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We obtain a recursive formulation for a general class of optimization problems with
forward-looking constraints which often arise in economic dynamic models, for exam-
ple, in contracting problems with incentive constraints or in models of optimal policy.
In this case, the solution does not satisfy the Bellman equation. Our approach con-
sists of studying a recursive Lagrangian. Under standard general conditions, there is a
recursive saddle-point functional equation (analogous to a Bellman equation) that char-
acterizes a recursive solution to the planner’s problem. The recursive formulation is ob-
tained after adding a co-state variable μt summarizing previous commitments reflected
in past Lagrange multipliers. The continuation problem is obtained with μt playing the
role of weights in the objective function. Our approach is applicable to characterizing
and computing solutions to a large class of dynamic contracting problems.

KEYWORDS: Recursive methods, dynamic optimization, Ramsey equilibrium, time
inconsistency, limited commitment, limited enforcement, saddle-points, Lagrangian
multipliers, Bellman equations.

1. INTRODUCTION

RECURSIVE METHODS have become a basic tool for the study of dynamic economic mod-
els. For example, Stokey, Lucas, and Prescott (1989) and Ljungqvist and Sargent (2018)
described a large number of applications to macroeconomic models. Under standard as-
sumptions, the optimal solution has a recursive formulation; more precisely, it satisfies
at = ψ(xt� st), where at denotes actions, st the exogenous shock to the economy, and xt
is a small set of endogenous state variables. Importantly, ψ is a time-invariant policy
function derived from the Bellman equation. We refer to this as the “standard dynamic
programming” case. As is well known, in this case the solution is time-consistent.

A key assumption needed to obtain the Bellman equation is that the feasible set for at
is constrained only by (xt� st). Unfortunately, many economic problems of interest do not
satisfy this requirement and they include forward-looking constraints, where future actions
at+n also constrain the feasible set of at . This occurs, for example, in problems where
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the principal chooses a contract subject to intertemporal participation constraints (see
Example 1 below), and in models of optimal policy under equilibrium constraints (see
Example 2 below). Many dynamic games share the same feature.

In the presence of forward-looking constraints, optimal plans typically do not satisfy the
Bellman equation and the solution does not have a standard recursive form. The reason is
that the choice for at carries with it an implicit promise about at+n; therefore, contracting
parties need to keep track of some additional variables summarizing commitments made
in the past about today’s choice. The absence of a standard recursive formulation greatly
complicates the analysis and numerical solution.

In this paper, we provide an integrated approach for a recursive formulation of a large
class of dynamic maximization problems with forward-looking constraints. Our interest
lies in solving a maximization problem PPμ that depends on certain weights μ. A con-
tribution of the paper is to show that the optimal solution is obtained by solving at each
point in time t a continuation planner’s problem PPμt (note that μ now has a subscript
t) where the evolution of the weight μt is associated with the Lagrange multipliers of the
forward-looking constraints; the forward-looking constraints are embedded in the objec-
tive function of this continuation problem.

We obtain a saddle-point functional equation (SPFE) which is an analog of the Bell-
man equation, with the important difference that, while the Bellman equation solves a
maximization problem, the SPFE solves a saddle-point problem, as its name indicates.
We then show necessity; that is, under standard general conditions, solutions to PPμ sat-
isfy at = ψ(xt�μt� st) for a time-invariant policy function ψ, or a selection from a policy
correspondence Ψ , which solves the SPFE with the weights μ following a pre-specified
law of motion. We also prove sufficiency; that is, solutions to the SPFE solve the plan-
ning problem of interest PPμ, when the value function of SPFE is differentiable in μt
for every (xt�μt� st), a property which is satisfied when the solution for at in the SPFE is
unique. For more general cases (e.g., non-concave problems, or non-differentiable value
functions, possibly with multiple solutions), we provide an intertemporal consistency condi-
tion (ICC) guaranteeing sufficiency. We show that when SPFE has solutions, there is one
satisfying ICC, which is easily obtained in computed solutions. Finally, we also provide
conditions for the existence of saddle-point solutions to SPFE and show how standard
dynamic programming results—such as the contraction property implying uniqueness of
the value function—naturally extend to our SPFE.

The fact that our formulation is based on standard optimization and dynamic program-
ming tools facilitates the analysis and permits the application of a number of algorithms
to obtain numerical solutions for dynamic stochastic models. For example, for a large
class of models, accounting for forward-looking constraints translates into introducing
time-varying Pareto weights into the objective function of PPμ. The time-varying co-state
μt enters as a wedge in the stochastic discount factor of PPμ, showing the intertemporal
distortions due to the presence of forward-looking constraints.

PPμt , with a given initial condition (xt� st), is labeled as the continuation problem be-
cause its solution coincides with the solution from period t onwards of the original prob-
lem PPμ. Having this continuation problem at hand is at the core of the proof that the
SPFE holds, and it facilitates the interpretation of time-inconsistent models. This con-
tinuation problem signals some practical advantages of our approach. A commonly used
tool for solving models with forward-looking constraints has been the promised-utility ap-
proach described in the pioneering works of Abreu, Pearce, and Stacchetti (1990), Green
(1987), and Thomas and Worrall (1988). A difficulty in using this approach to find nu-
merical solutions is that promised utilities need to be restricted so as to guarantee that
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the continuation problem is well defined. Computing the set of feasible utilities is often a
major difficulty. But—under standard assumptions—the continuation problem PPμ′ has
a solution for any μ′ ≥ 0; thus, our approach sidesteps the computation of the set of fea-
sible promised utilities. As we also discuss below, in many cases a recursive formulation
in our approach is obtained with fewer decision variables and even fewer state variables
than with promised utilities, allowing for a more efficient computation.

Our approach has already been used in many applications. A few examples are: growth
and business cycles with possible default (Marcet and Marimon (1992), Kehoe and Perri
(2002), Cooley, Marimon, and Quadrini (2004)); social insurance (Attanasio and Rios-
Rull (2000)); optimal fiscal and monetary policy design with incomplete markets (Aiya-
gari, Marcet, Sargent, and Seppälä (2002), Svensson and Williams (2008)); and political-
economy models (Acemoglu, Golosov, and Tsyvinskii (2011)). Furthermore, the intro-
duction of the co-state variable μt to account for forward-looking constraints has proved
to be a powerful instrument for analyzing and comparing other economies with frictions
(Chien, Cole, and Lustig (2012)) and, in particular, in pricing contracts that endogenize
forward-looking constraints or other frictions (Alvarez and Jermann (2000), Krueger,
Perri, and Lustig (2008)).

Section 2 provides a basic introduction to our approach. The main body of the theory
is in Sections 3 and 4 of this paper, while most proofs are in the Appendix. The relation
to the literature and the promised utility approach are discussed in Section 5. Section 6
concludes.

2. FORMULATING CONTRACTS AS RECURSIVE SADDLE-POINT PROBLEMS

In this section, we provide an outline of our approach. We show how dynamic program-
ming methods can be extended to find a recursive formulation for a large class of models
with forward-looking constraints. We leave the formal results to Sections 3 and 4. This
section should be self-sufficient for a user of the method.

The class of models under study is characterized as dynamic planning problems (PPμ)
with a return function as follows:

PPμ : Vμ(x0� s0)= sup
{at �xt }

E0

l∑
j=0

Nj∑
t=0

βtμjh
j
0(xt� at� st) (1)

s.t. xt+1 = �(xt� at� st+1)� p(xt� at� st)≥ 0 all t ≥ 0� (2)

Et

Nj+1∑
n=1

βnh
j
0(xt+n� at+n� st+n)+ hj1(xt� at� st)≥ 0� j = 0� � � � � l�

all t ≥ 0� given (x0� s0)� (3)

Here ��p�h0�h1 are known functions; β�x0� s0 and μ ≡ (μ0� � � � �μl) ∈ Rl+1
+ are known

constants or vectors, and {st}∞
t=0 an exogenous stochastic Markov process. We denote as

h
j
i the jth element of the function hi for i= 0�1. The solution is a plan1 a ≡ {at}∞

t=0, where
at(s

t) ∈A⊂Rm is a state-contingent action; as usual, we take st = (s0� � � � � st).
The forward-looking constraints (3) are at the core of our analysis. We only consider

Nj = 0 or ∞. Without loss of generality, we assume Nj = ∞ for j = 0� � � � �k, and Nj = 0
for j = k+ 1� � � � � l for a nonnegative k< l. Note that this implies N0 = ∞.

1We use bold notation to denote sequences of measurable functions.
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The case Nj = ∞ covers a large class of problems where discounted present values are
part of the constraint, as in models with intertemporal participation constraints (see Ex-
ample 1 below). Constraints with Nj = 0 cover cases where the planner must take into
acccount intertemporal reactions of agents, as in dynamic Ramsey equilibria (see Exam-
ple 2 below).2

Letting (a∗�x∗) = {a∗
t � x

∗
t }∞
t=0 denote a solution of PPμ at (x0� s0), the value of the ob-

jective function—parameterized by μ—is given by Vμ(x0� s0) ≡ E0
∑l

j=0

∑Nj
t=0β

tμjh
j
0(x

∗
t �

a∗
t � st).
It is without loss of generality that the same function h0 appears in the objective func-

tion and in the constraints (3).3 Note also that even though μ could be normalized without
affecting the solution (e.g., taking μ0 = 1), the value function Vμ is defined for all μ ∈Rl+1

+ .
Both of these features are needed to deliver the continuation problem that suitably char-
acterizes a recursive solution in Proposition 1 below.

Standard dynamic programming considers the following special case of PPμ: (i) forward-
looking constraints (3) are absent or never binding, and (ii) the objective function is a
discounted infinite sum, that is, μj = 0 for j > k. As is well known, a standard Bellman
functional equation holds in that case under very general assumptions.4 This guarantees
the powerful result that the optimal solution to PPμ satisfies a∗

t = ψμ(x
∗
t � st) for a time-

independent policy function ψμ derived from the Bellman equation. This result is very
often used in the literature to characterize and compute solutions to PPμ. Furthermore,
the solution is time-consistent.

Unfortunately, as Kydland and Prescott (1977) pointed out, in the presence of forward-
looking constraints (3), these dynamic programming results no longer hold, and the solu-
tion is often time-inconsistent.

2.1. An Intuitive Argument

We now provide an intuitive argument showing how the Lagrangian of (1) can be for-
mulated in recursive form, with respect to the constraints (3). This formulation is very
convenient technically and conceptually, since using a standard Lagrangian approach pro-
vides the basic framework to derive our recursive formulation and enlightens the key fea-
ture of our approach: forward-looking constraints can be summarized in a co-state vector,
μ. A formal analysis is given in Section 3.

A Lagrangian of PPμ that incorporates forward-looking constraints can be written as

Lμ(a�γ;x0� s0)= E0

[
l∑
j=0

Nj∑
t=0

βtμjh
j
0(xt� at� st)

+
∞∑
t=0

βt
l∑
j=0

γ
j
tEt

Nj+1∑
n=1

βn
(
h
j
0(xt+n� at+n� st+n)+ hj1(xt� at� st)

)]
� (4)

2Intermediate cases with finite Nj > 0 can be treated as a special case of Nj = 0. We discuss such a case at
the end of Section 5.

3Example 2 below substantiates this claim.
4More precisely, the value function satisfies Vμ(x� s) = supa{μh0(x�a� s) + βE[Vμ(x′� s′) | s]} s.t. (2). We

denote μhi(x�a� s)≡ ∑l
j=0μ

jh
j
i (x�a� s).
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where γt is the Lagrange multiplier associated with (3).5 To simplify the exposition, the
remaining constraints are imposed separately; hence, Lμ is defined for a satisfying (2).

Using the law of iterated expectations to eliminate Et and simple algebra, one can show
that, for each argument (a�γ), we can rewrite Lμ as6

Lμ(a�γ;x0� s0)= E0

[ ∞∑
t=0

βt
[
μth0(xt� at� st)+ γth1(xt� at� st)

]]
� (5)

where μt+1 = ϕ(μt�γt) for ϕ :Rl+1
+ →Rl+1

+ given by

ϕj(μ�γ)≡ μj + γj for j = 0� � � � �k�

≡ γj for j = k+ 1� � � � � l�
(6)

and with initial conditions μ0 = μ.
Upon inspection of (5)–(6) and (2), it should be “intuitive” that Lμ can yield a recursive

structure similar to the programs amenable to dynamic programming; namely, the objec-
tive function (5) is a discounted sum with time-invariant return functions (h0�h1) and
past shocks enter into the transition functions (6) and (2), and into the return function
at t, only through the “state variables” (xt�μt). This interpretation relies on the fact that
(a�γ) are decision variables of the Lagrangian and on the introduction of μ ≡ {μt}∞

t=0
as a co-state variable with transition function given by (6). This suggests that, to the
extent that solutions of Lμ(·;x0� s0) are solutions to PPμ, the solution we seek satisfies
(at� γt)=ψ(xt�μt� st) for some time-invariant function ψ.

2.2. An Alternative Functional Equation

The intuition in the previous paragraph cannot be formalized by appealing to standard
dynamic programming. This is because the Bellman equation is shown to hold for dynamic
maximization problems, but the above Lagrangian—that is, (5) subject to (6)–(2)—gives
the desired solution to PPμ if we find the saddle-point of that Lagrangian. Therefore, to
conclude that the solution to PPμ has a recursive formulation including μt as a co-state,
one needs to derive an analogous functional equation for saddle-point problems. The task
of this paper is to prove the connection between the saddle-point functional equation and
the problem of interest PPμ.

To this end, we first introduce notation for saddle-point problems. Given a function F :
Y ×Z −→R, we define a saddle-point of F as (y∗� z∗)⊂ Y ×Z satisfying

F
(
y∗� z

) ≥F
(
y∗� z∗) ≥F

(
y� z∗) for any z ∈Z and y ∈ Y� (7)

The problem of finding such a (y∗� z∗) is called a saddle-point problem, which we denote
as

SP inf
z∈Z

sup
y∈Y

F(y� z)�

5In fact, we should refer to γt as a “normalized” multiplier. Strictly speaking, the Lagrange multiplier of the
jth constraint (2) at t for a realization st is given by βtγt(st)P(st | s0), where P is the probability measure (or
density)of st .

6See Appendix A for the algebra.
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The set of (potentially multiple) saddle-points (y∗� z∗) that solve this problem is denoted

arg SP inf
z∈Z

sup
y∈Y

F(y� z)�

Note that there is no ordering or sequentiality of the inf and sup operators in the above
definition: a saddle-point satisfies both inequalities in (7) simultaneously; “inf” and “sup”
in this definition only denote which variables are on the right or the left side in the string
of inequalities (7).7

We now define a functional equation analog to Bellman’s that characterizes recursively
a saddle-point of Lμ, denoted (a∗�γ∗). This will be useful because, as is well known, under
suitable conditions, a∗ is then a solution to PPμ and γ∗ are the Lagrange multipliers of
constraints (3).

We show that the saddle-point value function W : X × Rl+1
+ × S → R defined as

W (x�μ� s)=Lμ(a
∗�γ∗) satisfies the following saddle-point functional equation:

SPFE

W (x�μ� s)= SP inf
γ≥0

sup
a∈A

{
μh0(x�a� s)+ γh1(x�a� s)+βE

[
W

(
x′�μ′� s′

)|s]} (8)

s.t. x′ = �(x�a� s′)� p(x�a� s)≥ 0� (9)

and μ′ = ϕ(μ�γ)� (10)

Given a value function W satisfying this SPFE in any possible state (x�μ� s) ∈X×Rl+1
+ ×

S, the corresponding saddle-point policy correspondence (SP policy correspondence) is
defined as

ΨW (x�μ� s)= arg SP inf
γ≥0

sup
a∈A

{
μh0(x�a� s)+ γh1(x�a� s)+βE

[
W

(
x′�μ′� s′

)|s]}
subject to (9)–(10).8

Note that (8) has three additional features that are not found in the Bellman equation:
(i) it is a saddle-point problem rather than a maximization problem; (ii) μ is an argument
of the value function W , and (iii) the law of motion for μ is added as a constraint.

As with the Bellman equation, the SPFE gives the solution we seek. Our approach is
to show, first, necessity of SPFE, namely, that, under standard assumptions (convexity of
the constrained set, etc.), a solution to PPμ, {a∗

t }∞
t=0, satisfies (a∗

t � γ
∗
t ) ∈ΨW (x

∗
t �μ

∗
t � st), for

some γ∗
t ≥ 0. If, in addition,ΨW is single valued, we denote the resulting function by ψW ,

the solution satisfies (a∗
t � γ

∗
t ) = ψW (x

∗
t �μ

∗
t � st), and we call it a saddle-point policy func-

tion (SP policy function). Furthermore, the value function of PPμ satisfies this functional
equation, that is, W (x�μ� s)= Vμ(x� s) satisfies the SPFE (Theorem 1).

7For clarity, we denote infz∈Z[supy∈Y F(y� z)] a sequential problem where first one finds supy∈Y F(y� z)
for each given z and the resulting sup (itself a function of z) is minimized over z. It is well known that the
ordering may matter for this sequential problem, that is, it may be that arg inf[supF] 
= arg sup[infF] and
inf[supF] 
= sup[infF], and in this case, a saddle-point may not exist. We focus on problems where the saddle-
point exists, and provide conditions guaranteeing existence (Theorem 3).

8For an explicit definition of the saddle-point inequalities, see (19) and (20) in Section 3.
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We also provide a set of general conditions9 guaranteeing sufficiency of SPFE, namely,
that if a value function W satisfies (8) for all (x�μ� s), and (a∗∗�γ∗∗) satisfies (a∗∗

t � γ
∗∗
t ) ∈

ΨW (x
∗∗
t �μ

∗∗
t � st), then a∗∗ is a solution of PPμ.10

In sum, from the user’s perspective, what needs to be retained is that a recursive solu-
tion is obtained by adding a co-state variable μ that is a function of the Lagrange multi-
plier of the forward-looking constraints in previous periods. As seen from (6), this state
variable follows the recursion μj�∗t+1 = μ

j�∗
t + γ

j�∗
t for j ≤ k (i.e., for constraints involving

discounted sums with Nj = ∞), and it is the previous multiplier μj�∗t+1 = γj�∗t for j > k (i.e.
for constraints involving one future period with Nj = 0). One needs to initialize μ∗

0 = μ.
The examples in Sections 2.2.2 and 2.2.3 show how this idea can be applied to obtain

recursive solutions in problems with forward-looking constraints.

2.2.1. Time-Inconsistency and the Continuation Problem

In programs where the standard Bellman equation applies, the program is time-
consistent: reoptimization at the new state in future periods is also a continuation solution
from the original state. However, as is well known, in the presence of forward-looking con-
straints (3), the solution may be time-inconsistent: the value of a∗

1 for a given realization
of s1 differs from the value a∗

0 that would optimize PPμ if initial conditions at t = 0 were
(x∗

1� s1).11

The key to our approach will be that if one optimizes PPμ∗
1

(note the subscript is now μ∗
1)

with initial conditions (x∗
1� s1), the solution coincides with the continuation of the original

solution {a∗
t � x

∗
t }∞
t=1. To see this intuitively, expand the above Lagrangian (5):

Lμ(a�γ;x0� s0)= E0

[ ∞∑
t=0

βt
[
μth0(xt� at� st)+ γth1(xt� at� st)

]]
= E0

[
μ0h0(x0� a0� s0)+ γ0h1(x0� a0� s0)

+β
∞∑
t=0

βt
[
μt+1h0(xt+1� at+1� st+1)+ γt+1h1(xt+1� at+1� st+1)

]]
= μ0h0(x0� a0� s0)+ γ0h1(x0� a0� s0)+βE0

[
Lμ1

(
a′�γ ′;x1� s1

)]
�

where a ≡ {at}∞
t=0, and a′ ≡ {at}∞

t=1 denotes its continuation, similarly for γ and γ ′.
That is, if (a∗

0�γ
∗
0) is the first component of a saddle-point of Lμ(·;x0� s0) determining

x∗
1 = �(x�a∗

0� s1) and μ∗
1 = ϕ(μ�γ∗

0), then the saddle-point of Lμ∗
1
(·;x∗

1� s1) must coincide
with (a∗′�γ∗′).12 Furthermore, Lμ∗

1
(a∗′�γ∗′;x∗

1� s1) is the Lagrangian of PPμ∗
1

at (x∗
1� s1),

therefore the solution of PPμ∗
1

coincides with the “sup” argument of the saddle-point of
Lμ∗

1
. A formal argument is given in Proposition 1.

9As we show in Section 3, the constrained set may not be convex.
10We are ignoring, in this informal description, some delicate issues related to the fact that ΨW may be

empty or it may be a multi-valued correspondence.
11More formally, leaving explicit the dependence on initial conditions, let {a∗

t (x0� s
t)}∞

t=0 denote
the solution of PPμ. Then, absent forward-looking constraints, time-consistency holds; in particular,
a∗

0(�(x0� a
∗
0(x0� s0)� s1)� s1))= a∗

1(x0� s
1). With forward-looking constraints, this equality may not hold.

12This is because if the saddle-point of Lμ∗
1

differed from (a∗�γ∗), then the latter would not be a saddle-
point of Lμ, since the continuation of Lμ satisfies all the constraints and has the same objective function as
Lμ∗

1
.
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In this sense, we can say that in our approach, PPμ∗
1

is a continuation problem. This gives
the following characterization of time-inconsistency: in cases when μ∗

1 
= μ (i.e., γ∗
0 
= 0),

the solution to PPμ at (x∗
1� s1) is generally time-inconsistent; obviously, these are precisely

the cases where forward-looking constraints are binding.
The transition PPμ∗

t
→PPμ∗

t+1
captures several advantages of our approach. First, we use

it as a step in proving the necessity of SPFE. Second, it shows one key advantage over the
promised utility approach of Abreu, Pearce, and Stachetti: the only constraint on the co-
state variable is thatμt ∈Rl+1

+ , under mild standard assumptions the continuation problem
PPμ∗

t+1
has a solution for all μt+1 ∈ Rl+1

+ , as it involves maximizing a continuous objective
function over a compact set. This sidesteps the complications of having to find the set
of feasible promised utilities; we give a more thorough discussion in Section 5. Third,
PPμ∗

t
provides a natural way to check for time-consistency: the solution to PPμ is time-

consistent when its objective function coincides with (or is proportional to) the objective
function of PPμ∗

1
. Fourth, our approach often provides a useful economic intuition about

how to design optimal contracts (institutions or mechanisms) subject to intertemporal
incentive constraints and on how to “price” the costs of these constraints, in order to
decentralize these contracts.

2.2.2. Example 1: Risk-Sharing With Limited Enforcement

Consider a model of a partnership with limited enforcement, where several agents
can share their individual risks and jointly invest in a project which can only be under-
taken jointly. There is a single consumption good and l + 1 infinitely-lived consumers
indexed by j = 0� � � � � l + 1 with standard preferences E0

∑∞
t=0β

tu(c
j
t ), where c is indi-

vidual consumption. Agent j receives a random endowment of consumption good yjt at
time t, yt = (y0

t � � � � � y
l
t ). Agent j has an outside option that delivers total utility vaj (yt) if

he leaves the contract in period t, where vaj is some known function.13 Production of the
consumption good is F(k�θ), where k is capital and θ a productivity shock. Production
can be split into consumption c and investment i; capital depreciates at the rate δ. The
process {θt� yt}∞

t=0 is assumed to be jointly Markovian and the initial conditions (k0� θ0� y0)
are given; ct and it are chosen given information on (θt� yt).

The planner solves

max
{ct �it }

E0

∞∑
t=0

βt
l∑
j=0

αju
(
c
j
t

)
s.t. kt+1 = (1 − δ)kt + it� (11)

F(kt� θt)+
l∑
j=0

y
j
t ≥

l∑
j=0

c
j
t + it� and

Et

∞∑
n=0

βnu
(
c
j
t+n

) ≥ vaj (yt)� for all j = 0� � � � � l and t ≥ 0� (12)

13A common assumption is that the outside option is autarky, where agent j consumes only his endowment
from t onwards, vaj (yt)=E[∑∞

n=0β
nu(y

j
t+n) | yt]. It should be noted that one can allow for the outside option to

be endogenous, for example, to exit and enter another partnership contract with some transitional cost, which
requires to solve a fixed-point problem between the postulated outside options and the realised contracts (e.g.,
Cooley, Marimon, and Quadrini (2004)).
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to find Pareto optimal allocations subject to enforcement constraints (12) and initial con-
ditions (k0� y0� θ0).

It is easy to map this planner’s problem into our PPμ formulation if we take μ ≡
(α0� � � � �αl) ≡ α, s ≡ (θ� y); x ≡ k; a ≡ (i� c); �(x�a� s) ≡ (1 − δ)k + i; p(x�a� s) ≡
F(k�θ) + ∑l

k=0 y
k − (

∑l

k=0 c
k + i); hj0(x�a� s) ≡ u(cj); hj1(x�a� s) ≡ u(cj) − vaj (yt), j =

0� � � � � l.
The Lagrangian Lμ can be found to be

Lμ(a�γ;k0� y0� θ0)= E0

∞∑
t=0

βt
l∑
j=0

[
μ
j
t+1u

(
c
j
t

) − γjt vaj (yt)
]
�

for feasible consumption allocations. In this case, all the forward-looking constraints have
Nj = ∞, hence μt+1 = μt + γt with initial conditions μ0 = α.

The SPFE takes the form

W (k�μ� y�θ)

= SP inf
γ≥0

sup
c�i

{
l∑
j=0

[
μj

′
u
(
cj

) − γjvaj (y)
] +βE

[
W

(
k′�μ′� y ′� θ′)|y�θ]}

subject to μ′ = μ+ γ� (13)

and feasibility constraints. Our results in Sections 3 and 4 guarantee that W (k�μ�y�
θ)= Vμ(k� y�θ) solves this functional equation and, recalling that ψW is the saddle-point
that solves the SP problem in the right-hand side of (13), the solution to the problem of
interest (11) satisfies (

γ∗
t � c

∗
t � i

∗
t

) =ψW
(
k∗
t �μ

∗
t � θt� yt

)
and

μ∗
t+1 = μ∗

t + γ∗
t �

(14)

with initial conditions (k0�μ0� θ0� y0) where μ0 = α.
The continuation problem PPμ∗

1
replaces the objective function of (11) by E1

∑∞
t=0 ×

βt
∑l

j=0μ
j�∗
1 u(c

j
t ) for μ∗

1 = α+ γ∗
0 and initial conditions (k∗

1� y1� θ1), leaving technological
and forward-looking constraints unchanged. This means that the solution after period
t = 1 coincides with the solution of the original problem when the weights α of the agents
in the objective function of (11) are replaced by the co-state variables μ∗

1; therefore, the
variable μ∗

1, together with (k∗
1� y1� θ1), is all that needs to be remembered from the past at

t = 1.
A solution to the continuation problem PPμ1 exists generically for any μ1 ∈Rl+1

+ ; there-
fore, we completely sidestep the complication of having to compute the set of feasible
continuation promised utilities as would happen with the promised-utility approach—see
Section 5.

The evolution of the weights μ∗
t determines agents’ consumption. Every time that only

the enforcement constraint for agent j is binding (e.g., γj�∗t > 0), given the optimality

condition u′(cj�∗t )

u′(ci�∗t )
= μ

i�∗
t

μ
j�∗
t

, the ratio c
j�∗
t∑l
i=0 c

i
t

increases “permanently.” This avoids default while

optimally smoothing consumption to the extent possible. This ratio will decrease in the
future if the forward-looking constraint is binding for other agents.
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Various papers in the literature have exploited these features to describe the evolution
of consumption in several related setups.14 Various contributions show how this planner’s
problem can be decentralized.15

The intertemporal Euler equation of PPμ at t is given by

μ
j
t+1u

′(cjt ) = βEt

[
μ
j
t+2u

′(cjt+1

)
(Fkt+1 + 1 − δ)]� (15)

In the first best allocation, this equation holds for constant μj = αj , for all j and t; hence,
the μ’s cancel out from this equation. The presence of time-varying μ in this equation
shows how limited enforcement constraints introduce a wedge in agents’ stochastic dis-

count factors: β
μ
j
t+2u

′(cjt+1)

μ
j
t+1u

′(cjt )
—that is, it shows how these constraints distort consumption

allocations.
The existence of a time-invariant policy function (14) is key in finding numerical solu-

tions guaranteeing that (15), the participation and the feasibility constraints hold. A use-
ful property is that the vector μt can be normalized—for example, with μ̂jt = μjt/

∑l

i=0μ
i
t .

In Section 4, we provide conditions for the existence of a time-invariant policy function
(Theorem 3).

2.2.3. Example 2: A Ramsey Problem

We present an abridged version of the optimal taxation problem under incomplete mar-
kets studied by Aiyagari at al. (2002). This example serves various purposes: it is an exam-
ple of one-period forward-looking constraints when Nj = 0, it demonstrates that there is
no loss of generality in having the same h0 in the return and constraints, and it shows why
we need a weight μ0 in the first element of h0 in the formulation of PPμ. It will be useful
also in Section 5 to compare our approach with the promised utility approach.

A government must finance exogenous random expenditures g with labor tax rates
τ and issuing real riskless bonds b, given initial bonds b0. A representative consumer
maximizes utility E0

∑∞
t=0β

t[u(ct) + v(et)] subject to a budget constraint ct + bt+1p
b
t =

et(1 − τt)+ bt . Here c is consumption and e is effort (e.g., hours worked), pbt is the bond
price, and τt tax rates. The process {gt}∞

t=0 is Markovian and, since government bonds bt
are not contingent, markets are incomplete. Feasible allocations satisfy ct + gt = et . The
bond and labor markets are competitive and (g0� � � � � gt) is public information at t. The
government’s budget mirrors that of the representative agent; Ponzi games are ruled out.

In a Ramsey equilibrium, the government chooses optimal taxes and debt subject to
competitive equilibrium and full commitment. Using a familiar argument, one can sub-
stitute out bond prices and taxes by equilibrium relationships so that the Ramsey equilib-
rium can be found by solving

max
{ct �bt }

E0

∞∑
t=0

βt
[
u(ct)+ v(et)

]
(16)

s.t. Et
[
βbt+1u

′(ct+1)
] ≥ u′(ct)(bt − ct)− etv′(et) (17)

given b0 and for et = ct + gt .
14Among others, Marcet and Marimon (1992) studied one-sided constraints in a small open economy, Broer

(2013) characterized the stationary distribution of consumption, Ábrahám and Laczó (2018) characterized
analytically the solution.

15See, among others, Alvarez and Jermann (2000), Kehoe and Perri (2002), Krueger, Lustig, and Perri
(2008), and Ábrahám and Cárceles-Poveda (2010).
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Unlike Example 1, the forward-looking constraint (17) involves one-period-ahead ex-
pectation; furthermore, the objective function is not present in the forward-looking con-
straints. Formally, this problem is a special case of PPμ for variables s ≡ g; x ≡ b,
a ≡ (c�b′). Taking h0

0(x�a� s
′) ≡ u(c) + v(e) and μ = (1�0) ensures that the objec-

tive function of PPμ coincides with (16). Letting �(x�a� s′) ≡ b′, h1
0(x�a� s

′) ≡ bu′(c),
h1

1(x�a� s
′)≡ u′(c)(c − b)+ ev′(e), and N1 = 0 makes (17) a special case of (3) for k= 0

and l = 1. We can incorporate the objective function h0
0 as part of a constraint by intro-

ducing h0
1 arbitrarily large, ensuring that γ0

t = 0 so that μ0
t = 1 for all t.

The objective function of the Lagrangian (5) becomes

Lμ(a�γ;x� s) = E0

∞∑
t=0

βt
[
μ0
t

(
u(ct)+ v(et)

)
+μ1

t btu
′(ct)+ γ1

t

[
u′(ct)(ct − bt)+ etv′(et)

]]
� (18)

The SPFE takes the form

W (b�μ�g)= SP inf
γ1≥0

sup
c�b′

{
μ0

[
u(c)+ v(e)] +μ1bu′(c)

+ γ1
[
u′(c)(c− b)+ ev′(e)

] +βE
[
W

(
b′�μ′� g′)|g]}

s.t. μ0′ = μ0�μ1′ = γ1�

The continuation problem PPμ∗
1

is obtained by replacing the objective function in (16)
with E1

∑∞
t=0β

t[u(ct) + v(et)] + μ1�∗
1 b

∗
1u

′(c0) where μ1�∗
1 = γ1�∗

0 and for initial conditions
(b∗

1� g1). In this example, μ0�∗
t = 1 for all t. Allowing for an arbitrary value, μ0

0, as an argu-
ment of W guarantees its homogeneity of degree 1, with respect to μ, a property that we
use in some of our theorems.

The key to finding numerical solutions to this problem is that the optimal policy sat-
isfies (c∗

t � b
∗
t � γ

∗
t ) = ψW (b

∗
t � γ

∗
t−1� gt) with initial conditions (b∗

0�γ
∗
−1) = (b0�0) for a time-

invariant ψW that satisfies (17) and optimality conditions of the Ramsey problem.
Aiyagari et al. (2002) discussed how a near-unit root behavior of γt influences optimal

debt and taxes and that debt acts as a buffer stock for adverse shocks. Faraglia, Marcet,
Oikonomou, and Scott (2016) showed that the role of the co-state γt is to enforce a
promised tax cut that, in equilibrium, lowers current interest rate costs for a government
currently facing high deficits. Various papers exploit and extend the recursive formulation
described here in models of Ramsey taxation.16

3. THE RELATIONSHIP BETWEEN PPμ AND THE SPFE

This section contains the main result of this paper, namely, that the maximization prob-
lem PPμ is equivalent to the SPFE, under fairly general conditions. In particular, we
show necessity: solutions to PPμ are solutions to the saddle-point functional equation SPFE
(Theorem 1). We also show that PPμ∗

1
defines the continuation problem in our approach

16Among others: Faraglia, Marcet, Oikonomou, and Scott (2019) in a model where the government has to
choose a portfolio of maturities; Marcet and Scott (2009) in a model with capital. Schmitt-Grohé and Uribe
(2004) and Siu (2004) introduced nominal bonds and the role of monetary policy; Adam and Billi (2006)
introduced a zero lower bound to interest rates.
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(Proposition 1); this formalizes the discussion in Section 2.2.1. We also show sufficiency:
if the SPFE value function W is differentiable in μ, then under minimal additional as-
sumptions, its allocation-solution is a solution to PPμ (Theorem 2). We close the section
showing that if the allocation-solution is unique, then W is differentiable in μ (Lemma
1) and that, in the absence of differentiability, a more general Intertemporal Consistency
Condition, which is always satisfied when a solution to SPFE exists (Corollary to Theorem
2), ensures sufficiency. First, we lay out the different assumptions used to obtain these
results.

3.1. Assumptions About PPμ

We consider the following set of assumptions:
A1. st takes values from a set S ⊂RK . {st}∞

t=0 is a Markovian stochastic process defined
on the probability space (S∞�S�P).

A2. (a)X ⊂Rn andA is a closed subset of Rm. (b) The functions p :X×A× S→Rq

and � :X×A×S→X are continuous on (x�a) and, given (x�a), they are S-measurable;
furthermore, for any (x� s), the set {a ∈A : p(x�a� s)≥ 0} is bounded.

A3. For all (x� s), there is a program {at}∞
t=0, with initial conditions (x� s), which satis-

fies constraints (2) and (3) for all t ≥ 0.
A4. The functions hji :X ×A× S → R� i = 0�1� j = 0� � � � � l, are uniformly bounded,

continuous on (x�a) and, given (x�a), they are S-measurable. Furthermore, β ∈ (0�1).
A5. The function �(·� ·� s) is linear and the function p(·� ·� s) is concave. X and A are

convex sets.
A6. The functions hji(·� ·� s), i= 0�1, j = 0� � � � � l, are concave.

A6s. In addition to A6, the functions hj0(x� ·� s)� j = 0� � � � � l, are strictly concave.
A7. For all (x� s), and j = 0� � � � � l, there exists a program17 {̃at}∞

t=0, with initial con-
ditions (x� s), satisfying (2), such that E0

∑Nj+1
t=1 βth

j
0(x̃t� ãt� st)+ hj1(x� ã0� s) > 0 and, for

i 
= j�E0
∑Ni+1

t=1 βthi0(x̃t� ãt� st)+ hi1(x� ã0� s)≥ 0.
A7s. In addition to A7, there is an ε > 0 such that, for all (x� s), and j = 0� � � � � l, the

inequality in A7 can be replaced by E0
∑Nj+1

t=1 βth
j
0(x̃t� ãt� st)+ hj1(x� ã0� s)≥ ε.

Assumptions A1–A3 are standard, they hold in most applications, and we treat them
as our basic assumptions. Assumption A4 guarantees bounded returns and does not pre-
clude sustained growth of the endogenous state x (provided its growth rate is lower than
β−1).18 Assumptions A5–A6—in particular, the concavity of the hj1 functions19—are not
satisfied in some models of interest; however, they are not used in our sufficiency results
(e.g., Theorem 2). Assuming linearity of � in Assumption A5 is the natural consequence
of decomposing the action, or control, a from the endogenous state x—which in many
applications allows for a reduction of the dimension of the state space—while keeping
convexity of the overall feasibility set.20 Assumption A7 is a standard interiority assump-
tion (with A6 , equivalent to the Slater condition), only needed to guarantee the existence

17We will refer to it as the j-interior program.
18Our theory can be extended to unbounded returns in the same way that standard dynamic programming

can (see, e.g., Alvarez and Stokey (1998)). For simplicity, we focus here on the case of bounded returns.
19Note, however, that this assumption can be relaxed since what is needed is the convexity of the constraint

set (3).
20More precisely, convexity of �(·� s� s′), where �(x� s� s′) = {x′ : ∃a ∈ A s.t. p(x�a� s) ≥ 0 and x′ =

�(x�a� s′)} (e.g., Stokey, Lucas, and Prescott (1989, Assumption 4.8)).
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of Lagrange multipliers in Rl+1
+ that guarantee the saddle-point, and Assumption A7s

guarantees that the sequence of multipliers is uniformly bounded (Theorem 3).21

3.2. The Recursive Formulation of PPμ (Necessity)

We first show that, under certain standard assumptions, solutions to PPμ satisfy SPFE.
Given a value function W satisfying the SPFE (8) in any possible state (x�μ� s) ∈X ×

Rl+1
+ × S, the corresponding saddle-point policy correspondence (SP policy correspondence)

ΨW :X ×Rl+1
+ × S→A×Rl+1

+ (i.e., ΨW (x�μ� s) is a subset of A×Rl+1
+ ) is

ΨW (x�μ� s)

= {(
a∗�γ∗) ∈A×Rl+1

+ satisfying p
(
x�a∗� s

) ≥ 0

s.t. μh0

(
x�a∗� s

) + γh1

(
x�a∗� s

) +βE
[
W

(
�
(
x�a∗� s′

)
�ϕ(μ�γ)� s′

)|s]
≥ μh0

(
x�a∗� s

) + γ∗h1

(
x�a∗� s

) +βE
[
W

(
�
(
x�a∗� s′

)
�ϕ

(
μ�γ∗)� s′)|s] (19)

≥ μh0(x�a� s)+ γ∗h1(x�a� s)+βE
[
W

(
�
(
x�a� s′

)
�ϕ

(
μ�γ∗)� s′)|s] (20)

for all (a�γ) ∈A×Rl+1
+ satisfying p(x�a� s)≥ 0

}
�

The results below assume existence of a saddle-point (a∗�γ∗
0) of the Lagrangian that

only accounts for the forward-looking constraint (3) of period zero. More precisely,
(a∗�γ∗

0) is a solution to the following problem:

SPPμ : SV (x�μ� s)= SP inf
γ∈Rl+1+

sup
{at }∞t=0

{
μh0(x0� a0� s0)+ γh1(x0� a0� s0)

+βE0

l∑
j=0

ϕj(μ�γ)

Nj∑
t=0

βth
j
0(xt+1� at+1� st+1)

}
(21)

s.t. xt+1 = �(xt� at� st+1)� p(xt� at� st)≥ 0� t ≥ 0� (22)

Et

Nj+1∑
n=1

βnh
j
0(xt+n� at+n� st+n)+ hj1(xt� at� st)≥ 0� j = 0� � � � � l� t ≥ 1� (23)

where (21) is obtained by adding the term γ[E0
∑Nj+1

t=0 βth
j
0(xt+1� at+1� st+1)+h1(x0� a0� s0)]

to the objective function of PPμ and rearranging. Note how (23) only holds for t ≥ 1, that
is, this Lagrangian only attaches a multiplier to the forward-looking constraint (3) at t = 0,
while the remaining constraints (3) for t > 0 are kept as constraints; furthermore, (a∗�γ∗

0)
solves SPPμ at (x� s) if, given γ∗

0 ∈Rl+1
+ , the path a∗ is maximal for (21) with respect to all

the paths satisfying (22)–(23) and, given a∗, γ∗
0 is a minimal element for (21) in Rl+1

+ .
The following theorem guarantees that the value function Vμ and the solution of PPμ

satisfy SPFE.

21One can show that, for any (x� s), there exists a solution to PPμ if Assumptions A1–A6 are satisfied (Propo-
sition 1 in the 2011 version of this paper).
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THEOREM 1—PPμ ⇒ SPFE: Assume A1–A4. Assume, for any μ ∈ Rl+1
+ and any initial

condition (x� s), there is a saddle-point (a∗�γ∗
0 ) of SPPμ. Then a∗ solves PPμ, the function

W (x�μ� s)≡ Vμ(x� s) satisfies the SPFE (8), and (a∗
0�γ

∗
0) ∈ΨW (x�μ� s).

PROOF: See Appendix B. Q.E.D.

This result assumes the existence of a saddle-point (a∗�γ∗
0) of the Lagrangian in SPPμ.

This assumption is a standard way to proceed in optimization theory; see, for example,
Section 8.4 of Luenberger (1969). Existence can be checked directly in a given model for
a solution obtained using a number of algorithms at hand that can solve SPPμ using our
recursive formulation.

The existence of a saddle-point (a∗�γ∗
0) can be guaranteed if we strengthen the assump-

tions of Theorem 1 by requiring concavity and interiority; formally, we have the following.

COROLLARY TO THEOREM 1: Assume A1–A6 and A7 and fix μ ∈ Rl+1
+ . Let a∗ be a so-

lution to PPμ with initial conditions (x� s). The function W (x�μ� s)= Vμ(x� s) satisfies the
SPFE (8) and there is a γ∗

0 ∈Rl+ such that (a∗
0�γ

∗
0) ∈ΨW (x�μ� s).

PROOF: See Appendix B. Q.E.D.

Note that the results of the corollary can be obtained from assumptions on the primi-
tives. However, Theorem 1 holds more generally; for example, there are many problems
where the feasible set of PPμ is not convex but its solution a∗ has a saddle-point (a∗�γ∗

0)
of SPPμ (e.g., in Example 2, functions h1

0�h
1
1 may not satisfy Assumption A6; nevertheless,

Theorem 1 applies).
The following result shows that PPμ∗

1
is the appropriate continuation problem in our

approach, formalizing our discussion in Section 2.2.1.

PROPOSITION 1—Continuation Problem: Assume A1–A4. Fix μ ∈ Rl+1
+ . Assume that

SPPμ has a saddle-point (a∗�γ∗
0), hence a∗ solves PPμ. Then, the continuation of this so-

lution, namely, {a∗
t }∞
t=1, solves PPμ∗

1
at (x∗

1� s1) almost surely in s1, where x∗
1 = �(x�a∗

0� s1) and
μ∗

1 = ϕ(μ�γ∗
0).

PROOF: See Appendix B. Q.E.D.

Note that if a∗ solves PPμ at (x� s) and μ∗
1 
= μ, then the solution of PPμ at (x∗

1� s1) may
differ from the continuation of a∗. As explained in Section 2.2.1, in this case there is time-
inconsistency.22 The results in this section guarantee that even under time-inconsistency,
the solution can be formulated recursively using the co-state μ∗

t .
A result analogous to the above corollary can be stated as follows: if Assumptions A5–

A6 and A7 are also required, then the continuation of any solution to PPμ solves PPμ∗
1
.

3.3. The Sufficiency of SPFE

We now turn to our sufficiency theorem: SPFE ⇒ PPμ, where the value function W ,
satisfying the SPFE (8), is assumed to be continuous in (x�μ) and convex and homo-
geneous of degree 1 in μ, for every s, properties which are satisfied by the Lagrangian

22Strictly speaking, time-inconsistency arises generically if there is no scalar ξ such that μ= ξμ∗
1.
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Lμ—as a function of (x�μ)—associated with the value function Vμ of PPμ. We obtain this
result assuming that W is also differentiable in μ, a property that is satisfied when the so-
lution a∗ generated by ΨW is unique (Lemma 1). In the next subsection, we dispense with
this assumption and replace it with a weaker intertemporal consistency condition (ICC),
which is satisfied when W is differentiable in μ: the intertemporal Euler equation with
respect to μ must be satisfied. We also show that when SPFE has a solution—possibly
not unique—there is always a solution satisfying ICC (Corollary to Theorem 2).

THEOREM 2—SPFE ⇒ PPμ: Assume A4 and that W , satisfying the SPFE, is continuous
in (x�μ) and convex, homogeneous of degree 1, and differentiable in μ, for every s. Let ΨW

be the SP policy correspondence associated withW which generates a solution (a∗�γ∗)(x�μ�s)
satisfying limt→∞βtW (x∗

t �μ
∗
t � st)= 0; then a∗ is a solution to PPμ at (x� s), and Vμ(x� s)=

W (x�μ� s).

As a theorem of sufficiency, the main assumption is the existence of a saddle-point
Bellman equation (SPFE) with its corresponding solution, but the assumptions on the hji
functions are minimal—in particular, we assume boundedness (A4) but not concavity—
and with respect to W , the only “stringent” assumption is its differentiability with respect
to μ, an assumption which—as Lemma 1 shows—is satisfied if the solution a∗ is unique, as
it is the case whenW is concave and the hj0 functions strictly concave in x (i.e., Assumption
A6s).23

PROOF OF THEOREM 2: The proof is divided into two parts. Part I shows that when W
satisfies SPFE (8), then the forward-looking constraints of PPμ are satisfied and W takes
the form of the objective function of PPμ. Part II shows that a∗ is a maximal element
of PPμ and, therefore, that Vμ(x� s)=W (x�μ� s) (see Appendix B). The differentiability
assumption is only used in Part I.

Part I: Note that if W is homogeneous of degree 1 and differentiable in μ, then, by
Euler’s theorem, it has a unique representation W (x�μ� s) = ∑l

j=0μ
jωj(x�μ� s), where

ωj is the partial derivative of W with respect to μj . Given this Euler representation, the
minimality condition (19) takes the form

μh0

(
x�a∗� s

) + γh1

(
x�a∗� s

) +βE
[
ϕ(μ�γ)ω

(
�
(
x�a∗� s′

)
�ϕ

(
μ�γ∗)� s′)|s]

≥ μh0

(
x�a∗� s

) + γ∗h1

(
x�a∗� s

)
+βE

[
ϕ

(
μ�γ∗)ω(

�
(
x�a∗� s′

)
�ϕ

(
μ�γ∗)� s′)|s]� (24)

and, by convexity of W in μ, it is satisfied if and only if the following Kuhn–Tucker condi-
tions are satisfied:24

h
j
1

(
x�a∗� s

) +βE
[
ωj

(
x∗′�ϕ

(
μ�γ∗)� s′)|s] ≥ 0� (25)

γ∗j[hj1(x�a∗� s
) +βE

[
ωj

(
x∗′�ϕ

(
μ�γ∗)� s′)|s]] = 0� (26)

23See, for example, Theorem 4.8 in Stokey, Lucas, and Prescott (1989).
24Note that in the left-hand side of (24), we have ω(�(x�a∗� s′)�ϕ(μ�γ∗)� s′) instead of

ω(�(x�a∗� s′)�ϕ(μ�γ)� s′). This follows from the fact that (24) and (19) have the same Kuhn–Tucker
conditions (25) and (26); see Fact F4, Lemma 4A in Appendix C.
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Alternatively, in order to obtain a Euler equation for the intertemporal minimization
problem, the minimality condition (24) can also be written as a choice of μ′: for j =
0� � � � �k, μ′j ≥ μj (i.e., μ′j−μj = γj ≥ 0) and for j = k+1� � � � � l, μ′j ≥ 0 (i.e., μ′j = γj ≥ 0),
in which case the envelope theorem, with respect to μ, takes the form

∂μjW
(
x∗�μ∗� s

) =ωj
(
x∗�μ∗� s

)
=

{
h
j
0

(
x∗� a∗� s

) − hj1
(
x∗� a∗� s

) + λj∗ if j = 0� � � � �k�
h
j
0

(
x∗� a∗� s

)
if j = k+ 1� � � � � l�

(27)

where λj∗ is the Lagrange multiplier for the constraint μ′j∗ − μj∗ ≥ 0. Therefore, for j =
k+ 1� � � � � l, ωj(x∗�μ∗� s) is already defined and, for j = 0� � � � �k, we use the first-order
condition with respect to μ′j , to obtain

h
j
1

(
x∗� a∗� s

) +βE
[
ωj(x′∗�μ′∗� s′1|s

] − λj∗ = 0� (28)

Substituting (28) into (27) results in

ωj
(
x∗�μ∗� s

) =
{
h
j
0

(
x∗� a∗� s

) +βE
[
ωj

(
x′∗�μ′∗� s′

)|s] if j = 0� � � � �k�
h
j
0

(
x∗� a∗� s

)
if j = k+ 1� � � � � l�

(29)

Note that, for j = 0� � � � �k, the equation is the intertemporal Euler equation—that is, in
our approach it is a result of the dynamic optimization problem, while in the “promised-
utility” approach it is a constraint: the “promise-keeping” constraint.

The boundedness assumption A4, together with (25) and limt→∞βtW (x∗
t �μ

∗
t � st) = 0,

imply that limt→∞βtωj(x∗
t �μ

∗
t � st) = 0, for j = 0� � � � �k. Therefore, we can iterate (29)

and obtain

ωj
(
x∗
t �μ

∗
t � st

) = Et

Nj∑
n=0

βnh
j
0

(
x∗
t+n� a

∗
t+n� st+n

)
� (30)

Equation (30) has two implications. First, it shows that the Kuhn–Tucker conditions (25)
can be expressed as

h
j
1

(
x∗
t � a

∗
t � st

) +βE
Nj∑
n=0

[
βnh

j
0

(
x∗
t+n+1� a

∗
t+n+1� st+n+1

)|st] ≥ 0� for j = 0� � � � � l and t ≥ 0;

in other words, that when W is differentiable in μ, solutions to SPFE satisfy the forward-
looking constraints of PPμ. Second, it shows that the unique Euler representation of W
at (x�μ� s) is

W (x�μ� s)=
l∑
j=0

μjωj(x�μ� s)= E

[
l∑
j=0

Nj∑
t=0

βnμjh
j
0

(
x∗
t � a

∗
t � st

)|s]� (31)

with (x∗
0� s0) = (x� s). That is, W takes the form of the objective function of PPμ. These

are the two results we wanted to obtain in Part I. Q.E.D.
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Uniqueness and Sufficiency Without Differentiability of W with respect to μ

If W satisfies SPFE, for any (x� s), the function W (x� ·� s) : Rl+1
+ → R is finite and, we

assume, it is continuous and convex, therefore it is almost surely differentiable—that is,
for almost any μ ∈ Rl+1

+ , it is differentiable (1970 (1970, Theorem 25.5)). However, W
is an endogenous function and, in particular, at (x∗

t �μ
∗
t � st) the value function W may

be non-differentiable with probability 1 since (x∗
t �μ

∗
t ) is an endogenous choice; in other

words, while non-differentiability with respect to μ may not be an issue “at the start”, it
can be a problem “along a solution path”. Furthermore, differentiability of W may not be
an easy condition to check. To analyze these issues and to obtain sufficiency results (SPFE
⇒ PPμ), when W is not necessarily differntiable, we use subdifferential calculus.25

Let ∂μW (x�μ� s) denote the subdifferential of W at (x�μ� s) with respect to μ—that is,

∂μW (x�μ� s)= {
ω ∈Rl+1 |W (x� μ̃� s)≥W (x�μ� s)+ (μ̃−μ)ω for all μ̃ ∈Rl+1

+
}
�

For any ω(x�μ� s) ∈ ∂μW (x�μ� s), W has a Euler representation W (x�μ� s) = μω(x�
μ� s). We call ω(x�μ� s) a Euler representation selection. In particular, if ωt(x

∗
t �μ

∗
t � st) ∈

∂μW (x
∗
t �μ

∗
t � st), there are selections ωt(x

∗
t+1�ϕ(μ

∗
t � γ

∗
t )� st+1) ∈ ∂μW (x

∗
t+1�ϕ(μ

∗
t � γ

∗
t )�

st+1)—for every st+1, following st—satisfying

μωt

(
x∗
t �μ

∗
t � st

)
= μh0

(
x∗
t � a

∗
t � st

) + γ∗
t h1

(
x∗
t � a

∗
t � st

)
+βE

[
ϕ

(
μ∗
t � γ

∗
t

)
ωt

(
�
(
x∗
t � a

∗
t � st+1

)
�ϕ

(
μ∗
t � γ

∗
t

)
� st+1

)|st]
≤ μh0

(
x∗
t � a

∗
t � st

) + γh1

(
x∗
t � a

∗
t � st

)
+βE

[
ϕ

(
μ∗
t � γ

)
ωt

(
�
(
x∗
t � a

∗
t � st+1

)
�ϕ

(
μ∗
t � γ

∗
t

)
� st+1

)|st]� (32)

for all γ ∈ Rl+1
+ , and a∗ is a maximal element in the corresponding saddle-point problem

(i.e., given the selections and γ∗). Furthermore, the corresponding Kuhn–Tucker (com-
plementary slackness) conditions

h
j
1

(
x∗
t � a

∗
t � st

) +βE
[
ω
j
t

(
x∗
t+1�μ

∗
t+1� st+1

)|st] ≥ 0� (33)

γ
∗j
t

[
h
j
1

(
x�a∗

t � st
) +βE

[
ω
j
t

(
x∗
t+1�μ

∗
t+1� st+1

)|st]] = 0� (34)

are necessary and sufficient for (32) to be satisfied (Lemma 5A in Appendix C).
The subindex t in ωt(x

∗
t �μ

∗
t � st) ∈ ∂μW (x∗

t �μ
∗
t � st) denotes that the Euler representation

selection is made at (x∗
t �μ

∗
t � st) andωt(x

∗
t+1�ϕ(μ

∗
t � γ

∗
t )� st+1) denotes a contingent selection

of ∂μW (x∗
t+1�ϕ(μ

∗
t � γ

∗
t )� st+1) made at (x∗

t �μ
∗
t � st), while choosing a∗

t .
The value W (x�μ� s) is independent of its Euler representations; in particular, μ∗

t+1 ×
ωt+1(x

∗
t+1�μ

∗
t+1� st+1) = μ∗

t+1ωt(x
∗
t+1�μ

∗
t+1� st+1). However, for j = 0� � � � �k, it may be the

case that ωj
t+1(x

∗
t+1�μ

∗
t+1� st+1) 
= ω

j
t(x

∗
t+1�μ

∗
t+1� st+1); in other words, the selection of

∂μW (x
∗
t+1�μ

∗
t+1� st+1) made at (x∗

t+1�μ
∗
t+1� st+1) may be inconsistent with the contingent se-

lection made at (x∗
t �μ

∗
t � st), which can only happen if ∂μW (x∗

t+1�μ
∗
t+1� st+1) is not a sin-

gleton (i.e., if W is not differentiable, with respect to μ, at μ∗
t+1), resulting in multiple

saddle-point solutions. In fact, this inconsistency is the problem that may arise when W is

25See Appendix C for definitions and supporting results.
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not differentiable. For instance, Messner and Pavoni’s (2004) example relies on this in-
consistency to show that there are cases where solutions to SPFE are not solutions to PPμ.
We now discuss three different conditions guaranteeing that such an inconsistency prob-
lem does not arise. However, before we can state these conditions, we need to develop
more our results.

Our starting point is the Euler representation (31), which we have derived in the proof
of Theorem 2 (Part I) using the Kuhn–Tucker conditions (25) and differentiability (the
envelope theorem). In fact, we have derived (30)—the key result to show that the forward-
looking constraints of PPμ are satisfied—to obtain (31). But, as we now show, the latter
can be satisfied even whenW is not differentiable in μ. To see this, first note that, by (34),
the value function has the following recursive representation:

W
(
x∗
t �μ

∗
t � st

) = μ∗
t ωt

(
x∗
t �μ

∗
t � st

)
= μ∗

t h0

(
x∗
t � a

∗
t � st

) + γ∗
t h1

(
x∗
t � a

∗
t � st

) +βE
[
W

(
x∗
t+1�ϕ

(
μ∗
t � γ

∗
t

)
� st+1

)|st]
= μ∗

t h0

(
x∗
t � a

∗
t � st

) + γ∗
t h1

(
x∗
t � a

∗
t � st

)
+βE

[
ϕ

(
μ∗
t � γ

∗
t

)
ωt

(
x∗
t+1�ϕ

(
μ∗
t � γ

∗
t

)
� st+1

)|st]
= μ∗

t h0

(
x∗
t � a

∗
t � st

) +β
k∑
j=0

μ
∗j
t E

[
ω
j
t

(
x∗
t+1�ϕ

(
μ∗
t � γ

∗
t

)
� st+1

)|st]
+ γ∗

t

[
h1

(
x∗
t � a

∗
t � st

) +βEωt

(
x∗
t+1�ϕ

(
μ∗
t � γ

∗
t

)
� st+1

)|st]
= μ∗

t h0

(
x∗
t � a

∗
t � st

) +β
k∑
j=0

μ
∗j
t E

[
ω
j
t

(
x∗
t+1�ϕ

(
μ∗
t � γ

∗
t

)
� st+1

)|st]; (35)

however, to have (30), a more strict recursive representation is needed (note the change
of subindex on the right-hand side ω):

μ∗
t ωt

(
x∗
t �μ

∗
t � st

) = μ∗
t h0

(
x∗
t � a

∗
t � st

) +β
k∑
j=0

μ
∗j
t E

[
ω
j
t+1

(
x∗
t+1�ϕ

(
μ∗
t � γ

∗
t

)
� st+1

)|st]�
To obtain this representation, we need to be more explicit about the fact that solutions

(a∗�γ∗)(x�μ�s) generated by ΨW are given by saddle-point policy selections ψsW of ΨW . In
particular, among all solutions, it is always possible to choose one where the selection is
fixed from the beginning: at (x�μ� s). In other words, one needs to make these choices
along the solution path, (a∗

t � γ
∗
t )=ψsW (x∗

t �μ
∗
t � st), where ψsW is the original selection given

by ψsW (x�μ� s) ∈ ΨW (x�μ� s) and satisfies limt→∞βtW (x∗
t �μ

∗
t � st)= 0. Given this saddle-

point policy selection, we now sequentially unfold the saddle-point value function W , say
from (x∗

t �μ
∗
t � st):

26

μ∗
t ωt

(
x∗
t �μ

∗
t � st

)
= μ∗

t h0

(
x∗
t � a

∗
t � st

) + γ∗
t h1

(
x∗
t � a

∗
t � st

) +βE
[
W

(
x∗
t+1�ϕ

(
μ∗
t � γ

∗
t

)
� st+1

)|st]
26To simplify our expressions, we introduce a new notation: given x ∈Rl+1, let Ikxj = xj if j = 0� � � � �k and

Ikxj = 0 if j = k+ 1� � � � � l.
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= μ∗
t h0

(
x∗
t � a

∗
t � st

) + γ∗
t h1

(
x∗
t � a

∗
t � st

)
+βE

[
μ∗
t+1h0

(
x∗
t+1� a

∗
t+1� st+1

) + γ∗
t+1h1

(
x∗
t+1� a

∗
t+1� st+1

)
+βE

[
W

(
x∗
t+2�ϕ

(
μ∗
t+1�γ

∗
t+1

)
� st+2

)|st+1

]|st]
= μ∗

t

[
h0

(
x∗
t � a

∗
t � st

) +βE
[
Ikh0

(
x∗
t+1� a

∗
t+1� st+1

)|st]]
+ γ∗

t

[
h1

(
x∗
t � a

∗
t � st

) +βE
[
h0

(
x∗
t+1� a

∗
t+1� st+1

)|st]]
+βE

[
γ∗
t+1h1

(
x∗
t+1� a

∗
t+1� st+1

) +βE
[
W

(
x∗
t+2�ϕ

(
μ∗
t+1�γ

∗
t+1

)
� st+2

)|st+1

]|st]
= μ∗

t

[
h0

(
x∗
t � a

∗
t � st

) +βE
[
Ikh0

(
x∗
t+1� a

∗
t+1� st+1

) +βIkh0

(
x∗
t+2� a

∗
t+2� st+2

)|st]]
+ γ∗

t

[
h1

(
x∗
t � a

∗
t � st

) +βE
[
h0

(
x∗
t+1� a

∗
t+1� st+1

) +βh0

(
x∗
t+2� a

∗
t+2� st+2

)|st+1

]
st
]

+βE
[
γ∗
t+1

[
h1

(
x∗
t+1� a

∗
t+1� st+1

) +βh0

(
x∗
t+2� a

∗
t+2� st+2

)]
st+1|st

]
+β2E

[
W (x∗

t+2�ϕ
(
μ∗
t+1�γ

∗
t+1

)
� st+2|st

]
· · ·

= μ∗
t

[
h0

(
x∗
t � a

∗
t � st

) +βE

[
Ik

T∑
n=0

βnh0

(
x∗
t+1+n� a

∗
t+1+n� st+1+n

)|st]]

+ γ∗
t

[
h1

(
x∗
t � a

∗
t � st

) +βE

[
h0

(
x∗
t+1� a

∗
t+1� st+1

)
+βIk

T−1∑
n=0

βnh0

(
x∗
t+2+n� a

∗
t+2+n� st+2+n

)|st]]

+βE

[
γ∗
t+1

[
h1

(
x∗
t+1� a

∗
t+1� st+1

)
+βE

[
h0

(
x∗
t+2� a

∗
t+2� st+2

) +βIk
T−2∑
n=0

βnh0

(
x∗
t+3+n� a

∗
t+3+n� st+3+n

)|st+1

]]∣∣∣st]
· · ·
+βTE

[
γ∗
t+T

[
h1

(
x∗
t+T � a

∗
t+T � st+T

) +βh0

(
x∗
t+T+1� a

∗
t+T+1� st+T+1

)]
st+T |st

]
+βT+1E

[
W

(
x∗
t+T+1�ϕ

(
μ∗
t+T �γ

∗
t+T

)
� st+T+1

)|st+T |st]�
Note that, by our boundedness assumption (A4), the terms in brackets multiplying the

Lagrange multipliers converge, as T → ∞; say, for γ∗
t+m to[

h1

(
x∗
t+m�a

∗
t+m� st+m

) +βE

[
h0

(
x∗
t+m+1� a

∗
t+m+1� st+m+1

)
+βIk

∞∑
n=0

βnh0

(
x∗
t+m+2+n� a

∗
t+m+2+n� st+m+2+n

)|st+m]]
�
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But given that the saddle-point policy selection ψsW is the same in all iterations, the term
in the inner bracket is just ωt+m(x∗

t+m+1�μ
∗
t+m+1� st+m+1). Therefore, as T → ∞,

μ∗
t ωt

(
x∗
t �μ

∗
t � st

)
= E

[
l∑
j=0

Nj∑
n=0

βnμ
∗j
t h

j
0

(
x∗
t+n� a

∗
t+n� st+n

)|st]

+ γ∗
t

[
h1

(
x∗
t � a

∗
t � st

) +βE
[
ωt

(
x∗
t+1�μ

∗
t+1� st+1

)|st]]
+βE

[
γ∗
t+1

[
h1

(
x∗
t+1� a

∗
t+1� st+1

) +βE
[
ωt+1

(
x∗
t+2�μ

∗
t+2� st+2

)|st+1

]]|st]
· · ·

= E

[
l∑
j=0

Nj∑
n=0

βnμ
∗j
t h

j
0

(
x∗
t+n� a

∗
t+n� st+n

)|st]�
where the last equality follows from the “slackness condition” (34). In sum, we have ob-
tained (31) and, in particular, that ωj

t+1(x
∗
t+1�μ

∗
t+1� st+1) = ω

j
t(x

∗
t+1�μ

∗
t+1� st+1) ≡ ωj(x∗

t+1�
μ∗
t+1� st+1). This derivation of (31) has two implications, which correspond to the first two

conditions that guarantee that inconsistency problems do not arise.
First, the role of uniqueness. If a∗ is unique, then, by (31), the Euler representation is

unique.27 However, since the subdifferential of W is composed of Euler representation
selections, this means that ∂μW is a singleton and, therefore, more formally, we have the
following:

LEMMA 1: If W , satisfying the SPFE, is continuous in (x�μ) and convex in μ, for every s,
and for (a∗�γ∗)(x�μ�s) ∈ΨW (x�μ� s) a∗ is unique, then W is differentiable in μ at (x�μ� s).

In fact, what Lemma 1 says is that “uniqueness” is not a new condition with respect to
Theorem 2, but a relatively simple condition to check, which guarantees differentiability.

Second, the role of fixing the saddle-point policy selection. What our derivation of (31)
shows is that if, as it is usually done in computations, the saddle-point policy selection is
the same in the sequential iterations of SPFE, the forward-looking constraints are con-
sistently defined and, therefore, (30) is satisfied.28 However, if, at (x∗

t �μ
∗
t � st), W is not

differentiable in μ and SPFE is restarted with a different saddle-point policy selection,
say, ψs̃W , then, for some j, ω̃j

t (x
∗
t �μ

∗
t � st) 
=ωj

t−1(x
∗
t �μ

∗
t � st), and the resulting solution—up

to t with ψsW and from t with ψs̃W —may not be a solution to PPμ at (x� s).
Therefore, there is a need to provide a condition (our “third”) guaranteeing consistency

that can be checked.

ICC. A solution (a∗�γ∗)(x�μ�s) generated by the SP policy correspondence ΨW associated
with W satisfies the Intertemporal Consistency Condition if, for t ≥ 0 and j = 0� � � � �k,
its Euler representation selections satisfy the intertemporal Euler equation (29); that is,

27Note that if, in addition, γ∗ is also unique, then there is a unique saddle-point policy selection ψsW , that is,
the saddle-point policy function ψW .

28In the derivation of (31), by keeping the same selection, we had, for j = 0� � � � �k and t > 0,
ω
j
t+1(x

∗
t+1�μ

∗
t+1� st+1)=ωjt (x∗

t+1�μ
∗
t+1� st+1).
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if

ωj
(
x∗
t �μ

∗
t � st

) = hj0
(
x∗� a∗

t � s
) +βE

[
ωj

(
x∗
t+1�μ

∗
t+1� st+1

)|st]�
COROLLARY TO THEOREM 2: Assume A4 and thatW , satisfying the SPFE, is continuous

in (x�μ) and convex and homogeneous of degree 1 in μ, for every s. Let ΨW be the SP
policy correspondence associated with W , which generates solutions (a∗�γ∗)(x�μ�s), satisfying
limt→∞βtW (x∗

t �μ
∗
t � st)= 0. If a solution also satisfies the ICC, then a∗ is a solution to PPμ

at (x� s), and Vμ(x� s)=W (x�μ� s). Furthermore, there is a solution which satisfies the ICC.

The previous discussion provides the proof to this corollary, since the only missing piece
of the proof of Theorem 2, if differentiability of W in μ is not assumed, is the Euler equa-
tion (30), which is provided by ICC, and we have also shown how to obtain a solution
that satisfies ICC, provided that SPFE has a solution. Nevertheless, we have not provided
a recursive algorithm that guarantees the Euler equation (30) is satisfied. This can be
found in Marimon and Werner (2019), who also provided a more comprehensive discus-
sion of the inconsistency issues discussed here, based on their envelope theorem without
differentiability which, in our context, generalizes (27).

4. EXISTENCE OF SADDLE-POINT VALUE FUNCTIONS

In this section, we address the issue of the existence of value functions satisfying the
SPFE (Theorem 3(i)). The existence of saddle-points is needed to show that there is
a well-defined contraction mapping generalizing the contraction mapping theorem to a
dynamic saddle-point problem corresponding to the SPFE (Theorem 3(iii)).

We first define the space of bounded value functions (in x) which are convex and ho-
mogeneous of degree 1 (in μ):

Mb = {
W :X ×Rl+1

+ × S→R

(i) W (·� ·� s) is continuous�W (·�μ� s) is bounded when ‖μ‖ ≤ 1�

and W (x�μ� ·) is S-measurable,

(ii) W (x� ·� s) is convex and homogeneous of degree 1
}
�

and we also define its subspace of concave functions (in x): Mbc = {W ∈ Mb and (iii)
W (·�μ� s) is concave}. Both spaces are normed vector spaces with the norm

‖W ‖ = sup
{∣∣W (x�μ� s)∣∣ : ‖μ‖ ≤ 1�x ∈X�s ∈ S}�

We show in Appendix D (Lemma 8A) that these are complete metric spaces and, there-
fore, suitable spaces for the contraction mapping theorem. Note that Vμ(x� s), the value
of PPμ with initial conditions (x� s), can also be represented as a function V·(·� ·)—at
(x�μ� s)—which is in Mb whenever Assumptions A2–A4 are satisfied, and in Mbc if, in
addition, Assumptions A5–A6 are satisfied (See Lemma 1A in Appendix B.).

Let M denote either Mb or Mbc . Then the SPFE defines a saddle-point operator
T ∗ :M−→M given by(

T ∗W
)
(x�μ� s)= SP min

γ≥0
max
a

{
μh0(x�a� s)+ γh1(x�a� s)+βE

[
W

(
x′�μ′� s′

)|s]}
s.t. x′ = �(x�a� s′)� p(x�a� s)≥ 0�

and μ′ = ϕ(μ�γ)� (36)
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In defining T ∗ as a saddle-point operator, we have implicitly assumed that there is a saddle-
point (a∗�γ∗) satisfying

μh0

(
x�a∗� s

) + γh1

(
x�a∗� s

) +βE
[
W

(
x∗′�μ′� s′

)|s]
≥ μh0

(
x�a∗� s

) + γ∗h1

(
x�a∗� s

) +βE
[
W

(
x∗′�μ∗′� s′

)|s]
≥ μh0(x�a� s)+ γ∗h1(x�a� s)+βE

[
W

(
x′�μ∗′� s′

)|s]�
∀γ ∈Rl+1

+ �μ′ = ϕ(μ�γ) and a with p(x�a� s)≥ 0�x′ = �(x�a� s′)�
To guarantee that the T ∗ operator preserves measurability, we strengthen Assumption

A1:
A1b. st takes values from a compact and convex set S ⊂ RK . {st}∞

t=0 is a Markovian
stochastic process defined on the probability space (S∞�S�P) with transition function Q
on (S�S) satisfying the Feller property.29

As we have seen in Section 3, any W ∈ M has a—possibly non-unique—Euler repre-
sentation W (x�μ� s) = μω(x�μ� s) (see also Appendix C). Furthermore, with this rep-
resentation, (a∗�γ∗) is a saddle-point of SPFE if, and only if, it is a saddle-point of the
Lagrangian

L
(
a�γ; (x�μ� s)) = μ

[
h0(x�a� s)+βE

[
k∑
j=0

ωj
(
x′�μ′� s′

)|s]]

+ γ[
h1(x�a� s)+βE

[
ω

(
x′�μ′� s′

)|s]]�
∀γ ∈Rl+1

+ �μ′ = ϕ(μ�γ) and a with p(x�a� s)≥ 0�x′ = �(x�a� s′)�
Note that γ∗ plays the double role of being a Lagrange multiplier to the forward-looking
constraints h1(x�a� s)+ βE[ω(�(x�a� s′)�ϕ(μ�γ)� s′)|s] ≥ 0 and an argument in the co-
state transition ϕ(μ�γ). To prove the existence of such a saddle-point, we decompose
these two roles. First, we show that for any γ̂ ∈ Rl+1

+ , in ϕ(μ� γ̂), there is a saddle-point
(a∗(γ̂)�γ∗(γ̂)); then we use a fixed point argument to show that there is a γ∗ satisfying
(a∗(γ∗)�γ∗(γ∗)). The former—that is, the existence of Lagrange multipliers—requires an
interiority (or normality) condition, the latter to strengthen such interiority condition to
guarantee that Lagrange multipliers are uniformly bounded. These conditions can take
the following form:

IC. W , with W = μω, satisfies the interiority condition if, for any (x� s) ∈X × S, μ ∈
Rl+1

+ , and j� j = 0� � � � � l, there exists ã ∈ A, satisfying p(x� ã� s) ≥ 0, and hj1(x� ã� s) +
βE[ωj(�(x� ã� s′)�μ� s′)|s] > 0, and, for i 
= j, hi1(x� ã� s) + βE[ωi(�(x� ã� s′)�μ� s′)|s] ≥
0.30

SIC. W , with W = μω, satisfies the strict interiority condition if it satisfies IC and there
exists an ε > 0 such that, for any (x� � s) ∈ X × S, μ ∈ Rl+1

+ and j� � � � � l, the inequal-
ity hj1(x� ã� s) + βE[ωj(�(x� ã� s′)�μ� s′)|s] > 0 in IC can be replaced by hj1(x� ã� s) +
βE[ωj(�(x� ã� s′)�μ� s′)|s] ≥ ε.

29Recall that Q satisfies the Feller property if whenever f is bounded and continuous in S, the function Tf
given by (Tf )(s)= ∫

f (s′)Q(s�ds′), for all s ∈ S, is also bounded and continuous on S. Assumption A1 can be
alternatively strengthened by assuming that S is countable and S is the σ-algebra containing all the subsets of
S (see Stokey, Lucas, and Prescott (1989, 9.2)).

30Note that ωj(�(x� ã� s′)�μ� s′) can be replaced by ωj(�(x� ã� s′)�ϕ(μ�γ)� s′), for any γ ∈Rl+1
+ .
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The following lemma, which proof is immediate, provides a condition, easy to check,
guaranteeing that these interiority conditions are satisfied.

LEMMA 2: W ∈ M, with W = μω, satisfies IC (SIC) if, for all (x� s) ∈X × S, μ ∈ Rl+1
+ ,

and j = 0� � � � � l,

E
[
ωj

(
�(x� ã0� s0)�μ� s1

)|s0

] ≥ E

[ Nj∑
t=0

βth
j
0(x̃t� ãt+1� st+1)|s0

]
�

for any i-interior program31 {̃at}∞
t=0 of Assumption A7 (A7s), i = 0� � � � � l. Furthermore, if

W ∈M satisfies IC (SIC), then T ∗W also satisfies IC (SIC).

In other words, it is enough that W ∈ W takes the value of the interior programs of
Assumption A7 (A7s) as a lower bound to satisfy IC (SIC); for example, in the Section 2
example with limited enforcement constraints, IC (SIC) is satisfied if W guarantees that
at any state (x� s), weights ϕ(μ�γ), and j, there is an interior (ε interior) allocation ã that
allows agent j to satisfy its forward-looking constraint with strict inequality (ε inequality)
while maintaining the forward-looking constraints of all the other agents. As Lemma 2
shows, given specific functional forms for PPμ, it is not difficult to have W ∈M satisfying
these interiority conditions. Note that the last statement of Lemma 2 provides a guide
to obtaining W ∈ M through value function iteration: start with a value function that
satisfies the conditions of Lemma 2.

We can now state the main theorem of this section.

THEOREM 3: Assume A1b and A2–A5 and SIC, and A6 when M refers to Mbc .
(i) LetW ∈Mbc . For all (x�μ� s) ∈X×Rl+1

+ × S, there exists (a∗�γ∗)(x�μ�s) generated by
ΨW (x�μ� s); that is, (a∗�γ∗)(x�μ�s) satisfies (19)–(20). Furthermore, if A6s is assumed, then
(a∗)(x�μ�s) is uniquely determined.

(ii) Let W ∈ M if, for all (x�μ� s) ∈ X × Rl+1
+ × S, ΨW (x�μ� s) 
= ∅, then T ∗W ∈ M,

that is, T ∗: M−→M.
(iii) LetW ∈M, if, for all (x�μ� s) ∈X×Rl+1

+ ×S,ΨW (x�μ� s) 
= ∅, then T ∗: M−→M
is a contraction mapping of modulus β.

PROOF: See Appendix D. Q.E.D.

Theorem 3(i) provides conditions for the existence of a saddle-point; (ii) establishes that
the SPFE mapping is well defined by showing that T ∗ maps M onto itself, and finally,
(iii) shows that T ∗ is a contraction mapping, therefore there is a unique value function
W ∈ M, W = T ∗W , satisfying SPFE. This last result (iii) follows from the second (ii),
Feller’s property (A1b), and the fact that T ∗ satisfies Blackwell’s sufficiency conditions for
a contraction.

Theorem 3 shows how the standard dynamic programming results on the existence and
uniqueness of a value function and the corresponding existence of optimal solutions gen-
eralize to our saddle-point dynamic programming approach, provided that an interior-
ity condition is satisfied (e.g., SIC). As in standard dynamic programming, if W ∈ Mbc

and the strict concavity assumption A6s is satisfied, then (a∗)(x�μ�s) is uniquely determined.

31See Footnote 17.
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Also as in standard dynamic programming, if these conditions are not satisfied and saddle-
point solutions are not unique, an SPFE solution is a selection from the saddle-point cor-
respondence. However, as we have seen in Section 3, when W is not differentiable in
μ, a new kind of multiplicity arises.32 Finally, Theorem 3 also shows that the contraction
property—very practical for computing value functions—also extends to our saddle-point
Bellman equation operator.

By Theorem 2, if W = T ∗W is differentiable in μ and (a∗�γ∗)(x�μ�s) is generated by
ΨW (x�μ� s), then a∗ is a solution to PPμ at (x� s). Unfortunately, the subspace of dif-
ferentiable functions is not a complete metric space and, therefore, T ∗ does not neces-
sarily map μ- differentiable functions into μ-differentiable functions. However, we can
provide more structure to T ∗ to guarantee that the generated solutions (a∗�γ∗)(x�μ�s) sat-
isfy the Intertemporal Consistency Condition ICC, and for this we define the T ∗∗ map.
T ∗∗ :M−→M solves the same saddle-point problem as the T ∗ map, that is,(

T ∗∗W
)
(x�μ� s)= SP min

γ≥0
max
a

{
μh0(x�a� s)+ γh1(x�a� s)+βE

[
W

(
x′�μ′� s′

)|s]}
s.t. x′ = �(x�a� s′)� p(x�a� s)≥ 0�

and μ′ = ϕ(μ�γ)�
but given W ∈ M, takes a specific Euler representation W = μω to define the Euler
representation of T ∗∗W according to(

T ∗∗ωj
)
(x�μ� s)= hj0

(
x�a∗(x�μ� s)� s

) +βE
[
ωj

(
x∗′(x�μ� s)�μ∗′(x�μ� s)� s′

)|s]�
if j = 0� � � � �k, and(

T ∗∗ωj
)
(x�μ� s)= hj0

(
x�a∗(x�μ� s)� s

)
� if j = k+ 1� � � � � l�

Given that T ∗∗ solves the same problem as T ∗, the results of Theorem 3 hold for T ∗∗ and
there is a W ∈M such that W = T ∗W but, in addition, ωj = T ∗∗ωj , for j = 0� � � � � l. Note
that, even if W is unique, when it is not differentiable in μ it has multiple Euler repre-
sentations and, correspondingly, the T ∗∗ map generates multiple solutions. Nevertheless,
the ICC condition is satisfied. In sum, based on our Corollary to Theorem 2, we have the
following result:

COROLLARY TO THEOREM 3: Let W ∈ M satisfy W = T ∗∗W , for a specific Euler repre-
sentation W = μω, and (a∗�γ∗)(x�μ�s) be generated by ΨW (x�μ� s); then a∗ is a solution to
PPμ at (x� s).

Note that this corollary provides a guide to the user who is uncertain about whether
W ∈ M is differentiable in μ : use the T ∗∗ map to get the PPμ solution, which simply
takes the unique Euler representation when W is differentiable in μ, that is, in this case,
T ∗∗ does the same as T ∗.

32Note that it differs from the multiplicity in standard dynamic programming problems—that is, problems
without forward-looking constraints—in an important aspect: in a standard dynamic problem, if at (x∗

t�st) there
are multiple solutions, once one is “selected” leading to (x∗

t+1� st+1), the latter is a “sufficient statistic” in order
to follow up on a solution path started at (x0� s0); in contrast, if at (x∗

t �μ
∗
t � st) there are multiple saddle-point

solutions (due to the fact that W is not differentiable in μ), once one is “selected” leading to (x∗′�μ∗′� s′), the
latter may not be a “sufficient statistic” in order to follow up on a solution path started at (x0�μ0� s0).
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5. RELATED WORK

Forward-looking constraints are pervasive in dynamic economic models. Early work in-
troducing Lagrange multipliers as co-state variables in models of optimal policy are found
in Epple, Hansen, and Roberds (1985), Sargent (1987), and Levine and Currie (1987) in
linear-quadratic Ramsey problems, justified by the observation that past multipliers ap-
pear in the first-order conditions of the Ramsey problem. But this is only indicative of a
recursive formulation. Our work provides a formal proof that introducing past multipliers
as co-states delivers the optimal solution recursively in a general framework.

The promised-utility approach has been widely used in macroeconomics. Some appli-
cations are by Kocherlakota (1996) in a model with participation constraints similar to
our Example 1, and Cronshaw and Luenberger (1994) in a dynamic game.33 Moreover,
Kydland and Prescott (1980), Chang (1998), and Phelan and Stacchetti (2001) studied
Ramsey equilibria using promised marginal utility as a co-state variable, and they noted
the analogy of their approach with promised utility.34

The promised-utility and our approach provide recursive characterizations of the so-
lution to PPμ. Obviously, both approaches provide the same solutions {a∗

t � x
∗
t }, but they

are conceptually and practically quite different. In our approach, the co-state variable is a
vector μt satisfying a simple exogenous constraint: μt ∈Rl+1

+ , while in the promised-utility
approach, it is a vector—say, ωt—which must satisfy an endogenous “promise-keeping”
constraint.

A key difference between the two approaches lies in the fact that they define very dif-
ferent continuation problems. In the promised-utility approach, promised utility ωt is a
decision today for each possible future state, and this defines a state variable tomorrow,
making the problem amenable to a standard Bellman equation treatment. This needs the
computation of a correspondence for feasible utilities (denoted Cκ) that is very hard to
compute. However, as we have emphasized in Section 2, the continuation problem in our
approach (namely, PPμ∗

1
) is guaranteed to have a solution for any μ∗

1 ∈Rl+1
+ . This entirely

sidesteps any computation of the feasible set of co-state variables.
We now discuss these issues more concretely by formulating a recursive solution to Ex-

ample 2 in the context of promised utilities. For ease of exposition, assume the exogenous
shock gt is i.i.d. and it can take ν possible values gκ, κ = 1� � � � � ν, each with probability
πκ. Constraint (17) can be rewritten as

bt+1β

ν∑
κ=1

u′(c
t+1

(
gκ

))
πκ= u′(ct)(bt − ct)−etv′(et)� (37)

Equation (37) is the “promise-keeping” constraint and ct+1(g
κ) is the promised consump-

tion in period t+1 if gt+1 = gκ is realized. The key insight of the promised-utility approach
is that by including all promised consumptions (ct+1(g

1)� � � � � ct+1(g
ν)) in the vector of to-

day’s decision variables at , equation (37) becomes a special case of a standard (backward-
looking) constraint (2). This suggests we can apply the Bellman equation to conclude
that the problem is recursive as long as realized consumption ωt = ct(gt) is included as a
co-state variable.

33Ljungqvist and Sargent (2018) provided an excellent introduction and references to most of this recent
work.

34As we clarify in this paper—for example, in the discussion of Example 2 below—our approach is not the
same as the approach of these papers.



1614 A. MARCET AND R. MARIMON

But applying the Bellman equation to this reformulated problem without any further
constraint would induce the planner to choose a ct+1(g

κ) that cannot be supported by any
taxation scheme in equilibrium, so in this case the Bellman equation does not provide a
feasible solution. To avoid this problem, one needs to compute for each κ the correspon-
dence Cκ :R→ S , where S is a collection of subsets of R+ such that, if ct+1(g

κ) ∈ Cκ(bt+1)
and if gt+1 = gκ, then a continuation tax and allocation process {τt+j� ct+j� bt+j+1� }∞

j=1 exists
that is a competitive equilibrium with ct+1 = ct+1(g

κ) and corresponding inherited govern-
ment debt bt+1. Since the correspondence Cκ(·) is an endogenous object, its computation
is very complicated. For example, if there were J types of consumers in the above Ramsey
model, J promised consumptions would have to be carried over as state variables, and
in that case, we would need to compute multidimensional sets Cκ(b)⊂ RJ+. Even though
considerable progress has been made in the computation of the correspondence Cκ, ei-
ther by improving algorithms or by redefining the problem at hand,35 this computation
often leads to serious numerical difficulties. Most applications in the literature of the
promised-utility approach assume there is no dependence on state variables (i.e., b does
not influence Cκ) and the sets in S are subsets of R.

As we have seen in Section 2, the issue of computing a feasible set for promised con-
sumption is entirely sidestepped in our approach. This is because any γ∗1

t−1 gives a well-
defined continuous objective function of PPμ∗

t
, so that this continuation problem always

has a solution.36

An additional advantage of the Lagrangian approach is that it leads to a reduction in
the number of decision and state variables. We have only two decision variables (ct� bt+1)
in Example 2 under our approach at t, while in the promised-utility approach, there are
ν+ 1 decision variables (ct+1(g

1)� � � � � ct+1(g
ν)�bt+1) at t.

As is well known, the highest computational savings come from a reduction in the di-
mension of the state vector. In some cases, the recursive Lagrangian has many fewer state
variables. Consider generalizing Example 2 to the case where the government issues one
long bond that matures in M periods and long bonds are not repurchased by the govern-
ment, as in Faraglia, Marcet, Oikonomou, and Scott (2016, 2019). In this case, the bond
price depends on the expectation of marginal utility M periods ahead, so that the analog
of (37) gives

bMt+1β
M

∑
g̃M∈GM

u′(c
t+M

(
gt� g̃

M
))
π̃

(
g̃M

)= u′(ct)
(
bMt−M+1 − ct

)−etv′(et)� (38)

where we denote Gi the set of all possible realizations of (gt+1� � � � � gt+i), and π̃κ(g̃M) the
probability of each sequence. Clearly, the co-state using promised-utility includes ωt =
(ct� [ct+i(gt� g̃i)]i=1�����M−1

g̃i∈Gi ). For a 10-year bond, even if g only takes two possible values so
ν = 2, a quarterly version of the model has more than one trillion state variables, since
Gi has 2i elements.37 By comparison, the Lagrangian approach can be implemented with
“only” 2M + 1 = 81 state variables (γt−1� � � � � γt−M�bMt � � � � � b

M
t−M+1� gt).

38

35See, for example, Ábrahám and Pavoni (2005) or Judd, Yeltekin, and Conklin (2003).
36See the discussion following equation (18).
37There are ways of reducing this problem; Lustig, Sleet, and Yeltekin (2008) provided a recursive formula-

tion with long bonds by adding the yield curve as a state variable. The issue then becomes one of formulating
a very high-dimensional feasible set for the yield curve which ensures that the continuation problem is well-
defined.

38See Faraglia, Marcet, Oikonomou, and Scott (2019, Section 3 for details, and Sections 5, 6, 7 for the state
variables in several variations of the model).
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There are some additional differences between the two approaches. Initial conditions
for the co-state variables in our approach are known from the outset to be μ0

0 = 1, μ1
0 = 0,

but in the promised-utility approach, the initial condition is c0, which needs to be solved
for separately, since it is an endogenous variable. This is because, as pointed out before,
the promised-utility approach determines the variable one period ahead, so it needs an
ending boundary condition, while our approach starts out from a given initial condition.
It is well known that to find c0, the Pareto frontier has to be downward sloping; otherwise,
the computations can become very cumbersome.

The co-state variables in our approach often have an economic interpretation. We have
already described in Section 2 how the evolution of μ∗

t can unveil the reason for time-
inconsistency problems. Also, μ∗

t can be interpreted as time-varying Pareto weights in
Example 1 and a time-varying deadweight loss of taxation in Example 2.

Early versions of this paper conceded as an advantage of promised-utility that it could
be applied to models under moral hazard and incentive constraints. However, Messner,
Pavoni, and Sleet (2012) and Mele (2014) have extended our approach to address moral
hazard problems, and Ábrahám, Cárceles-Poveda, Liu, and Marimon (2019) study a risk-
sharing partnership with intertemporal participation and moral hazard constraints. Thus,
the initial advantages of the promised-utility approach seem to have mostly vanished.

6. CONCLUDING REMARKS

We have shown that a large class of problems with forward-looking constraints can be
conveniently formalized as a saddle-point problem. This saddle-point problem obeys a
saddle-point functional equation (SPFE) which is analogous to the Bellman equation. The
approach works for a very large class of models with incentive constraints: intertemporal
enforcement constraints, intertemporal Euler equations in optimal policy and regulation
design, etc. We provide a unified framework for the analysis of all these models. The key
feature of our approach is that instead of having to write optimal contracts as history-
dependent contracts, one can write them as a time-invariant function of the standard
state variables together with additional co-state variables. These co-state variables are
recursively obtained from the Lagrange multipliers associated with the forward-looking
constraints, starting from pre-specified initial conditions. This simple representation also
provides economic insight into the analysis of various contractual problems. For example,
with intertemporal participation constraints, it shows how the (Benthamite) social plan-
ner changes the weights assigned to different agents in order to keep them within the
social contract; in Ramsey optimal problems, it shows the cost of commitment when the
policies of a benevolent government are not time-consistent.

This paper provides the first complete account of the basic theory of recursive contracts.
We have already presented most of the elements of the theory in our previous work (in
particular, Marcet and Marimon (1998 and 2011)), which has allowed others to build on
it. Many applications are already found in the literature, showing the convenience of our
approach, especially when: natural state variables, such as capital or debt, are present; the
solution (of a planner’s or Ramsey problem) is not time-consistent; our co-state variable
μ plays a key rule in determining constrained efficiency wedges, or contracts need to be
decentralized and, therefore, priced. Similarly, extensions are already available, encom-
passing a wider set of problems than those considered here (moral hazard, endogenous
participation constraints, etc.). Our sufficiency result when the value function is differen-
tiable (in μ)—as in the case that the constrained efficient allocation is unique—already
covers a wide range of frequently studied economies. We broaden this range to a larger
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set of economies (e.g., weakly concave with multiple solutions) by providing the intertem-
poral consistency condition (ICC) that must be satisfied when there are forward-looking
constraints—a condition that is always satisfied when the value function is differentiable
(in μ). In the more general case, we show how ICC can be guaranteed when the saddle-
point functional equation has a solution.39 Finally, we also provide conditions for the
existence of solutions to our saddle-point functional equation (SPFE) and extend the main
results of dynamic programming to our saddle-point formulation.

APPENDIX A: REARRANGING THE LAGRANGIAN

Here we show that Lμ as defined in (4) is equivalent to (5). Shifting Et in the second
line of (4), we can rewrite Lμ as

Lμ(a�γ;x� s)

= E0

[
l∑
j=0

Nj∑
t=0

βtμjh
j
0(xt� at� st)

+ Et

∞∑
t=0

βt
l∑
j=0

γ
j
t

Nj+1∑
n=1

βn
(
h
j
0(xt+n� at+n� st+n)+ hj1(xt� at� st)

)|s0

]
� (39)

This holds because there is one forward-looking constraint (3) for each possible se-
quence of shocks st , hence γjt is a function of st and can be included inside Et . Using the
law of iterated expectations, this implies that Et can be deleted from the second line of
(39). We take this for granted in the remainder of Appendix A.

Now, fix a period t ≥ 0 and a j ≤ k, so thatNj = ∞. We see that in the total sum defining
Lμ, the term h

j
0(xt� at� st) appears in the first line of (39)—the objective function of PPμ—

premultiplied by βtμj . This term also appears in the second line of (39) in the forward-
looking constraints (3) at all t ≤ t; in the second line, it is multiplied by the discounting βn

for n= t− t and then again by βt . Therefore, in the total sum in (39),Q(st |s0)h
j
0(xt� at� st)

is multiplied by the following term:

βtμj + γj0βt +β1γ
j
1β

t−1 + · · · +βt−1γ
j

t−1β
1 = βt

[
t−1∑
i=0

γ
j
i +μj

]
= βtμj

t
�

The equalities follow from simple algebra, (6), and j ≤ k. This gives that (4) and (5) are
equivalent for j ≤ k.

Similarly, fix t ≥ 0 for j > k so that Nj = 0. Then hj0(xt� at� st) for t > 0 appears in the
first line of Lμ premultiplied by β0μj and it does not appear in the second line. For t > 0,
the term appears once in the forward-looking constraint of t − 1, therefore multiplied by
βt−1γ

j

t−1β
1. Given (6) for j > k, we have μj

t
= γt−1 for t > 0 and μj0 = μj , so that the term

h
j
0(xt� at� st) is multiplied in the total sum above by βtμj

t
.

Hence (4) and (5) are equivalent.

39Cole and Kubler (2012) provided a generalization to the non-uniqueness case for a restricted class of
models. Marimon and Werner (2019) follow our approach more closely and, applying their extension of the
envelope theorem, provide a recursive formulation for the non-differentiable case.
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APPENDIX B: PROOFS OF THEOREMS 1 AND 2 AND PROPOSITION 1

The Infinite-Dimensional Formulation

For some of the proofs, it is convenient to describe the infinite-dimensional formulation
of PPμ. The underlying uncertainty takes the form of an exogenous stochastic process
{st}∞

t=0, st ∈ S, defined on the probability space (S∞�S�P). As usual, st denotes a history
(s0� � � � � st) ∈ St , St the σ-algebra of events of st and {st}∞

t=0 ∈ S∞, with S the corresponding
σ-algebra. An action in period t, history st , is denoted by at(st), where at(st) ∈A⊂ Rm.
When there is no confusion, it is simply denoted by at . Plans, a = {at}∞

t=0, are elements
of A = {a : ∀t ≥ 0� at : St →A and at ∈ Lm

∞(St�St � P)}, where Lm
∞(St�St � P) denotes the

space of m-valued, essentially bounded, St-measurable functions. The corresponding en-
dogenous state variables are elements of X = {x : ∀t ≥ 0�xt ∈Ln

∞(St�St � P)}.
We now define preferences, sets of feasible actions, and problems, given initial condi-

tions (x� s). A plan a ∈A and a corresponding x ∈X are evaluated in PPμ by

f(x�μ�s)(a)= E0

l∑
j=0

Nj∑
t=0

βtμjh
j
0(xt� at� st)�

We can describe the forward-looking constraints, coordinatewise, g(x�s)(·)t : A →
Ll+1

∞ (St�St � P) by

g(x�s)(a)
j
t = Et

[Nj+1∑
n=1

βnh
j
0(xt+n� at+n� st+n)

]
+ hj1(xt� at� st)�

The corresponding feasible set of plans is then

B(x� s)= {
a ∈A : p(xt� at� st)≥ 0� g(x�s)(a)t ≥ 0�x ∈X �

xt+1 = �(xt� at� st+1) for all t ≥ 0� given (x0� s0)= (x� s)}�
Therefore, the PPμ can be written in compact form as

PPμ sup
a∈B(x�s)

f(x�μ�s)(a)� (40)

We denote solutions to this problem as a∗ and the corresponding sequence of state
variables as x∗. When the solution exists, the value function of PPμ can be written
as Vμ(x� s) = f(x�μ�s)(a

∗). It will be useful to consider a feasible set that disregards the
forward-looking constraints in the initial period, resulting in

B′(x� s)= {
a ∈A : p(xt� at� st)≥ 0� g(x�s)(a)t+1 ≥ 0;x ∈X �

xt+1 = �(xt� at� st+1) for all t ≥ 0� given (x0� s0)= (x� s)}�
Then, the SPPμ problem defined above can be written using this formulation as

SPPμ SP inf
γ∈Rl+

sup
a∈B′(x�s)

{
f(x�μ��s)(a)+ γg(x�s)(a)0

}
�

PROOF OF THEOREM 1 PART I (SPPμ ⇒ PPμ): It follows from Theorem 2, Section 8.4
in Luenberger (1969, p. 221) that a∗ solves PPμ and the value at the saddle-point is the
same as the value at the maximum, hence SV (x�μ� s)= Vμ(x� s). Q.E.D.
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PROOF OF THEOREM 1 PART II (SPPμ ⇒ SPFE): We need to show that W (x�μ� s) =
Vμ(x� s) = SV (x�μ� s) satisfies the SPFE and that the period-zero solution of SPPμ at
(x� s), namely, (a∗

0�γ
∗
0), is a saddle-point of SPFE at (x�μ� s).

First, we show that, given γ∗
0 , a∗

0 satisfies the maximand part (20) for W = SV . Take
any ã ∈A such that p(x� ã� s) ≥ 0. Consider the sequence obtained by starting at ã and
then continuing to the optimal solution of PPμ∗

1
from t = 1 onwards given initial condition

x̃1 = �(x� ã� s1). To properly express this, we introduce some notation. Let the shift op-
erator σ : St+1 → St be given by σ(st)≡ σ(s0� s1� � � � � st)= (s1� s2� � � � � st), and—denoting
(a∗(x�μ� s)�γ∗(x�μ� s)) a solution to SPPμ at (x� s)—let the solution plan following a
deviation ã have the following representation:

ã0(x�μ� s)= ã and

ãt(x�μ� s)
(
st

) = a∗
t−1

(
x̃1�μ

∗
1(x�μ� s)� s1

)(
σ

(
st

))
for all t > 0�

Part I of this theorem and the definition of PPμ∗
1

imply that

E
[
SV

(
x̃1�μ

∗
1� s1

)|s] = E
[
Vμ∗

1
(x̃1� s1)|s

] = E0

l∑
j=0

μ
∗j
1

Nj∑
t=0

βth
j
0(x̃t+1� ãt+1� st+1)� (41)

Since the sequence ã is feasible for SPPμ (i.e., ã may fail the forward-looking constraint
at t = 0, but recall that this constraint does not constrain the feasible set in SPPμ) and
since a∗(x�μ� s) solves the sup part of SPPμ, given (41) we have the first inequality in

μh0(x� ã� s)+ γ∗h1(x� ã� s)+βE
[
SV

(
x̃1�μ

∗
1� s1

)|s]
≤ μh0

(
x�a∗

0� s
) + γ∗h1

(
x�a∗

0� s
) +βE0

l∑
j=0

μ
∗j
1

Nj∑
t=0

βth
j
0

(
x∗
t+1� a

∗
t+1� st+1

)
= μh0

(
x�a∗

0� s
) + γ∗h1

(
x�a∗

0� s
) +βE

[
SV

(
x∗

1�μ
∗
1� s1

)|s]�
The equality follows because (41) also works when ã is replaced by a∗(x�μ� s).

This proves that a∗
0 satisfies (20) when W = SV .

To show that γ∗
0 satisfies (19), note that, given any γ̃ ∈Rl+1

+ ,

E
[
SV

(
x∗

1�ϕ(μ� γ̃)� s1

)|s] = E
[
Vϕ(μ�γ̃)

(
x∗

1� s1

)|s]
≥ E

[
l∑
j=0

ϕ(μ� γ̃)j
Nj∑
t=0

βth
j
0

(
x∗
t+1� a

∗
t+1� st+1

) | s
]
�

where the inequality follows from the fact that the continuation of a∗ is feasible but not
necessarily optimal for PPϕ(μ�γ̃) at (x∗

1� s1). Using this and the fact that γ∗ solves the min
part of SPPμ, we have

μh0

(
x�a∗

0� s
) + γ̃h1

(
x�a∗

0� s
) +βE

[
SV

(
x∗

1�ϕ(μ� γ̃)� s1

)|s]
≥ μh0

(
x�a∗

0� s
) + γ̃h1

(
x�a∗

0� s
) +βE

[
l∑
j=0

ϕ(μ� γ̃)j
Nj∑
t=0

βth
j
0

(
x∗
t+1� a

∗
t+1� st+1

) | s
]

≥ μh0

(
x�a∗

0� s
) + γ∗h1

(
x�a∗

0� s
) +βE

[
SV

(
x∗

1�ϕ
(
μ�γ∗)� s1

)|s]�
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This proves that (a∗
0�γ

∗
0) ∈ ΨSV (x�μ� s). Finally, using the definition of SV in (21), we

have

SV (x�μ� s)= μh0

(
x�a∗

0� s
) + γ∗h1

(
x�a∗

0� s
) +βE

[
SV

(
x∗

1�ϕ
(
μ�γ∗)� s′)|s]� (42)

Therefore, SV satisfies SPFE. Q.E.D.

PROOF OF COROLLARY TO THEOREM 1: We have to show that, with the additional as-
sumptions, (PPμ ⇒ SPP)μ, that is, there exists a γ∗ ∈Rl+1

+ such that (a∗�γ∗) is a solution
to SPPμ with initial conditions (x� s). With the above formulation (40), this is an imme-
diate application of Theorem 1 (8.3) and Corollary 1 in Luenberger (1969, p. 217). To
see this, note that B′(x� s) is a convex subset of A, g(x�s)(·)0 : A→Ll+1

∞ (S0�S0�P), and by
Assumption A7,40 there is an ã ∈ B′(x� s) such that g(x�s)(̃a)0 > 0. Q.E.D.

PROOF OF PROPOSITION 1: Let Ŝ1 ⊂ S be the set such that, if s1 ∈ Ŝ1, then

Vμ∗
1

(
x∗

1� s1

)
>E

[
l∑
j=0

Nj∑
t=0

βtμ
∗j
1 h

j
0

(
x∗
t+1� a

∗
t+1� st+1

) | s1

]
�

We will show that Ŝ1 has probability zero.
The constraints in PPμ∗

1
are a subset of the constraints in PPμ. Therefore, the continu-

ation for a∗, namely {a∗
t }∞
t=1, is feasible for PPμ∗

1
with initial conditions (x∗

1� s1). If ŝ 1 ∈ Ŝ1,
there must exist a plan {̂at}∞

t=0 achieving a higher value than the value achieved by {a∗
t }∞
t=1

for PPμ∗
1

with initial conditions (x∗
1� ŝ1) so that

E

[
l∑
j=0

μ
j∗
1

Nj∑
t=0

βth
j
0

(
x∗
t+1� a

∗
t+1� st+1

) | s1 = ŝ1

]

<E

[
l∑
j=0

μ
j∗
1

Nj∑
t=0

βth
j
0(x̂t� ât� st) | s = ŝ1

]
� (43)

Denote by ã an allocation such that ã0 = a∗
0; it maintains the saddle-point for t > 0 so

{̃at}∞
t=1 = {a∗

t }∞
t=1 if s1 ∈ S\Ŝ1, while the solution switches so {̃at}∞

t=1 = {̂at}∞
t=0 if s1 ∈ Ŝ1. If

Prob(Ŝ1) > 0, we have

μh0

(
x0� a

∗
0� s0

) + γ∗
0h1

(
x0� a

∗
0� s0

) +βE

[
l∑
j=0

μ
j∗
1

Nj∑
t=0

βth
j
0

(
x∗
t+1� a

∗
t+1� st+1

) | s0

]

<μh0

(
x0� a

∗
0� s0

) + γ∗
0h1

(
x0� a

∗
0� s0

)
+βE

[
E

[
l∑
j=0

μ
j∗
1

Nj∑
t=0

βth
j
0(x̂t� ât� st) | s1 ∈ Ŝ1

] ∣∣∣ s0

]

40As already noted, Assumption A7 is weaker than the standard Slater’s condition but, when the concavity
assumption A6 is satisfied, it is equivalent.
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+βE

[
E

[
l∑
j=0

μ
j∗
1

Nj∑
t=0

βth
j
0

(
x∗
t+1� a

∗
t+1� st+1

) | s1 ∈ S\Ŝ1

] ∣∣ s0

]

= μh0(x0� ã0� s0)+ γ∗
0h1(x0� ã0� s0)+βE

[
l∑
j=0

μ
j∗
1

Nj∑
t=0

βth
j
0(x̃t+1� ãt+1� st+1) | s0

]
�

where the inequality follows from (43).
Finally, note that the plan ã is feasible for SPPμ. This is because since {̂at}∞

t=0 solves
PPμ∗

1
, it satisfies the constraints in (23) (note that ã will generically violate the forward-

looking constraint at t = 0, but this constraint is absent in (23)). Therefore, the above
inequality contradicts that a∗ solves the max part of SPPμ with initial conditions (x� s)
and it contradicts the assumption that (a∗�γ∗

0) is a saddle-point of SPPμ . It follows that
Prob(Ŝ1)= 0 or, equivalently, Vμ∗

1
(x∗

1� s1)≤ E[∑l

j=0

∑Nj
t=0β

tμ
∗j
1 h

j
0(x

∗
t+1� a

∗
t+1� st+1) | s1] a.s.

Using, again, the fact that the continuation of a feasible sequence for PPμ satisfies the
constraints of PPμ∗

1
, we have Vμ∗

1
(x∗

1� s1)≥ E[∑l

j=0

∑Nj
t=0β

tμ
∗j
1 h

j
0(x

∗
t+1� a

∗
t+1� st+1) | s1].

Therefore, Vμ∗
1
(x∗

1� s1)= E[∑l

j=0

∑Nj
t=0β

tμ
∗j
1 h

j
0(x

∗
t+1� a

∗
t+1� st+1) | s1] a.s. and {a∗

t }∞
t=1 solves

PPμ∗
1

with initial conditions (x∗
1� s1) a.s. Q.E.D.

PROOF OF THEOREM 2 PART II: We need to show that if (a∗�γ∗)(x�μ�s) is generated
by the saddle-point policy correspondence ΨW (i.e., (a∗

t � γ
∗
t ) ∈ ΨW (x

∗
t �μ

∗
t � st) for ev-

ery (t� st)), then a∗ is a solution to PPμ at (x� s), already knowing that it satisfies the
constraints of PPμ. In particular, if there is a program {̃at}∞

t=0, and {x̃t}∞
t=0, given by

x̃0 = x� x̃t+1 = �(x̃t� ãt� st+1), satisfying the constraints of PPμ with initial condition (x� s),
then this program cannot result in a higher value than W (x�μ� s). To this end, note that
the maximality condition (20) can be expressed as

μh0

(
x�a∗� s

) + γ∗h1

(
x�a∗� s

) +βE
[
ϕ

(
μ�γ∗)ω(

x∗′�ϕ
(
μ�γ∗)� s′)|s]

≥ μh0(x�a� s)+ γ∗h1(x�a� s)+βE
[
ϕ

(
μ�γ∗)ω(

x′�ϕ
(
μ�γ∗)� s′)|s] (44)

and

W
(
x∗
t �μ

∗
t � st

) = μ∗
t h0

(
x∗
t � a

∗
t � st

) +γ∗
t h1

(
x∗
t � a

∗
t � st

) +βE
[
W

(
x∗
t+1�ϕ

(
μ∗
t � γ

∗
t

)
� st+1

)|st]� (45)

Furthermore, to simplify the notation, let μ∗
1 = ϕ(μ�γ∗

0)� μ̃
∗
2 = ϕ(μ∗

1�γ
∗
1(x̃1))

41 and, for
t > 1, μ̃∗

t+1 = ϕ(μ̃∗
t � γ

∗
t (x̃t)); that is, μ̃∗

t is the co-state for the deviation plan. In what fol-
lows, we proceed by iteration of the SPFE (max) inequality, (44), and we expand the
value function according to (45). In particular, inequalities (46), (48), and (51) apply the
inequality (44), and the equalities (47) and (50) apply the equality (45), while equality (49)
simply rearranges terms and (52) uses the transversality condition, limT−→∞βTW = 0. We
conclude the proof of the max part of SPP by showing that the left-hand side of (46) is
greater than or equal to (53):

μh0

(
x�a∗

0� s
) + γ∗

0h1

(
x�a∗

0� s
) +βϕ(

μ�γ∗
0

)
E

[
ω

(
�
(
x�a∗

0� s1

)
�ϕ

(
μ�γ∗

0

)
� s1

)|s]
≥ μh0(x� ã0� s)+ γ∗

0h1(x� ã0� s)+βϕ(
μ�γ∗

0

)
E

[
ω

(
�(x� ã0� s1)�ϕ

(
μ�γ∗

0

)
� s1

)|s] (46)

41We also simplify notation by writing simply γ∗
1(x̃1) instead of γ∗

1(x̃1�μ
∗
1� s1).
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= μh0(x� ã0� s)+ γ∗
0h1(x� ã0� s)

+βEμ∗
1

[
h0

(
x̃1� a

∗
1(x̃1)� s1

) +βE
[
Ikω

(
�
(
x̃1� a

∗
1(x̃1)� s2

)
�ϕ

(
μ∗

1�γ
∗
1(x̃1)

)
� s2

)|s1

]|s]
+βEγ∗

1(x̃1)
[
h1

(
x̃1� a

∗
1(x̃1)� s1

)
+βE

[
ω

(
�
(
x̃1� a

∗
1(x̃1)� s2

)
�ϕ

(
μ∗

1�γ
∗
1(x̃1)

)
� s2

)|s1

]|s] (47)

≥ μh0(x� ã0� s)+ γ∗
0h1(x� ã0� s)

+βEμ∗
1

[
h0(x̃1� ã1� s1)+βE

[
Ikω

(
�(x̃1� ã1� s2)�ϕ

(
μ∗

1�γ
∗
1(x̃1)

)
� s2

)|s1

]|s]
+βEγ∗

1(x̃1)
[
h1(x̃1� ã1� s1)+βE

[
ω

(
�(x̃1� ã1� s2)�ϕ

(
μ∗

1�γ
∗
1(x̃1)

)
� s2

)|s1

]|s] (48)

= μ[
h0(x� ã0� s)+βE

[
Ikh0(x̃1� ã1� s1)|s

]]
+ γ∗

0

[
h1(x� ã0� s)+βE

[
h0(x̃1� ã1� s1)|s

]] +βIkE
[
γ∗

1(x̃1)h1(x̃1� ã1� s1)|s
]

+β2E
[
ϕ

(
μ∗

1�γ
∗
1(x̃1)

)
ω

(
�(x̃1� ã1� s2)�ϕ

(
μ∗

1�γ
∗
1(x̃1)

)
� s2

)|s] (49)

= μ[
h0(x� ã0� s)+βIkE

[
h0(x̃1� ã1� s1)+βE

[
h0

(
x̃2� a

∗
2(x̃2)� s2

)|s1

]|s]]
+ γ∗

0h1(x� ã0� s)+βE
[
h0(x̃1� ã1� s1)+βIkE

[
h0

(
x̃2� a

∗
2(x̃2)� s2

)|s1

]|s]
+βEγ∗

1(x̃1)
[
h1(x̃1� ã1� s1)+βE

[
h0

(
x̃2� a

∗
2(x̃2)� s2

)|s1

]|s]
+β2IkE

[
γ∗

2(x̃2)h1

(
x̃2� a

∗
2(x̃2)� s2

)|s]
+β3Eϕ

(
μ∗

2�γ
∗
2(x̃2)

)[
ω

(
�
(
x̃2� a

∗
2(x̃2)� s3

)
�ϕ

(
μ∗

2�γ
∗
2(x̃2)

)
� s3

)|s] (50)

· · ·

≥AT ≡ μ
[
h0(x� ã0� s)+βIkE

[
T−1∑
t=0

βth0(x̃t+1� ãt+1� st+1)|s
]]

+ γ∗
0

[
h1(x� ã0� s)+βE

[
h0(x̃1� ã1� s1)+ Ik

T−1∑
t=1

βth0(x̃t+1� ãt+1� st+1)|s
]]

+βE

[
γ∗

1(x̃1)

[
h1(x̃1� ã1� s1)+β

[
h0(x̃2� ã2� s2)+ Ik

T−1∑
t=2

βt−1h0(x̃t+1� ãt+1� st+1)

]]∣∣∣s]
· · ·
+βTE

[
γ∗
T (x̃T )h1(x̃T � ãT � sT )|s

]
+βT+1E

[
ϕ

(
μ∗
T �γ

∗
T (x̃T )

)
ω

(
�(x̃T � ãT � sT+1)�ϕ

(
μ∗
T �γ

∗
T (x̃T )

)
� sT+1

)|s]� (51)

lim
T−→∞

AT

= μ
[
h0(x� ã0� s)+βIkE

[ ∞∑
t=0

βth0(x̃t+1� ãt+1� st+1)|s
]]

+ γ∗
0

[
h1(x� ã0� s)+βE

[
h0(x̃1� ã1� s1)+ Ik

T−1∑
t=1

βth0(x̃t+1� ãt+1� st+1)|s
]]

(52)
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= μh0(x� ã0� s)+ γ∗
0h1(x� ã0� s)

+βE

[
l∑
j=0

ϕj
(
μ�γ∗

0

) Nj∑
t=0

βth
j
0(x̃t+1� ãt+1� st+1)|s

]
� (53)

In sum,

W (x�μ� s) ≥ μh0(x� ã0� s)+ γ∗
0h1(x� ã0� s)

+βE

[
l∑
j=0

ϕj
(
μ�γ∗

0

) Nj∑
t=0

βth
j
0(x̃t+1� ãt+1� st+1)|s

]
�

and, therefore, W (x�μ� s)= Vμ(x� s). Q.E.D.

APPENDIX C: PROPERTIES OF VALUE FUNCTIONS AND SUPPORTING RESULTS ON
SUBDIFFERENTIAL CALCULUS

Some Properties of Vμ(x� s) and SPFE

LEMMA 1A: Assume PPμ has a solution at (x� s) with value Vμ(x� s), for x ∈ X and
μ ∈Rl+1

+ . Then (i) Vμ(x� s) is convex and homogeneous of degree 1 in μ, (ii) if Assumptions
A2–A4 are satisfied, Vμ(·� s) is continuous and uniformly bounded, and (iii) if Assumptions
A5 and A6 are satisfied, Vμ(·� s) is concave.

PROOF: (i) To simplify notation, denote the solution of PPμ at (x� s) by (a∗
μ�γ

∗
μ) and

note that, by the definition of f , given any a, μ�μ′ ∈Rl+1
+ and scalars λ�λ′, we have

f(x�λμ+λ′μ′�s)(a)= λf(x�μ�s)(a)+ λ′f(x�μ′�s)(a) (54)

and, in particular, that f(x�λμ�s)(a)= λf(x�μ�s)(a).
To prove convexity, note that, given any μ�μ′ ∈Rl+1

+ and a scalar λ ∈ (0�1), we have

Vλμ+(1−λ)μ′(x� s)= λf(x�μ�s)
(
a∗
λμ+(1−λ)μ′

) + (1 − λ)f(x�μ′�s)
(
a∗
λμ+(1−λ)μ′

)
≤ λf(x�μ�s)

(
a∗
μ

) + (1 − λ)f(x�μ′�s)
(
a∗
μ′
)

= λVμ(x� s)+ (1 − λ)Vμ′(x� s)�

where the first equality follows from (54) and the inequality follows from the fact that a∗
μ

and a∗
μ′ maximize SPPμ and SPPμ′ , respectively.

To prove homogeneity of degree 1, fix a scalar λ > 0. Then, using (54) and the fact that
a∗
λμ and a∗

μ are maximal elements attaining Vλμ(x� s) and Vμ(x� s), respectively:

Vλμ(x� � s)= f(x�λμ�s)
(
a∗
λμ

) ≥ f(x�λμ�s)
(
a∗
μ

)
= λf(x�μ�s)

(
a∗
μ

) = λVμ(x� s)≥ λf(x�μ�s)
(
a∗
λμ

)
= f(x�λμ�s)

(
a∗
λμ

) = Vλμ(x� s)�

The proofs of (ii) and (iii) are straightforward: in particular, (ii) follows from applying
the theorem of the maximum (Stokey, Lucas, and Prescott (1989, Theorem 3.6)) and
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(iii) follows from the fact that the constraint sets are convex and the objective function
concave. Q.E.D.

LEMMA 2A: If the saddle-point problem SPFE at (x�μ� s), has a solution, its value is
unique.

PROOF: It is a standard argument: consider two solutions to the right-hand side of
SPFE at (x�μ� s), (̃a� γ̃) and (̂a� γ̂). Then, by repeated application of the saddle-point
min and max conditions:

μh0(x� ã� s)+ γ̃h1(x� ã� s)+βE
[
W

(
�
(
x� ã� s′

)
�ϕ(μ� γ̃)� s′

)|s]
≥ μh0(x� â� s)+ γ̃h1(x� â� s)+βE

[
W

(
�
(
x� â� s′

)
�ϕ(μ� γ̃)� s′

)|s]
≥ μh0(x� â� s)+ γ̂h1(x� â� s)+βE

[
W

(
�
(
x� â� s′

)
�ϕ(μ� γ̂)� s′

)|s]
≥ μh0(x� ã� s)+ γ̂h1(x� ã� s)+βE

[
W

(
�
(
x� ã� s′

)
�ϕ(μ� γ̂)� s′

)|s]
≥ μh0(x� ã� s)+ γ̃h1(x� ã� s)+βE

[
W

(
�
(
x� ã� s′

)
�ϕ(μ� γ̃)� s′

)|s]�
Therefore, the value of the objective at both (̃a� γ̃) and (̂a� γ̂) coincides. Q.E.D.

Properties of Convex Homogeneous Functions

To simplify the exposition of these properties, let F :Rm+ →R be continuous and convex,
satisfying F(x) <∞ for some x� 0. The subdifferential set of F at y , denoted ∂F(y), is
given by

∂F(y)= {
z ∈Rm | F(

y ′) ≥ F(y)+ (
y ′ − y)z for all y ′ ∈Rm+

}
�

The following facts, regarding F , support our discussion on “uniqueness and sufficiency
without differentiability” in Section 3 and, in particular, are used in proving Lemma 1 and
Lemma 5A (below):

F1. (i) ∂F(y) is a closed and convex set; (ii) if y ∈ Rm++, ∂F(y) is also non-empty and
bounded, and (iii) the correspondence ∂F :Rm+ −→Rm is upper hemicontinuous.

F2. F is differentiable at y if, and only if, ∂F(y) consists of a single vector; that is,
∂F(y)= {∇F(y)}, where ∇F(y) is called the gradient of F at y .

F3.
LEMMA 3A—Euler’s formula: If F is also homogeneous of degree 1 and z ∈ ∂F(y), then

F(y)= yz. Furthermore, for any λ > 0, ∂F(λy)= ∂F(y), that is, the subdifferential is homo-
geneous of degree 0.

F4.
LEMMA 4A—Kuhn–Tucker: x∗ minimizes F on Rm+ if and only if there is a f (x∗) ∈

∂F(x∗) such that: (i) f (x∗)≥ 0, and (ii) x∗f (x∗)= 0.
F5. If F = ∑m

i=1 αiF
i, where, for i= 1� � � � �m, αi > 0 and Fi : Rm+ → R is convex, then

∂F(y)= ∑m

i=1 αi∂F
i(y).

Facts F1 and F2 are well known and can be found in Rockafellar (1970): F1(i) follows
immediately from the definition of the subdifferential (Chapter 23); F1(ii) from Theorem
23.4; F1(iii) from Theorem 24.4, and F2 from Theorem 25.1. Similarly, Fact F5 follows
from Theorem 23.8.
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PROOF OF LEMMA 3A: Let z ∈ ∂F(y). Then, for any λ > 0, F(λy)−F(y)≥ (λy − y)z,
and, by homogeneity of degree 1, (λ− 1)F(y)≥ (λ− 1)yz. If λ > 1, this weak inequality
results in F(y)≥ yz, while if λ ∈ (0�1), it results in F(y)≤ yz. Therefore, F(y)= yz. To
see that ∂F(y) is homogeneous of degree zero, note that, for any λ > 0,

∂F(λy)= {
z ∈Rm | F(

y ′) ≥ F(λy)+ (
y ′ − λy)z for all y ′ ∈Rm+

}
= {

z ∈Rm | F(
λy ′′) ≥ F(λy)+ (

λy ′′ − λy)z for all y ′′ ∈Rm+
}

= {
z ∈Rm | F(

y ′′) ≥ F(y)+ (
y ′′ − y)z for all y ′′ ∈Rm+

}
= ∂F(y)� Q.E.D.

PROOF OF LEMMA 4A: The proof is based on Rockafellar’s (1981, Chapter 5) charac-
terization of stationary points using subdifferential calculus (R81 in what follows). First,
we prove necessity: let x∗ minimize F on Rm+ . Since the constrained set is convex with
a non-empty interior, x∗ minimizes F(x) − λ∗x, where λ∗ ∈ Rm+ and λ∗j = 0 if x∗j > 0;
otherwise x∗ would not be a minimizer. By R81, Proposition 5A, 0 ∈ ∂{F(x)− λ∗x} and,
since {x ∈ Rm++|F(x) <∞} 
= ∅, ∂{F(x)− λ∗x} = ∂F(x)+ ∂{−λ∗x} (R81, Theorem 5C);
that is, there exists f (x∗) ∈ ∂F(x∗) such that f (x∗) − λ∗ = 0. Therefore, f (x∗) ≥ 0 and
x∗f (x∗)− λ∗x∗ = x∗f (x∗)= 0.

To see sufficiency, note that since F is convex and f (x∗) ∈ ∂F(x∗), for any x ∈ Rm+ ,
F(x)− F(x∗) ≥ (x− x∗)f (x∗), but given (i) and (ii), the inequality simplifies to F(x)−
F(x∗)≥ 0. Q.E.D.

Sufficiency (Without Differentiability): Supporting Results

LEMMA 5A: Let W be continuous in (x�μ) and convex and homogeneous of degree 1 in
μ, for every s.

(i) If W (x�μ� s) is finite, ∂μW (x�μ� s) 
= ∅ and if ω(x�μ� s) ∈ ∂μW (x�μ� s), then
W (x�μ� s)= μω(x�μ� s) and, for all λ > 0, ω(x�μ� s) ∈ ∂μW (x�λμ� s). Furthermore, W
is differentiable in μ at (x�μ� s) if, and only if, ∂μW (x�μ� s) is a singleton.

(ii) (a∗�γ∗) ∈ΨW (x�μ� s) if and only if, for all s′ reached from s, there is aω(x∗′�μ∗′� s′) ∈
∂μW (x

∗′�μ∗′� s′) with x∗′ = �(x�a∗� s′) and μ∗′ = ϕ(μ�γ∗), such that

μh0

(
x�a∗� s

) + γ∗h1

(
x�a∗� s

) +βE
[
ϕ

(
μ�γ∗)ω(

x∗′�ϕ
(
μ�γ∗)� s′)|s]

≥ μh0(x�a� s)+ γ∗h1(x�a� s)+βE
[
ϕ

(
μ�γ∗)ω(

x′�ϕ
(
μ�γ∗)� s′)|s]� (55)

for all a ∈A and x′ = �(x�a� s′) satisfying p(x�a� s)≥ 0, and, for j = 0� � � � � l,

h
j
1

(
x�a∗� s

) +βE
[
ωj

(
x∗′�ϕ

(
μ�γ∗)� s′)|s] ≥ 0� (56)

γ∗j[hj1(x�a∗� s
) +βE

[
ωj

(
x∗′�ϕ

(
μ�γ∗)� s′)|s]] = 0� (57)

PROOF: Part (i) follows from Facts F1–F3. In particular, F3 implies that if z ∈ ∂F(y),
then z ∈ ∂F(λy). The saddle-point max inequality condition of part (ii) (55) is the same
as the max saddle-point condition of SPFE expressed with its Euler representation. Since
by (i) W always has at least one Euler representation, the proof of (55) is immediate. To
see the min inequality of part (ii), begin by rewriting the first inequality of ΨW (x�μ� s),
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(19), as

γh1

(
x�a∗� s

) +βE
[
W

(
�
(
x�a∗� s′

)
�ϕ(μ�γ)� s′

)|s]
≥ γ∗h1

(
x�a∗� s

) +βE
[
W

(
�
(
x�a∗� s′

)
�ϕ

(
μ�γ∗)� s′)|s]�

Then, let

F(x�a∗�μ�s)(γ)= γh1

(
x�a∗� s

) +βE
[
W

(
x∗′�ϕ(μ�γ)� s′

)|s]�
By Fact F5,

∂F(x�a∗�μ�s)(γ)= h1

(
x�a∗� s

) +βE
[
∂μW

(
x∗′�ϕ(μ�γ)� s′

)|s]�
and it follows from F4 (Lemma 4A) that the Kuhn–Tucker conditions (56) and (57) are
necessary and sufficient. Q.E.D.

APPENDIX D: PROOF OF THEOREM 3

The proof of Theorem 3(i) is based on the following two lemmas and Kakutani’s fixed
point theorem.

LEMMA 6A: Assume A4 and that W ∈ Mbc satisfies SIC. There exists a C > 0 such that
if (a∗�γ∗) ∈ΨW (x�μ� s), then ‖γ∗‖ ≤ C‖μ‖.

Before we prove Lemma 6A, note that condition SIC implies the following condition,
which is a version of Karlin’s condition:42

SK. W , with W = μω, satisfies the interiority condition if there exists an ε > 0, such
that for any (x� s) ∈ X × S, μ ∈ Rl+1

+ , and γ ∈ Rl+1
+ �γ 
= 0, there exists ã ∈A, satisfying

p(x� ã� s) > 0, and γ[h1(x� ã� s)+βE[ω(�(x� ã� s′)�μ� s′)|s]] ≥ ε.

PROOF: Lemma 6A is trivially satisfied if γ∗ = 0; therefore, let (a∗�γ∗) ∈ ΨW (x�μ� s)
with γ∗ 
= 0 and the Euler representationsW (�(x�a∗� s′)�ϕ(μ�γ∗)� s′)= μ′∗ω(x′∗�μ′∗� s′),
and let ã ∈ B(x� s) be the interior allocation of the SIC condition. Using the notation of
Section 3 (Footnote 26), the slackness condition γ∗[h1(x�a

∗� s)+βE[ω(x′∗�μ′∗� s′)|s]] =
0, and SIC, the max inequality can be expressed as

μ
[
h0

(
x�a∗� s

) +βE
[
Ikω

(
x′∗�μ′∗� s′

)|s] − (
h0(x� ã� s)+βE

[
Ikω

(
�
(
x� ã� s′

)
�μ′∗� s′

)|s])]
≥ γ∗[h1(x� ã� s)+βE

[
ω

(
�
(
x� ã� s′

)
�μ′∗� s′

)|s]] ≥ ε∥∥γ∗∥∥�
If there is no uniform bound, then, for any δ > 0, there is a Kuhn–Tucker multiplier γ∗

such that δ‖γ∗‖ ≥ ‖μ‖, but in this case it must be that

δ
μ

‖μ‖
[
h0

(
x�a∗� s

) +βE
[
Ikω

(
x′∗�μ′∗� s′

)|s]
− (
h0(x� ã� s)+βE

[
Ikω

(
�
(
x� ã� s′

)
�μ′∗� s′

)|s])]
≥ μ∥∥γ∗∥∥[

h0

(
x�a∗� s

) +βE
[
ωj

(
�
(
x�a∗� s′

)
�μ′∗� s′

)|s]
42See Takayama (1985).
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− (
h0(x� ã� s)+βE

[
Ikω

(
�
(
x� ã� s′

)
�μ′∗� s′

)|s])]
≥ γ∗∥∥γ∗∥∥[

h1(x� ã� s)+βE
[
ω

(
�
(
x� ã� s′

)
�μ′∗� s′

)|s]] ≥ ε�

which, by SIC, is not possible for δ small enough, since all the terms in the main brackets
are bounded. Therefore, there exists a C > 0 such that ‖γ∗‖ ≤ C‖μ‖.

The next lemma requires some additional notation. Let B(x� s)= {a ∈A : p(x�a� s)≥
0}, and G(μ)= {γ ∈Rl+1

+ : ‖γ‖ ≤ C‖μ‖}, where ‖μ‖> 0. Define

SPaW (x�μ�s)(γ)

=
{
a ∈ B(x� s) : μh0(x�a� s)+ γh1(x�a� s)+βE

[
W

(
�
(
x�a� s′

)
�ϕ(μ�γ)� s′

)|s]
≥ μh0(x� ã� s)+ γh1(x� ã� s)+βE

[
W

(
�
(
x� ã� s′

)
�ϕ(μ�γ)� s′

)|s]� ∀̃a ∈ B(x� s)
}
�

SPγW (x�μ�s)(a)

=
{
γ ∈G(μ) : μh0(x�a� s)+ γh1(x�a� s)+βE

[
W

(
�
(
x�a� s′

)
�ϕ(μ�γ)� s′

)|s]
≤ μh0(x�a� s)+ γ̃h1(x�a� s)+βE

[
W

(
�
(
x�a� s′

)
�ϕ(μ� γ̃)� s′

)|s]�∀γ̃ ∈G(μ)
}
�

and SPW (x�μ�s) : B(x� s) × G(μ) → B(x� s) × G(μ) by SPW (x�μ�s)(a�γ) = (SPaW (x�μ�s)(γ)�
SPγW (x�μ�s)(a)). Q.E.D.

LEMMA 7A: Assume A1–A5 and that W ∈ Mbc satisfies SIC. The correspondence
SPW (x�μ�s) is non-empty, convex-valued, and upper hemicontinuous.

PROOF: SPW (x�μ�s) is a max and min problem of continuous functions on compact sets
with non-empty interiors and, therefore, for all (a�γ) ∈ B(x� s)×G(μ) is non-empty and,
given our concavity assumptions, it is convex-valued. To see that it is upper hemicontin-
uous, let (an�γn)→ (a�γ) with an ∈ SPaW (x�μ�s)(γn) and γn ∈ SPγW (x�μ�s)(an)—that is, for all
ã ∈ B(x� s), an � ã, and for all γ̃ ∈G(μ), γn � γ̃, for all n, but, by continuity of the implied
functions, a� ã and γ � γ̃, therefore (a�γ) ∈ SPW (x�μ�s)(a�γ). Q.E.D.

PROOF OF THEOREM 3(I): The assumptions of Lemmas 6A and 7A are also assumed
in Theorem 3(i); therefore, the correspondence SPW (x�μ�s) : B(x� s)×G(μ)→ B(x� s)×
G(μ)mapping non-empty, convex, and compact sets to themselves, is non-empty, convex-
valued, and upper hemicontinuous, and by Kakutani’s fixed point theorem (e.g., Mas-
Colell, Whinston, and Green (1995)), there exists (a∗�γ∗) ∈ SPW (x�μ�s)(a∗�γ∗). Finally, that
a∗ is unique when W ∈ Mbc and Assumption A6s is satisfied, is a standard result (see
footnote 23). Q.E.D.

Before we prove Theorem 3(ii), note that, given the assumptions of Theorem 3,
(a∗�γ∗) ∈ SPW (x�μ�s)(a∗�γ∗) if and only if (a∗�γ∗) ∈ΨW (x�μ� s). If (a∗�γ∗) ∈ SPW (x�μ�s)(a∗�
γ∗), then (a∗�γ∗) satisfies inequalities (19)–(20), with the former restricted to G(μ),
but by Lemma 6A this restriction is not binding once SIC is assumed. Conversely,
if (a∗�γ∗) ∈ ΨW (x�μ� s), then a∗ ∈ SPaW (x�μ�s)(γ

∗) and γ∗ ∈ SPγW (x�μ�s)(a
∗). Obviously,

only when saddle-point solutions are unique—that is, (a∗�γ∗) = ψW (x�μ� s)—we have
ψW (x�μ� s)= SPW (x�μ�s)(a∗�γ∗)= (a∗�γ∗).

PROOF OF THEOREM 3(II): First we show that, given W ∈ M, T ∗W (·� ·� s) is also con-
tinuous by extending the theorem of the maximum to saddle-points. That SPW (x�μ�s) satis-
fies the closed-graph property (Lemma 7A) implies that ΨW (x�μ� s) ⊂ B(x� s) ×G(μ)
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is closed. Furthermore, B(·� s) : X −→ A and G(·): Rl+1
+ → Rl+1

+ are continuous cor-
respondences. Now, to show that ΨW is an upper hemicontinuous correspondence,
fix (x�μ) and let the sequence (xn�μn) → (x�μ) and (a∗

n� γ
∗
n) ∈ ΨW (xn�μn� s), for all

n. Since B(·� s) and G(·) are upper hemicontinuous, there exists a subsequence (a∗
nk

,
γ∗
nk
) → (a∗, γ∗) ∈ B(x� s) × G(μ) with (a∗

nk
, γ∗

nk
) ∈ ΨW (xnk�μn� s). Given an arbitrary

(̂a� γ̂) ∈ B(x� s) × G(μ), since B(·� s) and G(·) are lower hemicontinuous, there exists
a subsequence (̂ank� γ̂nk)→ (̂a� γ̂) with (̂ank� γ̂nk) ∈ B(xnk� s)×G(μnk); that is,

μnkh0

(
xnk� a

∗
nk
� s

) + γ̂nkh1

(
xnk� a

∗
nk
� s

) +βE
[
W

(
�
(
xnk� a

∗
nk
� s′

)
�ϕ(μnk� γ̂nk)� s

′)|s]
≥ μnkh0

(
xnk� a

∗
nk
� s

) + γ∗
nk
h1

(
xnk� a

∗
nk
� s

) +βE
[
W

(
�
(
xnk� a

∗
nk
� s′

)
�ϕ

(
μnk�γ

∗
nk

)
� s′

)|s]
≥ μnkh0(xnk� ânk� s)+ γ∗

nk
h1(xnk� ânk� s)+βE

[
W

(
�
(
xnk� ânk� s

′)�ϕ(
μnk�γ

∗
nk

)
� s′

)|s]�
and by continuity,

μh0

(
x�a∗� s

) + γ̂h1

(
x�a∗� s

) +βE
[
W

(
�
(
x�a∗� s′

)
�ϕ(μ� γ̂)� s′

)|s]
≥ μh0

(
x�a∗� s

) + γ∗h1

(
x�a∗� s

) +βE
[
W

(
�
(
x�a∗� s′

)
�ϕ

(
μ�γ∗)� s′)|s]

≥ μh0(x� â� s)+ γ∗h1(x� â� s)+βE
[
W

(
�
(
x� â� s′

)
�ϕ

(
μ�γ∗)� s′)|s]�

therefore (a∗�γ∗) ∈ΨW (x�μ� s). Now we can show that T ∗W (·� ·� s) is continuous. Again
let the sequence (xn�μn)→ (x�μ) and (a∗

n�γ
∗
n) ∈ΨW (xn�μn� s), for all n; then,

T ∗W (xn�μn� s)= μn
[
h0

(
xn�a

∗
n� s

) +βE
[
Ikω

(
�
(
xn�a

∗
n� s

′)�ϕ(
μn�γ

∗
n

)
� s′

)|s]]
+ γ∗

n

[
h1

(
xn�a

∗
n� s

) +βE
[
ω

(
�
(
xn�a

∗
n� s

′)�ϕ(
μn�γ

∗
n

)
� s′

)|s]]
= μn

[
h0

(
xn�a

∗
n� s

) +βE
[
Ikω

(
�
(
xn�a

∗
n� s

′)�ϕ(
μn�γ

∗
n

)
� s′

)|s]]�
Since the last equality is satisfied for every sequence and subsequence, we only need
to consider the last term. In particular, if we let W = lim supT ∗W (xn�μn� s) and W =
lim infT ∗W (xn�μn� s), then there is a subsequence {xnk�μnk} such that

W = limμnk
[
h0

(
xnk� a

∗
nk
� s

) +βE
[
Ikω

(
�
(
xnk� a

∗
nk
� s′

)
�ϕ

(
μnk�γ

∗
nk

)
� s′

)|s]]
and, by the upper hemicontinuity of ΨW , there is a further subsequence (a∗

nkr
� γ∗

nkr
) ∈

ΨW (xnkr �μnkr � s) converging to (a∗�γ∗) ∈ΨW (x�μ� s); therefore,W = limT ∗W (xnkr �μnkr �
s) = T ∗W (x�μ� s). Since the same argument applies to W , it follows that T ∗W (xn�μn�
s)→ T ∗W (x�μ� s). We now show that the remaining properties of M are preserved.

That T ∗W is also bounded follows from Assumptions A3–A4 and the boundedness con-
dition on W . Furthermore, by Assumption A1b, T ∗W is measurable; therefore, it sat-
isfies (i) of the definition of Mb. To see that T ∗W is homogeneous of degree 1 (i.e.,
T ∗W (x�λμ� s) = λT ∗W (x�μ� s), for any λ > 0), let (a∗�γ∗) be a solution to the saddle-
point Bellman equation at (x�μ� s)—that is, (a∗�γ∗) ∈ ΨW (x�μ� s). It is enough to show
that, for any λ > 0, (a∗�λγ∗) ∈ΨW (x�λμ� s)—that is, γ∗(x�λμ� s)= λγ∗(x�μ� s)—since

λ
(
T ∗W

)
(x�μ� s)= λ[μh0

(
x�a∗� s

) + γ∗h1

(
x�a∗� s

) +βEW
(
x∗′�ϕ

(
μ�γ∗)� s′)]�

andW (x∗′�ϕ(λμ�λγ∗)� s′)= λW (x∗′�ϕ(μ�γ∗)� s′). For any γ ≥ 0, let γλ ≡ γλ−1; then, for
any a ∈A(x� s) (resulting in x′ = �(x�a� s′)) and γ ≥ 0,

λμh0

(
x�a∗� s

) + γh1

(
x�a∗� s

) +βEW
(
x∗′�ϕ(λμ�γ)� s′

)
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≡ λμh0

(
x�a∗� s

) + λγλh1

(
x�a∗� s

) +βEW
(
x∗′�ϕ(λμ�λγλ)� s′

)
= λ[μh0

(
x�a∗� s

) + γλh1

(
x�a∗� s

) +βEW
(
x∗′�ϕ(μ�γλ)� s′

)]
≥ λ[μh0

(
x�a∗� s

) + γ∗(x�μ� s)h1

(
x�a∗� s

) +βEW
(
x∗′�ϕ

(
μ�γ∗(x�μ� s)

)
� s′

)]
= λμh0

(
x�a∗� s

) + γ∗(x�λμ� s)h1

(
x�a∗� s

) +βEW
(
x∗′�ϕ

(
λμ�γ∗(x�λμ� s)

)
� s′

)
≥ λ[μh0(x�a� s)+ γ∗(x�μ� s)h1(x�a� s)+βEW

(
x′�ϕ

(
μ�γ∗(x�μ� s)

)
� s′

)]
= λμh0(x�a� s)+ γ∗(x�λμ� s)h1(x�a� s)+βEW

(
x′�ϕ

(
λμ�γ∗(x�λμ� s)

)
� s′

)
�

The three equalities follow from the above definitions and the fact thatW is homogeneous
of degree 1 in μ, while the two inequalities follow from the fact that (a∗�γ∗(x�μ� s)) ∈
Ψ(T ∗W )(x�μ� s). This shows that (a∗�γ∗(x�λμ� s)) ∈Ψ(T ∗W )(x�λμ� s) and, in fact, the sec-
ond equality shows that (T ∗W )(x�λμ� s)= λ(T ∗W )(x�μ� s).

To show that T ∗W is convex, choose arbitrary α ∈ (0�1), μ, μ̃, in Rl+1
+ and (x� s).

Let μα ≡ αμ + (1 − α)μ̃, (a∗
α�γ

∗
α) ∈ Ψ(T ∗W )(x�μα� s), x∗′

α = �(x�a∗
α� s

′), and (a∗�γ∗) ∈
Ψ(T ∗W )(x�μ� s), x∗′ = �(x�a∗� s′)(̃a∗� γ̃∗) ∈ Ψ(T ∗W )(x� μ̃� s)� x̃

∗′ = �(x� ã∗� s′), and γ̃∗
α =

αγ∗ + (1 − α)γ̃∗; then(
T ∗W

)
(x�μα� s)

= μαh0

(
x�a∗

α� s
) + γ∗

αh1

(
x�a∗

α� s
) +βE

[
W

(
x∗′
α �ϕ

(
μα�γ

∗
α

)
� s′

)|s]
≤ μαh0

(
x�a∗

α� s
) + γ̃∗

αh1

(
x�a∗

α� s
) +βE

[
W

(
x∗′
α �ϕ

(
μα� γ̃

∗
α

)
� s′

)|s]
≤ μαh0

(
x�a∗

α� s
) + γ̃∗

αh1

(
x�a∗

α� s
) +βE

[
αW

(
x∗′
α �ϕ

(
μ�γ∗)� s′)

+ (1 − α)W (
x∗′
α �ϕ

(
μ̃� γ̃∗)� s′)|s]

= α[
μh0

(
x�a∗

α� s
) + γ∗h1

(
x�a∗

α� s
) +βEW

(
x∗′
α �ϕ

(
μ�γ∗)� s′)]

+ (1 − α)[μ̃h0

(
x�a∗

α� s
) + γ̃∗h1

(
x�a∗

α� s
) +βEW

(
x∗′
α �ϕ

(
μ̃� γ̃∗)� s′)]

≤ α[
μh0

(
x�a∗� s

) + γ∗h1

(
x�a∗� s

) +βEW
(
x∗′�ϕ

(
μ�γ∗)� s′)]

+ (1 − α)[μ̃h0

(
x� ã∗� s

) + γ̃∗h1

(
x� ã∗� s

) +βEW
(
x̃∗′�ϕ

(
μ̃� γ̃∗)� s′)]

= α(
T ∗W

)
(x�μ� s)+ (1 − α)(T ∗W

)
(x� μ̃� s)�

where the first inequality follows from the fact that γ∗
α is a minimizer at (x�μα� s), the

second from the convexity ofW , and the third from the maximality of a∗ and ã∗ at (x�μ� s)
and (x� μ̃� s) respectively. Q.E.D.

PROOF OF THEOREM 3(III): This is just an application of Blackwell’s sufficiency condi-
tions for a contraction (e.g., Stokey, Lucas, and Prescott (1989, Theorem 3.3)). The fol-
lowing Lemmas 8A–10A show that T ∗ satisfies the conditions of the contraction mapping
theorem and Blackwell’s sufficiency conditions. Q.E.D.

LEMMA 8A: M is a non-empty complete metric space (recall that M denotes either Mb

or Mbc).

PROOF: It follows from the definition of M that it is non-empty. Without accounting
for the homogeneity property, it follows from standard arguments (see, e.g., Stokey, Lu-
cas, and Prescott (1989, Theorem 3.1)) that every Cauchy sequence {W n} ∈M converges
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to W ∈M satisfying (i) and the convexity property (ii) (and (iii) if W ∈Mbc). To see that
the homogeneity property is also satisfied, note that for any (x�μ� s) and λ > 0,∣∣W (x�λμ� s)− λW (x�μ� s)∣∣

= ∣∣W (x�λμ� s)−W n(x�λμ� s)+ λW n(x�μ� s)− λW (x�μ� s)∣∣
≤ ∣∣W (x�λμ� s)−W n(x�λμ� s)

∣∣ + λ∣∣W n(x�μ� s)−W (x�μ� s)∣∣
→ 0� Q.E.D.

LEMMA 9A—Monotonicity: Let Ŵ ∈ M and W̃ ∈ M be such that Ŵ ≤ W̃ . Then
(T ∗Ŵ )≤ (T ∗W̃ ).

PROOF: Given (x�μ� s), let (̂a∗� γ̂∗) and (̃a∗� γ̃∗) be the solutions to (T ∗Ŵ ) and (T ∗W̃ ),
respectively. Then,(

T ∗Ŵ
)
(x�μ� s)

= SP min
γ≥0

max
a∈A(x�s)

{
μh0(x�a� s)+ γh1(x�a� s)+βEŴ

(
�
(
x�a� s′

)
�ϕ(μ�γ)� s′

)}
= μh0

(
x� â∗� s

) + γ̂∗h1

(
x� â∗� s

) +βEŴ
(
�
(
x� â∗� s′

)
�ϕ

(
μ� γ̂∗)� s′)

≤ μh0

(
x� â∗� s

) + γ̃∗h1

(
x� â∗� s

) +βEŴ
(
�
(
x� â∗� s′

)
�ϕ

(
μ� γ̃∗)� s′)

≤ μh0

(
x� â∗� s

) + γ̃∗h1

(
x� â∗� s

) +βEW̃
(
�
(
x� â∗� s′

)
�ϕ

(
μ� γ̃∗)� s′)

≤ μh0

(
x� ã∗� s

) + γ̃∗h1

(
x� ã∗� s

) +βEW̃
(
�
(
x� ã∗� s′

)
�ϕ

(
μ� γ̃∗)� s′)

= SP min
γ≥0

max
a∈A(x�s)

{
μh0(x�a� s)+ γh1(x�a� s)+βEW̃

(
�
(
x�a� s′

)
�ϕ(μ�γ)� s′

)}
= (
T ∗W̃

)
(x�μ� s)�

where the second inequality follows from Ŵ ≤ W̃ , and the first and the third inequalities
follow from the minimality of γ̂∗ and the maximality of ã∗, respectively. Q.E.D.

LEMMA 10A—Discounting: For all W ∈M, and r ∈R+, T ∗(W + r)≤ T ∗W +βr.
PROOF: First, note that (W + r)(x�μ� s)= μω(x�μ� s)+ r, therefore ΨW+r(x�μ� s)=

ΨW (x�μ� s). Let (a∗�γ∗) ∈ΨW (x�μ� s); then(
T ∗(W + r))(x�μ� s)= μh0

(
x�a∗� s

) + γ∗h1

(
x�a∗� s

) +β(
E

[
W

(
x∗′�ϕ

(
μ�γ∗)� s′)|s] + r)

= (
T ∗W

)
(x�μ� s)+βr� Q.E.D.
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