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a b s t r a c t

Standard practice in Bayesian VARs is to formulate priors on the autoregressive parameters,
but economists and policy makers actually have priors about the behavior of observable
variables. We show how to translate the prior on observables into a prior on parameters
using strict probability theory principles, a posterior can then be formed with standard
procedures. We state the inverse problem to be solved and we propose a numerical
algorithm that works well in practical situations. We prove equivalence to a fixed point
formulation and a convergence theorem for the algorithm. We use this framework in two
well known applications in the VAR literature, we show how priors on observables can
address some weaknesses of standard priors, serving as a cross check and an alternative
formulation.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The application of Bayesian methods has been a key element in the development of vector autoregressions (VARs) and
it has allowed for much progress in their application.1 The literature offers a variety of priors on VAR parameters, from a
practical point of view it is difficult to know which prior is the appropriate one in a given application and the choice of the
prior often matters significantly for the results.

From a strictly Bayesian point of view the fact that different priors give rise to different posteriors is not necessarily a
problem. If a prior on parameters really represents the beliefs of the analyst, the resulting posterior gives the correct answer
for these prior beliefs. In this case different posteriors would appropriately reflect differences in prior beliefs. However, VAR
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parameters usually lack intuitive interpretation so it is difficult to claim that an analyst has genuine prior beliefs about VAR
parameters.2 This is an important stumbling block in the Bayesian analysis of VARs.

We propose to formulate the prior on the observables instead of the VAR parameters. To the extent that economists do
have priors about the behavior of observable time series our proposal is to be ‘truly Bayesian’ and to incorporate this prior
knowledge in the estimation of VARs. This can be done by, first, ‘translating’ the prior on observables to an equivalent prior
on parameters and then, obtaining the posterior in the usual way. We do the ‘translation’ by solving an inverse problem, a
Fredholm equation of the first kind. We propose an algorithm to solve this equation by reformulating this inverse problem
as the fixed point of a certain mapping. We prove that under mild assumptions this fixed point condition is necessary and
sufficient for the solution and that an algorithm based on successive approximations converges locally to the fixed point.
Finally, we propose an approximate conjugate algorithm that speeds up computation.

To show that our approach works in practical applications we use it to reexamine two important VAR studies: the
estimation of fiscal policy effects in Blanchard and Perotti (2002) and the estimation of monetary policy effects in Christiano
et al. (1999). In each case we use a subjective prior about observables and compare with a few most popular variants of the
standard priors for VARs due to Litterman (1979) and Sims and Zha (1998). These examples serve several purposes. First, to
show that different standard priors available in the literature can give very different results, an applied economist would
have a hard time choosing among them. Second, that these standard priors on parameters imply very disparate behavior
of observables and sometimes prior beliefs on observables that a reasonable analyst would not hold, hence in such cases
the implied posterior is not well grounded on subjective Bayesian principles. Third, that the algorithm we propose works in
these examples and it gives an accurate solution to the inverse problem. Fourth, we demonstrate different methods to set
up priors on observables.

It is of independent interest that priors on observables matter for the economic implications of these empirical studies.
With our priors on observables we find a government spending multiplier that is about 50% larger than in Blanchard and
Perotti (2002) and the real effects ofmonetary policy that are almost twice as persistent as in Christiano et al. (1999), resulting
in a 30% larger cumulative effect on real GDP after 5 years. The priors on observables help clarify empirical results, as they
eliminate some of the inconsistencies that priors on parameters generate. Also, they reduce the posterior variance relative
to the noninformative prior by incorporating useful information into the inference, and since the posterior is derived from
a proper subjective prior the results have a clear Bayesian interpretation.

Differently from our approach, most papers on priors for VARs provide a recipe for constructing the prior. Litterman
(1986) and Sims and Zha (1998) state rules of thumb for specifying a few prior hyperparameters that determine the prior
distribution. Giannone et al. (2015) estimate these hyperparameters. Del Negro and Schorfheide (2004) generate a prior for a
VAR linked to a DSGEmodel and estimate both the DSGEmodel and the VAR simultaneously. By contrast, we offer no general
recipe. Our priors about observables are subjective and application specific, which, of course, demands more from the user.
In this paper we do not take a stand on what is the best way to specify a prior on observables, wemerely point out that there
are various methods to do so, and to make this point clear we use a different method for each example: we use knowledge
about the economy stated by Blanchard and Perotti in the first example and an empirical Bayes prior in the second example.
Future research should be directed at practical and intuitive ways of specifying priors about observables.

Our work gives a different perspective on the interpretation of the existing priors. At least, researchers should examine
if the VAR prior on parameters that they use implies a reasonable prior behavior for observables, as can be done with the
accuracy check thatwe propose in Section 3.3. In some cases the standard Sims and Zha priors can imply reasonable behavior
of the observables, and hence could be used as simplified priors on observables. In other cases they include dynamics of the
observables that an economist would rule out. In any case, the flat prior, used in some Bayesian VARs and implicit in the
frequentist VARs, is even worse, it always implies crazy beliefs about the observables. For example, it would imply a prior
statement that GDP is very likely to grow by more than, say, 100% in one quarter, a prior belief that no economist would
hold. In macroeconomic applications samples are often short and priors matter. Consider an applied economist having to
choose from a menu of standard priors in VARs. From our perspective this economist should at least check which prior has
the most reasonable implications for observables. From this vantage point the flat prior is likely to have a rough ride. Even
better if this researcher had enough time to specify his own prior on observables and apply our methodology for translating
priors.

What constitutes a good prior in practice is a very complicated issue. Since (Litterman, 1979) it is customary to judge the
practical virtues of VAR priors by examining their out-of-sample forecasting performance. The prior of Sims and Zha (1998) is
advocated on those grounds. Further research is needed on how the ‘reasonableness’ of the priors on observables translates
into improvements in forecasting performance. Another issue is the frequentist evaluation of priors on observables.3 In this
paper we focus on finding a posterior taking for granted that a certain prior on observables represents the analyst prior
knowledge, we leave the study of the above practical issues for future research.

Section 2 states the problemofmapping a prior on observables into prior on parameters, Section 3 presents the fixed point
formulation of this problem and convergence theorems, Section 4 shows the empirical applications. The appendix contains

2 To be specific: an analyst estimating the mean of a population, or the elasticity of substitution between two goods, can have a subjective prior about
the mean and the elasticity because these parameters have an intuitive interpretation. But it is difficult to give an interpretation, say, to the coefficient of
the third lag of GDP in the VAR equation with the price level on the left hand side, so an analyst is unlikely to have a subjective prior about it.
3 Jarociński and Marcet (2010) show an example of an empirical Bayes prior on observables that reduces the mean squared error of the estimator in the

autoregressive model relative to the various classical small sample bias correction techniques considered.
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the proofs and details of the empirical applications. An appendix available online provides additional implementation details,
empirical and Monte Carlo results.

Related literature
Prior elicitation. Almost all applications in Bayesian econometrics are based on priors specified directly on parameters,

and not on observables. Kadane et al. (1980) and Berger (1985, Ch.3.5) advocate specifying priors on observables, but they
acknowledge the difficulty of solving the inverse problem in practice and their recommendation has had limited impact in
econometrics. Kadane et al. (1996) is a small scale time series application.

Priors for VAR parameters used in the literature are loosely motivated by the implied behavior of the series. Such
motivations stand behind the Litterman, Sims and Zha priors (Litterman, 1979, and others), steady-state priors (Villani,
2009), priors about the cointegrating relations in the data (Giannone et al., 2018), DSGE model-based priors (Ingram and
Whiteman, 1994; Del Negro and Schorfheide, 2004; Del Negro et al., 2007; Christiano et al., 2011 and others) or ‘system
priors’ of Andrle and Plasil (2016). However, in most of these approaches the prior information on observables is stated
informally, and the connection between the prior on parameters and on observables is also informal. Our paper is the first
to derive a VAR posterior from a prior on observables applying strict probability theory.4

Numerical methods. Inverse problems have attracted interest in microeconometrics recently, see Carrasco et al. (2007)
for a survey. This literature focuses on issues of consistency and asymptotic distribution while we are interested in the
computation of a prior on parameters. More importantly, the numerical methods used in this literature would be unfeasible
for the high-dimensional problems that we face.5

One common theme in the literature just mentioned is whether or not a solution exists and the inverse problem is well-
posed. We do not focus on these issues in this paper. The analyst can check ex-post if the solution to our fixed point problem
implies a density of observables that captures approximately his prior, alleviating the problem of existence.We discuss these
issues in detail in Section 4 in the context of the two applications we consider. Furthermore, the approximate conjugate
algorithm that we use appears to act as a ‘regularization’ of the kind that is often used in inverse problems to go around the
numerical difficulties that are encountered in ill-posed problems.6 More work on the relationship between regularization
and the approximate conjugate algorithm would be useful.

Many available algorithms for solving inverse problems need to restrict the probabilities to be non-negative and to add
up to 1 at each step. These restrictions involve additional numerical complications. Another advantage of our algorithm is
that it obtains proper densities at each step of the algorithm by construction.

Related to our work is the algorithm of Newton (2002) iterating on Bayes’ formula. This algorithm is receiving recent
attention in the non-parametric estimation literature. It is an on-line estimator (also called ‘recursive’ estimator in statistics),
i.e., each observation is added one by one without updating previous estimates. On-line estimation is useful when relevant
information arrives very rapidly, faster than the new information can be processed optimally by a computer.7 It has also
been a useful tool to obtain convergence results in the literature of least squares learning.8 But these estimators add noise
and inaccuracies in the estimation, so they are less justified in research papers. For example, one well-known side-effect of
on-line estimation is that Newton’s estimates depend on the ordering of the observations, it is also well known that they
are less efficient estimators. In ongoing research we investigate the application of our algorithm (described in Section 3)
to non-parametric estimation and we compare its properties to Newton’s algorithm using our Proposition 4. Preliminary
results indicate that Newton’s algorithm is a noisy version of our algorithm, that it converges much more slowly as the
sample grows and that it has certain convergence problems which can be corrected by our approximate algorithm.

2. Priors about observables

Consider a model summarized in the likelihood function pY |θ that relates the distribution of the observable data Y to
unknown parameters θ . Standard Bayesian practice is to find the posterior of θ after first stating a subjective prior pθ directly

4 For example, the DSGE-model-based priors or ‘system priors’ in effect do not solve the inverse problem described in Section 2. In light of our results,
they can be justified as performing one iteration on the mapping on which we find one should iterate until finding the fixed point.
5 To mention two recent papers in this literature. Bonhomme and Robin (2010) obtain non-parametric estimates of the distribution of hidden factors

by performing three integrations (twice integrating the second derivative of the characteristic function of the factors, and once more to find the inverse
Fourier transformation of the characteristic function). Their assumptions of additivity and independence of factors grant them analytic formulae and imply
that all integrals to be computed are univariate. The counterpart of the latent factors in Bonhomme and Robin would be our VAR parameters, but since it is
key to incorporate the covariances of the parameters (see the example in Section 2) we would have to integrate jointly over hundreds of VAR parameters,
hence a direct application of Bonhomme and Robin’s approach would be numerically unfeasible.

Carrasco and Florens (2011) also estimate non-parametrically the probability distribution function of a hidden variable. The algorithms they propose
involve solving large non-linear systems of equations. Available algorithms of the Gauss–Newton type involve inverting a matrix at each iteration, and this
would be unfeasible in the very high-dimensional problem we consider. Our algorithm avoids any matrix inversion.
6 For example, Carrasco and Florens (2011) use a Tikhonov regularization for the same purpose.
7 Think of steering a ship into a harbor, where the angle of a rudder has to adjust to the direction of the wind; or think of choosing an optimal portfolio in

a very unstable financial market. In such applications updating quickly the current value of the estimated quantity in view of a sudden change in the wind
or on stock prices is likely to be more important than, say, maximizing the likelihood function using all past information as each new piece of information
arrives.
8 See Marcet and Sargent (1989) and Evans and Honkapohja (2002).
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on parameters. But for reasons discussed in the introduction it is desirable to use prior information about the observable data
Y instead and to specify a prior on observables pY . The uncertainty represented in this prior can be seen as a combination
of the researcher’s uncertainty about the values of parameters θ and the error terms of the model pY |θ . To find the posterior
that incorporates the prior information contained in pY we first translate this prior on observables into a prior on parameters
pθ that is consistent with the model at hand. Then one can apply Bayes’ formula in a standard way to obtain the posterior
that is consistent with pY .

To demonstrate how a prior on observables can be translated into a prior on parameters we now use a simple example.
This example will also serve to discuss issues of uniqueness and existence.

2.1. An example

Let variable y follow a univariate AR(1) model

yt = α + ρyt−1 + εt , with εt ∼ N (0, σ 2
ε ) i.i.d., t = 1, . . . , T . (1)

N denotes the normal density. We treat y0 and σ 2
ε as given.

Most researchers would have a prior idea about the behavior of y in certain periods. In particular, one may have an idea
about the distribution of y1 and express this idea by formulating a prior on the growth rate of y in the first period, for example,

∆y1 ∼ N (µ∆, σ 2
∆) (2)

for given µ∆, σ 2
∆. This distribution is compatible with many values of ρ and in no way it is saying that y follows a unit root.

Although we do not write it explicitly to conserve space, the prior is conditional on the starting point y0, hence (2) amounts
to a prior on the behavior of y1.

From the Bayesian point of view it is important that this prior should not be based on the estimation sample. It should
come from other samples or other considerations. This requirement is the same as in the case of a standard prior on
parameters.

For convenience, in this simple example we assume the prior in (2) is normally distributed, a known and fixed σ 2
ε , and

we state the prior only about the first observation t = 1. The numerical methods we derive later in this paper do not need
any of these features.

To translate the prior on observables (2) into the implied prior on α, ρ note that, given the AR(1) model

µ∆ = E(∆y1) = E(α + (ρ − 1)y0),

σ 2
∆ = Var(∆y1) = Var(α + (ρ − 1)y0) + σ 2

ϵ .

This shows that a flat prior on α implies σ 2
∆ = ∞ and it says that the analyst addresses datawith the prior that y is very likely

to grow by more than, say, 100% at t = 1. But, as discussed in the introduction, the growth rate of an observable variable
is not some abstract parameter and in most cases the analyst should be able to specify a much tighter prior. One message
from this paper is that Bayesian researchers should at least examine the implications that their prior on parameters has for
the behavior of the observables.

Our proposal, however, is to use a prior on observables, such as (2) to derive a posterior consistent with it. Provided that
σ 2

∆ ≥ σ 2
ϵ the implied prior on (α, ρ) satisfies:

α + (ρ − 1)y0 ∼ N (µ∆, σ 2
∆ − σ 2

ϵ ). (3)

This example brings about three points. First, for an arbitrary prior on observables there may not exist an implied prior
on parameters that is compatible with the model, this would be the case if we had specified a prior variance on observables
σ 2

∆ < σ 2
ϵ . Second, there may be more than one solution, since (3) only imposes a restriction on a linear combination of

α, ρ. To obtain a proper prior on parameters we need to complement (3) with an additional assumption, for example, about
the marginal distribution of α or about the distribution of ∆y2. Third, equation (3) and the distribution of α imply a joint
distribution of α and ρ with some non-zero correlation between α and ρ. This shows that the key in translating a prior
on observables is to find the joint distribution of parameters. Many VAR applications assume priors in which parameters
are mutually independent, this is understandable because specifying prior correlations between parameters is difficult, but
imposing zero prior correlation on parameters often leads to unreasonable priors on observables. As we see in (3) a prior on
observables is a natural way to specify such correlations among parameters.

2.2. A formulation as an inverse problem

We now return to the general case. Let Y take values on the space Y and θ take values on the space Θ . A key condition
relating the prior on observables pY and the prior on parameters pθ is∫

Θ

pY |θ (Y ; ·) pθ = pY (Y ) for almost all Y ∈ Y (4)
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where the ‘almost all’ statement is with respect to pY . Note that pY is known given our stated prior on observables, and the
likelihood function pY |θ is also known after specifying a model. Our task is, given pY and pY |θ , to find the prior density pθ that
satisfies the functional equation (4). This is known in calculus as ‘a Fredholm equation of the first kind’ and in statistics as
an ‘inverse problem’ or identification of mixtures.

In the theoretical analysis we will assume that a solution pθ exists, in practice we can ensure this in several ways by
adjusting pY . Multiple solutions might arise, for example when the dimension of θ is larger than the dimension of Y , as in
the AR(1) example above. See the empirical application in Section 4.2 for one approach to selecting one from the potentially
multiple solutions.

3. Fixed point formulation

Fredholm equations such as (4) can rarely be solved analytically.9 Furthermore, they are not easy to solve numerically.
For example, it may seem that an approximation can be easily found by discretizing Y , θ and inverting a matrix version of
the likelihood pY |θ at the discretized values of Y , θ to obtain a discretized approximation to pθ . However, it is well known
that the matrix’s inverse for this case is ill-conditioned, the solution is unstable, and it often leads to a solution where pθ has
negative values and therefore is not a probability vector.

We now reformulate our inverse problem in terms of a fixed point problem that facilitates computation. We show
conditions guaranteeing that this fixed point is necessary and sufficient for a solution to (4). We then propose an algorithm
to compute this fixed point by successive approximations and we prove that this algorithm converges for the case when Y
is continuous and θ is discrete. We finally describe approximate conjugate fixed point iterations that we use in practice to
speed up computation and we show how to check for accuracy.

Let g : Θ → R+ be a probability density on Θ , in other words, g is a possible prior on parameters. Define the mapping
F:

F(g)(θ ) ≡

∫
Y

pY |θ (Y ; θ ) g(θ )∫
Θ
pY |θ (Y ; ·) g

pY (Y ) dY for all θ ∈ Θ. (5)

The mapping F is indexed by pY |θ and pY but we leave this dependence implicit to avoid notational clutter.
F(g) has the following interpretation: let pg (θ |Y ) ≡

pY |θ (Y ;θ ) g(θ )∫
Θ pY |θ (Y ;·) g

, clearly pg is the posterior distribution of θ obtainedwith

the prior distribution g and given data realization Y is observed. Therefore, F(g) is the marginal density of θ when the joint
distribution of (Y , θ ) is given by pgpY . Clearly, F(g) is a density so that F(g) ≥ 0 and

∫
F(g) = 1.

We now show that there is a close relation between solutions to (4) and fixed points of F .

Proposition 1 (Necessity). If pθ satisfies (4) then pθ is a fixed point of F .

Even though necessity does not need any additional assumption, the following completeness condition is needed to
establish sufficiency.

Definition 1. Consider two random vectors a and b, each taking values in A and B. Their joint distribution pa,b is said to be
“complete with respect to a” when it holds that if a measurable function δ : A → R satisfies E(δ(a) | b) = 0 for almost all
b ∈ B then δ = 0 a.s. in A.

We apply this definition to the joint distribution of Y , θ . Completeness with respect to θ is otherwise known as ‘strong
identification,’ for example in Florens et al. (1990). The relationship between completeness and identification is a delicate
issue. In the discrete θ case described in Section 3.1.1 the two notions are equivalent, but if θ is continuous completeness is
stronger than identification.10

Proposition 2 (Uniqueness). Assume there exists a solution to (4) satisfying pθ > 0. If pθ,Y is complete with respect to θ , then pθ

is the unique solution to (4).

(For a similar proposition see Florens et al. (1990), Theorem 5.5.20.)

Proposition 3 (Sufficiency). Assume that pθ,Y is complete with respect to Y . Then any fixed point g∗
= F(g∗) such that g∗ > 0

gives a solution to (4).

9 The AR(1) example of Section 2.1 is an exception. An analytic solution is available in that case because the growth rate of y in period t = 1 is linear
in the parameters and both the prior on observables and the error ε are Gaussian. But with minor changes the analytic solution is no longer available. For
example, if we state a prior on the growth rates in two periods, t = 1, 2, then parameters enter non-linearly and an analytic solution is no longer available.
The change of variable formula does not help either, see the Online Appendix for a further discussion.
10 Furthermore, identification given a sample is weaker than identification of a mixture.
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The above propositions suggest that we can search for candidate solutions to (4) by finding fixed points of the mapping
F . If all the completeness and non-negativity conditions are satisfied this is guaranteed to deliver the unique solution to
(4). Determining sufficient conditions for completeness in the continuous case is of interest but beyond the scope of this
paper.11

Note that if the completeness conditions were to fail, this only affects the sufficiency and uniqueness propositions. We
can guard ourselves from a failure of sufficiency in a given application by checking accuracy of a converged fixed point using
the approach described in Section 3.3. To explore possible nonuniqueness one should run the algorithm many times from
different starting points.

3.1. Successive approximations on F

Let us state a simple algorithm to search for fixed points of F by successive approximations. Let z denote the iteration
number, we then define the following

Algorithm 1 (Successive Approximations onF). (1) Consider g0, an initial density of θ . (2) Given gz−1 set gz
= F(gz−1). Repeat

(2) for z = 1, 2, . . . until convergence.

Algorithm1avoids the difficulties in solving inverse problems thatwedescribed at the beginning of this section: inversion
of large matrices is entirely avoided and gz is guaranteed to be a proper density at every iteration z.

As stated in Proposition 3 we need to ensure g∗ > 0 to guarantee that the fixed point gives the desired solution. It is
possible to see that F has ‘false fixed points’: there may exist g∗∗

= F(g∗∗) where g∗∗
= 0 for some θ that do not satisfy (4).

This serves as a word of caution: a good algorithm will stay away from densities that can be zero in some range of θ .

3.1.1. Convergence of successive approximations on F
We now provide analytical results on the convergence of the successive approximations on F . This proof is challenging,

as it does not rely on standard techniques for convergence in economics, so we prove the result for the special case where θ

takes on discrete values and we leave the continuous case for further research.
In the discrete case θ can only take N values {θ1, . . . , θN} = Θ . The inverse problem now is to find an N-dimensional

probability vector pθ =
[
pθ,i

]N
i=1 satisfying

N∑
i=1

pY |θ (Y ; θi) pθ,i = pY (Y ) for almost all Y ∈ Y. (6)

(analogous to the continuous case where the problemwas to find a density pθ satisfying (4)). The F-mapping in the discrete
case is

F(g)i ≡

∫
Y

pY |θ (Y ; θi) gi∑
k pY |θ (Y ; θk) gk

pY (Y ) dY for i = 1, . . . ,N. (7)

Note that we abuse notation slightly since in the continuous case pθ , g and F(g) were densities while these symbols denote
N− dimensional vectors in this subsection. A further abuse of notation is that pθ,Y denotes a joint probability while pθ,i is
the ith element of pθ .

It is easy to adapt the proofs of Propositions 1 to 3 to show that the results also hold for the discrete case. The case of
continuous Y and discrete θ has a long tradition in the statistics and probability literature, hence much is known about
completeness in this case. For example, Teicher (1963) Theorem 1 shows that identifiability of a finite mixture is equivalent
to completeness and Teicher (1963) Proposition 1 that a finite mixture of normals is identified.

The following theorem supports Algorithm 1.

Proposition 4 (Convergence). Assume that (i) pθ,Y is complete with respect to θ , (ii) θ is discrete, {θ1, . . . , θN} = Θ , (iii) there is
a solution to (6) with pθ,i > 0 for all i.

Then all eigenvalues of the derivative ∂F(pθ )
∂g ′ are real and they belong to the interval [0, 1).

Therefore, successive approximations on F converge locally to pθ .

Formally, this means that letting gz be the vector defined in Algorithm 1, there is an open neighborhood S ⊂{
g ∈ RN

++
:
∑

i gi = 1
}
, of pθ ∈ S, such that for all g0

∈ S we have gz
→ pθ as z → ∞.

11 There are some negative results in the literature, showing that completeness may be difficult to establish in non-parametric estimation setups,
see Newey and Powell (2003) and Canay et al. (2013). This should be less of an issue in our case since VAR likelihoods are highly parametric.
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3.2. Approximate conjugate algorithm

We now propose a practical numerical algorithm based on approximate iterations on the mapping F when Y and θ are
general continuous random variables. This approximate conjugate algorithm is the one we apply to real life applications in
Section 4. At each iteration we restrict the density g to be in a given parametric family that is conjugate with the likelihood.
Conjugacy speeds up the iterations and, later, the computation of the posterior. We place no restriction on the density pY
except that it must be possible to generate draws from this distribution on a computer.

Of course, fixing a parametric family is a good approach only as long as the solution of the inverse equation (4) is
approximatedwith the desired accuracy by the proposed parametric family.We discuss how to check ex-post if the accuracy
of the approximation is acceptable in Section 3.3.

Let G be a given parametric family of densities on Θ . Let q : Θ → Rν be a function such that the moments Ep(q(θ )) suffice
to pin down any density g ∈ G.12

Algorithm 2 (Parameterized Successive Approximations on F).
(1) Start with an initial density g0

∈ G
(2) Given gz−1

∈ G compute the moments EF(gz−1)(q(θ )).
(3) Let gz

∈ G be given by the moments EF(gz−1)(q(θ )).
Repeat (2)–(3) until convergence of the moments EF(gz )(q(θ )).

Inwords, we obtain each successive iteration gz
∈ G by projectingF(gz−1) back onto the family G. Typically, themoments

involved in Step 2 will need to be approximated numerically. When G is conjugate one can approximate these moments
efficiently using the following result. Recall the definition of pg after equation (5), then

Result 1. Given any density g, for any function q : Θ → Rν we have

EF(g)(q(θ )) = EpY
[
Epg (·|Y )(q(θ ))

]
. (8)

This result can be used to speedup the computation of themoments EF(gz−1)(q(θ )) required in Step 2 by exploiting analytic
conjugate expressions for moments Epg (·|Y )(q(θ )) as follows: draw J realizations of Y from pY , then split Step 2 into two steps:
(2a) For each realization Y compute (if possible, analytically) the posterior moments of θ using gz−1 as the prior, that is
Epgz−1 (·|Y )(q(θ )). (2b) Approximate EpY [·] in (8) by averaging the posterior moments obtained in Step 2a over the J draws of
Y . If the family of conjugate priors G is such that the moments in Step (2a) are available in closed form this computation can
be done very efficiently. When G is not conjugate then Algorithm 2 is slower because a separate Monte Carlo procedure is
needed for each draw Y in order to evaluate the moments Epg (·|Y )(q(θ )).

As a simple example of the above procedure we now write in detail a special case of this algorithm for the example in
Section 2.1, where θ = (α, ρ), the likelihood pY |θ is given by the model specified in (1), with a known σ 2

ε , and supposing that
G is the class of normal distributions. The normal distribution is conjugate in this model. Consider a prior on observables
pY describing the behavior of (y1, y2), hence an analytic solution is not available (see Footnote 9). Let Mpri

≡ Epri(θ ) and
Vpri

≡ Epri(θθ ′) be the prior (and Mpo,Vpo the posterior) mean and second moment of θ . Given a sample Y = (y1, y2) a
standard result in Bayesian statistics fully characterizes the posterior as given by the moments

(Mpo,Vpo) = FN (Mpri,Vpri
; Y ) (9)

for a well known function FN . Then we can combine Algorithm 2 with Result 1 in the following

Algorithm 2.A. G be the class of normal distributions.
Draw J independent realizations Y

j
from pY , J a large integer.

(1) Start with an initial g0
∈ G with meanM0

= Eg0 (θ ) and second moment V0
= Eg0 (θθ ′).

(2) Given a prior gz−1
∈ G with mean Mz−1 and second moment Vz−1 approximate EF(gz−1)(θ, θθ ′) with (Mz,Vz) =

1
J

∑J
j=1 FN (Mz−1,Vz−1

; Y
j
).

(3) Set the next iteration gz
∈ G with mean and second momentMz,Vz .

Repeat (2)–(3) until convergence ofMz and Vz .13

The result is a normal approximate fixed point of F .
Algorithm 2.A shows how Algorithm 2 and Result 1 can be combined in a simple case.14 But Algorithm 2.A assumes that

the innovation variance σ 2
ε is known. In most practical applications this variance is not known. In the next algorithm we

12 For example, G can be the set of Gaussian densities. In that case q(θ ) ≡ (vec (θ ), vec (θθ ′)).
13 Usually normal distributions are expressed in terms of variances V instead of second moments V . Obviously either choice is equivalent taking
V = V − MM ′ . We use second moments in the main text because then the formulae in Algorithm 2.A are simpler. Had we used variances we would
have to use in step 2 the longer, but equivalent expression V z

=
1
J

∑J
j FV (M

z−1, V z−1
; Y

j
)+ 1

J

∑J
j FM (Mz−1, V z−1

; Y
j
)FM (Mz−1, V z−1

; Y
j
)′ −MzMz′ for well

known functions FM (Mpri, V pri
; Y ) and FV (Mpri, V pri

; Y ) that give the posterior mean and variance in a linear Gaussian model.
14 For an application see Jarociński and Lenza (2018, section B.4).
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incorporate uncertainty about the innovation variance and generalize to the case of a multivariate VAR. We set G as the
family of Normal–Inverted Wishart conjugate prior densities of the parameters of a VAR model and combine Algorithm 2
with Result 1. Here is a full description of this algorithm that we use in the empirical applications in Section 4.

The VAR model for the N × 1 vector of observables yt is

yt =

P∑
p=1

Bp yt−p + c + ut , ut ∼ N (0, Σ), t = 1, . . . , T . (10)

The parameters are θ = (B, Σ), for a matrix B = (B1, . . . , BP , c)′, P is the number of lags, the initial values y−P+1, . . . , y0
are treated as fixed and the analysis conditions on them. The Normal–Inverted Wishart conjugate prior density of B and Σ
satisfies

p(vec B|Σ) = N (vecM, Σ ⊗ Q ), (11)

p(Σ) = IW(S, v), (12)

where IW denotes the Inverted Wishart density andM,Q , S, v are prior parameters of appropriate dimensions.
As in Algorithm 2.A we denote M = E(B) and V = E(vec B(vec B)′). We also denote the moments of Σ−1 as D =

E(Σ−1) and H = diagE(vecΣ−1
(
vecΣ−1

)′). Analogous to (9), given a Normal–Inverted Wishart prior with parameters
(Mpri,Q pri, Spri, vpri) and a sample Y , the posterior moments are given as

(Mpo,Vpo,Dpo,Hpo) = FNIW (Mpri,Q pri, Spri, vpri
; Y ) (13)

for a well known function FNIW . For completeness we derive closed form expression for FNIW (Mpri,Q pri, Spri, vpri
; Y ) in

the Online Appendix. Then we can use

Algorithm 2.B. G be the class of Normal–Inverted Wishart distributions.
Draw J independent realizations Y

j
from pY , J a large integer.

(1) Start with an initial prior g0
∈ G given by parametersM0,Q 0, S0, v0.

(2) Given gz−1
∈ Gwith parametersMz−1,Q z−1, Sz−1, vz−1, approximate the relevantmoments given the densityF(gz−1)

with

(Mz,Vz,Dz,Hz) =
1
J

J∑
j=1

FNIW (Mz−1,Q z−1, Sz−1, vz−1
; Y

j
)

(3) Find parameters Mz,Q z, Sz, vz so as to match the moments Mz,Vz,Dz,Hz as closely as possible with a Normal–
Inverted Wishart density. Let gz

∈ G be given by parametersMz,Q z, Sz, vz .
Repeat (2)–(3) until convergence ofMz,Q z, Sz, vz .

One differencewith Algorithm 2.A is that step (3) is no longer automatic, because the Normal–InvertedWishart density is
not parameterized directly in terms of itsmoments. In fact, theNormal–InvertedWishart density imposes certain constraints
on the first two moments, so in general one cannot match the moments Mz,Vz,Dz,Hz exactly. The approach we follow
in practice is to match Mz and Dz exactly, and to match Vz and Hz approximately using closed form expressions for
Mz,Q z, Sz, vz that we show in the Online Appendix.

3.3. Accuracy checking

After performing the iterations the algorithm will have reached a solution, say, gZ . It is clear that gZ will not satisfy
(4) exactly. First because the iterations might not reach an exact fixed point of F . Second because we use an approximate
conjugate algorithm as described in the previous subsection. Third because in practice it is difficult to know if an exact
solution to (4) exists. Therefore we need to check for accuracy.

Letting pZY =
∫

Θ
pY |θ gZ , we check accuracy by comparing pZY and pY , if they were exactly equal gZ would be the solution

we seek. Furthermore, gZ would be the solution we seek if the prior on observables was pZY in the right side of (4). Therefore,
when a solution to (4) does not exist but pZY is ‘reasonably close’ to pY then gZ should be an acceptable translation of pY , after
all the prior densities pY that a researcher may state for observables can only be indicative.

For this purpose we computemoments or interval frequencies from a large number of draws from pZY and pY . Draws from
pZY are straightforward to obtain as follows: draw a realization of parameter values θ from the approximate fixed point gZ ,
and then draw Y from p(·|θ ). We apply this procedure in our empirical applications below. For example, as an advance of
future results, the reader can now glance at Fig. 3 plotting the quantiles of the prior on observables pY (blue shaded area)
and the quantiles of the distribution of the observables implied by the approximate fixed point pZY (solid line). As can be seen
these are very close.

Also, as an example, we do aMonte Carlo experiment to study the performance of the approximate fixed point algorithm.
We use a setup where problem (4) has a known high-dimensional solution pθ and check if our algorithm recovers this
solution.With randomstarting points g0 the algorithmalways recovers the 667parameters that index pθ with great precision
in under 5 min on a standard personal computer. Details of this Monte Carlo experiment are in the Online Appendix.
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4. Empirical Applications

This section presents two applications of priors on observables to the estimation of structural VARs. Both examples are
well known VARs that have been estimatedmany times in the literature. Example 1 is the fiscal policy VAR of Blanchard and
Perotti (2002). Example 2 is the study of the effects of monetary policy shocks by Christiano et al. (1999).

The aim of this section is to make five points. First, different standard priors on parameters available in the literature can
give significantly different results and, as VAR parameters are hard to interpret, there are few reasons a-priori to choose
among these alternatives. Second, some of these priors on parameters imply priors on observables that are unlikely to
represent the prior knowledge of the analyst. Third, the algorithm proposed in Section 3.2 is feasible in practical applications
and it gives an accurate solution to the inverse problem. Fourth, the examples show how to set up the prior on observables
in various ways: in the first example the prior summarizes the ideas expressed by the authors of the original paper about
the likely behavior of the variables, while in the second example we use an empirical Bayes prior. Fifth, in these applications
the prior on observables affects the results, in fact changing them considerably. To the extent that this prior on observables
is a better representation of the analyst’s prior knowledge, we contend that the resulting posterior is better justified from
the subjective Bayesian point of view.

We use four standard priors for θ as the reference. The first one is the flat (noninformative) prior, where the posterior
mean of B is the OLS estimate. Both papers from which we take our examples, Blanchard and Perotti (2002) and Christiano
et al. (1999), use the OLS estimation, hence the flat prior comes closest to replicating their results (apart from small
discrepancies between their bootstrap and our Bayesian uncertainty bands). The remaining three are standard informative
priors for VARs in the Litterman, Sims and Zha tradition, using three off-the-shelf choices for the hyperparameters. We refer
to them as the ‘Minnesota’ prior (the default prior in the RATS computer package), the ‘Sims and Zha (1998)’ prior (a widely
used version of the prior) and the ‘Dynare’ prior (the default prior in the Dynare computer package). See Appendix B for the
precise definitions of these priors.

We then apply our approach. In each application we use a simple auxiliary model to construct the prior density of
observables. The auxiliary model in each case is such that all its parameters have a clear interpretation in terms of the
behavior of observables, but the model is too simple to be of interest per se. Having specified a prior on observables we then
translate this density into a prior for the VAR parameters using the algorithm described in Section 3.2. Finally, we use Bayes’
theorem in the standard way to compute the posterior.

The VARs are specified in levels and the variables entering them are clearly nonstationary. Therefore, the prior density of
these variables must be conditional on some initial state. A natural choice is to use as the initial state the P first observations
in the sample, where P is the number of lags. The VAR likelihood function conditions on the same P observations, so it is
logically consistent that the prior and the likelihood condition on the same initial state.

The structure of the presentation is the same in each example: we present the empirical application, show the results
obtained with the standard priors for VARs, compare the implied prior on observables that emanates from these standard
priors, state our prior about observables, study the accuracy of the algorithm in computing the translated prior, and finally
we show the posterior implied by the prior about observables.

4.1. Blanchard and Perotti (2002) VAR

In this subsectionwe estimate the effects of tax and government spending shocks following Blanchard and Perotti (2002).
Their VAR includes taxes, government spending and GDP, all in real, per capita terms, and the estimation sample is 1960Q1-
1997Q4.15 They identify structural shocks to taxes and spending using restrictions on the relations between reduced form
residuals and structural shocks. Their key identifying restriction separates tax shocks from their endogenous responses using
the elasticity of tax innovations to output innovations estimated separately from disaggregated data. Using priors about
observables in this application is natural, as Blanchard and Perotti themselves state their beliefs about the relation between
output, tax revenues and spending, beliefs that inspire our subjective prior on observables.

4.1.1. Results with standard priors
Figs. 1 and 2 show the effects of, respectively, tax and spending shocks.We report quantiles 0.16 and 0.84 of the posterior

distributions of the impulse responses (Blanchard and Perotti report one-standard-deviation bootstrap bands). The variables
are quarterly, in log levels, andwe rescale the responses so that they correspond to a one percent shock to, respectively, taxes
or spending. The blue shaded regions (common to all plots in a given row) report the posteriors obtained with the flat prior,
so they are the closest to the OLS estimation of the VAR by Blanchard and Perotti.16 The black lines report the posteriors
obtained with informative priors, each column of graphs representing the results with a different estimation procedure.

15 We downloaded the data from Olivier Blanchard’s webpage.
16 Blanchard and Perotti (2002) estimation has some nonstandard features: they estimate four sets of VAR coefficients, one for each quarter of the year, to
account for seasonal patterns and they subtract time-varying stochastic trends or linear trends. Subsequent literature has followed Blanchard and Perotti’s
identification but mostly ignored these nonstandard features. We follow this literature and estimate standard VARs in levels (which is the closest to their
specification with stochastic trends). Nevertheless, the impulse responses we obtain with approximately flat priors are similar to Blanchard and Perotti’s
impulse responses.
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Fig. 1. Response to a Tax Shock: OLS estimation (shaded area, the same across columns) and Bayesian estimations using four informative priors. Y-axis
gives quantiles 0.16 and 0.84 of the distribution of impulse response coefficients, in percent.

The first three columns are for the standard informative priors: the Minnesota prior, the Sims and Zha (1998) prior and the
Dynare prior, and we ask the reader to disregard the fourth column for now.

Fig. 1 shows that responses to a tax shock differ widely across standard VAR priors. What is common is that after a one
percent tax shock taxes increase, spending falls with some delay, and GDP starts falling immediately, but the time profiles
of these responses differ strongly. For example, under the flat prior taxes revert to the baseline after about 10 quarters, and
under the Minnesota prior they are only marginally more persistent. By contrast, under the Sims and Zha (1998) prior taxes
remain permanently higher by about 0.7 percent, while under the Dynare prior taxes remain permanently higher by about
0.45 percent. There are also differences in the responses of GDP: under the flat and Minnesota priors GDP falls, reaching
−0.2 percent after about 10 quarters and then starts to gradually return to the baseline. Under the Sims and Zha (1998) and
Dynare priors GDP falls by only about 0.07 and 0.15 percent respectively, but this fall appears to be permanent. Fig. 2 reports
similarly large differences in responses to the spending shock, the most striking ones in the response of spending itself.

This shows that Bayesian VARs can produce very different results under different priors. These differences are relevant
for evaluating the effects of austerity: the output costs of increasing taxes more than doubles with a flat prior compared
with the Sims and Zha (1998) prior, and they are even larger for the Minnesota prior. The output costs of cutting spending
are very uncertain with all the estimation procedures and for a given initial cut in spending they are the largest under the
Dynare prior. However, most researchers will find little reason to choose one prior over another based on a priori grounds,
because it is difficult to interpret priors on VAR parameters directly.

Furthermore, these priors on parameters imply priors about data behavior that no analyst would ever hold, hence they
cannot represent an analyst’s prior information. Fig. 3 reports the densities of each variable implied by plugging in the left
side of (4) the corresponding prior on parameters. Thus the figure shows the prior on observables that would be consistent
with the priors on parameters found in the literature. The figure plots the quantiles of the density of each variable for periods
t = 1, 2, . . . , 15 at the start of the sample. The blue shaded region shows the prior about observables expressed by Blanchard
and Perotti in their paper, we describe this density in more detail below in Section 4.1.2. This blue shaded region shows that
uncertainty gradually increases as time goes by, as more error terms accumulate, consistent with the model used. It also
shows that output is on average expected to grow. The solid black line gives the quantiles for the fixed point thatwe compute,
please ignore this line for now. The dashed and dotted lines show the quantiles for the priors on observables implied by the
standard VAR priors used in estimation.We can see that in some cases these priors are quite counterintuitive. TheMinnesota
and noninformative (flat) priors are the most striking, as they place almost a uniform distribution on growth rates over the
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Fig. 2. Response to a Spending Shock: OLS estimation (shaded area, the same across columns) and Bayesian estimations using four informative priors.
Y-axis gives quantiles 0.16 and 0.84 of the distribution of impulse response coefficients, in percent.

real line (the quantiles look vertical given the scale of the plot).17 These priors imply, for example, that a yearly output
growth of more than 100% is much more likely than a growth rate of between 0 and 4% a year. We contend that no analyst
will deem this to properly represent his/her views about the economy. The other two priors are less unreasonable but still
have some problems: Sims–Zha is centered on the scenario of zero output growth and Dynare on negative growth, while
placing nonnegligible probability on very large positive or negative growth rates of some variables, e.g. taxes.

This figure is meant to show that the standard priors on parameters are unlikely to represent the opinion of the analyst in
this application. Hence, the posteriors foundwith these prior distributions are not appealing on subjective Bayesian grounds.
This is why we consider priors specified explicitly on observables instead.

4.1.2. A prior about observables
We now formulate a prior about observables, pY . The prior is about the dynamics of GDP, taxes and spending in the

beginning of our estimation sample. We base this prior on the data from the period preceding the estimation sample,
and on subjective priors about the relations of taxes and spending with GDP inspired by the comments in Blanchard and
Perotti (2002). One aspect of these priors is cointegration, for an alternative approach to priors about cointegration in VARs
see Giannone et al. (2018).

The data that inform our prior are on real GDP for the period 1947–1960 and on taxes and spending in 1960.18 We fit
an AR(2) model into the GDP data for 1947Q1 to 1960Q4 and generate the predictive density of GDP after 1960Q4. Then,
following Blanchard and Perotti (2002), we consider cointegration relations between variables, and we use their model of
innovations. Specifically, we postulate that taxes and spending are cointegrated with GDP and follow

τt = δx + τt−1 − βτ (τt−1 − xt−1 − cτ ) + a1ux
t + σ τ ετ

t , (14a)

gt = δx + gt−1 − βg (gt−1 − xt−1 − cg ) + σ gε
g
t , (14b)

17 This is a consequence of assuming a flat prior on the intercept so it should hold for any application of flat and Minnesota priors.
18 Blanchard and Perotti’s estimation starts in 1960Q1, but it is ok to use the data from 1960 to inform our prior because the VAR has four lags and when
estimating it we condition on the data for the four quarters of 1960 anyway. The replication dataset does not include taxes before 1960Q1. Moreover, as
discussed in Blanchard and Perotti (2002), government spending before 1960Q1, while available in the replication dataset, is unusually volatile due to the
Korean War expenditures in the 1950s, so in our baseline prior about observables we ignore these data and use only GDP before 1960.
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Fig. 3. Density of Taxes, Spending and GDP (in logs times 100) implied by alternative priors. Y-axis gives quantiles 0.05 and 0.95 of the distribution of each
variable in periods 1 to 15 of the estimation sample.

where τt is the log of taxes, gt is the log of spending, ux
t is the innovation to GDP, ετ

t and ε
g
t are the tax and spending shocks,

both i.i.d. standard normal random variables, and δx, βτ , βg , cτ , cg , a1, σ τ , σ g are scalar parameters. We set the constant
term δx equal to the average growth rate of GDP in the 1947Q1-1960Q4 sample. We set cτ , cg , i.e. the logs of the equilibrium
shares of taxes and spending in GDP, to the average values of τt − xt and gt − xt in 1960 (where xt is the log of GDP). We set
βτ

= βg
= 0.5, implying a fast convergence of taxes and spending to these equilibrium shares in GDP. We assume that the

standard deviations of tax and spending shocks, σ τ and σ g , are both 1%. Finally, a1 = 2.08 is the elasticity of tax innovations
to GDP innovations that Blanchard and Perotti estimated from disaggregated data and used in their VAR identification. They
argue that the elasticity of spending innovations to GDP innovations is zero, hence we do not include ux

t in the equation
for spending. The implied predictive density of taxes, spending and GDP is our prior about observables. We impose this
predictive density for 15 quarters.19 We have plotted draws from the above prior density and both their dynamics and
comovement do resemble plots of actual GDP, taxes and spending.

After specifying this density of the observables we run the approximate conjugate algorithm from Section 3.2 where G
is the family of Normal–Inverted Wishart densities (see the Online Appendix for the details on the implementation). Using
different random starting points g0, the algorithm always converges to a similar Normal–Inverted Wishart density. In what
follows we present results based on one thousand iterations on the algorithm, which take about 12 min on a standard PC,
but we obtain very similar results already after 200 iterations.20

Finally, we check the accuracy of the fixed point that we find by comparing the implied density of observables with the
stated density in the prior. Fig. 3 shows with the shaded region the quantiles according to the prior on observables. The solid
lines are the quantiles with our approximate fixed point. As can be seen the match is nearly perfect.

4.1.3. Results with the prior about observables
The rightmost columns of Figs. 1 and 2 report the responses to tax and spending shocks implied by the subjective prior

about observables. The responses to the tax shock (Fig. 1) are closest to those obtained with the Minnesota prior. The main
difference is that the immediate response of spending is negative (instead of being close to zero) and, consistently with this,

19 We follow an informal rule of thumb to specify the dimension of the prior about the observables equal to the dimension of the prior about
parameters. E.g. here the dimension of the prior density of the observables (15 × 3) equals the dimension of the prior density of the parameters B and
Σ (i.e. N(NP + 1) + N(N + 1)/2 = 45). In our experiments we find that when the prior dimension satisfies this rule of thumb our approximate conjugate
algorithm converges to a unique fixed point, andwhen the prior dimension ismuch lower (as in Section 4.2) there aremultiple fixed points. Theory suggests
that the inverse problem (4) may have a unique solution even when the dimension of pY is 1, so we stress the informal and empirical nature of this rule of
thumb.
20 Somewhat disappointingly, in this example (unlike in the next one) the marginal likelihood implied by our prior on observables is lower than those
implied by the standard priors. In future research we would like to understand better what features of the priors on observables are needed for a higher
marginal likelihood.
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Fig. 4. Response of output to a monetary policy shock: OLS estimation (shaded area, the same across columns) and Bayesian estimations using four
informative priors. Y -axis gives quantiles of 0.05 and 0.95 of the distribution of impulse response coefficients, in percent.

the negative response of output is slightly stronger. The responses to the spending shock (Fig. 2) obtained with the prior
about observables imply a larger government spending multiplier than according to any of the other methods. The response
of output to a 1% shock is about 0.3% after 12 quarters, compared with about 0.2% according to the OLS estimation and
Minnesota prior. The response of output obtained with the Dynare prior might be even higher than 0.3% after 12 quarters,
but it is associated with a much higher spending after the initial shock (about 1.5% above the benchmark after 12 quarters,
as opposed to less than 1% when the prior about observables is used). Summing up, the subjective prior about observables
yields plausible impulse responses, with the effects of tax shocks on output that are more negative than under the flat prior
andmuchmore negative than under the Sims and Zha (1998) and Dynare priors, and with more positive effects of spending
shocks on output than under alternative priors. From the point of view of our prior about observables, standard VAR priors
underestimate fiscal multipliers.

4.2. Christiano et al. (1999) VAR

In this subsectionwe estimate the effects ofmonetary policy shocks following Christiano et al. (1999) (CEE). They estimate
a VAR in levels with output (real GDP), prices, commodity prices, federal funds rate, total reserves, nonborrowed reserves
and money, using quarterly US data from 1965 to 1995.21 The monetary policy shock is identified as the Choleski shock to
the federal funds rate, with the above ordering of the variables.

4.2.1. Results with standard priors
Fig. 4 shows the effect of monetary policy shocks on output. We report the quantiles 0.05 and 0.95 of the posterior

distributions of the impulse response of GDP (CEE report 90% bootstrap bands). Responses of the remaining variables are
reported in the Online Appendix. GDP is quarterly, in log levels, and the responses correspond to a one standard deviation
shock. The shaded regions (common to all four plots) report the posterior obtained with the flat prior, so they are the closest
to the OLS estimation of the VAR by the CEE.

Panels A to C illustrate that the persistence of output responses differs dramatically depending on the prior on parameters
used. The flat prior (shaded) produces a short-lived effect (the shaded 90% posterior probability range contains zero after
about 10quarters). TheMinnesota prior in panel Aproduces similar persistence as the flat prior but narrower error bands. The
Sims and Zha (1998) prior in panel B and the Dynare prior in panel C tend to produce permanent responses of output (and, in
panel C, a quite high probability of an explosive response). The permanent responses in panels B and C are inconsistent with
the long-run neutrality of money and thus they pose a challenge to most standard economic theories, which almost always
imply long-run neutrality of money. Again, as in the Blanchard and Perotti (2002) example, we find that different standard
priors produce different results, so it is important to think about whether or not the priors can represent the analysts’ prior
information.

Fig. 5, analogous to Fig. 3, plots over time the quantiles of the observables implied by different standard priors and we
find that they miss on some key aspects. The Minnesota and noninformative (flat) priors are the most extreme ones as they
imply that huge growth rates are very likely. The Sims and Zha (1998) and Dynare priors are consistent with a zero average
inflation and no growth of money supply, reserves and GDP. To the extent that this does not represent the analysts’ opinion
on the behavior of observables we conclude that the posterior is not convincing on subjective Bayesian grounds.

21 We downloaded the data from Larry Christiano’s webpage.
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Fig. 5. Density of the observables implied by alternative priors. Y-axis gives quantiles 0.05 and 0.95 of the distribution of each variable in periods 1 to 4 of
the estimation sample, in logs.

4.2.2. A prior about observables
This time we formulate a minimalistic prior about observables. The prior is about the initial growth rates of all the

variables. We call it minimalistic for two reasons. First, it conveys very simple ideas about the dynamics of the observables,
namely, that the observables follow independent random walks, shadowing the idea behind the priors in the Litterman,
Sims and Zha tradition. Second, we specify this prior for only a few periods, fewer than necessary to define the density of
parameters uniquely. This is because given the simplicity of the prior we do not want to impose it too dogmatically.

Our prior on observables is a P × N dimensional density p∆y1,...,∆yP |yo
−P+1,...,yo0

. Recall that P = 4 is the number of lags.22

Specifying a prior on growth rates does not mean we impose a unit root, it is done only for convenience, obviously this prior
is equivalent with a certain density for the levels py1,...,yP |yo

−P+1,...,yo0
. The density could be drawn from the purely subjective

prior opinion of the user, but here we take an empirical Bayes approach and use the growth rates observed in the data to
inform our prior.23 Therefore, our prior conveys the idea that the growth rates of the first P observations behave similarly as
the rest of the sample. The way we implement this idea is the following: we estimate an auxiliary model ∆yn,t = αn + εn,t ,
εn,t ∼ N (0, σ 2

n ) for each variable n = 1, . . . ,N and use as py1,...,yP |yo
−P+1,...,yo0

the density of the observables implied by the
posteriors of αn, σ

2
n . In the Online Appendix we report the growth rates observed in our sample and discuss other variants

of the prior that use data from various subsamples and from the period preceding the estimation sample.
The blue region in Fig. 5, shows the distribution of observables implied by the empirical Bayes prior on observables. As

we can see, it differs from the standard informative priors because output, prices, reserves andM1 are expected to grow over
time.

4.2.3. Results with the prior about observables
We already saw in the context of example in Section 2.1 that if the prior on observables involves fewer variables than the

number of parameters in the model, then the implied prior on parameters might be improper. We expect something similar
to happen in this application since we use a prior on NP = 28 observables, much lower than the number of parameters
(N(NP + 1) in B and N(N + 1)/2 in Σ , 231 in total).24 One way to proceed could be to complement the prior on observables
with additional priors to define a unique prior. This could be implemented by weighing the obtained fixed points with
this complementary prior. We proceed in a slightly different way: we find as many priors consistent with the prior on
observables as we can, and we select the one with the highest marginal likelihood and the one with the highest entropy.
These choices somehow represent two opposite criteria: the highest marginal likelihood is the prior that best fits the data

22 Jarociński and Marcet (2010), Section 2, draw parallels between this prior and some frequentist small sample estimators.
23 The empirical Bayes approach is controversial because it makes the prior dependent on the data. The advantages and disadvantages of this approach
have been discussed at length in the literature, seeMorris (1983) for a classical reference or Efron (2010) for amore recent reference. Our use of the empirical
Bayes approach here follows Berger (1985, section 3.5.2) who suggests the data themselves as a possible source of information about the marginal density
of the data.
24 In general it is not necessary for identification to have the dimension of the prior on the observables weakly greater than the dimension of the prior
on the parameters. However, in practice we often find multiplicity of solutions when the dimension of the prior on observables is much lower, see also
Footnote 19.
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actually observed,25 whilemaximumentropy can be interpreted as imposing as little prior knowledge as possible.26 Roughly
speaking, we could expect most other priors to stay between these two extremes.27 Finally, we restrict the marginal prior
density of Σ to be an Inverted Wishart density centered at the standard errors of the univariate autoregressions estimated
by ordinary least squares for each variable. This is the same marginal density of Σ as in the Minnesota, Sims and Zha (1998)
(1998) and Dynare priors (see Appendix B).

We implement this by computing 300 approximate fixed points that satisfy the restriction on p(Σ), each with a different
random starting point g0. We use the approximate conjugate algorithm from Section 3.2.We stop at 300 because the lessons
drawn are the same as those based on the first 200. Finding each fixed point requires about 200 iterations and takes about
5 min with Matlab on a standard personal computer. From these 300 fixed points we choose the one with the highest
marginal likelihood and the one with the highest entropy.

To check accuracywe look at the implications for observables of the approximate fixed points that we find. The solid lines
in Fig. 5 show the quantiles implied by the left hand side of (4) at a representative approximate fixed pointwith the restriction
on p(Σ). The solid lines are close to the edges of the shaded regions that represent our desired prior about observables. This
shows that, in spite of its approximate nature, its very large dimensionality and the restriction on p(Σ), the approximate
conjugate algorithm delivers a density of observables that is reasonable and close to the desired prior.28

The posterior for the fixed point with the highest marginal likelihood in the sample is plotted with the solid line in panel
D of Fig. 4. The posterior shows a much more persistent effect of monetary shocks than OLS: output takes about 20 quarters
to recover, instead of about 10 quarters with the flat prior. The effect of the shock in the first two years is weaker with our
prior but it becomes stronger afterwards. The median total output loss after 5 years is 30% larger according to our prior
than with the flat prior (1.85% of yearly output loss in our case versus 1.40%).29 More importantly, the dynamics of output
is mean-reverting, consistently with the long-run neutrality of money. Note, also, that the error bands are narrower in our
posterior than with a flat prior, implying that we have incorporated useful information in the estimation.

The dashed line in panel D of Fig. 4 plots a posterior corresponding to the fixed point with the highest entropy. It is
comforting that this posterior confirms the main features of the highest marginal likelihood plotted with the solid line:
higher persistence than OLS and mean reversion. As is well known, higher entropy is roughly related to higher dispersion,
so it is intuitive that this fixed point shows larger posterior variance.

We report prior sensitivity analysis in the Online Appendix. We show that a range of reasonable priors on initial growth
rates supports the conclusion that the response of output to a monetary policy shock is consistent with long-run neutrality
of money. Moreover, most of these priors imply that the effect of a monetary shock is stronger and more persistent than in
CEE, although the prior based on the data preceding the estimation sample is an exception here.

5. Conclusions

We have proposed using priors about observables and applied them to the estimation of Bayesian VARs. Priors about
observables are easy to interpret and, as shown by our empirical applications, they often make a significant difference in
empirical work.

To our knowledge we are the first to derive the posterior consistent with these priors in a formal way. We show the
inverse problem that defines the prior on parameters that is consistent with a prior on observables, reformulate it as a fixed
point problem, we give a numerical algorithm to find this fixed point and we show that this algorithm converges in the
discrete case. This algorithm works even in very high-dimensional problems that we consider.

Application of Bayesian priors to VARs has obviously been a successful line of research. Standard priors on parameters
such as those of Litterman, Sims and Zha have been useful in forecasting. But the specification of such priors is mostly
experience-based and often not fully justified from a subjective point of view. Variants of these standard priors might give
very different results and, as we show, might represent prior knowledge about observables that most economists would not
hold. This presents serious problems when a researcher hopes that a VAR procedure will uncover unobservable features of
the economy, such as e.g. impulse responses: if the stated prior does not represent the analysts’ prior belief, the resulting
posterior is not the best estimate of the unobservable quantities. In awaywe advocate a ‘more Bayesian’ approach, providing
a more natural representation of prior knowledge about the economy by focusing on observables.

25 The marginal likelihood is
∫
p(yo|·)pθ , where yo is the observed data.

26 Entropy, defined as
∫

θ
log p(θ )dp(θ )measures the amount of information carried by a distribution.We obtained an analytical expression for the entropy

of a Normal–Inverted Wishart density with the help of Proposition 3 of Gupta and Srivastava (2010).
27 It also happens to be the case that, among the priors we find consistent with the prior on observables, the maximum-marginal-likelihood has one of
the lowest entropies, and that the maximum-entropy fixed point has one of the lowest marginal likelihoods. Therefore the two priors can be interpreted
as having the two extreme entropies (or marginal likelihoods). In both cases the marginal likelihoods are higher than those implied by the standard priors.
28 In the absence of the restriction on p(Σ) we find fixed points for which the solid lines are indistinguishable from the edges of the shaded region.
However, we do impose the restriction on p(Σ) because the fixed points obtained without this restriction put a lot of probability mass on small values of
Σ and compensate it by the large variance of B conditional on Σ . We find these priors not to be reasonable so an easy way to select reasonable behavior is
to restrict the prior p(Σ).
29 To compute ‘total output loss in the first 5 years’ due to a monetary policy shock we sum the median impulse response of the quarterly GDP in the
first 5 years, and then divide by 4 in order to convert the result into annual GDP.
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Thus, the priors on observables we propose in this paper can serve as a cross-check on the standard priors and as an
alternative to them.

Is it obvious how to formulate priors on observables? Certainly not. A researcher specifying a prior on observables needs
to think hard about these observables and take a multitude of specification choices. In each of our two examples we used
a different reasoning to arrive at the prior density and we do not doubt that many alternative reasonable priors could be
constructed for these cases, possiblywith different implications for the posterior. However,we contend that the approachwe
propose is more intuitive than the standard approach of specifying a prior about parameters directly. The possible different
priors on observables can be evaluatedmuchmore intuitively as the issue is simplywhat is a best representation of our prior
knowledge about observables, for which most analysts do have a clear prior idea.

In any case the joint density of VAR parameters is a very high-dimensional object as well, and formulating it also requires
lots of specification choices, ‘weights’ and ‘shrinkage factors’. When thinking of the plausibility of these choices we are in
the dark, because the VAR parameters are hard to interpret unless for their implications on observables. At the very least our
work suggests that researchers using priors on parameters could use the accuracy test of Section 3.3 to choose from among
several alternative priors on parameters by examining their implications for observables.

Much future work remains. The empirical examples we have considered are mostly demonstrative and could be
investigated further. Other ways of specifying priors on observables should be explored. Priors on observables could be used
in many other applications and econometric models. The relation between ‘reasonableness’ of the prior on observables and
the out-of-sample forecasting performance should be studied. Extending our analytical results would be useful. For example,
our convergence result in Proposition 4 should be generalized in various directions, including the case of multiple solutions
to the inverse problem and continuous distributions. Studying convergence when the fixed point problem does not have a
solution may be useful in practice, as it may lead to systematic ways of modifying pY so as to guarantee existence.

Appendix A. Proofs of Propositions 1 to 5 and Result 1

A first concern whenever we state results about F is to ensure that this mapping is well defined. This is not obvious since
the expression contains a term dividing by

∫
Θ
pY |θ (Y ; ·) g , a quantity that could be zero for some g ’s. To show that F is well

defined at g it is enough to check that
∫

Θ
pY |θ (Y ; ·) g > 0 for all Y with pY (Y ) > 0.

Proof of Proposition 1. It is clear that for g = pθ we have
∫

Θ
pY |θ (Y ; ·) g = pY (Y ) > 0 so that F is well defined.

We have for all θ ∈ Θ

F(pθ )(θ ) =

∫
Y
pY |θ (Y ; θ ) pθ (θ ) dY = pθ (θ )

∫
Y
pY |θ (·; θ ) = pθ (θ ).

The first equality holds from the definition of F and (4), the second equality takes pθ (θ ) before the integral since it does not
depend on Y . The last equality holds because pY |θ (·; θ ) is a probability density and therefore it integrates to 1 over Y . ■

Proof of Proposition 2. Consider the continuous case. Let pθ > 0 be the solution of (4) considered in the statement of the
proposition and consider p̃θ a possibly different solution of (4). Take δ(θ ) =

p̃θ (θ )
pθ (θ )

− 1, then, for all Y such that pY (Y ) > 0

E
(
δ(θ )| Y = Y

)
=

∫
Θ

δ(θ )
pY |θ (Y ; θ )pθ (θ )∫
Θ
pY |θ (Y ; ·) pθ

dθ =

∫
Θ

pY |θ (Y ; θ ) p̃θ (θ )

pY (Y )
dθ − 1 = 0. (A.1)

The first equality uses pθ |Y in terms of Bayes’ formula and that we are considering Y such that
∫

Θ
pY |θ (Y ; ·) pθ > 0. The

second and third equality use that pθ , p̃θ satisfy (4).
Since (A.1) holds a.s. in Y , completeness with respect to θ implies δ(θ ) = 0, therefore p̃θ = pθ a.s. hence the solution is

unique. ■

Proof of Proposition 3. Consider the set Y 0
≡

{
Y ∈ Y : pY |θ (Y ; ·) = 0

}
. (Eq. (4)) implies that if Y ∈ Y 0 then pY (Y ) = 0

hence Prob(Y ∈ Y 0) =
∫
Y0 pY = 0. Clearly, if g > 0 then

∫
Θ
pY |θ (Y ; ·) g > 0 for all Y /∈ Y 0, so that F is well defined at g∗ a.s.

in Y .
At a fixed point we have g∗(θ ) =

∫
Y

pY |θ (Y ;θ )g∗(θ )∫
Θ pY |θ (Y ;·) g∗

pY (Y ) dY for all θ . Given g∗ > 0 we cancel g∗(θ ) from both sides to have

1 =
∫
Y

pY |θ (Y ;θ )∫
Θ pY |θ (Y ;·) g∗

pY (Y ) dY for all θ , and we have the second equality in

E
(

pY (Y )∫
Θ
pY |θ (Y ; ·) g∗

⏐⏐⏐⏐ θ)
=

∫
Y

pY |θ (Y ; θ )∫
Θ
pY |θ (Y ; ·) g∗

pY (Y ) dY = 1.

This holds a.s. in θ . Therefore, taking δ(Y ) =
pY (Y )∫

Θ pY |θ (Y ;·) g∗ −1, completeness implies δ(Y ) = 0 and that
∫

Θ
pY |θ (Y ; ·) g∗

= pY (Y )
almost surely in Y . ■
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Proof of Proposition 4. Extending our argument at the beginning of Proposition 3 to the discrete case, F(g) is well defined
in a set S ⊂ RN

++
.

Taking derivatives of F mechanically we have for all i, j = 1, . . . ,N

∂F(g)i
∂gj

= Ii(j)
∫
Y

pY |θ (·; θi)∑
k pY |θ (·; θk) gk

pY −

∫
Y

[
pY |θ (·; θi)

]2(∑
k pY |θ (·; θk) gk

)2 pY gi (A.2)

where Ii(j) = 1 if i = j and Ii(j) = 0 i ̸= j.
Let G∗ be diagonal matrix with pθ,i in the ith diagonal entry, and

[
pY |θ (Y )

]
be the N− dimensional column vector with

typical i−th element pY |θ (Y ; θi). Define

∆∗
=

[∫
Y

[
pY |θ (Y )

] [
pY |θ (Y )

]′

pY (Y )−1 dY
]
G∗, (A.3)

with typical element ∆∗

ij =
∫
Y pY |θ (·; θj) pY |θ (·; θi) p−1

Y pθ,i.
Evaluating the right side of (A.2) at g = pθ , using (6) we find ∂F(pθ )i

∂gj
= Ii(j)− ∆∗

ij where Ii(j) = 1 if i = j, Ii(j) = 0 if i ̸= j.
Hence

∂F(pθ )
∂g ′

= I − ∆∗, (A.4)

where I is the identity matrix.
Denote the (possibly complex) eigenvalues of ∆∗ by λn. We now show that for all n = 1, . . . ,N

λn is a real number and 0 < λn ≤ 1 (A.5)

It is easy to verify that the columns of∆∗ add up to 1. Awell known result inmatrix algebra guarantees that all eigenvalues
satisfy |λn| ≤ 1.

Given any vector v ̸= 0, simple algebra gives

v′G∗∆∗v =

∫
Y

(
v′G∗

[
pY |θ (Y )

])2
pY (Y )−1 dY .

For a function δ defined as δ(θi) = vi we have E(δ(θ ) | Y = Y ) = v′G∗
[
pY |θ (Y )

]
/pY (Y ). Therefore

v′G∗∆∗v =

∫
Y
[E(δ(θ ) | Y )]2 pY (Y ) dY > 0,

the inequality follows because completeness and δ(θi) ̸= 0 imply E(δ(θ ) | Y ) ̸= 0 with positive probability.
Therefore, G∗∆∗ is positive definite, hence all its eigenvalues are real and strictly positive. All that remains to be shown

is that the eigenvalues of ∆∗ inherit this property.
Obviously

∆∗
=

(
G∗

)−1 G∗∆∗.

Clearly (G∗)−1 is symmetric and positive definite and we just proved that the same is true of G∗∆∗. The product of two
symmetric and positive definite matrices has all eigenvalues real and strictly positive (e.g. this is a special case of Serre
(2010) Proposition 6.1). Hence, we have shown that all eigenvalues λn are real and strictly positive. This ends the proof of
(A.5).

Eq. (A.4) implies that all eigenvalues of ∂F(gθ )
∂g ′ are 1 − λn, and, by (A.5) we have |1 − λn| < 1 n = 1, . . . ,N . Therefore, a

standard argument implies that successive approximations on F locally converge to gθ . ■

Proof of Result 1. The result relies on the law of iterated expectations when (Y , θ) are distributed as pgpY , that is, at the
joint distribution that happens to emerge at this particular iteration of the algorithm. To avoid confusion from having so
many joint distributions on (Y , θ) we prove from scratch that

EF(g)(q(θ )) =

∫
Θ

q(θ )
(∫

Y
pg (θ |Y ) pY (Y ) dY

)
dθ

=

∫
Y

(∫
Θ

q(θ ) pg (θ |·) dθ
)

pY = EpY
(
Epg (·|Y )(q(θ ))

)
The first equality above holds by definition of F(g), the second by Fubini’s theorem and the third by definition of EpY . ■

Appendix B. Standard priors for VARs

The flat (noninformative) prior is p(B, Σ) ∝ |Σ |
−

N+1
2 , following e.g. Zellner (1971), Ch.8.



M. Jarociński and A. Marcet / Journal of Econometrics 209 (2019) 238–255 255

The remaining priors, ‘Minnesota’ prior, the ‘Sims and Zha (1998)’ prior and the ‘Dynare’ prior, originate in Litterman
(1979) and Doan et al. (1984). For reasons discussed in these and other papers, all these priors are centered at parameter
values implying that the variables follow independent RandomWalks, but they have different prior variances.

The functional form of the priors is Normal–Inverted Wishart form with parameters M,Q , S, v, see (11)–(12). All three
priors use the same values ofM, S, v and they differ only in the value ofQ . ThematrixM has 1s in the positions corresponding
to the first own lag of each variable and 0s everywhere else, reflecting the postulate that the variables follow independent
random walk models. We follow common rules of thumb when setting the remaining parameters. Namely, we set the
parameters S, v using the ‘empirical Bayes’ approach. This approach is common practice and consists of the following
steps. First, we estimate a univariate autoregression with P lags for each of the variables, using the estimation sample.
Then we set S and v such that E(Σ) is a diagonal matrix with the error variances of these univariate autoregressions on
the diagonal. We set the degree of freedom parameter to v = 10 in order to have a rather loose prior. Next, we build three
versions of the parameter Q . The Q in the Minnesota prior approximates the prior of Litterman (1986) and follows the
baseline recommendations of the RATS software manual (Doan, 2000). The Q in the Sims and Zha (1998) prior combines
the Minnesota prior with the ‘dummy observations prior’ following Sims and Zha (1998). The Q in the Dynare prior also
combines the Minnesota prior with the dummy observations prior but with somewhat different settings, namely with the
settings used e.g. in Sims (2002) and implemented as the default in the Dynare software (Adjemian et al., 2011). In terms
of Sims and Zha (1998) notation, in the Minnesota prior we take λ1 = 0.2, λ2 = 1, λ3 = 1, λ4 = 105, µ5 = 0, µ6 = 0; in
the Sims and Zha (1998) prior we take λ1 = 0.2, λ2 = 1, λ3 = 1, λ4 = 1, µ5 = 1, µ6 = 1; and in the Dynare prior we take
λ1 = 0.33, λ2 = 1, λ3 = 0.5, λ4 = 105, µ5 = 2, µ6 = 5.

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2018.12.023.
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