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The Convergence of Vector
Autoregressions to Rational
Expectations Equilibria

ALBERT MARCET and THOMAS J.
SARGENT

1. Introduction

In economic affairs, the way that the future unfolds from the past
depends partly on how people expect it to unfold from the past.
Economic systems can thus be described as self-referential, because
outcomes depend partly on what people expect those outcomes to be.
This self-referential aspect of economic systems gives rise to enormous
theoretical problems of indeterminacy (i.e. multiple equilibria) when
people’s expectations are left as ‘free variables’ that are not restricted by
economic theory. To fight that threat of indeterminacy, economists have
embraced the hypothesis of rational expectations. This hypothesis in-
structs us to focus only on outcomes and systems of beliefs that are
consistent with one another, allowing for whatever differences between
outcomes and beliefs can be attributed to uncertainty and limited
information.

A rational expectations equilibrium is a fixed point of a particular
mapping from beliefs to outcomes. When agents have an arbitrarily
given set of beliefs about the laws of motion of the economy, their
behaviour causes the actual laws of motion to be determined. We can
think of people’s behaviour collectively as inducing a mapping from
their believed laws of motion to the actual laws of motion for the
economy. A rational expectations equilibrium is a fixed point of that
mapping, which is a set of beliefs about laws of motion that is consistent
with realized outcomes.

Much work in economic theory and rational expectations economet-
rics simply assumes that the economy is described by a rational

Thomas Sargent’s research was financed by a grant from the National Science Foundation
to the University of Minnesota, NSF/SES8508935.
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expectations equilibrium. This type of work is silent on .5@ @,cmm:os. of
how the economy could have arrived at such a situation in which beliefs
are consistent with outcomes. That is, the theory is silent about how
agents might learn to have correct beliefs if they had started with cm:.omm
that are wrong. Recently, a number of researchers have comcﬁ studying
this ‘learning’ problem. One reason for studying the problem is that ﬁ.rm
notion of a rational expectations equilibrium would be a more attractive
one if there were plausible and undemanding learning schemes which
would drive the system towards a rational expectations equilibrium. A
second reason for studying learning theories—one emphasized in the
work of George Evans—is that, even though it restricts w%mﬁoﬁm.%
beliefs, the concept of rational expectations is often not restrictive
enough to prevent a multiplicity of equilibria from occurring. That is,
for some economic environments, there can occur multiple systems of
beliefs that are consistent with outcomes. One use of a learning theory
that converges to a rational expectations equilibrium would U.o to mm_wﬁ
which of several equilibria might be expected to prevail in practice
because learning schemes are attracted towards them and repelled from
others. :

Margaret Bray (1982, 1983), Bray and Savin Q@m@.u and Fourgeaud et
al. (1986) have studied the learning problem in o:SS:Bo.:.a .SE can
be described by particular linear rational expectations equilibria. They
relax the assumption of rational expectations and instead assume that
agents must learn about some aspect of the environment through the
sequential application of linear least squares. Each of these authors
displays technical conditions under which their systems converge almost
surely to a rational expectations equilibrium.

This paper summarizes and applies some of our nomoﬁor on least-
squares learning mechanisms in the context of linear rational expecta-
tions models with private information.! We model the agents in the
economy as forming beliefs by fitting vector autoregressions. Each
period, the agents add the latest observations and :na&m.%m: vector
autoregressions. They use these updated vector autoregressions to form
forecasts that influence decisions that they make, which in turn influence
the motion of variables in the economy. We study conditions under
which such an economy converges to a rational expectations equili-
brium. . .

Studying the convergence of least-squares estimators in setups like
ours involves technical difficulties because these setups involve depar-
tures from the standard assumptions used in time-series econometrics to
deliver convergence. Under standard conditions maintained in econo-

! This work is contained in four papers by Marcet and Sargent (1988, 1989a, 19895,
1989¢).
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metrics (e.g. covariance stationarity, and ergodicity of the stochastic
process for which the vector autoregression is being estimated), least-
squares estimators of vector autoregressions are known to converge
strongly. Such convergence results fail to cover the cases that we want
to study, because in our systems agents’ learning behaviour causes the
stochastic process being learned about to be non-stationary. In effect,
agents are shooting at (learning about) a moving target, rather than the
fixed target assumed in the standard econometric setting. This feature is
what has made convergence results difficult to attain.

In self-referential linear models, the least-squares estimators of vector
autoregressions follow a complicated stochastic difference equation
whose limiting behaviour we want to analyse. By building on technical
results of Lennart Ljung (1977), it can be shown that the limiting
behaviour of this stochastic difference equation is described by a much
simpler ordinary differential equation.? The differential equation invol-
ves the operator mapping perceived laws of motion into actual laws of
motion, which appears in the work of DeCanio (1979) and Evans (1983,
1985). Using this approach, one immediately obtains Margaret Bray’s
(1982) result that the only possible limit points of least-squares learning
schemes are rational expectations equilibria. Further, the local stability
of least-squares learning schemes about a rational expectations equili-
brium can be determined by studying the stability of the associated
differential equation at the rational expectations equilibrium.

We apply our results to three models that have appeared in the
literature. These examples illustrate the power of the differential equa-
tion approach to shorten and unify proofs of convergence that have
appeared in the literature. The differential equation approach also
permits a unified interpretation of apparently diverse results in terms of
the character of the operator mapping perceived to actual laws of
motion. We first study a model of Margaret Bray, and show how our
methods can be used to represent and somewhat strengthen her results.
Next we study a model that we have created by modifying a model
contributed by Roman Frydman. Under our modifications, the model
converges strongly to a rational expectations equilibrium. The third
model is a private-information version of a hyperinflation or stock price
model. The rational expectations version of this model has many
equilibria, all but one of which exhibit a ‘speculative bubble’. Our
results suggest that the equilibria with bubbles will not be attractors
under our learning scheme.

? The ordinary differential equations approach is described and applied by Ljung and
Soderstrom (1983) and Goodwin and Sin (1983). Margaritis (1985) gave an early applica-
tion of the approach in economics. Woodford (1986) applies some of Ljung’s methods to a
nonlinear dynamic model. Also see Kushner and Clark (1978) and Robbins and Monro
(19513.
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2. The Model and a Convergence Proposition®

This section describes the technical results obtained by Marcet and
Sargent (1989b), where we study the convergence of a system driven by
the behaviour of two types of differentially informed agents, each of
whom is learning through the sequential application of linear least
squares. That distinct agents are differentially informed creates the
situation that for each class of agent there are hidden state variables.*
Our setup is as follows.

There is an (n X 1) state vector z,. We let z;, be an n; X 1 subvector,
where 1< n;<n, for i=a, b, ¢, d. There are two types of agents,
types a and b, who observe z, =e,z, and z, = eyz,, respectively,
possibly distinct subvectors of z,. Agents of type j want to predict future
value of possibly distinct subvectors zy(; = ex(j)z,, where k(a) =c and
k(b)=d, and to use the current observation on z; in order to form
those predictions. The selection matrices e, e,, e, e, are constant
through time. There is an economic model which maps beliefs of agents
a and b into actual outcomes in the following way. If the beliefs of
agents of type a and type b were given by the time-invariant rules,

N*ANQ_NEIHV = Ba Za-1

E*zalzpi-1) = By 2p-1 forall ¢, 1)
then the actual law of motion of z, would be given by
7, = T(B)z,-1 + V(P)e, @)

where €, is an (m X 1)-vector white noise, f=(8,, Bs), and T and V
are operators that map matrices comformable to the objects they
operate upon. A particular economic model will determine the operators
T and V. In subsequent sections, we describe several economic models
and display the operators T and V' that are associated with them.

We will work in regions of the parameter space 3 for which (2)
implies that z, is a covariance stationary stochastic process. For this
purpose, we define the following set:

D, = {B|the operators T(B) and V(f) are
well defined, and the eigenvalues of 7(f) are
less than unity in modulus}.

For B e D, (2) generates a covariance stationary stochastic process, for
which the second-moment matrix Egz,z; is well defined. Letting

3 This section parallels and elaborates on the first section of Marcet and Sargent

(1989b).
¢ Note that the models of Bray and Savin (1986) and of Fourgeaud er al. (1986) do not

have hidden state variables.
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M NA@ = Ez,z;, this moment matrix can be computed as the solution of
the discrete Lyapunov equation,

M(B) = T(BYM(B)T(B)' + V(B)QV(BY,

where Q = Ee¢,e;. We use the following notation for some submatrices
of Ez,z;:

RN\.AEV = N,N\.aNM.: & =aq b

% EN?NAQV = m\Nﬁva .\ = Qu NU. AWV

In general, each of these moment matrices is a function of S.
It .Eo actual law of motion for z, is (2), then it can be calculated that
the linear least-squares projection of Zk(j): ON Zj—1 is given by

E(zgylzje-1) = Si(B)zj-1, 4
where

5/(B) = ex(y T(B) M (B M, (B)),  for j = a, b. ©)

The operators S;(B) map the perceptions 8 = (,, Bs) into the projection
80.390:3 (in the linear least-squares sense), S,(B), Sy(B). Let us
define S(B) = [S.(8), Sy(B)].

We now advance the following.

Umzzﬁoz. A rational expectations equilibrium with asymmetric
private information occurs when perceptions in (1) are given by a
.matrix = (B,, ;) that satisfies

Br = [Bar, Bogl = [Sa(By), S5(BY)] = S(By).

Thus, a rational expectations equilibrium is a fixed point of the mapping
S. Notice that this concept of a rational expectations equilibrium is
relative to the fixed information sets Zg-1 and zp,_; specified by the
model-builder.

ﬁ\o.zoé describe the model of learning. The learning scheme is a
recursive version of least squares, modified to permit agents to disregard
ocmﬁémﬂ._o:m that threaten to drive the estimates outside of some
pre-specified sets; Dy;, j = a, b. These pre-specified sets play an impor-
tant role in governing the global convergence of the least-squares
estimators. .moH. j=a, b, we let {@;} be a positive, non-decreasing
sequence with lim,_,.a;, = 1. Beliefs of agents of type j(=a, b) evolve
according to the following scheme. Define mw and .mw by

Bie = Bii-1 + (-1 /ORGE L zj—al iy — Bi-12ji-2]'}

ww = x:i + AQ\.TH\DAN\.TZ“.TH - N\TH\Q\TC. (6a)

mmmwﬁ?% m.vmommom two moa.ws and b.:.L.H.F b. Let Dy C Dy C
»J = a, b. The algorithm generating beliefs at ¢ is then




144 Albert Marcet and Thomas J. Sargent

Am\: m\.ﬁv if Am\.? NM\.NV € b:

QM.: m:v ¢ Dy;.

Equations (6b) define a ‘projection facility’ whose function is to keep
beliefs (B, R;;) within the set Dy;. Two distinct sets, Dq; and Dy, are
used in defining the projection facility in order properly to invoke some
technical arguments made by Ljung (1977). In practice, we shall be free
to choose D; to be a set contained within, but arbitrarily close to, D;;.
In the applications below, we shall always think of Dj; as being
arbitrarily close to Dy;, and thus will focus our attention on specification
of the sets b:.m

If Dyj=D,;= Ro*(%) then the ‘projection facility’ on the second
branch of (6b) is never invoked, and with suitable initial conditions,
(6a, b) simply becomes a recursive version of weighted least squares:

Am\: .ﬂ._v = Amvv

some value in Dy; if

t—1 -1 /t—1
— , ’ ! .
\# = M @jiZji—12jt—1 M FiZji— 13 k(i |-
i=1 i=1

In the special case that {a;} = {1}, the above formula is just ordinary
least squares. In cases in which a nontrivial projection facility is
specified by choosing D,;; to be a proper subset of Rmox() it s
natural to set ‘some point in Dy}’ in (6b) equal to (B, R;), where ¢’ is
the last time that (8, R;/) € Dy;. With D,; set arbitrarily close to Dy,
(6a, b) then amounts to least squares adjusted sequentially to ignore
observations that threaten to drive (B, R;) outside of the set Dy;.
When the sequence {a;} is chosen to be strictly increasing, it leads to
adjusting the least-squares algorithm to weight more recent observations
more heavily. (The condition that lim,,.a; =1 restricts the eventual
rate of forgetting in a way sufficient to permit convergence of §; within
the system to be studied below.)

The sets Dy; and D,; will play important roles in one part of the
proposition to be stated below. One role of the sets Dy; and D,; can be
to force the learning algorithm to remain the set D; defined above.

We assume that, when agents are learning according to (6a, b), the
actual law of motion is determined by substituting S, = (B, By) from
(6a, b) for B on the right-hand side of (2):

2= T(B-)z1 + «\Q&lﬂvm? (7N

The system that we want to study is (6a, b) and (7). Equation (7)
indicates the sense in which agents’ process of learning influences the

5 Ljung and Soderstrom (1983) frequently proceed in this way, specifying a projection
facility in terms of a single set.

Convergence to RE Equilibria 145

actual law of motion of the system. Agents’ learning behaviour evidently
causes Em Z; process to be non-stationary. This property of the z
process implies that the recursive estimation scheme (6a, b) iEom v
oo:E be Eanum:Noa as being optimal only in a constant oomBQoE
environment, is in general a suboptimal way of learning for this class of
environments. Our model is thus an irrational model of learning, a point
emphasized by Bray and Savin (1986) and Bray and Kreps ﬁom&.

We want to study (6a, b)-(7), which is a complicated system of
.Stochastic difference equations. We shall use the method of Ljung
.@oﬂdv .2:8@ approach is to find an ordinary differential equation that
1s associated with (6a, b)—(7) in the sense that the limiting behaviour of
(6a, EA,\.V is described by that differential equation. It turns out that
associated with the system of stochastic difference equations (6a, b) and
(7) is the following ordinary differential equation: ,

\wm NMHR,?Q&TWQA\& - RL\
| By | _| Re"M(BISs(B) — By

dt %n B E?CQV - %a ' Amv
mw ENQAmv - N~w
Defining R = (R,, R,), we can represent (8) in the vector form:
4 (col(B)) _
dt mOO_A%vv - WQW, va‘

where col () is a vector obtained by stacking columns of § on top of
each other, and col (R) is a vector obtained by stacking columns of R
on top of one another. In the interest of studying the linear approxima-
tions that govern the local behaviour of (8), we define

d
d(col B, col R) §P B

Let {(B(1), R(1))} 1e[o,=) denote the trajectories of (8). We define the
mmﬂ.b\, to be the domain of attraction of the fixed point (8, Ry) of (8),
which we assume to be unique. That is, D, consists of the set of
(B(0), R(0)) such that, when (B(0), R(0)) € D4, (8) implies lim,_,.(B(¢)
R() = (B, Ry). “

<<o. use a set of six assumptions about system (6)-(7) which are
described in the Appendix. Among these, the first five are in the nature
of .Rm&ml@ conditions which are easy to verify and are typically
satisfied for the kinds of applications we have encountered. Assumption
Tﬁvv. which states that § has a unique fixed point, could be relaxed to
permit multiple fixed point; then our propositions would transform in a
readily seen way to statements about each fixed point of S(f).

Assumption (A6) can be considerably more difficult to verify than
(A1)-(A5), as we discuss below. This assumption is used in only the

h(B, R) =
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first part of our four-part proposition. For this first part, we also use the
following additional assumption.

AssumpTION A7. For j = a, b, assume that D,; is closed, that Dy; is
open and bounded, and that Se D, for all (B,, R,, By, Rp) €
D1, X Dyp. Assume that the trajectories of (8) with initial condi-
tions (B,(0), R;(0), B,(0), Ry(0)) € Do, X D,y never leave a closed
subset of Dy, X Dyy.

We now state the following.

ProrosiTiON 1. Assume that (3,, R,, z,) are determined by (6a, b),
(7). Assume that (Al), (A2), (A3), (A4), and (AS5) are satisfied.

(i) Assume also that (A6) and (A7) are satisfied and that
D1, X Dy, CD,, where D4 is the domain of attraction of
(Bs, Ry) in (8). Then

PIB, — Bl = 1.
(ii) Let B+ Bs, and assume that isﬁmv is positive definite for
j=a, b. Then .
P[B.— f] = 0.

(iti) If A(Ry, By) has one or more eigenvalues with strictly positive
real part, then

P[B.— Bf = 0.

(iv) h(Bs, Rf) has (n,)* + (n,)* repeated eigenvalues of —1. The
remaining eigenvalues are the same as those of the following
derivative matrix: :

col [Sa(B) ~ Bl
BB coifsy(8) - QL ?us

This concludes the proposition.

Statement (i) asserts that sufficient conditions for 8, — Sy almost surely
as t — < are that the set Dy, X Dy, generated in the projection facility
be contained in D4, and that, at (and close to) the boundary of
Dy, X Dy, the differential equation (8) has trajectories that point
towards the interior of Dj, X Dj,. The situation described in part (i) is
depicted in Fig.6.1. Ljung (1977), Ljung and Soderstrom (1983), and
Marcet and Sargent (1989a) describe what can happen when some of the
trajectories of (8) point outside D,;, X Dy, at the boundary of
Dy, X Dy,. Statement (ii) asserts that the only candidate (8, R) as
limit-points of the learning scheme are rational expectations equilibria.
Statement (iii) asserts sufficient conditions for non-convergence of the
learning scheme. Statement (iv) implies that everything can be learned
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D QXU;

L

B
Fic. 6.1. Global convergence

The set D, is the domain of attraction of the fixed point (B, R) of equation (8). The set
AD.:. X D\,) determines the projection facility defined in (6b). When the :m_,ogol.mm of (8)
point inward along the boundary of D, X Dy, and when Dy, x D, is inside D,, then B,

.converges almost surely to f;. v .

about the local stability of the learning scheme by studying the differen-
tial equation,

4B\ _ | Sa(B) - Ba
alos) =5 | =50 - )
maon.o.mm:o: 1 can be proved by retracing the steps used to prove
Eomom:_onm 1, 2, and 3 of Marcet and Sargent (1989a). Here we
confine ourselves to relating an heuristic account of the mechanism
underlying the proposition. This account is obtained simply by adapting
the heuristic account of Ljung (1977) and Ljung and Soderstrom (1983)
to our setting. In order to conserve notation, we describe only the
special case of model (6a, b), (7) that emerges when we set z,, = z,,
Zet = Zdis War = Uy By = Py, Ry = Ry, This is an interesting  special
case, of which the model of Bray analysed in Section 3 and the model
of hyperinflation analysed in Section S are further special cases. With
the preceding special settings, the model is one in which there are
homogeneous expectations but hidden state variables. For this special
case, the trajectory of ordinary differential equation (8) is fully deter-
mined by the smaller ordinary differential equation,

d (B2 _ RT'M (B)[Su(B) — Ba)'
dt mhnv - \KSCQW IA \Wn, m _ AHOV

where it ﬁ ::a.oaﬂooa that 8= (8, B,). It will be obvious how, with
some proliferation of notation, the following heuristic account would

work moH. the model (6a, b), (7) without the restriction to homogeneous
expectations.
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Here is how the heuristic account of Ljung (1977) and Ljung and
Soderstrom (1983) applies to our system. As ¢ becomes large, the values
of B, and R, determined by (6a, b) and (7) change very little from
t — 1 to ¢. This is partly a result of the regularity conditions imposed in
assumption (A4), which require that «,_;/t—0 as t— . However,
while (8., R.) is changing very little, z, given by (7) continues to vary
quite a bit, owing to the imposition of the random shocks €,. Since f3,, is
not changing much while the z, are, for large ¢ the movement over long
stretches of time of (6a, b) and (7) is well approximated by the system
that emerges when we replace aj by 1 and the terms in brackets on the
right-hand side of (6a) and (7) S:U their expected values, evaluated at
the (nearly) fixed values B, = B., Ru_1=R,

Bie = B + 3 R3' (Mo, (BITB et — M, (BB

NNE = %EIH + E?AW v -

Using the definition 0m S,(B) in (3) and the approximation B, = fB,_;
and R, = R,_1, the above equations become

EM: QM:IM + W %MWH\«A?AEQT#:MARELV - .mnNIL‘

1
Ry= Rg-1 + M :—AN%REIC = Ra-1]: (11

Equation (11) can be recognized as Euler’s method for solving the
ordinary differential equation (10) where the step size is 1/t. Thus, for
large ¢, the algorithms (6a, b) and (7) provide a way of solving the
differential equation (10). This suggests that the limiting behaviour of
(6a, b)-(7) is governed by the trajectories of the associated differential
equation (10). This concludes our transcription of the heuristic account
of Ljung (1977) and Ljung and Soderstrom (1983).

The proof of the key parts of proposition 1 in effect involves verifying
formally the approximations used in the various steps of the preceding
heuristic argument. We refer the reader to Ljung (1977) and to Marcet
and Sargent (19894) for the proof. Partly as an aid to extending the
proofs in Marcet and Sargent (1989a) to the present environment, we
now briefly describe precisely the sense in which the model of Marcet
and Sargent (1989a) is a special case of the present model.

We again work with the special case of the model that emerges when
weseta=b, c=d, e, = ¢y, Ba= Bp, = R,. In the context of this
special case, we use the following partitions of z,:

Lo Ta

NN _ =
Zg Zar |’
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s&m.&.mm includes variables in z, not in z.,, and z§, includes variables in
Z, not in z,. Partitioning T(f) conformably with the above partitions
@o:d:m us to represent (2) in the form

Za T11(B) ﬂs%g TMT@
ﬁg EM@ To(B) | | zar1 + V(Pe..

Using these partitions, it is possible to represent (5) as

,”m@nm; o] WM% wm% 5@ M. (B~ @ (12)

where [, is the & X n; identity matrix. In GNV the matrix

N..QQWV E?Q& U=y’ where Ez5|74 = vz, is the linear least-squares
projection of z5, on z,. Representation (12) shows the way in which
e., T(B), and the regression coefficient y of excluded on included
variables interact to compose S,().

Marcet and Sargent (1989a) restricted themselves to analysing the
further special case of the present model, which emerges when (12) can
be written with

T,=0, (13)

so that the perceived law of motion E*(z,|z,-;) omits no variables
from z, which the actual law of motion would imply belonged in the
regression of z., on z,. In this special case, in which from agents’ point
of view there are no hidden state variables, (12) simplifies to

Sa(B) = T12(B),

and the differential equations (8) and (9) simplify to those studied by
Marcet and Sargent (with the notation 7T ;(f) matching the notation
T(B) in Marcet and Sargent 1989a, and with T(8) being 0, and
[T2:1(B), Tn(B)] = A(B) in Marcet and Sargent 1989a).

Marcet and Sargent (1989a) describe a variety of models in the
literature which satisfy the no-hidden-states assumption (13). The mod-
els described in subsequent sections of this paper all violate that
assumption. It bears emphasizing that, when (13) is violated, the
concept of a limited-information, rational expectations equilibrium used
in this paper makes the equilibrium depend on the model-builder’s
specification of the information sets z,, z;. In models with sufficiently
rich dynamic structures, in specifying z, and z;, the model-builder will
be inducing a concept of equilibrium which depends on his truncating
lag distributions in specifying (1). For example, the equilibrium de-
scribed in Section 5 and in Marcet and Sargent (1989b) are sensitive to

such truncation. Truncations are unavoidable so long as one stays with a

finite-dimensional z, vector. Sargent (1989) suggests a modification of
structures (1) and (2) which in effect permits agents to condition on an
infinite number of past values of the variables in their information sets.
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3. A Model of Bray

This section applies proposition 1 to the model of Margaret Bray (1982).
Although there are differentially informed agents in Bray’s model, the
model fits into the framework of Section 2 with the special settings
Ba=Bby Zar = Zps €c = €4, R, = Rp. We confirm a conjecture of Bray
concerning the necessity of the stability condition that she discovered.

There are N, uninformed traders and N; informed traders. Let (7,, s;)
be a sequence of independently and identically distributed random
(2 x 1) vectors which obey a bivariate normal distribution.® Here r,
denotes the return on an asset, and s, denotes the exogenous supply of
the asset. Informed agents observe s, at ¢, while uninformed agents only
observe p,, the price of the asset. Informed agents know all the
moments of the model, while uninformed agents do not, and use a
linear least-squares learning scheme to decide their demand. Each
informed trader’s demand is given by

m;mAJ_h_v = pis 6, >0,

where E(r;|s,) is the mathematical expectation of r, conditional on s,.
Each uninformed agent’s demand is given by

Q:TWM_ALAS_.PV - Pis 0, >0,

where E¥_i(r,|p;) =a,_, + b,_1p,, and (a,_1, b,_1) are obtained from a
least-squares regression of r; on p; for s=1, ..., t —1. The equili-
brium price at ¢ is determined by equating supply and demand for the

asset:
NiO{E(rls) — pd + NuOJaiy + bioypr = pil = st
We map this model into the setting of Section 2. We define

ﬁ Ty ]
Ti—1
_| =2 _| i E(r) |, -
2 = s, € = s, — mﬁmb ’ \m_ - AQTT FIC
Pi-1
L H —

1
a = o2, g = ﬁ Qw B = (a, b).
Pr-1

¢ In Bray’s (1982) notation, we assume that the information set /1, = s,. Expanding I, to
include additional variables would modify the analytics in the text in only trivial ways. The
state vector z, would simply have to be extended to include the additional components of

I
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" The actual law of motion of z, is given by

r 0, 0, 0, 0, 0, Er, |
W~|~ Hv Ou Ou Ov Ou O
I I S ) 0, 0, 0
5y Ou Ou Ou Ov Ov mw.\
ﬁmlw Wu mv mu NJmAANwLu Ou N,.moA\wNv
L ’ H H Qu Qu 1 L
@;, ﬁﬁalg
Fi—2
Fe3
x| 52+ V(e (14)
Pi-2
1

where, letting p = cov (r,, 5,)/var (s),

T5(8) = N;6p — 1
2:%:3, - @v + 2..9.

N.,monv — 2:%:& + ZN.Q%N.AJV - mAhﬁv.D_
N,6,(1 - b) + N,6; ’

where V(-) is a constant function such that V1(.)=y%

)=V¥(-)=1 and
the rest of the elements of V are equal to 0. Note that :movowoﬂmﬁoﬂ
T(B) is not well defined at points (a,b) for which b=
Mx.M_Am/\..QL\QM:QL. Thus, for this model, the set D; defined in Section 2

‘udes such points. To invoke part (i) of our propositi i
projection facility (6b) must be used. A propostiion, & nontrvial
Following Bray, define the random variable x, =

Then calculations on (14) show that’ o= OB ) = &

MAQ. vv = mmﬁﬁv - \Amﬁkﬂv\mzzmtv - \mﬁu \ﬂA\/\N%N + Z:Q:V\zz%: - \ﬁ@wu

(15)
where, as in Bray, k = N,6,/[N,0, — 1/p].

q . .

a:no,_,:racsmvn_:m S can be am:<ma D..oa formula (5). Alternatively, it can be found

o cw zw\ computing the _E.nm:,. projection of z, on z,_; for fixed beliefs B, and lettin
¢ coefficients multiplying Za—y in this projection. For Bray’s model w::.m Bﬁrom

mm_uaovmc_:ﬁ ~ .. = ; i
A v\ most convenient: fix = (a, b); then, using p, = T%(B) + T5(B)s,, we

E(nlp) = E(r) - p E(s) - p TS(B)/T*(B) + p p/T*(B)
{E(r) = K[NG.E(r) - E(s))/N,0, — k a}
+ {k(N:6, + N.,8,)1 - b)/N,0,) pt

= 5:1(B) + 5,(B)p..
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It is readily verified that the fixed point (a*, b*) = S(a*, b¥) wm.m?o:
by Bray’s formulas (3.10), (3.11). Differentiating the right-hand side of
(15) and evaluating at (a*, b*) gives

w_ﬁrm‘AQ\ vv - AQ» @vu_ — -k — Hg 0 , AH@V

wﬁak vv a=a* 0, —k -1
b=b*

which has a repeated eigenvalue of (—k — 1). Using parts (i), @cv and
(iv) of proposition 1, we can establish that the learning Boa& is Eom:v\
stable if and only if k> ~1.% Whether or not this inequality is satisfied
will depend on the values of the parameters of the model. Using (15),
when Es, = Er, =0, the unstable region of the parameter space can be
deduced to be the shaded region depicted in Fig. 6.2, namely:

e If 1/p <0, then the stability region includes all (N;0;, N,0,) € mw .
e If 1/p > 0, then the stability region includes all (N;6;, N,6,) satisfying
0< mem < H\bg and 2:@: + ZMQ_. > H_,\b

We note that, given any pair (8;, 6,), any 1/p>0, and any positive
ratio N;/N, of informed to uninformed agents, there exists an mcmofﬂo
number of traders N, + N; sufficiently small to guarantee local stability
of the learning mechanism. Under the same conditions, there also exists
a number of traders sufficiently large to guarantee local stability.

Notice that all of our results are local, being based on the parts of
proposition 1 that depend on an analysis of the .mn.s.m._w ordinary
differential equation (9). Parts (i) and (iv) of the proposition assure us

2=®2A
Stable
region
tp K 8
Stable
region
(0,0) 1/p N;6;

Fic. 6.2. Stability region of parameter space for Bray’s model

8 For Bray’s model, as well as the models of Sections 4 and 5, .: is M:wmmrﬁogm‘a to
verify that assumptions {A1)-(AS5) are satisfied. Assumption (A6) is satisfied since, if .UH
is bounded, |p| < K+ Kals,| for some constants K,, K,. Normality of s, then implies

(A6).
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?H there exists some nontrivial choice of set Dy, under which almost
sure convergence obtains, but are silent about how large that set can be.
To get a stronger result, the ‘larger’ ordinary differential equation (8)
must be analysed, and in particular its trajectories must be verified to
point towards the interior of D,, at points on the boundary of D,. For
a model as complicated as Bray’s, in which z, involves endogenous
variables and the S(f) operator involves a nontrivial operator
M, ()™ M, .(B), it is difficult to carry out this analysis analytically.
Numerical techniques, like those illustrated for Townsend’s model by
Sargent (1991), could be used.

Note that assertion (iii) of proposition 1 confirms the conjecture about
conditions for non-convergence made by Bray (1982).

4. Oow<mammnoo in a Version of Frydman’s Model

We briefly study least squares learning in a variant of a model due to
Roman Frydman (1982). We alter the learning scheme relative to the
one used by Frydman, but retain the economic structure contributed by
him. The resulting model provides a useful technical contrast to Bray’s,
it being much easier to obtain global convergence results because agents
are regressing on exogenous variables.

There are n competitive firms indexed by i =1, ..., n. Demand for
the firms’ output is given by

n
PHQIWM%:.T::
i=1
where y; is output of the ith firm, and u, is an independently and

identically distributed disturbance distributed N(0, 62). Firm i’s cost
function at ¢ is given by

Clyi) = AH\NMVOJLM + kyyi + Gy,

where C; and s are positive constants and k; is a random variable given
by

a, b>0,

ki = o, + €, for all i, ¢,

where « and ¢; are independently and identically distributed with
a,~ N(0, 6%) and €; ~ N(0, 02).

Firm i observes k; at time ¢, but not p, at ¢t. The firm observes a
history of {ps, k;} for s =0, ..., t — 1, and forms an expectation of p,
at time ¢ according to

M*AELNAEV = m_: + mma\ﬂ:v [ = H—v R (4

where (fi;, Bh) are least-squares regression coefficients based on
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{pss kis}> § = , t — 1. Firm i’s output at [ is given by s[E*(pd ki)
- ML aﬁﬁ oac:_vnca price m: t is determined from
p.=a— bs M E*(pilki) = kil +
i=1 .
We show how the system behaves for the case n=2. To map this
model into the setup of Section 2, define

Ky €1

— \af - €2

2= Pe-1 | € @,

1 Ur-1

Zg = Zdt = Pi-15 Za = K165 = ko
The transition law corresponding to (2) is readily verified to be
0, 0, 0 0
% 0, 0 0 VB

2= 1B, TaB, 0 TulP)

0, 0, 0, 1

where V(-) is a constant function, with zeroes evérywhere except for
elements V11, Vi3, Va2, Vs V14, which are unity; N.Sa where

Ts(B) = —bs(Br— 1)
Ta(B) = —bs(B3 — 1)
' Tau(B) = (a — bs)(BL + B

It follows that

— bs(B} + B, lwh~m~lﬂ+€~|5§ v
WMMWWH— B ﬁw - wwﬂmw + Pw“ —bs[(Bs — Dy + B3 — 1]

where vy = o Aqw + 02). Notice that 0<y<1. The rational expecta-
tions equilibrium is given by

E\ = \wd a/(1 + 2bs)
By = Pip = bs(1 + /L + bs(1 + V).

Evaluating the derivative of

Mmﬁmv - \wn
col Sp(B) — Bo

with respect to  at = By, we obtain

- 0
—(bs + 1), 0, bs,
A 0, —(bs + 1), 0, —bsy
—bs, 0, IQuu, + Hvu 0

0 —bsy, 0, —(bs + 1)
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The eigenvalues of this matrix are®
[—(1 + 2bs), -1, =bs(1 + y) — 1, =bs(1 — y) —1].

Since b >0, the eigenvalues are all less than 0, and, by proposition
1(iv), the associated differential equation (9) is locally stable. Further-
more, a version of corollary 2 of Marcet and Sargent (1989a) implies
that proposition 1(i) applies with sets Dj,, D, chosen as

NVE ,:mn. %nv _ma - .@n\_ < xnv

> D1y = {(Bs, xt:m@ — By < Ky},

for arbitrarily large positive constants K, and K,. This means that, for
arbitrarily large sets D;, and D;, in the projection facilities (6b),
proposition 1(i) holds. Thus, we get a strong global convergence result
for this model, in contrast to Bray’s model, in which a much more
difficult analysis would have to be used to achieve such a result. The
reason things are simpler in the current model depends on the fact that,
since k;; is exogenous for each j, M, (f) is independent of B for j =
a, b, making § linear and corollary 2 of Marcet and Sargent (1989a)
applicable.

It is evident how the analysis of this section could be extended to
handle larger values of n.

I

5. Cagan’s Hyperinflation Model and ‘Bubbles’

This section applies proposition 1 to study a version of Cagan’s
hyperinflation model with a restricted information set. We analyse the
ordinary differential equation (9) and display a set D, for which
proposition 1(i) applies. We also describe some of the insights that (9)
seems to yield about this model even for (8, R) pairs lying outside the
set D defined in Section 2.

Consider the model

Y »m*osi_v:v + x + v
X = pxey toug, (17)
where |p|, |A| <1; Eu,= Ev,= Euw,=0 for all t, 5, Eul= 0%, Evi=

® The matrix of eigenvectors is
1, -

S,

O = D
—_O = O
|
O =

Ou
1,
0

—_
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02>0. The processes u, and v, are assumed serially uncorrelated.!
Agents are restricted to forming expectations about future y on the
basis of one lagged value of y. We study a learning version of the model
in which

E*(yily) = Boe (18)
where f3, is the least-squares estimator of the regression of y; on y,_;
based on data for dates s =1, ..., t — 1.

This model falls within the setting of Section 2, with S, =8,
wa = xvv Zat = Tps = Lt = Zgr- Define

v: . :_
N = M N = .N = E, =
t x| at br = Y5 t v,

The model can be represented by

ARG

L N M), 11 - »ﬁ w&. (19)
It can be verified from (19) that 5 )
oy + 0%
_ (1 - 26)?
M, .(B)=E _HNH_ e = Qw
1= 4 | (20)
M(B) = Bl = S0
Za Y AH _ »..MWVM H

where 02 = 02/(1 — p?). Using the definition of T(B) associated with
(19) and formulas (20), we have that
S(B) = paif(ot + 7).
A stationary rational expectations equilibrium is determined by
2 2 2
po% oy + a;
=——— and Rf=-—"—— 21
b=t T =B 1)

Corresponding to (8), we have the associated differential equation

1 This model is a version of one used by Shiller (1981) and LeRoy and Porter (1982), .

where y, is interpreted as the price of a stock and x, is its dividend. It is also Sargent and
Wallace’s (1973) version of Cagan’s (1956) model of hyperinflation, with y, representing
the log of the price level and x, the log of the money supply.
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A\TBT _[RK - K1 - 4B
at ﬁL % Ko/ ~ 1) - R Q @)
where K| = po? and K »=0%+ o2 Corresponding to (9), we have
d pa?
a) P~y P .

Examination of 23 reveals that it is locally stable about the fixed point
Br. Therefore, by proposition 1(iv), (22) is also locally stable about

“.(Bs, R). More can be inferred about (22) from Fig. 6.3, which displays

Eo. phase diagram in the (B, R) plane, and Fig. 6.4, which displays some
q&oo:.imm of (22). Note the vertical line at 17!, a value of B at which
E.oa.o is a singularity of the right-hand side of (22). Trajectories
originating on the right-hand side of this vertical line can never Cross

R

—>

B

F1G. 6.3. Phase diagram of the ordinary differential equation associated with the
hyperinflation model

0,0

o)

.Q\ A B

Fic. 6.4. moBo. :m_.woﬁoaom of the ordinary differential equation associated with
the hyperinflation model that start to the right of the singularity at A~!
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ge to Am\, Ry). The phase diagram

this line, and so cannot oon<9‘m from B(0) > A~" and R(0) >0 have

informs us that ﬁ&oﬂoﬂom startin
i N ) +8 ; . .
e oy & and side of (22) has an interpretation in

ingularity on the right-h :
”oMMM MM méc,ccwom,. The solutions of the model (17) under rational

- . . P
expectations and no learning, where agents information set is extende
to include x, at ¢, are given by
X
.v\~ - H l M‘b

+ c AT+ s

where ¢; is any martingale. The term n_»ﬂ_ ._M called a .dﬂcwwww .MMM@
i i = ¢~'x, for any constant . ,
that one martingale is the process ¢; = 1y ©
one rational expectations equilibrium with a bubble is given by
.Ha
=T 0 |
It can be verified that, along any such solution

+ c(pA) " x, + Uy

for any constant ¢ # 0.
with ¢ # 0, A |
lim mc:ifv:v =A"n

t—x

H t
lim = D, yi= +=.
t—> N s=0
i i =A"t esponds to a ‘bubble’
the singularity of (22) at f=A"" corr .
M%_”Mo: of ::m model. In specifying that agents form mx@oo.ﬂmm.wnmﬁcmm
regressing y;+1 ON Yy, it seems that we have wom. open mwm womm,_ 9_\ y el
Em model &:z learning converges to a non-stationary ,ccg_% . Emoﬁm i
discuss this possibility below, and shall mnmcﬂ %MMM:WM_ wmon e
1 i to a bu 5
ing system is unlikely to converge
W_ﬂﬁmrm&w differential equation (22) does converge to values of (B8, R)
iated with a bubble solution. - .
wwm%m_mmmnm@ the hypotheses of proposition Hovu.ém :m<o_ to »ﬁm M
projection facility that keeps f from crossing the msmcwﬁv ,% M@V . m:a
set that works is formed by selecting two real numbers € )

defining
D= (B RIp<I—& and (B Bl=K)
t, with K arbitrarily large and €>0 arbitrarily small,

satisfied; in particular, the trajectories of ANN.V point
at points on the boundary of D1, With such

For such a Dy, se

assumption (A7) is i
ards the interior of D14 .

ar lies for this model.

roposition 1(i) app
) @mwﬂr% preceding statement, we have ox:mcma.a what we can say

c ence model on the basis of propo ition 1.

abou 1 t sis of proposi

t global converg of our mo 0 :

However, this is not the end of the matter because proposition 1()
b

«
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states sufficient, but not necessary, conditions for global convergence of
the learning scheme. What would occur if there is no projection facility
(i.e. if Dy, =R?), so that B can exceed A™'? We can gain some
additional understanding about the behaviour of the system when S
exceeds A™! by studying for large ¢ how closely the recursive algorithm
(6) keeps to the trajectories of (22). (Notice that the heuristic argument
of Ljung cited above applies in the region for which B, > A}, breaking
down only at the point f=A"'.) We have simulated (17)-(18) many
times to address this issue, starting the simulations with §>A"! and
using normally distributed and orthogonal pseudo-random numbers for
v, and u, in (17)-(18). We started the simulations at a large value for ¢,
to make system (17)—(18) mimic (22) well from the beginning of our
simulations. We used no projection facility. From every one of these
simulations; the following pattern emerged. So long as J, stayed far
enough to the right of the singularity of (22) at A™!, the simulations
traced out paths that mimicked the trajectories of (22). However, for f,
close to A7, the stochastic version of ‘Euler’s method’ that (17)—(18)
constitutes turns out to be a bad one for solving differential equation
(22). 'In particular, for every simulation that we generated, (f,, R;)
stayed close to trajectories of (22) until f, approached A™! so closely
that eventually f, dropped below A™1. After this event occurred, (B, R,)
in each case seemed to follow trajectories of (22) for f<A~!, with
(B:, R,) approaching the fixed point (5, Ry).

Figure 6.5 reports one representative simulation in which we set initial
conditions in order to start the system to the right of the singularity at
B=i"1. We set 4=05, p=05 Eul=Evi=1, f,=24 and
R, = 58.3333. This choice of (B,, R,,) sets B,,> A"} and sets R at a
value satisfying (d/dt)R =0 in (22). We set the initial time ¢, equal to
10,000 in order to make the differential equation system (22) well
approximate the stochastic system (17)-(18) that we are simulating.
(Recall the role that a large value of ¢ plays in the heuristic argument
reported in Section 2.) The results of a simulation of 20, 000 periods are
reported in Fig. 10.4. Except for very close to the singularity at A~}
(=2), the behaviour of the simulated system (17)-(18) clings close to
the trajectories of (22).

Here is our interpretation of these simulations. With no operative
projection facility, the learning mechanism has a recursive represen-
tation of the form

041 =0, + AH\OQANSQLM (24)

where 6, = (f8,, R)). This is a stochastic version of Euler’s method for
solving the differential equation (d/dt)8 = f(6) = E Q(z,, 8), namely,

Bi41 = MN + Q\D\AWL (25)
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Now given the behaviour of the function f associated with @.8 E a
neighbourhood of B=A"', the linear nature of the approximation
involved in using (24) to mimic (d/dt)8 = f(6) is &mmm:.ocm. because it
involves taking a step of positive length along 2 straight line that crosses
A~1 (see Fig. 6.5). The small variation arising from BzaoB.zwmm in
Q(z;, 0,) makes it even more likely that eventually (B;, x.b 2.&. jump
over the vertical line at A7} into the region (—, A7), which is in the
domain of attraction of (B, Ry). Once inside this 8@6? all of the
simulations we computed again stuck close to the Qm_.@oﬁo:om. of (22). .
We also computed trajectories of the ordinary differential equation
(22) using both Euler’s method and the Wcam?ﬁczw Bo%oa.i mu all
cases, when the trajectory was started out to the right of A7°, the
trajectory crossed A~ and converged to (B, Ry). This illustrates how
the inability of the learning algorithm to converge to a c:UEo. non-
stationary equilibrium is associated with the numerical properties of
methods like Euler’s for recovering the non-stationary solutions of (22).
In summary, even though trajectories of the associated &moao.::m_
equation cannot cross the vertical line through A™!, the random Qmw.T
ence equation (6) for (B, R,) can cross A~! from above, and always did

R()

70
60

50+

30

L | | 1 1 1 1
o_ 1.2 14 1.6 1.8 2.0 2.2 24

B

FiG. 6.5. Simulation of hyperinflation model with initial conditions to the right
of the singularity at A1 = 2 (20,000 observations)
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so in our simulations. Our analysis fails to prove that (8,, R,) from
(17)-(18) cannot converge to the bubble solution (A~!, +®), but it does
indicate the existence of forces impeding convergence to such a solu-
tion. 1112

6. Conclusions

.This paper has described the limiting behaviour of a class of self-referen-
tial systems in which differentially and imperfectly informed agents
affect the motion of the system through their learning by least squares.
We have described the senses in which the limiting behaviour of the
system is governed by a particular ordinary differential equation. We
have displayed some examples of rational expectations equilibria in
which the learning schemes converge to a rational expectations equili-
brium (Bray’s model for some parameter settings, Frydman’s model,
and the hyperinflation model). We have also encountered cases in which
the learning scheme does not produce convergences to a rational
expectations equilibrium (Bray’s model for some parameter settings) and
some rational expectations equlibria from which the learning scheme is
repelled (the bubbles equilibria of the hyperinflation model). These
results all obtain in environments that satisfy Margaret Bray’s theorem
that, if the learning scheme converges, it must converge to a rational
expectations equilibrium.

A remarkable feature of these results is how often a least-squares
learning scheme performs well in eventually settling down to a rational
expectations equilibrium. In fact, either the least-squares learning
scheme or the ordinary differential equation associated with it can
suggest effective algorithms for computing a rational expectations equili-
brium for applied work.

When we encounter the strong sort of convergence to a rational
expectations equilibrium embodied in much of the literature we have
surveyed, one reaction might be that we analysts have chosen to make
the learners ‘too smart’, and that the convergence results are the
consequence of our choice. After all, although sequential application of
linear least squares to vector autoregression is not rational for these

1 The failure of our simulations to converge to f#=A4"! is related to the numerical
problems that arise in solving systems of Euler equations or Hamiltonian equations
‘forward’ in time on a computer. In these settings, once one gets close to the optimum,
very small rounding errors propel the system away from the optimum solution.

12 The presence of the random variable z, in (25) means that in our system there can be
a positive probability that f, jumps back above A~! from below. For example, with
normally distributed (u,,v,) in (17), even though remote, such an event has positive
probability. This possibility would complicate the task of proving the conjecture that
P[B,— A-'] = 0, which the behaviour of our simulations might suggest.
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environments (again, see Bray and Kreps 1987), it is still a pretty
sophisticated method. Further, in the setups that appear in this
literature, the agents are typically supposed to be quite smart about all
aspects of their decision making except their forecasting decisions. For
example, agents typically are assumed to use the correct intertemporal
marginal conditions. In effect, agents are supposed to be using state-of-
the-art ‘adaptive control’ techniques (see e.g. Goodwin and Sin 1983).

The next frontier in the study of learning in self-referential systems is
to study the consequences of withdrawing from agents some of the
knowledge that has been attributed to them in the least-squares learning
literature. The literature on genetic algorithms in artificial intelligence is
a good source of ideas on how to proceed (see e.g. Holland 1975).

Appendix

We state six assumptions that we make about system (6a, S.Ad. :
AssumpTion Al. The operator S has a unique fixed point f = S(f;) which
satisfies By € D;.

AssumpTioN A2. For Be D;, T is twice differentiable and V has one
derivative. .
AssumpTion A3. The covariance matrices M., (Bs) are non-singular for
.\. = n& v. . . . .
AssumpTION A4, For j=a, b and for all ¢, >0; « is increasing in f;
ap—1last— o and

limsup t|ay — @j—y| = K; <, [=ab.

s

AssumpTioN AS. The vector €, consists of m stationary random variables;
€, is serially independent. Further, Elegl? <o for all p>1, all i=1,
cLLm .
AssUMPTION A6. There exists a subset Qo of the sample space with
P(Q) =1, four random variables Co(w), Cy(®), G.(0), Gy(w), and a
subsequence {ty(w)} for which .

*N\.:.ASV_ < Q\ASV j=ab

|Rin(w)| < Gw) j=ab

for all we Q¢ and all & = 1,2,
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