Compactness of the function space P is needed in
order to guarantee that a sequence of approximators contains a convergent
subsequence. 711) In general, G, r need not have a fixed point, so the defini-
tion of an approximate solution must be generalized to insure that a solution
exists for all v and T, and that a fixed point exists approximately for large
v and T'. w) It must be shown that G,,r is a good approximation to G,, for
large T. v) Simulations are generated endogenously in Step 2, so we must
insure that {z(8)} is well behaved. In particular, we must show that the
series does not explode, and that the effect of the initial conditions chosen
for 2 dies out sufficiently rapidly. Point v) and the choice of P are related
problems since one must insure that P is dense in the set of laws of motion
that generate well-behaved series.

The first set of assumptions are regularity conditions on the functions
defining the equilibrium (1). Let g7 be the implicit function that defines
the ** argument of g; for example,

9(a, 97 e, z,u),2,u) = 0 (27)

The process {z:(83), z:(3)} defined by equation (15) is a first-order Markov
process satisfying zo(8) = zo and

2(B) = H(ze1(B),w; B) = g5 ($(B, z4(B)), 2e-1(B), we) (28)

For notational convenience we will let Hg denote the function H(-,; 3). Note
that Hpg is analogous to H.!?

Assumption 1 (a) Functions ¢, g, and f are uniformly*® Lipschitz-continuous
in all arguments, and are differentiable a.e.

(1992), where n = v and where the grid is exogenous. To our knowledge, no convergence
proof for such methods is yet available.

13We use “H” to denote both the Markov operator defined in (7) and that defined in
(28). It will be clear which usage is intended since the operator defined in (28) has g as
an argument, while the true solution does not.

13A function with multiple arguments is said to be uniformly Lipschitz-continuous if the
Lipschitz coefficient with respect to the i** argument does not depend on the value of the
j** argument.
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() For all (a,z,u) € ¢(Z) x Z x U, g5 satisfying (27) ezists and is

uniformly Lipschitz-continuous in its second argument.

(c¢)” The true conditional ezpectation £ is Lipschitz-continuous a.e.

where ’a.e.’ is with respect to the Lebesgue measure. Notice that parts (a)
and (b) can be checked directly, while part (c) can not be verified directly
from functions ¢, g, and f. It should be kept in mind, however, that in most
models parts (a) and (b) imply part (c).**

Assumption 1(b) insures that H can be derived from knowledge of g and
&; similarly, it insures that Hg is well defined and that it can be derived from
knowledge of g and 5. The assumption that g;' is Lipschitz-continuous
insures that a small change in 2z, does not necessitate an arbitrarily large
change in z; to maintain equilibrium condition (1). If g is differentiable, this
assumption requires the partial derivative of g with respect to its second
argument to be uniformly bounded away from zero. Assumption 1 implies
that H is Lipschitz-continuous.

The next two assumptions insure that the conditional expectation terms
in (1) can be well approximated by some function 3. Approximating classes
of functions, such as polynomials. exponentiated polynomials, or splines, ap-
proximate a given function arbitrarily well only over a compact set. There-
fore, we impose

Assumption 2 Z x U 1s a compact set.

Assumption 2 implies that both exogenous and endogenous state variables
have compact support. Compact support for endogenous processes can be
implied by economic models in a number of ways. In models with capital
accumulation, depreciation often implies a bounded capital stock if U is
bounded. Asset pricing models are only well defined if a lower bound on
asset-holdings is imposed on agents; this is usually assumed through short-
sale constraints. Finally, if the model is stationary, bounded support can be
achieved by directly imposing exogenous constraints on the model’s variables
at levels which will be attained with very small probability. For example,
in the simple growth model with zero depreciation the capital stock can be

145ee, for example, Santos’s [1991] proof that £ is differentiable in dynamic programming
models.
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arbitrarily large. 'However, a very high level of the capital stock would be
achieved in equilibrium with extremely low probability, so the technology of
the model can be modified by imposing a very large upper bound on the level
of the capital stock. Presumably, the difference between the behavior of the
original model and this modified model will be negligible.

The next set of assumptions describes the class of approximating func-
tions, {¢ : D, x RP —» R™}, where D, is a compact subset of the space of
sequences with at most the first v elements non-zero.!> We will construct the
sequence {D,}, such that D, C D41,V v, and we define D =U,5, D,, .

Assumption 3 (a) V z € X, for each v, the restriction of ¥(:,z) to D,
satisfies a Lipschitz condition uniformly in .

(6) |¥(B,)| < M, VB € D, where sup,.; ¢$(z) < M < oo.

(c) ¥(B,-) is continuous, differentiable almost everywhere, and 3 K < oo

such that ‘ @é%{) < K, VB € D, z € X where the dertvative ezists.

(d) For any continuous function ¢ : D, x R? — R™ such that [ ¢ | < K' <
K, there ezists a sequence {8,}2,, B, € D,, such that

@g%z_) —q(z)| =0

lim sup
Vo0 IGX

Assumption 3(b) is nonrestrictive, since 1 is only used to approximate the
conditional expectation of ¢. Notice that in assumption 3(d) we assume that
the derivatives of the approximating function sequence approximate any con-
tinuous function. In Lemma 1 of Appendix 1 we show that assumption 3(d)
implies that any absolutely continuous function can be uniformly approxi-
mated by some sequence {¢5 }2,. In practice, assumption 3(d) is not very
restrictive. For most commonly-used approximation functions, such as poly-
nomials or splines, the derivatives are themselves a class of approximating
function. (Step functions are one exception.)

15The restriction that D, be compact is without loss of generality. In the case that the
parameters may have to be arbitrarily large for obtaining an approximation (as it may be
the case, for example, with polynomials), the {D,} sequence is constructed so that there
is a bound on all elements of {D,} but this bound goes to infinity as v grows.

21



There is a popular misconception that the derivatives of polynomial ap-
proximators must diverge from the derivatives of the target function when
the approximators become uniformly close to the target. This is true only for
certain ways of constructing polynomial approximators; for example, if the
approximation is required to fit a ¥** order polynomial to the target function
exactly on v points. It is not true, however, if the approximating sequence is
chosen to minimize other criteria, such as the L? distance, that take into ac-
count the fit of the function at many points. For example, polynomials would
fit Assumption 3, since the derivative of a polynomial is itself a polynomial,
and our Lemma 1 shows that an approximating sequence can be chosen with
bounded derivatives.

In this paper, we restrict our attention to stationary and ergodic pro-
cesses.

Definition {2°(8)} and {2} are stationary and ergodic processes sat-
isfying equations (28) and (7), respectively, for t = 0,1, £2, ...

That is, {z:} and {z(8)} denote processes generated respectively by (25)
and (12) starting from a fixed initial condition zp, while {z°}2__ and
{2°(B)}2 _. denote stationary and ergodic processes. The processes {z:(3)}
and {z:} are, in general, non-stationary, since the initial condition is fixed,
rather than a draw from the stationary distribution.

There is a final set of issues to be addressed. In common with virtually
all solution methods discussed in section 3, PEA delivers an approximation,
Hg, to the equilibrium law of motion H. This approximate law of motion
generates a time series {z,(8)}L,, starting from some arbitrary initial con-
dition, which is used to obtain inferences about the stochastic properties of
the true stationary equilibrium process 2{®. For this procedure to be valid,
three conditions must hold: i) {z°(3)} and {z{°} must exist; 71} the effect
of the initial condition must decline as ¢t grows; 1) if Hg is close to H, then
z°(B) must be close to z°. These three conditions are closely related; most
processes either satisfy all three conditions or violate all of them. None of
these conditions hold, for example, if {z,} were an explosive process or a
random walk.

Insuring that these conditions hold is not only a problem for PEA. They
must hold for any proposed approximation procedure if the approximator is
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to converge to the true stationary equilibrium process. For example, if H
were explosive, an approximation method that used a fixed grid (z,, ..., z,)
could never converge to the true equilibrium, since the endogenous process
would eventually explode out of the pre-specified discrete grid.

These considerations require additional regularity conditions both on the
true equilibrium and on the space of admissible PEA approximators. We
propose two distinct sets of conditions, either of which is sufficient to prove
proposition 1. In the first, more general, approach, we simply assume the
needed conditions directly. Formally, for an arbitrary law of motion H*
(where a is an index) let { z]*} denote the process generated by H* starting
at fixed initial condition 2z, and let {z°®} denote the stationary process
associated with H®.

Definition S is a closed set (in the sup norm) of laws of motion such

that, for all H* € §
(a) a stationary process {zg‘i‘f,ut} with support in the set ZU  exists

b) if initial condition (20,u;) € ZU", sup, |z& — 2| — 0 almost surely
Pa t t
as t — oo, uniformly in the initial condition z,.

c) for any sequence of functions { H*} such that H* — H® in the sup norm
y p

ook

as k — oo, we have z®** — 2z** almost surely as k£ — oo, uniformly in
t.

Note that condition (b) allows for a process with several disjoint ergodic
sets. All that is required is that, once the process is in the ergodic set, the
effect of the initial conditions disappears.

Assumption 4* The law of motion H is in the interior of S.

This assumption can not be verified directly from knowledge of system (1).
There is a large literature on how to verify parts (a) and (b) of the definition
of S analytically.’® Part (c) in this definition is essentially a robustness
condition; if it did not hold, one can make the case that the model at hand
is not a particularly interesting one, since the time-series properties of the

16For example, Marimon (1989) shows existence of a stationary and ergodic solution
of the growth model under very general assumptions. Santos [1991] verifies part b) for
dynamic programming models.
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model’s endogenous variables would be highly sensitive to small deviations
from fully rational behavior. Alternatively, one can verify assumption 4% by
using proposition 2 below: if assumption 4* is the only assumption to fail,
this will be detected with PEA by the absence of an asymptotic fixed point.
Under assumptions 1, 2, 3, and 4* , the approximate PEA solution con-
verges to the true stationary equilibrium, in the sense of Proposition 1 below,
if the set D, of admissible parameters is restricted to the subset B, defined

by
BS={8€ D, Hse S}. (29)

A potential problem with using assumption 4* is that it is difficult to check
formally if 3 €B? . In principle, 8 €B3 can be checked informally, as follows:
part (2) can be tested by observing if the solution settles around a stationary
distribution; part (b) can be tested by re-doing the calculations with different
2zo; finally, if part (c) were not satisfied, the series will not settle down even
with small changes in 3, and the user will notice that the iterations to find
the fixed point will not converge.

Our second set of regularity conditions avoids this problem: the needed
restrictions on the §,’s can be checked formally. The cost is that this second
set of regularity conditions is somewhat less general than assumption 4%,
The alternative conditions uses the following version of Duffie and Singleton’s
(1993) asymptotic unit circle (AUC) condition:

Assumption 4 (a¢) H has a stationary and ergodic solution {zfﬂl,ug}
with support in the set ZU.

(b) There exists a sequence of positive random variables {p(u,)} satisfying
Eloglp(u)] = a <0 a.s. (30)

such that H(-,u) has Lipschitz coefficient p(u) in ZU.

Assumption 4 is a nonlinear analogue to the unit circle condition in linear
time series models. While this is more restrictive than 4¥ it is still satisfied
in most models of interest. First, the Lipschitz constants on H need to be
imposed only on the ergodic set of the true solution. Second, as long as the
expectation in (30)is less than zero, the condition permits Lipschitz constants
greater than unity for a subset of U with positive (possibly substantial)
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probability measure. Finally, the assumption is silent about the particular
transformation of the endogenous variables used to construct the z; series.
For example, the simple growth model of Example 1.2 for 4 = 0 is known to
satisfy this condition if we write the law of motion in terms of log(k;), even
though this may not be true if H is written in terms of k. directly.

Under assumption 4, we must impose an analogous AUC condition on
the set of admissible approximators, which will be denoted BAVC:

Definition: For all v, BAUC is a closed subset of D, with the prop-
erty that, V8 € BAUC, there exist psitive constants 83 and positive random
variables {pg(u,)} satisfying

Eloglpa(ut)] < a <0 as. (31)

such that, for all || B'—8 || < 6, H(-,u;8') has Lipschitz coefficient pg(u,).

The expectation in (31) is with respect to the stationary distribution of wu,.
For any given 3, condition (31) can be verified numerically: set pg(u:) equal
to the maximum derivative of H(-,u,; '), and integrate numerically over the
uls'17

Under either assumption 4* or assumption 4, we must restrict the ap-
proximate solution 5, r to a subset B, € D,, where B, equals Bf or Bfuc
depending on which assumption is used. Under this restriction it is not easy
to guarantee that G, 7 has a fixed point, since G, now maps B, into a
larger set D,. One way to guarantee the existence of a fixed point is to re-
strict the minimization that defines G, 7 in (18) to the set B,. The function
G, would then map B, into itself, and existence of a fixed point would
follow from Brouwer’s theorem. It turns out that this strategy does not de-

liver a proof of Proposition 1: we must use the fact that G, r minimizes the

17Another consequence of using assumption 4 and BAUC is that the proof becomes
much more involved than if BSand assumption 4* were used. The reason is that the proof
needs to show that H can be arbitrarily well approximated by a sequence of Hz’s with
B € BAUC In other words, we need that PN {¢ﬁ :B€E Uﬁ":lB;‘,‘UC} is dense in the subset
of {h : R — R"‘} containing £. Now, since U2, BAYC has an empty interior, this does
not follow immediately from the fact that P is dense in {h : R o R""} . On the other
hand, denseness of P N {45 : B € USZ;B5} in the subset of {h:R"— R™} containing £
follows immediately from assumption 4* and the definition of this set.
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mean square error among all admissible 8 € D,. (See, for example, Lemma
8, equation 62). Instead, we use the following definition of an approximate
solution, which generalizes equation (19):

Definition: An approximate solution of order v, sample size T, is
a parameter vector 8, 1 satisfying

fur = argmin +TL, [H(B,2B) - ¥(GCur(B BN (32)

Under assumptions 1 to 3 an approximate solution always exists by con-
tinuity and boundedness of the objective function. If G, had a fixed point
in the set B,, the two definitions would obviously coincide. In practice, a
fixed point usually can be found. Even if no fixed point exists for finite v
and 7', lemma 9 in the appendix implies that as v, T — oo

T
1 Z (B, 2(Bur)) — Y(Gox(But), ze(Bur))” —0.

T3
This makes precise the sense in which 8 and G, () can be made arbitrarily
close. In that sense, the approximate solution (32) represents a fixed point
asymptotically.

The minimization problem in the above definition is over a restricted set.
Finding constrained minima numerically in non-linear setups is often difficult.
In practical applications of PEA, one can avoid imposing this restriction
directly by solving an unconstrained minimization along a homotopy path
for which the constraint does not bind. More details are given at the end of
next section.

Notice that, either under assumption 4 or under 4%, we may have non-
uniqueness. This can happen because system (1) may be satisfied for several
laws of motion H, or because a given law of motion has several ergodic sets
ZU. Our discussion of examples 1.1, 1.2 and 1.3 shows how to pick out unique
solutions in some cases.

Now we present the fundamental proposition in this section.!®

1814 is understood that the double limits in the paper are defined as:

i Gr = Jim (Jim Gur)
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Proposition 1 (Convergence of Approximate Solutions): Assume
that there is a unique solution with a unique stationary and ergodic distri-
bution; denote the support as ZU. Under assumptions 1, 2, and 3, if , in
addition, either assumption 4* holds and B, = B3 or assumption 4 holds
and B, = BAYC then

lim ( sup | H(z,u;Bu1) — H(z,u) | ) =0, as.
v, T—o0 (2u)€ZT

lim ( sup | ¥(Bor1,2) — E(2) !) =0, as.

v, T— oo IEf(—ZTj)

(All proofs are in Appendix 1.) Notice that convergence obtains in the strong
sense of uniform convergence. Also notice that convergence is guaranteed
only in the ergodic set ZU. In case that the solution is non-unique or has
several ergodic sets, a trivial modification of the proof of Proposition 1 would
show that the approximate solution becomes arbitrarily close to the set of
ergodic solutions

The following corollary asserts that all properties of the model that are of
interest in time series applications are appropriately approximated by PEA.

Corollary 1 Under the conditions of Proposition 1, if (20,u1) € ZU, we
have

(a) (Simulated Solution Paths converge)
z2(Bur) — 2 a.s., uniformly in t,
(b) (Equilibrium Conditions are satisfied in the limit)
9(E[¢(ze+1(Bo1))|ze(Bur)) s 2e(Bur), 2-1(Buz), ue) = 0 s

(c) (Simulated Sample Moments converge): Ifd: Z — R is any Lipschitz
function, then

% z—: d(z:(B.1)) — E(d(2°)) a.s.
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as v,T — oo.

We now provide a partial converse to Proposition 1. It shows how the
conclusion of Proposition 1 depends on assumption 4* or 4, and provides
a way to check these assumptions in the limit. Specifically, if B, = B3,
part (a) says that if H does not satisfy assumption 4%, this can be detected
because min "1/)3 - ¢Gu(ﬁ)H2 is eventually bounded away from zero; part (b)
tells us that those equilibria that fail to satisfy assumption 4% will not be
approximated by PEA. (An analogous interpretation holds for B, = BAUC))
For example, this implies that rational expectations bubble equilibria in Ex-

ample 1.1 will not be approximated by PEA with the choice of state variables
proposed in section 2.

Proposition 2 Under assumptions 1, 2 and 8,

(a) if B, = B and assumption {* is not satisfied or if B, = BAVC and
assumption j is not satisfied, then there ezist v > 0 and N > 0 such
that Vv > N

min E[$(8,27°(8)) - $(Gu(B), = (B > 7

b) if B, = BS and there ezists an equilibrium H that does not satis
v q Y
Assumption {*, or if B, = BAUC
that does not satisfy Assumption 4, then Hg, . does not converge to H.

and there ezists an equilibrium H

Proposition 2 can be used to verify assumption 4* or 4 by calculating

T
7 2198, 2(8)) - ¥(C.(B), 2(8) IF

for v and T arbitrarily large. If B, = BS, assumption 4* is satisfied if and
only if this infinite sum can be made arbitrarily close to zero. (An analogous
verification of assumption 4 holds for B, = BAUYC.) This is important be-
cause verifying assumption 4* or 4 analytically may be difficult if one simply
inspects the equilibrium conditions (1).
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5 Some Practical Issues.

5.1-- Simple Algorithms for finding (8,7

In order to calculate the fixed point of Step 4 (or the arg min in equation (32))
one can use standard hill-climbing algorithms for solving non-linear systems
of equations. Nevertheless, this may not always be the best alternative. First,
calculation of the gradient of G, 7 can become very expensive in models with
many coeflicients. Second, G, 7(8) is only well defined if 8 € B,.

We will discuss the second issue in the subsection on homotopy, below. In
order to avoid the first problem, the following algorithm based on modified
successive approximations has been used successfully in many applications

Bor(r+1)=(1-A)Bur(7) + AGur(B.2(T)) (33)

for some A > 0. It is clear that no gradient has to be calculated, so that
the iterations are extremely easy to program, and each iteration is done very
quickly. This algorithm needs more iterations to converge than a gradient
algorithm, but there is a trade-off between ease of performing each iteration
and number of iterations needed to converge. In practice, the above algorithm
is often at least as fast as gradient algorithms.

Although one can construct examples where iterations on (33) are locally
unstable, this has not been the case in most practical applications up to date.
Furthermore, since the least-squares learning model is locally stable if and
only if the differential equation (23) is stable, iterations on (33) with A small
diverge only if the model is locally unstable under learning. If this were the
case, the model would be uninteresting from an economic standpoint.

Another fast algorithm that avoids calculating the gradient is to simulate
directly the model under least squares learning. More precisely, Steps 2, 3
and 4 are substituted by

o Step 2": For T large enough, draw a sample of size T of the exoge-
nous stochastic shock and calculate {Zg,ut}z‘___o using the least squares

learning model of Appendix 2.

Again, if the model is stable under learning 5, will converge to the fixed
point.
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5.2 Speed of Computation, Initial Conditions and Ho-
motopy.

The design of Steps 1 to 4 in section 2 is describes the simplest possible appli-
cation of PEA. A number of elementary modifications can be used to speed
up computations, for example: one iteration on the algorithm for running
the non-linear regressions of Step 3 is sufficient to deliver the fixed point; g
can be often rewritten in a way that solving for 2z, in Step 2 is very simple;
the class of functions P can be chosen to match some properties of the con-
ditional expectation (for example, it can be set to take only positive values),
and, as suggested by the definition in equation (32), it is better to place the
convergence criterion used to decide that the algorithm has arrived at the
fixed point on the values of 13, instead of on the values of 5.

Suppose a researcher has calculated the solution of order v and wants to
calculate the solution of order v+1. In this case, using 8, T as initial condition
for the iterations to find the v + 1 approximation is not a good alternative,
since the elements of the higher degree will usually be correlated with those
of a lower degree; instead, it is best to start the algorithm at G,41,7(8u.1)-
Furthermore, it is not always necessary to introduce all elements of degree
v+1. Only those higher-order elements that have some incremental predictive
power for ¢(z¢41(8)) need be included.

It is likely that the introduction of textbook techniques from numerical
analysis will be useful for finding minima, computing efficient Monte-Carlo
integrals, introducing alternative flexible functional forms, and setting homo-
topy paths. One has to be careful not to introduce these techniques unless
there is a good reason; oftentimes, the simplest approach will be sufficient
for solving the model of interest. In many cases, a simple algorithm is also
the fastest alternative.

Many successful pplications of PEA make use of homotopy techniques;
this is a simple way of obtaining starting values for the algorithm and of
keeping the simulations in the stable set B,. Along a homotopy, the desired
solution is obtained by moving slowly from a known solution to the solution
of the model we are interested in. For example, den Haan and Marcet (1990)
calculate the simple growth model of example 1.2 with partial depreciation
by starting out at the solution for the case p = 0 (a case for which we
know the analytic solution), and then solving a series of models increasing
p gradually. At each step along the homotopy, the solution for the previous
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step is used as initial condition. In this way, one insures that all iterations
stay close to the true law of motion and, therefore, away from the boundary
of B,._Therefore, there is no need to use constrained minimization routines
in order to solve the minimization problem in (32). -

PEA has turned out to be a fast and simple method in many applications.
A comparison of speed of convergence, accuracy and convenience in a highly
non-linear model has been made by Christiano and Fisher (1994); they use a
simple growth model with irreversible investment (our example 1.3) and as-
sume that the shock 6, is a discrete Markov chain. Their model is particularly
unsuitable to PEA, since it only has one continuous state variable and the
stochastic shock can take only two possible values: in this particular model,
endogenous oversampling is not very useful, and Monte-Carlo integration is
very ineficient, since integrals £(z’; 3) are given by a simple formula that is
exploited in the other algorithms but not in PEA. The computation times
are higher for PEA but, even for their model, only by factors of five or seven.
Furthermore, of the several algorithms they tried, PEA was the only one
where the computation time increased only slightly when a non-negativity
constraint was introduced. Finally, Christiano and Fisher find that PEA
delivers a very accurate answer for low-degree polynomials and it is, by far,
the easiest method to implement.

The claim in Judd (1992) that MWR methods are ’hundreds of times
faster’ than PEA is based on comparing the computation times of den Haan
and Marcet (1990) with his own computations. These computation times
are not comparable because different starting values were used: den Haan
and Marcet (1990) (who were unaware that they were in a race) deliberately
started the algorithm at a very incorrect initial condition to illustrate the use
of homotopy. The solutions reported in Judd (1992) use the non-stochastic
steady-state solution as starting value, which happens to be very close to
the stochastic solution. Despite their model choice, the comparison done in
Christiano and Fisher (1994) is more informative, since they start out all the
algorithms at equivalent initial conditions.

6 Conclusion

We have presented the PEA algorithm for solving dynamic stochastic non-
linear models with rational expectations. This approach is highly flexible,
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and it has been used successfully in many applications with suboptimal equi-
libria, strong non-linearities and inequality constraints. It is particularly fast
in those models with a large number of state variables and stochastic shocks,
and is quite easy to implement. -

We prove that, for models with continuous laws of motion and under
some mild regularity assumptions, the approximate solution converges to the
true solution with arbitrary accuracy as the approximation is refined. Con-
vergence has been proved for the case of the stationary distribution. Similar
results for other techniques solving Euler equations with finite dimensional
approximations are not yet available.

A very general condition requiring, essentially, ergodicity of the true pro-
cess, is enough for convergence. We have also proved convergence under the
more restrictive assumption that Duffie and Singleton’s AUC condition has
to hold in the support of the ergodic distribution in order to guarantee that
the stability condition on the approximate process can be verified formally.
Future research might deliver similar convergence results for PEA under dis-
continuous laws of motion, but certain technical details, such as a condition
for compactness of the class of approximating functions and an equivalent
stability condition, need to be addressed. Our restriction to the support
of the stationary distribution is non-essential: a result that guarantees con-
vergence of the law of motion outside the ergodic set can be found in the
predecessor to this paper when the algorithm uses short-run simulations.

The convergence theorem in this paper represents a first step in studying
the properties of PEA and other numerical methods for solving systems of
Euler equation. Additional work needs to be done. For example, it would be
useful to understand the optimal rate at which v and T should be allowed
to grow. A more formal method of selecting the higher degree elements to
include when increasing v would be valuable. Finally, the use of more sophis-
ticated homotopy techniques can improve the speed of convergence in large
models, and it can provide a basis for a theorem proving that the iterations
to find the approximate solution converge globally from the initial condi-
tions. We believe that this area of research will pay substantial dividends in
expanding the range of economic models accessible to quantitative analysis.
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APPENDIX 1
PROOFS AND LEMMAS

For ease of exposition and notation, the propositions and lemmas are
proved for the case where G, and G, 7 are well-defined functions (that is, the
least-squares minimizersin (16), (18), (32) and , (54) are unique). This avoids
dealing explicitly with convergence of correspondences. All propositions are
valid for the general case where these objects may be non-unique. First,
suppose G, 1(f) were multi-valued. For any ¢ € G, r(B), ¥(&,z) takes the
same value, so the minimand in (32) is well-defined. If the minimizer in (32)
were non-unique, there would be multiple equivalent PEA approximators for
each value of v and T'. In that case, one could still construct a doubly-indexed
sequence {f,,r} by selecting any one of the equivalent PEA approximators
for each v and T. Any such sequence converges to the true equilibrium, in
the sense of proposition 1. Finally, throughout this appendix, ||- || denotes
the L? norm, and B = Uu>1B..

The first lemma proves that P is dense in the space of conditional expec-
tations. If £ was differentiable, the lemma would follow almost trivially from
the fundamental theorem of integral calculus. Most of the derivations in the
Lemma are to handle nondifferentiabilities in £.

Lemma 1 There exists a sequence B, € D, such that

(a) _
0¥(6,,z) _ 9&(z)

lim = a.e. in X.
vmoo Oz oz '’

lim sup ‘zﬁ(ﬁu,m)—g(z)l =0
X

—
v ooze

0¢(8,,=)
Oz

0&(z)
Oz

limsupy_o sup
zeX

= sup
zeX
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Proof.

To accommodate points of non-differentiability, our proof strategy in-
volves smoothing the function £. We first define and characterize kernel
approximator functions. For k =1,2,---, let k¥ : RP — R™ be a continuous
function for which [ys k*(t)dt = 1, and let A C X be a set of Lebesgue
measure zero. Let ¢ : (X — A) — R™ be any arbitrary bounded continuous
function. The kernel approximator function g* is defined as follows:

H(z) = [ ala+ k()

In a technical appendix, available upon request, we prove that

limsupsup | ¢*(z) | =sup |q(z)]. (34)
k—oo reX zeX

Property (34) will be used in proving part (c) of the lemma.

To prove the lemma, choose T € X. By theorem (7.29) in Wheeden and
Zygmund (1977)), since £ is absolutely continuous, the derivative of £ exists
a.e., it is uniformly bounded, and we have

= 9&(z") |, _ _
/; - dz' = E(z) — E(T)

for all £ € X. Let O&* denote the kernel approximator to Q%S—’) and let £*
be defined as follows:

£5(z) = L " 9ek(2)da! + MY, (35)
where the scalar sequence {M*} is chosen so that £*(Z) = &(T) for all k.

Clearly,

&k (z)
ck —
a(, (2) = az y

so, in particular, 9&F is differentiable everywhere and,

0&(z) B &k (z)
Oz Oz

lim

k— oo

pointwise, except on a set of Lebesgue measure zero.
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We first prove that

klirg 2161; 15"(:1:) —Z(z)l = 0. (37)

Given our construction (35), it is enough to show that the integrals of J&*
converge uniformly to the integrals of %.

Let K denote the Lipschitz coefficient on &, which exists by virtue of

assumption 1(c). It follows that K is a bound on %&Q, and (by virtue of

(34) on %ﬂ. Using Egorov’s theorem (see Wheeden and Zygmund (1977)
page 57), we know that convergence a.e. of measurable functions implies
uniform convergence except in a set of arbitrarily small measure. Therefore,
given any € > 0, we can find A C X such that | A |< ¢/(4 K) (where, | A |
represents the Lebesgue measure of the set A) and

Atk (z) 9E(z)
9z 0oz

sup —0 as k— o

zeX~A

In particular, there exists a k such that, for all k > I:, SUD.ex-a Ié%‘:ﬁf) - Qfasz) <
€/(2]X|). For such a k, Egorov’s theorem implies that,

/x aé‘k(z')dm, 3 /1 Bg(m')dm,

: Oz s Oz

d:c'+/
A

sup \Ek(:c) — E(z)l = sup
zeX zeX

< sup ( i
zeX [E,I]—A

aEx (=" B 0&(z')
Oz oz

9Ex()  B8E(2)] ,
9z Oz de

< sup (/ /(2 | X |)dz'+ | A| 21?) <X |e/(2 | X D+2Ke/(4 K) =€,
zeX [x,x]-A

This completes the proof of (37).
Parts (a), (b), and (c) of the Lemma can now be demonstrated. Fix k.
By Assumption 3 there exists a sequence §% € D, such that

(B z)  0EXz)
Oz oz

lim sup

= 0. (38)
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Equation (38) implies

lim sup [$(B,,32) — £%(z)| = 0. (39)
Vo0 zeX -
and e
. (B, )| 9E*(z)
ML T e |7 R T (40)

We know from the properties of kernel approximators that £ — £ as

k — oo and that, for each k; from (39) we have that 'gbﬁk — & uniformly as
3&(z

= supex |75
as k — oo. Therefore, a sequence {8,} can be constructed by taking the

appropriate elements from the doubly indexed sequence {Bﬁ} so that parts
(a) , (b), and (c) of the Lemma are satisfied. QED

v — oo. Furthermore, (34) implies that sup_cx 'a—gak—:@)

The next lemma proves that restricting the approximation to stay in the
set of well-behaved laws of motion B does not preclude an arbitrarily good
approximation. Formally, the lemma could be stated as saying that P is
dense in B.

Lemma 2 Let {BV} be as in lemma 1, then B, € B, for v sufficiently large.

Proof.

In the case where assumption 4* is made and B, = B3, the lemma follows
immediately from part (c) of the definition of S, since H is in the interior
of S. The remainder of the proof is for the case where assumption 4 is made
and B, = BAUC. We use the following result:

£l2)- £(%)

T—Z

9 € ()
= (41)

A proof of equation (41) is in a technical appendix available from the authors.
Assumptions 1(a) and 3(a) imply that H(z,u;-) is continuous in 8. There-
fore, to prove the lemma, it is sufficient to show that, for each v, the minimal
Lipschitz coefficient of H(-,u;3,) (which we will denote p5,(u)) satisfies

sup
zeX

= sup
zeX

lim sup p7 (u) < p(u), (42)

V00
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where p(u) is the Lipschitz coefficient on H defined in Assumption 4. Un-
der Assumptions 1(a) and 1(b), the functions g,9,*, and f are uniformly
Lipschitz in all arguments. Therefore, the following coefficients are finite:

g9(a, 2, 2,u) — g(&, 2', z,u)

Ki;(u) = max =
a,a,z’,z a—«

9(a,2',z,u) — g(a, 2', 2, u)

a,z,z',z z—z
-1 =1 =~
F(u) — E' 92 (aaz)uz — 22 (a’z7u)
Kf(u)_ nax f(z)u)_{(z)u)
z,z z— 2

where 2, 2,z € Z, and & € ¢(Z). Assumption 4 then implies that

[ K () K5 (w)E + Ks(u) K(u) < p(u) (43)
where K = SUpP e x a—:;(f) . Let Kp be defined as follows:
Ky =sup |2¥5:2)
zeX Oz
It follows that
po(u) = [K1(u)Ks(w)Kp + Ka(u)] K(u) | (44)

Equations (43), (44), and Lemma 1(c) immediately imply (42). QED.

The next Lemma collects a number of results that will be used later. Let
&* denote an arbitrary function defined on X; let H* : Zx U — Z be defined
by

9(&°(f(z,u)), H(z,u), z,u) = 0,

so H® is the law of motion consistent with £°; let p*(u) be the Lipschitz
coefficient of H*(-,u).

If assumption 4* is made, we will assume that H* € S. If assumption 4
is made, we will assume that H* satisfies the AUC condition in (31), so that
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Elloglp’(w)}]] £ a® <0 as. (45)

Let z>"° be a stationary and ergodic process satisfying z; "= H*( 227, ue).
For any given ZeZ, define {z,(7,%; 8)}2_, recursively as follows:

Z—T(Ta—z;ﬁ) =z

zt(T;E;ﬁ) = H(zt—l(7>z;ﬁ)7ut;ﬁ): t> -,

so z,(7,%;8) is obtained with the law of motion Hg, starting at z at date
—7. Similarly, {z;(7,Z)}2_, is obtained with the law of motion H* and
initial condition z_,(7,%) = z. Note that z(7,%;8) and 2;(7,%) depend only
on {u;}—_,41, while the stationary processes z,”" and 2°(B) depend on
{u;} Finally, let {8:} be a sequence such that

j=—ca

lim sup [4(8;,z)— ()| = 0

V=0 IEX

(Note that, according to Lemma 1, {8,} plays the role of this sequence if
& =¢).

Lemma 3 (a) z° ezists, and lim, o | z;(7,2) — 2°* | = 0 a.s.
(b) For all B € B, 2°(B) ezists, and lim, .0 | 2(7,Z;8) — z22(B) | =
0 as.

c) For any v and any t, the restriction of z°(B) to B, ts continuous in
t

a.s.

(d) limyoo SUP,ezuer | H(z,uiB) — H'(z,u) | = 0.

(e) liMy oo SUPsezvrs1 | 2(7, % 8;) — 2(7,2) | = 0 a.s.
Proof:

Under assumption 4* with B, = BZ, parts (a) and (b) follow immediately
from parts (a) and (b) of the definition of S. Under assumption 4 with B, =
BAUC parts (a) and (b) follow directly from Duffie and Singleton’s [1993]
Lemma 3. Part (c) is proven as follows: Let € > 0 be given. It is sufficient
to show that 36 > 0 such that

|B—fB| < 6impliesthat | z°(8) —2°(8) | <€ a.s.
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For any z € Z and any 7,

| 22(8) —22(B) | < 12°(B) — z(n,%:8) |
] a(nE0) -z 8) |+ |a(nz8) - 270) |
According to part (b) of this lemma, 7 can be chosen big enough so the
first and third terms on the right-hand side of (46) are less than €/3 almost
surely. Furthermore, H(z,u;-): B — Z is continuous, so z(7,%;:): B — Z
is continuous. It follows that there exists § > 0 such that | 8 — 3 | < 6, and
the second term on the right-hand side of (46) is less than €/3.

Part (d) of the lemma is proved as follows. Assumption 1(b) insures that

g5 ' is uniformly Lipschitz. Since

H'(z,u) = 07 (£'(f(2,w), 2,) and
H(z,u;B2) = 95 ($(8;, £(2,1)), 2,u)

we have, for some K < oo,

(46)

sup | H*(z,u) — H(z,w 5)) |

< ZKsup | £(f(z,)) = 9B, f(z,)) | =0

as v — oo.

We now turn to part (e) of the Lemma. Under assumption 4* with B, =
B3, part (e) follows immediately from part (d) of the lemma along with part
(c) of the definition of S. The remainder of this proof treats the case where
assumption 4 is made and where B, = BAYC_ In this part of the proof, it is
useful to notate explicitly the dependence of the z’s on w, the draw from the
sample space, so we use the notation ” z(7,z,w;3)” and ”z;(7,Z,w)".

According to part (d) of this lemma, for any § > 0 3 N(8) < oo such that
sup,, | H*(z,u)— H(z,v;B;) | < 6,Yv> N(§). Therefore, for date —7+1,

(17,0 8) ~ 2 (1, 7,0)| =

| H(E) u—*r-H(w);ﬂx:) - H'(E7u—1’+1(w)) | <4,
Yv > N(§). Proceeding recursively forward to date t, one obtains:

t+7—-1 J

| ze(7,Z,w;8.) — 2} (1,Z,w) | € & |1+ Z I p*(ue—psr (w))

=1 k=1
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Vv > N(§). Since delta can be made arbitrarily small, part (e) of the
lemma follows if M(t,w,7) = L1 7 [Ti-, p°(ve-r41(w)) is bounded for al-
most all w, with the bound uniform in 7. (Notice that M(¢,w,7) does
not depend on Zz.) Since log(p*(ui(w)) is stationary and ergodic, the sam-
ple mean of log[p®(u,(w))] converges almost surely to its population mean.
Therefore, equation (45) there exists a J(t,w) < co such that, for almost all
w, % Zi:l log[p"(u,_k_,,l(w))] < a",Vj 2 J(tyw): and

< f—.l i:; p‘(u,_k“(w))

< S My o7 (ks (@) + T2, [}

= Tl " (weerna (@) + /(1 = &) = K(t,w) < oo,

M(t,w,T)

for almost all w. This proves part (e) of the lemma. QED.
The following lemma insures compactness of P in the supnorm.
Lemma 4 The family of functions P = {4(8,-),8 € D} s equicontinuous.

Proof.
Assumption 3 states that the derivative of elements of P is uniformly

bounded, so
| 4(8,Z) — ¥(B8,2) |=

= 0Y(B, () , . —

QED.

The next lemma is a uniform strong law of large numbers for the mean
square prediction error. For 8,€ € D let hy(B,€) = ¢(2e41(8)) — ¥(€, z(B)),
let h2(8,€) = $(31(8)) — $(E, 2°(8)) and let 37 be defined by:

xr = sup {3 TLL[AB,OF - ER2(B,61 | }- (47)
BeB. teD,
Lemma 5 limr.ev,r = 0 as.
Proof.
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The proof is sketched.

vr < swp  |EEL k(8,6 — 2T, k(B )
B€B.£eD, :

b sup  [FTTLAR(8,6 — B he(8,6)

BeB.£eD.

(48)

h(B, €) satisfies the conditions of Hansen’s uniform strong law of large num-
bers for stationary and ergodic processes. (See Hansen [1982], Lemma 4.5.)
It follows that the second term on the right-hand side of (48) converges to
zero almost surely as T — co. Under assumption 4* with B, = BJ, the first
term on the right-hand side of (48) converges to zero almost surely as an
immediate implication of part (b) of the definition of S. On the other hand,
if assumption 4 is made and B, = BAYC it can be shown that the first term
on the right-hand side of (48) also converges to zero almost surely by using a
slight modification of the proof of Lemma 4 in Duffie and Singleton (1993).
QED.

The following lemma insures that the non-linear regressions converge to
the population least squares minimizer.

Lemma 6 lim sup| G,r(B)~-G.(B)] = 0, as.
T—ogeB,

Proof:
Let € > 0 be given. Let set Q(¢,8) € D, be the set of elements of D,
which are bounded away from G,(8). Formally:

Qle,B)={ €D, st [{-Gu(B) | > ¢} (49)
Define 7(¢,3) > 0 by

n(e,8) = inf | {BIbT(6,6, 0] - BIRE(8,Gu(B), @)} (50)
and let 7(¢) be defined by
n(€) = Bienlgu (€, B) (51)
Compactness of D, implies that

7(e) >0 (52)
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Equation (52) and Lemma 5 imply that 3 A € Q with prob (A) =1 and
3 T(w,€) such that, for Vw e A and VT > T(w,¢€),

0 < vr(w) < ”—(2—) - (53)

where 7. ¢(w) is defined in (47). Choose some w € A,T > T(w, €), and arbi-
trary 8 € B,.
iFrom the definition of G, 1,

0 < E[~(8, Gur(B,w),w)l* = E[hZ(B, Gu(B), w)]*

T
< BlAR(8, Gur(B,w), )] = 7 S lha(B, Gur (B), )
T T
+%_1. Z;[ht(ﬂ’ GV'T(ﬂ),w)]z —_ % Z;[hc(ﬁ, Gv(ﬂ))w)]z
T
42 S ({8, CulB) W) - BIAT(8, GulB), )

T
< B8, Gur(B )l = 2 1h(5, Gur(8), )

s %Z}[m(ﬁ, G(B),w)]? ~ E[h(8,C.(8), )]

< 2y r(w) < 7(e) < (e, B)
where the third inequality follows from the definition of G, (8, w), the fourth
inequality follows from (53), and the fifth inequality follows from (51). This
implies that G, 7(83,w) € Q(B, €), proving the lemma. QED.

Lemma 7 states that the approximate solution for large enough T will be
arbitrarily close to the "population” approximate solution of order v :

B, = arg min || $(B,z.°(B)) — ¥(G.(B), =*(B)) | (54)

Lemma 7 Let B, 7 be the approzimate solution, as in equation (82). Then,
given v, we have

Tlim_ | Bor —B. | = 0,as.
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Proof.
We first show that the minimand in (54) converges to the minimand in
(18) uniformly in 8 as T — oo:

T 2
sup (153 (6, 2(6)) ~ $(Gur(8), 248)| — B| $(8,5(6)) = ¥(Cu(B), =T(6) I
T
<72 sup | 198, 2(8)) ~ $(Gur(6),2B) [ = 16(8,2(8)) ~ $(Cu(B), =B |
(55)
+aup |53 W, 2(B) - $(CAB) BN - E| $(8,27(6) - $(G.(8), =T (6) I

We first show that the first term on the right-hand side of (55) converges
to zero. According to assumption 3(a), ¥ (-, z) is Lipschitz, uniformly in z €
X. Furthermore, the ¢ : B, x X — R™ is a continuous function of a compact
set, so is bounded. These conditions imply that [¥(8,z.(8)) — ¥(£,z(8)) |
is Lipschitz in é € B,, uniformly in 8 € B,, so 3K < oo such that

| 198, 248)) - $(Gur(B), 2dB))] * — (B, z(B)) — $(GCu(B),z(B)) I” |
<K | Gur(B) - G(B) | (56)

Lemma 6 implies that the right-hand side of (56) converges uniformly to zero
as T — oo, so, given € > 0,3 T(¢) such that VT > T(e),

sup | G r(B) - G.(B) | <

BeB K (57)

Equations (56) and (57) imply that the first term on the right-hand side of
(55) is less than € for all T > T'(€), which proves that term converges to zero
as T — oo.

We now complete the proof. By an argument analogous to that used in
the proof of Lemma 5, | ¥(8, z.(8)) — ¥(G.(B),z:(B)) |* satisfies a uniform
strong law of large numbers. This implies that the second term on the right-
hand side of (55) converges to zero as T — oo. Thus, the left-hand side of

47




(55) converges to zero, so the minimand in (18) converges uniformly to the
minimand of (54). Since the minimization is over the compact set B,, this
implies the conclusion of the lemma. QED.

Lemma 8 Let {B,,}ﬁ":l be a sequence such that B, € B,,Vv. Then

lim || £(=°(B.), B.) — $(Gu(B.),=(B.)) | = 0 (58)

Proof.

According to Lemma 4, {¢(B,-),8 € B} is an equicontinuous family of
functions. Assumptions 1(a) and 1(b) then imply that {&(-,8),8 € B} isalso
equicontinuous. Furthermore, since ¢ is a bounded function, it follows that
{€(-,B),8 € B} is uniformly bounded and Arzela's theorem (Kolmogorov
and Fomin (1970, p. 102)) then implies that there exists a subsequence vy
and a continuous function & such that

lim sup | &(z,B,,) - &(z) | = 0. (59)
k—oo zcXx
The function & is the uniform limit of a sequence of uniformly Lips-
chitz functions, so & satisfies a Lipschitz condition. By a proof analogous to
Lemma 1(b), there exists a sequence {ﬂ“"}kﬂ with 3,, € D,, such that

lim sup |&(z) —$(B.\,2) | = 0. (60)

k— o0 zeX

(Notice that this sequence is different from {Euk} in the statement of the

lemma)
Equation (58) is now demonstrated along subsequence v. The definition
of G implies that

Gun(Bn) = arg i €2 (Bun),B) = #(6:22Bu)) |, (61)

since the expectational error is orthogonal to the least squares predictor.
The following chain of inequalities hold:
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| £(22°(Bun)sBun) — $(Gun (B, 22(Bun)) |l
=< E(2(Bu), Bay) ~ wf@’w-: B

[N

< SUP;ex | S(m,[[z,,k) (:BV“ ) I " -

< supgex | €(2,8,) = E(2) |+ supsex | E(2) = (B, 2) | —*? )

62

where the first inequality follows from (61) and the third inequality follows

from the triangle inequality. The first term on the right-hand side of (62)

converges to zero as k — oo by (59). The second term on the right-hand side
of (62) converges to zero as k — oo by (60).

Since (62) holds for any arbitrary convergent subsequence, this result
implies the conclusion of the lemma. QED.

The next and last lemma shows that 8, gets arbitrarily close to G,(8,)
as v grows. In this sense, we say that an asymptotic fixed point exists.

Lemma 9
Jim {mip 11 906,256 - $(6.(0), 26 | b=o
Proof. ‘
According to Lemma 1(b), a sequence {8,}%, exists such that
lim sup | £(z) = ¢(B,,z) | = 0 (63)

Vo0 EX

Recall that £ is the true conditional expectation. According to Lemma 2,
B, € B,, so the minimand in the statement of the lemma is dominated by

| $(8..2(8.)) - ¥(G.(B.),z=(B.)) | (64)

and it is enough to show that (64) goes to zero. Now,
nmp(ﬁu, (B.)) = ¥(G.(B.), = (B,))|

“sz, §>) ( ‘a‘_ N +|EERB) - &
+ |E@EB)B) ~ $(G.(B.),=2(B.))

vv

(65)
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The first term in the right side goes to zero as v — oo by the choice of
{ﬁ } The second term is bounded by

" sup,aez |/ $(H(z,u')) dF(u'u) /¢ 2, B,)) dF (')

where F(-Ju) is the conditional distribution of u¢4+; given u, = u. The above
expression converges to zero by Lemma 3 (d) and the Lipschitz-continuity of
¢. Finally, the third term goes to zero by Lemma 8. QED.

Proof of Proposition 1

In this proof, convergence of a function of (z,z) in the supnorm is taken
over the ergodic set of the true process ZU C Z x U.

Let ¥g = ¥(6,-)and Hg = H(-,-;5). We first show that 15, converges
to £ pointwise.

Since P is a uniformly bounded, equicontinuous class of functions, it is a
compact set in the sup norm. Therefore, there exists a subsequence (indexed
by k) and a limiting function ¥° such that Y¥g,, — ¥° in the supnorm. It is
enough if we show that, for any such convergent subsequence, ¥° = € a.e. in
ZU.

Let H® be the law of motion consistent with 1°, and £* the true condi-
tional expectation consistent with H*. We have Hg, — H* uniformly, by
an argument analogous to that used in the proof of Lemma 3(d). Note that

£, (f(z0) = [ ¢[Ha, (Ho, (2 0)0)] dF(Wl).  (66)

All the functions inside the integral are continuous and bounded, so Lebesgue
Dominated Convergence implies

£, (f(zw) = [ S1H (H'(2,u),u)] dF(ulu) = £'(f(z,u))  (67)

as k — oo.

We will eventually show that H = H*; to this end, we first have to prove
that H* satisfies assumption 4* (if B, = B?) or assumption 4 (if B, =
BAUC). In the former case, Hg, € S,Vk, by the definition of BS. Since
S 1s closed under the sup norm, and Hg, — H* uniformly, it follows that

H* ¢ S.
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We now turn to the latter case. It is sufficient to show that, if B, =
BAUC H* has a Lipschitz coefficient satisfying (45). Let

H*(z,u) — H*'(Z,u -
) = sup [0 = B
2,2€7Z z —2
Fix € > 0, and any u € U. By definition of p*(u), there exist z and Z such
that '
|H*(z,u) — H*(

ERE]

p(u) < 28 4

L E ) = Ha, (0] + |Ha, (5) = Ha, (w)| + |Ha, (7w) - H*(G,u)) .

2 -2

+€)

|H*(z,0) = Hp,(2,u)] + |Ha,(Zu) - H'(Zu)

|2 -2

+ pa., (u) ] (1+e)

(68)
where pg, (u) is the function defined in (31) Now, fix z,Z; take logs on both
sides of (68). Since inequality (68) holds for all k, we can take the liminfy
on both sides and use the uniform convergence of Hg, — H* to obtain

log 5*(u) < <lil£ninf log pﬁuk(u)) +log(1 +€) (69)

which holds for all € > 0 and all u. Now, given any ¢, taking expectations
over u we get

Ellog p*(v)] < E [lign inf log pgyk(u)] + log(l +¢€)

< lilfninf [Elog P5., (u)] +log(l1+€) £ a+log(l+e)

where the second inequality follows from Fatou’s lemma, and the last in-
equality follows from the fact that 8,, € B,. Since the above inequality
holds for all € > 0, we conclude

E log p'(u) £ a
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This completes the demonstration that H* satisfies (45) when B, = BAUC,

We have shown that H" satisfies assumption 4* or 4 (depending on the
definition of B, being used). It follows that a stationary and ergodic process
{27} exists satisfying z;® = H*(2;%,u:), so the L? norm’of {2;*} is well
defined. We can write,

[¥°(2:7) - (=) <

19°(2:7) = b Buns 2™l + [¥(Bunr %) = $(Bunr 27 (B
+ [$(Bun, 2°(B)) = Y(Cun(Bun )y 2 (Bun))

+ ”d)(GVk(rBVk)) x?o(ﬁuk)) - g(xtw(ﬁl'k)7ﬂvk)“
1E(ze(Bun), Bu) — E(z:=, Bu)ll + N1E(z™, Bu) — E(=7)I- (70)
We can now apply Lemma 3, parts (a), (b), and (e), to conclude

j2i = 2°(Bu)| = 0 as. (71)

The limsup of the right side of (70) equals zero, as follows: The limsup of
the first term is equal to zero by the definition of 9°; the second term goes
to zero by (71), along with the continuity of g, , and Lebesgue Dominated
Convergence; the third term goes to zero by Lemma 9; the fourth term
goes to zero by Lemma 8, the fifth term goes to zero by (71), along with
the continuity of £(-,8,,), and Lebesgue Dominated Convergence; the sixth
term goes to zero by (67).

We have proved that the left side of (70) is equal to zero, which implies
P*(z;>) = £°(z;*°) almost surely in the support of z;*. We can summarize
this derivation as follows:

Y(Boy,z) = ¥'(2) = B (§(23) | 5= = z) (72)

This is an important result in itself; it says that the limit of the pa-
rameterized expectations 1* is equal to the true expectation of the process
generated by °.

Finally, since

g (dj(ﬂwu mt(ﬁ”k))’ Zt(ﬂ”k)) Zt—l(ﬁl’k)iut) = 07 Vk
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by construction, and g is continuous, (72) and lemma 3(e) imply

g (E (¢(Z:+l) | :E:) )z::Z:—lxut) =0,

with probability one, which implies that H* is a rational expectations equi-
librium or, equivalently, that £* = £ and H = H*. To summarize, we have
shown that any convergent subsequence of Hg, goes to H in the supnorm,
which 1mplies that the same holds for the whole sequence.

To complete the proof, we have to show the same type of convergence for
the sample version of the approximate solution. It is enough to show

Lim  sup |9(e,Bur) — $(z,8) = 0. (73)
T z€X

Lemma 7 and continuity of 15 in B imply ¥, — g, pointwise. Since P
1s equicontinuous, by Lemma 4, and bounded it is compact in the sup norm,
which implies uniform convergence as in (73). Finally, (72), (73), and Lemma
3(d) imply that Hp, . converges uniformly to H*. This completes the proof
of Proposition 1.

Proof of Corollary

a) Follows from lemma 3(e) and the uniform convergence of Hg,, — H
as in Proposition 1.

b) Lemmas 8 and 9 imply || £(z°(B8..1), Bor) — ¥(Bo1,z:(Bu1)) | — 0.
Part b) of the corollary follows from part a) and continuity of g.

c) Follows from proposition 1 and part (b) of the definition of S (if as-
sumption 4* is imposed and B, = B?) or from the AUC condition,

Proposition 1 and Lemma 4 in Duffie and Singleton (if assumption 4 is
imposed and B, = BAY°),

Proof of Proposition 2
We give the proof for the case where B, = BAYC. The proof for the case
where B, = B? is analogous, and is therefore omitted.

e We first prove that if
min E{$(8,2:°(8)) — ¥(G.(8),2°(B))])* — 0 (74)

BeB.
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then assumption 4 is satished. Consider any convergent subsequence
of {4, r}; as in the proof of proposition 1, this subsequence has a

__limit 4° for which the corresponding law of motion H"® satisfies the
AUC condition (30). As in the proof of proposition 1, (70) holds for
this 1° and the corresponding conditional expectation £° (defined as
in (67)) . Now, consider the right side of (70); with the exception of
the third term, all terms go to zero as k — oo if Assumptions 1, 2 and
3 are satisfied'®. The third term goes to zero because of (74). This
proves the existence of an equilibrium H*® that satisfies AUC and that
Assumption 4 is satisfied.

To prove part (a) assume, towards a contradiction, that

liminf min E[)(8, =°(8)) - $(G.(B), () = 0.

yv—oo ﬁeBu
Then there would be a subsequence {f,,} for which the min goes to
zero and we can find a sub-subsequence {8, } such that Hg, — H°.

By the argument given above, this would imply existence of H* that
satisfies Assumption 4, which is a contradiction.

o We now prove part (5). Let Q@ = { laws of motion for z that satisfy AUC conditi
By an argument analogous to that used in proving that H* of Propo-
sition 1 satisfies AUC, we can prove that @) is a closed set. Since each

Hg, . € Q and H ¢ Q, part (b) follows immediately.

QED

15Notice that assumption 4 has only been used in results leading to Lemma 9, which
causes the third term in (70) to go to zero.
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APPENDIX 2
NON-LINEAR LEAST SQUARES LEARNING

The recursive least squares estimator to predict ¢(Z:4;) can be written as

Be = fe-1 + a0 R (a_‘b(%faé;l) (6(2:) - "/’(:Bt,it-l)])

Rt = Rt—l + Gy adj(ﬁa:g‘_l) ad’(%"a:l:t_l) (75)

9 (P(Be, 2¢), 2t, 2e-1,w) = 0

Notice that if we fixed 3, replaced 2, by z,(8), and for the particular choice
a, = (1/t), B; is the non-linear least squares estimator to predict ¢(z(5))
with ¥(:, ze-1(8)), where the series z are not affected by i, except that the
residuals are calculated recursively.

In the system defined by (75), however, the z’s depend on the estimate
B¢. In words, (75) describes an economy where agents use recursive non-
linear least squares to form their expectations about the future, and where
equilibrium is generated by such expectations; the first equation says that
today’s beliefs are updated according with last period’s beliefs and the pre-
diction error made this period, the second equation gives the gradient for
how the prediction error affects the beliefs 3, and the last equation defines
the equilibrium z; in terms of the expectations of the agents. This is a non-
linear version of economies studied Marcet and Sargent (1989), where the
non-linearities appear both in the equation generating the observations and
in the expectational rules.

Using notation

Du(B) = |09(8,2+(B))/08|, ,  and  R(B) = E( Dyu(B)Dyu(BY )

and adapting results from Ljung [1975], it is possible to show that the only
B’s where least squares learning can converge with positive probability are
B € D, that satisfy

R(B)E ( D$u(B) [¢(2(B)) — ¥(B,ze-1(B))]) = 0. (76)

This equation is obtained by taking the object multiplying a, in the recursive
algorithm, fixing 8 = [, and taking the expectation with respect to the
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stationary distribution of {z,(8)}. Now, since the first order conditions for
the maximization problem of (16) imply that

(Dll’t( B) (¢(z(B)) - (Gu(ﬂ),xt_l(ﬂ))]) =0

it is clear that (76) is satisfied, precisely, at the fixed point S,.
Further results in Ljung [1975] guarantee that 8, — B, if the differential
equation

98D _ R(B(r)) B DH(B(r)) [6(2B(r))) = $(B(), ze-s( B

(77)
is stable. To analyze this differential equation, notice that the right side of
(77) is equal to

R(B)'E( D¥u(B) [¥(Gu(B), ze-1(8)) — $(B,ze-1(8))])

by the definition of G,. By the mean value theorem, in a neighborhood of 8,
this expression can be written as

R(B)E ( Dyu(B) Du(BY (G.(B) - B))

for some B in this neighborhood. Therefore, 8; — £, locally if and only if
the differential equation

1) _ pp(r)) E( Du(B(r)) DIB(YY) (GulBr)=B(r)) = GuAB(T)=(r)

is locally stable at G,.
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