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 Solving the Stochastic Growth Model by
 Parameterizing Expectations
 Wouter J. den Haan and Albert Marcet

 Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA 15213

 This article describes a method for solving the one-good stochastic growth model by parame-
 terizing the expectations part of the stochastic Euler equation. The conditional expectation is
 specified as a function of the state of the system, and the parameters of that function are
 estimated to solve the model. The article includes a discussion of how to find the parameters
 of the function and determine systematically the complexity of the functional form necessary to
 solve the model.
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 1. INTRODUCTION

 In this note, we will describe the calculations that we

 performed to simulate the following growth model:
 x

 max E( E fl'[cl-]/i(1 - r),
 t=0

 subject to

 c, + k, = O,kL - + ,lk,_ .  (1)

 We have used the method of parameterizing expec-
 tations. This method is described in detail in Marcet

 (1988), and it has been applied successfully in several
 models. Marshall (1988) solved a model with transac-
 tion costs and growth. Den Haan (1988) calculated op-
 timal monetary-policy rules in a model with a shopping-
 time technology. Ketterer and Marcet (1988) solved
 asset-pricing models with heterogeneous agents that
 trade different types of securities (namely, bonds,
 stocks, options, and futures); unlike representative-
 agent models, these papers generate actual trading of
 securities. In Den Haan and Marcet (1989), we pro-
 posed a method for testing for accuracy of simulations;
 the parameterized expectations procedure does very
 well in these tests; in that paper we also solved the time-
 to-build model of Kydland and Prescott (1982) and re-
 produced their results.

 The equations that describe the equilibrium in the
 preceding growth model are the production constraint
 (1) and

 c-r = flE,[c,+(O+ak- + u)] (2)
 and

 log O, = p log 0,_t + e,. (3)

 Here (2) is the first-order condition when we differ-
 entiate with respect to the capital stock and (3) is simply
 the law of motion for the productivity shock. Note that
 we have introduced a depreciation parameter u (the
 original model sets ,u = 1).

 We use the observation that the conditional expec-
 tation in the right side of (2) is a function g : R2 ->
 R+ of the state variables (k,_ , 0t), as a basis for sub-
 stituting that conditional expectation with a function
 V(k,_ , 0,; 6f), where V/ (the functional form) and S6
 (the vector of parameters) will be chosen to make t(.;
 6f) as close as possible to g. The crucial part of this
 solution procedure is finding such w and Sf.

 2. CHOICE OF v

 By letting y/ belong to a class of functions that can
 approximate any function arbitrarily well, we can, in
 principle, approximate g. For example, V, could be a
 polynomial; increasing the order of the polynomial pro-
 gressively, we can obtain arbitrary accuracy. In addi-
 tion, observing how the equilibrium changes when we
 increase the order of the polynomial, we can have some
 idea of how close we are to g.

 Our first choice for , is a power function, V(k, ,, 0,;
 g) = Clk, l 0?. One reason for this choice is that its
 image is positive, as is the image of the function g that
 we want to approximate. Strictly speaking, the image
 of V is positive iff 6l > 0. Given the procedure that we
 use to find 5f (see next paragraph), however, 61 is always
 positive in the iterations that lead to calculating 6f as
 long as the initial 51, 61( > 0.

 Moreover, letting P,(x) denote a polynomial of de-
 gree n on the vector x, the preceding power function
 can be rewritten as exp(PI(log k, _, log 0,)). Since it
 can be shown that functions of the form exp(P,(x)) can
 approximate any function mapping R2 into R+, and g
 is such a function, by letting n -> o, we can approximate
 the equilibrium arbitrarily well.

 3. CHOICE OF 6f

 Let {c,(6), k,(S)} be the sequence of consumption and
 capital that solves

 Ct- = ,ip(k,_, 0,; )  (4)

 and Equation (1) for all t, for a given 6, and for a given
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 realization of 0 drawn from (3). Equation (4) is the
 Euler equation (2) with Wv in place of the conditional
 expectation. For a given f, and a, solving for k and c
 is very easy, since we have two equations and two un-
 knowns at each period; first, we find c, from (4) and
 then we find k, from (1).

 Define S : Rm -> Rm, where m is the dimension of
 6, as

 S(S) = argmin E[ct-l(6)(0,+ ak- l(6) + iu)

 - (kt l-(), t;)]

 We choose the parameter af to satisfy 6f = S(6f). This
 guarantees that if agents use ql(kt ,, O,; 6f) as their
 expectation function, then af is the best parameter they
 could use in the sense that it minimizes the mean

 squared error. The choice of mean squared error as the
 measure for good prediction is justified because the
 conditional expectation satisfies this criterion.

 4. CALCULATING 6f

 The fixed point 6f is calculated with the following
 iterative procedure. First, generate a series for 0, of
 length T (T has to be large enough that the parameters
 in the regressions that we will perform in the next step
 are calculated with accuracy). Note that this series is
 drawn only once. Then we choose an initial So E R3 and
 calculate {c,(0?), k,(a0)}= ,. Next, we run a nonlinear
 least squares regression (NLR) of c,-+l(O,+Iaka- + i)
 on the power function q/. This is our approximation to
 S(60); it is easy to show that the result of the NLR
 converges to S(6?) as T goes to infinity.

 Now 61, 2, . . . are given by the following iterative
 scheme:

 a'' = (1 - ~)&' ' + RS(-' 1),  v= 1,2,... (5)

 for a i E (0, 1] appropriately chosen. Thus with 6' we
 solve (1) and (4) again, run an NLR to find S(a'), and
 iterate on (5). We stop the iterations when 6' is close
 to S(a').

 To run the NLR, we use the procedure of running a
 linear regression on a first-order Taylor expansion of
 i/. Since we have good initial conditions for these NLR
 parameters [namely, S(6) from the previous iteration],
 calculating each S(6) involves running only a few or-
 dinary least squares (OLS) regressions (from two to
 four). A more detailed description is given in the Ap-
 pendix.

 The parameter I governs the adjustment speed of the
 algorithm. With low 2, the algorithm converges for al-
 most all of the models that we have tried, but a low i
 makes adjustments in 6 very small and convergence is
 very slow. After experimenting with each model, the
 researcher has some idea of what is the highest possible
 2 that can be used.

 For the present model, {6'} converges even with i =
 1, so this is the value we used. In more complicated
 models, i usually has to be smaller.

 The iterations will converge for A small enough if a
 certain least squares learning mechanism converges to
 the rational-expectations equilibrium; that is, for those
 models in which the rational-expectations equilibrium
 is stable under learning, the preceding iterative scheme
 converges. We know from the learning literature that
 in some cases the least squares learning mechanism is
 unstable, and in these models the algorithm defined by
 (5) will not converge. Nevertheless, these models are
 more the exception than the rule; in fact, (5) has con-
 verged in all of the models that we have simulated with
 this procedure. Finally, it may be desirable to concen-
 trate our attention on those models where the rational-

 expectations equilibrium can be learned, and this al-
 gorithm does that automatically. These points are
 discussed in detail in Marcet (1988).

 The algorithm described by (5) is very easy to update;
 the iterations do not involve finding the best direction,
 which is usually very costly. Equation (5) has only good
 local convergence properties, however, and it is nec-
 essary to use good initial conditions for 6". To do this
 in a systematic way, we start at the solution to the model
 when T = 1, tu = 0. This is the model of Brock and
 Mirman (1972), and we know 6f analytically. Then we
 let ,u go from 0 to 1 in 10 steps, calculate 6f for each
 step, and use it as initial condition for the next ,. The
 6f's we obtain for a first-order power function are given
 in Table 1.

 The values of the remaining parameters in this hom-
 otopy are / = .95 and a, = .1; 2 = .5 for u c .5, and
 = 1.0 for u> .5.

 Twenty-five hundred observations for calculating the
 NLR and four digits of accuracy in the fixed point were
 used. The calculations were made with a Compaq desk-
 pro 386, 25 megahertz, using a Weitek mathematical
 coprocessor. We used a FORTRAN program and dou-
 ble precision in all real variables. The FORTRAN com-
 piler is NDP-386, version 1.4, by Microway, Inc.,
 running on MS-DOS, version 3, in extended mode.
 When the program was run on the same machine using
 a Ryan McFarland FORTRAN compiler (which is a
 286-based compiler), the computing times tripled.

 It is worth pointing out that, given these af5s, readers
 can obtain simulations on their own computers very

 Table 1. Fixed-Point Parameters for Different

 Depreciation Rates and Computing Times

 I/ 61f 62f 63f Computing time

 .0 1.53 -.33 -1.00
 .1 1.49 -.35 -.97 10 seconds
 .2 1.45 -.37 -.94 8 seconds
 .3 1.42 -.39 -.91 10 seconds
 .4 1.40 -.41 -.87 8 seconds
 .5 1.39 -.43 -.83 12 seconds
 .6 1.40 -.46 -.78 8 seconds
 .7 1.44 -.49 -.72 8 seconds
 .8 1.53 -.52 -.65 18 seconds
 .9 1.74 -.56 -.55 25 seconds
 1.0 2.47 -.65 -.36 65 seconds
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 easily. Finding new 6f's for different parameter values
 is a little harder, but readers will find the reported 6's
 useful as initial conditions.

 An algorithm from stochastic approximation is pro-
 posed in Marcet (1988). This algorithm is very fast al-
 though it is less stable than the preceding algorithm.
 Once researchers feel comfortable with the solution of

 the model, they can use the stochastic algorithm to
 perform more computer-intensive tasks like estimation
 by simulation.

 5. ACCURACY

 One way of checking for accuracy in the solutions is
 to increase the degree of the exponentiated polynomial
 and use

 ?/(kt-1, 0,; 6)

 = exp(P2(log k, _, log 0,))

 = exp(6l + 62 log k,_ + 33 log 0, + 4(log 0,)2

 + 65(log k, 1)(log 0t) + 66(log k, 1)2)  (6)

 in place of the first-order power function.
 It turns out that the terms (log k,_1)(log 0,) and

 (log k,_ )2 are almost perfectly collinear with the others.
 More precisely, the matrix

 ( os aAtJ

 is close to singular due to the derivatives with respect
 to 65 and 36.

 This is, in fact, a fortunate situation. It just means
 that these terms are redundant, and they can be
 dropped from q,, without losing any predictive power.
 Hence for a second-degree polynomial we only need to
 solve for 6if (i = 1, . . ., 4), and we can set 65f = -6f
 = 0.

 To get good initial conditions for 5f, we take the
 solution generated with the first-order polynomial, run
 a regression with the term (log 0,)2 included, and use
 that as our initial condition.

 This can be done with higher-order polynomials in
 qi. Next we report the (absolute) differences in the so-
 lution between (c,, k,) from a first- and second-degree
 polynomial and the (absolute) difference between a sec-
 ond and third degree. The latter are very small; for
 example, in case 5 the average difference is .01% in
 going from second to third order. A difference of .01%
 corresponds with four digits of accuracy in the series
 for consumption and capital. Such small differences can
 be taken as an indication that the solution with a second-

 order polynomial is a good approximation. The results
 in Table 2 were calculated using 1,500 observations.

 The results submitted were generated with a second-
 degree polynomial of the type discussed in this section.

 Den Haan and Marcet (1989) proposed a test for
 accuracy in simulations and evaluated the accuracy of
 solutions obtained by parameterizing expectations; they

 Table 2. Differences With Higher-Order Polynomials

 From first to From second
 second order to third order

 k c k c

 Case 1 (high variance of e)
 Maximum 2.62% 2.27% .63% .86%
 Average .38% .29% .07% .05%

 Case 5 (low variance of e)
 Maximum .17% .12% .11% .17%
 Average .04% .02% .01% .01%

 solved several growth models and showed some ex-
 amples in which higher-order polynomials improve the
 quality of the approximation substantially.
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 APPENDIX: THE PROCEDURE USED FOR THE
 NONLINEAR REGRESSIONS INVOLVED IN

 CALCULATING S(6)

 Given 3, and series {c,()), k,(), 0,},T=l, the problem
 is to find a parameter ymin that minimizes

 T

 (1IT) E [, - V(k -l(b), 0,; y)]2,
 t=l

 where ,t = c,-+l(()(aOt+,lkT- l() + Ju).
 We know that, for large enough T, ymin is a good

 approximation to S(B). We obtain series {y"} with the
 following iterative scheme: Let

 av,,(y) a /(k,_-,(), 0,; y)
 y ay y=

 Given a y", we run a linear regression in which the
 dependent variable is given by

 ? - ,(k, -(6), 0,; y") + (y")'

 and the independent variables are a(,(y)/dy. Note that
 we have taken a first-order approximation of /,t around
 y" and rearranged terms. Then yn+' is given by the re-
 sulting coefficients in this OLS regression. It turns out
 that y" converges to ymin as n goes to infinity. [This
 procedure was discussed in more detail by Pindyck and
 Rubinfeld (1981, sec. 9.4.1).] This is a version of a
 Gauss-Newton algorithm, so if y" is close to the limit,
 convergence is reached in one iteration. In our case,
 only two to four linear regressions were needed for each
 NLR.

 To speed up calculations, it is best to use as the initial
 condition for these iterations the result of the previous
 NLR in Algorithm (5). More precisely, if we are trying
 to calculate S(5v), we could set y? = S(1'-1).

 Moreover, the derivative of ,/ with respect to y can
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 be computed quite efficiently. For example, in the case
 that we parameterize /t as ,v(k,_ , 0,; c) = 6lk'2 1-3,
 we have

 av,(y) VI(k, _, 0,; y) log(k,_ ,
 4aD~y , ~log(ot)

 and for a different y only the first element of the vector
 in the right side and the value of V, change. Hence, if
 we store the logarithms of k and 0 before we run the
 NLR, we can calculate this derivative very quickly.

 [Received December 1988.]

 REFERENCES

 Brock, W. A., and Mirman, L. J. (1972), "Optimal Economic Growth
 and Uncertainty: The Discounted Case," Journal of Economic The-
 ory, 4, 479-513.

 Den Haan, W. J. (1988), "The Optimal Inflation Path in a Sidrauski-
 Type Model With Uncertainty," unpublished manuscript, Carnegie
 Mellon University, Graduate School of Industrial Administration.

 Den Haan, W. J., and Marcet, A. (1989), "Accuracy in Simulations,"
 unpublished manuscript, Carnegie Mellon University, Graduate
 School of Industrial Administration.

 Ketterer, J., and Marcet, A. (1988), "Introducing Derivative Secu-
 rities in an Equilibrium Model," unpublished manuscript, Carnegie
 Mellon University, Graduate School of Industrial Administration.

 Kydland, F. E., and Prescott, E. C. (1982), "Time to Build and
 Aggregate Fluctuations," Econometrica, 50, 1345-1370.

 Marcet, A. (1988), "Solving Non-linear Models by Parameterizing
 Expectations," unpublished manuscript, Carnegie Mellon Univer-
 sity, Graduate School of Industrial Administration.

 Marshall, D. A. (1988), "Inflation and Asset Returns in a Monetary
 Economy," unpublished Ph.D. dissertation, Carnegie Mellon Uni-
 versity, Graduate School of Industrial Administration.

 Pindyck, R. S., and Rubinfeld, D. L. (1981), Econometric Models
 and Economic Forecasts (2nd ed.), New York: McGraw-Hill.

This content downloaded from 
�������������84.89.157.41 on Wed, 30 Sep 2020 11:33:10 UTC�������������� 

All use subject to https://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4

	Issue Table of Contents
	Journal of Business & Economic Statistics, Vol. 8, No. 1, Jan., 1990
	Front Matter
	Solving Nonlinear Rational Expectations Models
	Solving Nonlinear Stochastic Growth Models: A Comparison of Alternative Solution Methods [pp.  1 - 17]
	Solving the Stochastic Growth Model by a Discrete-State-Space, Euler-Equation Approach [pp.  19 - 21]
	Solving the Stochastic Growth Model by Linear-Quadratic Approximation and by Value-Function Iteration [pp.  23 - 26]
	Solving the Stochastic Growth Model by Policy-Function Iteration [pp.  27 - 29]
	Solving the Stochastic Growth Model by Parameterizing Expectations [pp.  31 - 34]
	Solving the Stochastic Growth Model by Deterministic Extended Path [pp.  35 - 36]
	Solving the Stochastic Growth Model by Backsolving with an Expanded Shock Space [pp.  37 - 38]
	Solving the Stochastic Growth Model by Using a Recursive Mapping Based on Least Squares Projection [pp.  39 - 40]
	Solving the Stochastic Growth Model by Linear-Quadratic Approximation [pp.  41 - 44]
	Solving the Stochastic Growth Model by Backsolving with a Particular Nonlinear Form for the Decision Rule [pp.  45 - 47]
	Solving the Stochastic Growth Model by Using Quadrature Methods and Value-Function Iterations [pp.  49 - 51]

	Estimating Models with Intertemporal Substitution Using Aggregate Time Series Data [pp.  53 - 69]
	Seemingly Unrelated Time Series Equations and a Test for Homogeneity [pp.  71 - 81]
	Random Level-Shift Time Series Models, ARIMA Approximations, and Level-Shift Detection [pp.  83 - 97]
	Linear-Quadratic Approximation and Value-Function Iteration: A Comparison [pp.  99 - 113]
	Equilibrium Modeling of Asset Prices: Rationality versus Rules of Thumb [pp.  115 - 125]
	Using Bayesian Techniques for Data Pooling in Regional Payroll Forecasting [pp.  127 - 135]
	Bounding an Economic Monetary Aggregate under Nonhomothetic Preferences [pp.  137 - 141]
	All Forecasters Are Equal [pp.  143 - 144]
	Back Matter



