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We study a class of models in which the law of motion perceived by agents 
influences the law of motion that they actually face. We assume that agents update 
their perceived law of motion by least squares. We show how the perceived law of 
motion and the actual one may converge to one another, depending on the 
behavior of a particular ordinary differential equation. The differential equation 
involves the operator that maps the perceived law of motion into the actual one. 
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1. INTRODUCTION 

This paper studies a class of linear stochastic models in which the actual 
law of motion depends on the law of motion that is perceived by the agents 
in the model. If the perceived law of motion at t is represented by j?,, then 
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the actual law of motion at t is given by T( fi,). We assume that over time, 
the agents in the model are learning about the law of motion. We assume 
a particular class of learning mechanisms (versions of least squares), We 
describe sets of restrictions on the learning mechanism and on the 
economic environment (operators T) that are sufftcient to make PI con- 
verge strongly to a rational expectations equilibrium (a fixed point of T). 
A sense will also be described in which the restrictions are necessary for 
strong convergence of b, to a fixed point of T. 

The models that we study are “adaptive” in the sense in which that term 
is used in the control literature.’ In particular, the T mapping is derived 
under the assumption that agents behave as if they know with certainty 
that the true law of motion is time invariant and given by /I,. The models 
do not incorporate fully optimal behavior or rational expectations, because 
agents operate under the continually falsified assumption that the law of 
motion is time invariant and known for sure.2 To facilitate analysis, we 
represent the learning algorithm recursively, in the form of a stochastic dif- 
ference equation for /I,. We then describe a set of regularity conditions 
under which the limiting behavior of sample paths for /?, is governed by the 
limiting behavior of an associated ordinary differential equation, namely 

(W)P= T(B)-P. (0) 

We establish that the only possible limit points of the stochastic difference 
equation for fit are the stationary points of (0), i.e., rational expectations 
equilibria. Further, whether fl, can converge almost surely to a fixed point 
of T is determined by the stability of (0) at that fixed point. These results 
extend, unify, and help us to interpret some earlier work on least squares 
learning (Mann and Wald [21]; Bray [4]; Bray and Savin [6]; 
Fourgeaud, Gourieroux, and Pradel [ 111). We show how our methods 
apply to several models that had been studied with different methods by 
earlier researchers. We also illustrate how our method can be used to 
establish convergence for a model that is technically more intricate than 
those earlier models because it assumes that agents learn by regressing 
variables on lagged endogenous as well as exogenous variables. 

We obtain our results by applying the “differential equation approach” 
to the study of almost sure convergence (Ljung [19] and Ljung and 

I See Goodwin and Sin [ 131 and Ljung and Soderstrom [ 18) for surveys of adaptive 
filtering and control. They describe prediction rules and control laws that are “adaptive” in 
the sense that the rules (functions) change over time in a way designed to make them more 
consistent with the unknown laws of motion governing the environment. 

‘This point was stressed by Bray and Savin [6], and is equally applicable to their systems 
and ours. 
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Soderstrom [ 18]).3 We proceed by imposing on our system enough condi- 
tions so that the convergence theorems of Ljung [19] can be applied. 

The remainder of this paper is organized as follows. Section 2 describes 
the class of models under study and states three propositions about them. 
Section 3 briefly extends our results to comprehend simultaneous learning. 
Five examples of models of learning are studied in Section 4, while conclu- 
sions are given in Section 5. Appendix 1 states the theorems of Ljung [ 19 3 
which we are using, while the remaining two appendixes contain proofs of 
some propositions stated in the text. 

2. CONVERGENCE WITH LAGGED INFORMATION 

The position of the model at time t is described by an n-dimensional 
vector of random variables z,. Let zlr and z2, be subvectors of zI, not 
necessarily disjoint, of dimensions n, and n2, respectively. Without loss of 
generality, we assume that z,, zlr, z2, can be written as 

(1) 

Here z,, contains those variables whose future values agents care about, 
while z-2( contains those variables that agents use to predict zi,+ i. Each of 
zi and z2 may contain exogenous and endogenous variables; zI and z2 may 
have elements in common; and neither z, nor z2 has to contain the other. 
It is always possible to partition z, to satisfy the above equality: simply let 
the first elements of z, be those which belong to z, and not to z2, followed 
by elements that belong to z, and z2, and then the elements that belong to 
z2 and not to zi. 

We will study models with the following self-referential structure. Suppose 
that at time r agents believe that the law of motion for zlr is given by 

z11= PIZZI- 1+ rl,, (2) 

where q, is orthogonal to all past zZ’s, and Eqt=O. That agents believe (2) 
causes the actual law of motion for the entire vector Z, to be given by 

(3) 

' Ljung and Soderstrom [18] describe how the differential equation approach generalizes 
the stochastic approximation method of Robbins and Monro [24]. Also see Kushner and 
Clark [16] for further developments of the Robbins-Monro method. Aoki [Z] applied a 
Robbins-Monro algorithm to study convergence of a price adjustment scheme. Ljung and 
Soderstrom [18] apply Ljung’s theorem [S] to study the convergence and asymptotic 
distribution of a variety of recursive least squares algorithms. 
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where u, is an m-dimensional vector white noise satisfying Eu,u; = C for all 
t. The role of economic theory is to determine the mappings T, B, A, and 
V, whose dimensions are such that all matrix multiplications in (3) are well 
defined. Typically, zfr will include only exogenous variables, in which case 
A and B are constant functions (being independent of /I,).” In the examples 
in Section 4, we illustrate how to obtain (3) from (2) for several particular 
economic models. Note that (3) makes z, linear in z,- i and ut, but 
possibly nonlinear in b,. The examples in Section 4 will illustrate how the 
“cross-equation restrictions” of rational expectations models can serve to 
make (3) nonlinear in /?,. 

Note that (2) and (3) impose the restriction that on the right side of (2) 
there appear at least all of the variables that have nonzero coefficients in 
the true law of motion for zi given by (3). This restriction rules out models 
in which there are “hidden state variables” in the true law of motion for zi, 
such as would be induced by various structures with private information. 
In Marcet and Sargent [22], we describe how the present setup could be 
modified to incorporate such hidden state variables.5 

Agents’ beliefs /I, evolve according to the following scheme. Let {cl,} be 
a positive, nondecreasing sequence of real numbers, with a, --) 1 as t + co. 
Define fl, and R, by 

Let D, c D, c LFP x (n2)3. The algorithm for generating beliefs 8, is 

(P,r R,) = 
(8,? 1,) if (fit, &)ED, 
some value in D, if (L &ML 

(4b) 

The most natural candidate for “some value in D2)1 is ( bl,, R,,) where t’ is 
the last time t’ that ( Pts, R,.) E D2, but any other point in D, is acceptable. 

4 Throughout this paper, “exogenous variables” denotes elements of z, whose evolution does 
not depend on the perceptions of the agents, /I,. By contrast, “endogenous variables” have an 
actual law of motion dependent on /3,. 

‘By introducing an element that is identically equal to one in z2, and setting the corre- 
sponding row of B equal to zero, the present framework can cover the case in which agents 
do not know the means of z, 
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When D, = D 1 = [w”’ x (“2j3, we have that /7, = fit and R, = R, for all t. In 
this case, with appropriate initial conditions, (4) implies 

[ 

t-1 

Pr= C a,z2i- 
i= 1 

Idi-1 1-l [‘S .iz2ip’z;i]. 
i=l 

When c(~= 1 for all i, this is just least squares. When cl; is increasing in i, 
this is a version of weighted least squares with a “forgetting factor” CQ that 
weights more recent observations more heavily.6 See Ljung and Soderstrom 
[ 181 for recursive formulations of a variety of least squares algorithms, and 
for interpretations of them in terms of stochastic approximation and 
stochastic Gauss-Newton algorithms. 

When D, is a proper subset of R”’ x (nz)3, the algorithm (4) deviates from 
weighted least squares because it invokes a “projection facility” (4b) that 
prevents the estimator from ever leaving a set determined by D,. The 
projection facility has the effect of converting the algorithm for /?, into a 
version of least squares which ignores those observations, sequentially 
selected, which threaten to drive (Pt, R,) outside of D,. This projection 
facility can be interpreted as forcing the agents to ignore those observations 
that do not agree with their priors. Similar formulations have been used in 
the learning literature (Jordan [ 151, Anderson and Taylor [l J, Woodford 
[29], Frydman [ 12]), in the adaptive estimation literature (Ljung and 
Soderstrom [ 18]), and in the econometrics literature (Hansen [ 143). For 
many applications, if a projection facility is used, the hypotheses of Ljung’s 
theorems are easy to verify. Below, we shall see that the structure of some 
economic problems implies a natural choice of D,. In particular, in the 
investment under uncertainty example (example e, Section 4), the model is 
well defined only when b, is restricted to lie in a certain bounded region.’ 

One role of the projection facility (4b) can be to guarantee that the cnef- 
ficients of /I, remain in a region for which the model makes economic sense 

b By choosing the initial b,-, and R,-, matrixes appropriately, schemes that have a kind 
of Bayesian interpretation can be accommodated. Here the qualification “kind of’ is intended 
to concede our recognition of the points made by Bray and Kreps [S] and Bray and Savin 
[6]. To give a Bayesian interpretation to (4a), for example, we must grant that agents’ prior 
is repeatedly wrong. To have a Bayesian interpretation (4a) requires that agents erroneously 
believe that they live in an environment governed by a constant coefficient linear difference 
equation. 

‘To facilitate comparison with Ljung [19], we have formulated our system so that it 
closely resembles his algorithm. This is why we require the projection facility to operate on 
the R,'s. However, the main ideas of Ljung are more widely applicable. It is often possible to 
relax bits and pieces of his assumptions, Thus, for all of the examples reported in Section 4, 
R, can be shown to be bounded independently of the convergence of p,, so that it is not 
necessary to project R, into a compact set. Corollary 2 makes this point explicit for a class of 
examples. 
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and the operators r(p), A( /?), B(p), and V(b) are well defined. Another 
role can be to guarantee that p stays in a region for which (3) with 
p, = /3 V’t generates a covariance stationary stochastic process z,. In this 
regard, we will utilize a set D, c E-V” x”2, which we define as 

D,= (fl&‘lXnz 1 the operators T( /I), A(p), B( fi), and 
V( 8) in (3 ) are well defined, and 
the elgenvalues of [ ‘iT$) ] are 
less than unity in absolute value}. 

We have assumed that U, is a white noise with a covariance matrix that 
is time invariant. It follows that the time invariant version of (3) that 
emerges when we set fi, = fl E D, generates a covariance stationary process 
z, whose second moment matrix Ez,z: is well defined. Then the moment 
matrix of the subvector zZt is well defined and is a function of /?, which we 
emphasize in the notation 

E:a& = Mz,( PI. 

The system whose limiting behavior we want to analyze is formed by 
Eqs. (3) and (4). We proceed by applying the method of Ljung [19] to this 
system. The method associates with the system (3)-(4) an ordinary dif- 
ferential equation that is simpler to analyze than (3) and (4), but that 
almost surely mimicks the behavior of (/?,, R,) as t -+ co. For (3), (4) the 
associated differential equation is 

(5) 

The differential equation (5) is obtained mechanically from (3)-(4) by 
fixing pt = /?E D,, (p, R) E D,, and R, = R, and performing the following 
calculations. First, deduce the stationary distribution of z, from (3) with 
fir= /? and calculate Ez,,z;,= M,,(p). Second, replace a, by its limiting 
value of unity within the brackets on the right side of (4a). Then obtain the 
right side of the differential equation (5) by simply taking expectations of 
the terms appearing after (at/r) on the right side of (4a) at the fixed value 
of (B, RI. 

We employ seven assumptions about the system (3 )-(4). 

(A.l) The operator T has a unique fixed point fi/ = T( /I,-) which 
satisfies fir E D,. 

(A.2) T is twice differentiable and A, B, and V have one derivative 
in D,. 
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(A.3) The covariance matrix Mz,( /If) is nonsingular. 
(A.4) For all t, CI, > 0; a, is increasing in t; a, --f 1 as t -+ co; and 

lim supl _ m tlaI-at-,)=K<co. 

(AS) The vector U, consists of m stationary random variables; U, is 
serially independent. Further, E Juj,Ip < co for all p > 1, all i= 1, . . . . m. 

(A.6) There exists a subset 9, of the sample space with P(s2,) = 1, 
two random variables C,(o) and C,(o), and a subsequence {t,(o)} for 
which 

for all o E Q, and all k = 1, 2, . . . . 
(A.7) Either 

(1) Let D, =D2= Rnlx("2)3. Given the set Q, and the subsequence 
tk(a) named in (A.6), there exists a compact set D' c D, c R”‘““2 such that 
BIk(o) E D' for all k and all w ~52~. Also, for any initial condition 
(p(O), R(0)) with p(O) ED’ and [R(O)1 < C,(o), trajectories that solve (5) 
never leave a closed subset of D,. 

or 

(2) Let D, be closed, D, be open and bounded, and assume that 
/Jo D, for all (/I, R) E D,. Also, assume that the trajectories of (5) with 
initial conditions (/3(O), R(0)) E D2 never leave a closed subset of D, . 

Assumptions (A.l)-(A.5) are on a different footing from assumptions 
(A.6)-(A.7). Members of the former group are in the nature of regularity 
conditions which are both easy to check and usually readily satisfied for 
the kinds of applications we have in mind. However, in some applications, 
assumptions (A.6) and (A.7.1) are more difficult to verify while (A.7.2) can 
be regarded as less natural to impose. We now briefly discuss each of these 
two groups of assumptions 

Assumption (A.l) is made solely to simplify the presentation. It is evi- 
dent from Ljung [19] and from the proofs below how our results would 
extend to a model with multiple stationary rational expectations equilibria. 
Assumption (A.2) could be relaxed but would have to be replaced by alter- 
native conditions that are more cumbersome. Our applications all satisfy 
(A.2). Assumption (A.3) rules out the possibility that in the rational expec- 
tations equilibrium there are linear dependencies among elements of zzl. 
Equilibria in which such dependencies are present can always be modeled, 
through appropriate redefinitions of state variables, by a system satisfying 
(A.3). Assumption (A.4) is stronger than we need; (A.4) permits agents to 
assign more weight to recent observations by setting m, > CL,_ I for all t. 
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Assumption (A.5) could be weakened to permit the u,)s to have nonzero 
means and certain types of nonstationarity of the U’S. 

We now turn briefly to the restrictions (A.6) and (A.7). Assumption 
(A.6) is automatically satisfied if z2, contains only exogenous, ergodic 
variables. Otherwise, (A.6) can be difficult to verify. Our treatment of 
example (e) below illustrates how (A.6) can be verified in one case in which 
z2 contains some endogenous variables. Assumption (A.7.1) can be very 
difficult to verify, though at least in the case in which .zZ1 contains only 
exogenous variables, there appears hope that generally applicable methods 
can be devised (Kushner and Clark [ 163 describe some possible leads). 
Evidently, (A.7.2) is straightforward to verify. The main thing that has to 
be checked to verify (A.7.2) is that at or near the boundary 6D, of D,, the 
differential equation (5) has trajectories pointing toward the interior of D, . 

We now state the central proposition of this paper. 

PROPOSITION 1. Let (/It, R,) be given by the learning scheme (4). Assume 
(A.l) to (A.6). Let DA be the domain of attraction of the unique equilibrium 
of the differential equation (5) (namely (jr, R,)). If 

(A.7.1) is satisfied and D’ c D,, or 

(A.7.2) is satisfied and D, c D,, 

then p, --f ar almost surely as t + CO. 

Proof. We will first check the set of conditions B on page 554 of Ljung 
c191. 

Assumptions B.l and B.2 in Ljung are implied by our (A.5). B.3, B.4, 
and B.5 in Ljung are implied by the smoothness assumptions on T, A, B, 
V in our (A.2). 

For B.6 in Ljung, we see that the following limits exist and are given by 

lim E(z,,-,z;,_,-(l/cc,)R)=M,,(p)-R, ,+oO 

where fl and R are fixed and zZr is evaluated at solutions of the difference 
equation (3) with fi, = B. 

Assumption B.7 is implied by (A.5) and (A.2), where the Lipschitz 
constants JI: and X2 in Ljung are, respectively, the norms of the first and 
second derivatives of 

[ 
R-‘z,,Cz;,(T(B)-P)‘+u,+,v(P)l 

z& - R 1 
with respect to fi, R, and zZ,. 
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Finally, assumptions B.8 to B.ll are implied by our (A.4). 
If (A.7.1) is satisfied, then since zi,= T(/?,) z2,-i + V(/?,)u,, it follows 

from (A.6) that there exists a subsequence of {tk} such that Jzi,J, 1z2J, 
l/?,,l, and IRJ are bounded along this subsequence; therefore (20) in Ljung 
[ 191 is satisfied, and we can apply his Theorem 1. In view of (A.1 ), it is 
clear that the differential equation (5) has only one equilibrium given by 
(&, Mz,(bf/)), so that P((P,, R,) + (B,, &)I = 1, by kiung’s Theorem 1, 
which implies P(/?, --f /I,) = 1. 

If (A.7.2) is satisfied, then all the assumptions of Theorem 4 in Ljung 
[I93 are satisfied, and we arrive at the same conclusion. 1 

In applying Proposition 1, it is important to keep in mind the interaction 
between, on the one hand, the set D, (the domain of attraction of the fixed 
point of the ordinary differential equation (5)) and, on the other hand, the 
set D' (when assumption (A.7.1) is invoked) or D, (when (A.7.2) is 
invoked). The convergence asserted in Proposition 1 hinges critically on 
two features of these sets. First, D' or D2 must be contained in D, under 
(A.7.1) or (A.7.2), respectively. Second, when (A.7.2) is invoked, the trajec- 
tories of the ordinary differential equation (5) that originate in D, must 
never leave D,. This second condition can be checked by verifying that at 
the boundary of D,, the trajectories of (5) point toward the interior of D,, 
as illustrated in Fig. 1 for the case n, = n2 = 1. 

Proposition 1 does not cover the case depicted in Fig. 2, in which at 
some points on the boundary of D, trajectories of (5) point away from the 
interior of D,, since this is ruled out by (A.7.2). In this case, even though 

I 1 + 

Pf P 

FIG. 1. Phase diagram of (5) for case in which on 6D, all trajectories point toward 
interior of D, 
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D, c D,, the possibility emerges that the algorithm (4) has a cluster point 
at the boundary 6D,. Heuristically, in mimicking the behavior of the dif- 
ferential equation (5), the algorithm “tries” to follow trajectories that leave 
D, once it is in the shaded area of Fig. 2, but is not allowed to do so by 
virtue of the projection facility (4b). This outcome is formalized in the 
following corollary to Proposition 1. 

COROLLARY 1. Assume that (A.l)-(A.6) are satisfied, that (p, R) E D, 
implies /I ED,, and that D, is open and bounded. Assume that D, c D,, Then 

0 B, -+ Pr) + P( D,, -+ (01 - DJ for a subsequence { tk(cO)}) = 1. 

In Corollary 1, “/Irk -+ (0, - D2)” is the event that /?,k is eventually close 
to some point in D, - D2, not necessarily the same point for different t,‘s. 
The subsequence tk is permitted to depend on o. 

A version of Corollary 1 is stated by Ljung and Soderstrom [ 18, p. 1631 
which in turn is a corollary to Theorem 1 of Ljung [19]. 

In applying Proposition 1 for a given choice of D,, an important step is 
verifying that at the boundary of D, , the differential equation (5) has tra- 
jectories pointing into the interior of D,. In general, this can be a demand- 
ing task that often requires resorting to numerical methods. There is an 
important class of cases, however, for which it is possible to verify analyti- 
cally the required behavior of the trajectories of (5) at the boundary of D,. 
These cases, in which z2 is required to be exogenous in the sense that A 

I I t 
Pf P 

FIG. 2. Phase diagram of (5) for the case in which on SD, some trajectories point away 
from the interior of D, even though D, c D,. 
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and B in (2) are independent of fl, include the first four examples of 
Section 4. By means of describing this verification technique, we shall state 
another corollary to Proposition 1. The proof of this corollary will involve 
checking that the trajectories of (5) point toward the interior of an 
appropriate bounded set when the other conditions are satisfied; it will also 
involve some modifications in the proof of Theorem 4 of Ljung (strictly 
speaking Theorem 4 of Ljung does not apply because D, below is not 
bounded.) 

Define H: W x n2 + IWtn’ rn2)2 by letting H( 8) satisfy 

col[IT(~)-T(Pr)l=H(B)colCB-Brl, 

where H( /?) is as given by the mean value theorem. In the particular case 
in which T is linear, H(.) is a constant function. Throughout the following 
corollary, 1. ( will denote the Euclidean norm. 

COROLLARY 2. Consider the algorithm (3), (4a), (4b). Choose any two 
numbers, 0 < K’ < K < co. Assume that 

(i) (A.l) to (A.5) are satisfied. 
(ii) z2 is exogenous, so that E(z&) = ML2( 8) 5 M. 
(iii) The differential equation fi = T(p) - B is globally stable in [w”’ Xn2. 
(iv) 3G> 0 such that for all 0 <E <E and all /I: 1s --prl = K, each 

eigenualue of the matrix [I( 1 - E) + EH( /I)]‘. [Z( 1 - E) + EH( j?)] is less than 
a’, a < 1, in modulus. 

Then, taking 

D,= {(~~,R)EW~“‘~‘~: I/?-&l <K) 

D,= {(/I,R)EW~(“~)~: l/?-&l <K’} 

and letting 4b take the alternate form 

p, = some value in (p: Ip - jJl <K’) 
R, = R, 

it follows that 

8, + bf a.$. 

Proof: Take &*>O such that if IR-M(<E* then IR-‘M-I[< 
(I- COWT,, where c( is as in condition (iv) of this corollary, and 

TK= max I T(P)I + l/K 
fB:IB-8/lGKl 
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Define the sets 

Df=D,n {(/?, R): [R-MI cc*) 

D,*=D,n (fl,R): JR-MJ 6: 
i I 

. 

These sets will play the role of D r, D, in Theorem 4 of Ljung. 
Next we show that at the boundary of 0: trajectories of (5) point 

toward the interior of the set Df. Note that SD: = ((j?, R)E Rnlx(nz)3: 
l/?--Prl =K or lR--Ml =e*}. Note that if (p, R)EdD: then lfl--flrl <K 
and IR- Ml GE*. We need to show that given (6, R) E SD:, 3.i~. 0 such 
that for all 0 < E < f, 

R-‘MCm-81 ED* 
M-i? 1 1. 

This is equivalent to showing 

I~+~~-‘M[:~(&81-Dfl <K and (*I 
jR+&(M--)-Ml <E*. (**) 

Condition (**) is trivial: so long as E<l, IR+&(M--@-Ml = 
(l-s)(&M(<(l-E)E*<E*. 

Now, for (*) take i=min(E, $}, where E is as in condition (iv) of this 
corollary. If 0 < E < i 

B+~C~~B~-8l-B~=B+~c~~P~-81-a~-~C~~B~~-a,l 
=(B-Br)(l-&)+&CT(8)-T(P,)l; 

it follows that 

Now we can use the fact that for any matrix A such that A’A has all 
eigenvalues less than a2 in absolute value, and any vector X, (Ax\ < c1 1x1 
(see Noble and Daniel [23 J, Theorem 5.7). Therefore we conclude 

IB+4w)-m-Pfl <cf &Pfl =a 
where we have used condition (iv) in this corollary and E5 d E. 

(***I 
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Finally, 

349 

$a+; TK 
(1-a)K l+cr 

TK 
=2K<K, 

where we have used the triangle inequality, z< f, and IR-‘M- II < 
(1 - a) K/T,. Hence, (*) is satisfied. 

Now since the second part of (5) simply says that I? = M- R, letting 
(p(t), R(t)) be the trajectories of (5), we have that R(t) + M as t + co. This 
plus condition (iii) of this corollary imply that B(t) +pr, and (5) is 
globally stable. Therefore, there exists a Lyapunov function V: Rn1x(nz)3 + 
[0, co) for (5) with the usual properties. Since Df’ is bounded and we have 
shown that trajectories that start at SD: point inside D:, we can choose 
V(.) to satisfy 

VP, R)Bc, for all (fl, R)#Df 

V(B,R)<c,<c, for all (/I, R)eD2. 

Finally, if (b,, R,) “attempted” to go out of D, (and, therefore, out of 
Df c Dl) infinitely often (i.o.), then (/I,, R,) E 0: i.o. This is because when 
(PI, R,)# D,, (/If-fir) < K’ by the projection and, since R, --) h4, 
(R, - MJ <E for all t large enough. But if this were the case, I’( /I,, R,) 
would go from a lower value c2 to a higher value c, i.o., which by Step 3, 
Theorem 1 of Ljung [19] can only happen with zero probability. 

Therefore, the projection is invoked finitely many times (with probability 
one); after the last time the projection is invoked, the algorithm behaves as 
if assumption (A.7.1) were satisfied, with D’ = DT, and Proposition 1 
applies. 1 

It can be shown that a sufficient condition for (iv) in Corollary 2 is that 
H(b) be symmetric and that all of its eigenvalues be less than zero for all 
/I such that IS-/?rl <K. Also, note how the set D, restricts pt to belong to 
a ball around pJ, and how R, is never affected by the projection; D, and 
D, could be chosen arbitrarily large, and D, arbitrarily close to D1. Sets 
with different shapes would work in many examples. 

At this point, it is useful to recall the following results from the theory 
of ordinary differential equations. First, we represent Eq. (5) in terms of 
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a state vector rather than the state matrix [{I that appears in (5). By 
stacking columns of matrices on each side of (5) we obtain 

where col( ,8) is an (n, . nz) vector obtained by stacking columns of /? on top 
of each other and col(R) is an (n$*‘) vector obtained by stacking columns 
of R on top of one another. Now define 

h(P, R) = d(col ;coi R)’ ‘(” R)’ 

If h( flX, R,) has an eigenvalue with positive real part, then (5) is unstable. 
If all eigenvalues of h( fir, R,) are negative in real part, then (fir, Rf) is a 
locally stable rest point of (5). 

These facts about ordinary differential equations are useful in interpret- 
ing the next two propositions. The first part of the proposition reaffirms 
a point made by Bray and Savin [6) that only a rational expectations 
equilibrium is a possible limit point of a least squares learning algorithm. 
The second part states a sense in which the stability of (5) is not only a 
sufficient but also a necessary condition for convergence. 

PROPOSITION 2. Assume that (A.l) to (AS) are satisfied. 

0) Let B#flp/; 
/?E int(D,). Then 

assume that M,,( p^) is positive definite and that 

P(fit-*fi)=O. 

(ii) Zf h( ef, R,) has one or more eigenvalues with strictly positive real 
part, then 

ProoJ For part (i), we have 

p(A-+8)=p(B,+hd R,-+%(8)) 

+ p( P, -+ b and R, + M,(b)). 

The first probability on the right side is zero by the converse of Theorem 2 
in Ljung [19]. That the second probability is also zero is shown in 
Lemma 1, Appendix II of this paper. Therefore P( 8, -+ 8) = 0. 

Part (ii) is shown by appealing again to Theorem 2 in Ljung and our 
Lemma 1, which is proved in Appendix 11. 1 
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Note that this proposition is obtained without invoking either (A.6) or 
(A.7). This means that if the sets D, and D2 in (4a)-(4b) are set equal to 
[w”’ x (n2)3, Proposition 2 remains true. We have the condition that fi belongs 
to the interior because with D, unrestricted, the case depicted in Fig. 2 
could arise. 

We now describe a sense in which the limiting behavior of the differential 
equation (5) is determined by the simpler differential equation 

We first note that if Rr is nonsingular, as assumed in (A.3), then (BY, Rf) 
is a stationary point of (5) if and only if p/ is a stationary point of (6). This 
assertion follows directly from the definition of a stationary point. 

The local stability of (6) is governed by the matrix 

The next proposition asserts that (5) and (6) share local stability proper- 
ties. 

PROPOSITION 3. (i) h( B,, Rf) has (r~~)~ repeated eigenualues of - 1 
(ii) Let A be the set of the (possibly repeated) remaining (n, xn2) 

eigenvalues of h(/?/, Rf). Let B be the set of all eigenvalues of JZ. Then 
A = B. 

Proof: It is easy to check that 

hU$, Rf) = (d/dcolP’)colCT(8/)-/3/1 “(l=[A”r, 011 
(d/d co1 P’ 1~01 M;,( B/l 

where we have used that T( p,) = br and M,,( /I,) = R, is invertible. 
Clearly, any vector of the form [,‘$I, where 0 is an n, x n, zero-vector 

and m* has all elements except one equal to zero, forms an eigenvector 
with eigenvalue - 1. Since there are n2 x nz such eigenvectors, we have part 
(i) of the proposition. 

Now, let {L, [:,I} b e one of the remaining pairs of eigenvalues and 
eigenvectors, where m has n2 x n, elements and m* has (n#. If m = 0, then 
[ ,$I would be a linear combination of the n2 x n2 eigenvectors considered 
in the first part, which is not possible. Hence, the above formula for 
h( Br, R,) gives km = Am for m # 0, and 1 is an eigenvalue of 4. In this 
way we can find all n, x n2 eigenvalues of JZ, so we have proved (ii). 1 

f&2.48,2-2 
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Proposition 3 implies that if all eigenvalues of J? have real part strictly 
less than zero, then both (5) and (6) are locally stable. Under this 
circumstance, one can find sets D, and D, that satisfy (A.7.2), and for 
which there occurs the convergence asserted in Proposition l.* 

Proposition 3 also implies that if one eigenvalue of J%! has positive real 
part, then (5) and (6) are both unstable. Under this circumstance, there 
exists no choice of sets D1 and D, for which there occurs convergence of 
/I, to /If, except for the trivial choice D, = { pf, R,}. 

3. LEARNING FROM CONTEMPORARY DATA 

The model (3), (4) shares with many examples in the literature the 
feature that the estimate /II at t is a function of zls, zzs- i for sd t - 1. 
However, in many other applications it is desirable to alter a model to 
permit 8, at t to depend on data (z i,, zzl- r). This amendment makes p, 
and z, simultaneously determined, and complicates convergence proofs 
based on previous methods (e.g., see Bray and Savin [6] and Fourgeaud, 
Gourieroux, and Pradel [ 111). In this section, we briefly describe how the 
apparatus of this paper would apply in such setups. 

To accommodate contemporary information, we replace (4a) by 

8:=P:~1+(cc,/t)R~1,z,,-,Cz;,-z;,-,P;-11 
1, = R:L 1+ (dtNz,,&, - R,- l/a,l. 

(4c) 

Our system is now formed by (4c), (4b), and (3). 
To ensure that the system (3), (4c), (4b) is well defined, we state another 

assumption : 

(A.8) Let Q,, be the subset of the sample space defined in (A.6). For 
OE&?~, (3) and (4c), (4b) have a unique solution (p,, R,, z,). 

We now state the following proposition. As in the previous section, let 
DA be the domain of attraction of the differential equation (5). 

PROPOSITION 4. Assume (A.1 )-(A.6), (A.8). rf 

(A.7.1) is satisfied and D’ c D, , or 

(A.7.2) is satisfied and D, c D,, 

then /3, + bf almost surely as t -+ co. 

‘Note that the differential equation (6) forces /? at every point in time to be adjusted 
toward T(/?) by a small amount. By comparison, iterations on T of the kind studied by 
DeCanio [S] and Evans [9, lo] set j?, = T( /?-,). Note that, in general, when iterations of 
this type converge, (6) is also stable. However, (6) can be stable when /3,= T(p,-,) fails to 
converge, for example when some eigenvalues of dT( /?)/dp are less than - 1 for all fl. 
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This proposition can be proved by straightforward modification of the 
steps used by Ljung [19] to prove his Theorems 1 and 4. Versions of 
Corollaries 1 and 2 and Propositions 2 and 3 also hold. The upshot is that, 
provided (A.8) is satisfied, the same differential equations (5) and (6) 
govern the system (3), (4c), (4b) with contemporary learning, that govern 
the system (3), (4a), (4b) which imposes a one-period lag in agents’ regres- 
sions. 

4. FIVE EXAMPLES 

The results of Sections 2 and 3 can be put to work by mapping a par- 
ticular economic model into a system of the form (2) and (3), then verify- 
ing assumptions (A.l) to (A.7). To obtain a system of the form (2) and (3), 
one begins by writing down a set of equations that determine the equi- 
librium of an economic model. Often these will include linear “expecta- 
tional difference equations”, in which there appear some particular sets of 
agents’ expectations about future variables.’ For example, “Euler equa- 
tions” are of this form. One completes the task by substituting elements of 
pIzzIp, into these expectational difference equations, and solving for z, in 
the form of (3). 

This section describes five examples that illustrate how to apply our 
results. The examples are presented in order of increasing complexity in 
terms of the analysis needed to verify assumptions (A.6) and (A.7). The 
first four examples are important ones from the literature, while the fifth is 
one of our own making. 

The first example involves learning only about variables exogenous to 
the agent, and is a system with no self-referential aspect. The second and 
third examples are ones in which agents influence the law of motion of the 
current value of an endogenous variable via their expectation about that 
current value, which is formed as a function of an exogenous variable. In 
the fourth example, agents influence the current value of an endogenous 
variable via their expectation about a future value of that variable, which 
is formed as a function of the current value of an exogenous variable. 

The first four examples all share the property that zzr includes only 
exogenous variables, so that M,,(B) is independent of a, making 
Corollary 2 available. By contrast, the fifth example is one in which agents 
learn about an endogenous variable by regressing on lagged values of both 
exogenous and endogenous variables. This makes M,,(p) a function of /I 
and considerably complicates the analysis. 

9 See Charles Whiteman [28] for a discussion of linear “expectational difference equations” 
and how they arise in a variety of economic models. 
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a. Estimation of Time Invariant Linear Stochastic Difference Equations” 

Consider the special case in which the law of motion is independent of 
the perceived law of motion. Let r( /I) = y, where y is a square matrix of full 
rank whose eigenvalues are all strictly less than unity in modulus. Let z, = 
zll = zI1 and V(B) = I. Assume that U, is an independently and identically 
distributed random vector whose covariance matrix has full rank and 
whose pth moments are finite. It follows that z, is a covariance stationary 

’ process, and that &I=,( fl) = Ez,z, is independent of /?. For this example, use 
Corollary 2 for arbitrary K, K’, and note that H( fl) = -I for all 8. Set E = 1 
in Corollary 2. Then it follows, for arbitrarily large values of the boundary 
parameter K used to define D,, that Corollary 2 holds for this example. 
Therefore, j?, -+ y almost surely as t + co. 

b. A Model of Bray 

Margaret Bray [4] studied an example for which in our notation (3) 
takes the form 

pr=a+z$,+ii, 

and (4a) takes the form 

R,=R,-,+; [l-R,-,], RO= 1. 

Our flI is p;+ r in Bray’s notation, where 0, = p:+ r is the expected price, JI, 
is the price, and ii, is an independently and identically distributed random 
process with zero mean and finite variance. To map this into our setup, we 
set zlt = pt, ZIt = 1, 24, = ii,, 

z, = T(B)=a+WC 

v= 1, B(B)=O, A(B)= CO, 11’. 

The ordinary differential equation (5) is 

$ fl=R-‘[a+(b-l)fl] 

$R=L-R. 

‘“This is a version of the problem studied by Mann and Wald [21]. 
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Assumptions (A.l)-(A.6) are satisfied for this model. From the phase 
diagram of the differential equation (5) for Bray’s model, shown in Fig. 3 
for the case in which b < 1, it follows that (A.7.2) is easy to satisfy. One can 
easily construct arbitrarily large sets D, containing BY along whose bound- 
ary the trajectories of (5) point toward the interior of D,. Figure 3 depicts 
the case for sets restricting /3 to satisfy I/?/ -C K. Notice that Margaret Bray’s 
algorithm in effect restricts R, always to be unity. 

Propositions 1-3 apply to this model, so that if b < 1, then 8, + Br 
almost surely. If b > 1, then P[ /I, + pf] = 0. 

c. A Model of Brajf and Savin 

A model of Bray and Savin [6] tits into our framework. In their nota- 
tion, let the perceived law of motion for price in period t be pt = 
x,!b,- , + wt, while the actual price is determined by p, = x:(m + ab,- 1) + zi,. 
Here (xr, ii,) is an independently and identically distributed vector of 
random variables with finite covariance matrix, and x, is orthogonal to i7, 
for all t and S. The vector x, is an exogenous process of shifters to supply. 
The coefficient b,- , is a least squares estimator of the perceived law of 
motion, based on data on ps and x, through t - 1. 

To map this model into our notation, let z,= (p,, x1+,)‘, zir=pI, 
z2,=x/+1r Bl=br-I, T(B)=m+aP, A(D)=CO,ol’, VB)=B(P)=L 
U, = [ii,, x,+ ,I’. The differential equation (5) for this model is 

d B Rp’m,[(a- l)B+m] 
dtR= [I [ m,-R I9 

where m, = Ex,x,‘. In the case of a univariate x process, m, is a scalar so 
that apart from the value for the constant and slope parameters, this dif- 
ferential equation system is identical with the one corresponding to (5) for 

* I 
R 

-K O,O @-Y/S K P 

FIG. 3. The phase diagram of (+)[{I = [Rm$F8+681] when 6~0. For Bray’s model, 
WI,, = 1, y = a, and 6 = (b - 1). For Bray and Savin’s iode with scalar x, mz2 = m,, y=m, and 
6 = a - 1, For Fourgeaud, Gourieroux and Pradel’s model, mz2 = m,, y = p. and 6 = (Ip - 1). 
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the model of Bray analyzed in Section (4b). It follows when a < 1 that 
qualitatively the phase diagram matches that of Fig. 3 (only now 
fir= m/( 1 - a) and R,= m,), and that our propositions apply to the 
Bray-Savin model in exactly the way they apply to the Bray model. 

In the case of a multivariate x, process, Corollary 2 applies to this model. 
Since H( /I) = I. (a - 1) < 0, we can take E = 4 and arbitrarily large K’ < K. 
With the sets D,, D, chosen as in Corollary 2, it follows that if a < 1, then 
fl,-jIr=m/(l -a) almost surely as t+ co. 

Note how the above argument could dispense with the assumption made 
by Bray and Savin that x, is independently distributed through time. Also, 
by Proposition 3, if a > 1, then P( /I, + flf) = 0. 

d. Hyperinjlution or Stock Prices 

We consider a version of the model studied by Fourgeaud, Gourieroux, 
and Pradel [ 111. The model is 

Y,=aY,+,+x,Y li( < 1, t2 1 
(7) 

xt=pxI-l +c,, IpI < 1, t> 1, x0 given, 

where E, is a white noise with mean zero and E E,x,_~ for j > 0. At time t, 
the perceived law of motion for y, is given by 

where /I, is a least squares estimate based on data on y,, x,- 1 through 
t - 1, and u, is a least squares residual. Agents are assumed to form E, y, + 1 
in (7) according to E, y,, , = a,~,. We replace E, y,, i by Btxr in (7), and 
obtain 

With y, interpreted as the price level and x, as the money supply, the 
model is a version of Cagan’s [7] model of hyperinflation studied by 
Sargent and Wallace [25]. With y, interpreted as the price of a stock and 
x, as its dividend, the model is a version of the “present value relation” (see 
Shiller [27] or LeRoy and Porter [ 171). 

This model fits into (3)-(4) with the following selections: Z, = (y,, x,)‘, 
Zlr’Yt9 Z2t = x,, T(a,=(u+ l)P, U,=E,, V(p)=v+ 1, B(B)= 1, 
A( /I) = [0, p]. Assumptions (A.1 k(A.5) all hold true. Here fir= p/( 1 - np), 
Rf = m, = Exf The ordinary differential equation (5) associated with (3) 
and (4) is 

d B [I [ R-‘m.C(b- l)B+~l 
ZR= m,-R I. 
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Apart from the interpretation of various slopes and constant terms, this 
equation is identical to the differential equation governing the models of 
Bray and of Bray and Savin (with univariate x,). Once again, qualitatively 
the phase diagram is as in Fig. 3. Again, Propositions l-3 apply. Using 
Corollary 2, since I%p( < 1, we conclude P( B, + fir) = 1 for all parameter 
values. 

e. Investment under Uncertainty with Learning 

We describe an example with a considerably more complex structure 
than any of the preceding four examples. The example is formed as an 
“adaptive” version of Sargent’s [26, Chap. XIV] linear version of Lucas 
and Prescott’s [20] model of investment under uncertainty. The model has 
agents learning about future values of an endogenous variable by regres- 
sing on lagged values of exogenous and endogenous variables. Associated 
with this model is a differential equation corresponding to (5) which is 
considerably more difficult to analyze than the ones associated with our 
previous examples. 

A representative firm, of which there are N, faces the problem of maxi- 
mizing 

E f b’{p,fk,-w,k,-(d/2)(k,-k,-,)*) 
I=0 

O<b<l, d>O, f>O (8) 

subject to kp i given, K_ i = Nk_, given, and the perceived laws of motion 

M’( = pw,-, + u,, IPI < 1 

P,= -A,fK> A,>0 

K,=S,K,-1 +P21t~,-, +m,, (9) 

where u, and o, are white noises that are orthogonal to u’~~,, K,-i for 
j> 0. The model is formulated in deviations from means in order to dis- 
pense with a number of constant terms. Here p, is the price of output, k, 
is the capital stock of the representative firm, w, is the rental rate of capital, 
K, = Nk, is the aggregate capital stock in the industry, fk, is output of the 
representative firm, and (fK,) is output of the industry at t. The firm is sup- 
posed to act as if it knows the parameters of the laws of motion (9) with 
certainty. Under this circumstance, the firm’s problem is a well posed 
optimal linear regulator problem. 

The state for the firm at time t is (k,- , , K,, w,), while the firm’s control 
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is (k, - k,- i) at t. The solution of the firm’s problem is a time invariant 
decision rule that can be represented as 

k=g,k-,+g,w,+g,K, 

where g, , g,, g, are functions of the parameters A i , f, d, b, p, /?, , and f12. 
Multiplying by N, we have that the actual law of motion for K, is 

Thus the firm’s optimization problem and market clearing induce a 
mapping from a perceived law of motion for K, given in (9) to the actual 
law of motion given in (10). The mapping T(b) can be found by pursuing 
the sort of calculations described in Sargent [26, Chaps. IX and XIV]. The 
mapping is given by 

(1 -B,b) 
T’(p)= (1 +,b+dpLf2A1N) 

To create a model of investment under uncertainty with learning, we 
assume, for simplicity, that agents know the true parameter p in the law of 
motion for w,, but they learn about the law of motion for K,. Then we can 
set zil= K,, Zig= [K,, wt] in (2). Equation (3) takes the form 

The learning scheme is given by (4a)-(4b). We require that the sets D, and 
D, be such that if (b, R)ED,, then lb11 <be.’ and lb21 <K for some 
arbitrary K < +co. The restriction that lflil < b-.’ is required in order to 
assure that the firm’s choice problem is well defined, an important require- 
ment since this decision problem is used to define the T operator. For 
lp,l > b-.5, it occurs that the firm’s objective function diverges to - co. We 
describe further possible restrictions on D, and D, below. 

We proceed to apply our propositions to this model. Assumptions 
(A.l)-(AS) are all satisfied. We shall discuss below how (A.6) and (A.7) 
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can be satisfied by appropriate choice of D, and by restrictions on the U, 
process. Corresponding to (5) we have the differential equation system 

(134 

Corresponding to (6) we have the differential equation 

(13b) 

It can be verified that for all l/Ill < bF5, p2 unrestricted, the differential 
equation (13b) has trajectories whose limit points are the unique rational 
expectations equilibrium. (In verifying this, it helps to start by noting that 
(13b) is recursive, since T,( /?) depends only on /Ii, and that for lpll < b-.‘, 
the ordinary differential equation /i, = T,( p,) - /?I is stable because 
dT,( /ll)/dfil ~0. Then it is also easy to see that for fixed pi, 
dT,( p)/d/& i 0, and & also converges.) 

From the stability of (13b) about the rational expectations equilibrium 
(fl,), it follows from Proposition 3 that there exist some nontrivial sets D, 
and D, for which assumption (A.7.2) can be verified. Of course, Proposi- 
tion 3 provides no indication about how big these sets can be. To verify 
that a given choice of sets D, and D, will work, one has to verify the condi- 
tion that at the boundary of D,, all trajectories of the differential equation 
(5) point toward the interior of D, . For a model as complicated as the pre- 
sent one, this condition seems very hard to verify analytically, because of 
the presence of the operator M;,(B) on the right side of (5). However, for 
a given choice of D, and given parameter values, this condition could 
readily be verified by numerically solving for trajectories of the differential 
equation (5) at a grid of points on the boundary of D,. 

With a D, chosen to satisfy (A.7.2), in order that Proposition 1 apply, 
we have also to verify that (A.6) is satisfied. The fact that a zero appears 
in the (2.1) element of the matrix [ ‘IAB) $B)] appearing in Eq. ( 12) makes 
it possible to establish that 

almost surely for all t large enough, where C is a fixed constant (a full 
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account of this is given in Appendix III). It follows that Iz,( < C infinitely 
often with probability one, and (A.6) is satisfied. 

We have thus described a list of conditions on D, which satisfy the 
hypotheses of Proposition 1. 

5. CONCLUSIONS 

We have described a general framework for analyzing the convergence of 
least squares learning in some self-referential linear models. Our framework 
provides an alternative, and in some respects simpler method of charac- 
terizing convergence for several models that have appeared in the literature. 
Our framework permits us to strengthen some results in the literature by 
dropping certain serial independence assumptions and by characterizing 
conditions under which convergence will not obtain. The framework also 
permits us to analyze models in which some of the regressors used by the 
agents are endogenous. 

Our results are achieved by recognizing that the class of models that we 
study satisfies the regularity conditions used by Ljung [19], who showed 
conditions under which an ordinary differential equation governs the 
almost sure convergence of a system of stochastic difference equations. For 
our models, the ordinary differential equation involves the mapping T(p) 
from perceived to actual laws of motion of the system. We also show that 
the convergence of least squares estimates to a rational expectations equi- 
librium bears an intimate relationship to the stability of the differential 
equation (d/dt)p = r(b) - fi. This relationship provides a unifying and 
interpretable criterion for convergence that is applicable across a range of 
models. 

A drawback of our results is that the stability of (d/dt)b = r( /I) - fl 
assures only the local convergence of least squares, as indicated in our 
Proposition 3. The sufficient conditions for global convergence stated in 
Proposition 1 involve the behavior of a larger ordinary differential equa- 
tion, which can be much more difficult to analyze in cases in which agents 
include endogenous variables among their regressors. One would like a 
stronger and more global implication about convergence to flow from 
stability of the “small” ordinary differential equation dgldt = T( /?) - /I. 
A stronger result might be obtained in the future, perhaps by further 
restricting the mapping T(p), and therefore also the mapping M=,( 8) which 
appears in the larger ordinary differential equation. 

Another drawback of our approach, inherited from Ljung, is the need to 
verify certain boundedness assumptions ((A.6) and (A.7)), which can be 
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troublesome in some contexts. Further research might be directed at 
providing more general and direct ways of verifying these conditions.” 

The framework in this paper fails to apply to models having either 
hidden state variables or private information, some of which have been 
used in studies of convergence of least squares learning (Bray [S], 
Frydman [12]). In a sequel, we extend our framework to handle such 
cases. 

APPENDIX I 

Here we state the convergence theorems of Ljung [ 191. This appendix is 
mostly a transcription of parts of that paper. We will use Ljung’s equation 
numbers, preceded by the sign “I,” to facilitate comparison. 

Consider the algorithm 

x, = x,- I+ y(t) Q(t; x,- 1, z,- , ), (1-l 1 

where x, is an n-dimensional vector; z, is an m-dimensional state vector 
observed at time t; Q is a function mapping R x R” x R” into IV’; and y(t) 
is a sequence of positive (nonrandom) scalars. The process for the state 
vector z, is given by 

z, = W,)z,- 1 + G(x,k,, (I-2) 

where e, is an r-dimensional vector of serially independent random 
variables, F: R” -+ IV’““, and G: R” -+ 58”“‘. Note that the process z, is 
allowed to depend on x,. To map this into our framework, xI, y(t), zI, and 
e, in this appendix correspond to col( /II), a,/t, z,, U, of the paper, and Eqs. 
(I-l), (I-2) correspond to Eqs. (4) and (3). (In fact (4) corresponds to (I-l) 
only when D, = D2 = iw"' x (n2P ). Let Z,(x) be the stochastic process given by 

Z,(x) = F(x) Z,+ ,(x) + G(x)e, To(x) = 0, x E R" (I-15) 

” With the results currently available in the literature on adaptive control, it is not possible 
to derive the asymptotic distribution for our algorithm. Ljung and Soderstrom display the 
asymptotic distribution of algorithms that are contructed in order to find the zero of an 
appropriate loss function (see Chap. 4 of Ljung and Soderstrom [18]). In our case, the 
natural loss function to use would be the norm of the prediction error; but, since the mapping 
T enters the expression for z, (th e variable that is predicted), the term multiplying (a,-,/[) 
in Eq. (4) is not the derivative of the loss function. That derivative would involve a term con- 
taining aT/@. In the least squares case the algorithm is adjusted along the direction 
;2,-2 z;,-~, while for a model that is non-linear in 8, the best direction may be given by 
replacing -I~,~~z;,+~ with H,-2zz,-2, where H, involves the derivative of Tin the appropriate 
way. In this way, our algorithm is related to the pseudo-linear regression discussed by Ljung 
and Soderstrom. 
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and let u(t, A, c), where 0 < A < 1, and c is a positive constant, be given by 

o(t, 1, c)=h(t- 1, A, c)+c le(t)l, ~(0, A, c)=O. (I-16) 

Let @(X, e) = (x: (x-.%1 <p}. Let D, be an open, connected subset of 
D,, D, defined as in Section 2 of this paper. The following conditions are 
assumed to hold for all x E D,. 

B.l. e( .) is a sequence of independent random variables (not 
necessarily stationary or with zero means). 

B.2. E le( t)l p exists and is bounded in t for each p > 1. 
B.3. The function Q(t, x, z) is Lipschitz continuous in x and z: 

lQ(l, xl, zl) - Q(G -Q, z2)l <&C-G 2, P, u)(lx, - x21 + IzI - z,l} for X,E 
W(x, p) for some p = p(x) > 0 where x E D,; Z;E W(z, u), u 2 0. 

B.4. l&(x, Z1r P, u,)-6(x, -12, P, u2)I < xz(x, z, P, 0, WI { IZI -z2l+ 

lo, - u2( > for zi E g(z, w) and ui E g(o, w). 
B.5. A ( .) and B( .) are Lipschitz continuous in DR. 

B.6. lim f-t m EQ(t, 2, Y,(X)) exists for XE D, and is denoted by f(Z). 
The expectation is over e( .). 

B.7. For XE D,, the random variables Q(t, x, Z,(x)), X1(x, Z,(x), 
p(x), u(t, ;L, c)), and X2(x, Z,(x), p(x), u(t, 1, c), u(t, A, c)) have bounded 
p-moments for all p > 1 and all A< 1, c < cc. Here Z(x) and u( ., i, c) are 
the random variables defined by (I-15) and (I-16). 

B.8. x? y(t) = co. 
B.9. x? y(t)” < co for some p. 

B.lO. y(.) is a decreasing sequence. 
B.ll. lim,, ~ SuPCllY(t)- l/v(t- l)l< cY.3. 

Consider the differential equation 

f x(t) =f(x(t)), (1-19) 

where f has been defined in B.6. 

THEOREM 1 (Ljung [ 191). Consider the algorithm (I-l), (I-2), subject to 
assumptions B. Let B c D, be compact, and assume that trajectories of 
(I-19) that start in d neuer leave a closed set 6, c D, for t > 0. Assume that 

there is a random variable C such that 

x, E ij and Jz,J < C infinitely often with probability one. (I-20) 
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the differential equation (I-19) has an invariant set 

D,. = (x: f(x) = 0) with domain of attraction D, 2 6. (I-21 ) 

Then x, + D, with probability one as t --t co. 

Ljung also provides an alternative algorithm, with a “projection facility.” 
Let D,cD,cD,, 

-~,=-u,~1+r(t)e(t;x,-,,z,-,) 

x, = i, if .Y,E D, 

x, = some value in D, if X,$D,, (I-28) 

and 
- = F(x,) z,-, + G(x,)e, “I if Z, E D, 

7 = a value in a given compact subset of R” ‘1 if X,$D1. (I-29) 

THEOREM 4 (Ljung [19]). Consider the algorithm (I-28), (I-29) subject 
to assumptions B. Let D, c D, be an open bounded set containing the com- 
pact set D2. Let a = D,\D, (Dl “minus” D,). Assume that Dz c D,, with 
D, defined as in Theorem 1. Suppose that there exists a twice differentiable 
function U(x) 2 0, defined in a neighborhood of b with properties 

sup U’(x) < 0, (I-30) 
XE d 

Ux) > c, forx$D, 
U(x) < c2 -=c c, for XE Dz. 

(I-31) 

Then Theorem 1 holds without assumption (I-20). 

Equations (I-30), (I-31) hold if the trajectories of (I-19) do not intersect 
the boundary of D, “outwards”. 

APPENDIX II 

The following lemma is used in proving our Proposition 2. 

LEMMA 1. Assume that z, is given by (3) and that (A.2), (A.4), and (A.5) 
are satisfied. Then 

P(Br~BandR,f,MZ,(B))=O 

for any BED,. 
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Proof We will first check that for any w E Q such that b,(o) -+ fl, and 
o outside a set of probability zero, 3 {tk} such that Iz,,(w)l 6 C(w) for 
some random variable C(o) < co. 

Note that we can choose E> 0 such that if lflk - fi\ < F for all k = n, .:., t, 
then 

where C,, C, are fixed constants, ;1< 1 is the maximum eigenvalue of T( fi) 
(in modulus). The proof of this uses continuity of T( .) (see I. 11 in Ljung 
C191)- 

Now, given o ~52, if B,(o) -+ 8, 3n such that Vt > n the above 
inequalities are valid; also, since 

we have 

i=n 

Izt(w)l G c, MO)1 *I’-” + c,c, [ i Pi ,ui(co)l], 
i=n 

We can write 

Vt>n with x, = Iu,I. 

Since u has bounded pth moments, and 2 < 1, we have that x, is ergodic, 
and we conclude that for some subsequence { tk} and some constant 
C3<Q 

x,,(m) G c, 

with probability one. Hence 

k = 1, 2, . . . . 

Iz,(w)l d IZ”(O)l c, + GC, c3> k = 1, 2, . . . . 

This shows that z, is bounded i.o. 
Now, consider 0 <p <p, and n’ such that if k > n’, lpk - /?I <p. Having 

shown that z, is bounded infinitely often, we can apply step 2 of Lemma 1 
in Ljung [19, p. 5651, and we have 

Iz, -?,I < I’-“‘o(n’, 2, c) + pu(t, A, c) = B,, 
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where 2, is defined as ?,= T(/?)Z,-, + V(B)u,, t>O, Z,=O and where 
u(s, X, c) = Xu(s - 1, X, c) + c /a,[ $0, X, c) = 0 for some constant c. 

Since Z and u are linear processes, we know that with probability one, 

C’ IZi12 ~ K C’ o(i, x, c)* 
1 and 

t t 

--) K*(c) as t + co, for some K1, K*(c) -c co. 

Letting R, = (C: z21 _ i zii- l)/t, we have 

JR 
I 

_ a 1 < CI Iziz: -  zizll < 2 JZi (lzjl + Bi)(Bj) 
r\ 

t ’ 

d  2 C’ (lZ,l + B$ I’* C’ B; u2 

(  
t 1  (i 

(II-l) 

where we have used the triangle inequality, the mean value theorem (which 
implies jziz~ - Z,Zil < 2( I?J + B,)B,), and the Cauchy-Schwartz inequality. 

Now, 

lim sup CI < lim sup 
(( 

2 
t 

ZJ!L.! u(n’, 1, c) * + 2p2 
,-CC t-cc t 

) y, Xc’)‘) 

= 2 + 2p*(K,)* 

independently of n’ (which depends on p but not on t). 
Using this, and taking the lim sup in both sides of Eqs. (II-l), 

lim+szp IR, - 8,1 G 2 12((K,)* + (K2)*)‘/* (2(K2)*)‘/* 

Q 4((K, )* + (K2)2)“2 K2p. 

Since this holds for any p > 0, we can let p JO and conclude that the above 
limsup is zero, so that lim,_ m JR, - W,I = 0. Since, by ergodicity of 5, 
K, + M,,(B), we have lim, + cc R, = M,( j?). 

This holds for any o where p, goes to /? except for o E Q,,, where 8, is 
the union of several sets of probability zero for which convergence of 
averages may not hold. Hence {o E Q: /It(o) + /? and R, f, M,( fi} c Q,, 
and we have our conclusion. 
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APPENDIX III 

Here we show that for the example in section 4e, with probability one, 
there exists a t’ such that if t > t’ 

f i$o lzizil < c< O”, 

where C does not depend on the realization o E Sz. 
By recursive substitution in the law of motion for z,, we can write 

(III-1 ) 

where 

Al,i= IfI 0  
i 

Tl( Pj) T2( Pj) 

j=i 1 P ’ 

where z,, T,, T,, I’, U, are as in section 4e. 
The key to the proof will be that the norm of FI,,~ decays exponentially 

as t increases (i.e., is of exponential order less than one). The crucial 
property of the model that will allow us to show this is the zero that 
appears in the coefficients of z, _ i in the law of motion for z,. 

In section e, we have discussed how D, must be chosen so that 
V(jI, R)ED,, l/Ii\ <b-.5 and \/I21 <K, < cc for arbitrary K,. If this is the 
case, 

IT,(P)1 <A< 1, IT,(P)1 <K,< 00 V(i.4 WED,. (111-2) 

After some algebra, it is possible to show 

A 
1.7 

= II:=, Tl(Pi) C:=~T~(B~)P~-~IYI~=~+I Tl(BjI 

0 P 
f-T-1 I. 

Let 2 = max{ p, A}. By (III-2), the diagonal elements of A,, are bounded 
in absolute value by lf-‘-‘, and the (1,2) element is bounded by 
K,(t-r)X'-'. Here IT,(fli)l <K,<co. 

Now, choose I> 2, I< 1. Since n(J/j)’ --) 0 as n + co, there exists a 
positive, finite number c’ such that nX” < c/In for all n. Choosing c’ > KZ, 
we have that all elements of A,,, are less than c’jre7 in absolute value, and 

IA,.Tl <d/VT vt, T. (111-3) 
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Taking the norm of both sides of (III-1 ) and using (III-3), 

(,I < Jzo( c’+K3c’ i x’-’ luil for all t, 
I=0 

where K,<m is such that /V(B)j<Kx, V(B,R)ED,. Now, letting 
x, = C:=, 1’~ i IuiJ, we see that 

x,=Jx,-* + lu,] t > 0, 

x0 = 0. 

Since (u,I has bounded pth moments, we have (C’xf)/l+ K4 < co as 
t + co, with probability one, 

c:=o h12 C’ xz 
t 

<2((z,( c’)‘+ 2(K3c’)* .+ 

and with probability one there is a t’ such that if t > t’ 

(Note that t’ depends on the realization UEQ.) 

(111-4) 
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