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The purpose of this online appendix is to provide some numerical examples under more

general utility functions where the Lucas-Stokey optimal tax rates under commitment can

be above the peak of the Laffer curve. The rest of the argument that policy is not time-

consistent follows the same logic as in the main text (see Proposition 2) and is therefore

omitted.

We consider a class of period utility function u (c, n) that is increasing in consumption

(c), decreasing in labor (n) and strictly concave in both c and n. We also assume that

initial debt has the same structure as in the main text, i.e. b−1,0 = b > 0 and b−1,t = 0

∀t ≥ 1. The Lucas-Stokey optimal policy must satisfy the following first-order conditions

(uc,0 + un,0) (1 + λ0) + λ0 [− (ucc,0 + ucn,0) b+ (ucc,0 + ucn,0) c0 + (unn,0 + ucn,0)n0] = 0

(uc,1 + un,1) (1 + λ0) + λ0 [(ucc,1 + ucn,1) c1 + (unn,1 + ucn,1)n1] = 0

uc,0 (c0 − b) + un,0n0 +
β

1− β
(uc,1c1 + un,1n1) = 0

where λ0 denotes the Lagrange multiplier, and 0 < β < 1 is the discount factor.

Following King and Rebelo (1999) and Trabandt and Uhlig (2011) we consider prefer-

ences consistent with balanced growth and featuring a constant intertemporal elasticity

of substitution and a constant Frisch elasticity of labor supply taking the form (up to

affine transformations)

u (c, n) =
1

1− σ
{
c1−σ [1− η (1− σ)nγ]σ − 1

}
if σ 6= 1
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or

u (c, n) = log (c)− ηn
γ

γ
if σ = 1,

where σ > 0 and γ ≥ 1.

We solve the model under four alternative parametrizations for the risk-aversion and

the Frisch elasticity parameters, namely (i) σ = γ = 1 (log-utility in consumption and

linear “indivisible” labor); (ii) σ = 1 and γ = 2 (log-utility in consumption and unitary

Frisch elasticity of labor supply), (iii) σ = γ = 2 which corresponds to the baseline

calibration in Trabandt and Uhlig (2011), and (iv) σ = 0.8 and γ = 2 (risk aversion below

one, and unitary Frisch elasticity of labor supply).

For each of these cases, Figure 1 plots the optimal level of future consumption as a

function of the initial level of debt. We set η = 1, g = 0.2, and β = 0.96. To facilitate the

comparison, both consumption and the initial level of debt are expressed as a fraction of

the values corresponding to the allocation at the top of the Laffer curve, i.e c1/c
laffer and

b/b∗. As can be seen in the figure, and consistently with Proposition 1 in the main text, in

all cases considered future consumption (c1) is a decreasing function of initial debt. Also,

there exists a threshold value of initial debt (b∗) above which the Lucas-Stokey optimal

taxes are above the peak of the Laffer curve so that c1 < claffer, which implies that the

optimal policy under commitment is not time-consistent.

Figure 2 considers instead separable preferences of the form u (c, n) = c1−σ−1
1−σ −η

nγ

γ
for

σ > 0 and σ 6= 1 and u (c, n) = log c − η nγ

γ
for σ = 1, under the same parametrizations

for σ and γ described earlier. Consistent with our main result, if the initial debt is high

enough, optimal taxes are above the peak the Laffer curve, and thus c1 < claffer.

2



Figure 1: Lucas-Stokey Optimal Policy with Balanced Growth Path Preferences
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Figure 2: Lucas-Stokey Optimal Policy with Separable Preferences
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