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We study the quantitative properties of a dynamic general equilibrium model. Agents face
both idiosyncratic and aggregate income risk, state-dependent borrowing constraints that
bind occasionally, and markets that are incomplete. Equilibrium consumption-savings
plans and asset prices are computed under various assumptions about income uncertainty.
Then, we investigate whether the model replicates two empirical observations: the high
correlation between individual consumption and individual income, and the equity
premium puzzle. We find that, when the driving processes are calibrated according to the
data from wage income in different sectors of the U.S. economy, the results move in the
direction of explaining these observations, but we fall short of explaining the observations
quantitatively. If the incomes of agents are assumed to be independent of each other, the
observations can be explained quantitatively.
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We started working on this paper in the late 1980’s when we were both on the
faculty of Carnegie Mellon University. At the time, many papers explored the
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empirical implications of consumption-based equilibrium asset pricing models
(many tried to explain the risk-premium puzzle, many tested the model by GMM),
and they all maintained the assumption of homogeneous agents and/or complete
markets. It seemed to us that the next natural step in this branch of literature would
be to explore the implications of equilibrium incomplete-market economies with
heterogeneous agents. Such a model is a candidate for solving the equity premium
puzzle because agents are limited in their ability to smooth consumption risks.
Perhaps more interestingly, a number of additional issues can be studied, such as
the relationship between individual consumption and income, the behavior of asset
trading, equilibrium portfolio decisions, and the distribution of wealth. The new
methods for simulating nonlinear rational-expectations equilibrium models made
the exploration of these issues feasible.

We adapted the parameterized expectations approach to solve heterogeneous-
agents models with portfolio constraints, and then studied the properties of our
model using the sample moments of simulated consumptions, incomes, and asset
prices and holdings of the agents. Since then, others have studied similar models
by simulation, including A. Bernardo, J. Coleman, W. den Haan, J. Diaz, J. Heaton,
M. Hugget, K. Judd, P. Krusell, D. Lucas, E. McGrattan, F. Obiols, A. Smith and
C. Telmer. Some of these papers have used, explored, or criticized our algorithm;
also, Christiano and Fisher discussed our way of dealing with occasionally binding
inequality constraints. The current paper is a shortened version of our June 1991
working paper, which was distributed, for example, at the NBER summer institute.
It includes a new concluding Section 5 that discusses some unresolved issues. We
have not included an extensive review of the literature written since our 1991 draft.
Rather, in the spirit of the “vintage paper” series inMacroeconomic Dynamics, we
are simply reporting a condensed version of our ideas as they had developed up to
the time we postponed work on this project. Since then, the literature on models
with heterogeneous agents and incomplete markets has grown substantially and
more is now known about the properties of these models.

In preparing the last version of the paper, back in 1991, we encountered the
following problem: When we refined the solution to increase the accuracy, or
when we tried to solve the model with different initial conditions, the algorithm
required many iterations to find a fixed point, often wandered through a wide
region of the admissible space of choice variables, and sometimes settled down
at different laws of motion. Some of the properties of the model were practically
insensitive to changing initial conditions. For example, this was true of the asset
prices and the correlations of individual consumptions and incomes. However,
some other properties of the model, such as the levels of asset holdings by each
agent, were notably different. We explored different reasons why this might be
happening, some of which are discussed in more detail in Section 5. To this date,
we feel that we do not fully understand the reasons for these apparent sensitivities,
and will be more comfortable with the results when more is understood about
the theoretical properties of economies with incomplete markets. Specifically, we
would like to know more about the circumstances under which there is a unique
equilibrium and when this equilibrium is an ergodic process.
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Some of the findings in this paper have been confirmed for alternative speci-
fications of preferences and frictions in financial markets. For instance, other re-
searchers have confirmed that active trading in a small number of securities often
allows agents to approximately achieve the consumption plans of the complete-
markets equilibrium. Even with state-dependent portfolio constraints, it is difficult
to generate a large equity premium. Our basic specification of trading opportunities
and sources of uncertainty (two assets held in equilibrium, three driving processes
with continuous distributions, nonsymmetric agents) remains among the richer
models examined, and so, we suspect that more than minor changes to prefer-
ences or the constraint sets will be necessary to resolve the empirical puzzles that
motivated this study.

1. INTRODUCTION

In this paper we study the quantitative properties of a dynamic general equilibrium
model in which agents face both idiosyncratic and aggregate income risk, markets
are incomplete, and in the presence of state-dependent borrowing constraints that
bind in some, but not all, periods. Optimal individual consumption-savings plans
and equilibrium asset prices are computed under various assumptions about income
uncertainty. Then we investigate whether our general equilibrium model with in-
complete markets replicates some relations between consumptions, incomes, and
asset returns observed in micro and aggregate data better than a representative-
agent model would.

Specifically, we are motivated by two observations: the correlation of individ-
ual consumption and individual income, and the equity premium puzzle. For the
first of these observations, evidence from various microeconomic databases sug-
gests that the consumptions by individual agents are more highly correlated over
time with their own incomes than with aggregate income [see, e.g., Carroll and
Summers (1991)].1 Furthermore, the consumptions by agents who hold relatively
large quantities of common stocks appear to be more highly correlated with stock
returns than consumptions by those agents who do not hold stocks [Mankiw and
Zeldes (1990)]. These observations are contrary to what might be expected from
optimal consumption smoothing by risk-averse agents in an economy with com-
plete markets. We explore whether these observations can be explained in general
equilibrium by the combined effects of market incompleteness and portfolio con-
straints on savings and consumption decisions.

In addition, we investigate the properties of asset returns and the equity premium
in our incomplete-markets economies. Mehra and Prescott (1985) show that simple
representative-agent models imply excess returns on equity that are substantially
smaller than those observed historically. Furthermore, the empirical evidence from
the analysis of Euler equations with much richer specifications of preferences
suggests that a large class of representative-agent models are not consistent with
the observed behavior of asset returns and consumption.2 Weil (1989) argues that
the equity premium puzzle can be interpreted equally as a risk-free-rate puzzle in
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that the mean riskless rate implied by a large class of representative-agent models is
too large relative to the mean computed from historical data. In the context of a static
model with idiosyncratic income risk, Mankiw (1986) illustrates that incomplete
markets can potentially explain the large equity premium and return volatility. We
reexamine these issues in the context of a dynamic general equilibrium model
under different parameterizations.

To move away from the representative-agent model and/or complete-markets
framework, we assume that there are two types of consumers with idiosyncratic
and exogenous incomes from labor. We permit trading in both a riskless real bond
and a risky equity. This provides some risk-sharing opportunities, but not enough
to complete the markets in equilibrium so that financial markets are incomplete.
In addition, we assume that there are limits to the amount of assets that agents
can hold; in particular, we impose borrowing constraints on bond holdings and
short-sale constraints on equity holdings.

An important precursor to our analysis of consumption savings relations is
the study by Deaton (1989). He studied a partial equilibrium model of impatient
agents trading a single asset with a constant, exogenous interest rate, and facing
a nonnegativity constraint on wealth. Our framework differs from his in several
potentially important respects. In addition to having more than one agent and
more than one asset, consumptions and asset prices in our model are determined
jointly in general equilibrium. If the asset holdings of a substantial fraction of the
population approach the constraints, then equilibrium interest rates will adjust,
thereby affecting the extent to which constraints actually bind. This endogenous
adjustment of asset prices is absent from models such as Deaton’s, which assume
asset prices are fixed or exogenously given. Of course, such models also preclude
an analysis of the effects of portfolio constraints on the properties of asset returns.3

The computational aspects of our analysis are complementary to the studies by
Cox and Huang (1987), Breeden (1989). He and Pearson (1989a,b), and Karatzas
et al. (1989), among others. The papers by He and Pearson and Breeden, in par-
ticular, derive optimal portfolio rules for an individual agent facing incomplete
markets and short-sale constraints. All of these studies are partial equilibrium
in nature in that asset prices are taken as state variables and then the optimum
problem of an individual agent is solved. In contrast, we present an algorithm for
computing the equilibrium asset prices simultaneously with the consumption and
portfolio policies of heterogeneous agents facing incomplete markets and subject
to portfolio constraints.

The details of the model are described in Section 2. An algorithm for solving
economic models in which agents are subject to portfolio constraints is described
in Section 3. We solve the model using the parameterized expectations approach
(PEA).4 In Section 3, we discuss in detail some issues involved in applying PEA to
this model and, in particular, some complications arising from the presence of debt
limits and the need to solve for the optimal holdings of two assets. The algorithm
can be adapted easily to different specifications of the utility function, types of
agents, and financial market structure.
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In Section 4, we investigate the distributions of consumptions, incomes, and
asset holdings implied by the model presented in Section 2. The income and divi-
dend processes are calibrated by fitting a trivariate vector autoregression using data
from the incomes of workers in the durable and nondurable manufacturing sectors
and aggregate per-capita dividends for the United States during the period 1947:1
through 1988:4. The standard deviations of the income shocks then are scaled
to reflect the higher variability of individual incomes compared to estimates from
aggregated data reported in the microeconomics literature [e.g., MaCurdy (1982)].
In this manner, we obtain a benchmark parameterization for the exogenous pro-
cesses. The model is solved for the benchmark case and for several variations of
that case, as well as for various changes in the form of the portfolio constraints. We
find that our benchmark model moves in the right direction in terms of explaining
the two puzzles from the data that we discuss above. Nevertheless, from a quan-
titative standpoint, the two puzzles are not solved: Through intensive buying and
selling of financial claims (as contrasted to reliance on the payoffs of asset port-
folios that would happen under complete markets), agents achieve consumptions
similar to what would be achieved with complete financial markets, and the result-
ing risk premium is small. We show, however, that for certain income processes,
our incomplete-markets economy with state-dependent borrowing constraints re-
produces the observations cited above: Individual consumptions are more highly
correlated with own rather than aggregate incomes, and the average levels of both
the riskless interest rate and the equity premium (4.6%) are consistent with the
historical evidence.

2. MODEL SPECIFICATION AND EXISTENCE OF AN EQUILIBRIUM

In this section we present an illustrative economy with two classes of agents
and a market structure that precludes complete insurance arrangements against
idiosyncratic income shocks. The size of the population is constant and normalized
to one, with type-1 agents constituting a fractionπ and type-2 agents constituting
a fraction (1−π ). All agents are assumed to be price takers in goods and securities
markets. We also assume that there are three sources of a single, nonstorable
consumption good: the exogenous dividend flows of a Lucas (1978)-style tree
and the exogenous endowments of the two types of agents. The number of shares
representing claims to the dividend stream is normalized to one. Thus, letting,yit

denote the endowment of a type-i agent anddt denote the per-share dividend, the
aggregate endowment is

y∗t = πy1t + (1− π)y2t + dt

and the market clearing condition for the consumption good is

πc1t + (1− π)c2t = y∗t , (1)
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where cit denotes consumption at datet by agenti . The endowment vector
yt = (ln y1t , ln y2t , dt )

′ is assumed to follow the Markov process

yt = h(yt−1, εt ,η0), (2)

where{εt } is an i.i.d. process withE[εt ]= 0 andE(εtε
′
t )= I , andη0 is a vector

of parameters. The process{yt } is assumed to have a stationary distribution. In
particular, we assume that there is no growth in the endowments or population.

There are two securities traded in this economy: an equity-like security and
a one-period bond. An equity share is a claim to the future dividend streamdt

with price ps
t . Shareholdings of thei th agent are denoted byait . (Recall that the

outstanding number of shares is normalized to one.) The bond pays one unit of
consumption in the subsequent period with certainty, is in zero net supply, and is
traded at an equilibrium pricepb

t in a competitive market. The bondholdings of
agenti are denoted bybit , i = 1, 2. The market clearing conditions for the assets
at each periodt are

πa1t + (1− π)a2t = 1, (3)

πb1t + (1− π)b2t = 0. (4)

A type-i agent is assumed to choose consumption and investment plans so as to
maximize the objective function

E

( ∞∑
t=0

δt
i ui (cit ,γ i ) | I0

)
, (5)

whereγ i is a parameter vector governing the period utility function,I0 is the
common information set of agents at date 0, and 0<δi < 1 is the subjective discount
factor of type-i agents. Utility is maximized subject to the budget constraints

cit + ps
t ait + pb

t bit = ait−1
(

ps
t + dt

)+ bit−1+ yit . (6)

For the maximization problem of the agents to be well defined, we have to
introduce additional constraints on the agents’ investment plans. Otherwise, agents
could obtain arbitrarily high levels of consumption in any period by borrowing
(more precisely, by selecting very negative bondholdings) and repaying these loans
with additional borrowing in subsequent periods. Consequently, accumulated debt
holdings could become so large that their future stream of endowments would
not be sufficiently large to repay this debt. To preclude such Ponzi schemes, the
following constraints are imposed on the asset holdings of the agents:

bit ≥ K b
i (xt ), (7)

ait ≥ K s
i (xt ) (8)

for all t, i , whereK b
i is typically negative, andxt is the vector of states in the

model, to be specified below. These constraints can take many forms including
fixed negative numbers and limitations on borrowing based on an agent’s recent
income history.
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We assume full information: Both agents at timet know the whole history
of past shocks, so that their equilibrium choices (cit ,ait , bit ) are contingent on
realizations ofIt ≡{yt−s : s > 0}. We consider equilibria where this information
set can be summarized by a low-dimensional state vector. Clearly, the state vector
must include at least the information in [yt , (ait−1, bit−1)i=1,2] because these are
the variables that appear in the constraints of agents. From (3) and (4), it is clear
that, once(b1t−1,a1t−1) are known,(a2t−1, b2t−1) carry no additional information
and they can be dropped from the state vector. Furthermore, the only relevant
information about asset holdings that matters for the decision of agenti at time
t is his total wealth,wi t =ait−1(ps

t + dt ) + bit−1. Thus, we choose as the state
vector for this modelxt = (w1t , yt ), and we make the choice of both agents at timet
contingent only onxt . A larger number of classes of agents also are accommodated
easily by including the wealth levels of more agents inxt .

In our economic environment, trading in the claims to the exogenous dividend
stream and the one-period bonds is not sufficient for agents to fully hedge their
consumption risk. There are three sources of uncertainty (two idiosyncratic in-
comes and dividend shocks) and each is drawn from a continuous distribution, and
so, in principle, the number of Arrow securities that are needed to complete the
markets is equal to the cardinality ofR3.5 The admittedly arbitrary restriction of
security selection in our model provides an interesting economic environment for
exploring the consequences of portfolio constraints for savings and asset prices,
while maintaining sufficient tractability to permit various properties of the solution
algorithm to be explored.6

To our knowledge, sufficient conditions for the existence of a stationary Markov
equilibrium for this economy have not yet been established. However, the results of
Duffie et al. (1994) show that an equilibrium does exist for discrete approximations
to our economy. Specifically, they assume that the preferences of thei th agent are
bounded above and unbounded below, the portfolio holdings are subject to lower
bounds, and the exogenous state space is discrete. The preference assumption is
satisfied, for example, by the members of the HARA class examined in Section 4
(assuming the aggregate endowment has bounded support) and in many previous
studies of consumption and asset returns. In addition, for the special case of state-
independent debt limitK≡ (K s

1, K s
2, K b

2 , K b
2), equations (7) and (8) provide lower

bounds on the levels of debt and short sales. Thoughεt in our simulated economy
has a continuous distribution, the Markov model (2) can be approximated arbitrarily
well by a discrete-state Markov process [e.g., Tauchen (1985)]. The Duffie et al.
existence result applies directly to this approximate model.7

The properties of the equilibria of models with state-dependent portfolio con-
straints are less well understood than the case of fixed constraints. IfK is a function
of the exogenous state vectoryalone and the distribution ofyhas compact support,
then the previous remarks about existence of an equilibrium continue to apply. On
the other hand, ifK depends on lagged asset holdings, it is not immediate that
the budget set of the agents is compact; in principle, asset holdings could grow
without bound in this case, even though at each date the levels ofa andb are
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constrained to lie in a compact set with a boundary predetermined by the values of
lagged asset holdings andyt . The class of economies with state-dependent port-
folio constraints for which an equilibrium exists has not been characterized in the
literature. We proceed (without formal proof) under the assumption that an equi-
librium to this economy exists and that the equilibrium prices and consumptions
are time-invariant functions of the state vector.

The first-order conditions of a type-i agent’s problem are given by the constraints
that they face plus the following Kuhn-Tucker conditions for equity holdings:

Either

mui (cit ,γ i ) ps
t = δi Et

[
mui (cit+1,γ i )

(
ps

t+1+ dt+1
)]

and ait > K s
i (xt ) (9)

or

mui (cit ,γ i ) ps
t ≥ δi Et

[
mui (cit+1,γ i )

(
ps

t+1+dt+1
)]

and ait = K s
i (xt ); (9′)

and for bond holdings, either

mui (cit ,γ i ) pb
t = δi Et [mui (cit+1,γ i )] and bit > K b

i (xt ) (10)

or

mui (cit ,γ i ) pb
t ≥ δi Et [mui (cit+1,γ i )] and bit = K b

i (xt ), (10′)

where mui (cit ,γ i ) denotes the marginal utility of consumption at datet . In pe-
riods when (9) and (10) are satisfied for a type-i agent, the credit and short-sale
constraints are nonbinding and we have the usual Euler equations for bonds and
equity. When (9′) or (10′) is satisfied, at least one of the constraints is binding and
the associated Euler equation is satisfied only as an inequality.

Our goal is to solve for the eight unknown variables{(cit ,ait , bit )i=1,2, ps
t , pb

t )}
given initial conditions. These variables have to satisfy the two budget constraints
(6), the three market clearing conditions (1)–(4), and the Euler equations (9),
(10) [or the alternative equations (9′), (10′)]. It would appear that there are eight
unknowns and nine equations per period, but a version of Walras’ law applies and
one of the budget constraints can be dropped from the calculations at each period.

In practice, there are two obstacles to solving these equations. First, the Euler
equations involve conditional expectations, which must be computed as functions
of xt in a way that the rational-expectations hypothesis is satisfied. This problem
has been solved in the context of representative-agent business-cycle models by
using approximations to the expectations, several of which are described by Taylor
and Uhlig (1990) and the references therein. Second, we face the additional com-
plication that the constraints (7) or (8) generally will be binding in some periods,
so that (9′) or (10′) will hold in those periods. In the next section, we extend the
parameterized expectations approach to accommodate models with heterogeneous
agents subject to portfolio constraints.
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3. AN ALGORITHM FOR COMPUTING THE EQUILIBRIUM
OF THE MODEL

3.1. PEA

We first present a general description of the PEA.8 This algorithm works by itera-
tively approximating the conditional expectations that often appear in equilibrium
conditions under rational expectations. In our model, expectations appear in (9)–
(10). Specifically, consider a model that satisfies

g(Et [φ(zt+1)], zt , zt−1, yt ) = 0 (11)

for all t , whereg : Rm× Rn× Rn× Rs→ Rq andφ : Rn→ Rm are known func-
tions. Then-dimensional vectorzt includes all endogenous variables in the model.
The exogenous processyt is assumed to be Markov of order one. Also, given a
set of state variablesxt = f (zt ) for a known functionf : Rn→ Rl we compute a
solution such that

Et [φ(zt+1)] = E[φ(zt+1) | xt ] = E(xt ) (12)

for a time-invariant functionE .
To find a solution{zt } that satisfies (11) and (12), we need to find an approxima-

tion to E . We proceed by choosing a class of functions that can approximate any
function arbitrarily well, and we fix the degree of approximation. For example,
we can choose polynomials of a third degree. Then, for a third-degree polynomial
with given coefficients, we simulate the system and find the third-order polynomial
with the highest predictive power. We look for a polynomial of third degree that
generates simulations such that this polynomial is precisely the one with the high-
est predictive power. This is a candidate for a good approximation to the solution
because the conditional-expectation functionE has an analogous property in that
the solution generated from substitutingE in (11) is such that this is the function
that has the highest predictive power. Obviously, to obtain arbitrary accuracy, we
would need to drive the degree of approximation to infinity.9

Formally, the algorithm is expressed as follows:

Step 1.Write the system (11) in such a way thatg is invertible with respect to its second
argument. Select a set of state variablesx. Consider a function9(β, ·) : Rl →
Rm, with β ∈ Rν×m such that, forν large, we can approximate any function
F : Rl→ Rm arbitrarily well. Thei th element of9 is given byψi (βi , ·), and is
meant to approximateEt [φi (zt+1)], whereβi is thei th column ofβ.
Replace the true conditional expectations with the finitely parameterized function
9 to obtain

g(9(β, xt (β)), zt (β), zt−1(β), yt ) = 0. (13)

Notice here that{zt (β)} is the value of the endogenous variables if, instead of
using the conditional expectations, agents used9(β, ·) to make their forecasts.
Fix y0 and z0. Draw a sample of sizeT of the exogenous stochastic shock
(y1, . . . , yT ) for largeT .
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Step 2.For a givenβ ∈ Rν×m, recursively calculate{zt (β)}Tt=1 using (13) and the real-
ization ofy drawn in step 1. It follows thatzt (β) has the Markov representation
zt (β)= H(zt−1(β), yt ;β). We have to ensure thatH(· ;β) generates an ergodic
process in order for the next step to make sense, and in order to use the simulated
moments as approximations to the true moments of the model.10

Step 3.Consider the mappingGT : Rν×m→ Rν×m whose columns are defined by

GT, j (β) = arg min
ξ∈Rν

1

T

T∑
t=0

(φ j (zt+1(β))− ψ j (ξ, xt (β)))
2; (14)

that is, if agents useβ to make their predictions, thenψ(GT, j (β), ·) yields the
best forecast ofφ j (zt+1) (within the function considered).

Step 4.Find the fixed point
β f = GT (β f ). (15)

The approximate solution is given by{zt (β f )}Tt=1, our approximation toE is
given by9(β f , ·), and our approximate law of motion is given byH(· ;β f ).

3.2. Applying PEA to Our Model

Our model is the special case of (11) withzt ≡ [(cit ,ait , bit )i=1,2, ps
t , pb

t ] and with
the system of eight equationsg in (11) given by four Euler equations (with Kuhn-
Tucker conditions), one budget constraint, and three market clearing conditions.
It is clear thatφ is given by

φi (zt+1) ≡ mui (cit+1,γ i )
(

ps
t+1+ dt+1

)
,

(16)
φ2+i (zt+1) ≡ mui (cit+1,γ i )

for i = 1, 2. A key element of step 1 is to ensure thatg is invertible with respect to
its second argument; otherwise, step 2 cannot be performed. We see later that we
need to modifyg in order to have invertibility.

To apply step 1, we takext ≡ (w1t , yt ). Also, we choose as9 a set of four
exponentiated polynomials, so that thei th parameterized expectation for a first
degree polynomial is11

ψi (βi , xt ) ≡ exp[βi 1+ (βi 2, βi 3, βi 4) logyt + βi 5w1t ].

This functional form guarantees that the value of this function is positive, consistent
with φ being strictly positive. Furthermore, it is easy to see that this parameter-
ization is exactly correct in the case of homogeneous agents with lognormally
distributedy and only one bond. We use the notationPis

t and Pib
t to refer to the

parametric approximations to the expectations appearing in the stock and bond
equations, respectively, for a type-i agent, e.g.,P1b

t ≡ψ3(β3, xt ) and so on.
Next, consider step 2, which consists of solving forzt (β) in (13). Because of

the Kuhn-Tucker conditions, we have to consider several cases.
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Case 1: Unconstrained Asset Holdings. If the choices of both agents are un-
constrained, then (9) and (10) are both satisfied. Dividing each of these equations
for i = 1 by the same equation fori = 2, we get

mu1(c1t , γ1)

mu2(c2t , γ2)
= δ1P1s

t

δ2P2s
t

(17)

and
mu1(c1t , γ1)

mu2(c2t , γ2)
= δ1P1b

t

δ2P2b
t
. (18)

These equations together with (1) provide three equations to solve for the two
unknowns (c1t , c2t ). Obviously, the system is overdetermined and we cannot find
solutions for consumptions from these equations.12

The problem here is that, because of the way we have writteng initially, it is
not invertible with respect to the endogenous variables, as required by step 1. We
need to rewrite an equivalent system that satisfies this invertibility requirement.
Toward this end, consider anypositiveandincreasingfunctionG : R→ R++. It is
easy to check that equations (9) and (9′) for i = 1 are equivalent to either

ps
t G
(
as

1t

) = δEt

[
mu1(c1t+1, γ1)

mu1(c1t , γ1)

(
ps

t+1+ dt+1
)
G
(
as

1t

)]
and a1t > K s

1(xt ) (19)

or

ps
t G
(
as

1t

) ≥ δEt

[
mu1(c1t+1), γ1)

mu1(c1t , γ1)

(
ps

t+1+ dt+1
)
G
(
as

1t

)]
and a1t = K s

1(xt ). (19′)

So, we replace the equity conditions (9) and (9′) for i = 1 with (19) and (19′) when
definingg andφ. For completeness, the revised system of equations is presented
in the Appendix.

Now, we can perform step 2 when the debt limits are not binding, as follows:
Combining (18) and (1), we obtain

mu1(c1t , γ1)

mu2
( y∗t −πc1t

1−π , γ2
) = δ1P1b

t

δ2P2b
t
, (20)

which is a single nonlinear equation that can be used to solve for the unknownc1t .
Each remaining variable can be calculated recursively in one additional step:c2t

is given by (1);pb
t andps

t are given by the parameterized versions of (10), and (9)
for a type-2 agent;a1t is found from (19); andb1t is calculated from the budget
constraint (6). The asset holdings fori = 2 are determined directly from the market
clearing conditions for assets.
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Case 2: Constrained Asset Holdings. The preceding computations presume that
no agent is constrained in choosing asset holdings. Letz̄t denote the solution
obtained in Case 1. If either̄ait or b̄i t are outside their bound, Case 1 cannot be the
solution for that period. Suppose, for example, that we obtainā1t < K s

1(xt ). This
means that the inequality in (19) fori = 1 is not satisfied and we must impose (19′)
instead. Then, the equalitya1t = K s

1(xt ) determines asset holdings in that period.
Notice that we have “lost” one equation because the Euler equation is not satisfied
as an equality, but we have gained the equationa1t = K s

1(xt ), and we still have
eight equations to solve for eight unknowns. The remaining variables are found
using steps similar to those in the unconstrained system.

In the case that̄b1t < K b
1(xt ), we have to use (10′) instead of (10) fori = 1.

To this end, we first set̄b1t = K b
1(xt ); then, we obtain stock prices and holdings

from the stock Euler equations and, combining (10) for agent 2 with the budget
constraint (6) and market clearing condition (1), we obtain

c1t + a1t ps
t + b1t

δ2P2b
t

mu2
( y∗t −πc1t

1−π , γ2
) = a1t−1

(
ps

t + dt
)+ b1t−1+ y1t , (21)

which determinesc1t . The remaining variables once again are computed easily.
In following this procedure, one must ensure that the inequality conditions of

the Kuhn-Tucker conditions are satisfied. That this is indeed the case can be seen
as follows: Consider the situation that, when solving under Case 1, we find that
b̄1t < K b

1(xt ). Then we have to check that, when we shift to Case 2, the inequality
in (10′),

mu1(c1t , γ1)p
b
t ≥ δ1P1t , (22)

holds. However, if Case 1 yields̄b1t that are too low, bonds of agent 1 have
to go up in Case 2; hencēc1t > c1t , so that mu1(c1t , γ1)>mu1(c̄1t , γ1) and
mu2(c2t , γ2)<mu2(c̄2t , γ2). Because (10) is satisfied fori = 2, we have that
pb

t > p̄b
t . This implies that mu1(c1t , γ1)pb

t >mu1(c̄1t , γ1) p̄b
t = δ1P1t unambigu-

ously and (22) is satisfied. A similar argument works for the equity Kuhn-Tucker
conditions, although in that case it is essential that we have an increasingG.

Summarizing, to calculate the endogenous variables for a given parameterized
expectationzt (β) in each period, we first solve the model as if all agents are
unconstrained by the limits on portfolio transactions. Then, if an agent borrows too
much or takes too large of a short position in equity, the relevant asset holdings are
set at their limits. We have to go down through all possible cases (each agent being
constrained in each possible asset), until one is found in which all of the conditions
are satisfied. It turns out that, by proceeding in this manner, all inequalities implied
by the Kuhn-Tucker conditions are satisfied automatically.

To perform step 3, notice that, in our model, we have four Euler equations, each
with one expectation, so thatm= 4. This means that, in step 3, we have to solve
four problems of the form of (14) to obtainG jT for j = 1, . . . ,4. For this purpose
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we just compute a nonlinear regression ofφ j [zt+1(β)] onψ j [·, xt (β)] for each j .
Details on how to run this regression can be found in den Haan and Marcet (1990).

To find a fixed pointβ f =GT (β f ), a number of iterative schemes could be
used. In practice, we use the following updating scheme:

βτ = µGT (β
τ−1)+ (1− µ)βτ−1 (23)

for someµ∈ (0, 1) and some initial conditionβ0. The choice ofµ near zero forces
the algorithm to take small steps.

Notice that, once steps 3 and 4 are completed, the possibility of being constrained
in the future affects agents’ decisions today, even if the debt limits are not binding in
the current period. This is becauseβ f is selected so as to predict certain functions
of future variables; future variables might be affected by the debt limits, and so,
future debt limits influenceβ f and, therefore, today’s decisions.

One potential difficulty with PEA is that ifβ takes a value where the difference
equation implied by (13) is unstable at some point along the iterations, the simu-
lations in step 2 will be explosive. To avoid this problem, we use homotopy ideas
to move gradually from a known solution to the desired solution. Because theβ f

for bonds and the representative-agent model are easy to find, we move from the
homogeneous agent equilibrium to the heterogeneous agent case by making small
changes in the parameters of the model. That is, we introduce heterogeneity in
small steps until we reach the desired model.

We chooseG(a)= exp{a} in (19) and we setµ= 0.2 in (23). In solving forc1t in
(20) for iterationτ , we use values for consumption found at iterationτ − 1 as initial
conditions, so that this nonlinear equation, which is solvedT times per iteration,
is solved in one or two steps. Finally, the simulation sizeT in the definition ofGT

was set at 9600.
Whenever we are interested in a certain momentE[m(zt )] at the stationary dis-

tribution for certain parameter values of the utility functions and forcing processes,
after obtainingβ f consistent with these parameters, we approximate this moment
by

MT = 1

T

T∑
t=1

m[zt (β f )]. (24)

Because we only consider solutions that have a stationary distribution, computing
this moment with a large enoughT gives a good approximation to the desired
moment. For this purpose, we check thatH(· ;β f ) satisfies the AUC condition
of Duffie and Singleton (1993), so as to guarantee that the simulated moments
converge to the desired moment for any initial condition.

4. OPTIMAL CONSUMPTION AND PORTFOLIO DECISIONS
FOR ILLUSTRATIVE ECONOMIES

In this section we present some quantitative evidence on the effects of portfolio
constraints on consumptions and asset prices in the context of the model set forth
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in Section 2. Because agents will take into account the possibility that these con-
straints may bind in future periods, the constraints themselves need not bind with
high frequency in equilibrium to have a significant impact on current economic
behavior. The magnitudes of these effects are investigated in the context of models
calibrated to macro- and microeconomic data.

The instantaneous utility functionui (c) is assumed to beui (c)= cγ i+1/(γ i + 1).
The exogenous income and dividend processes are assumed to be distributed as
lognormal AR(1)

logyt = B+ A logyt−1+ εt , (25)

whereεt is a three-dimensional i.i.d. process with distributionN(0, 6).
To simulate our model, we need to assume values for the parametersA, B, 6,

preferences, and the borrowing and short-sale constraints. Given the large number
of free parameters, a thorough investigation of the properties of the equilibria of our
model over the entire admissible parameter space is infeasible. Instead, we choose
one benchmark set of parameters calibrated so as to make some moments close to
those implied by certain macro- and microeconomic data sets. We fixγ i =−2 and
δi = 0.99 fori = 1, 2 in all our models, so that if a periodt is a quarter, this discount
factor corresponds to an average real riskless interest rate of about 4% per annum.

To calibrate the process for the exogenous variables, we interpret agents of
type 1 as workers in the durable-goods sector and agents of type 2 as workers
in the nondurable-goods sector of the U.S. economy. These sectors were chosen
because of the differing cyclical variability of wages; hence, our simulations illus-
trate how agents with different income processes trade assets in order to smooth
consumption. Dividends from the equity-like securities were taken to be aggregate
per-capita dividend income. Historical data were obtained from the Citibase data
file for the sample period 1947 to 1988.

Using these data, we fit a trivariate, first-order autoregression with the variables
ordered with durable-goods- and nondurable-goods-sector incomes followed by
dividend income. The estimates indicate a very high autocorrelation in these ag-
gregate series and very little feedback between variables. On the other hand, the
innovations of the income series are highly correlated. After setting to zero all of
the elements ofA that are not significantly different from zero at the 5% level and
selecting the point estimates of the parameters that are significantly different from
zero, we choose the following value ofA:

A =

0.85 0.15 0.0

0.0 0.95 0.0

0.0 0.0 0.95

 . (26)

As Deaton (1989) observed, the high persistence in the income processes may
weaken agents’ desire for consumption smoothing in equilibrium because smooth-
ing consumption over long cycles requires more assets and more sacrifice of con-
sumption than with low or negative autocorrelation coefficients. We return to this
issue after displaying our results.
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The covariance matrix of the innovations also is taken from the regression results,
except that this matrix is scaled up by a factor of three. The reason for scaling was
to make the variances of the individual incomes closer to those reported in the
microeconomic literature. MaCurdy (1982) estimated the conditional variance of
the logarithm of income in an ARIMA(0, 1, 1) process to be 0.235 for annual
data. Arguing that this estimate is implausibly large because of measurement error
in recorded income, Deaton used values between 0.10 and 0.15. The quarterly
estimates that we use for our benchmark model place type-1 agents somewhat
below MaCurdy’s estimate and type-2 agents at the low end of Deaton’s values.
Specifically, with standard deviations on the diagonal and correlations on the off-
diagonal, our second moment matrix is

6 =

0.05 0.5 0.2

0.5 0.03 0.2

0.2 0.2 0.01

 . (27)

Notice that the incomes of the two types of agents are correlated with each other
and with the exogenous dividend process, so that there is both idiosyncratic and
aggregate uncertainty from the point of view of each agent.

Finally, the intercept vectorB is chosen so that the implied means for the levels
of per-capita incomes equaled the sample means for our data set: (41, 34) for
(y1, y2), and the mean of aggregate per-capita dividends was chosen to be 7, which
is approximately 10% of aggregate income on average. The resulting income and
dividend series are scaled so thaty∗ has a mean of unity.

The proportion of type-1 agents in the population is set atπ = 0.6, which is
roughly the proportion of workers in the durable-goods sector in the economy.

The portfolio constraints for the benchmark case are of two forms: First, the
constraint on stockholdings was fixed atK s

t (xt )= 0.0 shares, which is a no-short-
selling constraint. As will become apparent from the results, this is a very weak
constraint because the average value of the equilibrium price of equity is large
relative to average income and, therefore, small changes in shareholdings can have
substantial effects on consumption. Subsequently, we explore the implications of
setting the constraint on equity holdings at 0.5 shares.

We assume a state-dependent borrowing constraint withK b
i (xt )=−0.33yit .

This choice is intended to approximate the commonly imposed income constraint
for borrowing from financial institutions that the costs of servicing personal debt
do not exceed one-third of personal income. For long-term debt, this constraint
usually applies to the repayment of interest and principal. Because the only bor-
rowing in our model is for a single period and the bonds are purchased at discount,
this constraint analogously applies to the repayment of principal and interest on
loans. We explore the effects of relaxing this constraint on savings behavior after
examining this benchmark case.

Thus, with these choices of the parameters we construct a benchmark model,
which we call Model 1. Then we vary the parameters for the income process and
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debt limits in several directions to explore a total of seven models. The parameter
choices for all of the models examined are displayed in Table 1. This table also
contains the correlation of individual incomes implied by the differentA, B, 6
considered in each model. For each model, 1700 observations were simulated and
sample estimates of several moments of consumptions and incomes were computed
using the last 1600 of these observations. These moments are displayed in Table 2.

In the complete-markets counterpart to our economy, equilibrium consumption
allocations satisfyc1t/c2t = λ for some constantλ. Hence, one implication of
complete markets in this economic environment is that individual consumptions
are perfectly correlated with aggregate income. Concurrently, we would expect
that the correlation of an agent’s consumption with its own income would be much
lower (possibly zero). Thus, the extent to which consumptions are not perfectly
correlated with aggregate income provides one measure of the departure of the
incomplete- from the complete-markets solutions for this economy.

For our benchmark Model 1, the correlations between aggregate incomey∗ and
individual consumptions are less than unity and, hence, the optimal allocations

TABLE 1. Description of modelsa

Model A12 ρy1y2 σε1 σε2 ρε1ε2 K b
i K s

i

1 0.15 0.78 0.05 0.03 0.5 −0.33yi 0.0
2 0.15 0.78 0.05 0.03 0.5 −0.5yi 0.0
3 0.15 0.78 0.05 0.03 0.5 −0.5yi 0.25
4 0.0 0.13 0.05 0.03 0.2 −0.33yi 0.0
5 0.0 0.13 0.05 0.03 0.2 −0.33 0.0
6 0.0 0.17 0.05 0.05 0.2 −0.33yi 0.0

a A12 is the (1, 2) element of the autoregressive matrixA; asset returns are defined asr s
t ≡

ps
t+1
+ dt+1

ps
t

andr b
t ≡ 1/pb

t ;

in all models,γ = −2 andδ = 0.99; σX , µX , ρX,Y represent, respectively, the standard deviation, mean, and
correlation of random variablesXt ,Yt .

TABLE 2. Sample moments of consumptions and incomesa

Model µc1 σc1 µc2 σc2 ρc1y1 ρc1y∗ ρc2y2 ρc2y∗

1 1.26 0.141 0.887 0.081 0.988 0.993 0.927 0.953
2 1.28 0.142 0.854 0.079 0.987 0.994 0.917 0.955
3 1.23 0.138 0.932 0.084 0.987 0.994 0.917 0.967
4 1.24 0.086 0.902 0.078 0.957 0.930 0.855 0.793
5 1.25 0.084 0.905 0.075 0.959 0.938 0.830 0.812
6 1.20 0.088 0.975 0.130 0.947 0.843 0.939 0.834

a A12 is the (1, 2) element of the autoregressive matrixA; asset returns are defined asr s
t ≡

ps
t+1
+ dt+1

ps
t

andr b
t ≡ 1/pb

t ;

in all models,γ = −2 andδ = 0.99; σX , µX , ρX,Y represent, respectively, the standard deviation, mean, and
correlation of random variablesXt ,Yt .
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differ from those of the complete-markets equilibrium. However, correlations are
close to unity, especially for type-1 agents. Furthermore, for both types of agents,
the correlations betweencit and y∗ are larger than the correlations betweencit

and yit . In this respect, the departures from a complete-markets equilibrium are
not large enough to explain the relatively large correlations between individual
consumptions and incomes documented by Carroll and Summers (1991).

Figures 1 through 6 display observations fromt = 100 throught = 1000 for sev-
eral of the endogenous variables in the benchmark Model 1. As Figure 1 demon-
strates, consumption by type-1 agents has both a higher mean and greater variability
than consumption by type-2 agents. This is consistent withy1 having a larger mean
and a larger variance thany2.

The bondholdings of type-1 (AB) and type-2 (AB2) agents are displayed in
Figures 2 and 3, along with the state-dependent borrowing constraints (CON1 and
CON2, respectively). Bondholdings evidence substantial fluctuation because the
bond market is serving as the primary means of risk sharing in this economy.
To see more clearly the roles of equity and bonds in risk sharing, the bond- and
stockholdings of type-2 agents are reproduced in Figures 4 and 5 for a subperiod
of 200 observations. The bondholdings displayed in Figure 4 vary substantially
both over time and between positive and negative levels. Comparison of the values
of AB2 at the beginning, middle, and end of this subperiod shows that type-2
agents tend to be borrowers when their income level is relatively low and lenders
when they have relatively high incomes. Market clearing and the fact that the
correlation between the two incomes is 0.78 (Table 1) imply that type-1 agents
have the opposite borrowing income relation.

The stockholdings of type-2 agents displayed in Figure 5 reveal that type-2
agents hold a smaller share of the equity than type-1 agents. Furthermore, in
contrast to the bondholdings, there is relatively little variation in the stockholdings,
with the stockholdings AS2 of type-2 agents rising slightly during periods of
relatively high individual income levels (displayed as Y2 in Figure 5). Evidently,
type-1 agents, with the higher income and consumption levels, tend to smooth
their consumption by holding a larger share of the equity (which is less volatile
than either income process). Stock prices (PS in Figure 6) tend to be high when
incomes and consumptions are high. To sustain their equity holdings during periods
of relatively high incomes and equity prices, type-1 agents borrow. Type-2 agents,
on the other hand, hold a smaller share of the equity, and they borrow during
periods of low income to smooth consumption.

Models 2 and 3 impose the weaker borrowing constraint that borrowing not
exceed one-half of the current period income. In the case of Model 2, all other
aspects of the specification remain the same as in Model 1. From Table 2, it is seen
that relaxing the borrowing constraint does lead to larger correlations between
individual consumptions and aggregate income, but the increase is from a base
that is already near unity and the increase is small. In Model 3, we relax the
borrowing constraint relative to the benchmark model and simultaneously tighten
the short-sale constraint by settingK s

t (xt )= 0.5. This leads to a slight decline in
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the mean equity holdings of type-1 agents and small decline in average income,
but again, these changes are not notable.

In sum, the results from Models 1 through 3 suggest that the incompleteness
of markets due to the restrictions on trading of a bond and an equity imply less
than perfect correlations between individual consumptions and aggregate incomes.
However, these correlations are greater than 0.99 for type-1 agents and greater than
0.95 for type-2 agents. Furthermore, the tightening of the borrowing and short-
sale constraints considered has virtually no effect on equilibrium decisions. These
findings suggest that markets are effectively nearly complete for the assumed
income processes and portfolio constraints.

Though suggested by the autoregressions with macroeconomic data, the corre-
lation of 0.78 between the incomes of representative agents from the two sectors of
the U.S. economy is very large. Therefore, in Model 4, we explore the implications
of reducing this correlation by settingA12= 0, which is within the 2% confidence
interval about the point estimate ofA12. In addition, the correlation of the innova-
tions in the incomes is set at 0.2, so that the cross correlations of the innovations on
incomes and dividend series are all the same. These changes lead to a decline in the
correlation ofy1t andy2t to 0.13. Perhaps the most striking feature of the results for
Model 4 is that the agents’ consumptions now are correlated more highly with their
own incomes than with aggregate income. For instance, the correlation of a type-2
agent’s consumption with aggregate income declines to about 0.8, whereas their
correlation with own income is about 0.86. The low correlation betweencit andy∗t
also is striking and indicative of combined importance of market incompleteness
and the borrowing constraints for this economy.

Model 5 is identical to Model 4, except that we fix the borrowing constraints
at 0.33. To interpret this fixed constraint, recall that the incomes have been nor-
malized so that the mean ofy1 is unity and the mean ofy2 is 0.83. Hence, the
fixed constraint for type-1 agents is equal to the mean of the constraint they face
under the income-dependent constraint. Similarly, the fixed constraint for type-2
agents is approximately 20% weaker than the mean constraint faced in the bench-
mark model. The effective weakening of the borrowing constraints is illustrated
graphically in Figure 7, which displays the actual borrowing by type-2 agents for
Model 5 and the series CON2 equal to−0.33y2t , which is the constraint under the
income-dependent borrowing constraint. As expected, the weakening of the av-
erage borrowing constraint for type-2 agents led to somewhat higher correlations
ρci y∗ in Model 5, but overall, the results are very similar to those for Model 4. We
conclude that, for the income processes in Models 4 and 5, the income-dependent
nature of the constraint does not appear to be a major determinant of our findings.
This may well change if the variances of the income processes are increased.

In Model 6, we return to the income-dependent borrowing constraint−0.33y
and increase the standard deviation of the income process for type-2 agents to
the same value as for type-1 agents (0.05). The higher value ofσε2 implies that
ρy1y2 increases to 0.17, the mean consumptions by type-1 agents fall and by type-2
agents increase. In addition,σc2 is now substantially larger thanσc1. The increase
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in σc2 is attributable to the higher volatility in income in the presence of portfolio
constraints. With the higher income variance, type-2 agents are more frequently
at or near their borrowing constraint (see Figure 8) and, thus, trading in bonds is
a less effective means of smoothing consumption.

To compensate for the reduced risk-sharing role of bonds, agents increase sub-
stantially the average volume of trading in equity (Figure 9). Recall from Figure 4
that, in the benchmark model, type-2 agents held about 0.3 share, whereas the
average holding in Figure 9 is about 0.75 share. Equally interesting is the substan-
tial increase of trading in equity in economy 6 compared to that in economy 1.
The volume of liquidity, or non-information-based trades is clearly affected by the
overall structure of asset markets and portfolio constraints. Furthermore, the effect
of market incompleteness on trading volume in equity markets has a business-
cycle component with volume being higher during periods when the relatively
low incomes of type-2 agents preclude the desired level of borrowing to smooth
consumption.

Though we match many of the empirical characteristics of the consumption and
income series with Model 6, the degree of consumption smoothing accomplished
in equilibrium is perhaps implausibly low. For instance, the standard deviation of
y1 in Model 6 is 0.099, whereas the standard deviation ofc1 is 0.088. Similarly, the
standard deviations ofy2 andc2 are both approximately 0.13. Thus, equilibrium
consumptions are nearly as volatile as the underlying income processes. As noted
during our discussion of the autoregressive matrixA, this feature of the model is
attributable to the high degree of persistence in the stationary income processes.
In subsequent research, we plan on exploring the implications for our analysis of
real growth in the exogenous income and dividend processes.

Associated with the effects of market incompleteness on savings and consump-
tion decisions are interesting effects on asset returns. Several sample moments
involving bond and equity returns are displayed in Table 3. The mean returns are
reported on an annualized basis, whereas the standard deviations and correlations

TABLE 3. Sample moments of asset returnsa

Model µr s σr s µr b σr s EP= µr s − µr b ρc1r s ρc2r s

1 0.051 0.062 0.020 0.020 0.031 0.157 0.175
2 0.055 0.059 0.021 0.023 0.034 0.154 0.171
3 0.040 0.065 0.026 0.017 0.027 0.163 0.175
4 0.045 0.061 0.022 0.019 0.027 0.221 0.188
5 0.050 0.061 0.021 0.019 0.029 0.221 0.193
6 0.052 0.065 0.008 0.023 0.046 0.202 0.148

a A12 is the (1, 2) element of the autoregressive matrixA; asset returns are defined asr s
t ≡

ps
t+1
+ dt+1

ps
t

andr b
t ≡ 1/pb

t ;

in all models,γ = −2 andδ = 0.99; σX , µX , ρX,Y represent, respectively, the standard deviation, mean, and
correlation of random variablesXt ,Yt .
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are for the quarterly simulated data. The mean real returns on equity are plausible
for our sample period. The standard deviations of equity returns are largest in
Models 3 and 6. In the former case, this is due to the tighter short-sale constraint,
whereas in the latter case it is consistent with our earlier observations about trad-
ing volume in Model 6. Ibbotson (1989) reports a standard deviation for real stock
returns for the period 1926 through 1988 of 21.1%, and so, our quarterly number
seems in line with the historical data.

Perhaps the most striking moment of asset returns in Table 3 is the mean return
on riskless bonds. The mean bond return is over 2% for all of the models except
Model 6 for which it falls to 0.8% (0.776% more precisely). Weil (1989) has argued
that the equity premium puzzle documented by Mehra and Prescott (1985), among
others, is as much a risk-free-rate puzzle. That is, representative-agent models
yield mean risk-free rates that are much too high relative to historical experience.
Mehra and Prescott (1985) report an annual average real riskless return of 0.75%
for the United States; the corresponding number from Ibbotson (1989) is 0.5%.
For Models 1 through 5, our estimate of the mean bond return is much too high
compared to these estimates and, in this respect, shares an important limitation of
representative-agent, complete-markets models.

On the other hand, in Model 6 the estimated mean bond return is comparable to
the estimates for U.S. data. What differentiates Model 6 from the other models is
that the incomplete risk sharing provided by the equity and bond markets for type-2
agents is relatively acute; type-2 agents are at or near their borrowing constraint
with relatively high frequency. Type-2 agents borrow when income is low and lend
when income is high and thus their stock of bonds serves as a buffer for income
fluctuations. Because of the strong precautionary demand for savings, equilibrium
bond returns must be sufficiently low on average for both type-1 and type-2 agents
to be content with a level of debt for type-2 agents below what they would desire in
the absence of borrowing constraints. The source of this high precautionary demand
is the relatively high income uncertainties; the average riskless rate is higher in
Model 4 where one of the agents has less income uncertainty. We conclude that the
combined features of incomplete markets and portfolio constraints are capable of
resolving the risk-free-rate puzzle but, to achieve the bond return observed in the
data, we need to assume that the individual income processes are less correlated
than in our benchmark case given by Model 1.

Column 6 of Table 2 displays the average equity premiums in our models. As
anticipated by our discussion of risk-free rates, compared with the equity premi-
ums usually obtained from versions of complete-market models, the premiums
generated by these incomplete-market economies are quite large. In particular, the
premium in Model 6 is 4.6% per annum. Though below the estimate of 6% often
cited in the literature on the equity premium puzzle, 4.6% is not out of line with
U.S. experience during our sample period.13

The last two columns of Table 3 display the correlations between the individual
consumptions by agents and the return on equity. Mankiw and Zeldes (1990)
have observed that the consumptions by stockholders seem to be much more
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highly correlated with stock returns than the consumptions by nonstockholders.
In our models, both types of agents hold stocks, but type-2 agents hold a much
smaller proportion of the outstanding shares. When the incomes of the two types of
agents are highly correlated, the correlations between consumptions and returns are
comparable and, in fact, are somewhat higher for the type-2 agents. However, for
the models with low income correlation, the correlation between the consumptions
by agents with the largest stockholdings with the equity return is larger. This is
especially true in Model 6.

5. RETROSPECTIVE REMARKS AND CONCLUSIONS

One objective of this paper was to show that it was computationally feasible
to depart from the complete-markets/representative-agent setup in multiperiod
models and study interesting frictions in financial markets by simulation.

A second objective was to examine the implications of portfolio constraints
for two empirical puzzles in the macroeconomics/finance literature: (1) the low
correlations between individual consumptions and aggregate income, and (2) the
historically large equity premium (and low return on riskless assets), compared
to what is implied by models with complete financial markets. In our benchmark
economy, calibrated using observed incomes of workers in durable-goods and
nondurable-goods sectors, we found that the equilibrium consumptions and asset
returns moved in the right direction in terms of explaining the above observations,
but the change with respect to the complete-markets economy without constraints
on asset holdings was not large: Individual consumptions are correlated highly
with aggregate income, the average riskless interest rate is too high, and the equity
premium is too small.

Even though trading was constrained and markets were incomplete, the features
of constant relative risk-averse preferences and the allowable trading in bonds
provided agents with sufficient consumption smoothing opportunities for them to
approximate the consumption plans that would be pursued with complete mar-
kets. Consumers sell (buy) some of their assets in bad (good) times. Therefore,
under the benchmark case of Model 1, the “precautionary motive” for holding
assets discussed by Deaton (1989) is sufficient for equilibrium variables in the
incomplete-markets economy to behave similarly to those in the complete markets.

Also, because agents accumulate assets in such a way that borrowing constraints
are rarely binding, the Euler equations are satisfied with equality for almost all
periods. Therefore, despite the fact that the possibility of future binding constraints
affects asset holdings in all periods, assets are almost always priced by the same
equation as if constraints were not present. In the benchmark case, incomplete
markets and borrowing constraints are incapable of explaining quantitatively the
consumption/income correlation puzzle, and they only partially explain the equity
premium puzzle.

Through experimentation with the individual income processes, we were able to
identify some economic environments in which these puzzles could be resolved.
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Specifically, in Model 6, we assume a low correlation between the innovations to
individual incomes (0.17), comparably high volatilities of incomes, and a state-
dependent borrowing constraint that precludes borrowing more than 0.33 of one’s
income. The high volatilities of incomes imply that the agents with relatively
low income on average (type-2 agents) are frequently at or near their borrowing
constraints. As such, trading in bonds is less effective as a means of smoothing
consumption and type-2 agents must rely more heavily on equity trading to smooth
consumption. Because type-2 agents find bonds relatively unattractive (compared
to agents in economies with lower income variability), the mean of the riskless
interest rate must be lower to induce agents to be comfortable with lower bond-
holdings. In this manner we are able to match the historically low average yield on
riskless bonds and to generate a sizable equity premium of approximately 4.6%.
This suggests that the two puzzles are intimately interconnected.

Furthermore, the environment with low income correlation and high income
volatility gives individual consumptions that are relatively weakly correlated with
aggregate income. However, these low correlations are achieved at the expense of
relatively high individual consumption volatilities. Indeed, the standard deviations
of individual consumptions and incomes are comparable for each type of agent and,
in this sense, the binding borrowing constraints substantially limit agents’ ability
to smooth consumption. This highlights the extreme nature of the parameterization
in Model 6.

All of these conclusions must be considered tentative, pending further explo-
ration of the qualitative properties of models with heterogeneous incomes and
borrowing and short-sale constraints. Three qualifications in particular deserve
mention. First, existence of an equilibrium for our economies with continuous
state spaces and state-dependent constraints has not yet been established. Sec-
ond, all of these calculations are for the case of first-order approximations to the
conditional expectations appearing in agents’ Euler equations: Expectations were
assumed exponentials of affine functions of the state vector. We have experimented
with exponential functions of second-order polynomials and found qualitatively
similar results for most correlations.

However, our experience with second-order approximations leads to our third
qualification. Namely, the values of certain simulated sample moments were quite
sensitive to a number of small variations in the way the equilibrium was computed:
After varying either the starting values for the iterationsβ0, or the accuracy of the
fixed point, or the number of observationsT , or the degree of the polynomial, the
algorithm iterated for a long time, making very small steps at a time, settling down
finally at a new fixed point where some properties of the model changed. This was
particularly true of the means of the equilibrium consumptions and asset holdings.

It is known that, if there exists a unique ergodic solution to the model, then
PEA will approximate this solution arbitrarily well with a high enough polyno-
mial degree.14 Therefore, there are a number of reasons why we might be having
difficulties in our solution. First, we have questions in our mind about whether
the equilibrium consumptions and investments are ergodic.15 To our knowledge,
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this is a largely unexplored issue in the literature. Although sufficient conditions
on the equilibrium law of motion can be imposed to ensure ergodicity, along the
lines of the damping conditions of Duffie and Singleton (1993), we have not been
successful at showing that these conditions are satisfied in theory by our model.
In addition, it is doubtful that the equilibrium is unique16; again, this is a largely
unexplored issue in the literature. This leads to our next largely unexplored issue:
What is the “correct” set of state variables for incomplete-markets economies? We,
and other researchers, decided to use wealth as the only endogenous state variable
but, presumably, other equilibria could be constructed, including additional state
variables that summarize past shocks in a different way.

If equilibria were non-unique, non-ergodic, and several state vectors could be
chosen, any algorithm would have difficulties because it might wander around
among the many valid solutions to the model. These problems would manifest
themselves in the PEA because the simulations generated in step 2 of the algorithm
would change slightly from one iteration to the next, which is exactly what happens
in our calculations.

At this juncture, these observations remain concerns. We cannot say with con-
fidence that any of them are or are not present. Accordingly, we view our findings
as tentative, pending a more in-depth exploration of the properties of the equilibria
of dynamic models with incomplete markets and state-dependent borrowing and
short-sale constraints.

NOTES

1. The empirical evidence from macroeconomic data [Flavin (1981)] and microeconomic data [Hall
and Mishkin (1982), Zeldes (1989)] suggests that changes in consumption are positively related to pre-
dictable changes in income. This evidence, though not obtained directly from models that accommodate
restrictions on borrowing, also has been interpreted as a manifestation of borrowing constraints.

2. See Singleton (1993) for a review of the empirical evidence on representative-agent, intertemporal
asset-pricing models.

3. A concurrent study by Telmer (1990) examines the implications of incomplete markets for
the risk-free-rate puzzle in the context of a model in which agents trade a riskless bond but do not
face portfolio constraints. In contrast to Telmer’s and Deaton’s models our model incorporates the
economically plausible constraint that the levels of borrowing permitted are functions of the agents’
income levels.

4. See Marcet (1989), den Haan and Marcet (1990), Marcet and Marshall (1994), and Marshall
(1990).

5. Bossaerts and Green (1989) show that if agents have constant relative risk-averse preferences with
common discount factors and risk-aversion parameters, then two assets are sufficient to complete the
market: a perpetuity (infinitely lived bond) and the market portfolio. However, this two-fund allocation
generally will not emerge from our model because there are three sources of income uncertainty in our
model and agents cannot trade claims to their own income streams—effectively, they are prevented
from holding the relevant “market” portfolio. In addition, the bonds in our model are single period, not
infinitely lived.

6. Using the techniques developed in this paper, Ketterer and Marcet (1990) explore the implications
for risk-sharing arrangements of adding an option on the aggregate dividend for a special case of the
models examined subsequently.
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7. The solution algorithm described in Section 3 for models with binding constraints on portfolio
holdings can be applied without modification to models based on discrete state-space approximations
to continuous-state Markov forcing processes.

8. This description and notation follows Marcet and Marshall (1994).
9. See Marcet and Marshall (1994) for a formal proof of convergence.
10. One way to check for ergodicity is to impose the AUC condition of Duffie and Singleton (1993)

on H(·;β).
11. For higher degrees of approximation (higherν) a higher-degree polynomial in the variables

(log yt , w1t ) would appear inside “exp.”
12. ImposingP2s

t ≡ (P2b
t P1s

t )/P1b
t in the parameterized expectations would allow us to solve

for consumption, but then we would lose one equation, we would not be able to solve for the asset
prices, and the systemg then would beunderdetermined.

13. These comparisons with the U.S. data should be taken only as course checks on goodness of
fit for at least two reasons. First, the returns may not be comparable because we are generating returns
on securities with payoffs denominated in terms of the consumption good. In contrast, the empirical
estimates typically are computed from data generated by a monetary economy and then the payoffs
are deflated. See Lucas (1984), for example, for a discussion of some theoretical differences between
monetary and nonmonetary asset pricing models. Second, we are comparing sample moments, and the
standard errors on the sample estimates from the data may be quite large.

14. See Marcet and Marshall (1994).
15. After all, the complete-markets economy is nonergodic in the following sense: Under complete

markets,c1t/c2t = λ for all t , andλ is different for economies with different initial wealth. Therefore,
a different initial individual wealth causes a permanent effect on the ratio of individual consumption,
and the process{c1t , c2t , yt , w1t , w2t } is non-ergodic under complete markets. To the extent that the
incomplete-markets economy behaves much like the complete-markets economy, we would expect it
to be non-ergodic as well.

16. In fact, some authors, including Duffie et al. (1994), construct incomplete market equilibria by
comparing them to bubble equilibria, which are well known to be non-unique.
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APPENDIX

Here we write the whole system (13) for our model. This is the system that delivers
{zt (β)}, although the dependence onβ is left implicit in the equations below. Notice that
we introduce the Euler equation for the stock rewritten so as to ensure invertibility, as
discussed in Section 3.2.
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Either
mui (cit ,γ i )p

b
t = δi Pib

t and bit > K b
i (xt ) (A.1)

or
mui (cit ,γ i )p

b
t ≥ δi Pib

t and bit = K b
i (xt );

either
ps

t G
(
aa

1t

) = δP1s
t and a1t ≥ K s

1(xt ) (A.2)

or
ps

t G
(
as

1t

) ≥ δP1s
t and a1t = K s

1(xt );
either

mu2(c2t , γ2)p
s
t = δi P2s

t and a2t > K s
2(xt ) (A.3)

or
mu2(c2t , γ2)p

s
t ≥ δ2P2s

t and a2t = K s
2(xt );

c1t + ps
t a1t + pb

t b1t = a1t−1

(
ps

t + dt

)+ b1t−1 + y1t , (A.4)

πc1t + (1− π)c2t = y∗t , (A.5)

πa1t + (1− π)a2t = 1, (A.6)

πb1t + (1− π)b2t = 0. (A.7)

Notice that these are eight equations because(A.1) holds fori = 1, 2.


